Hybrid Prediction and Fractal Hyperspectral Image Compression
Shiping Zhu
2015-01-01
Full Text Available The data size of hyperspectral image is too large for storage and transmission, and it has become a bottleneck restricting its applications. So it is necessary to study a high efficiency compression method for hyperspectral image. Prediction encoding is easy to realize and has been studied widely in the hyperspectral image compression field. Fractal coding has the advantages of high compression ratio, resolution independence, and a fast decoding speed, but its application in the hyperspectral image compression field is not popular. In this paper, we propose a novel algorithm for hyperspectral image compression based on hybrid prediction and fractal. Intraband prediction is implemented to the first band and all the remaining bands are encoded by modified fractal coding algorithm. The proposed algorithm can effectively exploit the spectral correlation in hyperspectral image, since each range block is approximated by the domain block in the adjacent band, which is of the same size as the range block. Experimental results indicate that the proposed algorithm provides very promising performance at low bitrate. Compared to other algorithms, the encoding complexity is lower, the decoding quality has a great enhancement, and the PSNR can be increased by about 5 dB to 10 dB.
Variable length trajectory compressible hybrid Monte Carlo
Nishimura, Akihiko
2016-01-01
Hybrid Monte Carlo (HMC) generates samples from a prescribed probability distribution in a configuration space by simulating Hamiltonian dynamics, followed by the Metropolis (-Hastings) acceptance/rejection step. Compressible HMC (CHMC) generalizes HMC to a situation in which the dynamics is reversible but not necessarily Hamiltonian. This article presents a framework to further extend the algorithm. Within the existing framework, each trajectory of the dynamics must be integrated for the same amount of (random) time to generate a valid Metropolis proposal. Our generalized acceptance/rejection mechanism allows a more deliberate choice of the integration time for each trajectory. The proposed algorithm in particular enables an effective application of variable step size integrators to HMC-type sampling algorithms based on reversible dynamics. The potential of our framework is further demonstrated by another extension of HMC which reduces the wasted computations due to unstable numerical approximations and corr...
Lossless compression of hyperspectral images using hybrid context prediction.
Liang, Yuan; Li, Jianping; Guo, Ke
2012-03-26
In this letter a new algorithm for lossless compression of hyperspectral images using hybrid context prediction is proposed. Lossless compression algorithms are typically divided into two stages, a decorrelation stage and a coding stage. The decorrelation stage supports both intraband and interband predictions. The intraband (spatial) prediction uses the median prