WorldWideScience

Sample records for mice decidual cells

  1. The local origin of decidual cells in pregnant mice

    International Nuclear Information System (INIS)

    Zorn, T.M.T.; Abrahamsohn, P.A.; Mariano, M.

    1986-01-01

    In order to evaluate the participation of extrauterine cells in the formation of mouse antimesometrial decidua, [ 3 H]-thymidine was administered ip on days 1, 5 and 6 of pregnancy and the animals were killed 1 h afterwards. A second group of mice received four ip injections of [ 3 H]-thymidine at 6-h intervals on the 1st day of pregnancy and were killed on the 2nd, 5th or 6th day of pregnancy. A third group of virgin mice in estrus received [ 3 H]-thymidine ip four times at 6-h intervals and was killed 96 h after the first injection. Radioautographs of the uteri showed that few endometrial stomal cells were labelled on the 1st and 2nd day of pregnancy. Although many decidual cells incorporated thymidine on the 5th and 6th day of pregnancy in pulse-labelled animals, only few labelled decidual cells were found on the 5th and 6th day of pregnancy in animals that received several injections of thymidine on the 1st and 2nd day of pregnancy. These results indicate that the antimesometrial decidual cells that develop at the beginning of pregnancy are mostly of local origin. The short-term migration of extraneous cells into the uterus to participate in decidualization is not supported by these data. (author) [pt

  2. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    International Nuclear Information System (INIS)

    Kearns, M.; Lala, P.K.

    1982-01-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells

  3. Progesterone and DNA Damage Encourage Uterine Cell Proliferation and Decidualization through Up-regulating Ribonucleotide Reductase 2 Expression during Early Pregnancy in Mice*

    Science.gov (United States)

    Lei, Wei; Feng, Xu-Hui; Deng, Wen-Bo; Ni, Hua; Zhang, Zhi-Rong; Jia, Bo; Yang, Xin-Ling; Wang, Tong-Song; Liu, Ji-Long; Su, Ren-Wei; Liang, Xiao-Huan; Qi, Qian-Rong; Yang, Zeng-Ming

    2012-01-01

    Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus. PMID:22403396

  4. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice.

    Directory of Open Access Journals (Sweden)

    Ricardo C Cavalli

    Full Text Available Decidual NK (dNK cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK cells by a combination of hypoxia, TGFß-1 and 5-aza-2'-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion.

  5. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    Science.gov (United States)

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  6. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  7. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells.

    Science.gov (United States)

    Blois, Sandra M; Klapp, Burghard F; Barrientos, Gabriela

    2011-03-01

    Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Impaired receptivity and decidualization in DHEA-induced PCOS mice.

    Science.gov (United States)

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-12-07

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.

  9. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  10. Decidual activin: its role in the apoptotic process and its regulation by prolactin.

    Science.gov (United States)

    Tessier, Christian; Prigent-Tessier, Anne; Bao, Lei; Telleria, Carlos M; Ferguson-Gottschall, Susan; Gibori, Gil B; Gu, Yan; Bowen-Shauver, Jennifer M; Horseman, Nelson D; Gibori, Geula

    2003-05-01

    Successful pregnancy requires profound differentiation and reorganization of the uterine tissues including, as pregnancy progresses, extensive apoptosis of decidual tissue to accommodate the developing conceptus. We have previously shown a positive correlation between expression of activin A and apoptosis in the decidua and have also shown that expression of activin A occurs at the time when prolactin (PRL) receptors disappear from decidual cells. The goals of this study were to examine whether activin A plays a role in decidual apoptosis and whether expression of activin A in the decidua is regulated by PRL and placental lactogens. Studies were carried out using primary rat decidual cells, a decidual cell line (GG-AD), and PRL null mice. Treatment of decidual cells with activin A significantly increased DNA degradation, caspase 3 activity, and caspase 3 mRNA expression. However, this effect was observed only in the absence of endogenous activin production by these cells. Addition of follistatin to decidual cells that were producing activin A decreased both caspase 3 activity and mRNA expression. Similarly, addition of activin-blocking antibodies to cultures of GG-AD cells, which also produce activin A, caused a reduction in both DNA degradation and caspase 3 activity. PRL and placental lactogens caused an inhibition of activin A mRNA expression in primary decidual cells. Even more convincingly, decidua of PRL null mice expressed abundant activin A at a time when no expression of this hormone is detected in wild-type mice and treatment of PRL null mice with PRL caused a profound inhibition of activin A mRNA expression. In summary, our investigations into the role and regulation of decidual activin have revealed that activin A can induce cell death in the decidua and that its expression is under tight regulation by PRL and placental lactogens.

  11. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization.

    Science.gov (United States)

    Qi, Qian-Rong; Zhao, Xu-Yu; Zuo, Ru-Juan; Wang, Tong-Song; Gu, Xiao-Wei; Liu, Ji-Long; Yang, Zeng-Ming

    2015-01-01

    Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polyploidization of decidual cells. E2F8-mediated polyploidization is a response to stresses which are accompanied by decidualization. Interestingly, polyploidization is not detected during human decidualization with the down-regulation of E2F8, indicating differential expression of E2F8 may lead to the difference of decidual cell polyploidization between mice and humans.

  12. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  13. nm23 regulates decidualization through the PI3K-Akt-mTOR signaling pathways in mice and humans.

    Science.gov (United States)

    Zhang, Xue; Fu, Li-Juan; Liu, Xue-Qing; Hu, Zhuo-Ying; Jiang, Yu; Gao, Ru-Fei; Feng, Qian; Lan, Xi; Geng, Yan-Qing; Chen, Xue-Mei; He, Jun-Lin; Wang, Ying-Xiong; Ding, Yu-Bin

    2016-10-01

    Does nm23 have functional significance in decidualization in mice and humans? nm23 affects decidualization via the phosphoinositide 3 kinase/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathways in mouse endometrial stromal cells (ESCs; mESCs) and human ESCs. The function of nm23 in suppressing metastasis has been demonstrated in a variety of cancer types. nm23 also participates in the control of DNA replication and cell proliferation and differentiation. We first analyzed the expression profile of nm23 in mice during early pregnancy (n = 6/group), pseudopregnancy (n = 6/group) and artificial decidualization (n = 6/group) and in humans during the menstrual cycle phases and the first trimester. We then used primary cultured mESCs and a human ESC line, T-HESC, to explore the hormonal regulation of nm23 and the roles of nm23 in in vitro decidualization, and as a possible mediator of downstream PI3K-Akt-mTOR signaling pathways. We evaluated the dynamic expression of nm23 in mice and humans using immunohistochemistry, western blot and real-time quantitative RT-PCR (RT-qPCR). Regulation of nm23 by steroid hormones was investigated in isolated primary mESCs and T-HESCs by western blot. The effect of nm23 knockdown (using siRNA) on ESC proliferation was analyzed by 5-ethynyl-2'-deoxyuridine staining (EdU) and proliferating cell nuclear antigen protein (PCNA) expression. The influence of nm23 expression on the differentiation of ESCs was determined by RT-qPCR using the mouse differentiation markers decidual/trophoblast PRL-related protein (dtprp, also named prl8a2) and prolactin family 3 subfamily c member 1 (prl3c1) and the human differentiation markers insulin-like growth factor binding protein 1 (IGFBP1) and prolactin (PRL). The effects of nm23 siRNA (si-nm23) and the PI3K inhibitor LY294002 on the downstream effects of nm23 on the PI3K-Akt-mTOR signaling pathway were estimated by western blot. NM23-M1 was specifically expressed in the decidual zone

  14. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization

    OpenAIRE

    Qi, Qian-Rong; Zhao, Xu-Yu; Zuo, Ru-Juan; Wang, Tong-Song; Gu, Xiao-Wei; Liu, Ji-Long; Yang, Zeng-Ming

    2015-01-01

    Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polypl...

  15. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Directory of Open Access Journals (Sweden)

    Ellen Melaleuca Menkhorst

    Full Text Available Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT invade through the differentiated uterine endometrium (the decidua to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8 M, medroxyprogesterone acetate (10(-7 M and cAMP (0.5 mM for 14 days. Conditioned media (CM was collected on day 2 (non-decidualized CM and 14 (decidualized CM of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1, dipeptidyl peptidase 1 (DPP1/cathepsin C and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro

  16. Cyclin G1 inhibits the proliferation of mouse endometrial stromal cell in decidualization

    Directory of Open Access Journals (Sweden)

    Xu Qian

    2017-01-01

    Full Text Available Uterine stromal cell decidualization is a dynamic physiological process in which cell proliferation, differentiation and apoptosis are orchestrated and occur in a temporal and cell-specific manner. This process is important for successful embryo implantation. Many cell-cycle regulators are involved in decidualization. The protein cyclin G1 is a unique regulator of the cell cycle with dual functions in cell proliferation. It was reported that cyclin G1 is expressed in mouse uterine stromal cells during the period of peri-implantation. To prove the function of cyclin G1 in mouse uterine stromal cells during this period, immunohistochemistry was used to stain mouse uterine tissues on days 4-8 of pregnancy. The results showed obvious spatial and temporal expression of cyclin G1 in uterine stromal cells, and that it is expressed in the cells of the primary decidual zone (PDZ on day 5 and secondary decidual zone (SDZ on days 6 and 7, when the stromal cells experienced active proliferation and differentiation was initiated. Applying the decidualization model of cultured primary stromal cells in vitro, we further revealed that the expression of cyclin G1 is associated with decidualization of stromal cells induced by medroxyprogesterone acetate (MPA and estradiol-17β (E2. RNA interference was used for the knockdown of cyclin G1 in the induced decidual cells. Flow cytometry analysis indicated that the proportion of cells in the S stage was increased, and decreased in the G2/M phase. Our study indicates that cyclin G1, as a negative regulator of the cell cycle, plays an important role in the process of decidualization in mouse uterine stromal cells by inhibiting cell-cycle progression.

  17. Human decidual stromal cells secrete soluble pro-apoptotic factors during decidualization in a cAMP-dependent manner.

    Science.gov (United States)

    Leno-Durán, E; Ruiz-Magaña, M J; Muñoz-Fernández, R; Requena, F; Olivares, E G; Ruiz-Ruiz, C

    2014-10-10

    Is there a relationship between decidualization and apoptosis of decidual stromal cells (DSC)? Decidualization triggers the secretion of soluble factors that induce apoptosis in DSC. The differentiation and apoptosis of DSC during decidualization of the receptive decidua are crucial processes for the controlled invasion of trophoblasts in normal pregnancy. Most DSC regress in a time-dependent manner, and their removal is important to provide space for the embryo to grow. However, the mechanism that controls DSC death is poorly understood. The apoptotic response of DSC was analyzed after exposure to different exogenous agents and during decidualization. The apoptotic potential of decidualized DSC supernatants and prolactin (PRL) was also evaluated. DSC lines were established from samples of decidua from first trimester pregnancies. Apoptosis was assayed by flow cytometry. PRL production, as a marker of decidualization, was determined by enzyme-linked immunosorbent assay. DSCs were resistant to a variety of apoptosis-inducing substances. Nevertheless, DSC underwent apoptosis during decidualization in culture, with cAMP being essential for both apoptosis and differentiation. In addition, culture supernatants from decidualized DSC induced apoptosis in undifferentiated DSC, although paradoxically these supernatants decreased the spontaneous apoptosis of decidual lymphocytes. Exogenously added PRL did not induce apoptosis in DSC and an antibody that neutralized the PRL receptor did not decrease the apoptosis induced by supernatants. Further studies are needed to examine the involvement of other soluble factors secreted by decidualized DSC in the induction of apoptosis. The present results indicate that apoptosis of DSC occurs in parallel to differentiation, in response to decidualization signals, with soluble factors secreted by decidualized DSC being responsible for triggering cell death. These studies are relevant in the understanding of how the regression of decidua

  18. Pregnancy immunology: decidual immune cells.

    Science.gov (United States)

    Sanguansermsri, Donruedee; Pongcharoen, Sutatip

    2008-01-01

    Human pregnancy is a complex process. Placental development depends on the function of secretory molecules produced by placental trophoblast cells as well as by maternal uterine immune cells within the decidua. These decidual immune cells are T cells, natural killer cells, macrophages and dendritic cells. The interactions between the trophoblast cells and the maternal immune cells have an impact on the outcome of the pregnancy. Knowledge about the phenotypes and functions of the maternal immune cells in normal and pathological pregnancies including recurrent spontaneous abortions, preeclampsia and hydatidiform moles may improve our understanding of the immunobiology of the normal pregnancy as a whole and may provide approaches for improving the treatment of pathological pregnancies.

  19. Immunochemical and ultrastructural assessment of the nature of the pericellular basement membrane of human decidual cells

    DEFF Research Database (Denmark)

    Wewer, U M; Faber, M; Liotta, L A

    1985-01-01

    Human decidual cells of early and late pregnancy were studied immunochemically and ultrastructurally with respect to the presence and nature of pericellular basement membrane material. The most prominent cell type in decidual tissue of both early and late pregnancy were large, mature epithelioid......-linked immunosorbent assay. Biosynthesis of laminin was shown by [35S]methionine labeling of short term organ cultures of decidual tissue followed by immunoprecipation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fluorography. The laminin chains migrated with the apparent molecular weights of 300...... and 200 kilodaltons under reducing conditions. Two other separate populations of cells were apparent in the decidual tissue of early pregnancy. A smaller group of rounded intermediate sized (15 to 25 micron) decidual cells had focal deposits basement membrane immunoreactive material scattered at the cell...

  20. Decidual Stromal Cell Response to Paracrine Signals from the Trophoblast: Amplification of Immune and Angiogenic Modulators

    DEFF Research Database (Denmark)

    Hess, AP; Hamilton, AE; Talbi, S

    2007-01-01

    During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important...... a functional genomics approach to investigate these paracrine interactions. Human endometrial stromal cells were decidualized with progesterone and were further treated with conditioned media (CM) from human trophoblasts (TCM) or, as a control, with conditioned media (CCM) from non-decidualized stromal cells...... regulated groups. The data demonstrate a significant induction of pro-inflammatory cytokines and chemokines, as well as angiogenic/static factors in decidualized endometrial stromal cells in response to trophoblast-secreted products. The data suggest that the trophoblast acts to alter the local immune...

  1. Ectopic Hard Tissue Formation by Odonto/Osteogenically In Vitro Differentiated Human Deciduous Teeth Pulp Stem Cells.

    Science.gov (United States)

    Kim, Seunghye; Song, Je Seon; Jeon, Mijeong; Shin, Dong Min; Kim, Seong-Oh; Lee, Jae Ho

    2015-07-01

    There have been many attempts to use the pulp tissue from human deciduous teeth for dentin or bone regeneration. The objective of this study was to determine the effects of odonto/osteogenic in vitro differentiation of deciduous teeth pulp stem cells (DTSCs) on their in vivo hard tissue-forming potential. DTSCs were isolated from extracted deciduous teeth using the outgrowth method. These cells were exposed to odonto/osteogenic stimuli for 4 and 8 days (Day 4 and Day 8 groups, respectively), while cells in the control group were cultured in normal medium. The in vitro differentiated DTSCs and the control DTSCs were transplanted subcutaneously into immunocompromised mice with macroporous biphasic calcium phosphate and sacrificed at 8 weeks post-implantation. The effect of odonto/osteogenic in vitro differentiation was evaluated using alkaline phosphatase (ALP) staining and quantitative reverse transcription polymerase chain reaction (RT-PCR). The in vivo effect was evaluated by qualitative RT-PCR, assessment of ALP activity, histologic analysis, and immunohistochemical staining. The amount of hard tissue was greater in Day 4 group than Day 8 group (p = 0.014). However, Day 8 group generated lamellar bone-like structure, which was immunonegative to anti-human dentin sialoprotein with significantly low expression level of DSPP compared with the control group (p = 0.008). This study demonstrates that odonto/osteogenic in vitro differentiation of DTSCs enhances the formation of bone-like tissue, instead of dentin-like tissue, when transplanted subcutaneously using MBCP as a carrier. The odonto/osteogenic in vitro differentiation of DTSCs may be an effective modification that enhances in vivo bone formation by DTSCs.

  2. Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth

    Directory of Open Access Journals (Sweden)

    Revathi Shekar

    2012-01-01

    Conclusions: Permanent and deciduous teeth are both viable sources of stem cells. The permanent teeth were easier to culture because of a lower chance of contamination with oral microflora. The growth characteristics of the cells obtained from both these sources were similar. However, there was a difference in the ratio of fibroblastoid cells to epithelioid cells between the cultures obtained from the permanent and deciduous teeth.

  3. Should deciduous teeth be preserved in adult patients? How about stem cells? Is it reasonable to preserve them?

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    2016-04-01

    Full Text Available Abstract When seeking orthodontic treatment, many adolescents and adult patients present with deciduous teeth. Naturally, deciduous teeth will inevitably undergo exfoliation at the expected time or at a later time. Apoptosis is the biological trigger of root resorption. In adult patients, deciduous teeth should not be preserved, as they promote: infraocclusion, traumatic occlusion, occlusal trauma, diastemata and size as well as morphology discrepancy malocclusion. Orthodontic movement speeds root resorption up, and so do restoring or recontouring deciduous teeth in order to establish esthetics and function. Deciduous teeth cells are dying as a result of apoptosis, and their regeneration potential, which allows them to act as stem cells, is limited. On the contrary, adult teeth cells have a greater proliferative potential. All kinds of stem cell therapies are laboratory investigative non authorized trials.

  4. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    Science.gov (United States)

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different

  5. Isolation and Culture of Postnatal Stem Cells from Deciduous Teeth

    OpenAIRE

    Olávez, Daniela; Facultad de Odontología Universidad de Los Andes; Salmen, Siham; Instituto de Inmunología Clínica, Universidad de Los Andes.; Padrón, Karla; Facultad de Odontología. Univerisdad de Los Andes.; Lobo, Carmine; Facultad de Odontología. Univerisdad de Los Andes.; Díaz, Nancy; Facultad de Odontología, Universidad de Los Andes.; Berrueta, Lisbeth; Doctora en Inmunología por Instituto Venezolano de Investigaciones Científicas (IVIC). Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Venezuela.; Solorzanio, Eduvigis; Facultad de Odontología, Universidad de Los Andes.

    2014-01-01

    Background: Currently, degenerative diseases represent a public health problem; therefore, the development and implementation of strategies to fully or partially recover of damaged tissues has a special interest in the biomedical field. Therapeutic strategies based on mesenchymal stem cells transplantation from dental pulp have been proposed as an alternative. Purpose: To develop a mesenchymal stem cells culture isolated from dental pulp of deciduous teeth. Methods: The mesenchymal stem cells...

  6. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    Science.gov (United States)

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  7. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization.

    Directory of Open Access Journals (Sweden)

    Ramakrishna Kommagani

    2013-10-01

    Full Text Available Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC decidualization are well recognized, the individual gene(s and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2 is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3, a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy.

  8. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding.

    Science.gov (United States)

    Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Arlier, Sefa; Kayisli, Umit A; Lockwood, Charles J

    2016-06-01

    Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and

  10. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli.

    Directory of Open Access Journals (Sweden)

    Sarah Jean Boeddeker

    Full Text Available Human embryo invasion and implantation into the inner wall of the maternal uterus, the endometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the endometrial epithelial layer was already correlated with the programmed cell death, the role of apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stromal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock down (KdS1, and second to further decidualize the cells with progesterone. As a replacement for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1 and anti-Fas antibody to mimic the embryo contact. Detection of apoptosis was verified via Caspase ELISAs, PARP cleavage and Annexin V staining. Apoptosis-related proteins were investigated via antibody arrays and underlying signaling pathways were analyzed by Western blot. Non-decidualized endometrial stromal cells showed a resistance towards apoptosis which was rescinded by decidualization and Syndecan-1 knock down independent of decidualization. This was correlated with an altered expression of several pro- and anti-apoptotic proteins and connected to a higher activation of pro-survival Akt in non-differentiated St-T1 as an upstream mediator of apoptotis-related proteins. This study provides insight into the largely elusive process of implantation, proposing an important role for stromal cell apoptosis to successfully establish a pregnancy. The impact of Syndecan-1 in attenuating the apoptotic signal is particularly interesting in the

  11. Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization

    Directory of Open Access Journals (Sweden)

    Zhang Ling

    2012-09-01

    Full Text Available Abstract Background Beta-catenin is part of a protein complex associated with adherens junctions. When allowed to accumulate to sufficient levels in its dephosphorylated form, beta-catenin serves as a transcriptional co-activator associated with a number of signaling pathways, including steroid hormone signaling pathways. Methods To investigate the role of beta-catenin in progesterone (P4 signaling and female reproductive physiology, conditional ablation of Ctnnb1 from the endometrial mesenchymal (i.e. stromal and myometrial, but not epithelial, compartment was accomplished using the Amhr2-Cre mice. Experiments were conducted to assess the ability of mutant female mice to undergo pregnancy and pseudopregnancy by or through oil-induced decidualization. The ability of uteri from mutant female mice to respond to estrogen (E2 and P4 was also determined. Results Conditional deletion of Ctnnb1 from the mesenchymal compartment of the uterus resulted in infertility stemming, in part, from complete failure of the uterus to decidualize. E2-stimulated epithelial cell mitosis and edematization were not altered in mutant uteri indicating that the mesenchyme is capable of responding to E2. However, exposure of ovariectomized mutant female mice to a combined E2 and P4 hormone regimen consistent with early pregnancy revealed that mesenchymal beta-catenin is essential for indirectly opposing E2-induced epithelial proliferation by P4 and in some mice resulted in development of endometrial metaplasia. Lastly, beta-catenin is also required for the induced expression of genes that are known to play a fundamental role in decidualization such as Ihh, Ptch1, Gli1 and Muc1 Conclusions Three salient points derive from these studies. First, the findings demonstrate a mechanistic linkage between the P4 and beta-catenin signaling pathways. Second, they highlight an under appreciated role for the mesenchymal compartment in indirectly mediating P4 signaling to the epithelium

  12. Elsevier Trophoblast Research Award Lecture: Unique properties of decidual T cells and their role in immune regulation during human pregnancy.

    Science.gov (United States)

    Tilburgs, T; Claas, F H J; Scherjon, S A

    2010-03-01

    Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Progestin and thrombin regulate tissue factor expression in human term decidual cells.

    Science.gov (United States)

    Lockwood, C J; Murk, W; Kayisli, U A; Buchwalder, L F; Huang, S-T; Funai, E F; Krikun, G; Schatz, F

    2009-06-01

    Perivascular cell membrane-bound tissue factor (TF) initiates hemostasis via thrombin generation. The identity and potential regulation of TF-expressing cells at the human maternal-fetal interface that confers hemostatic protection during normal and preterm delivery is unclear. The objective of the study were to identify TF-expressing cells at the maternal-fetal interface in term and preterm decidual sections by immunohistochemistry and evaluate progestin, thrombin, TNF-alpha, and IL-1beta effects on TF expression by cultured human term decidual cells (DCs). Serial placental sections were immunostained for TF. Leukocyte-free term DC monolayers were incubated with 10(-8) M estradiol (E2) or E2 plus 10(-7) M medroxyprogestrone acetate (MPA) +/- thrombin or TNF-alpha or IL-1beta. ELISA and Western blotting assessed TF in cell lysates. Quantitative real-time RT-PCR measured TF mRNA levels. Immunolocalized TF in DC membranes in preterm and term placental sections displayed higher Histologic Scores than villous mesenchymal cells (P term placental sections, DC-expressed TF exceeds that of other cell types at the maternal-fetal interface and is localized at the cell membranes in which it can bind to factor VII and meet the hemostatic demands of labor and delivery via thrombin formation. Unlike the general concept that TF is constitutive in cells that highly express it, MPA and thrombin significantly enhanced TF expression in term DC monolayers.

  14. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro.

    Science.gov (United States)

    Ishkitiev, Nikolay; Yaegaki, Ken; Calenic, Bogdan; Nakahara, Taka; Ishikawa, Hiroshi; Mitiev, Vanyo; Haapasalo, Markus

    2010-03-01

    Mesenchymal stem cells display extensive proliferative capacity of multilineage differentiation. The stromal compartment of mesenchymal tissues is considered to harbor stem cells. We assessed the endodermal differentiation of mesenchymal cells from deciduous and wisdom tooth pulp. Dental mesenchymal cells were isolated and expanded in vitro. After cell cultures had been established, cells were characterized using known stem cell markers. For hepatic differentiation the media was supplemented with hepatic growth factor, dexamethasone, Insulin-Transferrin-Selenium-X, and oncostatin. Both cultures showed a number of cells positive for specific hepatic markers including alpha-fetoprotein, albumin, and hepatic nuclear factor 4alpha after differentiation. Also, small clusters of cells positive for insulin-like growth factor 1 were found. The concentration of urea increased significantly in the media. Moreover, a significant amount of glycogen was found in the cells. Because the cells proved to produce specific hepatic proteins and to start functions specific for hepatocytes, such as storing glycogen and urea production, we may state that the mesenchymal cell cultures from wisdom and deciduous tooth pulp acquired morphologic and functional characteristics of hepatocytes. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Preserved ex vivo inflammatory status in decidual cells from women with preterm labor and subclinical intrauterine infection.

    Directory of Open Access Journals (Sweden)

    Violeta Castro-Leyva

    Full Text Available OBJECTIVE: To compare the inflammatory response preserved ex vivo by decidual cells isolated from women who experienced preterm labor with and without subclinical intrauterine infection. METHODS: Fetal membranes were obtained after cesarean section from 35 women who delivered before 37 weeks of gestation following spontaneous preterm labor, with no clinical evidence of intrauterine infection. Decidua was microbiologically tested and cultured. Concentrations of anti-inflammatory cytokines (IL-2, IL-4, IL-10, pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNF-α, and matrix metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9 were measured in the supernatants using Bio-Plex, and prostaglandin E(2 (PGE(2 was measured by enzyme immunoassay. RESULTS: Subclinical infection was confirmed in 10 women (28.5%. Microorganisms isolated were Ureaplasma urealyticum (4, group B streptococci (3, Gardnerella vaginalis (1, and Escherichia coli (2. We found a significant increase of pro-inflammatory cytokines and a significant decrease of anti-inflammatory cytokines in supernatants from decidual cells obtained from women with preterm labor and subclinical intrauterine infection compared to women without infection. Secretion of MMP-1, MMP-8, MMP-9 and PGE(2 was significantly higher in infected women. Secretion of IL-8 by decidual cells from infected women persisted upon repeated in vitro culture passages. CONCLUSIONS: Almost 30% of idiopathic preterm labor cases were associated with subclinical intrauterine infection, and decidual cells isolated from these cases preserved an ex vivo inflammatory status after in vivo bacterial exposure.

  16. Characterization of deciduous teeth stem cells isolated from crown dental pulp

    Directory of Open Access Journals (Sweden)

    Debeljak-Martačić Jasmina

    2014-01-01

    Full Text Available Background/Aim. The last decade has been profoundly marked by persistent attempts to use ex vivo expanded and manipulated mesenchymal stem cells (MSCs, as a tool in different types of regenerative therapy. In the present study we described immunophenotype and the proliferative and differentiation potential of cells isolated from pulp remnants of exfoliated deciduous teeth in the final phase of root resorption. Methods. The initial adherent cell population from five donors was obtained by the outgrowth method. Colony forming unit-fibroblast (CFU-F assay was performed in passage one. Cell expansion was performed until passage three and all tests were done until passage eight. Cells were labeled for early mesenchymal stem cells markers and analysis have been done using flow cytometry. The proliferative potential was assessed by cell counting in defined time points and population doubling time was calculated. Commercial media were used to induce osteoblastic, chondrogenic and adipogenic differentiation. Cytology and histology methods were used for analysis of differentiated cell morphology and extracellular matrix characteristics. Results. According to immunophenotype analyses all undifferentiated cells were positive for the mesenchymal stem cell markers: CD29 and CD73. Some cells expressed CD146 and CD106. The hematopoietic cell marker, CD34, was not detected. In passage one, incidence of CFU-F was 4.7 ± 0.5/100. Population doubling time did not change significantly during cell subcultivation and was in average 25 h. After induction of differentiation, the multicolony derived cell population had a tri-lineage differentiation potential, since mineralized matrix, cartilage-like tissue and adipocytes were successfully formed after three weeks of incubation. Conclusion. Altogether, these data suggest that remnants of deciduous teeth dental pulp contained cell populations with mesenchymal stem cell-like features, with a high proliferation and

  17. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    Directory of Open Access Journals (Sweden)

    Aileen I. Tsai

    2017-01-01

    Full Text Available This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P<0.001 and less frequent pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P<0.001. In a multivariate regression model, it was confirmed that the absence of dental caries (OR = 4.741, 95% CI = 1.564–14.371, P=0.006 and pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P<0.001 was significant determinants of the successful procurement of MSCs. MSCs derived from pulps with pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL- 6 and monocyte chemoattractant protein- (MCP- 1, P<0.01, and innate immune response [toll-like receptor 1 (TLR1 and TLR8, P<0.05; TLR2, TLR3, and TLR6, P<0.01] in the inflamed than noninflamed pulps. Therefore, a carious deciduous tooth or tooth with pulpitis was relatively unsuitable for MSC processing and isolation.

  18. TGFβ1 attenuates expression of prolactin and IGFBP-1 in decidualized endometrial stromal cells by both SMAD-dependent and SMAD-independent pathways.

    Directory of Open Access Journals (Sweden)

    Nicole M Kane

    Full Text Available BACKGROUND: Decidualization (differentiation of the endometrial stromal cells during the secretory phase of the menstrual cycle is essential for successful implantation. Transforming Growth Factor β1 (TGFβ1 canonically propagates its actions via SMAD signalling. A role for TGFβ1 in decidualization remains to be established and published data concerning effects of TGFβ1 on markers of endometrial decidualization are inconsistent. METHODOLOGY/PRINCIPAL FINDINGS: Non-pregnant endometrial stromal cells (ESC and first trimester decidual stromal cells (DSC were cultured in the presence or absence of a decidualizing stimulus. Incubation of ESCs with TGFβ1 (10 ng/ml down-regulated the expression of transcripts encoding the decidual marker proteins prolactin (PRL, insulin-like growth factor binding protein-1 (IGFBP-1 and tissue factor (TF. TGFβ1 also inhibited secretion of PRL and IGFBP-1 proteins by ESCs and surprisingly this response preceded down-regulation of their mRNAs. In contrast, DSCs were more refractory to the actions of TGFβ1, characterized by blunted and delayed down-regulation of PRL, IGFBP-1, and TF transcripts, which was not associated with a significant reduction in secretion of PRL or IGFBP-1 proteins. Addition of an antibody directed against TGFβ1 increased expression of IGFBP-1 mRNA in decidualised cells. Knockdown of SMAD 4 using siRNAs abrogated the effect of TGFβ1 on expression of PRL in ESCs but did not fully restore expression of IGFBP-1 mRNA and protein. CONCLUSIONS/SIGNIFICANCE: TGFβ1 inhibits the expression and secretion of decidual marker proteins. The impact of TGFβ1 on PRL is SMAD-dependent but the impact on IGFBP1 is via an alternative mechanism. In early pregnancy, resistance of DSC to the impact of TGFβ1 may be important to ensure tissue homeostasis.

  19. Transcriptional factor PU.1 regulates decidual C1q expression in early pregnancy in human

    Directory of Open Access Journals (Sweden)

    Priyaa Madhukaran Raj

    2015-02-01

    Full Text Available C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells. Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue- specific. Recently, PU.1 has been shown to regulate C1q gene expression in dendritic cells and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  20. Syndecan-1 knock-down in decidualized human endometrial stromal cells leads to significant changes in cytokine and angiogenic factor expression patterns

    Directory of Open Access Journals (Sweden)

    Krüssel Jan-Steffen

    2010-11-01

    Full Text Available Abstract Background Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1, play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium. Methods A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1 and prolactin (PRL confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p Results The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation. Conclusions Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an

  1. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P cells expressed NKG2D at 10% oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  2. miRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro.

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    Full Text Available Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia. In this study we profile the miRNAs expression throughout human endometrial stromal (hESCs decidualization and analyze the requirement of the miRNA biogenesis enzyme Dicer during this process. A total of 26 miRNAs were upregulated and 17 miRNAs downregulated in decidualized hESCs compared to non-decidualized hESCs. Three miRNAs families, miR-181, miR-183 and miR-200, are down-regulated during the decidualization process. Using miRNAs target prediction algorithms we have identified the potential targets and pathways regulated by these miRNAs. The knockdown of Dicer has a minor effect on hESCs during in vitro decidualization. We have analyzed a battery of decidualization markers such as cell morphology, Prolactin, IGFBP-1, MPIF-1 and TIMP-3 secretion as well as HOXA10, COX2, SP1, C/EBPß and FOXO1 expression in decidualized hESCs with decreased Dicer function. We found decreased levels of HOXA10 and altered intracellular organization of actin filaments in Dicer knockdown decidualized hESCs compared to control. Our results provide the miRNA signature of hESC during the decidualization process in vitro. We also provide the first functional characterization of Dicer during human endometrial decidualization although surprisingly we found that Dicer plays a minor role regulating this process suggesting that alternative biogenesis miRNAs pathways must be involved in human

  3. RelB activation in anti-inflammatory decidual endothelial cells: a master plan to avoid pregnancy failure?

    Science.gov (United States)

    Masat, Elisa; Gasparini, Chiara; Agostinis, Chiara; Bossi, Fleur; Radillo, Oriano; De Seta, Francesco; Tamassia, Nicola; Cassatella, Marco A; Bulla, Roberta

    2015-10-14

    It is known that excessive inflammation at fetal-maternal interface is a key contributor in a compromised pregnancy. Female genital tract is constantly in contact with microorganisms and several strategies must be adopted to avoid pregnancy failure. Decidual endothelial cells (DECs) lining decidual microvascular vessels are the first cells that interact with pro-inflammatory stimuli released into the environment by microorganisms derived from gestational tissues or systemic circulation. Here, we show that DECs are hypo-responsive to LPS stimulation in terms of IL-6, CXCL8 and CCL2 production. Our results demonstrate that DECs express low levels of TLR4 and are characterized by a strong constitutive activation of the non-canonical NF-κB pathway and a low responsiveness of the canonical pathway to LPS. In conclusion, DECs show a unique hypo-responsive phenotype to the pro-inflammatory stimulus LPS in order to control the inflammatory response at feto-maternal interface.

  4. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Directory of Open Access Journals (Sweden)

    Irene Tirado-González

    Full Text Available Dendritic cell (DC and natural killer (NK cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  5. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Science.gov (United States)

    Tirado-González, Irene; González, Irene Tirado; Barrientos, Gabriela; Freitag, Nancy; Otto, Teresa; Thijssen, Victor L J L; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M

    2012-01-01

    Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  6. New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy

    International Nuclear Information System (INIS)

    Elia, Artemis; Charalambous, Fotini; Georgiades, Pantelis

    2011-01-01

    Highlights: ► Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. ► SA muscular phenotype prior to and during SAR in mice is underexplored. ► SA muscular wall consists of contractile and non-contractile components. ► SA wall non-contractile component may be synthetic smooth muscle. ► Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledge about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for α-smooth muscle actin, calponin and SM22α) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence (α-smooth muscle actin and calponin) or weak (SM22α) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7.5–E8.5, becomes drastically reduced by E10.5 and is undetectable by E12.5. In conclusion, this study reveals novel aspects of the decidual SA muscular

  7. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4+ T Cells in Early Human Pregnancy

    Directory of Open Access Journals (Sweden)

    Weihong Zeng

    2017-06-01

    Full Text Available Decidual CD4+ T (dCD4 T cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.

  8. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    Science.gov (United States)

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  9. [Decidual natural killer cells in recurrent spontaneous abortions].

    Science.gov (United States)

    Janosević, Dragana Radović; Lilić, Vekoslav; Basić, Hakija; Pavlović, Aleksandra Tubić; Stefanović, Milan; Milosević, Jelena

    2011-01-01

    A repeated or habitual miscarriage (PSP) is defined as three or more consecutive losses of pregnancy. In the first three months of pregnancy, habitual miscarriages occur in about 1% of pregnant women, out of which 50% are of an unknown etiology. It is believed that among them, the greatest number is the consequence of an inadequate alloimmune response of a women to the pregnancy. The endocrine and immune systems are in a close interaction during the implantation and maintaining of pregnancy. This communication is the most obvious on endometrium of pregnancy decidua. The aim of the study was to identify the number and the subpopulation distribution of the decidual NK cells in the decidua by using an immunohistochemical method. The research included a group of 30 women who had had two spontaneous miscarriages consecutively in the first three months of their pregnancy, while the curettage after the third spontaneous abortion was histopathologically and immunohistochemically analyzed. The control group consisted of 20 women without a problematic reproductive anamnesis, who had had their pregnancy terminated for social reasons. The criteria for the eliminating from the research were the diagnosed uterus anomalies, positive screening on thrombophilia, as well as women suffering from diabetes melitus and the ones with the thyroid gland function disorder. The number and the phenotype structure of the uterus NK cells were significantly different between the decidua of a normal pregnancy and that in PSP. In the decidua in PSP, there were much more NK cells with the phenotype of the peripheral circulation CD57 and CD56dim, while in the decidua of the control group the dominant cells were the typical uNK cell subpopulation CD56bright. The above mentioned results show that the disregulation of the immunocompetent cells of the decidua, by creating an inadequate cytokine milieu, is one of the mechanism of rejecting the semiallogeneic blastocyst.

  10. New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Elia, Artemis; Charalambous, Fotini [Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678 Nicosia (Cyprus); Georgiades, Pantelis, E-mail: pgeor@ucy.ac.cy [Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. Black-Right-Pointing-Pointer SA muscular phenotype prior to and during SAR in mice is underexplored. Black-Right-Pointing-Pointer SA muscular wall consists of contractile and non-contractile components. Black-Right-Pointing-Pointer SA wall non-contractile component may be synthetic smooth muscle. Black-Right-Pointing-Pointer Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledge about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for {alpha}-smooth muscle actin, calponin and SM22{alpha}) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence ({alpha}-smooth muscle actin and calponin) or weak (SM22{alpha}) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7.5-E8

  11. Suppression of decidual cell response induced by tributyltin chloride in pseudopregnant rats: a cause of early embryonic loss

    Energy Technology Data Exchange (ETDEWEB)

    Harazono, A.; Ema, M. [National Inst. of Health Sciences, Osaka Branch (Japan)

    2000-12-01

    In our previous studies, tributyltin chloride (TBTC1) at doses of 16.3 mg/kg and above caused implantation failure (preimplantation embryonic loss) and postimplantation embryonic loss in rats following administration on gestational day (GD) 0 through GD 3 and GD 4 through GD 7, respectively. This study was designed to assess the effects of TBTC1 on uterine function as a cause of early embryonic loss in pseudopregnant rats. TBTC1 was given orally to pseudopregnant rats at doses of 4.1, 8.1, 16.3 and 32.5 mg/kg on pseudopregnant day (PPD) 0 to PPD 3 or 8.1, 16.3, 32.5 and 65.1 mg/kg on PPD 4 to PPD 7. The decidual cell response was induced by bilateral scratch trauma on PPD 4. The uterine weight on PPD 9 served as an index of uterine decidualization. Uterine weight and serum progesterone levels on PPD 9 were significantly decreased after administration of TBTC1 at doses of 16.3 mg/kg and above on PPD 0 to PPD 3 or PPD 4 to PPD 7. Administration of TBTC1 at doses of 8.1 mg/kg and above on PPD 0 to 3 also significantly decreased serum progesterone levels on PPD 4. TBTC1 had no effect on ovarian weight and number of corpora lutea. It can be concluded that TBTC1 suppresses the uterine decidual cell response and decreases progesterone levels, and these effects are responsible for early embryonic loss due to TBTC1 exposure. (orig.)

  12. Malignant neoplasms of decidual origin (deciduosarcomas) induced by estrogen-progestin-releasing intravaginal devices in rabbits.

    OpenAIRE

    Zook, B. C.; Spiro, I.; Hertz, R.

    1987-01-01

    A combination of estrogen and levonorgestrel was continuously delivered to 23 adult rabbits for up to 2 years via a Silastic ring device sutured into the vagina. Twenty-one control rabbits were given similar rings devoid of drugs. A marked decidual reaction of the endometrium occurred in 16 of 23 test rabbits. In 14 test rabbits (61%) malignant tumors developed of decidual type cells not heretofore described. The deciduosarcomas were composed of anaplastic cells that invaded the uterine walls...

  13. MORPHOLOGICAL RESEARCH ON FREE-RESIDUE OXIDATION PROCESSES IN CASES OF DECIDUAL CELLS OF PLACENTA IN CHORIOAMNIONOTIS AND BASAL DECIDUITIS COMBINED WITH IRON-DEFICIENCY ANEMIA IN THE PREGNANT

    Directory of Open Access Journals (Sweden)

    V. V. Ilika

    2017-07-01

    Full Text Available Background. The oxidative modification of proteins is lately pivotal to pathologists and it is a new way of research on different pathological conditions, as well as the diagnostics of inflammation processes in placenta. Objective. The study was aimed at the research of nitro peroxides and establishing the specific features of oxidative modification of proteins in inflammation of placenta with iron deficient anaemia in the pregnant. Methods. Сhemiluminescent and histochemical technique (with bromphenol blue on ‘acidic’ and ‘basic’ proteins according to Mikel Calvo was applied. Results. The intensity of nitro peroxides glow in chorioamnionitis and basal deciduitis increased in comparison with the samples of physiological and iron deficient anaemia gestation. At the same time in chorioamnionitis the glow intensity is higher than in basal deciduitis. Due to the results of immune histochemical technique held while analysing the samples, together with chorioamnionitis and basal deciduitis the R/B increases and in basal deciduitis the rate, is probably, higher, than in chorioamnionitis. At the same time, the extent of oxidative modification of proteins in cases of inflammation with iron deficient anaemia in the pregnant is on the average higher than with no iron deficient anaemia in the pregnant. Conclusions. High level of nitro peroxides in placentae basal plate in secundines inflammation, the increase in R/B rate, in other words the prevalence of ‘acidic’ proteins over ‘basic’ ones, is evidenced due to the increase of the intensity of oxidative modification processes of proteins in cases of deciduitis.

  14. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    Directory of Open Access Journals (Sweden)

    Marion eDuriez

    2014-07-01

    Full Text Available Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis, where maternal and fetal cells are in close contact. Toll-like receptors (TLRs may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs and NK cells (dNKs, the major decidual immune cell populations.We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3 and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8 and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10 and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.

  15. The up side of decidual natural killer cells: new developments in immunology of pregnancy.

    Science.gov (United States)

    Jabrane-Ferrat, Nabila; Siewiera, Johan

    2014-04-01

    Early phases of human pregnancy are associated with the accumulation of a unique subset of natural killer (NK) cells in the maternal decidua. Decidual NK (dNK) cells that are devoid of cytotoxicity play a pivotal role in successful pregnancy. By secreting large amounts of cytokines/chemokines and angiogenic factors, dNK cells participate in all steps of placentation including trophoblast invasion into the maternal endometrium and vascular remodelling. In this review, we summarize some of dNK cell features and discuss more recent exciting data that challenge the conventional view of these cells. Our new data demonstrate that dNK cells undergo fine tuning or even subvert their classical inhibitory machinery and turn into a real defence force in order to prevent the spread of viruses to fetal tissue. Today it is not clear how these phenotypic and functional adaptations impact cellular cross-talk at the fetal-maternal interface and tissue homeostasis. Ultimately, precise understanding of the molecular mechanisms that govern dNK cell plasticity during congenital human cytomegalovirus infection should lead to the design of more robust strategies to reverse immune escape during viral infection and cancer. © 2013 John Wiley & Sons Ltd.

  16. Phenotypic and Proteomic Characteristics of Human Dental Pulp Derived Mesenchymal Stem Cells from a Natal, an Exfoliated Deciduous, and an Impacted Third Molar Tooth

    Directory of Open Access Journals (Sweden)

    Gurler Akpinar

    2014-01-01

    Full Text Available The level of heterogeneity among the isolated stem cells makes them less valuable for clinical use. The purpose of this study was to understand the level of heterogeneity among human dental pulp derived mesenchymal stem cells by using basic cell biology and proteomic approaches. The cells were isolated from a natal (NDPSCs, an exfoliated deciduous (stem cells from human exfoliated deciduous (SHED, and an impacted third molar (DPSCs tooth of three different donors. All three stem cells displayed similar features related to morphology, proliferation rates, expression of various cell surface markers, and differentiation potentials into adipocytes, osteocytes, and chondrocytes. Furthermore, using 2DE approach coupled with MALDI-TOF/TOF, we have generated a common 2DE profile for all three stem cells. We found that 62.3±7% of the protein spots were conserved among the three mesenchymal stem cell lines. Sixty-one of these conserved spots were identified by MALDI-TOF/TOF analysis. Classification of the identified proteins based on biological function revealed that structurally important proteins and proteins that are involved in protein folding machinery are predominantly expressed by all three stem cell lines. Some of these proteins may hold importance in understanding specific properties of human dental pulp derived mesenchymal stem cells.

  17. Ectopic decidual reaction mimicking inguinal lymphoma on ultrasound

    DEFF Research Database (Denmark)

    Lorentzen, C.; Prangsgaard, Tina; Lorentzen, Torben

    2014-01-01

    Ectopic decidual reaction has been described in various intraperitoneal locations. We present a case of unusual ectopic decidual reaction in the groin mimicking inguinal lymphoma on ultrasound in a pregnant woman. This case contributes evidence illustrating the variability of the clinical...... presentation of ectopic decidual reaction....

  18. Management of unerupted maxillary deciduous central incisor: a case report.

    Science.gov (United States)

    Shakra, Karam Abu

    2014-01-01

    Failure of eruption of primary teeth can be considered rare, especially in maxillary anterior teeth. The problem can be either mechanical obstruction of eruption or a failure of the eruption mechanism. This case report presents failure of eruption of the maxillary right deciduous central incisor in a 4-year-old girl. The unerupted primary tooth was removed surgically. The histological finding revealed fibroma with reactive giant cells. Periodic follow-up visits were advised to monitor the developing dentition and to ensure enough space for the permanent incisor. How to cite this article: Shakra KA. Management of Unerupted Maxillary Deciduous Central Incisor: A Case Report. Int J Clin Pediatr Dent 2014;7(1):58-60.

  19. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen-Ta, E-mail: f10549@ntut.edu.tw [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Wu, Pai-Shuen [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Ko, Chih-Sheng [PhytoHealth Corporation, Maywufa Biopharma Group, Taipei, Taiwan (China); Huang, Te-Yang [Mackay Memorial Hospital, Taipei, Taiwan (China)

    2014-08-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium has an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. In this study, the effects of strontium phosphate on the osteogenic differentiation of SHEDs were investigated. Strontium phosphate was found to enhance the osteogenic differentiation of SHEDs with up-regulated osteoblast-related gene expression. The proliferation of SHEDs was slightly inhibited by chitosan scaffolds; however, type-I collagen expression, alkaline phosphatase activity, and calcium deposition on chitosan scaffolds containing strontium were significantly enhanced. Furthermore, cells seeded in a 3D scaffold under dynamic culture at an optimal fluid rate might enhance cellular differentiation than static culture in osteoblastic gene expression. This experiment might provide a useful cell resource and dynamic 3D culture for tissue engineering and bone repair. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering • Strontium phosphate can enhance the osteogenic differentiation of SHEDs • 3D scaffold under dynamic culture with optimal fluid rate enhance cellular differentiation.

  20. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold

    International Nuclear Information System (INIS)

    Su, Wen-Ta; Wu, Pai-Shuen; Ko, Chih-Sheng; Huang, Te-Yang

    2014-01-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium has an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. In this study, the effects of strontium phosphate on the osteogenic differentiation of SHEDs were investigated. Strontium phosphate was found to enhance the osteogenic differentiation of SHEDs with up-regulated osteoblast-related gene expression. The proliferation of SHEDs was slightly inhibited by chitosan scaffolds; however, type-I collagen expression, alkaline phosphatase activity, and calcium deposition on chitosan scaffolds containing strontium were significantly enhanced. Furthermore, cells seeded in a 3D scaffold under dynamic culture at an optimal fluid rate might enhance cellular differentiation than static culture in osteoblastic gene expression. This experiment might provide a useful cell resource and dynamic 3D culture for tissue engineering and bone repair. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering • Strontium phosphate can enhance the osteogenic differentiation of SHEDs • 3D scaffold under dynamic culture with optimal fluid rate enhance cellular differentiation

  1. Hematopoietic stem cell function in motheaten mice

    International Nuclear Information System (INIS)

    Shultz, L.D.; Bailey, C.L.; Coman, D.R.

    1983-01-01

    Mice homozygous for the autosomal recessive mutation ''motheaten'' have normal numbers of multipotential hematopoietic stem cells in the bone marrow and spleen as determined by spleen colony assay. Histologic examination shows no qualitative abnormality in morphology of stem cell colonies in recipients of bone marrow or spleen cells from motheaten mice. Despite the apparently normal ontogeny, distribution, and differentiative capacity of CFU stem cells, bone marrow and spleen cells from motheaten mice fail to save congenic +/+ lethally gamma-irradiated hosts. This impaired lifesparing capacity is not due to defective self-renewal but appears to be due in part to pulmonary hemorrhage from alveolar capillaries in the gamma-irradiated hosts. Treatment of motheaten mice with 500 R gamma-irradiation followed by reconstitution with normal bone marrow cells increases the lifespan of this mutant to 10 months of age. The early onset of pneumonitis and subsequent short lifespan of motheaten mice is determined at the level of progenitor cells in the bone marrow

  2. The Endocannabinoid System in the Postimplantation Period: A Role during Decidualization and Placentation

    Directory of Open Access Journals (Sweden)

    B. M. Fonseca

    2013-01-01

    Full Text Available Although the detrimental effects of cannabis consumption during gestation are known for years, the vast majority of studies established a link between cannabis consumption and foetal development. The complex maternal-foetal interrelationships within the placental bed are essential for normal pregnancy, and decidua definitively contributes to the success of this process. Nevertheless, the molecular signalling network that coordinates strategies for successful decidualization and placentation are not well understood. The discovery of the endocannabinoid system highlighted new signalling mediators in various physiological processes, including reproduction. It is known that endocannabinoids present regulatory functions during blastocyst development, oviductal transport, and implantation. In addition, all the endocannabinoid machinery was found to be expressed in decidual and placental tissues. Additionally, endocannabinoid’s plasmatic levels were found to fluctuate during normal gestation and to induce decidual cell death and disturb normal placental development. Moreover, aberrant endocannabinoid signalling during the period of placental development has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the endocannabinoid system in these critical processes is explored and discussed.

  3. Dark reticular cells in the thymus of mice

    Energy Technology Data Exchange (ETDEWEB)

    Jaerplid, B [Foersvarets Forskningsanstalt, Stockholm (Sweden)

    1974-01-01

    The morphology and distribution of dark reticular cells in the thymus of normal mice, of irradiated mice, and of mice with thymic lymphoma are described. It is concluded that dark cells are epithelial reticular cells and the hypothesis is suggested that dark and light epithelial reticular cells may be different modes of expression of the same cell type. (auth)

  4. The effect of stem cell from human exfoliated deciduous teeth on T lymphocyte proliferation.

    Science.gov (United States)

    Alipour, Razieh; Adib, Minoo; Hashemi-Beni, Batool; Sadeghi, Farzaneh

    2014-01-01

    Mesenchymal stem cells (MSC), a specific type of adult tissue stem cell; have the immunosuppressive effects that make them valuable targets for regenerative medicine and treatment of many human illnesses. Hence, MSC have been the subject of numerous studies. The classical source of MSC is adult bone marrow (BM). Due to many shortcomings of harvesting MSC from BM, finding the alternative sources for MSC is an urgent. Stem cells from human exfoliated deciduous teeth (SHED) are relative new MSC populations that fulfill these criteria but their potential immunosuppressive effect has not been studied enough yet. Thus, in this work the effect of SHED on the proliferation of in vitro activated T lymphocytes were explored. In this study, both mitogen and alloantigen activated T cells were cultured in the presence of different numbers of SHED. In some co-cultures, activated T cells were in direct contact to MSCs and in other co-cultures; they were separated from SHED by a permeable membrane. In all co-cultures, the proliferation of T cells was measured by ELISA Bromodeoxyuridine proliferation assay. In general, our results showed that SHED significantly suppress the proliferation of activated T cells in a dose-dependent manner. Moreover, the suppression was slightly stronger when MSCs were in physical contact to activated T cells. This study showed that SHED likewise other MSC populations can suppress the activation of T lymphocytes, which can be used instead of BM derived MSCs in many investigational and clinical applications.

  5. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute lung injury in mice.

    Science.gov (United States)

    Wakayama, Hirotaka; Hashimoto, Naozumi; Matsushita, Yoshihiro; Matsubara, Kohki; Yamamoto, Noriyuki; Hasegawa, Yoshinori; Ueda, Minoru; Yamamoto, Akihito

    2015-08-01

    Acute respiratory distress syndrome (ARDS) is a severe inflammatory disorder characterized by acute respiratory failure, resulting from severe, destructive lung inflammation and irreversible lung fibrosis. We evaluated the use of stem cells derived from human exfoliated deciduous teeth (SHEDs) or SHED-derived serum-free conditioned medium (SHED-CM) as treatments for bleomycin (BLM)-induced mice acute lung injury (ALI), exhibiting several pathogenic features associated with the human disease ARDS. Mice with BLM-induced ALI with or without SHED or SHED-CM treatment were examined for weight loss and survival. The lung tissue was characterized by histological and real-time quantitative polymerase chain reaction analysis. The effects of SHED-CM on macrophage differentiation in vitro were also assessed. A single intravenous administration of either SHEDs or SHED-CM attenuated the lung injury and weight loss in BLM-treated mice and improved their survival rate. Similar recovery levels were seen in the SHEDs and SHED-CM treatment groups, suggesting that SHED improves ALI by paracrine mechanisms. SHED-CM contained multiple therapeutic factors involved in lung-regenerative mechanisms. Importantly, SHED-CM attenuated the BLM-induced pro-inflammatory response and generated an anti-inflammatory/tissue-regenerating environment, accompanied by the induction of anti-inflammatory M2-like lung macrophages. Furthermore, SHED-CM promoted the in vitro differentiation of bone marrow-derived macrophages into M2-like cells, which expressed high levels of Arginase1, CD206 and Ym-1. Our results suggest that SHED-secreted factors provide multifaceted therapeutic effects, including a strong M2-inducing activity, for treating BLM-induced ALI. This work may open new avenues for research on stem cell-based ARDS therapies. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Karakterisasi stem cell pulpa gigi sulung dengan modifikasi enzim tripsin (The characterization of stem cells from human exfoliated deciduous teeth using trypsin enzym

    Directory of Open Access Journals (Sweden)

    Tri Wijayanti Puspitasari

    2014-06-01

    Full Text Available Background: Now a days, treatment in dentistry, using tissue regeneration that based on the stem cells from human exfoliated deciduous teeth (SHED, grows rapidly. For several reason, the isolated and cultured SHED is difficult to be applied in Indonesia, therefore the modification is needed. This difficulties were caused by the pulp anatomy, the heterogeneous populations in the pulp chamber and the limitations of tools and materials at the laboratory. Purpose: This research was aimed to examine that the modifications of isolation and culture technique of SHEDs for characterization by using the marker of CD105. Methods: The research was experimental laboratory with the cross sectional design. The samples were the human exfoliated deciduous teeth from the children patients of Pediatric Dentistry Department of Universitas Airlangga Dental Hospital which matched the criteria. Dental pulps were isolated and cultured by using the modifications of Trypsin enzymes. Results: The healthy SHEDs could be produced from the modifications of isolation and culture and positively shown the expression of marker CD105 which were indicated by the fluorencent microscope. Conclusion: SHED which isolated and cultured by using the modified techniques, positively characterized by using marker CD105.Latar Belakang: Pengobatan kedokteran gigi berkembang dengan pesat terutama di bidang regenerasi jaringan berbasis Stem Cells from Human Exfoliated Deciduous Teeth (SHED. Di Indonesia, isolasi dan kultur SHED sulit sehingga perlu dilakukan modifikasi. Kendala ini muncul karena jaringan pulpa yang kecil, heterogen dan keterbatasan alat dan bahan di laboratorium. Tujuan: Penelitian ini bertujuan untuk meneliti modifikasi pada cara isolasi dan kultur SHED untuk karakterisasi menggunakan maker CD105. Metode: Jenis penelitian ini adalah eksperimental laboratoris dengan rancangan cross sectional. Sampel penelitian adalah gigi sulung dari pasien anak di Klinik Kedokteran Gigi Anak

  7. Effect of photobiomodulation on viability and proliferation of stem cells from exfoliated deciduous teeth under different nutritional conditions

    Science.gov (United States)

    Morato de Souza, Letícia; Guilherme Roque Rinco, Ugo; Aparecida Tavares Aguiar, Daniela; Aparecido de Almeida Junior, Luciano; Cosme-Silva, Leopoldo; Marchini Oliveira, Thais; Teixeira Marques, Nádia Carolina; Thiemy Sakai, Vivien

    2018-02-01

    This study aimed to evaluate the effect of different doses of low-level laser irradiation on the viability and proliferation of stem cells from exfoliated deciduous teeth (SHED) cultured under nutritional deficit (cellular stress) or regular nutritional conditions. SHED underwent irradiation by a red laser between 1.2 and 6.2 J cm-2. Prior to the irradiation, all groups received culture medium (MEMα, Eagle’s minimum essential medium alpha modification) supplemented with 1% of fetal bovine serum (FBS) for 1 h. After the irradiation, cells received MEMα supplemented with 10% of FBS (regular nutrition) or 1% of FBS (nutritional deficit). Cell viability and proliferation were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays 6 and 24 h after irradiation (P  cell viability and proliferation of SHED after laser irradiation, except for 1.2 J cm-2.

  8. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    Science.gov (United States)

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  9. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice.

    Science.gov (United States)

    Krey, Gesa; Frank, Pierre; Shaikly, Valerie; Barrientos, Gabriela; Cordo-Russo, Rosalia; Ringel, Frauke; Moschansky, Petra; Chernukhin, Igor V; Metodiev, Metodi; Fernández, Nelson; Klapp, Burghard F; Arck, Petra C; Blois, Sandra M

    2008-09-01

    Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.

  10. Ectopic decidual reaction mimicking irritable bowel syndrome: a case report.

    Directory of Open Access Journals (Sweden)

    Soraya Salehgargari

    2014-01-01

    Full Text Available Ectopic decidualization with gross involvement of the peritoneum is one of the rare findings in pregnant women particularly when ectopic decidualization disseminated as an asymptomatic intra-abdominal nodule. We present here a case of an ectopic decidualization in a 33-year-old pregnant woman with symptoms of irritable bowel syndrome during pregnancy.

  11. Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice.

    Science.gov (United States)

    Tseng, Ling-Shu; Chen, Sheng-Hsien; Lin, Mao-Tsun; Lin, Ying-Chu

    2015-01-01

    Stem cells from human exfoliated deciduous tooth pulp (SHED) is a promising approach for the treatment of stroke and spinal cord injury. In this study, we investigated the therapeutic effects of SHED for the treatment of multiple organ (including brain, particularly hypothalamus) injury in heatstroke mice. ICR male mice were exposed to whole body heating (WBH; 41.2°C, relative humidity 50-55%, for 1 h) and then returned to normal room temperature (26°C). We observed that intravenous administration of SHED immediately post-WBH exhibited the following therapeutic benefits for recovery after heatstroke: (a) inhibition of WBH-induced neurologic and thermoregulatory deficits; (b) reduction of WBH-induced ischemia, hypoxia, and oxidative damage to the brain (particularly the hypothalamus); (c) attenuation of WBH-induced increased plasma levels of systemic inflammatory response molecules, such as tumor necrosis factor-α and intercellular adhesion molecule-1; (d) improvement of WBH-induced hypothalamo-pituitary-adrenocortical (HPA) axis activity (as reflected by enhanced plasma levels of both adrenocorticotrophic hormone and corticosterone); and (e) attenuation of WBH-induced multiple organ apoptosis as well as lethality. In conclusion, post-WBH treatment with SHED reduced induction of proinflammatory cytokines and oxidative radicals, enhanced plasma induction of both adrenocorticotrophic hormone and corticosterone, and improved lethality in mouse heatstroke. The protective effect of SHED may be related to a decreased inflammatory response, decreased oxidative stress, and an increased HPA axis activity following the WBH injury.

  12. Intravenous administration of puppy deciduous teeth stem cells in degenerative valve disease

    Directory of Open Access Journals (Sweden)

    Soontaree Petchdee

    2016-12-01

    Full Text Available Aim: The objective of this study is to investigate the improvement of heart function in dogs with chronic valvular heart disease after puppy deciduous teeth stem cells (pDSCs administration. Materials and Methods: 20 client-owned dogs with degenerative valvular heart disease underwent multiple intravenous injections of allogeneic pDSCs. Dogs were randomly assigned to two groups: (i Control group (n=10 with standard treatment for heart failure and (ii group with standard treatment and multiple administrations of pDSCs (n=10. Electrocardiography, complete transthoracic echocardiography, thoracic radiography, and blood pressure were recorded before and after pDSCs injections for 15, 30 and 60 days. Results: Post pDSCs injection showed measurable improvement in left ventricular ejection fraction, American College of Veterinary Internal Medicine (ACVIM functional class significantly improved and improved quality of life scores were observed. In the control group, there were no significant enhancements in heart function or ACVIM class. Conclusions: This finding suggests that pDSCs could be a supplement for valvular heart disease treatment.

  13. Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu

    2015-11-15

    Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.

  14. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    International Nuclear Information System (INIS)

    Calatayud, Vicent; Marco, Francisco; Cervero, Julia; Sanchez-Pena, Gerardo; Sanz, Maria Jose

    2010-01-01

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO 2 assimilation and stomatal conductance (g s ), impaired Rubisco efficiency and regeneration capacity (V c,max, J max ) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  15. T-cell-dependent control of acute Giardia lamblia infections in mice.

    Science.gov (United States)

    Singer, S M; Nash, T E

    2000-01-01

    We have studied immune mechanisms responsible for control of acute Giardia lamblia and Giardia muris infections in adult mice. Association of chronic G. lamblia infection with hypogammaglobulinemia and experimental infections of mice with G. muris have led to the hypothesis that antibodies are required to control these infections. We directly tested this hypothesis by infecting B-cell-deficient mice with either G. lamblia or G. muris. Both wild-type mice and B-cell-deficient mice eliminated the vast majority of parasites between 1 and 2 weeks postinfection with G. lamblia. G. muris was also eliminated in both wild-type and B-cell-deficient mice. In contrast, T-cell-deficient and scid mice failed to control G. lamblia infections, as has been shown previously for G. muris. Treatment of wild-type or B-cell-deficient mice with antibodies to CD4 also prevented elimination of G. lamblia, confirming a role for T cells in controlling infections. By infecting mice deficient in either alphabeta- or gammadelta-T-cell receptor (TCR)-expressing T cells, we show that the alphabeta-TCR-expressing T cells are required to control parasites but that the gammadelta-TCR-expressing T cells are not. Finally, infections in mice deficient in production of gamma interferon or interleukin 4 (IL-4) and mice deficient in responding to IL-4 and IL-13 revealed that neither the Th1 nor the Th2 subset is absolutely required for protection from G. lamblia. We conclude that a T-cell-dependent mechanism is essential for controlling acute Giardia infections and that this mechanism is independent of antibody and B cells.

  16. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition

    Directory of Open Access Journals (Sweden)

    Haidy El-Azzamy

    2017-05-01

    Full Text Available Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14 or without labor (TNL, n = 15. Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR. Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1, galectin-1 (LGALS1, and progestogen-associated endometrial protein (PAEP; the expression of estrogen receptor 1 (ESR1, homeobox A11 (HOXA11, interleukin 1β (IL1B, IL8, progesterone receptor membrane component 2 (PGRMC2, and prostaglandin E synthase (PTGES was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2, CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and

  17. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  18. Allogeneic stem cells derived from human exfoliated deciduous teeth (SHED for the management of periapical lesions in permanent teeth: Two case reports of a novel biologic alternative treatment

    Directory of Open Access Journals (Sweden)

    Madu Ghana Shyam Prasad

    2017-06-01

    Full Text Available Stem cells are the pluripotent cells that have the capacity to differentiate into other specialized cells. Recently, many experiments have been conducted to study the potentiality of stem cells in the tissue regeneration. We report two cases treated utilizing stem cells from human exfoliated deciduous teeth (SHED in the management of periapical lesions in permanent teeth. Two normal human deciduous teeth from children, 7‒8 years of age, were collected to isolate stem cells. Two patients, one with periapical pathology alone and the other with periapical lesion along with an open apex in young permanent teeth, were selected for the study. After initial debridement of the root canals, homing of SHED was carried out and the access cavity was sealed using glass-ionomer cement. Clinical examination after 7 days, 30 days, 90 days, 180 days and 365 days revealed no symptoms. Closure of open apex and periapical tissue healing were observed radiographically at one-month review and maintained until 365-day review. Positive response to electric pulp testing was recorded for the treated teeth from the 3- to 12-month follow-ups. The treated cases demonstrated complete resolution of periapical radiolucency in a span of 30 days, which was faster than the conventional methods. SHED could be considred effective in treating the periapical lesions and open apex in permanent teeth.

  19. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy.

    Science.gov (United States)

    Dong, Peng; Wen, Xi; Liu, Jia; Yan, Cui-Yan; Yuan, Jing; Luo, Lan-Rong; Hu, Qiao-Fei; Li, Jian

    2017-06-30

    Th1/Th2 imbalance is considered as a mechanism for recurrent miscarriage. The NK1/NK2 paradigm is hypothesised to play an important role in pregnancy. However, few results showed simultaneous changes of these subsets in vivo in decidual tissues. The present study aimed to detect the decidual mononuclear cells (dMo), and the Th1/Th2, and NK1/NK2 paradigm simultaneously using multiparametric flow cytometry (MFC) in unexplained recurrent miscarriages (URM). Mononuclear cells were isolated from the decidual tissues of URM cases and early pregnant women. The mononuclear cell percent was demonstrated by detecting the expression of CD3, CD4, CD8, CD56, and CD16 extracellular markers, interferon (IFN)-γ, and interleukin (IL)-4 intracellular markers in live cells using 8-color flow cytometry with forward scatter (FSC)/side scatter (SSC) and FSC/viability (Vt) initial gating strategies, and the ratios of Th1/Th2 and decidual NK1 (dNK1)/decidual NK2 (dNK2) cells were compared between the subject groups. Two initial gating strategies of the FSC/SSC or FSC/Vt, with central or extended gating scales, were adapted, and there was no main effect or interaction for the cell proportions, except for the type 1 and type 2 subsets in the FSC/Vt extended gating strategy. There was no significant difference of the proportions of the decidual T, dNK, NKT-like, Th, and Tc cells between the two groups. However, the Th1/Th2 and dNK1/dNK2 ratios in the URM patients were higher compared with the normal group when using the FSC/Vt extended gating strategy. The present study provides means to detect Th1/Th2 and dNK1/dNK2 simultaneously in URM patients for large sample investigations in the future. © 2017 The Author(s).

  20. Comparison of radiosensitivity of immune cells in three kinds of mice

    International Nuclear Information System (INIS)

    Wu Hongying; Wang Yueying; Zhang Heng; Li Denguan; Du Liqing; Wang Xiaochun; Lu Lu; Chang Jianhui; Zhang Junling; Zhai Zhibin; Men Aimin

    2010-01-01

    Objective: To compare the radiosensitivity of thymus (Th), spleen (Sp) cells between IRM-2, ICR and 615 mouse and explore the immunological and radiation resistance mechanisms of IRM-2 mice. Methods: The peripheral blood cytotype was determined by flow cytometry. By PA Law (FITC-Annexin V and PI labeling), the apoptosis of Th and Sp cells was detected after irradiation. Results: CD4/CD8 ratio of IRM-2 mice was lower than that of ICR and 615 mice; CD25/CD4 ratio was higher than 615 mice (P<0.05), lower than ICR mice;apoptosis rate of Sp cells exposed to 0, 1, 4 Gy γ-ray was lower than ICR and 615 mice, the difference was of statistical significance (P<0.05); apoptosis rate of Th cell was lower than ICR and 615 mice, especially 615 mice in 4Gy irradiated group (P<0.01). Conclusion: The apoptosis rate of IRM-2 was lower than that of ICR and 615 mice after irradiation. Th and Sp cells of IRM-2 mice were not sensitive to radiation. (authors)

  1. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: vicent@ceam.e [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Marco, Francisco; Cervero, Julia [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Sanchez-Pena, Gerardo [SPCAN, Dir. Gral. de Medio Natural y Politica Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, Rios Rosas 24, 28003 Madrid (Spain); Sanz, Maria Jose [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain)

    2010-12-15

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO{sub 2} assimilation and stomatal conductance (g{sub s}), impaired Rubisco efficiency and regeneration capacity (V{sub c,max,}J{sub max}) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  2. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    Science.gov (United States)

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  3. [Observation of osteoclasts on the root surface during human deciduous teeth resorption].

    Science.gov (United States)

    Bao, Xiang-jun; Liang, Xing; Chen, Ming; Wang, Hang; Xie, Zhi-gang; Yang, Xiao-yu

    2004-08-01

    To observe osteoclasts on the resorbing surface of human deciduous teeth. After fixing the collected deciduous teeth, we prepared the tooth slices without decalcification, treated them with HE and TRAP dyestuff, and observed the osteoclasts under light and scanning electron microscope. There were large quantity of various forms of overlapping and huge osteoclasts with many nuclei and silk-like protuberances on the resorbing surface of deciduous teeth. The multinucleated osteoclasts align on the surface of coarse dentin. On the resorbing surface of human deciduous teeth there are large amount of osteoclasts which can be used as a source of studying human osteoclast.

  4. Inflammatory Th17 cells promote depression-like behavior in mice

    Science.gov (United States)

    Beurel, Eléonore; Harrington, Laurie E.; Jope, Richard S.

    2012-01-01

    Background Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact CNS functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models Th17 cells promote susceptibility to depression-like behaviors. Methods Behavioral characteristics were measured in male mice administered Th17 cells, CD4+ cells, or vehicle, and in RORγT+/GFP mice or male mice treated with RORγT inhibitor or anti-IL-17A antibodies. Results Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-IL-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. Conclusions These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. PMID:23174342

  5. Semi-deciduous forest remnants in Benin: patterns and floristic characterisation

    NARCIS (Netherlands)

    Adomou, A.C.; Akoegninou, A.; Sinsin, B.; Foucault, de B.; Maesen, van der L.J.G.

    2009-01-01

    Patterns of semi-deciduous forest are investigated in Benin by means of phytosociological releves and multivariate analyses Species and family importance values are assessed for each forest type The classifications and DCA ordination of 176 semi-deciduous forest releves result in six forest types,

  6. [Conservative treatment of deciduous teeth--a review].

    Science.gov (United States)

    Magnusson, B

    1976-06-01

    In all countries with a lack of manpower in dentistry, there is an unfortunate tendency to leave the primary teeth without proper conservative treatment. In addition to toothaches and poor esthetics, a neglected care of the primary dentition may result in several other untoward effects. Decayed deciduous teeth may cause such a discomfort during tooth-brushing that the child is prevented from learning good oral hygiene habits. With bad primary molars the child cannot chew properly, and may have to choose soft and often cariogenic food. When the permanent teeth erupt among the decayed deciduous teeth, there will be a greater chance for them to have carious attacks as well. Premature loss of primary molars may lead to malocclusion. It must also be kept in mind that the treatment of badly decayed teeth, including necessary extractions, may be difficult. This may cause fear of dental treatment. On the basis of current Swedish philosophies of treatment the author surveys various conservative procedures for deciduous teeth-amalgam therapy, stainless steel crowns, composites and disking.

  7. Indoleamine 2,3-Dioxygenase Is Dispensable for The Immunomodulatory Function of Stem Cells from Human Exfoliated Deciduous Teeth.

    Science.gov (United States)

    Alipour, Razieh; Masoumi Karimi, Masoumeh; Hashemi-Beni, Batool; Adib, Minoo; Sereshki, Nasrin; Sadeghi, Farzaneh

    2017-01-01

    In this study, we sought to better understand the immunoregulatory function of stem cells derived from human exfoliated deciduous teeth (SHED). We studied the role of the interferon gamma (IFN-γ)-indoleamine 2,3-dioxygenase (IDO)-axis in immunoregulation of SHED compared to bone marrow derived mesenchymal stem cells (BMMSCs) under the same conditions. In this cross-sectional study, recently isolated human T cells were stimulated either by mitogen or inactivated allogeneic peripheral blood mononuclear cells (PBMCs). These T cells were subsequently co-cultured with, either SHED or BMMSCs in the presence or absence of 1-methyl-tryptophan (1-MT) or neutralizing anti- human-IFN-γ antibodies. In all co-cultures we evaluated lymphocyte activation as well as IDO activity. SHED, similar to conventional BMMSCs, had anti-proliferative effects on stimulated T cells and reduced their cytokine production. This property of SHED and BMMSCs was changed by IFN-γ neutralization. We detected IDO in the immunosuppressive supernatant of all co-cultures. Removal of IDO decreased the immunosuppression of BMMSCs. SHED, like BMMSCs, produced the IDO enzyme. Although IFN-γ is one of inducer of IDO production in SHED, these cells were not affected by IFN-γ in the same manner as BMMSCs. Unlike BMMSCs, the IDO enzyme did not contribute to their immunosuppression and might have other cell-type specific roles.

  8. Adaptation and possible attenuation of Theileria parva-infected cells grown in irradiated mice

    International Nuclear Information System (INIS)

    Irvin, A.D.; Brown, C.G.D.; Stagg, D.A.; Kanhai, G.K.; Kimber, C.D.; Radley, D.E.

    1976-01-01

    Theileria parva-infected bovine lymphoid cells were taken from 8 cattle immediately after death from East Coast fever (ECF). Cells were inoculated into groups of irradiated Swiss and athymic nude mice. The irradiated mice were exposed to 800 rad doses from a 60 Co source. Cells became established in one group of Swiss mice and 2 groups of athymic mice. Development of cells in mice only occurred if cells concurrently established in culture; when establishment in culture was delayed, cells failed to develop in mice. Cells from one of the isolates in athymic mice were passaged 6 times through further mice. On inoculation of these mouse-passaged cells into cattle, the animals underwent mild reactions and subsequently resisted a lethal ECF challenge. The possibility of vaccinating cattle aginst ECF by means of mouse passaged cells merits further study. (author)

  9. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    International Nuclear Information System (INIS)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-01-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC 8 ), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 μM. Diolein (100 μM), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4β-phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4α-phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC 8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable [ 35 S]methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC 8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC 8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua

  10. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman’s capsule expressed podocyte markers, and cells on Bowman’s capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman’s capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman’s capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman’s capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans. PMID:24408873

  11. The regenerative potential of parietal epithelial cells in adult mice.

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-04-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.

  12. Osteoblastic differentiation of stem cells from human exfoliated deciduous teeth induced by thermosensitive hydrogels with strontium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen-Ta, E-mail: f10549@ntut.edu.tw [Department of Chemical Engineering and Biotechnology National Taipei University of Technology, Taipei, Taiwan (China); Chou, Wei-Ling [Department of Chemical Engineering and Biotechnology National Taipei University of Technology, Taipei, Taiwan (China); Chou, Chih-Ming [Department of Biochemistry, Taipei Medical University, Taipei, Taiwan (China)

    2015-07-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) are a novel source of multi-potential stem cells for tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium exhibits an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. Hydrogels can mimic the natural cellular environment. The association of hydrogels with cell viability is determined using biological tests, including rheological experiments. In this study, osteogenic differentiation was investigated through SHED encapsulation in hydrogels containing strontium phosphate. Results of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and proliferating cell nuclear antigen (PCNA) immunofluorescence staining indicated that the cells grew well and SHEDs proliferated in the hydrogels. Strontium-loaded chitosan-based hydrogels induced the biomineralization and high expression of alkaline phosphatase. Moreover, the expression levels of bone-related genes, including type-I collagen, Runx2, osteopontin (OP), and osteonectin (ON), were up-regulated during the osteogenic differentiation of SHEDs. This study demonstrated that strontium can be an effective inducer of osteogenesis for SHEDs. Elucidating the function of bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering. • Strontium phosphate can enhance the osteogenic differentiation of SHEDs. • Hydrogels can mimic the natural cellular environment. • Bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering.

  13. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Kunimatsu, Ryo; Nakajima, Kengo; Awada, Tetsuya; Tsuka, Yuji; Abe, Takaharu; Ando, Kazuyo; Hiraki, Tomoka; Kimura, Aya; Tanimoto, Kotaro

    2018-06-18

    Mesenchymal stem cells (MSCs) are used clinically in tissue engineering and regenerative medicine. The proliferation and osteogenic differentiation potential of MSCs vary according to factors such as tissue source and cell population heterogeneity. Dental tissue has received attention as an easily accessible source of high-quality stem cells. In this study, we compared the in vitro characteristics of dental pulp stem cells from deciduous teeth (SHED), human dental pulp stem cells (hDPSCs), and human bone marrow mesenchymal stem cells (hBMSCs). SEHD and hDPSCs were isolated from dental pulp and analyzed in comparison with human bone marrow (hBM)MSCs. Proliferative capacity of cultured cells was analyzed using a bromodeoxyuridine immunoassay and cell counting. Alkaline phosphatase (ALP) levels were monitored to assess osteogenic differentiation. Mineralization was evaluated by alizarin red staining. Levels of bone marker mRNA were examined by real-time PCR analysis. SHED were highly proliferative compared with hDPSCs and hBMSCs. SHED, hDPSCs, and hBMSCs exhibited dark alizarin red staining on day 21 after induction of osteogenic differentiation, and staining of hBMSCs was significantly higher than that of SHED and hDPSCs by spectrophotometry. ALP staining was stronger in hBMSCs compared with SHED and hDPSCs, and ALP activity was significantly higher in hBMSCs compared with SHED or hDPSCs. SHED showed significantly higher expression of the Runx2 and ALP genes compared with hBMSCs, based on real-time PCR analysis. In bFGF, SHED showed significantly higher expression of the basic fibroblast growth factor (bFGF) gene compared with hDPSCs and hBMSCs. SHED exhibited higher proliferative activity and levels of bFGF and BMP-2 gene expression compared with BMMSCs and DPSCs. The ease of harvesting cells and ability to avoid invasive surgical procedures suggest that SHED may be a useful cell source for application in bone regeneration treatments. Copyright © 2018 Elsevier Inc

  14. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Directory of Open Access Journals (Sweden)

    Jose Luis Ramirez-GarciaLuna

    Full Text Available In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1 mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2 re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3 the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  15. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Science.gov (United States)

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  16. Peculiarities of cell-cell interactions in basal decidual membrane at vaginitis associated with contamination by opportunistic microorganisms

    Directory of Open Access Journals (Sweden)

    L. R. Mustafina

    2012-01-01

    Full Text Available An important role in anti-infection protection during pregnancy belongs to local immunity mechanisms. At contamination of lower genital tracts by Ureaplasma urealyticum and Mycoplasma hominis, the activation of natural killers in basal decidual membrane was absent, which can be considered as a marker of immune compromise of women in the aspect of reliability of control of the population of urinogenital opportunistic flora and prognostic factor of possible intrauterine infection.

  17. Feto-maternal immune regulation by TIM-3/galectin-9 pathway and PD-1 molecule in mice at day 14.5 of pregnancy

    DEFF Research Database (Denmark)

    Meggyes, Matyas; Lajko, Adrienn; Palkovics, Tamas

    2015-01-01

    INTRODUCTION: Immunoregulation implies the activation of negative pathways leading to the modulation of specific immune responses. Co-inhibitory receptors (such as PD-1 and TIM-3) represent possible tools for this purpose. PD-1 and TIM-3 have been demonstrated to be present on immune cells...... suggesting general involvement in immunosuppression such as fetomaternal tolerance. The aim of our study was to investigate the expression pattern of PD-1, TIM-3, and its ligand Gal-9 on different immune cell subsets in the peripheral blood and at the fetomaternal interface in pregnant mice. METHODS: TIM-3...... and PD-1 expression by peripheral and decidual immune cells from pregnant BALB-c mice in 2 weeks of gestational age were measures by flow cytometry. Placental galectin-9 expression was determined by immunohistochemically and RT-PCR. RESULTS: Gal-9 was found to be present in the spongiotrophoblast layer...

  18. Cell-extrinsic defective lymphocyte development in Lmna(-/- mice.

    Directory of Open Access Journals (Sweden)

    J Scott Hale

    2010-04-01

    Full Text Available Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna(-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna(-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.Lmna(-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna(-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4(+ and CD8(+ T cells. Transplantation of Lmna(-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna(-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna(-/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.

  19. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    OpenAIRE

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glo...

  20. Distribution of copper-64 in control mice and in mice bearing ascitic Krebs tumor cells

    International Nuclear Information System (INIS)

    Apelgot, S.; Coppey, J.; Grisvard, J.; Guille, E.; Sissoeeff, I.

    1981-01-01

    Three to 20 hr after an i.p. injection of 64 Cu (half-life, 12.8 hr) into mice bearing Krebs ascites cells, a high amount of the radioisotope was recovered in the ascites cells themselves. In the control group, the radioisotope was mainly present in the liver. Similar amounts of 64 Cu were recovered in regenerating as well as in normal liver, whereas in the liver of mice bearing ascites cells, this amount was lower by 40 to 50% regardless of the ascitic volume. Thus, the copper metabolism seems to be disturbed at the hepatic level in mice bearing ascites cells. The distribution of 64 Cu was 'analyzed in DNA, RNA, and proteins from cellular lysates fractionated by CsCl gradient. There was a uniform pattern of distribution in the macromolecules from ascites cells, while 64 Cu' was preferentially associated with the protein fraction from liver. Further experiments indicated that, in vivo, 64 Cu was bound to the DNA of ascites cells

  1. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  2. The use of deciduous molars in EPR dose reconstruction

    International Nuclear Information System (INIS)

    El-faramawy, N.A.; Wieser, A.

    2005-01-01

    The use of deciduous teeth in EPR dose reconstruction has the unique potential to measure individual doses that were accumulated in the early childhood in the age up to 12 years. It was found previously that due to the small size of deciduous incisors, the available amount of enamel is not sufficient for EPR measurements. Therefore, dose assessment with deciduous incisors can only be done by measurement of whole teeth, including enamel and dentine. The measurement of whole teeth instead of enamel alone is possibly less reliable for dose reconstruction because the stability of CO 2 - radicals (that are an indicator for the absorbed dose) in biologically active dentine is not known. In the present study naturally loosed deciduous molars were investigated. The feasibility of separating enamel from small size molars was analysed. EPR spectrum parameters of whole molars and separated enamel only were evaluated before and after laboratory irradiation. The EPR signal amplitudes of the CO 2 - and native signals were determined by spectrum deconvolution, in dependence on radiation dose in the range 0.1 - 10 Gy. The fading at room temperature of native and CO 2 - EPR signals was analysed. The detection threshold for absorbed dose in enamel was determined.

  3. Propagation of senescent mice using nuclear transfer embryonic stem cell lines.

    Science.gov (United States)

    Mizutani, Eiji; Ono, Tetsuo; Li, Chong; Maki-Suetsugu, Rinako; Wakayama, Teruhiko

    2008-09-01

    Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential.

  4. CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from scid mice with colitis

    DEFF Research Database (Denmark)

    Gad, M; Brimnes, J; Claesson, Mogens Helweg

    2003-01-01

    Adoptive transfer of CD4+ T cells into scid mice leads to a chronic colitis in the recipients. The transferred CD4+ T cells accumulate in the intestinal lamina propria (LP), express an activated Th1 phenotype and proliferate vigorously when exposed ex vivo to enteric bacterial antigens. As LP CD4......+ T cells from normal BALB/c mice do not respond to enteric bacterial antigens, we have investigated whether colonic LP-derived CD4+ T cells from normal mice suppress the antibacterial response of CD4+ T cells from scid mice with colitis. LP-derived CD4+ T cells cocultured with bone marrow......-derived dendritic cells effectively suppress the antibacterial proliferative response of CD4+ T cells from scid mice with colitis. The majority of these LP T-reg cells display a nonactivated phenotype and suppression is independent of antigen exposure, is partly mediated by soluble factor(s) different from IL-10...

  5. Generation of induced pluripotent stem cell-derived mice by reprogramming of a mature NKT cell.

    Science.gov (United States)

    Ren, Yue; Dashtsoodol, Nyambayar; Watarai, Hiroshi; Koseki, Haruhiko; Quan, Chengshi; Taniguchi, Masaru

    2014-10-01

    NKT cells are characterized by their expression of an NKT-cell-specific invariant antigen-receptor α chain encoded by Vα14Jα18 gene segments. These NKT cells bridge the innate and acquired immune systems to mediate effective and augmented responses; however, the limited number of NKT cells in vivo hampers their analysis. Here, two lines of induced pluripotent stem cell-derived mice (NKT-iPSC-derived mice) were generated by reprogramming of mature NKT cells, where one harbors both rearranged Vα14Jα18 and Vβ7 genes and the other carries rearranged Vα14Jα18 on both alleles but germline Vβ loci. The analysis of NKT-iPSC-derived mice showed a significant increase in NKT cell numbers with relatively normal frequencies of functional subsets, but significantly enhanced in some cases, and acquired functional NKT cell maturation in peripheral lymphoid organs. NKT-iPSC-derived mice also showed normal development of other immune cells except for the absence of γδT cells and disturbed development of conventional CD4 αβT cells. These results suggest that the NKT-iPSC-derived mice are a better model for NKT cell development and function study rather than transgenic mouse models reported previously and also that the presence of a pre-rearranged Vα14Jα18 in the natural chromosomal context favors the developmental fate of NKT cells. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  6. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Yoon; Kim, Tae Hoon; Lee, Jae Hee [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Dunwoodie, Sally L. [Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010 (Australia); St. Vincent' s Clinical School and the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033 (Australia); Ku, Bon Jeong, E-mail: bonjeong@cnu.ac.kr [Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Jeong, Jae-Wook, E-mail: JaeWook.Jeong@hc.msu.edu [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Department of Women' s Health, Spectrum Health System, Grand Rapids, MI (United States)

    2015-07-10

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6{sup f/f} and PGR{sup cre/+}Mig-6{sup f/f} (Mig-6{sup d/d}) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6{sup d/d} uterus treated with vehicle as compared with Mig-6{sup f/f} mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6{sup d/d} mice showed a significant increase in the number of proliferative cells compared to Mig-6{sup f/f} mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGR{sup cre/+}Cited2{sup f/f}; Cited2{sup d/d}). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene.

  7. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice

    International Nuclear Information System (INIS)

    Ikai, K.; Danno, K.; Horio, T.; Narumiya, S.

    1985-01-01

    The effect of UV irradiation on the skin was investigated in (WB-W/+) X (C57BL/6J-Wv/+)F1-W/Wv mice, which are genetically deficient in tissue mast cells. Their congenic littermates (+/+) and normal albino mice (ICR or BALB/c) were used as controls. Mice were irradiated with 500 mJ/cm2 of UVB and the increment of ear thickness was measured before and 6, 12, and 24 h after irradiation. Ear swelling in W/Wv mice at 12 and 24 h after irradiation was significantly smaller than that in +/+ and ICR mice. In contrast, the number of sunburn cells formed 24 h after UVB irradiation (200 or 500 mJ/cm2) was similar in W/Wv, +/+ and ICR mice. On the other hand, when mice were treated with 8-methoxy-psoralen (0.5%) plus UVA irradiation (4 J/cm2) (topical PUVA), ears of W/Wv and BALB/c mice, which were both white in color, were thickened similarly 72 h after treatment, but less swelling was observed in +/+ mice, which were black in skin color. The amount of prostaglandin D2 (PGD2) in ears, determined by radioimmunoassay specific for PGD2, was elevated 3-fold in +/+ and ICR mice at 3 h after irradiation with 500 mJ/cm2 of UVB in comparison with basal level without irradiation. However, such elevation was not observed in W/Wv mice. These results suggest that mast cells play an important role in UVB-induced inflammation, and PGs from mast cells are responsible at least in part for the development of this reaction. However, neither mast cells nor PGs contribute to the sunburn cell formation and ear swelling response by PUVA treatment

  8. Adiponectin deficiency suppresses lymphoma growth in mice by modulating NK cells, CD8 T cells, and myeloid-derived suppressor cells.

    Science.gov (United States)

    Han, Sora; Jeong, Ae Lee; Lee, Sunyi; Park, Jeong Su; Kim, Kwang Dong; Choi, Inpyo; Yoon, Suk Ran; Lee, Myung Sok; Lim, Jong-Seok; Han, Seung Hyun; Yoon, Do Young; Yang, Young

    2013-05-01

    Previously, we found that adiponectin (APN) suppresses IL-2-induced NK cell activation by downregulating the expression of the IFN-γ-inducible TNF-related apoptosis-inducing ligand and Fas ligand. Although the antitumor function of APN has been reported in several types of solid tumors, with few controversial results, no lymphoma studies have been conducted. In this study, we assessed the role of APN in immune cell function, including NK cells, CTLs, and myeloid-derived suppressor cells, in EL4 and B16F10 tumor-bearing APN knockout (KO) mice. We observed attenuated EL4 growth in the APNKO mice. Increased numbers of splenic NK cells and splenic CTLs were identified under naive conditions and EL4-challenged conditions, respectively. In APNKO mice, splenic NK cells showed enhanced cytotoxicity with and without IL-2 stimulation. Additionally, there were decreased levels of myeloid-derived suppressor cell accumulation in the EL4-bearing APNKO mice. Enforced MHC class I expression on B16F10 cells led to attenuated growth of these tumors in APNKO mice. Thus, our results suggest that EL4 regression in APNKO mice is not only due to an enhanced antitumor immune response but also to a high level of MHC class I expression.

  9. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    International Nuclear Information System (INIS)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-01-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage 51 Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed

  10. Daily variation in radiosensitivity of circulating blood cells and bone marrow cell density in mice

    International Nuclear Information System (INIS)

    Tabatabai, R.N.

    1984-01-01

    Mice on a 12/12 light/dark cycle were bled during a twenty-four hour period each week for eight weeks to establish daily values of circulating blood cells. No significant daily variation was found in total red blood cells, hematocrit, or percentage of reticulocytes. A significant (P < 0.001) daily variation was found in total white blood cells, with the minimum occurring at 8 PM and the maximum occurring during the daylight hours from 8 a.m. to 2 p.m. Mice were then exposed to 0 R, 20 R, 50 R, or 100 R of x-radiation to determine what dose significantly reduces the total white cell count in circulating blood. It was found that 100 R significantly (P < .05) reduces the total white cell count over a four week period post-exposure. To determine if circulating blood cells and bone marrow cells show a diurnal radiosensitivity, mice were exposed to 100 R or 200 R of x-radiation at noon or midnight. Hematocrits, reticulocyte and white blood cell counts, daily white blood cell rhythm, and bone marrow cell density indicate that these mice were more radiosensitive at night

  11. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    Science.gov (United States)

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  13. The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells.

    Science.gov (United States)

    Niyibizi, Christopher; Wang, Sujing; Mi, Zhibao; Robbins, Paul D

    2004-06-01

    To explore the feasibility of skeletal gene and cell therapies, we transduced murine bone marrow-derived mesenchymal stem cells (MSCs) with a retrovirus carrying the enhanced green fluorescent protein and zeocin-resistance genes prior to transplantation into 2-day-old immunocompetent neonatal mice. Whole-body imaging of the recipient mice at 7 days post-systemic cell injection demonstrated a wide distribution of the cells in vivo. Twenty-five days posttransplantation, most of the infused cells were present in the lung as assessed by examination of the cells cultured from the lungs of the recipient mice. The cells persisted in lung and maintained a high level of gene expression and could be recovered from the recipient mice at 150 days after cell transplantation. A significant number of GFP-positive cells were also present in the bones of the recipient mice at 35 days post-cell transplantation. Recycling of the cells recovered from femurs of the recipient mice at 25 days posttransplantation by repeated injections into different neonatal mice resulted in the isolation of a clone of cells that was detected in bone and cartilage, but not in lung and liver after systemic injection. These data demonstrate that MSCs persist in immunocompetent neonatal mice, maintain a high level of gene expression, and may participate in skeletal growth and development of the recipient animals.

  14. Profiling helper T cell subset gene expression in deer mice

    Directory of Open Access Journals (Sweden)

    Hjelle Brian

    2006-08-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV, the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT, Th2 cells (GATA-3, STAT6, IL-4, IL-5 and regulatory T cells (Fox-p3, IL-10, TGFβ1. These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.

  15. Characteristics of DTH suppressor cells in mice infected with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, O E; Sirena, A; de Alderete, N G

    1987-05-01

    Inoculation of 10(8) C. albicans intraperitoneally into Balb/c mice at given dosage was reported to induce suppression of antigen-specific delayed-type hypersensitivity. Adoptive transfer of spleen cells into normal syngeneic mice pre-treated with Cyclophosphamide confirmed the existence of suppressor cells in mice. Such cells were sensitive to treatment with anti-theta serum and complement, non-adherent to Sephadex G-10. A pretreatment of the mice with Cyclophosphamide eliminated DTH suppression. Treatment with antimacrophage agents via intraperitoneal abrogated suppression only if being effected before inoculation of alive 10(8) Candida albicans. It is concluded that the spleen suppressor cell is a T-lymphocyte whose precursor is Cyclophosphamide-sensitive, requiring the macrophage to be induced.

  16. Modified Willet's appliance for bilateral loss of multiple deciduous molars: a case report.

    Science.gov (United States)

    Dhindsa, A; Pandit, I K

    2008-09-01

    No other factor plays a more significant role in preventive and interceptive dentistry than the preservation of deciduous dentition till its normal time of exfoliation. Premature loss of a deciduous tooth or a group of teeth might lead to wide range of implications. When the deciduous second molar is lost before the eruption of first permanent molar, intra-alveolar type of space maintainer is indicated. But in cases of bilateral loss of these teeth the conventional design generally poses a variety of problems. Thus, the conventional designs are required to be modified according to the needs of the patient. Therefore, this paper describes an entirely new design of the Willet's appliance in cases of bilateral loss of deciduous molars before the eruption of first permanent molar.

  17. Immune cells from SR/CR mice induce the regression of established tumors in BALB/c and C57BL/6 mice

    DEFF Research Database (Denmark)

    Koch, Janne; Hau, Jann; Pravsgaard Christensen, Jan

    2013-01-01

    of resistance to EL-4 lymphoma cells and J774A.1 monocyte-macrophage cancer cells. The cancer resistance against S180 sarcoma cells could be transferred to susceptible non-resistant BALB/c mice as well as C57BL/6 mice after depletion of both CD4+/CD8+ leukocytes and B-cells from SR/CR mice. In the responding...

  18. Decidual vascularization and the expression of angiogenic growth factors and proteases in first trimester spontaneous abortions

    NARCIS (Netherlands)

    Plaisier, M.; Dennert, I.; Rost, E.; Koolwijk, P.; Hinsbergh, V.W.M. van; Helmerhorst, F.M.

    2009-01-01

    BACKGROUND : Decidual vascular development is important for implantation. This study analysed decidual vascular adaptation to implantation in correlation with miscarriage in decidual secretory endometrium (DSE), decidua parietalis (DP) and decidua basalis (DB) of miscarriage patients and matched

  19. The effect of thymus cells on bone marrow transplants into sublethally irradiated mice

    International Nuclear Information System (INIS)

    Kruszewski, J.A.; Szcylik, C.; Wiktor-Jedrzejczak, W.

    1984-01-01

    Bone marrow cells formed similar numbers of 10-days spleen colonies in sublethally (6 Gy) irradiated C57B1/6 mice as in lethally (7.5 Gy) irradiated mice i.e. approximately 20 per 10 5 cells. Numbers of 10 day endogenous spleen colonies in sublethally irradiated mice (0.2 to 0.6 per spleen) did not differ significantly from the numbers in lethally irradiated mice. Yet, transplants of 10 7 coisogenic marrow cells into sublethally irradiated mice resulted in predominantly endogenous recovery of granulocyte system as evidenced by utilization of ''beige'' marker for transplanted cells. Nevertheless, transplanted cells engrafted into sublethally irradiated mice were present in their hemopoietic tissues throughout the observation period of 2 months never exceeding 5 to 10% of cells. Thymus cells stimulated endogenous and exogenous spleen colony formation as well as endogenous granulopoietic recovery. Additionally, they increased both the frequency and absolute numbers of graft-derived granulocytic cells in hemopoietic organs of transplanted mice. They failed, however, to essentially change the quantitative relationships between endogenous and exogenous hemopoietic recovery. These results may suggest that spleen colony studies are not suitable for prediction of events following bone marrow transplant into sublethally irradiated mice. Simultaneously, they have strengthened the necessity for appropriate conditioning of recipients of marrow transplants. (orig.) [de

  20. Immune selection of tumor cells in TCR β-chain transgenic mice.

    Science.gov (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B

    2014-10-01

    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  1. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  2. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine

    International Nuclear Information System (INIS)

    Suzuki, Katsumasa; Fukui, Hirokazu; Kayahara, Takahisa; Sawada, Mitsutaka; Seno, Hiroshi; Hiai, Hiroshi; Kageyama, Ryoichiro; Okano, Hideyuki; Chiba, Tsutomu

    2005-01-01

    We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine

  3. Supragingival Microbial Profiles of Permanent and Deciduous Teeth in Children with Mixed Dentition.

    Directory of Open Access Journals (Sweden)

    Weihua Shi

    Full Text Available The present study was designed to investigate the microbial profiles of teeth in different locations in mixed-dentition-stage children, and to compare the microbiomes of permanent and deciduous teeth in the same healthy oral cavity.Supragingival plaque samples of teeth in various locations-the first permanent molars, deciduous molars, deciduous canines and incisors and permanent incisors-were collected from 20 healthy mixed-dentition-stage children with 10-12 permanent teeth erupted. Plaque DNA was extracted, and the V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and subjected to sequencing.On average, 18,051 high-quality sequences per sample were generated. Permanent tooth sites tended to host more diverse bacterial communities than those of deciduous tooth sites. A total of 12 phyla, 21 classes, 38 orders, 66 families, 74 genera were detected ultimately. Five predominant phyla (Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria were highly variable among sites. Of 26 genera with a mean relative abundance of >0.1%, 16 showed significant differences in relative abundance among the groups. More than 20% of the total operational taxonomical units were detected only in permanent or deciduous teeth. The variation in the microbial community composition was due mainly to permanent teeth being enriched in Actinomyces and deciduous teeth in Treponema. The core microbiome of supragingival plaque in mixed dentition comprised 19 genera with complex correlationships.Our results suggest differences in microbial diversity and composition between permanent and deciduous teeth sites in mixed dentition. Moreover, the core microbiome of these sites was determined. These findings enhance our understanding of the development of the native oral microbiota with age.

  4. Unconventional Pro-inflammatory CD4+ T Cell Response in B Cell-Deficient Mice Infected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Melisa Gorosito Serrán

    2017-11-01

    Full Text Available Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44− cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able

  5. Characterization of Coronal Pulp Cells and Radicular Pulp Cells in Human Teeth.

    Science.gov (United States)

    Honda, Masaki; Sato, Momoko; Toriumi, Taku

    2017-09-01

    Dental pulp has garnered much attention as an easily accessible postnatal tissue source of high-quality mesenchymal stem cells (MSCs). Since the discovery of dental pulp stem cells (DPSCs) in permanent third molars, stem cells from human exfoliated deciduous teeth and from supernumerary teeth (mesiodentes) have been identified as a population distinct from DPSCs. Dental pulp is divided into 2 parts based on the developing stage: the coronal pulp and the radicular pulp. Root formation begins after the crown part is completed. We performed a sequential study to examine the differences between the characteristics of coronal pulp cells (CPCs) and radicular pulp cells (RPCs) from permanent teeth, mesiodentes, and deciduous teeth. Interestingly, although we have not obtained any data on the difference between CPCs and RPCs in permanent teeth, there are some differences between the characteristics of CPCs and RPCs from mesiodentes and deciduous teeth. The MSC characteristics differed between the RPCs and CPCs, and the reprogramming efficiency for the generation of induced pluripotent stem cells was greater in RPCs than in CPCs from deciduous teeth. The proportion of CD105 + cells in CPCs versus that in RPCs varied in mesiodentes but not in permanent teeth. The results indicate that the proportion of CD105 + cells is an effective means of characterizing dental pulp cells in mesiodentes. Taken together, the stem cells in deciduous and supernumerary teeth share many characteristics, such as a high proliferation rate and an immunophenotype similar to that of DPSCs. Thus, mesiodentes accidentally encountered on radiographs by the general dental practitioner might be useful for stem cell therapy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  7. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  8. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  9. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  10. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    Science.gov (United States)

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (Poxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Dual-reactive B cells are autoreactive and highly enriched in the plasmablast and memory B cell subsets of autoimmune mice

    Science.gov (United States)

    Fournier, Emilie M.; Velez, Maria-Gabriela; Leahy, Katelyn; Swanson, Cristina L.; Rubtsov, Anatoly V.; Torres, Raul M.

    2012-01-01

    Rare dual-reactive B cells expressing two types of Ig light or heavy chains have been shown to participate in immune responses and differentiate into IgG+ cells in healthy mice. These cells are generated more often in autoreactive mice, leading us to hypothesize they might be relevant in autoimmunity. Using mice bearing Igk allotypic markers and a wild-type Ig repertoire, we demonstrate that the generation of dual-κ B cells increases with age and disease progression in autoimmune-prone MRL and MRL/lpr mice. These dual-reactive cells express markers of activation and are more frequently autoreactive than single-reactive B cells. Moreover, dual-κ B cells represent up to half of plasmablasts and memory B cells in autoimmune mice, whereas they remain infrequent in healthy mice. Differentiation of dual-κ B cells into plasmablasts is driven by MRL genes, whereas the maintenance of IgG+ cells is partly dependent on Fas inactivation. Furthermore, dual-κ B cells that differentiate into plasmablasts retain the capacity to secrete autoantibodies. Overall, our study indicates that dual-reactive B cells significantly contribute to the plasmablast and memory B cell populations of autoimmune-prone mice suggesting a role in autoimmunity. PMID:22927551

  12. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen-Ta, E-mail: f10549@ntut.edu.tw [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Wu, Pai-Shuen [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Huang, Te-Yang [Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei, Taiwan (China)

    2015-01-01

    Mimicking the architecture of the extracellular matrix is an effective strategy for tissue engineering. Composite nanofibers similar to natural bone structure can be prepared via an electrospinning technique and used in biomedical applications. Stem cells from human exfoliated deciduous teeth (SHEDs) can differentiate into multiple cell lineages, such as cells that are alternative sources of stem cells for tissue engineering. Strontium has important functions in bone remodeling; for example, this element can simulate bone formation and decrease bone resorption. Incorporating strontium phosphate into nanofibers provides a potential material for bone tissue engineering. This study investigated the potential of poly(ε-caprolactone) (PCL) nanofibers coated or blended with strontium phosphate for the osteogenic differentiation of SHEDs. Cellular morphology and MTT assay revealed that nanofibers effectively support cellular attachment, spreading, and proliferation. Strontium-loaded PCL nanofibers exhibited higher expressions of collagen type I, alkaline phosphatase, biomineralization, and bone-related genes than pure PCL nanofibers during the osteogenic differentiation of SHEDs. This study demonstrated that strontium can be an effective inducer of osteogenesis for SHEDs. Understanding the function of bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering. • Strontium phosphate into nanofibers provides a potential material for bone tissue engineering. • Nanofibers coated or blended with strontium phosphate for the osteogenic differentiation of SHEDs.

  13. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate

    International Nuclear Information System (INIS)

    Su, Wen-Ta; Wu, Pai-Shuen; Huang, Te-Yang

    2015-01-01

    Mimicking the architecture of the extracellular matrix is an effective strategy for tissue engineering. Composite nanofibers similar to natural bone structure can be prepared via an electrospinning technique and used in biomedical applications. Stem cells from human exfoliated deciduous teeth (SHEDs) can differentiate into multiple cell lineages, such as cells that are alternative sources of stem cells for tissue engineering. Strontium has important functions in bone remodeling; for example, this element can simulate bone formation and decrease bone resorption. Incorporating strontium phosphate into nanofibers provides a potential material for bone tissue engineering. This study investigated the potential of poly(ε-caprolactone) (PCL) nanofibers coated or blended with strontium phosphate for the osteogenic differentiation of SHEDs. Cellular morphology and MTT assay revealed that nanofibers effectively support cellular attachment, spreading, and proliferation. Strontium-loaded PCL nanofibers exhibited higher expressions of collagen type I, alkaline phosphatase, biomineralization, and bone-related genes than pure PCL nanofibers during the osteogenic differentiation of SHEDs. This study demonstrated that strontium can be an effective inducer of osteogenesis for SHEDs. Understanding the function of bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering. • Strontium phosphate into nanofibers provides a potential material for bone tissue engineering. • Nanofibers coated or blended with strontium phosphate for the osteogenic differentiation of SHEDs

  14. Activation of specific cellular immunity toward murine leukemia in mice rejecting syngeneic somatic hybrid cells

    International Nuclear Information System (INIS)

    Liang, W.; Cohen, E.P.

    1977-01-01

    ASL-1 x LM(TK) - somatic hybrid cells form both H-2/sup a/ and H-2/sup k/ antigen complexes. After forming a localized tumor in syngeneic (A/J x C 3 H/HeJ)F 1 mice, they are rejected. Such mice are resistant to otherwise invariably lethal injections of ASL-1 cells, surviving for prolonged and, in some instances, indefinite periods. To examine the basis of immunity, the capacity of spleen cells from mice rejecting hybrid cells to stimulate the release of 51 Cr from labeled ASL-1 cells was investigated. Cells from the spleens of mice rejecting ASL-1 x LM(TK) - cells stimulated the release of 51 Cr from labeled ASL-1 cells, but not from Ehrlich ascites or P815 cells. Cells from mice injected with mitomycin-C-treated ASL-1 cells led to the release of 51 Cr from labeled ASL-1 cells as well, but the extent of 51 Cr release was approximately one-third as occurred in the presence of cells from hybrid cell-injected mice. Cells from noninjected mice or from mice injected with LM(TK) - cells failed to lead to the specific release of 51 Cr from ASL-1 cells. The presence of unlabeled ASL-1 cells, but not Ehrlich ascites cells, competitively inhibited the spleen cell-stimulated release of 51 Cr from labeled ASL-1 cells. Sera from A/J mice injected with mitomycin-C-treated ASL-1 cells contained antibodies specific for the tumor-associated antigen of ASL-1 cells

  15. Redox regulation of mast cell histamine release in thioredoxin-1 (TRX) transgenic mice.

    Science.gov (United States)

    Son, Aoi; Nakamura, Hajime; Kondo, Norihiko; Matsuo, Yoshiyuki; Liu, Wenrui; Oka, Shin-ichi; Ishii, Yasuyuki; Yodoi, Junji

    2006-02-01

    Thioredoxin-1 (TRX) is a stress-inducible redox-regulatory protein with antioxidative and anti-inflammatory effects. Here we show that the release of histamine from mast cells elicited by cross-linking of high-affinity receptor for IgE (FcepsilonRI) was significantly suppressed in TRX transgenic (TRX-tg) mice compared to wild type (WT) mice. Intracellular reactive oxygen species (ROS) of mast cells stimulated by IgE and antigen was also reduced in TRX-tg mice compared to WT mice. Whereas there was no difference in the production of cytokines (IL-6 and TNF-alpha) from mast cells in response to 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulation in TRX-tg and WT mice. Immunological status of TRX-tg mice inclined to T helper (Th) 2 dominant in primary immune response, although there was no difference in the population of dendritic cells (DCs) and regulatory T cells. We conclude that the histamine release from mast cells in TRX-tg mice is suppressed by inhibition of ROS generation. As ROS are involved in mast cell activation and facilitate mediator release, TRX may be a key signaling molecule regulating the early events in the IgE signaling in mast cells and the allergic inflammation.

  16. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec......During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations....... Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... to undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components....

  17. [Early deciduous tooth loss--the mature or immature eruption of their permanent successors].

    Science.gov (United States)

    Czecholinski, J A; Kahl, B; Schwarze, C W

    1994-04-01

    On the basis of 147 panoramic radiographs of 49 patients, this study investigated the influence of the premature loss of deciduous teeth on the formation of their permanent successors at the time of their eruption. Furthermore the study investigated the eruptive movement of the successor teeth at the time of eruption. In addition to detecting the accelerated emergence of still immature successor premolars, the study also determined that the extraction ot the deciduous molars before the age of eight years delayed the eruption of the permanent successors given the absence of an infected deciduous tooth with abscess formation. In relation to the eruptive movement of the permanent molars due to the premature loss of the second deciduous molar, the study ascertained a mesial movement of the first permanent molars and an accelerated eruption of the second permanent molars.

  18. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  19. Autoreactive T cells in MRL/Mpr-lpr/lpr mice. Characterization of the lymphokines produced and analysis of antigen-presenting cells required

    International Nuclear Information System (INIS)

    Weston, K.M.; Ju, S.T.; Lu, C.Y.; Sy, M.S.

    1988-01-01

    Lymph node cells from 4-wk-old MRL/Mp-lpr/lpr mice, but not from MRL/Mp-+/+ mice, when cultured in vitro for 5 to 7 days, will spontaneously proliferate and produce IL-2. We examined the expression of several cell surface Ag on lymph node cells from MRL/Mp-lpr/lpr mice before and after in vitro culture. There is an increase in the expression of Thy-1, L3T4, IL-2R, T cell activating protein, T cell receptor, and T3 complex on the surface of cultured cells. Cultured cells produced IL-3, IFN-gamma, and small but detectable amounts of IL-1 in addition to IL-2. Gamma irradiation of APC from young MRL/Mp-lpr/lpr mice or treatment of APC with a mAb (J11D) and C, completely abrogated their stimulatory capacity. These experiments suggest that B cells are the predominant APC responsible in the activation of autoreactive T cells in MRL/Mp-lpr/lpr mice. Lymph node cells from C57BL/6-lpr/lpr or C3H-lpr/lpr mice were unable to spontaneously proliferate or produce IL-2. Lymph node cells from (MRL/Mp-lpr/lpr x C57BL/6-lpr/lpr) F1 mice or (C3H-lpr/lpr x MRL/Mp-lpr/lpr) F1 mice did proliferate and produced IL-2 after in vitro culture. Using T cells from these F1 animals and APC from each parental haplotype, we found that APC from MRL/Mp-lpr/lpr mice induced more proliferation and greater amounts of IL-2, when compared to APC from F1 animals. APC from C57BL6-lpr/lpr mice or C3H-lpr/lpr were unable to induce spontaneous proliferation and IL-2 production. Therefore, B cells from MRL/Mp-lpr/lpr mice appear to possess unique features that enable them to activate autoreactive T cells more effectively than B cells from other mice bearing the lpr/lpr gene

  20. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  1. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  2. Estimates of ion sources in deciduous and coniferous throughfall

    Science.gov (United States)

    Puckett, L.J.

    1990-01-01

    Estimates of external and internal sources of ions in net throughfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The externel source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3- during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42- doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42- in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s-1 and 0.13 cm s-1 for the deciduous and coniferous canopies, respectively, during the dormant season, and 0.30 cm s-1 and 0.43 cm s-1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3- and SO42-, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3- and SO42- accounted for 20-47 and 34-50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50-100 per cent and the method is subject to several assumptions and limitations.

  3. Performance analysis of deciduous morphology for detecting biological siblings.

    Science.gov (United States)

    Paul, Kathleen S; Stojanowski, Christopher M

    2015-08-01

    Family-centered burial practices influence cemetery structure and can represent social group composition in both modern and ancient contexts. In ancient sites dental phenotypic data are often used as proxies for underlying genotypes to identify potential biological relatives. Here, we test the performance of deciduous dental morphological traits for differentiating sibling pairs from unrelated individuals from the same population. We collected 46 deciduous morphological traits for 69 sibling pairs from the Burlington Growth Centre's long term Family Study. Deciduous crown features were recorded following published standards. After variable winnowing, inter-individual Euclidean distances were generated using 20 morphological traits. To determine whether sibling pairs are more phenotypically similar than expected by chance we used bootstrap resampling of distances to generate P values. Multidimensional scaling (MDS) plots were used to evaluate the degree of clustering among sibling pairs. Results indicate an average distance between siblings of 0.252, which is significantly less than 9,999 replicated averages of 69 resampled pseudo-distances generated from: 1) a sample of non-relative pairs (P < 0.001), and 2) a sample of relative and non-relative pairs (P < 0.001). MDS plots indicate moderate to strong clustering among siblings; families occupied 3.83% of the multidimensional space on average (versus 63.10% for the total sample). Deciduous crown morphology performed well in identifying related sibling pairs. However, there was considerable variation in the extent to which different families exhibited similarly low levels of phenotypic divergence. © 2015 Wiley Periodicals, Inc.

  4. Survival of Lymphatic Cells after X-Irradiation in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Vos, O. [Medical Biological Laboratory, National Defense Research Organization TNO, Ruswuk, Z.H. (Netherlands)

    1967-07-15

    Lymphatic tissues are generally classified among the most radiosensitive tissues of the body. The main reason for this is that histologically extensive destruction is found within a few hours after irradiation. We tried to estimate the degree of cellular degeneration by making cell suspensions from lymph nodes and thymus of mice at different times after X-irradiation with 800 R or at 24 h after radiation with different doses. The numbers of normal viable cells we obtained were expressed as percentages of the cells recovered from unirradiated control mice.

  5. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  6. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients.

    Science.gov (United States)

    Fajardo, Alex; Piper, Frida I; Hoch, Günter

    2013-08-01

    The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous-evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous-evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.

  7. Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.

    Directory of Open Access Journals (Sweden)

    Je Seon Song

    Full Text Available There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38 and anterior deciduous teeth (n = 31 extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP, tissue development (IGF2BP, MAB21L2, and PAX3, and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18. The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18, myocontraction (PDE3B, CASQ2, and MYH10, and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21. The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.

  8. Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.

    Science.gov (United States)

    Song, Je Seon; Hwang, Dong Hwan; Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.

  9. Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    Full Text Available Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11-14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR. Other teeth were used for immunohistochemical analysis (IHC. Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1 was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5, and gamma-aminobutyric acid A receptor beta 1 (GABRB1 were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration.

  10. Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.

    Science.gov (United States)

    Kim, Ji-Hee; Jeon, Mijeong; Song, Je-Seon; Lee, Jae-Ho; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; DenBesten, Pamela K; Kim, Seong-Oh

    2014-01-01

    Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11-14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR). Other teeth were used for immunohistochemical analysis (IHC). Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1), leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), and gamma-aminobutyric acid A receptor beta 1 (GABRB1) were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration.

  11. Clearance of Giardia muris infection in mice deficient in natural killer cells.

    OpenAIRE

    Heyworth, M F; Kung, J E; Eriksson, E C

    1986-01-01

    Immunocompetent C57BL/6J mice and beige mice (which are deficient in natural killer cells) were infected with Giardia muris. Both types of mice cleared G. muris infection at similar rates. This observation suggests that clearance of G. muris parasites from the mouse intestine is not mediated by natural killer cells.

  12. Modified Willet′s appliance for bilateral loss of multiple deciduous molars: A case report

    OpenAIRE

    Dhindsa A; Pandit I

    2008-01-01

    No other factor plays a more significant role in preventive and interceptive dentistry than the preservation of deciduous dentition till its normal time of exfoliation. Premature loss of a deciduous tooth or a group of teeth might lead to wide range of implications. When the deciduous second molar is lost before the eruption of first permanent molar, intra-alveolar type of space maintainer is indicated. But in cases of bilateral loss of these teeth the conventional design generally poses a va...

  13. Immunomodulatory Role of Stem Cell from Human Exfoliated Deciduous Teeth on Periodontal Regeneration.

    Science.gov (United States)

    Gao, Xianling; Shen, Zongshan; Guan, Meiliang; Huang, Qiting; Chen, Lingling; Qin, Wei; Ge, Xiaohu; Chen, Haijia; Xiao, Yin; Lin, Zhengmei

    2018-03-20

    Periodontitis is initiated by the infection of periodontal bacteria and subsequent tissue inflammation due to immunoreaction, eventually leading to periodontal apparatus loss. Stem cells from human exfoliated deciduous teeth (SHEDs) have exhibited beneficial characteristics in dental tissue regeneration. However, the immunomodulatory functions of SHEDs have not been elucidated in the context of periodontitis treatment. In this study, we investigated the potential immunomodulatory effects of SHEDs on experimental periodontitis and demonstrated that multi-dose delivery of SHEDs led to periodontal tissue regeneration. SHEDs and monocytes/macrophages were cocultured in transwell systems and SHEDs were found to be capable of promoting monocyte/macrophages conversion to CD206+ M2-like phenotype. Bioluminescence imaging (BLI) was employed to assess the survival and distribution of SHEDs after delivery in periodontal tissues in an induced periodontitis model, and BLI revealed that SHEDs survived for approximately 7 days in periodontal tissues with little tissue diffusion. Then, multi-dose SHEDs delivery was applied to treat periodontitis at 7-day intervals. Results showed that muti-dose SHEDs altered the cytokine expression profile in gingival crevicular fluid, reduced gum bleeding, increased new attachment of periodontal ligament and decreased osteoclast differentiation. Micro-computed tomography analysis showed SHEDs administration significantly increased periodontal regeneration and alveolar bone volume, and decreased distance of cementoenamel junction to alveolar bone crest (CEJ-ABC). Furthermore, an increase in the number of CD206+ M2 macrophages was observed in periodontal tissues following the delivery of SHEDs, which aligned well with the promoted conversion to CD206+ M2-like cells from monocytes/macrophages in vitro after stimulation by SHEDs. This study demonstrated in a rat periodontitis model that local delivery of SHEDs attributed to the induction of M2

  14. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice.

    Science.gov (United States)

    Cha, Hefei; Qin, Wenjuan; Yang, Quan; Xie, Hongyan; Qu, Jiale; Wang, Mei; Chen, Daixiong; Wang, Fang; Dong, Nuo; Chen, Longhua; Huang, Jun

    2017-02-01

    Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P cell number of NKT cells were decreased compared to those of normal mice (P NKT cells was increased after infection (P NKT cells (P cells (P NKT cells significantly increased (P NKT cells (P NKT cell activation during S. japonicum infection.

  15. Modified Willet′s appliance for bilateral loss of multiple deciduous molars: A case report

    Directory of Open Access Journals (Sweden)

    Dhindsa A

    2008-09-01

    Full Text Available No other factor plays a more significant role in preventive and interceptive dentistry than the preservation of deciduous dentition till its normal time of exfoliation. Premature loss of a deciduous tooth or a group of teeth might lead to wide range of implications. When the deciduous second molar is lost before the eruption of first permanent molar, intra-alveolar type of space maintainer is indicated. But in cases of bilateral loss of these teeth the conventional design generally poses a variety of problems. Thus, the conventional designs are required to be modified according to the needs of the patient. Therefore, this paper describes an entirely new design of the Willet′s appliance in cases of bilateral loss of deciduous molars before the eruption of first permanent molar.

  16. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    International Nuclear Information System (INIS)

    Puebla-Osorio, Nahum; Miyahara, Yasuko; Coimbatore, Sreevidya; Limón-Flores, Alberto Y; Kazimi, Nasser; Ullrich, Stephen E; Zhu, Chengming

    2011-01-01

    The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. UVB-irradiated p53 +/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19 + , CD5 + , B220 + , IgM + and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. UV-irradiated p53 +/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The

  17. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    Directory of Open Access Journals (Sweden)

    Ullrich Stephen E

    2011-01-01

    Full Text Available Abstract Background The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. Methods UVB-irradiated p53+/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. Results UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19+, CD5+, B220+, IgM+ and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19 translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. Conclusion UV-irradiated p53+/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal

  18. Deciduous molar hypomineralization and molar incisor hypomineralization

    NARCIS (Netherlands)

    Elfrink, M.E.C.; ten Cate, J.M.; Jaddoe, V.W.V.; Hofman, A.; Moll, H.A.; Veerkamp, J.S.J.

    2012-01-01

    This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. This study focused on the relationship between Deciduous Molar Hypomineralization (DMH) and Molar Incisor Hypomineralization (MIH). First permanent molars develop

  19. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Hyon-Seung Yi

    Full Text Available Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3, a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs and natural killer (NK cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice.Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4 or bile duct ligation (BDL for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA. In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies.Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1, and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs.Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.

  20. The influence of Listeria monocytogenes cells on the primary immunologic response in irradiated mice

    International Nuclear Information System (INIS)

    Borowski, J.; Jokoniuk, P.

    1977-01-01

    The influence of killed Listeria monocytogenes cells on the primary immunologic response in mice irradiated with 300 or 500 R was studied. The immunologic response of the mice to sheep red blood cells used as antigen was assessed at the cellular level (by counting PFC) and humoral level. Injection of killed Listeria monocytogenes cells before irradiation of the mice diminished the immunosuppressive effect of roentgen radiation. Injection of the cells after irradiation accelerated regeneration of immunologic reactivity in the irradiated mice. (author)

  1. Naïve B cells reduce fungal dissemination in Cryptococcus neoformans infected Rag1-/- mice.

    Science.gov (United States)

    Dufaud, Chad; Rivera, Johanna; Rohatgi, Soma; Pirofski, Liise-Anne

    2018-01-01

    IgM and B-1 cell deficient mice exhibit early C. neoformans dissemination from lungs to brain, but a definitive role for B cells in conferring resistance to C. neoformans dissemination has not been established. To address this question, we developed an intranasal (i.n.) C. neoformans infection model in B and T cell deficient Rag1 -/- mice and found they also exhibit earlier fungal dissemination and higher brain CFU than wild-type C57Bl/6 (wild-type) mice. To probe the effect of B cells on fungal dissemination, Rag1 -/- mice were given splenic (intravenously) or peritoneal (intraperitoneally) B cells from wild-type mice and infected i.n. with C. neoformans 7 d later. Mice that received B cells had lung histopathology resembling wild type mice 14 d post-infection, and B-1, not B-2 or T cells in their lungs, and serum and lung IgM and IgG 21 d post-infection. Lung CFU were comparable in wild-type, Rag1 -/-, and Rag1 -/- mice that received B cells 21 d post-infection, but brain CFU were significantly lower in mice that received B cells than Rag1 -/- mice that did not. To determine if natural antibody can promote immunity in our model, we measured alveolar macrophage phagocytosis of C. neoformans in Rag1 -/- mice treated with naive wild-type IgM-sufficient or sIgM -/- IgM-deficient sera before infection. Compared to IgM-deficient sera, IgM-sufficient sera significantly increased phagocytosis. Our data establish B cells are able to reduce early C. neoformans dissemination in mice and suggest natural IgM may be a key mediator of early antifungal immunity in the lungs.

  2. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  3. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice.

    Science.gov (United States)

    Cheng, Yiji; Wang, Xue; Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-04-29

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.

  4. Adoptively transferred dendritic cells restore primary cell-mediated inflammatory competence to acutely malnourished weanling mice.

    Science.gov (United States)

    Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill

    2008-02-01

    Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.

  5. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    International Nuclear Information System (INIS)

    Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.; Longo, D.L.

    1984-01-01

    The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for education of I region-restricted T cells

  6. Does melatonin help save dopaminergic cells in MPTP-treated mice?

    Science.gov (United States)

    Ma, Jeannine; Shaw, Victoria E; Mitrofanis, John

    2009-05-01

    This study explores whether melatonin neuroprotects dopaminergic cells of the substantia nigra pars compacta (SNc) from degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice (well-known animal model of Parkinson disease). BALB/c albino mice were divided into four experimental groups. In each, mice received three series (over a 24-h period) of two intraperitoneal injections (1h apart) in different combinations. The different groups and their combinations of injections were: (1) Saline (saline, saline); (2) Mel (melatonin, saline); (3) MPTP (saline, MPTP); (4) Mel-MPTP (melatonin, MPTP). Six days after the last injection, all mice were perfused transcardially with aldehyde fixative. Brains were processed for routine tyrosine hydroxylase (TH; rate limiting enzyme for dopamine production) immunochemistry and Nissl staining. Our results - using unbiased stereology - showed that there were more TH(+) (50%) and Nissl-stained (30%) cells in the SNc of the Mel-MPTP group compared to the MPTP group, indicating a clear saving or neuroprotection of these cells. In fact, we found no significant difference between the number of TH(+) and Nissl-stained SNc cells in the Mel-MPTP group compared to the controls, namely Saline and Mel groups. This indicated that melatonin pre-treatment potentially neuroprotected all the SNc cells from MPTP toxicity and death.

  7. Cell kinetics of Ehrlich ascites carcinoma transplanted in mice with different degrees of tumor resistance

    International Nuclear Information System (INIS)

    Brandt, K.L.B.

    1974-01-01

    Cell proliferation kinetics of Ehrlich ascites carcinoma grown in two strains of mice with different degrees of resistance to this tumor were examined. In the first portion of the study, growth of Ehrlich ascites carcinoma in nonresistant Swiss (Iowa) and slightly resistant CF1 mice was examined by measuring animal weight gain and host survival time after intraperitoneal injection of tumor cells. Since it appeared that CF1 mice were inherently more resistant than Swiss mice to the Ehrlich carcinoma, the second part of this investigation involved attempts to immunize CF1 mice against the tumor. Subcutaneous injections of Ehrlich cells previously exposed in vitro to 5000 R of 250 kVp x rays were utilized. One immunizing inoculation of lethally irradiated tumor cells afforded protection against an intraperitoneal challenge of 40 thousand Ehrlich cells. By varying the number and timing of immunizing inoculations it was possible to induce different degrees of tumor resistance in these mice. The most effective immunizing procedure utilized multiple inoculations of lethally irradiated tumor cells (LITC), followed by challenges with viable tumor cells (less than 1 million) which were rejected. These mice could then resist challenge inocula of 4 million viable tumor cells. In a few animals the immunizing procedures were ineffective; these animals, when challenged, developed even larger tumors than control mice. Tumor cell proliferation kinetics in these animals as well as in mice that were rejecting the tumor were examined in the third phase of the project. A shortening of the cell cycle was observed in almost all LITC-treated mice, whether tumor growth was eventually inhibited or stimulated. Decreased duration of the DNA-synthesis phase (S) of the tumor cell cycle was also a consistent finding. The role of the immune response in stimulating mitosis as well as in killing foreign cells was discussed. (U.S.)

  8. Transfer of accelerated presbycusis by transplantation of bone marrow cells from senescence-accelerated mice.

    Science.gov (United States)

    Baba, Susumu; Iwai, Hiroshi; Inaba, Muneo; Kawamoto, Kohei; Omae, Mariko; Yamashita, Toshio; Ikehara, Susumu

    2006-11-20

    Until now, there has been no effective therapy for chronic sensorineural hearing impairment. This study investigated the role of bone marrow cells (BMCs) in cochlear dysfunction. BALB/c mice (2 months of age), a non-presbycusis-prone mouse strain, were lethally irradiated and then transplanted with BMCs from SAMP1 mice (2 months of age), a presbycusis-prone mouse strain. Acceleration of age-related hearing loss, early degeneration of spiral ganglion cells (SGCs) and impairment of immune function were observed in the recipient mice as well as in the SAMP1 mice. However, no spiral ganglion cells of donor (SAMP1) origin were detected in the recipient mice. These results indicated that accelerated presbycusis, cochlear pathology, and immune dysfunction of SAMP1 mice can be transferred to BALB/c recipient mice using allogeneic bone marrow transplantation (BMT). However, although the BMCs themselves cannot differentiate into the spiral ganglion cells (SGCs), they indirectly cause the degeneration of the SGCs. Further studies into the relationship between the inner ear cells and BMCs are required.

  9. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice

    International Nuclear Information System (INIS)

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua; Hu, Peng; Zhou, Yuan; Wang, Tian; Lai, Ruo-Sha; Xiao, Zi-An; Xie, Ding-Hua

    2016-01-01

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177–187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN +/− mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN −/− mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN −/− mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. - Highlights: • TPRN −/− mice were generated using TALEN technique. • TPRN −/− mice presented progressive hearing loss. • WT and TPRN −/− mice showed no difference in hair cell numbers. • TPRN −/− mice showed progressive degeneration of hair cell stereocilia.

  10. Expansion of B-1a cells with germline heavy chain sequence in lupus mice

    Directory of Open Access Journals (Sweden)

    Nichol E Holodick

    2016-03-01

    Full Text Available B6.Sle1.Sle2.Sle3 (B6.TC lupus-prone mice carrying the NZB allele of Cdkn2c, encoding for the cyclin-dependent kinase inhibitor P18INK4, accumulate B-1a cells due to a higher rate of proliferative self-renewal. However, it is unclear whether this affects primarily early appearing B-1a cells of fetal origin or later appearing B-1a cells that emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, and it has been shown that their protective nature is associated with a germline-like sequence, which is characterized by few N-nucleotide insertions and a repertoire skewed towards rearrangements predominated during fetal life, VH11 and VH12. To determine the nature of B-1a cells expanded in B6.TC mice, we amplified immunoglobulin genes by PCR from single cells in mice. Sequencing showed a significantly higher proportion of B-1a cell antibodies display fewer N-additions in B6.TC mice than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The absence of N-additions is a surrogate for fetal origin, as TdT expression starts after birth in mice. Therefore, our results suggest that the B-1a cell population is not only expanded in autoimmune B6.TC mice but also qualitatively different with the majority of cells from fetal origin. Accordingly, our sequencing results also demonstrated overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. These results suggest that the development of lupus autoantibodies in these mice is coupled with skewing of the B-1a cell repertoire and possible retention of protective natural antibodies.

  11. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  12. Alkaline phosphatase and OCT-3/4 as useful markers for predicting susceptibility of human deciduous teeth-derived dental pulp cells to reprogramming factor-induced iPS cells.

    Science.gov (United States)

    Inada, Emi; Saitoh, Issei; Kubota, Naoko; Soda, Miki; Matsueda, Kazunari; Murakami, Tomoya; Sawami, Tadashi; Kagoshima, Akiko; Yamasaki, Youichi; Sato, Masahiro

    2017-11-01

    The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors. © 2016 John Wiley & Sons Australia, Ltd.

  13. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth.

    Science.gov (United States)

    Turrioni, Ana Paula S; Basso, Fernanda G; Montoro, Liege A; Almeida, Leopoldina de Fátima D de; Costa, Carlos A de Souza; Hebling, Josimeri

    2014-10-01

    The aim of this study was to evaluate the effects of infrared LED (850nm) irradiation on dentin matrix proteins expression and synthesis by cultured stem cells from human exfoliated deciduous teeth (SHED). Near-exfoliation primary teeth were extracted (n=3), and SHED cultures were characterized by immunofluorescence using STRO-1, CD44, CD146, Nanog and OCT3/4 antibodies, before experimental protocol. The SHEDs were seeded (3×10(4) cells/cm(2)) with DMEM containing 10% FBS. After 24-h incubation, the culture medium was replaced by osteogenic differentiation medium, and the cells were irradiated with LED light at energy densities (EDs) of 0 (control), 2, or 4J/cm(2) (n=8). The irradiated SHEDs were then evaluated for alkaline phosphatase (ALP) activity, total protein (TP) production, and collagen synthesis (SIRCOL™ Assay), as well as ALP, collagen type I (Col I), dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein (DMP-1) gene expression (qPCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Increased ALP activity and collagen synthesis, as well as gene expression of DSPP and ALP, were observed for both EDs compared with non-irradiated cells. The ED of 4J/cm(2) also increased gene expression of COL I and DMP-1. In conclusion, infrared LED irradiation was capable of biostimulating SHEDs by increasing the expression and synthesis of proteins related with mineralized tissue formation, with overall better results for the energy dose of 4J/cm(2). Phototherapy is an additional approach for the clinical application of LED in Restorative Dentistry. Infrared LED irradiation of the cavity's floor could biostimulate subjacent pulp cells, improving local tissue healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Sulfatide-loaded CD1d tetramer to detect typeII NKT cells in mice].

    Science.gov (United States)

    Zhang, Gu-qin; Nie, Han-xiang; Yang, Jiong; Yu, Hong-ying

    2012-07-01

    To create a method of detecting typeII natural killer T (NKT) cells of mice. Biotinylated mouse CD1d monomers were mixed with sulfatide at a molar ratio of 1:3 (protein:lipid) and incubated at room temperature overnight, and then 80 μg of streptavidin-PE was added into 200 μg of the CD1d-sulfatide mixture and incubated at room temperature for 4 h to get sulfatide/CD1d tetramer. Flow cytometry was used to detect the percentage of typeII NKT cells in mononuclear cells (MNCs) of lung and spleen of normal mice, as well as the percentage of typeII NKT cells in spleen MNCs of mice after stimulated with sulfatide. In normal mice, the percentage of typeII NKT cells accounted for (0.875±0.096)% and (1.175±0.263)% in MNCs of spleen and lung; the percentage in spleen MNCs after activated with sulfatide was (2.75±0.603)%, which significantly increased as compared with that in normal mice (PNKT cells in mice.

  15. Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis

    Science.gov (United States)

    Bedrosian, Andrea S.; Nguyen, Andrew H.; Hackman, Michael; Connolly, Michael K.; Malhotra, Ashim; Ibrahim, Junaid; Cieza-Rubio, Napoleon E.; Henning, Justin R.; Barilla, Rocky; Rehman, Adeel; Pachter, H. Leon; Medina-Zea, Marco V.; Cohen, Steven M.; Frey, Alan B.; Acehan, Devrim; Miller, George

    2011-01-01

    Background & Aims Acute pancreatitis increases morbidity and mortality from organ necrosis by mechanisms that are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. Methods Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier analysis. Results Numbers of MHC II+CD11c+DC increased 100-fold in pancreas of mice with acute pancreatitis, to account for nearly 15% of intra-pancreatic leukocytes. Intra-pancreatic DC acquired an immune phenotype in mice with acute pancreatitis; they expressed higher levels of MHC II and CD86 and increased production of interleukin-6, membrane cofactor protein (MCP)-1, and tumor necrosis factor (TNF)-α. However, rather than inducing an organ-destructive inflammatory process, DC were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DC and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DC died from acinar cell death within 4 days. Depletion of DC from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DC did not require infiltrating neutrophils, activation of NF-κB, or signaling by mitogen-activated protein kinase or TNF-α. Conclusions DC are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress. PMID:21801698

  16. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtually...... this phenomenon could reflect participation of B cells and/or Abs in long term virus control, similar experiments were performed with mice that do not have mature B cells because of a disrupted membrane exon of the mu chain gene. In these mice, the cell-mediated immune response was slightly delayed, but transient...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  17. Thyroid epithelial cell hyperplasia in IFN-gamma deficient NOD.H-2h4 mice.

    Science.gov (United States)

    Yu, Shiguang; Sharp, Gordon C; Braley-Mullen, Helen

    2006-01-01

    The role of inflammatory cells in thyroid epithelial cell (thyrocyte) hyperplasia is unknown. Here, we demonstrate that thyrocyte hyperplasia in IFN-gamma-/- NOD.H-2h4 mice has an autoimmune basis. After chronic exposure to increased dietary iodine, 60% of IFN-gamma-/- mice had severe thyrocyte hyperplasia with minimal or moderate lymphocyte infiltration, and thyroid dysfunction with reduced serum T4. All mice produced anti-thyroglobulin autoantibody. Some wild-type NOD.H-2h4 mice had isolated areas of thyrocyte hyperplasia with predominantly lymphocytic infiltration, whereas IL-4-/- and 50% of wild-type NOD.H-2h4 mice developed lymphocytic thyroiditis but no thyrocyte hyperplasia. Both thyroid infiltrating inflammatory cells and environmental factors (iodine) were required to induce thyrocyte hyperplasia. Splenocytes from IFN-gamma-/- mice with thyrocyte hyperplasia, but not splenocytes from naïve IFN-gamma-/- mice, induced hyperplasia in IFN-gamma-/- NOD.H-2h4.SCID mice. These results may provide clues for understanding the mechanisms underlying development of epithelial cell hyperplasia not only in thyroids but also in other tissues and organs.

  18. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Guangming Wu

    2011-07-01

    Full Text Available Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl-1,3-cyclohexanedione. Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.

  19. Towards the generation of B-cell receptor retrogenic mice.

    Directory of Open Access Journals (Sweden)

    Jenny Freitag

    Full Text Available Transgenic expression of B- and T-cell receptors (BCRs and TCRs, respectively has been a standard tool to study lymphocyte development and function in vivo. The generation of transgenic mice is time-consuming and, therefore, a faster method to study the biology of defined lymphocyte receptors in vivo would be highly welcome. Using 2A peptide-linked multicistronic retroviral vectors to transduce stem cells, TCRs can be expressed rapidly in mice of any background. We aimed at adopting this retrogenic technology to the in vivo expression of BCRs. Using a well characterised BCR specific for hen egg lysozyme (HEL, we achieved surface expression of the retrogenically encoded BCR in a Rag-deficient pro B-cell line in vitro. In vivo, retrogenic BCRs were detectable only intracellularly but not on the surface of B cells from wild type or Rag2-deficient mice. This data, together with the fact that no BCR retrogenic mouse model has been published in the 7 years since the method was originally published for TCRs, strongly suggests that achieving BCR-expression in vivo with retrogenic technology is highly challenging if not impossible.

  20. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    Science.gov (United States)

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  2. Effect of Ketoprofen on Immune Cells in Mice

    African Journals Online (AJOL)

    immune system. Ketoprofen is frequently used to treat different medical conditions. It may affect immune system at therapeutically effective doses. Therefore in ... Animals [9]. ELISPOT assay. After 7 days of treatment, mice were sacrificed and their spleens were removed. Spleen cells were separated on magnetic cell ...

  3. Unimpaired dendritic cell functions in MVP/LRP knockout mice.

    Science.gov (United States)

    Mossink, Marieke H; de Groot, Jan; van Zon, Arend; Fränzel-Luiten, Erna; Schoester, Martijn; Scheffer, George L; Sonneveld, Pieter; Scheper, Rik J; Wiemer, Erik A C

    2003-09-01

    Dendritic cells (DCs) act as mobile sentinels of the immune system. By stimulating T lymphocytes, DCs are pivotal for the initiation of both T- and B-cell-mediated immune responses. Recently, ribonucleoprotein particles (vaults) were found to be involved in the development and/or function of human DCs. To further investigate the role of vaults in DCs, we examined the effects of disruption of the major vault protein (MVP/LRP) on the development and antigen-presenting capacity of DCs, using our MVP/LRP knockout mouse model. Mononuclear bone marrow cells were isolated from wild-type and knockout mice and stimulated to differentiate to DCs. Like human DCs, the wild-type murine DC cultures strongly expressed MVP/LRP. Nevertheless, the MVP/LRP-deficient DCs developed normally and showed similar expression levels of several DC surface markers. No differences were observed in in vitro studies on the antigen uptake and presenting capacities of the wild-type and MVP/LRP knockout DCs. Moreover, immunization of the MVP/LRP-deficient mice with several T-cell antigens led to responses similar to those observed in the wild-type mice, indicating that the in vivo DC migration and antigen-presentation capacities are intact. Moreover, no differences were observed in the induction of the T cell-dependent humoral responses and orally induced peripheral T-cell tolerance. In conclusion, vaults are not required for primary DC functions. Their abundance in DCs may, however, still reflect basic roles in myeloid cell proliferation and DC development.

  4. Physiology of B cells in mice with X-linked immunodeficiency (xid). III. Disappearance of xid B cells in double bone marrow chimeras

    International Nuclear Information System (INIS)

    Sprent, J.; Bruce, J.

    1984-01-01

    Evidence is presented that B cells from mice with X-linked immunodeficiency (xid) differentiate at a slower rate than normal B cells. This conclusion stems from studies in which (B6 X CBA/J)F1 mice were heavily irradiated (1,000 rads) and reconstituted with a mixture of T-depleted marrow cells taken from (a) nondefective B6 mice (H-2b) and (b) xid CBA/N or nondefective CBA/Ca mice (both H-2k). With transfer of CBA/Ca plus B6 marrow cells, the irradiated recipients become repopulated with B cells derived from both parental marrow sources; except for an early imbalance (probably reflecting Hh resistance), the degree of chimerism remained relatively stable over a period of more than 6 months. Very different results occurred with transfer of a mixture of xid CBA/N and normal B6 marrow. Within the first 2 months after marrow reconstitution, a low but significant proportion of the B cells in both spleen and lymph nodes were of CBA/N origin. Thereafter the proportion of these cells fell progressively, and by 6-9 months virtually all of the B cells were of B6 origin. This gradual decline in CBA/N-derived cells did not apply to other cell types, i.e., T cells or pluripotential stem cells. Analogous results were obtained with transfer of CBA/N vs. CBA/Ca marrow cells into sublethally irradiated (750 rads) (CBA/N X DBA/2)F1 male vs. female mice. For example, CBA/N-marrow derived B cells differentiated effectively and survived for long periods in F1 male mice (xid----xid) but not in F1 female mice (xid----normal). The finding that xid B cells eventually disappear in the presence of normal B cells strengthens the view that xid B cells are an abnormal population not represented in normal mice

  5. M cells and granular mononuclear cells in Peyer's patch domes of mice depleted of their lymphocytes by total lymphoid irradiation

    International Nuclear Information System (INIS)

    Ermak, T.H.; Steger, H.J.; Strober, S.; Owen, R.L.

    1989-01-01

    The cytoarchitecture of Peyer's patches that were depleted of their lymphocytes by total lymphoid irradiation (TLI) was examined with particular attention to the effects on M cells in the follicle epithelium and on mononuclear cells in follicle domes underlying the epithelium. Five-month-old, specific pathogen-free Balb/c mice were irradiated with 200-250 rad/day, five times a week to a total dose of 3400-4250, and their Peyer's patches were either fixed for electron microscopy or frozen for immunohistochemistry 1-4 days after completion of irradiation. Control mice were examined at the same time intervals. Follicle domes of TLI mice had approximately one fourth the epithelial surface area of domes of control mice. Within the epithelium, lymphoid cells were virtually depleted after TLI, and yet the epithelium contained M cells. In control mice, most M cells were accompanied by lymphoid cells in invaginations of the apical-lateral cell membrane. In TLI mice, most M cells did not have such apical-lateral invaginations and were columnar shaped. Other than lacking lymphocytes, these cells appeared to be mature M cells. Some M cells did have lymphoid cells or granular mononuclear cells below their basal membranes, adjacent to the basal lamina. Below the epithelium, the proportion of granular mononuclear cells was greatly increased following TLI. The retention of M cells and the increase in proportion of granular mononuclear cells in follicle domes are consistent with selective depletion of lymphocytes following TLI. Persistence of M cells without lymphocytic invaginations after TLI suggests that M cells can differentiate in the absence of, or at least in the presence of very few, lymphocytes, and that invagination by lymphocytes is not necessary to maintain mature M cell morphology

  6. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  7. Apoptosis of bone marrow leukemia cells in mice after low dose radiation at different time

    International Nuclear Information System (INIS)

    Li Guangyu; Yu Mingming; Li Xianjun; Liu Zhixiang

    2007-01-01

    Objective: To investigate the apoptosis of bone marrow leukemia cell in mice after low dose radiation (LDR) at different time and the experimental basis for LDR auxiliary therapy on leukemia. Methods: WEHI-3 cells were injected into BALB/c mice through tail veins to make an experimental mice model of myelornonocytic leukemia. 60 leukemia mice models were divided half-and half. 30 mice models in experimental group were irradiated with LDR of 75mGy at the same time while the others 30 in the control group were not. 6 mice models with LDR and 6 mice models without LDR would be killed at the time the 1st day, the 2nd day, the 3rd day, the 5th day- and the l0th day after LDR in order to extract bone marrow samples. The apoptosis percentage of leukemia cells in bone marrow was examined. Results: The apoptosis percentage of leukemia cells in experimental group was increasing after LDR and went to top on the 2nd day and the 3rd day. The apoptosis percentage of leukemia cells was remarkably different between experimental and control group, all P<0.05. Conclusion: LDR could significantly increase the apoptosis percentage of bone marrow leukemia cells in mice. Its mechanism is remarkably different in kill and wound of big dose radiation to tumour cells. It is probably related to of the increase immune exciting response as to promote some cytokine secretion, in leukemia mice. (authors)

  8. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  9. Characterization and clonality of prelymphoma cells of B10 mice treated with fractionated X-irradiation (FX)

    International Nuclear Information System (INIS)

    Muto, M.; Kubo, E.; Sado, T.; Shimizu, T.; Yamagishi, H.

    1992-01-01

    With a combined use of cell separation by cell sorter and intrathymic injection assay, it was shown that prelymphoma cells existed in the subpopulation of thymocytes expressing TL-2 antigen which is not expressed on normal thymocytes of B10. Thy 1.2 or B10. Thy 1.1 mice. We then addressed a question whether all TL-2 + cells undergo neoplastic initiation or pre-neoplastic cells develop infrequently from TL-2 + cells. To investigate this problem and to examine the clonality of prelymphoma cells, thymocytes from individual B10. Thy 1.1 mice at various times after FX were stained with anti TL-2 mAb and the content of TL-2 + cells was evaluated. A graded amount of TL-2 + thymocytes from individual mice was injected into the thymuses of B10. Thy 1.2 mice. Although various numbers of TL-2 + cells appeared in the thymus of individual mice 14 - 28 days after FX, the donor type T cell lymphomas developed when 10 2 - 10 5 of TL-2 + cells from 7 individuals out of 20 mice were injected into the recipient mice. On the other hand, injection of TL-2 + cells from other mice (13 out of 20) did not develop donor type T cell lymphoma in spite of TL-2 + cells appearing in the thymus. These results indicate that all TL-2 + cells did not always undergo neoplastic initiation, and prelymphoma cells might develop infrequently from TL-2 + cells. To evaluate the clonality of prelymphoma cells, high molecular weight DNAs were isolated from the donor-derived T cell lymphomas and the rearrangement of T cell receptors examined by Southern blot analysis. The nucleotide sequences of V-J junctions were also determined by polymerase chain reaction techniques. The results indicated that after irradiation neoplastic initiation might occur oligoclonally in some of the TL-2 + cells. (author)

  10. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    Science.gov (United States)

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  11. Production of knock-in mice in a single generation from embryonic stem cells.

    Science.gov (United States)

    Ukai, Hideki; Kiyonari, Hiroshi; Ueda, Hiroki R

    2017-12-01

    The system-level identification and analysis of molecular networks in mammals can be accelerated by 'next-generation' genetics, defined as genetics that does not require crossing of multiple generations of animals in order to achieve the desired genetic makeup. We have established a highly efficient procedure for producing knock-in (KI) mice within a single generation, by optimizing the genome-editing protocol for KI embryonic stem (ES) cells and the protocol for the generation of fully ES-cell-derived mice (ES mice). Using this protocol, the production of chimeric mice is eliminated, and, therefore, there is no requirement for the crossing of chimeric mice to produce mice that carry the KI gene in all cells of the body. Our procedure thus shortens the time required to produce KI ES mice from about a year to ∼3 months. Various kinds of KI ES mice can be produced with a minimized amount of work, facilitating the elucidation of organism-level phenomena using a systems biology approach. In this report, we describe the basic technologies and protocols for this procedure, and discuss the current challenges for next-generation mammalian genetics in organism-level systems biology studies.

  12. Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    2017-11-01

    Full Text Available Abstract Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs from radiation injury is an important goal in the development of medical countermeasure agents (MCM. We recently identified thioredoxin (TXN as a novel molecule that has marked protective and proliferative effects on HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total body radiation (TBI and in enhancing hematopoietic reconstitution following a lethal dose of irradiation. Methods We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count, including white blood cells (WBCs, red blood cells (RBCs, hemoglobin, and platelets. Colony forming unit (CFU assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine the bone marrow cellularity. Senescence-associated β-galactosidase assay was used for cell senescence. Western blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence staining was used to measure the expression of γ-H2AX foci for DNA damage. Results We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population as measured by c-Kit+Sca-1+Lin– (KSL cells, SLAM + KSL cells and CFUs. TXN treatment reduced cell senescence and radiation

  13. Inflammation induced by mast cell deficiency rather than the loss of interstitial cells of Cajal causes smooth muscle dysfunction in W/Wv mice

    Science.gov (United States)

    Winston, John H.; Chen, Jinghong; Shi, Xuan-Zheng; Sarna, Sushil K.

    2014-01-01

    The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice. PMID:24550836

  14. Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice

    International Nuclear Information System (INIS)

    Muto, H; Sakata-Yanagimoto, M; Nagae, G; Shiozawa, Y; Miyake, Y; Yoshida, K; Enami, T; Kamada, Y; Kato, T; Uchida, K; Nanmoku, T; Obara, N; Suzukawa, K; Sanada, M; Nakamura, N; Aburatani, H; Ogawa, S; Chiba, S

    2014-01-01

    TET2 (Ten Eleven Translocation 2) is a dioxygenase that converts methylcytosine (mC) to hydroxymethylcytosine (hmC). TET2 loss-of-function mutations are highly frequent in subtypes of T-cell lymphoma that harbor follicular helper T (Tfh)-cell-like features, such as angioimmunoblastic T-cell lymphoma (30–83%) or peripheral T-cell lymphoma, not otherwise specified (10–49%), as well as myeloid malignancies. Here, we show that middle-aged Tet2 knockdown (Tet2 gt/gt ) mice exhibit Tfh-like cell overproduction in the spleen compared with control mice. The Tet2 knockdown mice eventually develop T-cell lymphoma with Tfh-like features after a long latency (median 67 weeks). Transcriptome analysis revealed that these lymphoma cells had Tfh-like gene expression patterns when compared with splenic CD4-positive cells of wild-type mice. The lymphoma cells showed lower hmC densities around the transcription start site (TSS) and higher mC densities at the regions of the TSS, gene body and CpG islands. These epigenetic changes, seen in Tet2 insufficiency-triggered lymphoma, possibly contributed to predated outgrowth of Tfh-like cells and subsequent lymphomagenesis. The mouse model described here suggests that TET2 mutations play a major role in the development of T-cell lymphoma with Tfh-like features in humans

  15. Proliferation and apoptosis of lamina propria CD4+ T cells from scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Reimann, J; Claesson, Mogens Helweg

    1998-01-01

    Scid mice transplanted with low numbers of syngeneic CD4+ T cells, develop a chronic and lethal inflammatory bowel disease (IBD) within 4-6 months. We have used in vivo 5-bromo2-deoxy-uridine (BrdU) labeling to assess the proliferation of lamina propria-derived CD4+ T cells in diseased scid mice....... The hourly rate of renewal of colonic lamina propria CD4+ T cells in diseased mice was 7% compared with 1.5% in normal BALB/c control mice. Transplantation of scid mice with in vitro activated CD4+ T cells accelerated the disease onset and development in a cell dose-dependent fashion when compared with non......-activated CD4+ T cells. In pulse-chase experiments it was shown that BrdU-labeled cells disappeared rapidly from the lamina propria of diseased mice. DNA analysis revealed that this was due to the presence of nearly four times as many apoptotic CD4+ T cells in diseased than in control mice. Further analyses...

  16. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    Science.gov (United States)

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-03

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.

  17. Reconstructing the life-time lead exposure in children using dentine in deciduous teeth

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Thomas J., E-mail: shepherdtj@aol.com [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Dirks, Wendy [Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW (United Kingdom); Manmee, Charuwan; Hodgson, Susan [Institute of Health and Society, Newcastle University, Newcastle upon Tyne NE2 4AX (United Kingdom); Banks, David A. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Averley, Paul [Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW (United Kingdom); Queensway Dental Practice, 170 Queensway, Billingham, Teesside TS23 2NT (United Kingdom); Pless-Mulloli, Tanja [Institute of Health and Society, Newcastle University, Newcastle upon Tyne NE2 4AX (United Kingdom); Newcastle Institute for Research on Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2012-05-15

    Data are presented to demonstrate that the circumpulpal dentine of deciduous teeth can be used to reconstruct a detailed record of childhood exposure to lead. By combining high spatial resolution laser ablation ICP-MS with dental histology, information was acquired on the concentration of lead in dentine from in utero to several years after birth, using a true time template of dentine growth. Time corrected lead analyses for pairs of deciduous molars confirmed that between-tooth variation for the same child was negligible and that meaningful exposure histories can be obtained from a single, multi-point ablation transect on longitudinal sections of individual teeth. For a laser beam of 100 {mu}m diameter, the lead signal for each ablation point represented a time span of 42 days. Simultaneous analyses for Sr, Zn and Mg suggest that the incorporation of Pb into dentine (carbonated apatite) is most likely controlled by nanocrystal growth mechanisms. The study also highlights the importance of discriminating between primary and secondary dentine and the dangers of translating lead analyses into blood lead estimates without determining the age or duration of dentine sampled. Further work is in progress to validate deciduous teeth as blood lead biomarkers. - Highlights: Black-Right-Pointing-Pointer Reconstruction of childhood exposure history to Pb using deciduous tooth dentine. Black-Right-Pointing-Pointer Pb analyses acquired for dentine growth increments of 42 days. Black-Right-Pointing-Pointer Highly correlated Pb concentration profiles for pairs of deciduous molars. Black-Right-Pointing-Pointer Data for Sr, Zn and Mg provide a model for the incorporation of Pb into dentine.

  18. Reconstructing the life-time lead exposure in children using dentine in deciduous teeth

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Dirks, Wendy; Manmee, Charuwan; Hodgson, Susan; Banks, David A.; Averley, Paul; Pless-Mulloli, Tanja

    2012-01-01

    Data are presented to demonstrate that the circumpulpal dentine of deciduous teeth can be used to reconstruct a detailed record of childhood exposure to lead. By combining high spatial resolution laser ablation ICP-MS with dental histology, information was acquired on the concentration of lead in dentine from in utero to several years after birth, using a true time template of dentine growth. Time corrected lead analyses for pairs of deciduous molars confirmed that between-tooth variation for the same child was negligible and that meaningful exposure histories can be obtained from a single, multi-point ablation transect on longitudinal sections of individual teeth. For a laser beam of 100 μm diameter, the lead signal for each ablation point represented a time span of 42 days. Simultaneous analyses for Sr, Zn and Mg suggest that the incorporation of Pb into dentine (carbonated apatite) is most likely controlled by nanocrystal growth mechanisms. The study also highlights the importance of discriminating between primary and secondary dentine and the dangers of translating lead analyses into blood lead estimates without determining the age or duration of dentine sampled. Further work is in progress to validate deciduous teeth as blood lead biomarkers. - Highlights: ► Reconstruction of childhood exposure history to Pb using deciduous tooth dentine. ► Pb analyses acquired for dentine growth increments of 42 days. ► Highly correlated Pb concentration profiles for pairs of deciduous molars. ► Data for Sr, Zn and Mg provide a model for the incorporation of Pb into dentine.

  19. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  20. Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.

    Science.gov (United States)

    Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C

    2015-05-15

    Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. T cells exacerbate Lyme borreliosis in TLR2-deficient mice

    Directory of Open Access Journals (Sweden)

    Carrie E. Lasky

    2016-11-01

    Full Text Available Infection of humans with the spirochete, Borrelia burgdorferi, causes Lyme borreliosis and can lead to clinical manifestations such as, arthritis, carditis and neurological conditions. Experimental infection of mice recapitulates many of these symptoms and serves as a model system for the investigation of disease pathogenesis and immunity. Innate immunity is known to drive the development of Lyme arthritis and carditis, but the mechanisms driving this response remain unclear. Innate immune cells recognize B. burgdorferi surface lipoproteins primarily via Toll-like receptor (TLR2; however, previous work has demonstrated TLR2-/- mice had exacerbated disease and increased bacterial burden. We demonstrate increased CD4 and CD8 T cell infiltrates in B. burgdorferi-infected joints and hearts of C3H TLR2-/- mice. In vivo depletion of either CD4 or CD8 T cells reduced Borrelia-induced joint swelling and lowered tissue spirochete burden, while depletion of CD8 T cells alone reduced disease severity scores. Exacerbation of Lyme arthritis correlated with increased production of CXCL9 by synoviocytes and this was reduced with CD8 T cell depletion. These results demonstrate T cells can exacerbate Lyme disease pathogenesis and prolong disease resolution possibly through dysregulation of inflammatory responses and inhibition of bacterial clearance.

  2. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  3. Antigen-primed helper T cell function in CBA/N mice is radiosensitive

    International Nuclear Information System (INIS)

    Phillips, N.E.; Campbell, P.A.

    1981-01-01

    CBA/N mice have an X-linked immunodeficiency that includes a deficient humoral response to sheep red blood cells (SRBC). In order to study the cellular mechanisms of this deficiency we have examined helper T cell function to SRBC in an adoptive transfer system by using 2 different sources of helper T cells. When thymocytes were used as the source of helper T cell precursors in an adoptive transfer system, CBA/N thymocytes were as effective as CBA/Ca thymocytes in inducing CBA/Ca bone marrow cells to develop into both direct and indirect anti-SRBC plaque-forming cells (PFC). However, when SRBC-primed, irradiated recipient mice were used as the source of helper T cells, primed and irradiated CBA/N recipiets developed significantly fewer direct and indirect anti-SRBC PFC than similarly treated CBA/CA recipients when reconstituted with CBA/Ca bone marrow cells and challenged with SRBC. We conclude that antigen-primed helper T cell function in CBA/N mice is radiosensitive. Possible reasons for this are evaluated and discussed

  4. Comprehensive evaluation of leukocyte lineage derived from human hematopoietic cells in humanized mice.

    Science.gov (United States)

    Takahashi, Masayuki; Tsujimura, Noriyuki; Otsuka, Kensuke; Yoshino, Tomoko; Mori, Tetsushi; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-04-01

    Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Modified distal shoe appliance for premature loss of multiple deciduous molars: a case report.

    Science.gov (United States)

    Bhat, Prasanna Kumar; K, Navin H; Idris, Mohammed; Christopher, Pradeep; Rai, Niharika

    2014-08-01

    Preservation of the primary dentition until the normal time of exfoliation is one of the most important factor involved in preventive and interceptive dentistry. The premature loss of second primary molar before the eruption of permanent first molar can create a significant arch space/tooth size discrepancy. Distal shoe space maintainer is a valuable part of the Paediatric Dentist's armamentarium in those cases where the second primary molar is prematurely lost and it helps to guide the first permanent molar into place. Conventional design poses various limitations in cases of premature loss of multiple deciduous molars. Thus, it is required to modify the conventional designs according to the needs of the patient. This case report describes an innovative modification of distal shoe appliance in cases of premature loss of multiple deciduous molars. In the present case, modification of distal shoe space maintainer was advocated because of inadequate abutments caused due to multiple loss of deciduous molars. Bilateral design of distal shoe was planned for unilateral loss of deciduous molars.

  6. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour.

    Directory of Open Access Journals (Sweden)

    Sarah A Hamilton

    Full Text Available Current therapies for preterm labour (PTL focus on arresting myometrial contractions but are largely ineffective, thus alternative therapeutic targets need to be identified. Leukocytes infiltrate the uterus around the time of labour, and are in particularly abundant in decidua (maternal-fetal interface. Moreover, decidual inflammation precedes labour in rat pregnancies and thus may contribute to initiation of labour. We hypothesized that chemokines mediate decidual leukocyte trafficking during preterm labour (PTL and term labour (TL, thus representing potential targets for preventing PTL. Women were recruited into 4 groups: TL, term not in labour (TNL, idiopathic PTL and PTL with infection (PTLI. Choriodecidual RNA was subjected to a pathway-specific PCR array for chemokines. Differential expression of 12 candidate chemokines was validated by real time RT-PCR and Bioplex assay, with immunohistochemistry to confirm cellular origin. 25 chemokines were upregulated in choriodecidua from TL compared to TNL. A similar pattern was detected in PTL, however a distinct profile was observed in PTLI consistent with differences in leukocyte infiltration. Upregulation of CCL2, CCL4, CCL5, CXCL8 and CXCL10 mRNA and protein was confirmed in TL, with CCL8 upregulated in PTL. Significant correlations were detected between these chemokines and decidual leukocyte abundance previously assessed by immunohistochemical and image analysis. Chemokines were primarily expressed by decidual stromal cells. In addition, CXCL8 and CCL5 were significantly elevated in maternal plasma during labour, suggesting chemokines contribute to peripheral inflammatory events during labour. Differences in chemokine expression patterns between TL and idiopathic PTL may be attributable to suppression of chemokine expression by betamethasone administered to women in PTL; this was supported by in vitro evidence of chemokine downregulation by clinically relevant concentrations of the steroid

  7. Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2007-03-01

    Full Text Available Abstract Background Several neurodegenerative diseases are influenced by complex genetics that affect an individual's susceptibility, disease severity, and rate of progression. One such disease is glaucoma, a chronic neurodegenerative condition of the eye that targets and stimulates apoptosis of CNS neurons called retinal ganglion cells. Since ganglion cell death is intrinsic, it is reasonable that the genes that control this process may contribute to the complex genetics that affect ganglion cell susceptibility to disease. To determine if genetic background influences susceptibility to optic nerve damage, leading to ganglion cell death, we performed optic nerve crush on 15 different inbred lines of mice and measured ganglion cell loss. Resistant and susceptible strains were used in a reciprocal breeding strategy to examine the inheritance pattern of the resistance phenotype. Because earlier studies had implicated Bax as a susceptibility allele for ganglion cell death in the chronic neurodegenerative disease glaucoma, we conducted allelic segregation analysis and mRNA quantification to assess this gene as a candidate for the cell death phenotype. Results Inbred lines showed varying levels of susceptibility to optic nerve crush. DBA/2J mice were most resistant and BALB/cByJ mice were most susceptible. F1 mice from these lines inherited the DBA/2J phenotype, while N2 backcross mice exhibited the BALB/cByJ phenotype. F2 mice exhibited an intermediate phenotype. A Wright Formula calculation suggested as few as 2 dominant loci were linked to the resistance phenotype, which was corroborated by a Punnett Square analysis of the distribution of the mean phenotype in each cross. The levels of latent Bax mRNA were the same in both lines, and Bax alleles did not segregate with phenotype in N2 and F2 mice. Conclusion Inbred mice show different levels of resistance to optic nerve crush. The resistance phenotype is heritable in a dominant fashion involving

  8. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice

    International Nuclear Information System (INIS)

    Bix, M.; Nanshih Liao; Raulet, D.; Zijlstra, M.; Loring, J.; Jaenisch, R.

    1991-01-01

    Irradiated MHC-heterozygous mice often reject bone marrow cells transplanted from one of the homozygous parental strains, a phenomenon ('hybrid resistance') that appears to violate the laws of transplantation. Rejection of parental and allogeneic marrow cells also differs from conventional T cell-mediated rejection mechanisms as it is effected by NK1.1 + cells. To account for the unusual specificity of bone marrow rejection, it has been proposed that NK1.1 + cells destroy marrow cells that fail to express the full complement of self MHC class I (MHC-I) molecules. We show here that NK1.1 + cells in normal mice reject haemopoietic transplants from mice that are deficient for normal cell-surface MHC-I expression because of a targeted mutation in the β 2 -microglobulin gene. These findings demonstrate that deficient expression of MHC-I molecules renders marrow cells susceptible to rejection. (author)

  9. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    International Nuclear Information System (INIS)

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  10. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  11. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takeo Ohsugi

    Full Text Available BACKGROUND: Human T-cell leukemia virus type I (HTLV-1 can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. PRINCIPAL FINDINGS: By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4(+ T cells, whereas the proportion of splenic CD8(+ T cells was increased. Regulatory T cells (CD4(+CD25(+Foxp3(+ were significantly decreased and CD8(+ T cells that expressed the chemokine receptor CCR4 (CD8(+CCR4(+ were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. CONCLUSIONS: Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble

  12. Mechanism of suppressive effect of low dose radiation on cancer cell dissemination in mice

    International Nuclear Information System (INIS)

    Fu Haiqing; Li Xiuyi; Chen Yubing; Zhang Yingchun; Liu Shuzheng

    1997-01-01

    Influence of low dose radiation on immunity in C57 BL/6 mice injected with cancer cells was studied. In mice given 75 mGy WBI 24 h before injection of Lewis lung carcinoma cells or B 16 melanoma cells, the percentage of S-phase thymocytes and CD 3+ thymocytes, the splenic NK cell activity, IL-2 secretion and γIFN secretion were found to be potentiated 2∼8 day after irradiation in comparison with the sham-irradiation mice. The results suggest that low dose radiation might suppress cancer cell dissemination via the enhancement of immune reactivity

  13. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Science.gov (United States)

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  14. Restoration of Lepr in β cells of Lepr null mice does not prevent hyperinsulinemia and hyperglycemia

    Directory of Open Access Journals (Sweden)

    Anna M. D'souza

    2017-06-01

    Full Text Available Objective: The adipose-derived hormone leptin plays an important role in regulating body weight and glucose homeostasis. Leptin receptors are expressed in the central nervous system as well as peripheral tissues involved in regulating glucose homeostasis, including insulin-producing β cells of the pancreas. Previous studies assessing the role of leptin receptors in β cells used Cre-loxP to disrupt the leptin receptor gene (Lepr in β cells, but variable results were obtained. Furthermore, recombination of Lepr was observed in the hypothalamus or exocrine pancreas, in addition to the β cells, and Lepr in non-β cells may have compensated for the loss of Lepr in β cells, thus making it difficult to assess the direct effects of Lepr in β cells. To determine the significance of Lepr exclusively in β cells, we chose to selectively restore Lepr in β cells of Lepr null mice (LeprloxTB/loxTB. Materials and methods: We used a mouse model in which endogenous expression of Lepr was disrupted by a loxP-flanked transcription blocker (LeprloxTB/loxTB, but was restored by Cre recombinase knocked into the Ins1 gene, which is specifically expressed in β cells (Ins1Cre. We bred LeprloxTB/loxTB and Ins1Cre mice to generate LeprloxTB/loxTB and LeprloxTB/loxTB Ins1Cre mice, as well as Leprwt/wt and Leprwt/wt Ins1Cre littermate mice. Male and female mice were weighed weekly between 6 and 11 weeks of age and fasting blood glucose was measured during this time. Oral glucose was administered to mice aged 7–12 weeks to assess glucose tolerance and insulin secretion. Relative β and α cell area and islet size were also assessed by immunostaining and analysis of pancreas sections of 12–14 week old mice. Results: Male and female LeprloxTB/loxTB mice, lacking whole-body expression of Lepr, had a phenotype similar to db/db mice characterized by obesity, hyperinsulinemia, glucose intolerance, and impaired glucose stimulated insulin secretion. Despite restoring

  15. The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2015-07-01

    Full Text Available Prior efforts to identify regulators of hematopoietic stem cell physiology have relied mainly on candidate gene approaches with genetically modified mice. Here we used a genome-wide association study (GWAS strategy with the hybrid mouse diversity panel to identify the genetic determinants of hematopoietic stem/progenitor cell (HSPC frequency. Among 108 strains, we observed ∼120- to 300-fold variation in three HSPC populations. A GWAS analysis identified several loci that were significantly associated with HSPC frequency, including a locus on chromosome 5 harboring the homeodomain-only protein gene (Hopx. Hopx previously had been implicated in cardiac development but was not known to influence HSPC biology. Analysis of the HSPC pool in Hopx−/− mice demonstrated significantly reduced cell frequencies and impaired engraftment in competitive repopulation assays, thus providing functional validation of this positional candidate gene. These results demonstrate the power of GWAS in mice to identify genetic determinants of the hematopoietic system.

  16. Intratracheal transplantation of endothelial progenitor cells attenuates smoking-induced COPD in mice

    Directory of Open Access Journals (Sweden)

    Shi Z

    2017-03-01

    Full Text Available Zhihui Shi,1 Yan Chen,1 Jun Cao,2 Huihui Zeng,1 Yue Yang,1 Ping Chen,1 Hong Luo,1 Hong Peng,1 Shan Cai,1 Chaxiang Guan3 1Department of Internal Medicine, Division of Respiratory Disease, The Second Xiangya Hospital, Central-South University, 2Department of Internal Medicine, Division of Respiratory Disease, The People’s Hospital of Hunan Province, 3Department of Physiology, Xiangya Medical School, Central-South University, Changsha, Hunan, People’s Republic of China Background: Endothelial progenitor cells (EPCs might play a protective role in COPD. The aim of this study was to investigate whether intratracheal allogeneic transplantation of bone-marrow-derived EPCs would attenuate the development of smoking-induced COPD in mice.Methods: Isolated mononuclear cells from the bone marrow of C57BL/6J mice were cultured in endothelial cell growth medium-2 for 10 days, yielding EPCs. A murine model of COPD was established by passive 90-day exposure of cigarette smoke. On day 30, EPCs or phosphate-buffered saline alone was administered into the trachea. On day 90, EPCs or 30 µL phosphate-buffered saline alone was administered into the trachea, and on day 120, inflammatory cells, antioxidant activity, apoptosis, matrix metalloproteinase (MMP-2, and MMP-9 were measured.Results: After EPC treatment, the lung function of the mice had improved compared with the untreated mice. Mean linear intercept and destructive index were reduced in the EPCs-treated group compared with the untreated group. In addition, the EPCs-treated mice exhibited less antioxidant activity in bronchoalveolar lavage fluid compared with the untreated mice. Moreover, decreased activities of MMP-2, MMP-9, and TUNEL-positive cells in lung tissues were detected in EPCs-treated mice.Conclusion: Intratracheal transplantation of EPCs attenuated the development of pulmonary emphysema and lung function disorder probably by alleviating inflammatory infiltration, decelerating apoptosis

  17. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  18. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  19. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  20. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    Science.gov (United States)

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  1. Head direction cell activity in mice: robust directional signal depends on intact otolith organs

    Science.gov (United States)

    Yoder, Ryan M.; Taube, Jeffrey S.

    2009-01-01

    The head direction (HD) cell signal is a representation of an animal's perceived directional heading with respect to its environment. This signal appears to originate in the vestibular system, which includes the semicircular canals and otolith organs. Preliminary studies indicate the semicircular canals provide a necessary component of the HD signal, but involvement of otolithic information in the HD signal has not been tested. The present study was designed to determine the otolithic contribution to the HD signal, as well as to compare HD cell activity of mice to that of rats. HD cell activity in the anterodorsal thalamus was assessed in wild-type C57BL/6J and otoconia-deficient tilted mice during locomotion within a cylinder containing a prominent visual landmark. HD cell firing properties in C57BL/6J mice were generally similar to those in rats. However, in C57BL/6J mice, landmark rotation failed to demonstrate dominant control of the HD signal in 36% of the sessions. In darkness, directional firing became unstable during 42% of the sessions, but landmark control was not associated with HD signal stability in darkness. HD cells were identified in tilted mice, but directional firing properties were not as robust as those of C57BL/6J mice. Most HD cells in tilted mice were controlled by landmark rotation, but showed substantial signal degradation across trials. These results support current models that suggest otolithic information is involved in the perception of directional heading. Furthermore, compared to rats, the HD signal in mice appears to be less reliably anchored to prominent environmental cues. PMID:19176815

  2. Deep Surveying of the Transcriptional and Alternative Splicing Signatures for Decidual CD8+ T Cells at the First Trimester of Human Healthy Pregnancy

    Directory of Open Access Journals (Sweden)

    Weihong Zeng

    2018-05-01

    Full Text Available Decidual CD8+ (dCD8 T cells have been proposed to play important roles in immune protection against the invading pathogens and in tolerance toward the growing semi-allogeneic fetus during early pregnancy. However, their phenotypic and functional characteristics remain poorly defined. Here, we performed the first analysis of the transcriptional and alternative splicing (AS signatures for human first-trimester dCD8 T cells using high-throughput mRNA sequencing. Our data revealed that dCD8 T cells have distinct transcriptional and AS landscapes when compared with their autologous peripheral blood CD8+ (pCD8 T counterparts. Furthermore, human dCD8 T cells were observed to contain CD8-Treg and effector-memory T-cell subsets, and display enhanced functionality in terms of degranulation and cytokine production on a per-cell basis. Additionally, we have identified the novel splice junctions that use a high ratio of the non-canonical splicing motif GC-AG and found that AS is not a major contributor to the gene expression-level changes between paired pCD8 and dCD8 T cells. Together, our findings not only provide a comprehensive framework of the transcriptional and AS landscapes but also reveal the functional feature of human dCD8 T cells, which are of great importance in understanding the biology of these cells and the physiology of human healthy pregnancy.

  3. Application of micro-PIXE analysis to investigate trace elements in deciduous teeth enamel

    International Nuclear Information System (INIS)

    Igari, K.; Takahashi, A.; Ando, H.

    2010-01-01

    The early life environment has widespread consequences for later health and disease. To prevent the disease in later life, the assessment of fetal environment is very important. In Japan, birthweight has fallen rapidly during recent two decades. The reduction of birthweight represents reduced fetal nutrition. Deciduous tooth enamel contains pre- and postnatal enamel and its chemical composition reflects the status of metabolism of trace elements during formation period. Deciduous tooth enamel is considered to be a suitable indicator of trace elements exposure in utero. We applied micro-PIXE analysis to investigate the trace elemental content in deciduous tooth enamel. Two deciduous canines from one healthy Japanese boy were used for this study. The enamel section including pre- and postnatal enamel was prepared for micro-PIXE analysis. Five trace elements (Na, Mg, Cl, Zn, and Sr) were detected in the scanning area of tooth. The distribution profiles of 5 elements were obtained as X-ray maps. The distribution profiles of zinc and chlorine were specific, and showed higher concentration in surface enamel. No elements showed different profiles of X-ray maps between pre- and postnatal enamel in this sample. The results of this study suggested that micro-PIXE analysis would be able to estimate the trace elements in prenatal and postnatal enamel, respectively. (author)

  4. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  5. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  6. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice

    International Nuclear Information System (INIS)

    Zhang, Yandong; Yu, Xinchun; Sun, Shuhui; Li, Qian; Xie, Yunli; Li, Qiang; Zhao, Yifan; Pei, Jianfeng; Zhang, Wenmin; Xue, Peng; Zhou, Zhijun; Zhang, Yubin

    2016-01-01

    The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors, the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.

  7. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yandong; Yu, Xinchun [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Li, Qian [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China); Xie, Yunli [Insititute of Brain Sciences, Fudan University, Shanghai 200032 (China); Li, Qiang [Putuo District Center for Disease Control and Prevention, Shanghai 200062 (China); Zhao, Yifan; Pei, Jianfeng; Zhang, Wenmin; Xue, Peng; Zhou, Zhijun [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China); Zhang, Yubin, E-mail: yz001@fudan.edu.cn [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China)

    2016-12-15

    The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors, the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.

  8. Immunoglobulin leakiness in scid mice with CD4(+) T-cell-induced chronic colitis

    DEFF Research Database (Denmark)

    Brimnes, J; Reimann, J; Claesson, Mogens Helweg

    2000-01-01

    Inflammatory bowel disease in scid mice is initiated by transplantation of CD4(+) T-cells from immunocompetent syngenic donor mice. As the disease progresses, immunoglobulin (Ig)-containing cells appear in the gut lamina propria, suggesting that locally accumulating Ig may play a role in disease ...

  9. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  10. Inhibition of tumor growth in syngenetic chimeric mice mediated by a depletion of suppressor T cells

    International Nuclear Information System (INIS)

    Rotter, V.; Trainin, N.

    1975-01-01

    Syngeneic chimeric (lethally irradiated and reconstituted with syngeneic bone marrow cells) mice manifested an increased resistance to the development of Lewis lung carcinoma. In addition, these mice had a higher response to polyvinylpyrrolidone and a reduced reactivity to T mitogens. The present findings suggest that syngeneic chimeric mice lack suppressor T cells shown to regulate the development of Lewis lung tumor and the response to polyvinylpyrrolidone. Other components of the T cell population, such as helper cells responding to sheep red blood cells or cells involved in allograft rejection, assayed in these syngeneic chimeras were found unaffected. The fact that chimeric mice are deficient in a certain suppressor T cell population whereas other T activities are normal suggests the existence of different cell lines within the T cell population. (U.S.)

  11. The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    Parameters of the virus-specific T-cell response were analysed in order to dissect the contribution of CD4+ and CD8+ T cells to cell-mediated immunity to lymphocytic choriomeningitis virus. In MHC class II deficient mice, initial T-cell responsiveness was not impaired, but virus clearance...... was delayed, and virus-specific Td activity declined more rapidly. Furthermore, class I restricted Tc memory appeared to be impaired in these mice. To directly evaluate the role of CD4+ cells in virus clearance and T-cell mediated inflammation, MHC class I deficient mice were also studied. No virus...... exudate. This low-grade response was associated with some degree of virus control as organ titres were lower in these animals than in matched T-cell deficient nu/nu mice or class I deficient mice treated with anti-CD4 monoclonal antibody. This confirms that CD4+ cells are not needed to induce a virus...

  12. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  13. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    Science.gov (United States)

    Young, Jessica; Bolton, W. Robert; Bhatt, Uma; Cristobal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  14. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    Science.gov (United States)

    Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R

    2017-02-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  15. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    Directory of Open Access Journals (Sweden)

    Nidhi Jain

    2017-02-01

    Full Text Available Following Japanese encephalitis virus (JEV infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null are highly susceptible and die over 10-18 day period as compared to the wild-type (WT mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB. Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  16. Effect of thumus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice

    International Nuclear Information System (INIS)

    Jacobson, E.B.; Caporale, L.H.; Thorbecke, G.J.

    1974-01-01

    Nude mice, partially backcrossed to Balb/c or DBA/2, were injected iv with 5 x 10 7 thymus cells from the respective inbred strain. The response of these mice to immunization with Brucella abortus antigen was studied, with respect to both antibody production and the formation of germinal centers in their lymphoid tissues. The results were compared to those obtained with nude mice to which no thymus cells were given, as well as to Balb/c, DBA/2, or +/question litter mate controls. Nude mice formed less 19S as well as 7S antibody than did litter mate controls and completely lacked germinal centers in lymph nodes and gut-associated lymphoid tissue. Those nude mice which had been injected with thymus cells made a much better secondary response, both for 19S and for 7S antibody, and had active germinal centers in their lymph nodes as early as 3 wk after thymus cell injection. Intestinal lymphoid tissue in nude mice showed only slight reconstitution of germinal center activity several months after thymus cell injection and none at earlier times. Irradiated (3000 R) thymus cells appeared as effective as normal cells in facilitating germinal center appearance and 7S antibody production in the nude mice

  17. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    Science.gov (United States)

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p mesenchymal stem cell-treated mice compared to the control group following ischemia (p cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  18. Functional antigen binding by the defective B cells of CBA/N mice.

    Science.gov (United States)

    Snippe, H; Merchant, B; Lizzio, E F; Inman, J K

    1982-01-01

    CBA/N mice have an X-linked B cell defect which prevents them from responding to nonmitogenic thymic independent (TI-2) antigens such as dinitrophenylated DNP-Ficoll (1,2). The F1 male progeny of CBA/N female mice express the same defect. Spleen cell suspensions from such defective mice (CBA/N X C3H/HeN F1 males) could not respond to DNP-Ficoll following in vitro immunization and subsequent transfer into irradiated, syngeneic, F1 male recipients as expected. In contrast, normal CBA/N X C3H/HeN F1 female spleen cells could respond and effect a "rescue"; they mounted strong plaque-forming cell responses 7 days after in vitro exposure to DNP-Ficoll and subsequent transfer into irradiated F1 male recipients. Defective F1 male spleen cells, however, could bind significant quantities of 125I-DNP-Ficoll after in vitro exposure. Extensive washing of these spleen cells could not reverse this binding. Such DNP-Ficoll-exposed and washed F1 male spleen cells could, after transfer, aid normal untreated F1 female cells in their rescue function. The defective F1 male spleen cells could convey immunogenic quantities of DNP-Ficoll to the "rescuing" F1 female cells. Mitomycin treatment of F1 male cells did not interfere with their conveyor function. Goat anti-mouse mu serum impeded the passive antigen conveyor function of defective F1 male cells as did prior exposure to high concentrations of free DNP hapten. Our data support the view that the B cell defect of CBA/N X C3H/HeN F1 male mice does not relate to antigen binding, but rather to an inability to be effectively triggered by certain cell-bound polymeric antigens.

  19. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    Science.gov (United States)

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Graft-versus-host reaction and immune function. III. Functional pre-T cells in the bone marrow of graft-versus-host-reactive mice displaying T cell immunodeficiency

    International Nuclear Information System (INIS)

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1986-01-01

    Studies were performed to determine whether pre-T cells develop normally in the bone marrow of mice displaying thymic dysplasia and T cell immunodeficiency as a consequence of a graft-versus-host (GVH) reaction. GVH reactions were induced in CBAxAF1 mice by the injection of A strain lymphoid cells. To test for the presence of pre-T cells in GVH-reactive mice, bone marrow from GVH-reactive mice (GVHBM) was injected into irradiated syngeneic F1 mice and 30-40 days later thymic morphology and function were studied. Morphology studies showed nearly normal thymic architectural restoration; moreover, such glands contained normal numbers of Thy-1-positive cells. Functional pre-T cells were evaluated by transferring thymocytes from the irradiated GVHBM-reconstituted mice into T-cell-deprived mice. These thymocytes reconstituted allograft reactivity, T helper cell function and Con A and PHA mitogen responses of T-cell-deprived mice. These results suggest that the pre-T cell population in the bone marrow is not affected by the GVH reaction. Therefore, the T cell immunodeficiency associated with the GVH reaction is not due to a deficiency of pre-T cells in the bone marrow but is more likely associated with GVH-induced thymic dysplasia

  1. Role for Lyt-2+ T cells in resistance to cutaneous leishmaniasis in immunized mice

    International Nuclear Information System (INIS)

    Farrell, J.P.; Muller, I.; Louis, J.A.

    1989-01-01

    The role of Lyt-2+ T cells in immunologic resistance to cutaneous leishmaniasis was analyzed by comparing infection patterns in resistant C57BL/6 mice and susceptible BALB/c mice induced to heal their infections after sub-lethal irradiation or i.v. immunization, with similar mice treated in vivo with anti-Lyt-2 antibodies. Administration of anti-Lyt-2 mAb resulted in a dramatic reduction in the number of lymphoid cells expressing the Lyt-2+ phenotype. Such treatment led to enhanced disease in both resistant C57BL/6 and irradiated BALB/c mice, as assessed by lesion size, but did not affect the capacity of these mice to ultimately resolve their infections. In contrast, anti-Lyt-2 treatment totally blocked the induction of resistance in i.v. immunized mice. These results suggest, that Lyt-2+ T cells may play a role in immunity to a Leishmania major infection and that their relative importance to resistance may depend on how resistance is induced

  2. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    International Nuclear Information System (INIS)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia; Yu, Xue-Zhong; Xia, Chang-Qing

    2014-01-01

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT

  3. Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yixian; Zhang, Lanfang; Wan, Suigui; Sun, Xuejing; Wu, Yongxia [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Yu, Xue-Zhong [Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 (United States); Xia, Chang-Qing, E-mail: cqx65@yahoo.com [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2014-04-18

    Highlights: • Injection of UVB-irradiated iDCs induces alloantigen tolerance. • This alloantigen tolerance may be associated regulatory T cell induction. • Tolerant mice serve as bone marrow donors reduces GVHD to their F1 recipients in allo-HSCT. • Tolerance is maintained in F1 recipients for long time post HSCT. - Abstract: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to the F1 mice. We induced alloantigen tolerance in C3H mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors to F1 mice (C3H × Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT.

  4. Photoreceptor cells with profound structural deficits can support useful vision in mice.

    Science.gov (United States)

    Thompson, Stewart; Blodi, Frederick R; Lee, Swan; Welder, Chris R; Mullins, Robert F; Tucker, Budd A; Stasheff, Steven F; Stone, Edwin M

    2014-03-25

    In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell-derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (Rds(P90)). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Rds(P90) mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that Rds(P90) mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m(2)). Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision.

  5. An experimental study of radiation hazard to mandible at deciduous dental stage

    International Nuclear Information System (INIS)

    Seo, Reishi

    1986-01-01

    In order to make a radiological and histopathological investigation of radiation injury to jaw bones at growth stage, the region of left mandibular third deciduous tooth of young dogs were irradiated for 3,000 R with 200 kVp X-ray. In the periodontal tissue of deciduous teeth, inflammatory cell infiltration was observed in the periodontal membrane on 12th day after irradiation. Thereafter, with progress in bone resorption, proliferation of cementum and alveolar bone was seen at 4th month. At 8th month, prolifered alveolar bone filled the periodontal membrane space and infiltrated into the region where root dentin was resorbed. As injury to the cortical bone, resorption in moth-eaten pattern and vacuolation or enlargement of bone lacunae were observed at 2nd month. At 4th month, however, resorption and vacuolated bone lacunae decreased and new Haversian system was also seen at 8th month. As injury to the alveolar bone, radiological finding of irregular trabeculae was seen on 9th day and spotty bone resorption was seen at 2nd month. Formation of fatty marrow began on 12th day after irradiation of bone marrow. About at 2nd month, fibrous marrow was observed and inflammatory cell infiltration was seen there. Resorption of bone trabeculae was due to appearance of osteoclasts and the appearance of osteoclasts was closely related with inflammatory cell infiltration. As changes in the inferior alveolar artery, extension of elastic fibers and looseness of circular tunica media were seen between 1st and 4th month. At 8th month findings were nearly normal. As injury to tooth germ of permanent teeth, hyper-calcification image resulting from early completion of calcification of dentin at the crown portion was observed. Root formation stopped at 2nd month. The root region was obstructed by osteodentin and root formation was no longer observed thereafter. (J.P.N.)

  6. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth.

    Directory of Open Access Journals (Sweden)

    Adrian Lussi

    Full Text Available This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA to pH 5.5, calcium (Ca, inorganic phosphate (Pi, and fluoride (F concentration, and degree of saturation ((pK -pIHAP, (pK -pIFAP, and (pK-pICaF2 of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers and surface reflection intensity (SRI at baseline (SH baseline and SRI baseline, after a total of 2 min (SH2 min and after 4 min (SH4 min and SRI4 min erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm. There was no significant difference in SH baseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (-90.2 ± 11.3 VHN than in permanent enamel (-44.3 ± 12.2 VHN; p = 0.007, but no differences between the two types of teeth were observed after two challenges (SH4 min. After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  7. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth.

    Science.gov (United States)

    Lussi, Adrian; Carvalho, Thiago Saads

    2015-01-01

    This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK-pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SH baseline and SRI baseline), after a total of 2 min (SH2 min) and after 4 min (SH4 min and SRI4 min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SH baseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (-90.2 ± 11.3 VHN) than in permanent enamel (-44.3 ± 12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4 min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  8. Primary observation on adherent function of bone marrow stromal cells in mice post combined radiation-burn injury

    International Nuclear Information System (INIS)

    Chen Xinghua; Luo Chengji; Guo Chaohua; Wang Ping; Deng Xuecai

    1999-01-01

    Objective: To investigate the adherent function of bone marrow stromal cells in hematopoietic inductive microenvironment post combined radiation-burn injury. Methods: The expression of cell adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1), fibro-connection (Fn), laminin (Ln) and collagen type IV (Col IV) on bone marrow stromal cells cultured in vitro was detected by flow cytometry and the binding capacity of bone marrow mononuclear cells to stromal cell adherence layer was tested by cell binding assay and cell binding blocking assay respectively from mice treated with 5.0 Gy γ-ray 15% of total body surface area (TBSA), third-degree burn injury and combined irradiation-burn injury, respectively. Results: 1. The expression levels of molecules mentioned above in burn-injured mice were the highest. The molecules levels in control mice were greater than those in radiation-injured mice, which were lower than those in mice with combined radiation-burn injury. 2. The binding capacity of stromal cell adherence layer in burn-injured mice was greater than that in control mice, and significantly increased from 3 to 7 days post injury as compared with that in controls, radiation-injured mice and combined radiation-burn-injured mice, respectively (P < 0.05-0.01). Contrarily, the capacity of binding in the radiation-injured and combined radiation-burn-injured mice was the lowest from 3 to 7 days post injury. 3. The binding rate of bone marrow mononuclear cells to stromal cell adherence layer descended in different degrees after pre-treatment with monoclonal antibodies directed to VCAM-1, Fn, Ln, or Col IV respectively or VCAM-1 combined with anti-Fn, anti-Ln or anti-Col IV, respectively, in stromal cell adherence layer. Conclusion: The damage of cell adherent function for bone marrow hematopoietic inductive microenvironment post combined radiation-burn injury might be one of the important factors in hematopoietic disorder in combined radiation-burn injury

  9. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    Science.gov (United States)

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  10. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, He [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Otani, Atsushi, E-mail: otan@kuhp.kyoto-u.ac.jp [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  11. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137 Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  12. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  13. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ayelet Kaminitz

    Full Text Available BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff and regulatory T cells (Treg to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-, FoxP3(- and suppressor (CD25(+, FoxP3(+ CD4(+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL in both strains. The effector and suppressor CD4(+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+CD25(- T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.

  14. Taste information derived from T1R-expressing taste cells in mice.

    Science.gov (United States)

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  15. Induction of tolerance and prolongation of islet allograft survival by syngeneic hematopoietic stem cell transplantation in mice.

    Science.gov (United States)

    Yang, Shi-feng; Xue, Wu-jun; Lu, Wan-hong; Xie, Li-yi; Yin, Ai-ping; Zheng, Jin; Sun, Ji-ping; Li, Yang

    2015-10-01

    Syngeneic or autologous hematopoietic stem cells transplantation (HSCT) has been proposed to treat autoimmune diseases because of its immunosuppressive and immunomodulatory effects, which can also contribute to posttransplant antirejection therapy. In this study, we explored the tolerogenic effect of syngeneic HSCT on prolonging islet allograft survival. C57BL/6 mice received syngeneic HSCT plus preconditioning with sublethal irradiation. Then islets of BALB/c mice were transplanted into the renal subcapsular of C57BL/6 mice after chemically induced into diabetes. HSCT mice exhibited improved islet allograft survival and increased serum insulin compared to control mice. Islet allografts of HSCT mice displayed lower level lymphocyte infiltration and stronger insulin staining than control mice. T cells of HSCT mice proliferated poorly in response to allogeneic splenocytes compared to control mice. Mice appeared reversed interferon-γ (IFN-γ)/interleukin-4 (IL-4) ratio to a Th2 immune deviation after syngeneic HSCT. The percentage of CD8(+) T cells was lower, while percentage of CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) was higher in HSCT mice than control mice. HSCT mice showed higher percentage of CTLA-4(+) T cells and expression of CTLA-4 mRNA than control mice. Targeting of CTLA-4 by intraperitoneal injection of anti-CTLA-4 mAb abrogated the effect of syngeneic HSCT on prolonging islet allograft survival, inhibiting activity of T cells in response to alloantigen, promoting Th1 to Th2 immune deviation and up regulating CD4(+)CD25(+)Foxp3(+) Tregs. Syngeneic HSCT plus preconditioning of sublethal irradiation induces tolerance and improves islet allograft survival in fully mismatched mice model. Th1 to Th2 immune deviation, increased CD4(+)CD25(+)Foxp3(+) Tregs and up-regulation of CTLA-4 maybe contribute to the tolerogenic effect induced by syngeneic HSCT. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The role of T cell PPAR gamma in mice with experimental inflammatory bowel disease.

    Science.gov (United States)

    Guri, Amir J; Mohapatra, Saroj K; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-06-10

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor whose activation has been shown to modulate macrophage and T cell-mediated inflammation. The objective of this study was to investigate the mechanisms by which the deletion of PPAR gamma in T cells modulates immune cell distribution and colonic gene expression and the severity of experimental IBD. PPAR gamma flfl; CD4 Cre+ (CD4cre) or Cre- (WT) mice were challenged with 2.5% dextran sodium sulfate in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays. The deficiency of PPAR gamma in T cells accelerated the onset of disease and body weight loss. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8+ T cells than WT mice and fewer CD4+ FoxP3+ regulatory T cells (Treg) and IL10+ CD4+ T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated mRNA expression of adhesion molecules, proinflammatory cytokines interleukin-6 (IL-6) and IL-1beta, and suppressor of cytokine signaling 3 (SOCS-3) on day 7. Gene set enrichment analysis (GSEA) showed that the ribosome and Krebs cycle pathways were downregulated while the apoptosis pathway was upregulated in colons of mice lacking PPAR gamma in T cells. The expression of PPAR gamma in T cells is involved in preventing gut inflammation by regulating colonic expression of adhesion molecules and inflammatory mediators at later stages of disease while favoring the recruitment of Treg to the mucosal inductive

  17. The Role of T cell PPAR γ in mice with experimental inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Hontecillas Raquel

    2010-06-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor γ (PPAR γ is a nuclear receptor whose activation has been shown to modulate macrophage and T cell-mediated inflammation. The objective of this study was to investigate the mechanisms by which the deletion of PPAR γ in T cells modulates immune cell distribution and colonic gene expression and the severity of experimental IBD. Methods PPAR γ flfl; CD4 Cre+ (CD4cre or Cre- (WT mice were challenged with 2.5% dextran sodium sulfate in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN. Global gene expression in colonic mucosa was profiled using Affymetrix microarrays. Results The deficiency of PPAR γ in T cells accelerated the onset of disease and body weight loss. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8+ T cells than WT mice and fewer CD4+FoxP3+ regulatory T cells (Treg and IL10+CD4+ T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated mRNA expression of adhesion molecules, proinflammatory cytokines interleukin-6 (IL-6 and IL-1β, and suppressor of cytokine signaling 3 (SOCS-3 on day 7. Gene set enrichment analysis (GSEA showed that the ribosome and Krebs cycle pathways were downregulated while the apoptosis pathway was upregulated in colons of mice lacking PPAR γ in T cells. Conclusions The expression of PPAR γ in T cells is involved in preventing gut inflammation by regulating colonic expression of adhesion molecules and inflammatory mediators at later stages of disease while favoring the recruitment

  18. Stressful Presentations: Mild Chronic Cold Stress in Mice Influences Baseline Properties of Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Kathleen Marie Kokolus

    2014-02-01

    Full Text Available The ability of dendritic cells to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to study immune responses. Physiological stress is well recognized to impair several arms of immune protection. The goals of this report are to briefly summarize previous work revealing how DCs respond to various forms of physiologically relevant stress and to present new data highlighting the potential for chronic mild cold stress inherent in mice housed at standard ambient temperatures required for laboratory mice to influence baseline DCs properties. Since recent data from our group shows that CD8+ T cell function is altered by mild chronic cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether mild cold stress may also be influencing DC properties. We found increased numbers of splenic DCs (CD11c+ in cold stressed mice compared to mice housed at a thermoneutral temperature, which significantly reduces cold stress. However, many of the DCs which are expanded in cold stressed mice express an immature phenotype. We also found that antigen presentation and ability of splenocytes to activate T cells were impaired compared to that seen in DCs isolated from mice at thermoneutrality. The new data presented here strongly suggest that the housing temperature of mice can affect fundamental properties of DC function which in turn could be influencing the response of DCs to added experimental stressors or other treatments.

  19. Transformation of bone marrow stem-cells and radiation-induced myeloid leukemia in mice

    International Nuclear Information System (INIS)

    Hirashima, K.; Bessho, M.; Hayata, I.; Nara, N.; Kawase, Y.; Ohtani, M.

    1982-01-01

    After a single whole-body X-irradiation of 300R to male RFM/MsNrs strain mice, the occurrence of myeloid leukemia initiated since four months and ceased at eleven months after irradiation. The cumulative incidence reached 24.5%. A time course study on the kinetics of pluripotential stem-cells (CFU-S) and granuloid committed stem-cells (CFU-C) in the marrow after 300R was also performed. The repopulation of CFU-S was accomplished within one month whereas that of CFU-C needed 210 days after irradiation. The incidence of leukemia was very rare after the complete repopulation of CFU-C. Simultaneously, collected spleen cells from the irradiated mice without overt leukemia were transplanted into 300-600R irradiated recipients of another sex. Three months thereafter, recipients were sacrificed to detect leukemic changes and the origin of leukemic cells by chromosome analysis. The results revealed that leukemic cell transformation of donor cells began 18 days after irradiation and on an average, 37.1% of the irradiated mice carried potentially leukemic cells for seven months after exposure, whereas none of the unirradiated mice carried leukemic cells at 7 months after irradiation. To investigate host factor(s) contributing to the proliferation of leukemic cells, the suppression of cellular immunity after 300R was measured by GVH mortality assay. However, the recovery of cellular immunity was observed until three months after irradiation and the role of cellular immunity to proliferation of leukemic cells after three months was negligible. (author)

  20. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  1. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    Science.gov (United States)

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Imaging in gynecological disease. 10: Clinical and ultrasound characteristics of decidualized endometriomas surgically removed during pregnancy.

    Science.gov (United States)

    Mascilini, F; Moruzzi, C; Giansiracusa, C; Guastafierro, F; Savelli, L; De Meis, L; Epstein, E; Timor-Tritsch, I E; Mailath-Pokorny, M; Ercoli, A; Exacoustos, C; Benacerraf, B R; Valentin, L; Testa, A C

    2014-09-01

    To describe the clinical history and ultrasound findings in women with decidualized endometriomas surgically removed during pregnancy. In this retrospective study, women with a histological diagnosis of decidualized endometrioma during pregnancy who had undergone preoperative ultrasound examination were identified from the databases of seven ultrasound centers. The ultrasound appearance of the tumors was described on the basis of ultrasound images, ultrasound reports and research protocols (when applicable) by one author from each center using the terms and definitions of the International Ovarian Tumor Analysis (IOTA) group. In addition, two authors reviewed together available digital ultrasound images and used pattern recognition to describe the typical ultrasound appearance of decidualized endometriomas. Eighteen eligible women were identified. Median age was 34 (range, 20-43) years. Median gestational age at surgical removal of the decidualized endometrioma was 18 (range, 11-41) weeks. Seventeen women (94%) were asymptomatic and one presented with pelvic pain. In three of the 18 women an ultrasound diagnosis of endometrioma had been made before pregnancy. The original ultrasound examiner was uncertain whether the mass was benign or malignant in 10 (56%) women and suggested a diagnosis of benignity in nine (50%) women, borderline in eight women (44%), and invasive malignancy in one (6%) woman. Seventeen decidualized endometriomas contained a papillary projection, and in 16 of these at least one of the papillary projections was vascularized at power or color Doppler examination. The number of cyst locules varied between one (n = 11) and four. No woman had ascites. When using pattern recognition, most decidualized endometriomas (14/17, 82%) were described as manifesting vascularized rounded papillary projections with a smooth contour in an ovarian cyst with one or a few cyst locules and ground-glass or low-level echogenicity of the cyst fluid. Rounded vascularized

  3. Effect of cotransplantation of hematopoietic stem cells and embryonic AGM stromal cells on hematopoietic reconstitution in mice after bone marrow transplantation

    International Nuclear Information System (INIS)

    Tao Si; Sun Hanying; Liu Wenli

    2007-01-01

    Objective: To explore the effects of cotransplantation of hematopoietic stem cells and stromal cells derived from aorta-gonad-mesonephros (AGM) region on hematopoietic reconstitution in mice after bone marrow transplantation (BMT). Methods: The typical mice model of syngeneic BMT was established and the mice were randomly divided into 4 groups: the control group, the BMT group, the group of cotransplantation of HSC with AGM stromal cells (the cotransplantation group) and the ligustrazine group (the LT group). On days 3, 7, 10, 14, 21 and 28 after BMT, the peripheral blood cells and bone marrow mononuclear cells (BMMNC) were counted, and histology changes of bone marrow were detected. Results: The levels of peripheral WBC, RBC, platelet, and BMMNC in the contransplantation group were significantly higher than those in the single BMT group and the LT group (P<0.05). Conclusions: Cotransplantation with AGM stromal cells could significantly promote hematopoietic reconstruction in mice after BMT. (authors)

  4. Possible Involvement of Human Mast Cells in the Establishment of Pregnancy via Killer Cell Ig-Like Receptor 2DL4.

    Science.gov (United States)

    Ueshima, Chiyuki; Kataoka, Tatsuki R; Hirata, Masahiro; Sugimoto, Akihiko; Iemura, Yoshiki; Minamiguchi, Sachiko; Nomura, Takashi; Haga, Hironori

    2018-06-01

    The involvement of mast cells in the establishment of pregnancy is unclear. Herein, we found that human mast cells are present in the decidual tissues of parous women and expressed a human-specific protein killer cell Ig-like receptor (KIR) 2DL4, a receptor for human leukocyte antigen G expressed on human trophoblasts. In contrast, decreased numbers of decidual mast cells and reduced KIR2DL4 expression were observed in these cells of infertile women who had undergone long-term corticosteroid treatment. Co-culture of the human mast cell line, LAD2, and human trophoblast cell line, HTR-8/SVneo, accelerated the migration and tube formation of HTR-8/SVneo cells in a KIR2DL4-dependent manner. These observations suggest the possible involvement of human mast cells in the establishment of pregnancy via KIR2DL4 and that long-term corticosteroid treatment may cause infertility by influencing the phenotypes of decidual mast cells. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Triiodothyronine improves the primary antibody response to sheep red blood cells in severely undernourished weanling mice

    International Nuclear Information System (INIS)

    Filteau, S.M.; Perry, K.J.; Woodward, B.

    1987-01-01

    Three experiments were conducted in which weanling mice were fed a nutritionally complete diet either ad libitum or in restricted quantities such that they lost about 30% of their initial weight over a 14-day period. In Experiments 1 and 2, half the animals from each group received dietary triiodothyronine (T 3 ) supplements. In Experiment 3, food-intake-restricted mice were fed graded levels of potassium iodide. Malnutrition reduced the number of nucleated cells per spleen, the number of splenic IgG plaque-forming cells (PFC) per 10 6 cells, and the serum antibody titers against sheep red blood cells as determined by radioimmunoassay. T 3 supplements increased antibody titers, the number of nucleated cells per spleen, and both IgM and IgG PFC per 10 6 spleen cells in malnourished mice, but had no effect on well-nourished mice. The beneficial effect of T 3 was not a result of improved protein, energy, or iodine status in the malnourished mice

  6. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  7. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    Science.gov (United States)

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Reconstitution of immunodeficient SCID/beige mice with human cells: Applications in preclinical studies

    International Nuclear Information System (INIS)

    Thomsen, Mogens; Galvani, Sylvain; Canivet, Cindy; Kamar, Nassim; Boehler, Torsten

    2008-01-01

    Experimental studies of the in vivo behaviour of human cells and tissues have become possible with the development of immunodeficient mice strains. Such mice accept readily allogeneic or xenogeneic grafts, including grafts of human cells or tissues, without rejection. In this review we describe different immunodeficient mouse strains that have been used for reconstitution by human immune cells. We subsequently go through the experience that we and others have had with reconstitution, and mention the adverse effects, in particular xenogeneic graft versus host reactions. The use of haematopoietic stem cells avoids such reactions but the immunological reconstitution may take several months. We then report the use of immunodeficient mice for the study of chronic vascular rejection of human mesenteric arteries due to cellular or humoral alloreaction. We have shown that SCID/beige mice grafted with a human artery at the place of the aorta developed a thickening of the intima of the human artery after 5-6 weeks, when they were reconstituted with spleen cells from another human donor. The thickening is mainly due to a proliferation of smooth muscle cells. The same type of lesion developed if they received injection of antibodies towards HLA class I antigens. The arteries of the mouse did not develop any lesion. The arterial lesions closely resembled those seen after clinical organ transplantation. Mice that received spleen cells from the same human donor developed little or no lesions. An important aspect of this experimental transplantation model is the possibility to test drugs that may be used in clinical transplantation. In recent experiments we have shown that novel immunosuppressive drugs can inhibit the hyperproliferation of smooth muscle cells in vitro. Preclinical testing in reconstituted SCID/beige mice grafted with human arteries will permit the evaluation of the potential use of these drugs to prevent chronic vascular rejection. The model also allows

  9. T-helper 17 and interleukin-17-producing lymphoid tissue inducer-like cells make different contributions to colitis in mice.

    Science.gov (United States)

    Ono, Yuichi; Kanai, Takanori; Sujino, Tomohisa; Nemoto, Yasuhiro; Kanai, Yasumasa; Mikami, Yohei; Hayashi, Atsushi; Matsumoto, Atsuhiro; Takaishi, Hiromasa; Ogata, Haruhiko; Matsuoka, Katsuyoshi; Hisamatsu, Tadakazu; Watanabe, Mamoru; Hibi, Toshifumi

    2012-11-01

    T helper (Th) 17 cells that express the retinoid-related orphan receptor (ROR) γt contribute to the development of colitis in mice, yet are found in normal and inflamed intestine. We investigated their development and functions in intestines of mice. We analyzed intestinal Th17 cells in healthy and inflamed intestinal tissues of mice. We analyzed expression of lymphotoxin (LT)α by Th17 cells and lymphoid tissue inducer-like cells. LTα(-/-) and RORγt(-/-) mice had significantly lower percentages of naturally occurring Th17 cells in the small intestine than wild-type mice. Numbers of CD3(-)CD4(+/-)interleukin-7Rα(+)c-kit(+)CCR6(+)NKp46(-) lymphoid tissue inducer-like cells that produce interleukin-17A were increased in LTα(-/-) and LTα(-/-) × recombination activating gene (RAG)-2(-/-) mice, compared with wild-type mice, but were absent from RORγt(-/-) mice. Parabiosis of wild-type and LTα(-/-) mice and bone marrow transplant experiments revealed that LTα-dependent gut-associated lymphoid tissue structures are required for generation of naturally occurring Th17 cells. However, when wild-type or LTα(-/-) CD4(+)CD45RB(high) T cells were transferred to RAG-2(-/-) or LTα(-/-)×RAG-2(-/-) mice, all groups, irrespective of the presence or absence of LTα on the donor or recipient cells, developed colitis and generated Th1, Th17, and Th17/Th1 cells. RAG-2(-/-) mice that received a second round of transplantation, with colitogenic but not naturally occurring Th17 cells, developed intestinal inflammation. The presence of naturally occurring Th17 cells in the colons of mice inhibited development of colitis after transfer of CD4(+)CD45RB(high) T cells and increased the numbers of Foxp3(+) cells derived from CD4(+)CD45RB(high) T cells. Gut-associated lymphoid tissue structures are required to generate naturally occurring Th17 cells that have regulatory activities in normal intestines of mice, but not for colitogenic Th17 and Th17/Th1 cells during inflammation

  10. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  11. Visualization of cytolytic T cell differentiation and granule exocytosis with T cells from mice expressing active fluorescent granzyme B.

    Directory of Open Access Journals (Sweden)

    Pierre Mouchacca

    Full Text Available To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI mice expressing Granzyme B (GZMB as a fusion protein with red fluorescent tdTomato (GZMB-Tom. As for GZMB in wild type (WT lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells' plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC, as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo.

  12. Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Audigé, Annette; Rochat, Mary-Aude; Li, Duo; Ivic, Sandra; Fahrny, Audrey; Muller, Christina K S; Gers-Huber, Gustavo; Myburgh, Renier; Bredl, Simon; Schlaepfer, Erika; Scherrer, Alexandra U; Kuster, Stefan P; Speck, Roberto F

    2017-05-30

    Humanized mice (hu mice) are based on the transplantation of hematopoietic stem and progenitor cells into immunodeficient mice and have become important pre-clinical models for biomedical research. However, data about their hematopoiesis over time are scarce. We therefore characterized leukocyte reconstitution in NSG mice, which were sublethally irradiated and transplanted with human cord blood-derived CD34+ cells at newborn age, longitudinally in peripheral blood and, for more detailed analyses, cross-sectionally in peripheral blood, spleen and bone marrow at different time points. Human cell chimerism and absolute human cell count decreased between week 16 and 24 in the peripheral blood of hu mice, but were stable thereafter as assessed up to 32 weeks. Human cell chimerism in spleen and bone marrow was maintained over time. Notably, human cell chimerism in peripheral blood and spleen as well as bone marrow positively correlated with each other. Percentage of B cells decreased between week 16 and 24, whereas percentage of T cells increased; subsequently, they levelled off with T cells clearly predominating at week 32. Natural killer cells, monocytes and plasmacytoid dendritic cells (DCs) as well as CD1c + and CD141+ myeloid DCs were all present in hu mice. Proliferative responses of splenic T cells to stimulation were preserved over time. Importantly, the percentage of more primitive hematopoietic stem cells (HSCs) in bone marrow was maintained over time. Overall, leukocyte reconstitution was maintained up to 32 weeks post-transplantation in our hu NSG model, possibly explained by the maintenance of HSCs in the bone marrow. Notably, we observed great variation in multi-lineage hematopoietic reconstitution in hu mice that needs to be taken into account for the experimental design with hu mice.

  13. Monoclonal B-cell hyperplasia and leukocyte imbalance precede development of B-cell malignancies in uracil-DNA glycosylase deficient mice

    DEFF Research Database (Denmark)

    Andersen, Sonja; Ericsson, Madelene; Dai, Hong Yan

    2005-01-01

    causes a significant reduction of T-helper cells, and 50% of the young Ung(-/-) mice investigated have no detectable NK/NKT-cell population in their spleen. The immunological imbalance is confirmed in experiments with spleen cells where the production of the cytokines interferon gamma, interleukin 6....... The immunological imbalances shown here in the Ung-deficient mice may be central in the development of lymphomas in a background of generalised lymphoid hyperplasia....

  14. VH repertoire in progeny of long term lymphoid-cultured cells used to reconstitute immunodeficient mice

    International Nuclear Information System (INIS)

    Denis, K.A.; Timson, L.K.; Witte, O.N.

    1989-01-01

    VH gene utilization in the progeny of long term lymphoid-cultured cells used for reconstitution of severe combined immunodeficient mice under varying conditions was determined. Hybridomas made from the spleens of these animals were evaluated for clonality and donor origin and a panel of 146 independent hybridomas were subsequently examined for VH expression. Hybridomas derived from the spleens of SCID mice reconstituted with fresh cells, used as a control, utilized VH families in proportion to their numerical representation in the genome. However, hybridomas from the spleens of mice reconstituted with long term cultured cells utilized a predominance of the two VH gene families most proximal to JH, characteristic of cells early in B lymphocyte development. Coinjection of thymocytes with cultured fetal liver cells, to provide good levels of T lymphocytes, did not alter this pattern of VH utilization. Irradiation (3 Gy) of the mice before cultured cell injection, which leads to more complete reconstitution of the B cell compartment, was effective in removing this bias in the VH repertoire. Hybridomas derived from these mice expressed their VH genes more in proportion to family size, characteristic of cells later in B lymphocyte development. In this manner, long term lymphoid-cultured cells can be used to study the transitions that occur in VH repertoire expression which appear to be mediated by either B lymphocyte developmental microenvironment or population size

  15. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    International Nuclear Information System (INIS)

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter

  16. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    Science.gov (United States)

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Effects of sublethal gamma radiation on T and B cell activity in the antibody response of mice

    International Nuclear Information System (INIS)

    Carlson, D.E.; Lubet, R.A.

    1976-01-01

    The relative radiosensitivity of T and B cells was followed in sublethally irradiated mice reconstituted with bone marrow cells, thymus cells, or both, and simultaneously challenged with sheep erythrocytes. Numbers of antibody-forming cells in recipient spleens were determined on days 4 to 8. In this assay the response of mice given bone marrow cells was limited by the amount of residual T cell activity, while the response of mice given thymus cells was limited by the residual B cell activity. Although residual activity of both T and B cells was suppressed in mice given 300 to 700 rad at 80 rad/min, residual B cell activity was consistently lower in these animals. When antibody responses were initiated at intervals after irradiation, B cell activity was clearly limiting by 48 hr after 500 or 600 rad. The activity of both T and B cells was sensitive to differences in dose rate between 8 and 80 rad/min. The 4 to 7 fold dose-rate sensitivity of T cells paralleled that of differentially irradiated nonreconstituted mice. In contrast, dose-rate dependence of B cell activity varied from 10- to 20-fold between 8 and 80 rad/min. These results suggest that radiation suppression of antibody responses in mice is highly dependent upon B cell sensitivity, and that dose-rate dependence of the antibody response may be explained in large part by differential sensitivity of B cells

  18. Intestinal Stem Cell Dynamics: A Story of Mice and Humans.

    Science.gov (United States)

    Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J

    2018-06-01

    Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  20. Ability of spleen cells from tumor bearing mice to transfer immunologic memory

    Energy Technology Data Exchange (ETDEWEB)

    Plavsic, B.; Jurin, M. (Zagreb Univ. (Yugoslavia)); Ugarkovic, B. (Institut Rudjer Boskovic, Zagreb (Yugoslavia))

    1983-01-01

    The ability of splenocytes from tumorous mice to transfer immunologic memory was tested. Three syngeneic experimental tumors from highly inbred strains were used; fibrosarcoma, lymphoma and Lewis lung carcinoma. Splenocytes from tumorous mice were collected after rejection of allogeneic skin which had been grafted at different stages of the tumor disease, and injected into lethally irradiated syngeneic recipients. These secondary hosts were grafted with the same allogeneic skin graft as their donors and the ability of cells transplanted from tumorous donors to transfer memory to allograft was tested. Tumorous mice seemed to have more memory cells (T lymphocytes) in their spleens than the controls.

  1. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    International Nuclear Information System (INIS)

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  2. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    Science.gov (United States)

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. BMP4 Expression Following Stem Cells from Human Exfoliated Deciduous and Carbonate Apatite Transplantation on Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Tania Saskianti

    2018-04-01

    Full Text Available Background: Alveolar bone defects in children still have a high incidence. Conventional bone graft technique that has been used as a defect therapy is still not effective, so new techniques with tissue engineering approach are needed. Bone Morphogenetic Protein 4 (BMP4 as one of the indicators of osteogenic differentiation has not been widely studied, especially in the transplantation with combination of Stem Cells from Human Exfoliated Deciduous (SHED and carbonate apatite. Aim and Objectives: This research aimed to determine the expression of BMP4 after SHED and carbonate apatite transplantation on Rattus norvegicus. Material and Methods: The combinations of SHED and carbonate apatite were transplanted on alveolar bone defects of 4 rats (Rattus norvegicus as the treatment groups and another 4 rats were transplanted with carbonate apatite as the control groups. After 21 days, staining with Hematoxylin Eosin (HE and Immunohistochemistry (IHC BMP4 was performed. Results: BMP4 expression in the treatment groups was significantly higher when compared to the control groups. Discussion: Carbonate apatite has low crystallization rate and high osteoconductivity that produce more osteoblasts and increased BMP4 expression. Conclusion: The transplantation of SHED and carbonate apatite increased BMP4 expression as an indicator of osteogenic differentiation in rats.

  4. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    Science.gov (United States)

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell

  5. Exposure to Zearalenone During Early Pregnancy Causes Estrogenic Multitoxic Effects in Mice.

    Science.gov (United States)

    Kunishige, Kohji; Kawate, Noritoshi; Inaba, Toshio; Tamada, Hiromichi

    2017-03-01

    Although zearalenone (ZEN; Sigma Chemicals, St Louis, Missouri) is a well-known mycotoxin with estrogenic activity, the toxic effects of ZEN during pregnancy are unknown. This study compared the effects of daily subcutaneous injections of ZEN (2, 4, or 8 mg/kg) with those of 17β-estradiol (E2; [Sigma Chemicals] 0.8, 1.6, or 3.2 μg/kg) in mice. Injections were administered on gestational days (GDs) 1 to 5, the period including implantation which is sensitive to hormonal balance. The effects of ZEN or E2 were evaluated by comparing the number of live fetuses, their weight, and absorbed conceptuses on GD 18, with those in vehicle-treated controls. In addition, implantation, embryos in the oviducts and those in uteri without implantation sites were investigated on GD 5. In mice treated with the highest dose of ZEN or E2, decidual responses and plasma progesterone concentrations were measured on GDs 5 and 6, respectively, and delayed implantation was investigated on GDs 9 and 14. The results showed that treatment with ZEN, in a manner similar to that seen for E2, led to obstruction of essential processes for establishing and maintaining pregnancy, such as embryo migration from oviducts to uteri, the decidual response, and activation of luteal function. Zearalenone also induced delayed implantation and loss of conceptuses and at low doses caused a retarded growth of the fetuses after normal implantation. It was therefore concluded that ZEN causes multiple estrogenic toxic actions when administered during early pregnancy in mice.

  6. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. [Shengqifuzheng Injection promotes the recovery of B cells in gut-associated lymphoid tissues of mice treated with cyclophosphamide].

    Science.gov (United States)

    Deng, Xiangliang; Huang, Rongrong; Wen, Ruyan; Luo, Xia; Zhou, Lian

    2016-08-01

    Objective To investigate the effect of Shengqifuzheng Injection (SQFZ) on the number recovery of B cells in gut-associated lymphoid tissues (GALTs) of mice receiving cyclophosphamide-based chemotherapy. Methods BALB/c mice were randomly divided into control group, cyclophosphamide (Cy) group and SQFZ group. Mice in Cy group and SQFZ group were injected intraperitoneally with Cy (100 mg/kg), while the control mice were injected with an equal volume of normal saline. Twenty-four hours later, mice in SQFZ group were administrated intragastricly with 1 mL SQFZ once daily for 10 consecutive days, and mice in the other groups were given the same volume of normal saline. Body mass of all the mice was measured every day. Mice were killed on day 10, and the indexes of spleen and thymus were measured. Cell cycles of bone marrow cells and the percentage of B cells in lymphocytes in mesenteric lymph node (MLN) and Peyer's patch (PP) were detected by flow cytometry. In vitro, after being treated with SQFZ, activity of lymphocytes was evaluzed by MTT assay; expression of CD86 on B cell surface was analyzed by flow cytometry; and B cell proliferation was tested by carboxyfluorescein succinimidyl ester (CFSE)-based lymphocyte proliferation assay. Results SQFZ alleviated the loss of body mass caused by Cy and promoted the recovery of thymus indexes, spleen indexes and B cell number in MLN and PP. But it did not alleviate the bone marrow suppression of mice in this condition. In vitro, SQFZ enhanced lymphocyte activity, and improved the activation and proliferation of B cells. Conclusion SQFZ could accelerate the recovery of B cells in GALTs of mice receiving chemotherapy and it might act by promoting B cell proliferation.

  8. Effects of low dose radiation combined with cyclophosphamide on tumor cell apoptosis, cell cycle and proliferation of bone marrow in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2004-01-01

    Objective: To study the effect of low dose radiation (LDR) combined with cyclophosphamide on tumor cell apoptosis, cell cycle, and proliferation of bone marrow in mice tumor-bearing mice. Methods: Kunming strain male mice were implanted with S180 sarcoma cells in the left hind leg subcutaneously as an experimental animal model. Five and 8 days after implantation, the mice were given 75 mGy whole-body γ-ray radiation and CTX(300 mg/kg) by intraperitoneal injection 36 hour after LDR. All mice were sacrificed to measure the tumor volume, tumor cell apoptosis, and cell cycle; the proliferation of bone marrow was analyzed by flow cytometry. Results: Tumor growth was significantly slowed down in the treated groups. The apoptosis of tumor cells increased significantly after LDR. The tumor cells were arrested in G 1 phase in CTX and CTX+LDR groups, more significantly in the latter group than in the former group. Concentration of bone marrow cells and proliferation index in CTX + LDR group were higher than those in CTX group, although concentration of bone marrow cells in CTX and CTX+LDR groups were much lower than that in normal mice. Conclusion: Low dose radiation combined with cyclophosphamide causes more significant G 1 -phase arrest than cyclophosphamide alone and enhances anti-tumor effect markedly. At the same time LDR significantly protects hematopoietic function of bone marrow, which is of practical significance as an adjuvant chemotherapy

  9. Comet assay on mice testicular cells

    Directory of Open Access Journals (Sweden)

    Anoop Kumar Sharma

    2015-05-01

    Full Text Available Heritable mutations may result in a variety of adverse outcomes including genetic disease in the offspring. In recent years the focus on germ cell mutagenicity has increased and the “Globally Harmonized System of Classification and Labelling of Chemicals (GHS” has published classification criteria for germ cell mutagens (Speit et al., 2009. The in vivo Comet assay is considered a useful tool for investigating germ cell genotoxicity. In the present study DNA strand breaks in testicular cells of mice were investigated. Different classes of chemicals were tested in order to evaluate the sensitivity of the comet assay in testicular cells. The chemicals included environmentally relevant substances such as Bisphenol A, PFOS and Tetrabrombisphenol A. Statistical power calculations will be presented to aid in the design of future Comet assay studies on testicular cells. Power curves were provided with different fold changes in % tail DNA, different number of cells scored and different number of gels (Hansen et al., 2014. An example is shown in Figure 1. A high throughput version of the Comet assay was used. Samples were scored with a fully automatic comet assay scoring system that provided faster scoring of randomly selected cells.

  10. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Boehm Franziska

    2012-07-01

    Full Text Available Abstract Background Mice lacking Foxp3+ regulatory T (Treg cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Methods Foxp3-GFP-DTR (human diphtheria toxin receptor C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin. The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag−/− C57BL/6 mice and the acute DSS-colitis model. Results Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag−/− C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Conclusion Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.

  11. Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice

    Directory of Open Access Journals (Sweden)

    Shanzheng Lu

    2016-10-01

    Full Text Available Abstract Background The endometrial regenerative cell (ERC is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4–induced acute liver injury (ALI. Methods An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. Results ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1β, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. Conclusions Human ERCs protect the liver from acute injury

  12. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice.

    Science.gov (United States)

    Murach, Kevin A; White, Sarah H; Wen, Yuan; Ho, Angel; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A

    2017-07-10

    Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Pax7 CreER -R26R DTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6-9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p overload (p overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice.

  13. Isotopic study of the comparative uptake and release of ions by deciduous and permanent dental enamel

    International Nuclear Information System (INIS)

    Tetteh, G.K.

    1975-01-01

    A comparative study of the uptake and release of calcium, orthophosphate, strontium and sodium from decidus and permanent dental enamel has been made using radioactive techniques. The rates of uptake and release of orthophosphate, strontium and sodium were observed to be greater in deciduous than in permanent enamel. However, for calcium, the rate of uptake was observed to be greater in the deciduous than in the permanent enamel but the rate of release was observed to be smaller in the deciduous enamel. These results in conjunction with the findings of Tetteh (1974) suggest that most of the calcification in the early stages of development of dental enamel is by a hetero-ionic exchange. (author) [fr

  14. Isotopic study of the comparative uptake and release of ions by deciduous and permanent dental enamel

    Energy Technology Data Exchange (ETDEWEB)

    Tetteh, G K [Department of Physics, University of Ghana,Legon

    1975-04-01

    A comparative study of the uptake and release of calcium, orthophosphate, strontium and sodium from decidus and permanent dental enamel has been made using radioactive techniques. The rates of uptake and release of orthophosphate, strontium and sodium were observed to be greater in deciduous than in permanent enamel. However, for calcium, the rate of uptake was observed to be greater in the deciduous than in the permanent enamel but the rate of release was observed to be smaller in the deciduous enamel. These results in conjunction with the findings of Tetteh (1974) suggest that most of the calcification in the early stages of development of dental enamel is by a hetero-ionic exchange.

  15. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  16. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    International Nuclear Information System (INIS)

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D 0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F 1 +/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D 0 value was about 100 rad for the former and about 800 rad for the latter

  17. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    OpenAIRE

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2013-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunct...

  18. Type 1 diabetes in NOD mice unaffected by mast cell deficiency.

    Science.gov (United States)

    Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer

    2014-11-01

    Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Parasitic infection improves survival from septic peritonitis by enhancing mast cell responses to bacteria in mice.

    Directory of Open Access Journals (Sweden)

    Rachel E Sutherland

    Full Text Available Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2-4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient Kit(W-sh/Kit(W-sh mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to Kit(W-sh/Kit(W-sh mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host.

  20. Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice

    Directory of Open Access Journals (Sweden)

    Benjamin Lacar

    2010-07-01

    Full Text Available The subventricular zone (SVZ is one of two regions where neurogenesis persists in the postnatal brain. The SVZ, located along the lateral ventricle, is the largest neurogenic zone in the brain that contains multiple cell populations including astrocyte-like cells and neuroblasts. Neuroblasts migrate in chains to the olfactory bulb where they differentiate into interneurons. Here, we discuss the experimental approaches to record the electrophysiology of these cells and image their migration and calcium activity in acute slices. Although these techniques were in place for studying glial cells and neurons in mature networks, the SVZ raises new challenges due to the unique properties of SVZ cells, the cellular diversity, and the architecture of the region. We emphasize different methods, such as the use of transgenic mice and in vivo electroporation that permit identification of the different SVZ cell populations for patch clamp recording or imaging. Electroporation also permits genetic labeling of cells using fluorescent reporter mice and modification of the system using either RNA interference technology or floxed mice. In this review, we aim to provide conceptual and technical details of the approaches to perform electrophysiological and imaging studies of SVZ cells.

  1. Trends in Spring Phenology of Western European Deciduous Forests

    Directory of Open Access Journals (Sweden)

    Eliakim Hamunyela

    2013-11-01

    Full Text Available Plant phenology is changing because of recent global warming, and this change may precipitate changes in animal distribution (e.g., pests, alter the synchronization between species, and have feedback effects on the climate system through the alteration of biogeochemical and physical processes of vegetated land surface. Here, ground observations (leaf unfolding/first leaf separation of six deciduous tree species and satellite-derived start-of-growing season (SOS are used to assess how the timing of leafing/SOS in Western European deciduous forest responded to climate variability between 2001 and 2011 and evaluate the reliability of satellite SOS estimates in tracking the response of forest leafing to climate variability in this area. Satellite SOS estimates are derived from the Normalized Difference Vegetation Index (NDVI time series of the Moderate Resolution Imaging Spectroradiometer (MODIS. Temporal trends in the SOS are quantified using linear regression, expressing SOS as a function of time. We demonstrated that the growing season was starting earlier between 2001 and 2011 for the majority of temperate deciduous forests in Western Europe, possibly influenced by regional spring warming effects experienced during the same period. A significant shift of up to 3 weeks to early leafing was found in both ground observations and satellite SOS estimates. We also show that the magnitude and trajectory of shifts in satellite SOS estimates are well comparable to that of in situ observations, hence highlighting the importance of satellite imagery in monitoring leaf phenology under a changing climate.

  2. Spectratyping analysis of the islet-reactive T cell repertoire in diabetic NOD Igμnull mice after polyclonal B cell reconstitution

    Directory of Open Access Journals (Sweden)

    Sercarz Eli E

    2011-07-01

    Full Text Available Abstract Background Non Obese Diabetic mice lacking B cells (NOD.Igμnull mice do not develop diabetes despite their susceptible background. Upon reconstitution of B cells using a chimera approach, animals start developing diabetes at 20 weeks of age. Methods We have used the spectratyping technique to follow the T cell receptor (TCR V beta repertoire of NOD.Igμnull mice following B cell reconstitution. This technique provides an unbiased approach to understand the kinetics of TCR expansion. We have also analyzed the TCR repertoire of reconstituted animals receiving cyclophosphamide treatment and following tissue transplants to identify common aggressive clonotypes. Results We found that B cell reconstitution of NOD.Igμnull mice induces a polyclonal TCR repertoire in the pancreas 10 weeks later, gradually diversifying to encompass most BV families. Interestingly, these clonotypic BV expansions are mainly confined to the pancreas and are absent from pancreatic lymph nodes or spleens. Cyclophosphamide-induced diabetes at 10 weeks post-B cell reconstitution reorganized the predominant TCR repertoires by removing potential regulatory clonotypes (BV1, BV8 and BV11 and increasing the frequency of others (BV4, BV5S2, BV9, BV16-20. These same clonotypes are more frequently present in neonatal pancreatic transplants under the kidney capsule of B-cell reconstituted diabetic NOD.Igμnull mice, suggesting their higher invasiveness. Phenotypic analysis of the pancreas-infiltrating lymphocytes during diabetes onset in B cell reconstituted animals show a predominance of CD19+ B cells with a B:T lymphocyte ratio of 4:1. In contrast, in other lymphoid organs (pancreatic lymph nodes and spleens analyzed by FACS, the B:T ratio was 1:1. Lymphocytes infiltrating the pancreas secrete large amounts of IL-6 and are of Th1 phenotype after CD3-CD28 stimulation in vitro. Conclusions Diabetes in NOD.Igμnull mice appears to be caused by a polyclonal repertoire of T cell

  3. Characteristics and function of bone marrow stromal adherent cells in normal and irradiated mice and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Changyu, Zheng; Ji, Liu; Xiaoying, Bi

    1986-04-01

    It has been shown from cytochemical and other characteristic studies of bone marrow stromal cells in CFU-F that there are seven types of stromal cells in the stromal adherent cell layer of normal and irradiated C/sub 57/ mice whereas there are only six types in guinea pigs. On the other hand, a radioresistant cell subtype appears in adherent layer after irradiation of both C/sub 57/ mice and guinea pig since the supernatant of cultured CFU-F of the normal and irradiated C/sub 57/ mice can stimulate production of CFU-Gm. It is justifiable that the bone marrow stromal adherent cells of the C/sub 57/ mice could produce CSF.

  4. Higher susceptibility of NOD/LtSz-scid Il2rg−/− NSG mice to xenotransplanted lung cancer cell lines

    International Nuclear Information System (INIS)

    Kanaji, Nobuhiro; Tadokoro, Akira; Susaki, Kentaro; Yokokura, Saki; Ohmichi, Kiyomi; Haba, Reiji; Watanabe, Naoki; Bandoh, Shuji; Ishii, Tomoya; Dobashi, Hiroaki; Matsunaga, Takuya

    2014-01-01

    No lung cancer xenograft model using non-obese diabetic (NOD)-scid Il2rg −/− mice has been reported. The purpose of this study is to select a suitable mouse strain as a xenogenic host for testing tumorigenicity of lung cancer. We directly compared the susceptibility of four immunodeficient mouse strains, c-nu, C.B-17 scid, NOD-scid, and NOD/LtSz-scid Il2rg −/− (NSG) mice, for tumor formation from xenotransplanted lung cancer cell lines. Various numbers (10 1 –10 5 cells/head) of two lung cancer cell lines, A549 and EBC1, were subcutaneously inoculated and tumor sizes were measured every week up to 12 weeks. When 10 4 EBC1 cells were inoculated, no tumor formation was observed in BALB/c-nu or C.B-17 scid mice. Tumors developed in two of the five NOD-scid mice (40%) and in all the five NSG mice (100%). When 10 3 EBC1 cells were injected, no tumors developed in any strain other than NSG mice, while tumorigenesis was achieved in all the five NSG mice (100%, P=0.0079) within 9 weeks. NSG mice similarly showed higher susceptibility to xenotransplantation of A549 cells. Tumor formation was observed only in NSG mice after inoculation of 10 3 or fewer A549 cells (40% vs 0% in 15 NSG mice compared with others, respectively, P=0.0169). We confirmed that the engrafted tumors originated from inoculated human lung cancer cells by immunohistochemical staining with human cytokeratin and vimentin. NSG mice may be the most suitable strain for testing tumorigenicity of lung cancer, especially if only a few cells are available

  5. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Science.gov (United States)

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  6. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    Directory of Open Access Journals (Sweden)

    Imane Song

    Full Text Available One week of treatment with EGF and gastrin (EGF/G was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of

  7. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Takayuki Mito

    Full Text Available Mitochondrial DNA (mtDNA mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0 mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  8. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice

    Directory of Open Access Journals (Sweden)

    Rose Hilal

    2018-01-01

    Full Text Available Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+ (500,000 cells, injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.

  9. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice.

    Science.gov (United States)

    Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I; Merkulova-Rainon, Tatyana; Kubis, Nathalie

    2018-01-01

    Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18-24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF- β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions . This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.

  10. CISH has no non-redundant functions in glucose homeostasis or beta cell proliferation during pregnancy in mice.

    Science.gov (United States)

    Jiao, Yang; Rieck, Sebastian; Le Lay, John; Kaestner, Klaus H

    2013-11-01

    Increased beta cell proliferation during pregnancy is mediated by the Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5) signalling pathway in response to increased lactogen levels. Activation of the pathway leads to transcriptional upregulation of Cish (encoding cytokine-inducible SH2 domain-containing protein), a member of the suppressor of cytokine signalling (SOCS) family of genes, forming a negative-feedback loop. Here, we examined whether conditional gene ablation of Cish in the pancreas improves beta cell proliferation and beta cell function during pregnancy in mice. We derived mice with a novel, conditional loxP allele for Cish. Pancreas-specific ablation of Cish was achieved by crossing Cish (loxP/loxP) mice with Pdx1-Cre (Early) mice. Beta cell proliferation was quantified by BrdU labelling. Glucose homeostasis was examined with glucose tolerance tests and determination of plasma insulin levels. The expression of other Socs genes and target genes of p-STAT5 related to beta cell function and beta cell proliferation was determined by quantitative PCR. There was no difference in beta cell proliferation or glucose homeostasis between the Cish mutant group and the control group. The p-STAT5 protein level was the same in Cish mutant and control mice. Socs2 gene expression was higher in Cish mutant than control mice at pregnancy day 9.5. The expression of other Socs genes was the same between control and mutant mice. Our results show that CISH has no non-redundant functions in beta cell proliferation or glucose homeostasis during pregnancy in mice. Socs2 might compensate for the loss of Cish during pregnancy.

  11. Cytotoxicity of accelerated white MTA and Malaysian white Portland cement on stem cells from human exfoliated deciduous teeth (SHED): An in vitro study.

    Science.gov (United States)

    Ong, Ren Ming; Luddin, Norhayati; Ahmed, Hany Mohamed Aly; Omar, Nor Shamsuria

    2012-12-01

    The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications. Copyright © 2012. Published by Elsevier B.V.

  12. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  13. The principles for creation of fire-prevention forest belts with barriers of deciduous species for protection from crown fires

    Directory of Open Access Journals (Sweden)

    S. N. Sannikov

    2017-10-01

    Full Text Available The article discuss one of the priority security problems in Russia, which is elaboration of the strategic system of the forest and society safeguards from catastrophic forest crown fires in connection with rapid climate warming. It is postulated, that a most effective and reliable barrier for the dispersal of the intensive crown fire in a coniferous forest massive can be a sufficiently wide strip of deciduous tree species – «deciduous forest barrier», which has phytomass capable of absorbing crown fire energy and transforming them to surface fire, which may be extinguished by technical means. The actuality of the natural study of the transition parameters from the crown fire to surface fire has been noted, depending on climate, fire intensity and the deciduous barrier structure. The results of the quantitative natural investigation of the consequences of catastrophic crown fires of 2004 in the island pine forests of forest-steppe zone in Kurgan Oblast, which passed through the belt of 50–70 year-old birch stands of middle density, has been cited and formalized mathematically. It has been shown, that 150 m width of deciduous forest barrier is necessary as a minimum for the reliable transition of the high intensive front crown fire to surface fire in the forest-steppe conditions of the Western Siberia, but this width reduces with a decreasing heating effect. It has been proposed to create the complex fire-prevention forest belts of different construction for the protection of forests, industrial objects and settlements. Besides a basic deciduous barrier, their structure should include technologically necessary buffer zones and zones for the localization and extinguishing surface fire, which stop a crown fire. It has been recommended to use natural regeneration of deciduous tree species, as a most effective and non-deficient method for the creation of deciduous forest barriers in the predominant forest types, except the lichen pine forests

  14. Merkel Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice.

    Science.gov (United States)

    Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W; Eberl, Markus; Wilbert, Dawn M; Meireles, Julia; Bichakjian, Christopher K; Saunders, Thomas L; Wong, Sunny Y; Dlugosz, Andrzej A

    2017-06-15

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. EBI2 overexpression in mice leads to B1 B cell expansion and chronic lymphocytic leukemia-(CLL)-like B cell malignancies

    DEFF Research Database (Denmark)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau

    2017-01-01

    -targeted expression of human EBI2 in mice reduces germinal center-dependent immune responses, reduces total IgM and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5+ B1a B cell subset present as early as 4......Human and mouse chronic lymphocytic leukemia (CLL) develop from CD5+ B cells that in mice and macaques are known to define the distinct B1a B cell lineage. B1a cells are characterized by lack of germinal center development and the B1a cell population is increased in mice with reduced germinal...... cells towards the extrafollicular area, whereas downregulation is essential for germinal center formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to chronic lymphocytic leukemia. Here we demonstrate that B cell...

  16. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    Science.gov (United States)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous

  17. Stressful presentations: mild cold stress in laboratory mice influences phenotype of dendritic cells in naïve and tumor-bearing mice.

    Science.gov (United States)

    Kokolus, Kathleen M; Spangler, Haley M; Povinelli, Benjamin J; Farren, Matthew R; Lee, Kelvin P; Repasky, Elizabeth A

    2014-01-01

    The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8(+) T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8(+) T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.

  18. Study of Engraftment of human cord blood cells to rescue the sublethal radiation damage mice

    International Nuclear Information System (INIS)

    Cao Xiangshan; Zou Zhenghui; Yu Fei; Zhang Zhilin; Lin Baojue

    1997-01-01

    To investigate alternative source of hematopoiesis stem cells to rescue the sublethal radiation damage (SRD) casualties. Human-umbilical cord blood hematopoietic cells were transplanted into SRD mice, the survival rate and the hematopoiesis reconstitution of bone marrow were assessed. The survival rate, in the mice transplanted and the untransplanted, were 90% and 10% respectively. Bone marrow and spleen of survival mice showed human leukocytic antigen CD45 + cells. Presence of multilineage engraftment, including myeloid and erythroid lineages, were found indicating that immature human cells home to the mouse bone marrow. conclusion: engraftment of umbilical cord blood cells is very useful to reconstitute hematopoiesis of SRD casualties. As cord blood has many advantages over bone marrow and peripheral blood, it is important in rescuing radiation accidental casualties

  19. Gall-inducing insects of deciduous and semideciduous forests in Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula M. Goetz

    2018-06-01

    Full Text Available ABSTRACT Galls are specific changes induced by insects on plant organs mainly through increases in plant cell number and/or size. Gall diversity is easy to recognize in the field because gallers are mostly species-specific, and thus each gall morphotype can be a proxy for a galling species. Insect galls are virtually unknown in Seasonal Deciduous and Semi-Deciduous forests of southern Brazil. Here, galls and host plants were surveyed between 2015 and 2017 in four forest fragments of Rio Grande do Sul State in these two vegetation types, in secondary-growth and areas under restoration. We recorded 89 gall morphotypes, with gallers belonging to Lepidoptera and Diptera, with the latter represented mainly by Cecidomyiidae. Galls were associated to 46 plant species in 27 families. Asteraceae, Piperaceae, Fabaceae, Myrtaceae and Lauraceae were the richest families in terms of galls, whilst Piper aduncum and Mikania glomerata were superhosts. Most galls occurred in leaves and shoots. The most common shapes were fusiform, globoid and lenticular. Forty-eight gall morphotype records are new for both Rio Grande do Sul and Brazil, an expressive number considering only two seasonal forest types sampled and few sampling points, showing how important surveys still are for these little know fauna both in taxonomic and ecological terms.

  20. Radicular cyst associated with deciduous molar: A report of a case with an unusual radiographic presentation

    Directory of Open Access Journals (Sweden)

    Sulabha A Narsapur

    2012-01-01

    Full Text Available Radicular cysts arising from deciduous teeth are rare. This article presents a case report of a radicular cyst associated with a mandibular deciduous second molar and with unusual radiographic findings. The second premolar was displaced to the lower border of the mandible, below the first premolar. The management comprised enucleation of the cystic sac under local anesthesia.

  1. Effect of thumus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, E.B.; Caporale, L.H.; Thorbecke, G.J.

    1974-09-01

    Nude mice, partially backcrossed to Balb/c or DBA/2, were injected iv with 5 x 10/sup 7/ thymus cells from the respective inbred strain. The response of these mice to immunization with Brucella abortus antigen was studied, with respect to both antibody production and the formation of germinal centers in their lymphoid tissues. The results were compared to those obtained with nude mice to which no thymus cells were given, as well as to Balb/c, DBA/2, or +/question litter mate controls. Nude mice formed less 19S as well as 7S antibody than did litter mate controls and completely lacked germinal centers in lymph nodes and gut-associated lymphoid tissue. Those nude mice which had been injected with thymus cells made a much better secondary response, both for 19S and for 7S antibody, and had active germinal centers in their lymph nodes as early as 3 wk after thymus cell injection. Intestinal lymphoid tissue in nude mice showed only slight reconstitution of germinal center activity several months after thymus cell injection and none at earlier times. Irradiated (3000 R) thymus cells appeared as effective as normal cells in facilitating germinal center appearance and 7S antibody production in the nude mice.

  2. Invertebrate populations of the deciduous forest: fluctuations and relations to weather

    National Research Council Canada - National Science Library

    Kendeigh, S. Charles

    1979-01-01

    The major objectives of the present study are to analyze (a) the composition and relative population sizes of the larger invertebrate fauna of relatively undisturbed, near-virgin, stands of deciduous forest, (b...

  3. Evaluation in vitro of pulpal chamber temperature of deciduous teeth during Er:YAG laser application

    International Nuclear Information System (INIS)

    Sznajder, Alexandre Joseph

    2001-01-01

    The Er:YAG laser technology has been thoroughly studied, since its invention, and has been increasingly recommended in Dentistry. However, its use in deciduous teeth has not been deserving the equivalent attention to its counterpart in permanent teeth, despite of the deciduous teething occur in a phase of life in which it has a far more importance than its substitutes. For that reason, this study aims to identify the suitable parameters to the clinic procedures in deciduous teeth, using the already established protocols in permanent teeth. The study was lead in a way to resemble the most the conditions of the clinical use of the laser. Five groups were analyzed using different energy densities and repetition rates. Each group was composed of 10 first superior right deciduous molars randomly selected. The energy densities and repetition rates used for each group were: 60 mJ 15 Hz, 250 mJ 2 Hz, 250 mJ 15 Hz, 400 mJ 6 Hz and 500 mJ 2 Hz. The results obtained allowed us to conclude that the use of the Er:YAG laser in Odontopediatrics is effective, safe and secure and the main reason for its recommendation is the low transfer of heat to the adjacent tissues of the applied surfaces. (author)

  4. Effect of premature loss of deciduous canines and molars on malocclusion of the permanent dentition.

    Science.gov (United States)

    Miyamoto, W; Chung, C S; Yee, P K

    1976-01-01

    The effect of the premature loss of deciduous canines and first and second molars on malocclusion of the permanent dentition was studied in 255 schoolchildren 11 years of age or older at the most recent examination of the permanent dentition. Malocclusion was evaluated by scoring malalignment (major and minor) and measurement of crowding in the anterior teeth. Children who had a premature loss of one or more canines or molars had a higher frequency of receiving orthodontic treatment of one type or another for the permanent dentition. The likelihood of need of treatment increased with the number of prematurely lost teeth. Children who had lost one or more deciduous teeth through age 9 had a greater than threefold increase in the frequency of orthodontic treatment relative to the control. Of those who did not receive orthodontic treatment, there was no detectable relationship of the premature loss of canines with the malalignment of permanent teeth. However, there was a significant effect of the premature extraction of molars on malalignment especially major malalignment of permanent teeth. No differences were noted in their effects between the first and second deciduous molars. Crowding of the anterior teeth was directly affected by the premature loss of deciduous canines.

  5. Investigation of modified platelet-rich plasma (mPRP in promoting the proliferation and differentiation of dental pulp stem cells from deciduous teeth

    Directory of Open Access Journals (Sweden)

    J. Wen

    2016-01-01

    Full Text Available Stem cells from human exfoliated deciduous teeth (SHEDs have great potential to treat various dental-related diseases in regenerative medicine. They are usually maintained with 10% fetal bovine serum (FBS in vitro. Modified platelet-rich plasma (mPRP would be a safe alternative to 10% FBS during SHEDs culture. Therefore, our study aimed to compare the proliferation and differentiation of SHEDs cultured in mPRP and FBS medium to explore an optimal concentration of mPRP for SHEDs maintenance. Platelets were harvested by automatic blood cell analyzer and activated by repeated liquid nitrogen freezing and thawing. The platelet-related cytokines were examined and analyzed by ELISA. SHEDs were extracted and cultured with different concentrations of mPRP or 10% FBS medium. Alkaline phosphatase (ALP activity was measured. Mineralization factors, RUNX2 and OCN, were measured by real-time PCR. SHEDs were characterized with mesenchymal stem cells (MSCs markers including vimentin, CD44, and CD105. mPRP at different concentrations (2, 5, 10, and 20% enhanced the growth of SHEDs. Moreover, mPRP significantly stimulated ALP activity and promoted expression of RUNX2 and OCN compared with 10% FBS. mPRP could efficiently facilitate proliferation and differentiation of SHEDs, and 2% mPRP would be an optimal substitute for 10% FBS during SHEDs expansion and differentiation in clinical scale manufacturing.

  6. Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells.

    Science.gov (United States)

    Karlsson, Erik A; Sheridan, Patricia A; Beck, Melinda A

    2010-09-01

    Obesity has been associated with increasing the risk for type 2 diabetes and heart disease, but its influence on the immune response to viral infection is understudied. Memory T cells generated during a primary influenza infection are important for protection against subsequent influenza exposures. Previously, we have demonstrated that diet-induced obese (DIO) mice have increased morbidity and mortality following secondary influenza infection compared with lean mice. To determine whether the problem resided in a failure to maintain functional, influenza-specific CD8(+) memory T cells, male DIO and lean mice were infected with influenza X-31. At 84 d postinfection, DIO mice had a 10% reduction in memory T cell numbers. This reduction may have resulted from significantly reduced memory T cell expression of interleukin 2 receptor beta (IL-2R beta, CD122), but not IL-7 receptor alpha (CD127), which are both required for memory cell maintenance. Peripheral leptin resistance in the DIO mice may be a contributing factor to the impairment. Indeed, leptin receptor mRNA expression was significantly reduced in the lungs of obese mice, whereas suppressor of cytokine signaling (Socs)1 and Socs3 mRNA expression were increased. It is imperative to understand how the obese state alters memory T cells, because impairment in maintenance of functional memory responses has important implications for vaccine efficacy in an obese population.

  7. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    Science.gov (United States)

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  8. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  9. Mast cell histamine-mediated transient inflammation following exposure to nickel promotes nickel allergy in mice.

    Science.gov (United States)

    Kinbara, Masayuki; Bando, Kanan; Shiraishi, Daisuke; Kuroishi, Toshinobu; Nagai, Yasuhiro; Ohtsu, Hiroshi; Takano-Yamamoto, Teruko; Sugawara, Shunji; Endo, Yasuo

    2016-06-01

    We previously reported that allergic responses to nickel (Ni) were minimal in mice deficient in the histamine-forming enzyme histidine decarboxylase (HDC-KO), suggesting an involvement of histamine in allergic responses to Ni. However, it remains unclear how histamine is involved in the process of Ni allergy. Here, we examined the role of histamine in Ni allergy using a murine model previously established by us. Mice were sensitized to Ni by intraperitoneal injection of a NiCl2 -lipopolysaccharide (LPS) mixture. Ten days later, allergic inflammation was elicited by challenging ear-pinnas intradermally with NiCl2 . Then, ear-swelling was measured. Pyrilamine (histamine H1-receptor antagonist) or cromoglicate (mast cell stabilizer) was intravenously injected 1 h before the sensitization or the challenge. In cell-transfer experiments, spleen cells from Ni-sensitized donor mice were intravenously transferred into non-sensitized recipient mice. In both sensitized and non-sensitized mice, 1 mm or more NiCl2 (injected into ear-pinnas) induced transient non-allergic inflammation (Ni-TI) with accompanying mast cell degranulation. LPS did not affect the magnitude of this Ni-TI. Pyrilamine and cromoglicate reduced either the Ni-TI or the ensuing allergic inflammation when administered before Ni-TI (at either the sensitization or elicitation step), but not if administered when the Ni-TI had subsided. Experiments on HDC-KO and H1-receptor-KO mice, and also cell-transfer experiments using these mice, demonstrated histamine's involvement in both the sensitization and elicitation steps. These results suggest that mast cell histamine-mediated Ni-TI promotes subsequent allergic inflammatory responses to Ni, raising the possibility that control of Ni-TI by drugs may be effective at preventing or reducing Ni allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Cell-intrinsic role for NF-kappa B-inducing kinase in peripheral maintenance but not thymic development of Foxp3+ regulatory T cells in mice.

    Directory of Open Access Journals (Sweden)

    Susan E Murray

    Full Text Available NF-κB inducing kinase (NIK, MAP3K14 is a key signaling molecule in non-canonical NF-κB activation, and NIK deficient mice have been instrumental in deciphering the immunologic role of this pathway. Global ablation of NIK prevents lymph node development, impairs thymic stromal development, and drastically reduces B cells. Despite altered thymic selection, T cell numbers are near normal in NIK deficient mice. The exception is CD4(+ regulatory T cells (Tregs, which are reduced in the thymus and periphery. Defects in thymic stroma are known to contribute to impaired Treg generation, but whether NIK also plays a cell intrinsic role in Tregs is unknown. Here, we compared intact mice with single and mixed BM chimeric mice to assess the intrinsic role of NIK in Treg generation and maintenance. We found that while NIK expression in stromal cells suffices for normal thymic Treg development, NIK is required cell-intrinsically to maintain peripheral Tregs. In addition, we unexpectedly discovered a cell-intrinsic role for NIK in memory phenotype conventional T cells that is masked in intact mice, but revealed in BM chimeras. These results demonstrate a novel role for NIK in peripheral regulatory and memory phenotype T cell homeostasis.

  11. Juvenile spermatogonial depletion (jsd): a genetic defect of germ cell proliferation of male mice.

    Science.gov (United States)

    Beamer, W G; Cunliffe-Beamer, T L; Shultz, K L; Langley, S H; Roderick, T H

    1988-05-01

    Adult C57BL/6J male mice homozygous for the mutant gene, juvenile spermatogonial depletion (jsd/jsd), show azoosper4ia and testes reduced to one-third normal size, but are otherwise phenotypically normal. In contrast, adult jsd/jsd females are fully fertile. This feature facilitated mapping the jsd gene to the centromeric end of chromosome 1; the gene order is jsd-Isocitrate dehydrogenase-1 (Idh-1)-Peptidase-3 (Pep-3). Analysis of testicular histology from jsd/jsd mice aged 3-10 wk revealed that these mutant mice experience one wave of spermatogenesis, but fail to continue mitotic proliferation of type A spermatogonial cells at the basement membrane. As a consequence, histological sections of testes from mutant mice aged 8-52 wk showed tubules populated by modest numbers of Sertoli cells, with only an occasional spermatogonial cell. Some sperm with normal morphology and motility were observed in epididymides of 6.5- but not in 8-wk or older mutants. Treatment with retinol failed to alter the loss of spermatogenesis in jsd/jsd mice. Analyses of serum hormones of jsd/jsd males showed that testosterone levels were normal at all ages--a finding corroborated by normal seminal vesicle and vas deferens weights, whereas serum follicle-stimulating hormone levels were significantly elevated in mutant mice from 4 to 20 wk of age. We hypothesize the jsd/jsd male may be deficient in proliferative signals from Sertoli cells that are needed for spermatogenesis.

  12. THE CELLS WITH MYCOBACTERIA IN GRANULOMATOUS AGGREGATES FROM MICE WITH LATENT TUBERCULOUS INFECTION IN EX VIVO CULTURE

    Directory of Open Access Journals (Sweden)

    E. G. Ufimtseva

    2013-01-01

    Full Text Available Abstract. The aim of this study was to obtain ex vivo monolayer culture cells migrated from individual granulomas isolated from the spleens of the Balb/c line mice through 1–2 months after BCG vaccine infection. The second goal was to evaluate influence of different types of cells in the development of granulomatic inflammation and analysis of BCG bacteria content in these cells in the latent stage of tuberculosis. Granulomas were presented by macrophages in general. The number of granulomas was varied as in one mouse as between mice. Granulomas contained also dendritic cells (in average 10% from macrophages of granulomas and lymphocytes. In some granulomas fibroblasts, neutrophils, eosiniphils, multinuclear cells of Pirogov–Langhans, megacariocytes and platelets were observed in all stages of infection. The number of these cells was also varied between granulomas. The acid staining BCG bacteria were only detected in macrophages, dendritic cells and Pirogov–Langhans cells of mice granulomas. Mice were different as by number of cells with BCG bacteria in granulomas as by number of granulomas with BCG-containing cells. The proposed model of granuloma cells of mice in ex vivo culture can be used to study interaction between host cells and mycobacteria to find new ways and methods of influence to intracellular pathogens in latent stage of tuberculosis. 

  13. Estimating wood volume from canopy area in deciduous woodlands ...

    African Journals Online (AJOL)

    In this study we tested the predictive ability of canopy area in estimating wood volume in deciduous woodlands of Zimbabwe. The study was carried out in four sites of different climatic conditions. We used regression analysis to statistically quantify the prediction of wood volume from canopy area at species and stand level ...

  14. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    Science.gov (United States)

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Taskén, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-10-01

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.

  15. Spontaneous correction of anterior crossbite by RPE anchored on deciduous teeth in the early mixed dentition.

    Science.gov (United States)

    Rosa, M; Lucchi, P; Mariani, L; Caprioglio, A

    2012-09-01

    The purpose of this study was to evaluate the effectiveness of Haas RPE anchored on deciduous teeth in the early mixed dentition, for inducing the spontaneous correction of permanent incisor's crossbite, without compliance, without post bite-plane and no involvement of the permanent teeth. The sample group comprised 50 consecutive patients (mean age 8y 5m, SD 2y 1m), 31 males, 19 females. They showed a cross-bite affecting one or more permanent incisors, for a total of 70 teeth. The patients were treated with Haas RPE appliance anchored on second deciduous molars and bonded on deciduous canines. No direct forces were applied on the permanent teeth. Anterior crossbite self-corrected 'spontaneously' in 84% of the cases. Lateral incisors had a higher rate of self-correction than central incisors. All hyper-divergent subjects showed a spontaneous crossbite self-correction. The early maxillary expansion by Haas RPE anchored on deciduous teeth is an efficient and effective procedure to induce the anterior crossbite self-correction in the early mixed dentition without the need of a bite-plane, no involvement of the permanent teeth and without compliance.

  16. Correlation of cytotoxicity with elimination of iodine-125 from nude mice inoculated with prelabeled human melanoma cells

    International Nuclear Information System (INIS)

    Lockshin, A.; Giovanella, B.C.; Quian, C.; Mendoza, J.T.; Vardeman, D.M.; Stehlin, J.S. Jr.

    1984-01-01

    BRO human melanoma cells were prelabeled in vitro with [125I]5-iodo-2'-deoxyuridine ([125I]IdUrd) and inoculated into NIH-II nude mice ip, im, sc, or iv. Saline or diphtheria toxin (DT), which is selectively toxic to human cells compared to those of mice, was injected, and the loss of 125I from the animals was monitored daily with a whole-body gamma scintillation detector. For most of the inoculation sites DT accelerated the rate of 125I excretion and in all cases was cytotoxic for the inoculated cells as determined by host survival or measurement of visible tumor growth. Differences between the rates of 125I loss for DT-treated mice compared to untreated mice were most evident for cells inoculated ip or im. These results indicate that [125I]IdUrd prelabeling of human tumor cells inoculated in nude mice offers a rapid method for determination of cytotoxicity in vivo

  17. Human immature dental pulp stem cells (hIDPSCs), their application to cell therapy and bioengineering: an analysis by systematic revision of the last decade of literature.

    Science.gov (United States)

    de Souza, Priscilla Vianna; Alves, Fabiana Bucholdz Teixeira; Costa Ayub, Cristina Lucia Sant'Ana; de Miranda Soares, Maria Albertina; Gomes, Jose Rosa

    2013-12-01

    During recent years, attention has been given to the potential of therapeutic approaches using stem cells obtained from dental pulp tissue. The aim of this study, therefore, was to give an overview of the papers produced during the last 10 years that have described the use of stem cells obtained from human deciduous teeth in cell therapy or bioengineering. The PubMed database was investigated from January 2002 until July 2011 and the papers published during this period were analyzed according to criteria previously established, using the methodology of systematic review. The measurements were done using "stem cell" as the primary keyword, and "human deciduous teeth dental pulp cell" and "human exfoliated deciduous teeth" as the secondary keywords. Four hundred and seventy-five papers were found. The first screening resulted in 276 papers, from which 84 papers were selected. However, only 11 of them attained the aim proposed in our approach. There were few scientific studies related to direct therapeutic application using stem cells of human deciduous teeth and none of them had been applied to humans. However, the results indicated important and promising applications of the pulp stem-cells in cell therapy and bioengineering as demonstrated by studies in animal models of muscular dystrophy, Parkison's disease, and lupus erythematosus. Copyright © 2013 Wiley Periodicals, Inc.

  18. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice

    Science.gov (United States)

    Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng

    2016-01-01

    Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709

  19. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice.

    Directory of Open Access Journals (Sweden)

    Lan Luo

    Full Text Available Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs, thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks.

  20. The number of preproghrelin mRNA expressing cells is increased in mice with activity-based anorexia.

    Science.gov (United States)

    François, Marie; Barde, Swapnali; Achamrah, Najate; Breton, Jonathan; do Rego, Jean-Claude; Coëffier, Moïse; Hökfelt, Tomas; Déchelotte, Pierre; Fetissov, Sergueï O

    2015-06-01

    Plasma levels of ghrelin, an orexigenic peptide, are increased during conditions of chronic starvation, such as in patients with anorexia nervosa. However, it is not known whether such increase can be related to the number of preproghrelin mRNA-expressing cells in the stomach, and if chronic starvation may activate a tentative central ghrelin production. In this work, in situ hybridization technique was used to analyze the presence and number of preproghrelin mRNA-expressing cells in the stomach and the hypothalamus of mice with activity-based anorexia (ABA) induced by the combination of running wheel activity with progressive, during 10 days, feeding-time restriction (FTR) and compared with sedentary FTR, ABA pair-fed (PF) and ad libitum-fed control mice. All food-restricted mice lost more than 20% of body weight. Body weight loss was similar in ABA and PF mice, but it was more pronounced than in FTR mice. Food intake was also lower in ABA than in FTR mice. Preproghrelin mRNA-expressing cells in the stomach were increased proportionally to the body weight loss in all food-restricted groups with the highest number in ABA mice. No preproghrelin mRNA-producing cells were detectable in the hypothalamus of either control or food-restricted mice. Thus, the increased number of gastric preproghrelin mRNA-producing cells during chronic starvation proportionally to the body weight loss and reduced food intake may underlie increased plasma ghrelin. Hyperactivity-induced anorexia appears to further increase the number of preproghrelin mRNA-producing cells in the stomach. No evidence was found for ghrelin expression in the hypothalamus, not even in any of the present experimental models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    Science.gov (United States)

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  2. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  3. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  4. Cold hypersensitivity increases with age in mice with sickle cell disease

    Science.gov (United States)

    Zappia, Katherine J.; Garrison, Sheldon R.; Hillery, Cheryl A.; Stucky, Cheryl L.

    2014-01-01

    Sickle cell disease (SCD) is associated with acute vaso-occlusive crises that trigger painful episodes and frequently involves ongoing, chronic pain. Additionally, both humans and mice with SCD experience heighted cold sensitivity. However, studies have not addressed the mechanism(s) underlying the cold sensitization, nor its progression with age. Here we measured thermotaxis behavior in young and aged mice with severe SCD. Sickle mice had a marked increase in cold sensitivity measured by a cold preference test. Further, cold hypersensitivity worsened with advanced age. We assessed whether enhanced peripheral input contributes to the chronic cold pain behavior by recording from C fibers, many of which are cold-sensitive, in skin-nerve preparations. We observed that C fibers from sickle mice displayed a shift to warmer (more sensitive) cold-detection thresholds. To address mechanisms underlying the cold sensitization in primary afferent neurons, we quantified mRNA expression levels for ion channels thought to be involved in cold detection. These included the Transient Receptor Potential Melastatin 8 (Trpm8) and TRP Ankyrin 1 (Trpa1) channels, as well as the two-pore domain potassium channels, TREK-1 (Kcnk2), TREK-2 (Kcnk4), and TRAAK (Kcnk10). Surprisingly, transcript expression levels of all of these channels were comparable between sickle and control mice. We further examined transcript expression of 83 additional pain-related genes and found increased mRNA levels for endothelin 1 and tachykinin receptor 1. These factors may contribute to hypersensitivity in sickle mice at both the afferent and behavioral levels. Sensory neurons from sickle cell disease mice are sensitized to cold, mirroring behavioral observations, and have increased expression of endothelin 1 and tachykinin receptor 1. PMID:24953902

  5. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  6. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    Science.gov (United States)

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  7. Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Bone marrow microenvironment (niche plays essential roles in the fate of hematopoietic stem cells (HSCs. Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP, and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. OBJECTIVE: To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice. METHODS: Hematopoietic cell subpopulations in bone marrow (BM and peripheral blood (PB from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS(+ transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS, cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. RESULTS: The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. CONCLUSIONS: Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors

  8. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.

    Science.gov (United States)

    Filice, Federica; Celio, Marco R; Babalian, Alexandre; Blum, Walter; Szabolcsi, Viktoria

    2017-10-15

    Aging-associated ependymal-cell pathologies can manifest as ventricular gliosis, ventricle enlargement, or ventricle stenosis. Ventricle stenosis and fusion of the lateral ventricle (LV) walls is associated with a massive decline of the proliferative capacities of the stem cell niche in the affected subventricular zone (SVZ) in aging mice. We examined the brains of adult C57BL/6 mice and found that ependymal cells located in the adhesions of the medial and lateral walls of the rostral LVs upregulated parvalbumin (PV) and displayed reactive phenotype, similarly to injury-reactive ependymal cells. However, PV+ ependymal cells in the LV-wall adhesions, unlike injury-reactive ones, did not express glial fibrillary acidic protein. S100B+/PV+ ependymal cells found in younger mice diminished in the LV-wall adhesions throughout aging. We found that periventricular PV-immunofluorescence showed positive correlation to the grade of LV stenosis in nonaged mice (wall adhesions and LV stenosis was significantly lower in mid-aged (>10-month-old) PV-knock out (PV-KO) mice. This suggests an involvement of PV+ ependymal cells in aging-associated ventricle stenosis. Additionally, we observed a time-shift in microglial activation in the LV-wall adhesions between age-grouped PV-KO and wild-type mice, suggesting a delay in microglial activation when PV is absent from ependymal cells. Our findings implicate that compromised ependymal cells of the adhering ependymal layers upregulate PV and display phenotype shift to "reactive" ependymal cells in aging-related ventricle stenosis; moreover, they also contribute to the progression of LV-wall fusion associated with a decline of the affected SVZ-stem cell niche in aged mice. © 2017 Wiley Periodicals, Inc.

  9. Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice.

    Science.gov (United States)

    Carraresi, Laura; Martinelli, Rosanna; Vannoni, Alessandro; Riccio, Massimo; Dembic, Maja; Tripodi, Sergio; Cintorino, Marcella; Santi, Spartaco; Bigliardi, Elisa; Carmellini, Mario; Rossini, Mara

    2006-01-08

    We have established two murine cell lines derived from Small Cell Lung Carcinomas (SCLCs) developed by HPV-E6/E7 transgenic mice. These cells named PPAP-9 and PPAP-10 were isolated from mice bearing tumors, 9 and 10 months old, respectively. The cells, 5 microm in diameter, express HPV oncoproteins and sustain tumor formation after subcutaneous injection in syngenic mice. A detailed analysis indicated the epithelial origin and the neuroendocrine differentiation of these cells. We showed by confocal immunofluorescence the expression of the epithelial marker cytokeratin 5, whose gene promoter was used to direct the expression of HPV E6/E. Cells express several neuroendocrine markers such as CGRP, MAP-2, Ash1, CgrA, Scg2. The neuroendocrine differentiation of these cells was further confirmed by electron microscopy demonstrating neuropeptides secreting granules in their cytoplasm. Furthermore, in agreement with the altered expression observed in the majority of human SCLC we showed in these cells the absence of both p53 and pRB and a dramatic reduction in the expression of Caveolin-1.

  10. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  11. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mariela Andrea Bilotas

    Full Text Available To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation.Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid.Pregnancy rate (i.e. pregnant mice/N decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions.Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  12. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Science.gov (United States)

    Bilotas, Mariela Andrea; Olivares, Carla Noemí; Ricci, Analía Gabriela; Baston, Juan Ignacio; Bengochea, Tatiana Soledad; Meresman, Gabriela Fabiana; Barañao, Rosa Inés

    2015-01-01

    To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation. Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid. Pregnancy rate (i.e. pregnant mice/N) decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions. Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  13. Enrichment for Th1 cells in the Mel-14+ CD4+ T cell fraction in aged mice

    NARCIS (Netherlands)

    Dobber, R.; Tielemans, M.; Nagelkerken, L.

    1995-01-01

    CD4+ T cells from young and aged mice were sorted into Mel-14+ cells which are regarded as naive cells and Mel-14- cells which are regarded as memory cells. These subsets were stimulated in short-time cultures with anti-CD3 or anti-CD3/anti-CD28 in order to determine the presence of Th1 and/or Th2

  14. Regulatory T cell activity in immunosuppresive mice model of pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Li, Jun-Lu; Chen, Ting-Sang; Yuan, Cong-Cong; Zhao, Guo-Qiang; Xu, Min; Li, Xiao-Yan; Cao, Jie; Xing, Li-Hua

    2017-08-01

    Pseudomonas aeruginosa (PA) pneumonia is a refractory, even lethal complication in immunosuppressive individuals and immune disturbances may promote the pathological process. We aimed to investigate the regulatory T (Treg) cell activity in an immunosuppressive mice model of PA pneumonia by estimating levels of main transcription factor and the main effector of Treg cells, i.e., Forkhead box protein 3 (FOXP3) and interleukine-10 (IL-10). Seventy-two BALB/c mice were divided into four groups randomly: control (A), PA pneumonia (B), immunosuppression (C) and immunosuppression with PA pneumonia (D). Mice were sacrificed at 4, 8 and 24 h after establishing experimental models. The pathological changes of lung tissue were graded, and the FOXP3 mRNA and serum IL-10 levels were detected. Histological analysis of lung tissues showed there were no significantly pathological changes in groups A and C, but significantly pathological changes were found in groups B and D, especially in group D at 8 h (Ppneumonia in immunosuppressive individuals worsens rapidly, which may be associated with Treg cells function disturbance. And Treg cells may be promising as adjuvant therapeutics for PA pneumonia in immunosuppressive individuals.

  15. Transplantation of bone marrow cells into lethally irradiated mice

    International Nuclear Information System (INIS)

    Viktora, L.; Hermanova, E.

    1978-01-01

    Morphological changes were studied of megakaryocytes in the bone marrow and spleen of lethally irradiated mice (0.2 C/kg) after transplantation of living bone marrow cells. It was observed that functional trombopoietic megakaryocytes occur from day 15 after transplantation and that functional active megakaryocytes predominate in bone marrow and spleen from day 20. In addition, other types of cells, primarily granulocytes, were detected in some megakaryocytes. (author)

  16. Plant Identification Characteristics for Deciduous Trees & Shrubs. Lesson Plans.

    Science.gov (United States)

    Burkholder, Kathy

    This manual contains a group of lesson plans designed for use with a slide series (not included here). Its purpose is to introduce students to the basic concepts and terminology used in the identification of deciduous trees and shrubs. The manual is composed of 12 lesson plans. The first lesson is an introduction to plant identification. The…

  17. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  18. Correction of anemia in uremic mice by genetically modified peritoneal mesothelial cells.

    Science.gov (United States)

    Einbinder, Tom; Sufaro, Yuval; Yusim, Igor; Byk, Gerardo; Passlick-Deetjen, Jutta; Chaimovitz, Cidio; Douvdevani, Amos

    2003-06-01

    During peritoneal dialysis, mesothelial cells become detached from the peritoneum and accumulate in the dialysate. Our aim was to evaluate the potential of peritoneal effluent (PF)-derived human peritoneal mesothelial cells (HPMC) as target for gene therapy. We used erythropoietin (EPO) as our target gene. Various extracellular matrixes (ECM) were tested for optimal adhesion and growth of HPMC. The EPO gene was introduced to mouse peritoneal mesothelial cells (MPMC) and HPMC by transfection or retroviral transduction. EPO secretion from PMC was measured by enzyme-linked immunosorbent assay (ELISA) and by the TF-1 cell proliferation assay. We performed intraperitoneal or intramuscular transplantations of the genetically modified cells into regular or 5/6 nephrectomized Balb/c mice and nude mice. Finally, we measured serum EPO and hematocrit levels. ECM-coated plates provided up to sixfold increase in the efficiency of PMC isolation from PF. Gelatin coated dishes (20 microg/cm2) were found optimal for isolation of PF-HPMC. RPR-120535 liposome was found to be best for PMC transduction. In vitro studies showed EPO secretion from modified HPMC over 6 months. Intraperitoneal transplantation aided with collagen matrix was the most effective. EPO, in MPMC transplanted mice, was detected up to 3 weeks (peak at 13 +/- 1 mIU/mL), and anemia of uremic mice was corrected (35.3 +/- 0.9 mIU/mL to 41.9 +/- 1.1 mIU/mL). PF-HPMC can be considered as an appropriate target for gene therapy since these cells can be efficiently isolated, modified, and transplanted. Nevertheless, implantation techniques in the peritoneum should be directed at obtaining longer duration of transgene expression in vivo, and means should be developed for enabling regulated expression of the gene.

  19. [Sensitivity of the splenic immunocompetent cells of mice with different genotypes to the action of alkylating agents].

    Science.gov (United States)

    Pevnitskiĭ, L A; Telegin, L Iu; Ir, K N

    1985-08-01

    It has been established in experiments in vitro that splenocytes of DBA/2GSto mice are more sensitive to the immunosuppressant action of the alkylating agents (cyclophosphamide, sarcolysine and thiophosphamide) than splenocytes of BALB/cGLacSto mice. Splenocytes of C3H/SnRap mice exhibit and intermediate type of sensitivity. T-lymphocytes of the spleen of BALB/cGLacSto and DBA/2GSto mice are more sensitive in vitro to the action of active metabolites of cyclophosphamide as compared to B-lymphocytes, with both types of the cells of DBA/2GSto mice being affected to a greater extent than the cells of BALB/cGLacSto mice.

  20. Progenitor cell populations in the periodontal ligament of mice

    International Nuclear Information System (INIS)

    McCulloch, C.A.

    1985-01-01

    Stem cells in a variety of renewal tissues exhibit a slow rate of cell proliferation. The periodontal ligament of mouse molars was examined for the presence of slowly cycling progenitor cells to provide evidence for the existence of stem cells in this tissue. A pulse injection of 3 H-thymidine was administered and mice were sacrificed between 1 hour and 14 days after injection. Analysis of radioautographs using percentage of labeled cells and grain counts demonstrated that a population of label-retaining cells within 10 micron of blood vessels traversed the cell cycle more slowly than proliferating cells located greater than 10 micron from blood vessels. These data suggest that there is a slowly dividing population of progenitor cells in paravascular sites in mouse molar periodontal ligament which may be stem cells

  1. A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Kaneko, Izumi; Zhang, Min; Iwanaga, Shiroh; Yuda, Masao; Tsuji, Moriya

    2017-01-01

    A CD1d-binding invariant natural killer T (iNKT)-cell stimulatory glycolipid, namely 7DW8-5, is shown to enhance the efficacy of radiation-attenuated sporozoites (RAS)-based malaria vaccine in mice. In the current study, we aim to determine whether 7DW8-5 can display a potent adjuvant effect in human immune system (HIS) mice. HIS-A2/hCD1d mice, which possess both functional human iNKT cells and CD8+ T cells, were generated by the transduction of NSG mice with adeno-associated virus serotype 9 expressing genes that encode human CD1d molecules and HLA-A*0201, followed by the engraftment of human hematopoietic stem cells. The magnitudes of human iNKT-cell response against 7DW8-5 and HLA-A*0201-restricted human CD8+ T-cell response against a human malaria antigen in HIS-A2/hCD1d mice were determined by using human CD1d tetramer and human HLA-A*0201 tetramer, respectively. We found that 7DW8-5 stimulates human iNKT cells in HIS-A2/hCD1d mice, as well as those derived from HIS-A2/hCD1d mice in vitro. We also found that 7DW8-5 significantly increases the level of a human malarial antigen-specific HLA-A*0201-restricted human CD8+ T-cell response in HIS-A2/hCD1d mice. Our study indicates that 7DW8-5 can display a potent adjuvant effect on RAS vaccine-induced anti-malarial immunity by augmenting malaria-specific human CD8+ T-cell response.

  2. Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chainnull Mice

    Directory of Open Access Journals (Sweden)

    Shanbao Cai

    2011-01-01

    Full Text Available Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chainnull mice to support long-term engraftment of MGMTP140K-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was investigated. Mice were transplanted with MGMTP140K-transduced CD34+ cells and transduced cells selected in vivo. At 4 months after transplantation, levels of human-cell engraftment, and MGMTP140K-transduced cells in the bone marrow of NOD/SCID versus NSG mice varied slightly in vehicle- and drug-treated mice. In secondary transplants, although equal numbers of MGMTP140K-transduced human cells were transplanted, engraftment was significantly higher in NOD/SCID/γ chainnull mice compared to NOD/SCID mice at 2 months after transplantation. These data indicate that reconstitution of NOD/SCID/γ chainnull mice with human-hematopoietic cells represents a more promising model in which to test for genotoxicity and efficacy of strategies that focus on manipulation of long-term repopulating cells of human origin.

  3. Cell fusion phenomena detected after in utero transplantation of Ds-red-harboring porcine amniotic fluid stem cells into EGFP transgenic mice.

    Science.gov (United States)

    Peng, Shao-Yu; Chen, Yu-Hsu; Chou, Chih-Jen; Wang, Yao-Horng; Lee, Hung-Maan; Cheng, Winston Teng-Kui; Shaw, S W Steven; Wu, Shinn-Chih

    2014-05-01

    Amniotic fluid stem cells (AFSCs) are derived from the amniotic fluid of the developing fetus and can give rise to diverse differentiated cells of ectoderm, mesoderm, and endoderm lineages. Intrauterine transplantation is an approach used to cure inherited genetic fetal defects during the gestation period of pregnant dams. Certain disease such as osteogenesis imperfecta was successfully treated in affected fetal mice using this method. However, the donor cell destiny remains uncertain. The purpose of this study was to investigate the biodistribution and cell fate of Ds-red-harboring porcine AFSCs (Ds-red pAFSCs) after intrauterine transplantation into enhanced green fluorescent protein-harboring fetuses of pregnant mice. Pregnant mice (12.5 days) underwent open laparotomy with intrauterine pAFSC transplantation (5 × 10(4) cells per pup) into fetal peritoneal cavity. Three weeks after birth, the mice were sacrificed. Several samples from different organs were obtained for histological examination and flow cytometric analysis. Ds-red pAFSCs migrated most frequently into the intestines. Furthermore, enhanced green fluorescent protein and red fluorescent protein signals were co-expressed in the intestine and liver cells via immunohistochemistry studies. In utero xenotransplantation of pAFSCs fused with recipient intestinal cells instead of differentiating or maintaining the undifferentiated status in the tissue. © 2014 John Wiley & Sons, Ltd.

  4. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  5. HSC extrinsic sex-related and intrinsic autoimmune disease-related human B-cell variation is recapitulated in humanized mice.

    Science.gov (United States)

    Borsotti, Chiara; Danzl, Nichole M; Nauman, Grace; Hölzl, Markus A; French, Clare; Chavez, Estefania; Khosravi-Maharlooei, Mohsen; Glauzy, Salome; Delmotte, Fabien R; Meffre, Eric; Savage, David G; Campbell, Sean R; Goland, Robin; Greenberg, Ellen; Bi, Jing; Satwani, Prakash; Yang, Suxiao; Bathon, Joan; Winchester, Robert; Sykes, Megan

    2017-10-24

    B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.

  6. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice

    Science.gov (United States)

    Jaiswal, Smita; Pazoles, Pamela; Woda, Marcia; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2012-01-01

    Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγnull mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections. PMID:22384859

  7. Inhibition of UDP-glucosylceramide synthase in mice prevents Gaucher disease-associated B-cell malignancy.

    Science.gov (United States)

    Pavlova, Elena V; Archer, Joy; Wang, Susan; Dekker, Nick; Aerts, Johannes Mfg; Karlsson, Stefan; Cox, Timothy M

    2015-01-01

    Clonal B-cell proliferation is a frequent manifestation of Gaucher disease - a sphingolipidosis associated with a high risk of multiple myeloma and non-Hodgkin lymphoma. Gaucher disease is caused by genetic deficiency of acid β-glucosidase, the natural substrates of which (β-d-glucosylceramide and β-d-glucosylsphingosine) accumulate, principally in macrophages. Mice with inducible deficiency of β-glucosidase [Gba(tm1Karl/tm1Karl)Tg(MX1-cre)1Cgn/0] serve as an authentic model of human Gaucher disease; we have recently reported clonal B-cell proliferation accompanied by monoclonal serum paraproteins and cognate tumours in these animals. To explore the relationship between B-cell malignancy and the biochemical defect, we treated Gaucher mice with eliglustat tartrate (GENZ 112638), a potent and selective inhibitor of the first committed step in glycosphingolipid biosynthesis. Twenty-two Gaucher mice received 300 mg/kg of GENZ 112638 daily for 3-10 months from 6 weeks of age. Plasma concentrations of β-d-glucosylceramide and the unacylated glycosphingolipid, β-d-glucosylsphingosine, declined. After administration of GENZ 112638 to Gaucher mice for 3-10 months, serum paraproteins were not detected and there was a striking reduction in the malignant lymphoproliferation: neither lymphomas nor plasmacytomas were found in animals that had received the investigational agent. In contrast, 14 out of 60 Gaucher mice without GENZ 112638 treatment developed these tumours; monoclonal paraproteins were detected in plasma from 18 of the 44 age-matched mice with Gaucher disease that had not received GENZ 112638. Long-term inhibition of glycosphingolipid biosynthesis suppresses the development of spontaneous B-cell lymphoma and myeloma in Gaucher mice. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. Natural killer T (NKT cells accelerate Shiga toxin type 2 (Stx2 pathology in mice

    Directory of Open Access Journals (Sweden)

    Fumiko eObata

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is a leading cause of childhood renal disease He-molytic Uremic Syndrome (HUS. The involvement of renal cytokines and chemokines is sus-pected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO mice. In CD1KO mice, which lack nat-ural killer T (NKT cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  9. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice.

    Science.gov (United States)

    Obata, Fumiko; Subrahmanyam, Priyanka B; Vozenilek, Aimee E; Hippler, Lauren M; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M; Kolling, Glynis L; Latinovic, Olga; Webb, Tonya J

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  10. CD90-positive cells, an additional cell population, produce laminin α2 upon transplantation to dy3k/dy3k mice

    International Nuclear Information System (INIS)

    Fukada, So-ichiro; Yamamoto, Yukiko; Segawa, Masashi; Sakamoto, Kenta; Nakajima, Mari; Sato, Masaki; Morikawa, Daisuke; Uezumi, Akiyoshi; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Tsujikawa, Kazutake; Yamamoto, Hiroshi

    2008-01-01

    Laminin α2 is a component of skeletal and cardiac muscle basal lamina. A defect of the laminin α2 chain leads to severe congenital muscular dystrophy (MDC1A) in humans and dy/dy mice. Myogenic cells including myoblasts, myotubes, and myofibers in skeletal muscle are a possible source of the laminin α2 chain, and myogenic cells are thus proposed as a cell source for congenital muscular dystrophy therapy. However, we observed production of laminin α2 in non-myogenic cells of normal mice, and we could enrich these laminin α2-producing cells in CD90 + cell fractions. Intriguingly, the number of CD90 + cells increased dramatically during skeletal muscle regeneration in mice. This fraction did not include myogenic cells but exhibited a fibroblast-like phenotype. Moreover, these cells were resident in skeletal muscle, not derived from bone marrow. Finally, the production of laminin α2 in CD90 + cells was not dependent on fusion with myogenic cells. Thus, CD90 + cells are a newly identified additional cell fraction that increased during skeletal muscle regeneration in vivo and could be another cell source for therapy for lama2-deficient muscular dystrophy

  11. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes

    Science.gov (United States)

    Zhang, Mingfeng; Lin, Qing; Qi, Tong; Wang, Tiankun; Chen, Ching-Cheng; Riggs, Arthur D.; Zeng, Defu

    2016-01-01

    We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9+ (Sox9+) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9+ ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9+ ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300–450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9+ ductal cell differentiation into β cells in adult mice. PMID:26733677

  12. Nicaraven attenuates radiation-induced injury in hematopoietic stem/progenitor cells in mice.

    Directory of Open Access Journals (Sweden)

    Miho Kawakatsu

    Full Text Available Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy, and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2'-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.

  13. Origanum vulgare leaf extract protects mice bone marrow cells against ionizing radiation

    Directory of Open Access Journals (Sweden)

    Reza Ghasemnezhad Targhi

    2016-11-01

    Full Text Available Objective: Ionizing radiation produces free radicals which induce DNA damage and cell death. Origanum vulgare leaf extract (OVLE is a natural compound and its capability of scavenging free radicals and its antioxidant activity have been demonstrated by many researchers. In this study, using micronucleus assay, radioprotective effect of OVLE against clastogenic and cytotoxic effect of gamma irradiation has been investigated in mice bone marrow cells. Materials and Methods: OVLE was injected intraperitoneally to the BALB/c mice 1hr prior to gamma irradiation (3Gy at the doses of 100 and 200 mg/kg. Twenty four hours after irradiation or treatment, animals were killed and smears were prepared from the bone marrow cells. The slides were stained with May Grunwald–Giemsa method and analyzed microscopically. The frequency of micronucleated polychromatic erythrocytes (MnPCEs, micronucleated normochromatic erythrocyte (MnNCEs and cell proliferation ratio PCE/PCE+NCE (polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte were calculated. Results: The results showed that gamma irradiation (3Gy increased the frequency of MnPCEs, MnNCEs and  reduced the PCE/PCE+NCE ratio in mice bone marrow compared to the non-irradiated control group (p< 0.0001. Injection of OVLE significantly reduced the frequency of MnPCEs (p< 0.0001 and MnNCEs (p< 0.05 and increased the PCE/PCE+NCE ratio as compared to the irradiated control group (p< 0.05. Conclusion: It seems that OVLE with its antioxidant properties and its capability of scavenging free radicals and reactive oxygen species can reduce the cytotoxic effects of gamma irradiation in mice bone marrow cells.

  14. Radiosensitivity of spermatogenous epithelium stem cells of mice of different strains and age

    International Nuclear Information System (INIS)

    Konoplyannikova, O.A.; Konoplyannikov, A.G.

    1988-01-01

    In experiments on CBA and BALB/c male mices (3 months of age) and F 1 (CBAxC57BL/6) hybrides (at the age of 3, 12, and 24 months) a difference was noted in the radiosensitivity of spermatogenous epithelium stem cells displayed by the changes in their colony-forming ability to testicular tubules 42 days following local 60 Co-γ-irradiation. The older the hybrid mice the smaller was the number of spermatogenous epithelium stem cells

  15. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  16. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice.

    Science.gov (United States)

    Terraube, V; Pendu, R; Baruch, D; Gebbink, M F B G; Meyer, D; Lenting, P J; Denis, C V

    2006-03-01

    The key role played by von Willebrand factor (VWF) in platelet adhesion suggests a potential implication in various pathologies, where this process is involved. In cancer metastasis development, tumor cells interact with platelets and the vessel wall to extravasate from the circulation. As a potential mediator of platelet-tumor cell interactions, VWF could influence this early step of tumor spread and therefore play a role in cancer metastasis. To investigate whether VWF is involved in metastasis development. In a first step, we characterized the interaction between murine melanoma cells B16-BL6 and VWF in vitro. In a second step, an experimental metastasis model was used to compare the formation of pulmonary metastatic foci in C57BL/6 wild-type and VWF-null mice following the injection of B16-BL6 cells or Lewis lung carcinoma cells. In vitro adhesion assays revealed that VWF is able to promote a dose-dependent adhesion of B16-BL6 cells via its Arg-Gly-Asp (RGD) sequence. In the experimental metastasis model, we found a significant increase in the number of pulmonary metastatic foci in VWF-null mice compared with the wild-type mice, a phenotype that could be corrected by restoring VWF plasma levels. We also showed that increased survival of the tumor cells in the lungs during the first 24 h in the absence of VWF was the cause of this increased metastasis. These findings suggest that VWF plays a protective role against tumor cell dissemination in vivo. Underlying mechanisms remain to be investigated.

  17. The study of barium concentration in deciduous teeth, impacted teeth, and facial bones of Polish residents.

    Science.gov (United States)

    Fischer, Agnieszka; Malara, Piotr; Wiechuła, Danuta

    2014-10-01

    The study determines the concentration of Ba in mineralized tissues of deciduous teeth, permanent impacted teeth, and facial bones. The study covers the population of children and adults (aged 6-78) living in an industrial area of Poland. Teeth were analyzed in whole, with no division into dentine and enamel. Facial bones and teeth were subjected to the following preparation: washing, drying, grinding in a porcelain mortar, sample weighing (about 0.2 g), and microwave mineralization with spectrally pure nitric acid. The aim of the study was to determinate the concentration of Ba in deciduous teeth, impacted permanent teeth, and facial bones. The concentration of barium in samples was determined over the ICP OES method. The Ba concentration in the tested bone tissues amounted to 2.2-15.5 μg/g (6.6 μg/g ± 3.9). The highest concentration of Ba was present in deciduous teeth (10.5 μg/g), followed by facial bones (5.2 μg/g), and impacted teeth (4.3 μg/g) (ANOVA Kruskal-Wallis rank test, p = 0.0002). In bone tissue and impacted teeth, Ba concentration increased with age. In deciduous teeth, the level of Ba decreased with children's age.

  18. Possible reduction of hepatoma formation by Smmu 7721 cells in SCID mice and metastasis formation by B16F10 melanoma cells in C57BL/6 mice by Agaricus blazei murill extract.

    Science.gov (United States)

    Wu, Ming-Fang; Lu, Hsu-Feng; Hsu, Yu-Ming; Tang, Ming-Chu; Chen, Hsueh-Chin; Lee, Ching-Sung; Yang, Yi-Yuan; Yeh, Ming-Yang; Chung, Hsiung-Kwang; Huang, Yi-Ping; Wu, Chih-Chung; Chung, Jing-Gung

    2011-01-01

    Agaricus blazei Murill extract (ABM) has been reported to possess antitumor effects. In this study, the role of ABM in tumor growth and metastasis in vivo was evaluated in experimental Smmu 7721 hepatoma cells in severe combined immunodeficiency (SCID) mice and B16F10 melanoma cells lung metastasis in C57BL/6 mice. For the tumor growth model, the size of the liver tumor mass was about 10 mm to 20 mm in the control group. In comparison with the control group, the tumor mass seem to grow slowly with ABM treatment, especially at the high dose. For the tumor metastasis model, after a six-week treatment, the survival rates of B6 mice were 0%, 30%, 10% and 50% for control group, low, median and high concentration ABM treatment groups, respectively. The survival rate showed that pretreatment of C57BL/6 (B6) mice with ABM lengthened their lifespan after tumor cell inoculation, which supports the notion that ABM successfully reduced lung metastasis formation by B16F10 melanoma cells. The treatment effect was dependent on the concentration of ABM for tumor growth and metastasis in these models.

  19. The use of ebselen for radioprotection in cultured cells and mice.

    Science.gov (United States)

    Tak, Jean Kyoung; Park, Jeen-Woo

    2009-04-15

    Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in cell death. Therefore, compounds that control the level of ROS may confer radioprotective effects. Ebselen, a seleno-organic compound, has been shown to protect against cell injury caused by ROS. The objective of this study was to examine the effects of ebselen on radiation-dependent toxicity. We investigated the protective role of ebselen against ionizing radiation in U937 cells and mice. Upon exposure to 20 Gy of gamma-irradiation, there was a distinct difference between untreated cells and the cells pretreated with 5 microM ebselen for 2 h with respect to viability, cellular redox status, and oxidative damage to cells. When cells were exposed to 2 Gy of gamma-irradiation, there was a distinct difference between the untreated cells and the cells pretreated with ebselen with respect to apoptotic features and mitochondrial function. Ebselen administration for 14 days at a daily dosage of 10 mg/kg provided substantial protection against killing and oxidative damage to mice exposed to whole-body irradiation. These data indicate that ebselen may have great potential as a new class of in vivo, non-sulfur-containing radiation protector.

  20. CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells.

    Science.gov (United States)

    Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang

    2017-08-01

    Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice.

  1. Regulation of immune responses in SJL and F1 hybrid mice by gamma-irradiated syngeneic lymphoma cells

    International Nuclear Information System (INIS)

    Katz, I.R.; Nagase, F.; Bell, M.K.; Ponzio, N.M.; Thorbecke, G.J.

    1984-01-01

    Syngeneic mixed lymphocyte-stimulating la+ lymphomas of SJL mice [reticulum cell sarcoma(s) (RCS)] were found to modulate immune responses in vivo. Simultaneous injection of 2 X 10(7) gamma-irradiated or glutaraldehyde-fixed RCS cells with the antigen sheep red blood cells (SRBC) or 2,4,6-trinitrophenol (TNP)-Ficoll markedly suppressed the subsequent plaque-forming cell response in the spleen. The suppression of the anti-SRBC response was prevented by pretreatment of the mice with cyclophosphamide, whereas the suppression of the anti-TNP-Ficoll response was not affected. RCS injection induced high interferon serum titers within 24 hours after injection, which were not prevented by pretreatment with cyclophosphamide. Injection of gamma-irradiated RCS cells (gamma-RCS) or RCS cell extract 2 days prior to antigen enhanced the anti-SRBC but markedly suppressed the anti- TNP-Ficoll response. Injection of RCS both on day -2 and day 0 enhanced the anti-SRBC response. SJL mice 8-9 months of age showed much less or no suppression when gamma-RCS cells were injected on day 0. Certain F1 hybrids of SJL also showed the gamma-RCS-induced suppression of the anti-SRBC response. Suppression was seen in SJL X BALB.B but not in SJL X BALB/c mice and in SJL X A.TH but not in SJL X A.TL mice, suggesting an I-region effect. F1 hybrids of SJL by B10 background mice showed no significant suppression. Enhancement of the anti-SRBC response by prior injection of gamma-RCS was seen in all F1 hybrid mice examined

  2. PCR-based identification of selected pathogens associated with endodontic infections in deciduous and permanent teeth.

    Science.gov (United States)

    Cogulu, Dilsah; Uzel, Atac; Oncag, Ozant; Eronat, Cemal

    2008-09-01

    The aim of the present study was to evaluate the presence of the selected pathogens in samples from deciduous and permanent tooth root canals by using PCR method and to determine the association of these organisms with clinical symptoms. A total of 145 children, 5 to 13 years old, were involved in this study. The presence of selected pathogens (Actinomyces israelii, Candida albicans, Enterococcus faecalis, Fusobacterium nucleatum, Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus intermedius, Treponema denticola, Parvimonas micra, Tannerella forsythensis, Enterococcus faecium, Prevotella melaninogenica) in infected root canals was studied using PCR. T. denticola (P = .012, .02) and E. faecalis (P = .012, .04) were highly associated with periapical radiolucency and previous pain, while P. gingivalis was associated with tenderness to percussion in both deciduous and permanent teeth (P = .01, .015). The results of the present study confirm that certain species of microorganisms are associated with clinical signs and symptoms of endodontic disease in both deciduous and permanent teeth.

  3. Adipose Stem Cell Therapy Mitigates Chronic Pancreatitis via Differentiation into Acinar-like Cells in Mice.

    Science.gov (United States)

    Sun, Zhen; Gou, Wenyu; Kim, Do-Sung; Dong, Xiao; Strange, Charlie; Tan, Yu; Adams, David B; Wang, Hongjun

    2017-11-01

    The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 10 5 or 1 × 10 6 GFP + ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP + ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP + ASCs migrated to pancreas and differentiated into amylase + cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase + cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  5. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice.

    Science.gov (United States)

    Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G

    2004-02-01

    Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.

  6. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    Science.gov (United States)

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Discriminating modes of toxic action in mice using toxicity in BALB/c mouse fibroblast (3T3) cells.

    Science.gov (United States)

    Huang, Tao; Yan, Lichen; Zheng, Shanshan; Wang, Yue; Wang, Xiaohong; Fan, Lingyun; Li, Chao; Zhao, Yuanhui; Martyniuk, Christopher J

    2017-12-01

    The objective of this study was to determine whether toxicity in mouse fibroblast cells (3T3 cells) could predict toxicity in mice. Synthesized data on toxicity was subjected to regression analysis and it was observed that relationship of toxicities between mice and 3T3 cells was not strong (R 2  = 0.41). Inclusion of molecular descriptors (e.g. ionization, pKa) improved the regression to R 2  = 0.56, indicating that this relationship is influenced by kinetic processes of chemicals or specific toxic mechanisms associated to the compounds. However, to determine if we were able to discriminate modes of action (MOAs) in mice using the toxicities generated from 3T3 cells, compounds were first classified into "baseline" and "reactive" guided by the toxic ratio (TR) for each compound in mice. Sequence, binomial and recursive partitioning analyses provided strong predictions of MOAs in mice based upon toxicities in 3T3 cells. The correct classification of MOAs based on these methods was 86%. Nearly all the baseline compounds predicted from toxicities in 3T3 cells were identified as baseline compounds from the TR in mice. The incorrect assignment of MOAs for some compounds is hypothesized to be due to experimental uncertainty that exists in toxicity assays for both mice and 3T3 cells. Conversely, lack of assignment can also arise because some reactive compounds have MOAs that are different in mice compared to 3T3 cells. The methods developed here are novel and contribute to efforts to reduce animal numbers in toxicity tests that are used to evaluate risks associated with organic pollutants in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice

    Science.gov (United States)

    Artesi, Maria; Jalinot, Pierre

    2018-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. PMID:29566098

  9. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.

    Science.gov (United States)

    Pérès, Eléonore; Blin, Juliana; Ricci, Emiliano P; Artesi, Maria; Hahaut, Vincent; Van den Broeke, Anne; Corbin, Antoine; Gazzolo, Louis; Ratner, Lee; Jalinot, Pierre; Duc Dodon, Madeleine

    2018-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization.

  10. Protective effects of SGLT2 inhibitor luseogliflozin on pancreatic β-cells in obese type 2 diabetic db/db mice

    Energy Technology Data Exchange (ETDEWEB)

    Okauchi, Seizo, E-mail: okauchi@med.kawasaki-m.ac.jp; Shimoda, Masashi; Obata, Atsushi; Kimura, Tomohiko; Hirukawa, Hidenori; Kohara, Kenji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki

    2016-02-12

    It is well known that Sodium-Glucose Co-transporter 2 (SGLT2) inhibitors, new hypoglycemic agents, improve glycemic control by increasing urine glucose excretion, but it remained unclear how they exert protective effects on pancreatic β-cells. In this study, we examined the effects of SGLT2 inhibitor luseogliflozin on β-cell function and mass using obese type 2 diabetic db/db mice. Ten-week-old male diabetic db/db mice were treated with luseogliflozin 0.0025% or 0.01% in chow (Luse 0.0025% or Luse 0.01%) or vehicle (control) for 4 weeks. Urinary glucose excretion was increased in Luse groups (0.0025% and 0.01%) compared to control mice 3 days after the intervention. Fasting blood glucose levels were significantly lower in mice treated with Luse compared to control mice. Fasting serum insulin concentrations were significantly higher in mice treated with Luse compared to control mice. Triglyceride levels tended to be lower in Luse groups compared to control mice. In immunohistochemical study using pancreas tissues, β-cell mass was larger in Luse groups compared to control group which was due to the increase of β-cell proliferation and decrease of β-cell apoptosis. Furthermore, in gene analysis using isolated islets, insulin 1, insulin 2, MafA, PDX-1 and GLUT2 gene expression levels were significantly higher in Luse groups compared to control group. In contrast, expression levels of fibrosis-related gene such as TGFβ, fibronectin, collagen I and collagen III were significantly lower in Luse groups. In conclusion, SGLT2 inhibitor luseogliflozin ameliorates glycemic control and thus exerts protective effects on pancreatic β-cell mass and function. - Highlights: • SGLT2 inhibitor luseogliflozin ameliorates glycemic control in db/db mice. • Luseogliflozin increases β-cell proliferation and decreases β-cell apoptosis. • Luseogliflozin preserves various β-cell-specific gene expression. • Luseogliflozin decreases various fibrosis-related factors in db

  11. Protective effects of SGLT2 inhibitor luseogliflozin on pancreatic β-cells in obese type 2 diabetic db/db mice

    International Nuclear Information System (INIS)

    Okauchi, Seizo; Shimoda, Masashi; Obata, Atsushi; Kimura, Tomohiko; Hirukawa, Hidenori; Kohara, Kenji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki

    2016-01-01

    It is well known that Sodium-Glucose Co-transporter 2 (SGLT2) inhibitors, new hypoglycemic agents, improve glycemic control by increasing urine glucose excretion, but it remained unclear how they exert protective effects on pancreatic β-cells. In this study, we examined the effects of SGLT2 inhibitor luseogliflozin on β-cell function and mass using obese type 2 diabetic db/db mice. Ten-week-old male diabetic db/db mice were treated with luseogliflozin 0.0025% or 0.01% in chow (Luse 0.0025% or Luse 0.01%) or vehicle (control) for 4 weeks. Urinary glucose excretion was increased in Luse groups (0.0025% and 0.01%) compared to control mice 3 days after the intervention. Fasting blood glucose levels were significantly lower in mice treated with Luse compared to control mice. Fasting serum insulin concentrations were significantly higher in mice treated with Luse compared to control mice. Triglyceride levels tended to be lower in Luse groups compared to control mice. In immunohistochemical study using pancreas tissues, β-cell mass was larger in Luse groups compared to control group which was due to the increase of β-cell proliferation and decrease of β-cell apoptosis. Furthermore, in gene analysis using isolated islets, insulin 1, insulin 2, MafA, PDX-1 and GLUT2 gene expression levels were significantly higher in Luse groups compared to control group. In contrast, expression levels of fibrosis-related gene such as TGFβ, fibronectin, collagen I and collagen III were significantly lower in Luse groups. In conclusion, SGLT2 inhibitor luseogliflozin ameliorates glycemic control and thus exerts protective effects on pancreatic β-cell mass and function. - Highlights: • SGLT2 inhibitor luseogliflozin ameliorates glycemic control in db/db mice. • Luseogliflozin increases β-cell proliferation and decreases β-cell apoptosis. • Luseogliflozin preserves various β-cell-specific gene expression. • Luseogliflozin decreases various fibrosis-related factors in db

  12. Timing of Histologic Progression from Chorio-Deciduitis to Chorio-Deciduo-Amnionitis in the Setting of Preterm Labor and Preterm Premature Rupture of Membranes with Sterile Amniotic Fluid.

    Science.gov (United States)

    Park, Chan-Wook; Park, Joong Shin; Norwitz, Errol R; Moon, Kyung Chul; Jun, Jong Kwan; Yoon, Bo Hyun

    2015-01-01

    Histologic chorio-deciduitis and chorio-deciduo-amnionitis (amnionitis) in extra-placental membranes are known to represent the early and advanced stages of ascending intra-uterine infection. However, there are no data in humans about the time required for chorio-deciduitis to develop and for chorio-deciduitis without amnionitis to progress to chorio-deciduitis with amnionitis, and the effect of prolongation of pregnancy on the development of chorio-deciduitis and amnionitis in patients with preterm labor and intact membranes (PTL) and preterm premature rupture of membranes (preterm-PROM). We examined these issues in this study. The study population consisted of 289 women who delivered preterm (133 cases with PTL, and 156 cases with preterm-PROM) and who had sterile amniotic fluid (AF) defined as a negative AF culture and the absence of inflammation as evidenced by a matrix metalloproteinase-8 (MMP-8) level membranes (i.e., inflammation-free extra-placental membranes, choroi-deciduitis only, and chorio-deciduitis with amnionitis) in patients with PTL and preterm-PROM. Amniocentesis-to-delivery interval was longer in cases of chorio-deciduitis with amnionitis than in cases of chorio-deciduitis only in both PTL (median [interquartile-range (IQR)]; 645.4 [319.5] vs. 113.9 [526.9] hours; P = 0.005) and preterm-PROM (131.3 [135.4] vs. 95.2 [140.5] hours; Pmembranes. Moreover, prolongation of pregnancy is an independent predictor of the development of both chorio-deciduitis and amnionitis in cases of PTL with sterile AF.

  13. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.; Haenseler, E.; Leist, T.; Cerny, A.; Hengartner, H.; Althage, A.

    1986-01-01

    A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection into the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens

  14. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh, E-mail: Chyuk@cshs.org

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.

  15. Cigarette Smoke-Induced Cell Death Causes Persistent Olfactory Dysfunction in Aged Mice

    Directory of Open Access Journals (Sweden)

    Rumi Ueha

    2018-06-01

    Full Text Available Introduction: Exposure to cigarette smoke is a cause of olfactory dysfunction. We previously reported that in young mice, cigarette smoke damaged olfactory progenitors and decreased mature olfactory receptor neurons (ORNs, then, mature ORNs gradually recovered after smoking cessation. However, in aged populations, the target cells in ORNs by cigarette smoke, the underlying molecular mechanisms by which cigarette smoke impairs the regenerative ORNs, and the degree of ORN regeneration after smoking cessation remain unclear.Objectives: To explore the effects of cigarette smoke on the ORN cell system using an aged mouse model of smoking, and to investigate the extent to which smoke-induced damage to ORNs recovers following cessation of exposure to cigarette smoke in aged mice.Methods: We intranasally administered a cigarette smoke solution (CSS to 16-month-old male mice over 24 days, then examined ORN existence, cell survival, changes of inflammatory cytokines in the olfactory epithelium (OE, and olfaction using histological analyses, gene analyses and olfactory habituation/dishabituation tests.Results: CSS administration reduced the number of mature ORNs in the OE and induced olfactory dysfunction. These changes coincided with an increase in the number of apoptotic cells and Tumor necrosis factor (TNF expression and a decrease in Il6 expression. Notably, the reduction in mature ORNs did not recover even on day 28 after cessation of treatment with CSS, resulting in persistent olfactory dysfunction.Conclusion: In aged mice, by increasing ORN death, CSS exposure could eventually overwhelm the regenerative capacity of the OE, resulting in continued reduction in the number of mature ORNs and olfactory dysfunction.

  16. CD4(+) T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Cardin, R D; Branum, K C

    1999-01-01

    The lack of B cells and antibody does not prevent mice from dealing effectively with a pathogenic gamma-herpesvirus. Both CD4(+) and CD8(+) T cells contribute to the control of virus replication in the respiratory tract, with the depletion of either lymphocyte subset leading to increased titers...... for direct interaction with virus-infected targets expressing MHC class II glycoproteins, suggesting that the IFN-gamma produced by these lymphocytes is functioning at short range. The numbers of latently infected cells in the spleens of carrier mice are also significantly increased by the concurrent...

  17. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice

    International Nuclear Information System (INIS)

    Jerrells, T.R.; Palmer, B.A.; Osterman, J.V.

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice

  18. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice.

    Science.gov (United States)

    Seidel, Daniel; Eickmeier, Ira; Kühl, Anja A; Hamann, Alf; Loddenkemper, Christoph; Schott, Eckart

    2014-02-01

    The pathogenesis of primary sclerosing cholangitis (PSC) remains poorly understood. Since PSC predominantly occurs in patients with inflammatory bowel disease, autoimmunity triggered by activated T cells migrating from the gut to the liver is a possible mechanism. We hypothesized that T cells primed in the gut-associated lymphoid tissue (GALT) by a specific antigen migrate to the liver and cause cholangitis when they recognize the same antigen on cholangiocytes. We induced ovalbumin-dependent colitis in mice that express ovalbumin in biliary epithelia (ASBT-OVA mice) and crossed ASBT-OVA mice with mice that express ovalbumin in enterocytes (iFABP-OVA mice). We analyzed T-cell activation in the GALT and crossreactivity to the same antigen in the liver as well as the effects of colitis per se on antigen-presentation and T-cell activation in the liver. Intrarectal application of ovalbumin followed by transfer of CD8 OT-I T cells led to antigen-dependent colitis. CD8 T cells primed in the GALT acquired effector function and the capability to migrate to the liver, where they caused cholangitis in a strictly antigen-dependent manner. Likewise, cholangitis developed in mice expressing ovalbumin simultaneously in biliary epithelia and enterocytes after transfer of OT-I T cells. Dextran sodium sulfate colitis led to increased levels of inflammatory cytokines in the portal venous blood, induced activation of resident liver dendritic cells, and promoted the induction of T-cell-dependent cholangitis. Our data strengthen the notion that immune-mediated cholangitis is caused by T cells primed in the GALT and provide the first link between colitis and cholangitis in an antigen-dependent mouse model. © 2013 by the American Association for the Study of Liver Diseases.

  19. Osteoclasts derive from hematopoietic stem cells according to marker, giant lysosomes of beige mice

    International Nuclear Information System (INIS)

    Ash, P.; Loutit, J.F.; Townsend, K.M.

    1981-01-01

    To ascertain the origin of multinucleated osteoclasts from hematopoietic stem cells, giant lysosomes peculiar to cells of beige mice (bg bg) were used as marker cells of that provenance. Radiation chimeras were established reciprocally between bg bg mice and osteopetrotic mi mi mice with defective osteoclasts. As a result, all the derivative cells of the hematopoietic stem cell would depend on the donor's cell line, whereas osteogenesis would remain the province of the host. It was affirmed in the chimeras mi mi/bg bg that the osteopetrosis was cured within six weeks. Thereafter the definitive osteoclasts of the chimeras contained giant lysosomes attributable to the beige cell line. However, the cure was well advanced before donor osteoclasts were prominent, for which several reasons are offered. In the mouse chimeras, bg bg/mi mi, there was a delay of some six weeks before osteopetrosis became evident, histologically before radiologically, at the major metaphyseal growth centers. During the period one to two months after establishment, osteoclasts appeared to be a mixture of two cell lines according to quantitative assessments for giant lysosomes. Assessments consisted of measurements of the percentage area of osteoclasts occupied by lysosomes over 1 micrometer diameter. The means were 0.018% +/- 0.008% for nonbeige stock and 2.09% +/- 0.58% for beige stock

  20. Mapping the T helper cell response to acid α-glucosidase in Pompe mice.

    Science.gov (United States)

    Nayak, Sushrusha; Sivakumar, Ramya; Cao, Ou; Daniell, Henry; Byrne, Barry J; Herzog, Roland W

    2012-06-01

    Pompe disease is a neuromuscular disease caused by an inherited deficiency of the lysosomal enzyme acid α-glucosidase (GAA). The resulting accumulation of glycogen causes muscle weakness with the severe form of the disease resulting in death by cardiorespiratory failure in the first year of life. The only available treatment, enzyme replacement therapy (ERT) with recombinant GAA (rhGAA), is severely hampered by antibody responses that reduce efficacy and cause immunotoxicities. Currently, Pompe mice represent the only pre-clinical model for development of new treatments and for immunological studies. While antibody formation following ERT in this model has been described, the underlying T cell response has not been studied. In order to define the T helper response to rhGAA in Pompe mice, immunodominant CD4(+) T cell epitopes were mapped in GAA(-/-) 129SVE mice using ELISpot. Additionally, cytokine responses and antibody formation against rhGAA during ERT were measured. Among the three CD4(+) T cell epitopes identified, only epitope IFLGPEPKSVVQ, predicted to be the strongest MHC II binder, consistently contributed to IL-4 production. Frequencies of IL-4 producing T cells were considerably higher than those of IL-17 or IFN-γ producing cells, suggesting a predominantly Th2 cell mediated response. This is further supported by IgG1 being the prevalent antibody subclass against rhGAA during ERT and consistent with prior reports on IgE formation and anaphylaxis in this model. These results will facilitate mechanistic studies of the immune response to rhGAA in Pompe mice during development of new therapies and tolerance protocols. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Phenotypic characterization of thymic prelymphoma cells of B10 mice treated with split-dose irradiation

    International Nuclear Information System (INIS)

    Muto, M.; Kubo, E.; Kamisaku, H.; Sado, T.

    1990-01-01

    Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells

  2. Immunity to Babesia in mice I. Adoptive transfer of immunity to Babesia rodhaini with immune spleen cells and the effect of irradiation on the protection of immune mice

    NARCIS (Netherlands)

    Kuil, H.; Zivkovic, D.; Seinen, W.; Albers-van Bemmel, C.M.G.; Speksnijder, J.E.

    1984-01-01

    Immunisation of Balb/c mice against Babesia rodhaini by an amicarbalide- controlled infection resulted in a solid immunity which lasted for 216 days. With spleen cells of immune mice protection could be transferred both to naive mice pretreated with cyclophosphamide. Treatment of naive mice with

  3. Genetic transformation of deciduous fruit trees conferring resistance against diseases

    International Nuclear Information System (INIS)

    Mansvelt, E.L.; Glyn-Woods, T.; Watts, L.; Rabie, A.; Appel, M.; Bellstedt, D.U.

    1998-01-01

    Long breeding cycles make cultivar development a lengthy process in deciduous fruit species. Gene transfer is, accordingly, a goal with significant commercial value. In many plant species, especially in woody plants, a prerequisite for genetic engineering is the ability to regenerate plants from transformed cells. Development of single cell regeneration is the first step towards exploration of gene transfer techniques. In this investigation media for plum and apple leaf disk regeneration were developed. Transformation experiments were performed. The vector EHA105 containing the gus-intron gene was found to be effective for gene transfer. Induction of the virG genes with aceto-syringone did not enhance transformation. Cefotaxime that was supplemented in the plum selection medium to suppress the Agrobacterium vector seriously inhibited leaf disk regeneration. However, in applies it was not detrimental. With further apple transformation experiments, factors such as preculturing, age of leaves, sucrose and cefotaxime concentrations did not increase the transformation efficiency of the marker gene. The harpin protein, essential for the pathogenicity of Pseudomonas syringae pv. syringae which incites bacterial canker of stone fruit, ws amplified and cloned into an expression vector. The fusion protein was purified. This will be used in future studies to elucidate the host-pathogen interaction, and to identify antibacterial genes. (author)

  4. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  5. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  6. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    The effects of estradiol and tamoxifen (TAM) on the estrogen-dependent human breast cancer cell line MCF-7 grown in vitro and in nude mice were compared. The effect on growth was determined by cell number in vitro and by tumor growth curves in nude mice. The effects on the cell cycle kinetics were...... determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... in the G1 phase from 60% to 75%. In nude mice, MCF-7 only formed tumors in estradiol-supplemented mice. No differences were observed in growth and cell kinetics between 0.1 and 1.0 mg of estradiol. Daily i.p. injections of TAM resulted in tumor growth inhibition with shrinkage of tumors. The flow...

  7. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    International Nuclear Information System (INIS)

    Ogawa, Rei; Mizuno, Hiroshi; Watanabe, Atsushi; Migita, Makoto; Hyakusoku, Hiko; Shimada, Takashi

    2004-01-01

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  8. The decidua of preeclamptic-like BPH/5 mice exhibits an exaggerated inflammatory response during early pregnancy.

    Science.gov (United States)

    Heyward, C Y; Sones, J L; Lob, H E; Yuen, L C; Abbott, K E; Huang, W; Begun, Z R; Butler, S D; August, A; Leifer, C A; Davisson, R L

    2017-04-01

    Preeclampsia is a devastating complication of pregnancy characterized by late-gestation hypertension and proteinuria. Because the only definitive treatment is delivery of the fetus and placenta, preeclampsia contributes to increased morbidity and mortality of both mother and fetus. The BPH/5 mouse model, which spontaneously develops a syndrome strikingly similar to preeclampsia, displays excessive inflammation and suppression of inflammation improves pregnancy outcomes. During early pregnancy, decidual macrophages play an important role in promoting maternal tolerance to fetal antigens and regulating tissue remodeling, two functions that are critical for normal placental development. BPH/5 pregnancies are characterized by abnormal placentation; therefore, we hypothesized that macrophage localization and/or function is altered during early pregnancy at the site of placental formation (the decidua) compared to C57BL/6 controls. At early gestation time points, before the onset of maternal hypertension or proteinuria, there was a reduction in the number of macrophages in BPH/5 decidua and a concomitant increase in activated T cells compared with C57BL/6. BPH/5 decidua also exhibited decreased expression of the immunosuppressive cytokine, IL-10, and increased expression of pro-inflammatory, inducible nitric oxide synthase. Together, these data suggest that a reduction in decidual macrophages during pregnancy is associated with immune activation in BPH/5 mice, inadequate placental development and may contribute to adverse pregnancy outcomes in this model. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Distribution and trends of mercury in deciduous tree cores

    International Nuclear Information System (INIS)

    Siwik, Eden I.H.; Campbell, Linda M.; Mierle, Gregory

    2010-01-01

    The distribution of total mercury (THg) within common deciduous trees and the applicability of tree cores as biomonitors of historical environmental THg trends were assessed for both contaminated and reference sites around Kingston, Ontario. Samples were collected from Acer spp., Quercus spp. Populus spp. and Salix spp. Bark and wood THg concentrations were found to be highly correlated whereas soil and wood THg concentrations were not. There were no temporal relationships for THg in dated tree rings corresponding with any other known environmental Hg trends. The shoreline speciess, Populus and Salix spp., had the greatest bark and wood Hg concentrations reaching 18 ng/g, significantly higher than for inland trees Quercus and Acer spp. with maximum values of 7 and 1.2 ng/g for bark and wood respectively. While tree cores cannot be reliably used as temporal THg biomonitors, there is promise for tree species such as Populus spp and Salix spp as spatial indicators of local long-term Hg contamination. - Total mercury trends in several deciduous trees did not follow expected environmental trends. Shoreline species (willow and popular) had higher wood THg than inland species (oak and maple).

  10. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    International Nuclear Information System (INIS)

    Calder, W.J.; Lifferth, G.; Clair, S.B.S.; Moritz, M.A.

    2010-01-01

    Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly un investigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  11. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    Directory of Open Access Journals (Sweden)

    W. John Calder

    2010-01-01

    Full Text Available Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly uninvestigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  12. The affect of bone marrow cell biomechanical characteristics to 6 Gy γ irradiation-injured mice

    International Nuclear Information System (INIS)

    Pu Xiaoyun; Chen Xiaoli; Pan Jing; Li Zhaoquan; Deng Jun; Huang Hui; Ye Yong

    2004-01-01

    Objective: To explore the change of bone marrow cell biomechanical characteristics in radiation-injured mice and the influencing factors. Methods: Male Kunming mice were exposed to total body irradiation of 6 Gy γ-rays from a 60 Co source. Electrophoresis, DPH probe-micropore filter, and adhesion rate methods were used to detect cell surface charge, membrane microviscosity, cell deformability, and cell adhesion, respectively. Results: The deformability, adhesiveness and cell surface charges of bone marrow cells (including hematopoietic cells and stromal cells) were dramatically decreased, but membrane microviscosity was obviously increased after irradiation on 1 d, 3 d and 7 d. Conclusion: The biomechanical characteristics of bone marrow cells are obviously changed after radiation injury. It might be one of the reasons of hematopoietic failure after irradiation. (authors)

  13. Suppressive effects of Lactobacillus casei cells, a bacterial immunostimulant, on the incidence of spontaneous thymic lymphoma in AKR mice.

    Science.gov (United States)

    Watanabe, T

    1996-06-01

    The mean survival age of female AKR/J mice was significantly prolonged, the enlargement of thymus was markedly suppressed, and the proliferation of ecotropic and recombinant murine leukemia viruses (MuLV) was markedly inhibited when 8-week-old female AKR/J mice were injected intraperitoneally (i.p.) with heat-killed Lactobacillus casei cells twice weekly for 8 weeks. In contrast, such actions of heat-killed L. casei cells were not seen in 20-week-old female AKR/J mice. The leukemogenic activity of the cell-free extract of thymus from adult female AKR/J mice in newborn female AKR/J mice was drastically reduced by i.p. treatment with heat-killed L. casei cells. The difference in adjuvant effectiveness of heat-killed L. casei cells on 8- and 20-week-old animals may be dependent on the difference in the enhancing activity of the cell-mediated immune systems between the groups induced by heat-killed L. casei cells, and, as a result, on the difference in the degree of proliferation of ecotropic and recombinant MuLV in thymus, which consequently causes thymic lymphoma.

  14. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. [Argonne National Lab., IL (United States). Environmental Research Div.; Iltis, H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Botany

    1998-12-31

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollen of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.

  15. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Magdalena Radwanska

    2007-05-01

    Full Text Available Effector responses induced by polarized CD4+ T helper 2 (Th2 cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha. IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(creIL-4Ralpha(-/lox deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(creIL-4Ralpha(-/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(creIL-4Ralpha(-/lox mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L

  16. Estradiol-induced, endothelial progenitor cell-mediated neovascularization in male mice with hind-limb ischemia

    NARCIS (Netherlands)

    Ruifrok, Willem-Peter T.; de Boer, Rudolf A.; Iwakura, Atsushi; Silver, Marcy; Kusano, Kengo; Tio, Rene A.; Losordo, Douglas W.

    We investigated whether administration of estradiol to male mice augments mobilization of bone marrow-derived endothelial progenitor cells (EPC) and incorporation into foci of neovascularization after hind-limb ischemia, thereby contributing to blood flow restoration. Mice were randomized and

  17. Mast cell-deficient Kit(W-sh) "Sash" mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells.

    Science.gov (United States)

    Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael

    2013-06-01

    Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.

  18. γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα.

    Directory of Open Access Journals (Sweden)

    Joel A Mathews

    Full Text Available Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24-72 h. We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ-/- to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ-/- mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ-/- mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ-/- versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.

  19. EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies.

    Science.gov (United States)

    Niss Arfelt, Kristine; Barington, Line; Benned-Jensen, Tau; Kubale, Valentina; Kovalchuk, Alexander L; Daugvilaite, Viktorija; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup; Egerod, Kristoffer L; Bassi, Maria R; Spiess, Katja; Schwartz, Thue W; Wang, Hongsheng; Morse, Herbert C; Holst, Peter J; Rosenkilde, Mette M

    2017-02-16

    Human and mouse chronic lymphocytic leukemia (CLL) develops from CD5 + B cells that in mice and macaques are known to define the distinct B1a B-cell lineage. B1a cells are characterized by lack of germinal center (GC) development, and the B1a cell population is increased in mice with reduced GC formation. As a major mediator of follicular B-cell migration, the G protein-coupled receptor Epstein-Barr virus-induced gene 2 ( EBI2 or GPR183 ) directs B-cell migration in the lymphoid follicles in response to its endogenous ligands, oxysterols. Thus, upregulation of EBI2 drives the B cells toward the extrafollicular area, whereas downregulation is essential for GC formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to CLL. Here, we demonstrate that B-cell-targeted expression of human EBI2 (hEBI2) in mice reduces GC-dependent immune responses, reduces total immunoglobulin M (IgM) and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5 + B1a B-cell subset (present as early as 4 days after birth), late-onset lymphoid cancer development, and premature death. These findings are highly similar to those observed in CLL patients and identify EBI2 as a promoter of B-cell malignancies.

  20. Antigen-presenting cells represent targets for R5 HIV-1 infection in the first trimester pregnancy uterine mucosa.

    Directory of Open Access Journals (Sweden)

    Romain Marlin

    Full Text Available BACKGROUND: During the first trimester of pregnancy, HIV-1 mother-to-child transmission is relatively rare despite the permissivity of placental cells to cell-to-cell HIV-1 infection. The placenta interacts directly with maternal uterine cells (decidual cells but the physiological role of the decidua in the control of HIV-1 transmission and whether decidua could be a source of infected cells is unknown. METHODOLOGY/PRINCIPAL FINDINGS: To answer to this question, decidual mononuclear cells were exposed to HIV-1 in vitro. Decidual cells were shown to be more susceptible to infection by an R5 HIV-1, as compared to an X4 HIV-1. Infected cells were identified by flow cytometry analysis. The results showed that CD14(+ cells were the main targets of HIV-1 infection in the decidua. These infected CD14(+ cells expressed DC-SIGN, CD11b, CD11c, the Fc gamma receptor CD16, CD32 and CD64, classical MHC class-I and class-II and maturation and activation molecules CD83, CD80 and CD86. The permissivity of decidual tissue was also evaluated by histoculture. Decidual tissue was not infected by X4 HIV-1 but was permissive to R5 HIV-1. Different profiles of infection were observed depending on tissue localization. CONCLUSIONS/SIGNIFICANCE: The presence of HIV-1 target cells in the decidua in vitro and the low rate of in utero mother-to-child transmission during the first trimester of pregnancy suggest that a natural control occurs in vivo limiting cell-to-cell infection of the placenta and consequently infection of the fetus.

  1. Immunological network activation by low-dose rate irradiation. Analysis of cell populations and cell surface molecules in whole body irradiated mice

    International Nuclear Information System (INIS)

    Ina, Yasuhiro; Sakai, Kazuo

    2003-01-01

    The effects of low-dose rate whole body irradiation on biodefense and immunological systems were investigated using female C57BL/6 (B6) mice. These B6 mice were exposed continuously to γ-rays from a 137 Cs source in the long-term low-dose rate irradiation facility at CRIEPI for 0 - 12 weeks at a dose rate of 0.95 mGy/hr. In the bone marrow, thymus, spleen, lymph nodes, and peripheral blood of the irradiated mice, changes in cell populations and cell surface molecules were examined. The cell surface functional molecules (CD3, CD4, CD8, CD19, CD45R/B220, ICAM-1, Fas, NK-1.1, CXCR4, and CCR5), and activation molecules (THAM, CD28, CD40, CD44H, CD70, B7-1, B7-2, OX-40 antigen, CTLA-4, CD30 ligand, and CD40 ligand) were analyzed by flow cytometry. The percentage of CD4 + T cells and cell surface CD8 molecule expressions on the CD8 + T cells increased significantly to 120-130% after 3 weeks of the irradiation, compared to non-irradiated control mice. On the other hand, the percentage of CD45R/B220 + CD40 + B cells, which is one of the immunological markers of inflammation, infection, tumor, and autoimmune disease, decreased significantly to 80-90% between the 3rd to 5th week of irradiation. There was no significant difference in other cell population rates and cell surface molecule expression. Furthermore, abnormal T cells bearing mutated T cell receptors induced by high-dose rate irradiation were not observed throughout this study. These results suggest that low-dose rate irradiation activates the immunological status of the whole body. (author)

  2. [Unerupted first deciduous molar located higher to the first premolar: a case report].

    Science.gov (United States)

    Zhan, Y; Liu, H

    2017-02-18

    Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar process to its functional position in the oral cavity. The process of tooth eruption can be divided into different phases: pre-eruptive bone stage, alveolar bone stage, mucosal stage, preocclusal stage, occlusal stage and maturation stage. Any disturbance in these phases can lead to eruptive anomalies. The incidence of unerupted teeth is usually higher among permanent teeth than among deciduous ones. Of the primary teeth reported as unerupted, second deciduous molars are the teeth most frequently involved, followed by primary central incisors. At present almost no coverage is seen about the impaction of the first deciduous molar. In this case, a 4-year-old boy who presented with an impacted left maxillary first deciduous molar came to the Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology. This tooth, located higher to the left maxillary first premolar, was well near to the maxillary sinus. The family and medical histories were noncontributory and his physical findings were within normal limits. The mother was reported as having experienced no illness or other complications and taken no medications during pregnancy. His clinical extraoral examination was noncontributory. His clinical intra-oral examination revealed that the maxillary left first primary molar was not present. No enlargement of the area was apparent visually or on palpation. The remaining primary dentition was well aligned and in good condition. His oral hygiene was good, although there were incipient occlusal carious lesions in the mandibular second primary molars. There was no history or evidence of dental trauma. A diagnosis of a left maxillary first deciduous molar was made on the basis of the clinical and radiographic evidence. Numerous local etiologic factors have been described for impacted teeth. These include anomalous teeth, malposition, fusion with

  3. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice

    Directory of Open Access Journals (Sweden)

    Vainchenker William

    2007-01-01

    Full Text Available Abstract Background Bone marrow -derived cells (BMDCs can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH remains unknown. Objectives We investigated the effect of BMDCs on PH induced in mice by either monocrotaline or exposure to chronic hypoxia. Methods Intravenous administration of the active monocrotaline metabolite (monocrotaline pyrrole, MCTp to C57BL/6 mice induced PH within 15 days, due to remodeling of small distal vessels. Three days after the MCTp injection, the mice were injected with BMDCs harvested from femurs and tibias of donor mice treated with 5-fluorouracil (3.5 mg IP/animal to deplete mature cells and to allow proliferation of progenitor cells. Results BMDCs significantly attenuated PH as assessed by reductions in right ventricular systolic pressure (20 ± 1 mmHg vs. 27 ± 1 mmHg, P ≤ 0.01, right ventricle weight/left ventricle+septum weight ratio (0.29 ± 0.02 vs. 0.36 ± 0.01, P ≤ 0.03, and percentage of muscularized vessels (26.4% vs. 33.5%, P ≤ 0.05, compared to control animals treated with irradiated BMDCs. Tracking cells from constitutive GFP-expressing male donor mice with anti-GFP antibodies or chromosome Y level measurement by quantitative real-time PCR showed BMDCs in the lung. In contrast, chronically hypoxic mice subjected to the same procedure failed to show improvement in PH. Conclusion These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia.

  4. Mechanism of stimulation of antibody-forming ability of bone marrow cells of mice immunized with staphylococci

    International Nuclear Information System (INIS)

    Lyashchenko, K.P.; Golovanova, T.A.; Bobrovnik, S.A.

    1987-01-01

    The purpose of this paper is to study the formation of the ability of the bone marrow cells of mice immunized with staphylococci to create antibodies to this antigen. The research includes a study of the effect of the irradiation in vitro of the bone marrow cells on their stimulating activity and the role played by the thymus and spleen in the formation of this activity. Experiments were carried out on CBA and BALB/c mice as well as on mice with congenital absence of the thymus. The bone marrow cell donors were immunized intravenously with staphylococcal corpuscular antigen. Receptor mice were irradiated with cobalt 60 gamma radiation and injected intravenously with bone marrow cell extract from the immunized donors and were immunized with the antigen. Spleen cells were labelled with chromium 51 and injected intravenously into intact syngeneic recipients together with as well as without the antigen. Three days later the level of radioactivity in the spleen and femora of the animals was determined by scintillation counting. Total radioactivity of the bone marrow was calculated. Irradiation of the bone marrow cells of immunized animals was shown to abolish their stimulating effect on the humoral immune response of intact syngeneic recipients to the staphylococcal corpuscular antigen. Consequently, the immunostimulating effect of bone marrow cells is realized through the proliferating and radiosensitive lymphoid cells rather than through the macrophages

  5. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2010-12-01

    Full Text Available Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females.

  6. Functional role of the herbaceous layer in eastern deciduous forest

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Barton D. Clinton; Brian D. Kloeppel

    2014-01-01

    The importance of the herbaceous layer in regulating ecosystem processes in deciduous forests is generally unknown. We use a manipulative study in a rich, mesophytic cove forest in the southern Appalachians to test the following hypotheses: (i) the herbaceous functional group (HFG) in mesophytic coves accelerates carbon and nutrient cycling, (ii) high litter quality...

  7. Effect of Chinese Herbs Bu-shen on PRLR, PR, ER mRNA of Decidue in Bromocriptine-induced Hypoprolactin Rat Abortion Model

    Institute of Scientific and Technical Information of China (English)

    Kun-ming LI; Sui-qi GUI; Li-hui JIANG; Li-min LU

    2003-01-01

    Objective To explore the effect of Chinese herbs on PRLR, PR, ER mRNA of decidue in Bromocriptine-induced hypoprolactin abortion rat model from gene transcription level, and observe the changes of blood PRL, P, E2.Methods RT-PCR method was taken to analyses the differences of PRLR, PR, ER mRNA in decidue between model group (A group) and model + herbs group (A + H group); RIA was taken to measure the serum levels of PRL, P, E2.Results PRLR, PR mRNA expression in decidue of Group A was significantly lower than the A+H group (P0.05); the abortion rate of Group A was 67%, Group A+H was 17%, the difference was significant; as for the PRL and P level of day 7~10, the A group was significantly lower than the A+H group (P<0.05).Conclusion Bromocriptine could induce abortion by declining the blood PRL, P level and downregulating PRLR, PR mRNA expression in decidue. Chinese herbs might maintain pregnancy by promoting PRL, P secretion and upregulating PRLR, PR mRNA expression in decidue.

  8. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Institut Plant Protection (IPP), National Council Research (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)], E-mail: e.paoletti@ipp.cnr.it; Ferrara, Anna Maria [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Calatayud, Vicent; Cervero, Julia [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Giannetti, Fabio [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Sanz, Maria Jose [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003-9320 (United States)

    2009-03-15

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator.

  9. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    International Nuclear Information System (INIS)

    Paoletti, Elena; Ferrara, Anna Maria; Calatayud, Vicent; Cervero, Julia; Giannetti, Fabio; Sanz, Maria Jose; Manning, William J.

    2009-01-01

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator

  10. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice.

    Directory of Open Access Journals (Sweden)

    Jesper Larsen

    Full Text Available The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD but may also be important in type 1 diabetes (T1D, and could potentially explain the reduced incidence of T1D in mice receiving a gluten-free (GF diet. The direct in vivo effect of gluten on innate cells, and particularly dendritic cells (DC is not sufficiently clarified. Therefore, we wished to investigate the innate cell populations of spontaneous diabetic NOD mice and healthy BALB/c mice kept on a GF or a standard (STD gluten containing diet. We studied, by flow cytometry and reverse transcription-quantitative polymerase chain reaction (qRT-PCR, if dietary gluten induces changes in the activation of DCs and distribution of selected innate cells in lymphoid, pancreatic and intestinal tissues in BALB/c and NOD mice. We found that a GF diet increased the percentage of macrophages in BALB/c spleen and of CD11c+ DCs in BALB/c and NOD spleen. Strictly gluten-free (SGF diet increased the percentage of CD103+ DCs in BALB/c mice and decreased percentages of CD11b+ DCs in mesenteric and pancreatic lymph nodes in BALB/c mice. SGF diet in BALB/c mice also decreased DC expression of CD40, CCR7 and MHC-II in pancreatic lymph nodes. In conclusion, GF diet changes the composition of the innate immune system in BALB/c and NOD mice and increases expression of DC activation markers in NOD mice. These results contribute to the explanation of the low diabetes incidence in GF NOD mice. This mechanism may be important in development of type 1 diabetes, celiac disease and non-celiac gluten sensitivity.

  11. Mast cells have no impact on cutaneous leishmaniasis severity and related Th2 differentiation in resistant and susceptible mice.

    Science.gov (United States)

    Paul, Christoph; Wolff, Svenja; Zapf, Thea; Raifer, Hartmann; Feyerabend, Thorsten B; Bollig, Nadine; Camara, Bärbel; Trier, Claudia; Schleicher, Ulrike; Rodewald, Hans-Reimer; Lohoff, Michael

    2016-01-01

    The genus leishmania comprises different protozoan parasites which are causative agents of muco-cutaneous and systemic, potentially lethal diseases. After infection with the species Leishmania major, resistant mice expand Th1 cells which stimulate macrophages for Leishmania destruction. In contrast, susceptible mice generate Th2 cells which deactivate macrophages, leading to systemic spread of the pathogens. Th-cell differentiation is determined within the first days, and Th2 cell differentiation requires IL-4, whereby the initial IL-4 source is often unknown. Mast cells are potential sources of IL-4, and hence their role in murine leishmaniasis has previously been studied in mast cell-deficient Kit mutant mice, although these mice display immunological phenotypes beyond mast cell deficiency. We therefore readdressed this question by infecting Kit-independent mast cell-deficient mice that are Th1 (C57BL/6 Cpa(Cre) ) or Th2 (BALB/c Cpa(Cre) ) prone with L. major. Using different parasite doses and intra- or subcutaneous infection routes, the results demonstrate no role of mast cells on lesion size development, parasite load, immune cell phenotypes expanding in draining lymph nodes, and cytokine production during murine cutaneous leishmaniasis. Thus, other cell types such as ILCs or T cells have to be considered as primary source of Th2-driving IL-4. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Effects of moxibustion with seed-sized moxa cone on apoptosis of myocardial cells after sport fatigue in mice].

    Science.gov (United States)

    Xu, Huiqian; Hu, Yin; Gu, Yihuang; Zhang, Hongru

    2015-03-01

    To observe the effects of moxibustion on factors related with apoptosis of myocardial cells after sports fatigue in mice as well as the relationship among histone acetyltransferases p300 (p300), CREB binding protein (CBP) and cell apoptosis to discuss the role of p300 and CBP in moxibustion against apoptosis of myocardial cells. Sixty clean-grade male Kunming mice were randomly divided into a control group, a sport group and a moxibustion group, 20 cases in each one. Mice in all group received identical feeding environment. Mice in the control group did not received sport nor moxibustion; mice in the sport group and moxibustion group received non-weight swimming training which lasted from 30 min per day to 90 min per day gradually for 21 days; 1 h after swimming training, mice in the moxibustion group received moxibustion with seed-sized moxa cone at "Zusanli" (ST 36) and "Guanyuan" (CV 4), 5 cones at each acupoint, once a day for 21 days. 24 h after the final swimming training, cardiac muscle tissue was collected to test factor associated suicide (Fas), B cell lymphoma/lewkmia-2 (Bcl-2) by immunohistochemical method and expression of p300 and CBP. Compared with the control group, the apoptosis rate of myocardial cells in the sport group was significantly increased (Pprotein was significantly increased (Psport group, the apoptosis rate of myocardial cells in the moxibustion group was significantly reduced (Pprotein was significantly reduced (Psports fatigue in mice to inhibit the starting of apoptotic process, therefore reducing the apoptosis of myocardial cells after heavy exercise and protecting heart function.

  13. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice

    DEFF Research Database (Denmark)

    Larsen, Jesper; Weile, Christian; Antvorskov, Julie Christine

    2015-01-01

    containing diet. We studied, by flow cytometry and reverse transcription-quantitative polymerase chain reaction (qRT-PCR), if dietary gluten induces changes in the activation of DCs and distribution of selected innate cells in lymphoid, pancreatic and intestinal tissues in BALB/c and NOD mice. We found......-free (GF) diet. The direct in vivo effect of gluten on innate cells, and particularly dendritic cells (DC) is not sufficiently clarified. Therefore, we wished to investigate the innate cell populations of spontaneous diabetic NOD mice and healthy BALB/c mice kept on a GF or a standard (STD) gluten......The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD) but may also be important in type 1 diabetes (T1D), and could potentially explain the reduced incidence of T1D in mice receiving a gluten...

  14. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity.

    Science.gov (United States)

    Yilmaz, Omer H; Kiel, Mark J; Morrison, Sean J

    2006-02-01

    Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1 low Sca-1+ Lineage- c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+ CD48-, just as in normal young bone marrow. Thy-1 low Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+ CD48- Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated.

  15. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    Science.gov (United States)

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  16. Enhancement of antigen-induced eosinophilic inflammation in the airways of mast-cell deficient mice by diesel exhaust particles

    International Nuclear Information System (INIS)

    Ichinose, Takamichi; Takano, Hirohisa; Miyabara, Yuichi; Sadakaneo, Kaori; Sagai, Masaru; Shibamoto, Takayuki

    2002-01-01

    The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/W v ) and normal mice (W/W + ). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W + than in W/W v . A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/W v , but not in W/W + . DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/W v . The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/W v by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W +

  17. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    Science.gov (United States)

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164

  18. Cell-mediated immune suppression effect of rocket kerosene through dermal exposure in mice

    Directory of Open Access Journals (Sweden)

    Bing-xin XU

    2015-10-01

    Full Text Available Objective To study the effect of cell-mediated immune suppression effect of rocket kerosene (RK through dermal application in mice. Methods Skin delayed type hypersensitivity (DTH was used to observe the relation of the RK amount the skin exposed and the cellular immune inhibitory function. Different amount of the undiluted fuel was smeared directly onto the dorsal skin of mice. Mice in negative and positive control groups were treated with acetone. After the last exposure, all the mice except those in negative control group were allergized by evenly smearing with 1% dinitrofluorobenzene (DNFB solution on their dorsum. Five days after allergy, 1% DNFB solution was smeared onto right ear of all mice to stimulate the allergic reaction. Twenty-four hours after attack, the auricle swelling, spleen index and thymus index in corresponding mice were determined. In the first series of experiments, different dosages of RK were applied once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 1ml/kg.BW×1 and 2ml/kg.BW×1 group. In the second series of experiments, the certain and same dosage of RK was applied for different times, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 0.5mL/kg.BW×2, 0.5ml/kg.BW×3, 0.5ml/kg.BW×4 and 0.5mL/kg.BW×5 group. In the third series of experiments, the different dosages of RK were applied more than once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×5, 1ml/kg.BW×5 and 2ml/kg.BW×5 group. Lymphocyte proliferation experiment in vitrowas conducted to observe the persistent time of the cell-mediated immune suppression in mice by RK dermal exposure. The lymphocyte proliferation induced by concanavalin A (Con A was analyzed by MTT assay, and T lymphocyte subsets (CD3+, CD4+ and CD

  19. PLACENTAL SECRETORY FACTORS INFLUENCE TO THP-1 CELLS PHENOTYPE AND THP-1 CELLS TRANSENDOTHELIAL MIGRATION

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2013-01-01

    Full Text Available Decidual and placental macrophage pools are renewed due to its transendothelial monocyte migration from peripheral blood. Tissue macrophages control placental development and provide fetomaternal immunological tolerance. Preeclamptic pregnancy is accompanied by increased monocyte migration to decidual tissue and local inflammatory events. Regulatory mechanisms of monocyte recruitment to placental and decidual tissues is still unclear. Therefore we investigated the influence soluble placental factors (SPFs during the first- and third-trimester normal pregnancy, as compared to effects of these factors in preeclamptic pregnancy. We studied biological actions of SPF upon transendothelial migration of monocyte-like THP-1 cells and their phenotypic pattern. Transendothelial migration of THP-1 cells was more intensive with firsttrimester SPFs from normal pregnancy, when compared with third-trimester samples, and it was accompanied by decreased CD11a expression. SPFs from pre-eclamptic pregnancy caused an increase in transendothelial migration of THP-1 cells, as compared to SPFs from normal pregnancies, being accompanied by increased CD11b expression. The present study was supported by grants ГК №  02.740.11.0711, НШ-3594.2010.7, МД-150.2011.7 and a grant from St.-Petersburg Goverment for young scientists.

  20. Analyses of the differentiation potential of satellite cells from myoD-/-, mdx, and PMP22 C22 mice

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2005-03-01

    Full Text Available Abstract Background Sporadic and sometimes contradictory studies have indicated changes in satellite cell behaviour associated with the progressive nature of human Duchenne muscular dystrophy (DMD. Satellite cell proliferation and number are reportedly altered in DMD and the mdx mouse model. We recently found that satellite cells in MSVski transgenic mice, a muscle hypertrophy model showing progressive muscle degeneration, display a severe ageing-related differentiation defect in vitro. We tested the hypothesis that similar changes contribute to the gradual loss of muscle function with age in mdx and PMP22 mice, a model of human motor and sensory neuropathy type 1A (HMSN1A. Methods Single extensor digitorum longus muscle fibres were cultured from mdx and PMP22 mice and age- and genetic background-matched controls. Mice at several ages were compared with regard to the differentiation of satellite cells, assayed as the proportion of desmin-expressing cells that accumulated sarcomeric myosin heavy chain. Results Satellite cells of 2 month, 6 month, and 12 month old mdx mice were capable of differentiating to a similar extent to age-matched wild type control animals in an in vitro proliferation/differentiation model. Strikingly, differentiation efficiency in individual 6 month and 12 month old mdx animals varies to a much higher extent than in age-matched controls, younger mdx animals, or PMP22 mice. In contrast, differentiation of myoblasts from all myoD null mice assayed was severely impaired in this assay system. The defect in satellite cell differentiation that occurs in some mdx animals arises from a delay in differentiation that is not overcome by IGF-1 treatment at any phase of cultivation. Conclusion Overall, a defect in satellite cell differentiation above that arising through normal ageing does not occur in mdx or PMP22 mouse models of human disease. Nonetheless, the impaired differentiation of satellite cells from some mdx animals

  1. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  2. JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice.

    Science.gov (United States)

    Song, Xinxin; Zhu, Shan; Xie, Yangchun; Liu, Jiao; Sun, Lingyi; Zeng, Dexing; Wang, Pengcheng; Ma, Xiaochao; Kroemer, Guido; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2018-04-01

    Maintenance of acid-base homeostasis is required for normal physiology, metabolism, and development. It is not clear how cell death is activated in response to changes in pH. We performed a screen to identify agents that induce cell death in a pH-dependent manner (we call this alkaliptosis) in pancreatic ductal adenocarcinoma cancer (PDAC) cells and tested their effects in mice. We screened a library of 254 compounds that interact with G-protein-coupled receptors (GPCRs) to identify those with cytotoxic activity against a human PDAC cell line (PANC1). We evaluated the ability of JTC801, which binds the opiod receptor and has analgesic effects, to stimulate cell death in human PDAC cell lines (PANC1, MiaPaCa2, CFPAC1, PANC2.03, BxPc3, and CAPAN2), mouse pancreatic cancer-associated stellate cell lines, primary human pancreatic ductal epithelial cells, and 60 cancer cell lines (the NCI-60 panel). Genes encoding proteins in cell death and GPCR signaling pathways, as well as those that regulate nuclear factor-κB (NF-κB) activity, were knocked out, knocked down, or expressed from transgenes in cancer cell lines. JTC801 was administered by gavage to mice with xenograft tumors, C57BL/6 mice with orthographic pancreatic tumors grown from Pdx1-Cre;KRas G12D/+ ;Tp53 R172H/+ (KPC) cells, mice with metastases following tail-vein injection of KPC cells, and Pdx-1-Cre;Kras G12D/+ mice crossed with Hmgb1 flox/flox mice (KCH mice). Pancreata were collected from mice and analyzed for tumor growth and by histology and immunohistochemistry. We compared gene and protein expression levels between human pancreatic cancer tissues and patient survival times using online R2 genomic or immunohistochemistry analyses. Exposure of human PDAC cell lines (PANC1 and MiaPaCa2) to JTC801 did not induce molecular markers of apoptosis (cleavage of caspase 3 or poly [ADP ribose] polymerase [PARP]), necroptosis (interaction between receptor-interacting serine-threonine kinase 3 [RIPK3] and mixed

  3. Characterization of a novel telomerase-immortalized human endometrial stromal cell line, St-T1b

    Directory of Open Access Journals (Sweden)

    Brosens Jan J

    2009-07-01

    Full Text Available Abstract Background Coordinated differentiation of the endometrial compartments in the second half of the menstrual cycle is a prerequisite for the establishment of pregnancy. Endometrial stromal cells (ESC decidualize under the influence of ovarian progesterone to accommodate implantation of the blastocyst and support establishment of the placenta. Studies into the mechanisms of decidualization are often hampered by the lack of primary ESC. Here we describe a novel immortalized human ESC line. Methods Primary ESC were immortalized by the transduction of telomerase. The resultant cell line, termed St-T1b, was characterized for its morphological and biochemical properties by immunocytochemistry, RT-PCR and immunoblotting. Its progestational response was tested using progesterone and medroxyprogesterone acetate with and without 8-Br-cAMP, an established inducer of decidualization in vitro. Results St-T1b were positive for the fibroblast markers vimentin and CD90 and negative for the epithelial marker cytokeratin-7. They acquired a decidual phenotype indistinguishable from primary ESC in response to cAMP stimulation. The decidual response was characterized by transcriptional activation of marker genes, such as PRL, IGFBP1, and FOXO1, and enhanced protein levels of the tumor suppressor p53 and the metastasis suppressor KAI1 (CD82. Progestins alone had no effect on St-T1b cells, but medroxyprogesterone acetate greatly enhanced the cAMP-stimulated expression of IGFBP-1 after 3 and 7 days. Progesterone, albeit more weakly, also augmented the cAMP-induced IGFBP-1 production but only after 7 days of treatment. The cell line remained stable in continuous culture for more than 150 passages. Conclusion St-T1b express the appropriate phenotypic ESC markers and their decidual response closely mimics that of primary cultures. Decidualization is efficiently induced by cAMP analog and enhanced by medroxyprogesterone acetate, and, to a lesser extent, by natural

  4. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High Fat Diet

    Science.gov (United States)

    McFarlane, Matthew R.; Brown, Michael S.; Goldstein, Joseph L.; Zhao, Tong-Jin

    2014-01-01

    SUMMARY Injection of the peptide hormone ghrelin stimulates food intake in mice and humans. However, mice born without ghrelin demonstrate no significant loss of appetite. This paradox suggests either that compensation develops in mice born without ghrelin or that ghrelin is not essential for appetite control. To distinguish these possibilities, we generated transgenic mice (Ghrl-DTR) that express the diphtheria toxin receptor in ghrelin-secreting cells. Injection of diphtheria toxin in adulthood ablated ghrelin cells and reduced plasma ghrelin by 80-95%. Ghrelin cell-ablated mice exhibited no loss of appetite or body weight and no resistance to a high fat diet. To stimulate food intake in mice by ghrelin injection, we had to raise plasma levels many-fold above normal. Like germline ghrelin-deficient mice, the ghrelin cell-ablated mice developed profound hypoglycemia when subjected to prolonged calorie restriction, confirming that ghrelin acts to maintain blood glucose under famine conditions. PMID:24836560

  5. Expression and function of PML-RARA in the hematopoietic progenitor cells of Ctsg-PML-RARA mice.

    Directory of Open Access Journals (Sweden)

    Lukas D Wartman

    Full Text Available Because PML-RARA-induced acute promyelocytic leukemia (APL is a morphologically differentiated leukemia, many groups have speculated about whether its leukemic cell of origin is a committed myeloid precursor (e.g. a promyelocyte versus an hematopoietic stem/progenitor cell (HSPC. We originally targeted PML-RARA expression with CTSG regulatory elements, based on the early observation that this gene was maximally expressed in cells with promyelocyte morphology. Here, we show that both Ctsg, and PML-RARA targeted to the Ctsg locus (in Ctsg-PML-RARA mice, are expressed in the purified KLS cells of these mice (KLS = Kit(+Lin(-Sca(+, which are highly enriched for HSPCs, and this expression results in biological effects in multi-lineage competitive repopulation assays. Further, we demonstrate the transcriptional consequences of PML-RARA expression in Ctsg-PML-RARA mice in early myeloid development in other myeloid progenitor compartments [common myeloid progenitors (CMPs and granulocyte/monocyte progenitors (GMPs], which have a distinct gene expression signature compared to wild-type (WT mice. Although PML-RARA is indeed expressed at high levels in the promyelocytes of Ctsg-PML-RARA mice and alters the transcriptional signature of these cells, it does not induce their self-renewal. In sum, these results demonstrate that in the Ctsg-PML-RARA mouse model of APL, PML-RARA is expressed in and affects the function of multipotent progenitor cells. Finally, since PML/Pml is normally expressed in the HSPCs of both humans and mice, and since some human APL samples contain TCR rearrangements and express T lineage genes, we suggest that the very early hematopoietic expression of PML-RARA in this mouse model may closely mimic the physiologic expression pattern of PML-RARA in human APL patients.

  6. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    Science.gov (United States)

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  7. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection.

    Directory of Open Access Journals (Sweden)

    Xiaojun Chen

    2014-05-01

    Full Text Available Following Schistosoma japonicum (S. japonicum infection, granulomatous responses are induced by parasite eggs trapped in host organs, particular in the liver, during the acute stage of disease. While excessive liver granulomatous responses can lead to more severe fibrosis and circulatory impairment in chronically infected host. However, the exact mechanism of hepatic granuloma formation has remained obscure. In this study, we for the first time showed that follicular helper T (Tfh cells are recruited to the liver to upregulate hepatic granuloma formation and liver injury in S. japonicum-infected mice, and identified a novel function of macrophages in Tfh cell induction. In addition, our results showed that the generation of Tfh cells driven by macrophages is dependent on cell-cell contact and the level of inducible costimulator ligand (ICOSL on macrophages which is regulated by CD40-CD40L signaling. Our findings uncovered a previously unappreciated role for Tfh cells in liver pathology caused by S. japonicum infection in mice.

  8. Impacts of tomato extract on the mice fibrosarcoma cells

    Directory of Open Access Journals (Sweden)

    Shirzad Hedayatollah

    2013-01-01

    Full Text Available Introduction: The anticancer effect of tomato lycopene has been approved in some cancers. This study was aimed to determine the prohibitive and therapeutic effects of tomato extract on the growth of fibrosarcoma in mice. Materials and Methods: In this experimental study 3 groups of 10 male Balb/c mice were injected subcutaneously with 5×105 WEHI-164 tumor cells in the chest area. Prevention group was fed tomato extract (5 mg for a 4 week period (from 2 weeks before tumor cell injection up to 2 weeks after injection and the treatment group was fed simultaneously with tumor cell injection up to two weeks after injection daily by an oral gastric tube. The tumors areas were measured and recorded on days 10, 12, 14, 16, 18, 20 and 22. The data were analyzed using Kruskal-Wallis and Mann-Whitney tests. Results: The results showed that the tumor areas in control group were significantly more after the intervention than two groups of treatment and prevention (p<0.05. The difference was not statistically significant between the two groups of prevention and treatment. Conclusion: With emphasize on antioxidant of tomato, it seems that tomato extract has an important role in prevention and control fibrosarcoma growth.

  9. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice.

    Science.gov (United States)

    Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W

    2013-05-01

    Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.

  10. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.

    Science.gov (United States)

    Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong

    2016-05-20

    Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo.

    Science.gov (United States)

    Chang, Yung-Hsien; Yang, Jai-Sing; Yang, Jiun-Long; Wu, Chang-Lin; Chang, Shu-Jen; Lu, Kung-Wen; Lin, Jen-Jyh; Hsia, Te-Chun; Lin, Yi-Ting; Ho, Chin-Chih; Wood, W Gibson; Chung, Jing-Gung

    2009-12-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom having biological effects such as immunomodulation and anti-tumor actions. In China and many other Asian countries, G. lucidum is used as a folk remedy to promote health and longevity. Although many studies have shown that G. lucidum modulates the immune system, including, for example, antigen-presenting cells, natural killer (NK) cells, and the T and B lymphocytes, the effects of G. lucidum on the WEHI-3 leukemic BALB/c mice are unclear. We attempted to determine whether G. lucidum would promote immune responses in BALB/c mice injected with WEHI-3 leukemia cells. The effects of G. lucidum on the survival rate of WEHI-3 leukemia cells injected into BALB/c mice were examined. It increased the percentages of CD3 and CD19, but decreased the percentages of Mac-3 and CD11b markers, suggesting that differentiation of the precursor of T and B cells was promoted but macrophages were inhibited. It decreased the weight of spleens as compared with control mice. It also promoted phagocytosis by macrophage from peripheral blood mononuclear cell (PBMC) and it also promoted natural killer cell activity. It decreased the percentage of leukemia cells in the spleens of mice before they were injected with WEHI-3 cells. Apparently, G. lucidum affects murine leukemia WEHI-3 cells in vivo.

  12. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    Science.gov (United States)

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  13. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  14. Systemic LPS Translocation Activates Cross-Presenting Dendritic Cells but Is Dispensable for the Breakdown of CD8+ T Cell Peripheral Tolerance in Irradiated Mice.

    Directory of Open Access Journals (Sweden)

    Gabriel Espinosa-Carrasco

    Full Text Available Lymphodepletion is currently used to enhance the efficacy of cytotoxic T lymphocyte adoptive transfer immunotherapy against cancer. This beneficial effect of conditioning regimens is due, at least in part, to promoting the breakdown of peripheral CD8+ T cell tolerance. Lymphodepletion by total body irradiation induces systemic translocation of commensal bacteria LPS from the gastrointestinal tract. Since LPS is a potent activator of the innate immune system, including antigen presenting dendritic cells, we hypothesized that LPS translocation could be required for the breakdown of peripheral tolerance observed in irradiated mice. To address this issue, we have treated irradiated mice with antibiotics in order to prevent LPS translocation and utilized them in T cell adoptive transfer experiments. Surprisingly, we found that despite of completely blocking LPS translocation into the bloodstream, antibiotic treatment did not prevent the breakdown of peripheral tolerance. Although irradiation induced the activation of cross-presenting CD8+ dendritic cells in the lymphoid tissue, LPS could not solely account for this effect. Activation of dendritic cells by mechanisms other than LPS translocation is sufficient to promote the differentiation of potentially autoreactive CD8+ T cells into effectors in irradiated mice. Our data indicate that LPS translocation is dispensable for the breakdown of CD8+ T cell tolerance in irradiated mice.

  15. Enamel hypoplasia in the deciduous teeth of great apes: variation in prevalence and timing of defects.

    Science.gov (United States)

    Lukacs, J R

    2001-11-01

    The prevalence of enamel hypoplasia in the deciduous teeth of great apes has the potential to reveal episodes of physiological stress in early stages of ontogenetic development. However, little is known about enamel defects of deciduous teeth in great apes. Unresolved questions addressed in this study are: Do hypoplastic enamel defects occur with equal frequency in different groups of great apes? Are enamel hypoplasias more prevalent in the deciduous teeth of male or female apes? During what phase of dental development do enamel defects tend to form? And, what part of the dental crown is most commonly affected? To answer these questions, infant and juvenile skulls of two sympatric genera of great apes (Gorilla and Pan) were examined for dental enamel hypoplasias. Specimens from the Powell-Cotton Museum (Quex Park, UK; n = 107) are reported here, and compared with prior findings based on my examination of juvenile apes at the Cleveland Museum of Natural History (Hamman-Todd Collection; n = 100) and Smithsonian Institution (National Museum of Natural History; n = 36). All deciduous teeth were examined by the author with a x10 hand lens, in oblique incandescent light. Defects were classified using Fédération Dentaire International (FDI)/Defects of Dental Enamel (DDE) standards; defect size and location on the tooth crown were measured and marked on dental outline charts. Enamel defects of ape deciduous teeth are most common on the labial surface of canine teeth. While deciduous incisor and molar teeth consistently exhibit similar defects with prevalences of approximately 10%, canines average between 70-75%. Position of enamel defects on the canine crown was analyzed by dividing it into three zones (apical, middle, and cervical) and calculating defect prevalence by zone. Among gorillas, enamel hypoplasia prevalence increases progressively from the apical zone (low) to the middle zone to the cervical zone (highest), in both maxillary and mandibular canine teeth

  16. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells.

    Science.gov (United States)

    Wu, Qiong; Zhan, Jinxi; Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-03

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31- subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31- subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending.

  17. Specific inhibition of cytotoxic memory cells produced against uv-induced tumors in uv-irradiation mice

    International Nuclear Information System (INIS)

    Thorn, R.M.

    1978-01-01

    Cytotoxic responses of uv-irradiated mice against syngeneic uv-induced tumors were measured by using a 51 Cr-release assay to determine if uv treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the ''memory'' response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of uv-treated mice against syngeneic, uv-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic uv-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, uv-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses

  18. Radioprotective effect of dextran sulphate and aerogenic hypoxia on intestinal crypt stem cells in mice

    International Nuclear Information System (INIS)

    Vacek, A.; Bartonickova, A.; Rotkovska, D.; Konoplyanikova, O.A.; Konoplyanikov, A.G.

    1991-01-01

    A single intraperitoneal injection of dextran sulfate given 6 h before irradiation produced higher numbers of microcolonies of intestinal crypt stem cells in whole-body irradiated mice than an injection of saline in control mice. If dextran sulfate and hypoxia are combined, the radioprotective effect of hypoxia on intestinal crypt stem cells depends on the time interval between irradiation and administration of dextran sulfate. (author). 2 figs., 12 refs

  19. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice.

    Science.gov (United States)

    Chang, Jianhui; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-12-01

    Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.

  20. Effect of low-dose irradiation upon T cell subsets involved in the response of primed A/J mice to SaI cells

    International Nuclear Information System (INIS)

    Anderson, R.E.; Williams, W.L.; Tokuda, Sei

    1988-01-01

    A/Jax (A/J) mice primed to Sarcoma I (SaI) exhibit an augmented response in association with low-dose (0.15 Gy) irradiation. This phenomenon is best demonstrated in tumour neutralization (Winn assay) or cell transfer experiments utilizing mice depleted of thymus-derived (T) cells. It is particularly dependent upon the duration of priming and the growth characteristics of the tumour in the primary host. The importance of these two variables appears to relate to their influence upon the cell types responsible for the host response, and includes both an effector and a suppressor component. Radiation-induced inhibition of the suppressor component appears responsible for low-dose augmentation and results in injury to a T cell of the Lyt-1 - 2 + phenotype. In Winn assays employing equal numbers of immune spleen cells and SaI cells, the smallest tumours are associated with Lyt-1-positive (Lyt-1 + 2 - and Lyt-1 + 2 + ) cells and exposure to 0.15 Gy markedly inhibits their anti-SaI activity. Thus, even though the effect is in the opposite direction, both the effector and suppressor components of the anti-SaI response in A/J mice are exceedingly radiosensitive. (author)

  1. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice.

    Science.gov (United States)

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-08-13

    Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GFP from a transgenic CD11c promoter were used in conjunction with mice deficient in MyD88 and/or TRIF. Retinal ganglion cell injury was induced by an optic nerve crush, and the resulting interactions of the GFPhi cells and retinal ganglion cells were examined. Recruitment of GFPhi dendritic cells to the retina was significantly compromised in MyD88 and TRIF knockout mice. GFPhi dendritic cells played a significant role in clearing fluorescent-labeled retinal ganglion cells post-injury in the CD11c-DTR/GFP mice. In the TRIF and MyD88 deficient mice, the resting level of GFPhi dendritic cells was lower, and their influx was reduced following the optic nerve crush injury. The reduction in GFPhi dendritic cell numbers led to their replacement in the uptake of fluorescent-labeled debris by GFPlo microglia/macrophages. Depletion of GFPhi dendritic cells by treatment with diphtheria toxin also led to their displacement by GFPlo microglia/macrophages, which then assumed close contact with the injured neurons. The contribution of recruited cells to the injury response was substantial, and regulated by MyD88 and TRIF. However, the presence of these adaptor proteins was not required for interaction with neurons, or the phagocytosis of debris. The data suggested a two-niche model in which resident microglia were maintained at a constant level post-optic nerve crush, while the injury-stimulated recruitment of dendritic cells and macrophages led to their transient appearance in numbers equivalent to or greater

  2. Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution

    International Nuclear Information System (INIS)

    Tulunay, O.; Good, R.A.; Yunis, E.J.

    1975-01-01

    After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection

  3. Taxonomic differences in deciduous upper second molar crown outlines of Homo sapiens, Homo neanderthalensis and Homo erectus.

    Science.gov (United States)

    Bailey, Shara E; Benazzi, Stefano; Souday, Caroline; Astorino, Claudia; Paul, Kathleen; Hublin, Jean-Jacques

    2014-07-01

    A significant number of Middle to Late Pleistocene sites contain primarily (and sometimes only) deciduous teeth (e.g., Grotta del Cavallo, Mezmaiskaya, Blombos). Not surprisingly, there has been a recent renewed interest in deciduous dental variation, especially in the context of distinguishing Homo neanderthalensis and Homo sapiens. Most studies of the deciduous dentition of fossil hominins have focused on standard metrical variation but morphological (non-metric and morphometric) variation also promises to shed light on long standing taxonomic questions. This study examines the taxonomic significance of the crown outline of the deciduous upper second molar through principal components analysis and linear discriminant analysis. We examine whether or not the crown shape of the upper deciduous second molar separates H. neanderthalensis from H. sapiens and explore whether it can be used to correctly assign individuals to taxa. It builds on previous studies by focusing on crown rather than cervical outline and by including a large sample of geographically diverse recent human populations. Our samples include 17 H. neanderthalensis, five early H. sapiens, and 12 Upper Paleolithic H. sapiens. In addition, we include two Homo erectus specimens in order to evaluate the polarity of crown shape differences observed between H. neanderthalensis and H. sapiens. Our results show that crown outline shape discriminates H. sapiens and H. neanderthalensis quite well, but does not do well at distinguishing H. erectus from H. sapiens. We conclude that the crown outline shape observed in H. sapiens is a primitive retention and that the skewed shape observed in H. neanderthalensis is a derived condition. Finally, we explore the phylogenetic implications of the results for the H. erectus molars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development.

    Directory of Open Access Journals (Sweden)

    Amanda C Foks

    Full Text Available OBJECTIVE: Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis. METHODS AND RESULTS: TIGIT was upregulated on CD4(+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr(-/- mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production. CONCLUSIONS: Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells.

  5. γ-Oryzanol protects pancreatic β-cells against endoplasmic reticulum stress in male mice.

    Science.gov (United States)

    Kozuka, Chisayo; Sunagawa, Sumito; Ueda, Rei; Higa, Moritake; Tanaka, Hideaki; Shimizu-Okabe, Chigusa; Ishiuchi, Shogo; Takayama, Chitoshi; Matsushita, Masayuki; Tsutsui, Masato; Miyazaki, Jun-ichi; Oyadomari, Seiichi; Shimabukuro, Michio; Masuzaki, Hiroaki

    2015-04-01

    Endoplasmic reticulum (ER) stress is profoundly involved in dysfunction of β-cells under high-fat diet and hyperglycemia. Our recent study in mice showed that γ-oryzanol, a unique component of brown rice, acts as a chemical chaperone in the hypothalamus and improves feeding behavior and diet-induced dysmetabolism. However, the entire mechanism whereby γ-oryzanol improves glucose metabolism throughout the body still remains unclear. In this context, we tested whether γ-oryzanol reduces ER stress and improves function and survival of pancreatic β-cells using murine β-cell line MIN6. In MIN6 cells with augmented ER stress by tunicamycin, γ-oryzanol decreased exaggerated expression of ER stress-related genes and phosphorylation of eukaryotic initiation factor-2α, resulting in restoration of glucose-stimulated insulin secretion and prevention of apoptosis. In islets from high-fat diet-fed diabetic mice, oral administration of γ-oryzanol improved glucose-stimulated insulin secretion on following reduction of exaggerated ER stress and apoptosis. Furthermore, we examined the impact of γ-oryzanol on low-dose streptozotocin-induced diabetic mice, where exaggerated ER stress and resultant apoptosis in β-cells were observed. Also in this model, γ-oryzanol attenuated mRNA level of genes involved in ER stress and apoptotic signaling in islets, leading to amelioration of glucose dysmetabolism. Taken together, our findings demonstrate that γ-oryzanol directly ameliorates ER stress-induced β-cell dysfunction and subsequent apoptosis, highlighting usefulness of γ-oryzanol for the treatment of diabetes mellitus.

  6. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome.

    Science.gov (United States)

    Laurent, Julien; Paly, Evelyne; Marche, Patrice N; London, Jacqueline

    2006-06-01

    Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.

  7. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  8. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  9. The nature of tolerance in adult recipient mice made tolerant of alloantigens with supralethal irradiation followed by syngeneic bone marrow cell transplantation plus injection of F1 spleen cells

    International Nuclear Information System (INIS)

    Tomita, Y.; Himeno, K.; Mayumi, H.; Tokuda, N.; Nomoto, K.

    1989-01-01

    The length of time after syngeneic bone marrow reconstitution when tolerance to alloantigens can be induced in adult mice during T cell differentiation from bone marrow cells was studied by exposing those T cells to (recipient x donor)F1 spleen cells. Supralethally irradiated C3H/He Slc(C3H; H-2k) mice were reconstituted with 1 x 10(7) syngeneic T cell-depleted bone marrow cells and then injected intravenously with 5 x 10(7) (C3H x C57BL/6[B6])F1 (B6C3F1; H-2bxk) or (C3H x AKR/J[AKR])F1 (AKC3F1; H-2kxk) spleen cells at various intervals. In the fully allogeneic combination of B6C3F1----C3H, EL-4 tumor originating from B6 was accepted, and survival of grafted B6 skin was significantly prolonged in the tolerant C3H mice treated with irradiation on day -1 followed by injection of syngeneic bone marrow cells on day 0 plus B6C3F1 spleen cells on days 0, 5, or 10, in a tolerogen-specific manner. In the multiminor histocompatibility antigen-disparate combination of AKC3F1----C3H, AKR skin grafts were permanently accepted in the tolerant C3H mice treated with AKC3F1 spleen cells on days 0, 5, 10, or 15. Immunological parameters, including cytotoxic T lymphocyte activity and delayed foot-pad reaction (DFR), were almost completely suppressed in C3H mice made tolerant of B6 or AKR antigens. A chimeric assay using a direct immunofluorescence method revealed that the tolerant C3H mice given B6C3F1 spleen cells on day 0 were mixed-chimeric for at least 8 weeks after syngeneic bone marrow reconstitution, but not definitely chimeric thereafter. The C3H mice given AKC3F1 spleen cells on day 0 were chimeric even 43 weeks after syngeneic bone marrow reconstitution, but the C3H mice given AKC3F1 spleen cells on day 15 showed temporal chimerism that disappeared within 43 weeks. The untolerant mice were never detectably chimeric

  10. Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice.

    Science.gov (United States)

    Zhang, Hao; Xu, Hao; Weihrauch, Dorothee; Jones, Deron W; Jing, Xigang; Shi, Yang; Gourlay, David; Oldham, Keith T; Hillery, Cheryl A; Pritchard, Kirkwood A

    2013-11-01

    Activated leukocytes and polymorphonuclear neutrophils (PMN) release myeloperoxidase (MPO), which binds to endothelial cells (EC), is translocated, and generates oxidants that scavenge nitric oxide (NO) and impair EC function. To determine whether MPO impairs EC function in sickle cell disease (SCD), control (AA) and SCD mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC). SCD humans and mice have high plasma MPO and soluble L-selectin (sL-selectin). KYC had no effect on MPO but decreased plasma sL-selectin and malondialdehyde in SCD mice. MPO and 3-chlorotyrosine (3-ClTyr) were increased in SCD aortas. KYC decreased MPO and 3-ClTyr in SCD aortas to the levels in AA aortas. Vasodilatation in SCD mice was impaired. KYC increased vasodilatation in SCD mice more than 2-fold, to ∼60% of levels in AA mice. KYC inhibited MPO-dependent 3-ClTyr formation in EC proteins. SCD mice had high plasma alanine transaminase (ALT), which tended to decrease in KYC-treated SCD mice (P = 0.07). KYC increased MPO and XO/XDH and decreased 3-ClTyr and 3-nitrotyrosine (3-NO₂Tyr) in SCD livers. These data support the hypothesis that SCD increases release of MPO, which generates oxidants that impair EC function and injure livers. Inhibiting MPO is an effective strategy for decreasing oxidative stress and liver injury and restoring EC function in SCD.

  11. Human T-cell responses to oral streptococci in human PBMC-NOD/SCID mice.

    Science.gov (United States)

    Salam, M A; Nakao, R; Yonezawa, H; Watanabe, H; Senpuku, H

    2006-06-01

    We investigated cellular and humoral immune responses to oral biofilm bacteria, including Streptococcus mutans, Streptococcus anginosus, Streptococcus sobrinus, and Streptococcus sanguinis, in NOD/SCID mice immunized with human peripheral blood mononuclear cells (hu-PBMC-NOD/SCID mice) to explore the pathogenicity of each of those organisms in dental and oral inflammatory diseases. hu-PBMC-NOD/SCID mice were immunized by intraperitoneal injections with the whole cells of the streptococci once a week for 3 weeks. FACS analyses were used to determine the percentages of various hu-T cell types, as well as intracellular cytokine production of interleukin-4 and interferon-gamma. Serum IgG and IgM antibody levels in response to the streptococci were also determined by enzyme-linked immunosorbent assay. S. anginosus induced a significant amount of the proinflammatory cytokine interferon-gamma in CD4(+) and CD8(+) T cells in comparison with the other streptococci. However, there was no significant differences between the streptococci in interleukin-4 production by CD4(+) and CD8(+) T cells after inoculation. Further, S. mutans significantly induced human anti-S. mutans IgG, IgG(1), IgG(2), and IgM antibodies in comparison with the other organisms. In conclusion, S. anginosus up-regulated Th1 and Tc1 cells, and S. mutans led to increasing levels of their antibodies, which was associated with the induction of Th2 cells. These results may contribute to a better understanding of human lymphocyte interactions to biofilm bacteria, along with their impact on dental and mucosal inflammatory diseases, as well as endocarditis.

  12. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice.

    Directory of Open Access Journals (Sweden)

    Sun-Kyoung Im

    Full Text Available Sorting nexin 5 (Snx5 has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5(-/- mice resulted in partial perinatal lethality; 40% of Snx5(-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5(-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5(-/- mice were comparable to those of Snx5(+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5 (-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.

  13. Clonal dominance between subpopulations of mixed small cell lung cancer xenografts implanted ectopically in nude mice

    DEFF Research Database (Denmark)

    Aabo, K; Vindeløv, L L; Spang-Thomsen, M

    1995-01-01

    Clonal evolution of neoplastic cells during solid tumour growth leads to the emergence of new tumour cell subpopulations with diverging phenotypic characteristics which may alter the behaviour of a malignant disease. Cellular interaction was studied in mixed xenografts in nude mice and during...... clone 54B was found to dominate the parent 54A clone when grown as mixed subcutaneous xenografts in nude mice, whereas no dominance was exerted during in vitro growth. The in vivo dominance could not be explained by differences in growth kinetics between the two tumour cell lines, and the interaction...... was not dependent on 54B being in excess in mixed tumours. The dominance was dependent on close in vivo contact as no remote effect on the growth of 54A was found when the dominating 54B cells were growing in the opposite flank of tumour-bearing mice. Irradiation inactivated 54B cells were unable to exert...

  14. Transplantation of Gene-Edited Hepatocyte-like Cells Modestly Improves Survival of Arginase-1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    2018-03-01

    Full Text Available Progress in gene editing research has been accelerated by utilizing engineered nucleases in combination with induced pluripotent stem cell (iPSC technology. Here, we report transcription activator-like effector nuclease (TALEN-mediated reincorporation of Arg1 exons 7 and 8 in iPSCs derived from arginase-1-deficient mice possessing Arg1Δ alleles lacking these terminal exons. The edited cells could be induced to differentiate into hepatocyte-like cells (iHLCs in vitro and were subsequently used for transplantation into our previously described (Sin et al., PLoS ONE 2013 tamoxifen-inducible Arg1-Cre arginase-1-deficient mouse model. While successful gene-targeted repair was achieved in iPSCs containing Arg1Δ alleles, only minimal restoration of urea cycle function could be observed in the iHLC-transplanted mice compared to control mice, and survival in this lethal model was extended by up to a week in some mice. The partially rescued phenotype may be due to inadequate regenerative capacity of arginase-1-expressing cells in the correct metabolic zones. Technical hurdles exist and will need to be overcome for gene-edited iPSC to iHLC rescue of arginase-1 deficiency, a rare urea cycle disorder.

  15. NKT cells can help mediate the protective effects of 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Waddell, Amanda; Zhao, Jun; Cantorna, Margherita T

    2015-05-01

    Active vitamin D [1,25-dihydroxyvitamin D3 (1,25D3)] blocks the development of experimental autoimmune diseases. However, the molecular and immunobiological mechanisms underlying 1,25D3's anti-inflammatory properties are not fully understood. We employed a murine model of experimental autoimmune encephalomyelitis (EAE) in order to determine the role of NKT cells in 1,25D3-mediated protection from EAE. Wild-type (WT) mice or mice lacking all NKT cells (CD1d(-/-)) or invariant NKT cells (Jα18(-/-)) were fed control or 1,25D3-supplemented diets. All mice fed with the control diet developed severe EAE. 1,25D3 treatment of WT mice protected them from developing EAE. CD1d(-/-) and Jα18(-/-) mice treated with 1,25D3 were not protected to the same extent as WT mice. Myelin oligodendrocyte glycoprotein-specific IL-17 and IFN-γ production was significantly reduced in 1,25D3 WT mice compared with WT but was not decreased in 1,25D3 CD1d(-/-) mice compared with CD1d(-/-) mice. IL-4(-/-) mice were utilized to determine how IL-4 deficiency affects susceptibility to EAE. IL-4(-/-) mice were not protected from developing EAE by α-galactosylceramide (α-GalCer) or 1,25D3 treatment. Furthermore, 1,25D3 treatment of splenocytes in vitro decreased α-GalCer-induced IL-17 and increased IL-4, IL-5 and IL-10 production. 1,25D3 alters the cytokine profile of invariant NKT cells in vitro. These studies demonstrate that NKT cells are important mediators of 1,25D3-induced protection from EAE in mice and NKT cell-derived IL-4 may be an important factor in providing this protection. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Adoptive transfer of dendritic cells expressing CD11c reduces the immunological response associated with experimental colitis in BALB/c mice.

    Science.gov (United States)

    Paiatto, Lisiery N; Silva, Fernanda G D; Yamada, Áureo T; Tamashiro, Wirla M S C; Simioni, Patricia U

    2018-01-01

    In addition to conventional therapies, several new strategies have been proposed for modulating autoimmune diseases, including the adoptive transfer of immunological cells. In this context, dendritic cells (DCs) appear to be one of the most promising treatments for autoimmune disorders. The present study aimed to evaluate the effects of adoptive transfer of DCs obtained from both naïve and ovalbumin (OVA)-tolerant mice on the severity of TNBS induced colitis and analyze the eventual protective mechanisms. To induce oral tolerance, BALB/c mice were fed 4mg/mL OVA solution for seven consecutive days. Spleen DCs were isolated from tolerant (tDC) and naïve (nDC) mice, and then adoptively transferred to syngeneic mice. Three days later, colitis was induced in DC treated mice by intrarectal instillation of 100μg2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Control subjects received only intrarectal instillation of either TNBS solution or a vehicle. Five days later, mice from all groups were euthanized and examined for physiological and immunological parameters. Regarding the phenotype, we observed that the frequencies of CD11+ MHC II+ and CD11+ MHCII+ CD86+ cells were significantly lower in DCs isolated from tolerant mice than in those from naive mice. However, pretreatment with both types of DCs was able to significantly reduce clinical signs of colitis such as diarrhea, rectal prolapse, bleeding, and cachexia, although only treatment with tDCs was able to prevent weight loss from instillation of TNBS. In vitro proliferation of spleen cells from mice treated with either type of DCs was significantly lower than that observed in splenic cell cultures of naïve mice. Although no significant difference was observed in the frequencies of Treg cells in the experimental groups, the frequency of Th17+CD4+cellsand the secretion of IL-17 were more reduced in the cultures of spleen cells from mice treated with either type of DCs. The levels of IL-9 and IFN

  17. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Directory of Open Access Journals (Sweden)

    Hossein Rahavi

    2015-01-01

    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  18. The influence of snakehead (Channa striata) fish extract to increase hyperglycemic mice fertility based on spermatogenic cell composition

    Science.gov (United States)

    Hidayati, Dewi; Abdulgani, Nurlita; Ashuri, Nova Maulidina; Sa'adah, Noor Nailis; Lukitasari, Maharani

    2017-06-01

    Reproductive dysfunction is recognized as a consequence of diabetes mellitus. Previous study revealed that snakehead (Channa striata) fish extract can repairing the pancreas histological structure which by that decreasing the blood glucose levels. Further research was conducted to determine the influence of snakehead fish extract (SHFE) to increasing the fertility of hyperglycemic mice based on spermatogenic cell composition. Twenty five adult mice (Mus musculus) were induced intraperitoneally to be hyperglycemic using alloxan monohydrate single dose of 190 mg/kg body weight. Hyperglycemic mice treated orally for 14 days using SHFE which grouped into five treatment dosages. Testicular histology were prepared using the paraffin methods and stained with Haematoxylin and Eosin. According to ANOVA and Tukey's test, it was found that spermatogenic cells population as well as its composition in the testis of mice that treated with SHFE are significantly higher than hyperglichemic mice. The highest dose of SHFE (0.15 ml/day), showed highest spermatogenic cell. All hyperglichemic mice that treated with SHFE exhibited the ratio composition of spermatogonia: spermatocytes: spermatids as same as with control (healthy mice) i.e. 1:1:3 respectively.

  19. Regulation of proliferation and functioning of transplanted cells by using herpes simplex virus thymidine kinase gene in mice.

    Science.gov (United States)

    Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2018-04-10

    Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fate of tumor cells injected into left ventricle of heart in BALB/c mice: role of natural killer cells

    DEFF Research Database (Denmark)

    Basse, P; Hokland, P; Heron, I

    1988-01-01

    The arrest, retention, and elimination (i.e., clearance) of radiolabeled YAC-1 lymphoma cells injected either iv or into the left ventricle (LV) of the heart were studied in male BALB/c mice, with special emphasis on the role of natural killer (NK) cells. After iv injection YAC-1 cells were...

  1. Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.

    Science.gov (United States)

    Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina

    2013-01-01

    In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.

  2. HNO3 fluxes to a deciduous forest derived using gradient and REA methods

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Jensen, B.

    2002-01-01

    Summertime nitric acid concentrations over a deciduous forest in the midwestern United States are reported, which range between 0.36 and 3.3 mug m(-3). Fluxes to the forest are computed using the relaxed eddy accumulation technique and gradient methods. In accord with previous studies, the results...... indicate substantial uncertainties in the gradient-based calculations. The relaxed eddy accumulation (REA) derived fluxes are physically reasonable and are shown to be of similar magnitude to dry deposition estimates from gradient sampling. The REA derived mean deposition velocity is approximately 3 cm s......(-1), which is also comparable to growing season estimates derived by Meyers et al. for a similar deciduous forest. Occasional inverted concentration gradients and fluxes are observed but most are not statistically significant. Data are also presented that indicate substantial through canopy...

  3. Leukemic transformation of donor spleen cells following their transplantation into supralethally irradiated mice with pre-existing viral leukemia. [X Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, P M; OKunewick, J P; Erhard, P

    1974-01-01

    Fialkow et al. previously reported leukemia induction in donor-type cells after treating patients for acute lymphoblastic leukemia with total-body irradiation and hematopoietic cell transplantation. Utilizing a murine model and paralleling their treatment protocol, we have documented that induction of leukemia can occur in normal donor cells transplanted into Rauscher viral leukemic mice at 0, 1 and 2 days after irradiation. The induction of leukemia in the grafted cells was verified by: the occurrence of splenomegaly; and secondary spleen cell transplants, whereby the secondary donors were transplanted mice still alive at 30 days and the secondary recipients were normal unirradiated mice. The spleen weights of the grafted leukemic mice were found to be significantly greater than those of the controls and all secondary recipients that received spleen cells from the primary grafted leukemic mice also died of leukemia. Verification that the regenerating hematopoietic tissue was from donor (males) and not host source (females) was accomplished by spleen chromosome preparations taken from randomly selected mice at 14 and at 30 days after cell transplantation. In these preparations, the Y chromosome was clearly distinguishable on the basis of size, shape, and differential staining. The data indicate that induction of leukemia after whole-body irradiation and hematopoietic cell transplantation can occur in immunologically matched donor cells when a viral agent is present and that the incidence of this induction is not affected by a time delay between irradiation and transplant.

  4. Foxp3+ Regulatory T Cells Delay Expulsion of Intestinal Nematodes by Suppression of IL-9-Driven Mast Cell Activation in BALB/c but Not in C57BL/6 Mice

    Science.gov (United States)

    Brenz, Yannick; Eschbach, Marie-Luise; Hartmann, Wiebke; Haben, Irma; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Breloer, Minka

    2014-01-01

    Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3+ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3+ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6

  5. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice.

    Science.gov (United States)

    Kruse, Robert L; Shum, Thomas; Tashiro, Haruko; Barzi, Mercedes; Yi, Zhongzhen; Whitten-Bauer, Christina; Legras, Xavier; Bissig-Choisat, Beatrice; Garaigorta, Urtzi; Gottschalk, Stephen; Bissig, Karl-Dimiter

    2018-04-06

    Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection. We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice. HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core-positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups. HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Effect of x-irradiation on cell kinetics of esophageal membrane cells in mice

    International Nuclear Information System (INIS)

    Ando, Koichi; Tsunemoto, Hiroshi; Urano, Muneyasu; Koike, Sachiko

    1977-01-01

    Effect of x-irradiation on the cell kinetics of esophageal membrane cells was studied in C3Hf/He male mice. Experimental methods include; counting the number of basal and superficial cells, and pulse or continuous labelling by tritiated thymidine. Esophageal area was irradiated with 1000 rad of 200 kVp x-rays and cell kinetics were studied on the 5th post-irradiation day. Autoradiography revealed the shortening of the cell cycle time, specifically in G- and G- phases. Numbers of basal cells and of superficial cells were found to increase for 5 days after irradiation. Continuous labelling experiments using infusion technique demonstrated than growth fraction of irradiated basal cells was 1.0 as well as that of non-irradiated cells. It was of interest that the migration time, i.e., the time required for labelled cells to migrate from basal cell layer to superficial cell layer, was shortened approximately 1/3 of that of non-irradiated control after irradiation. Diurnal variation was observed not only in normal basal cells but also in irradiated ones, and the rate of increase of labelling index after continuous labelling was independent of the time when the labelling was started. (auth.)

  7. Effect of x irradiation on cell kinetics of esophageal membrane cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K; Tsunemoto, H; Urano, M; Koike, S [National Inst. of Radiological Sciences, Chiba (Japan)

    1977-05-01

    Effect of x irradiation on the cell kinetics of esophageal membrane cells was studied in C3Hf/He male mice. Experimental methods include; counting the number of basal and superficial cells, and pulse or continuous labelling by tritiated thymidine. Esophageal area was irradiated with 1000 rad of 200 kVp x rays and cell kinetics were studied on the 5th post-irradiation day. Autoradiography revealed the shortening of the cell cycle time, specifically in G- and G- phases. Numbers of basal cells and of superficial cells were found to increase for 5 days after irradiation. Continuous labelling experiments using infusion technique demonstrated than growth fraction of irradiated basal cells was 1.0 as well as that of non-irradiated cells. It was of interest that the migration time, i.e., the time required for labelled cells to migrate from basal cell layer to superficial cell layer, was shortened approximately 1/3 of that of non-irradiated control after irradiation. Diurnal variation was observed not only in normal basal cells but also in irradiated ones, and the rate of increase of labelling index after continuous labelling was independent of the time when the labelling was started.

  8. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    Science.gov (United States)

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR5 and CXCR3 and are the most permissive to HIV-1 infection. A single low-dose intravaginal HIV-1 challenge of humanized DRAG mice results in 100% infectivity with accumulation of TFH-cells mainly in the Peyer’s patches and FRT. The novel finding of TFH-cells in the FRT may contribute to the high susceptibility of DRAG mice to HIV-1 infection. This mouse model thus provides new opportunities to study TFH-cells and to evaluate HIV-1 vaccines. PMID:26034905

  9. Sustained expression of GLP-1 receptor differentially modulates β-cell functions in diabetic and nondiabetic mice

    International Nuclear Information System (INIS)

    Kubo, Fumiyo; Miyatsuka, Takeshi; Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki; Watada, Hirotaka; Kaneto, Hideaki; Gannon, Maureen; Matsuoka, Taka-aki; Shimomura, Iichiro

    2016-01-01

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining β-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1"P"B-CreER"T"M; CAG-CAT-Glp1r (βGlp1r) that allows for induction of Glp1r expression specifically in β cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic βGlp1r;db/misty mice, βGlp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in βGlp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of β-cell failure under diabetic conditions. - Highlights: • Expression levels of incretin receptors were significantly decreased in diabetic db/db islets after the age of eight weeks. • A transgenic mouse model expressing Glp1r specifically in β cells was generated. • Exogenous expression of Glp1r in β cells did not affect metabolic profiles in nondiabetic mice. • Sustained expression of Glp1r in diabetic db/db β cells deteriorated glucose

  10. Sustained expression of GLP-1 receptor differentially modulates β-cell functions in diabetic and nondiabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Fumiyo [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Miyatsuka, Takeshi, E-mail: miyatsuka-takeshi@umin.net [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Watada, Hirotaka [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Kaneto, Hideaki [Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Japan Okayama 701-0192 (Japan); Gannon, Maureen [Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, 2220 Pierce Ave. 746 PRB, Nashville, TN 37232-6303 (United States); Matsuoka, Taka-aki; Shimomura, Iichiro [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-02-26

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining β-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1{sup PB}-CreER{sup TM}; CAG-CAT-Glp1r (βGlp1r) that allows for induction of Glp1r expression specifically in β cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic βGlp1r;db/misty mice, βGlp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in βGlp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of β-cell failure under diabetic conditions. - Highlights: • Expression levels of incretin receptors were significantly decreased in diabetic db/db islets after the age of eight weeks. • A transgenic mouse model expressing Glp1r specifically in β cells was generated. • Exogenous expression of Glp1r in β cells did not affect metabolic profiles in nondiabetic mice. • Sustained expression of Glp1r in diabetic db/db β cells deteriorated

  11. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    Science.gov (United States)

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  12. Middle paleolithic human deciduous incisor from Grotta del Cavallo, Italy.

    Science.gov (United States)

    Fabbri, Pier Francesco; Panetta, Daniele; Sarti, Lucia; Martini, Fabio; Salvadori, Piero A; Caramella, Davide; Fedi, Mariaelena; Benazzi, Stefano

    2016-11-01

    In this contribution, we present a morphological description and comparative morphometric analysis of Cavallo D, a human tooth unearthed from the Mousterian FIII sublayer of Grotta del Cavallo (Apulia, Italy). We used microCT data to provide a detailed morphological description and morphometric analysis of the Cavallo D human tooth based on traditional diameter measurements and 3D enamel thickness. Moreover, new AMS radiocarbon dating of charcoals from layers FII was carried out. Morphological features observed in Cavallo D align the tooth to Neandertals. Similarly, the large size of the tooth (e.g., BL diameter) and the relatively thinner enamel thickness are typical Neandertal traits. 14 C datings of layer FII attribute the tooth to a time range of 45,600-42,900 cal BP (at 68% level of probability). Up to now, the Rdi 1 Cavallo D represents the most recent Neandertal human remain in southern Italy related to a radiocarbon dated stratigraphy. Moreover, since deciduous teeth have been less investigated than the permanent ones, this contribution brings new data to increase our knowledge on the variability of the Neandertal deciduous dentition. © 2016 Wiley Periodicals, Inc.

  13. Human CD141+ Dendritic Cell and CD1c+ Dendritic Cell Undergo Concordant Early Genetic Programming after Activation in Humanized Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yoshihito Minoda

    2017-10-01

    Full Text Available Human immune cell subsets develop in immunodeficient mice following reconstitution with human CD34+ hematopoietic stem cells. These “humanized” mice are useful models to study human immunology and human-tropic infections, autoimmunity, and cancer. However, some human immune cell subsets are unable to fully develop or acquire full functional capacity due to a lack of cross-reactivity of many growth factors and cytokines between species. Conventional dendritic cells (cDCs in mice are categorized into cDC1, which mediate T helper (Th1 and CD8+ T cell responses, and cDC2, which mediate Th2 and Th17 responses. The likely human equivalents are CD141+ DC and CD1c+ DC subsets for mouse cDC1 and cDC2, respectively, but the extent of any interspecies differences is poorly characterized. Here, we exploit the fact that human CD141+ DC and CD1c+ DC develop in humanized mice, to further explore their equivalency in vivo. Global transcriptome analysis of CD141+ DC and CD1c+ DC isolated from humanized mice demonstrated that they closely resemble those in human blood. Activation of DC subsets in vivo, with the TLR3 ligand poly I:C, and the TLR7/8 ligand R848 revealed that a core panel of genes consistent with DC maturation status were upregulated by both subsets. R848 specifically upregulated genes associated with Th17 responses by CD1c+ DC, while poly I:C upregulated IFN-λ genes specifically by CD141+ DC. MYCL expression, known to be essential for CD8+ T cell priming by mouse DC, was specifically induced in CD141+ DC after activation. Concomitantly, CD141+ DC were superior to CD1c+ DC in their ability to prime naïve antigen-specific CD8+ T cells. Thus, CD141+ DC and CD1c+ DC share a similar activation profiles in vivo but also have induce unique signatures that support specialized roles in CD8+ T cell priming and Th17 responses, respectively. In combination, these data demonstrate that humanized mice provide an attractive and tractable model to study

  14. Mechanism of altered B-cell response induced by changes in dietary protein type in mice

    International Nuclear Information System (INIS)

    Bounous, G.; Shenouda, N.; Kongshavn, P.A.; Osmond, D.G.

    1985-01-01

    The effect of 20 g/100 g dietary lactalbumin (L) or casein (C) diets or a nonpurified (NP) diet on the immune responsiveness of C57Bl/6J, C3H/HeJ and BALB/cJ mice has been investigated by measuring the response to the T cell-independent antigen, TNP-Ficoll. To investigate the possible influence of dietary protein type on the supply of B lymphocytes, bone marrow lymphocyte production has been examined by a radioautographic assay of small lymphocyte renewal and an immunofluorescent stathmokinetic assay of pre-B cells and their proliferation. The humoral response of all mice fed the L diet was found to be higher than that of mice fed the C diet or nonpurified diet. A similar pattern of dietary protein effect in (CBA/N X DBA/2J) F1 mice carrying the xid defect was observed following challenge with sheep red blood cells (SRBC). An even greater enhancing effect of dietary L was noted in normal (DBA/2J X CBA/N) F1 mice after immunization with SRBC, but in contrast, the normal large-scale production of B lymphocytes in mouse bone marrow was independent of the type of dietary protein. Dietary protein type did not affect blood level of minerals and trace metals. The free plasma amino acid profile essentially conformed to the amino acid composition of the ingested protein, suggesting that the changes in plasma amino acid profile might be a crucial factor in diet-dependent enhancement or depression of the B-cell response

  15. Effect of immunomodulation on the fate of tumor cells in the central nervous system and systemic organs of mice. Distribution of [125I]5-iodo-2'-deoxyuridine-labeled KHT tumor cells after left intracardial injection

    International Nuclear Information System (INIS)

    Conley, F.K.

    1982-01-01

    The effect of systemic immunomodulation on tumor cell arrest and retention in the central nervous system was studied by following radioactively labeled tumor cells. KHT mouse sarcoma tumor cells were labeled in vitro with [ 125 I]IdUrd, and 1x10 5 tumor cells were injected into the left side of the hearts of syngeneic C3H mice. Experimental groups consisted of untreated normal mice, mice pretreated iv with Corynebacterium parvum, and mice chronically infected with Toxoplasma gondii; in this model both groups of immunomodulated mice are protected from developing systemic metastatic tumor, but only Toxoplasma-infected mice have protection against metastatic brain tumor. At time intervals from 1 to 96 hours, groups of mice from each experimental group were killed, and the brain and other organs were monitored for radioactivity to determine the number of viable tumor cells that had been present at the time of death. Normal mice demonstrated significant retention of tumor cells in the brain and kidneys plus adrenals at 96 hours. By contrast, in both groups of immunomodulated mice tumor cells were rapidly eliminated from systemic organs, but tumor cells were significantly retained in the central nervous system even at 96 hours after tumor cell injections. The results indicated that generalized immunomodulation had more effect in elimination of tumor cells from systemic organs than from the brain and that the elimination of tumor cells from the brain in Toxoplasma-infected mice was a delayed phenomenon

  16. Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Yu Mitagami

    2015-08-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL. HTLV-1 bZIP factor (HBZ is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL.

  17. Growth of SJL/J-derived transplantable reticulum cell sarcoma as related to its ability to induce T-cell proliferation in the host- III. Studies on thymectomized and congenitally athymic SJL mice

    International Nuclear Information System (INIS)

    Katz, I.R.; Chapman-Alexander, J.; Jacobson, E.B.; Lerman, S.P.; Thorbecke, G.J.

    1981-01-01

    When SJL mice are irradiated and reconstituted with syngeneic bone marrow (XBM) they support growth of transplantable reticulum cell sarcoma to approximately 60% of that in normal mice. The ability to support RCS growth gradually improves with time after irradiation and reaches 90% of normal by 8-12 weeks. However, if the mice are thymectomized 4 weeks prior to treatment (Tx-XBM) they initially show 50% which increases to only 65% of growth in normal mice after 12 weeks. The ability of lymphoid cells from these mice to proliferate in vitro in response to irradiated RCS cells is normal 4 weeks after treatment in XBM, but remains <10% of normal in Tx-XBM mice. Nude mice of SJL background also show greatly diminished RCS growth. It is concluded that T cells promote RCS growth in vivo possibly via their tendency to proliferate upon exposure to RCS

  18. Invariant Natural Killer T Cells Ameliorate Monosodium Urate Crystal-Induced Gouty Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-12-01

    Full Text Available Gout is an inflammatory arthritis caused by deposition of intra-articular monosodium urate (MSU crystal. Previous studies have focused on resident macrophage, infiltrating monocyte, and neutrophil responses to MSU crystal; yet the mechanisms of cellular changes and the potential involvement of other regulatory immune cells remain largely unknown. Invariant natural killer T (iNKT cells, an innate type of T cell, are involved in the development of various inflammatory diseases. Here, we investigate the role of iNKT cells in MSU crystal-induced gouty inflammation. MSU crystal-induced inflammatory profiles in an air-pouch model were examined in iNKT-deficient CD1d knockout (KO and wild-type (WT control mice. To explore potential mechanisms of iNKT cell regulation of gouty inflammation, we cocultured CD4+ or CD4−iNKT cells with bone marrow-derived macrophages (BMDMs. We found that iNKT cells quickly migrated to the site of inflammation upon MSU crystal stimulation in WT mice. The total number of infiltrating cells in CD1d KO mice, especially neutrophils, was dramatically increased at 6 and 12 h (P < 0.01 post-MSU crystal challenge, compared with WT controls. BMDMs cocultured with CD4+iNKT cells produced less tumor necrosis factor-α and expressed higher levels of M2 macrophage markers, including Clec7a, Pdcd1Ig2, and interleukin-4 (P < 0.01, compared with BMDMs cocultured with CD4−iNKT cells or conventional CD4+ T cells. CD4+iNKT cells are one of the key regulators of MSU crystal-induced gouty inflammation through the control of macrophage polarization. iNKT cells may serve as a new therapeutic target for gout.

  19. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth

    Directory of Open Access Journals (Sweden)

    Leandro Borges Araújo

    2018-02-01

    Full Text Available Abstract Objective: The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA, calcium hydroxide (CH and BiodentineTM (BD on stem cells from human exfoliated deciduous teeth (SHED in vitro. Material and Methods: SHED were cultured for 1 – 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL, and tested for viability (MTT assay and proliferation (SRB assay. Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1 was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning and culture medium supplemented with 20% FBS were used as controls. Results: MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA (p<0.05. In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH (p<0.05. A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Conclusion: Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.

  20. Elevation of susceptibility to ozone-induced acute tracheobronchial injury in transgenic mice deficient in Clara cell secretory protein

    International Nuclear Information System (INIS)

    Plopper, C.G.; Mango, G.W.; Hatch, G.E.; Wong, V.J.; Toskala, E.; Reynolds, S.D.; Tarkington, B.K.; Stripp, B.R.

    2006-01-01

    Increases in Clara cell abundance or cellular expression of Clara cell secretory protein (CCSP) may cause increased tolerance of the lung to acute oxidant injury by repeated exposure to ozone (O 3 ). This study defines how disruption of the gene for CCSP synthesis affects the susceptibility of tracheobronchial epithelium to acute oxidant injury. Mice homozygous for a null allele of the CCSP gene (CCSP-/-) and wild type (CCSP+/+) littermates were exposed to ozone (0.2 ppm, 8 h; 1 ppm, 8 h) or filtered air. Injury was evaluated by light and scanning electron microscopy, and the abundance of necrotic, ciliated, and nonciliated cells was estimated by morphometry. Proximal and midlevel intrapulmonary airways and terminal bronchioles were evaluated. There was no difference in airway epithelial composition between CCSP+/+ and CCSP-/- mice exposed to filtered air, and exposure to 0.2 ppm ozone caused little injury to the epithelium of both CCSP+/+ and CCSP-/- mice. After exposure to 1.0 ppm ozone, CCSP-/- mice suffered from a greater degree of epithelial injury throughout the airways compared to CCSP+/+ mice. CCSP-/- mice had both ciliated and nonciliated cell injury. Furthermore, lack of CCSP was associated with a shift in airway injury to include proximal airway generations. Therefore, we conclude that CCSP modulates the susceptibility of the epithelium to oxidant-induced injury. Whether this is due to the presence of CCSP on the acellular lining layer surface and/or its intracellular distribution in the secretory cell population needs to be defined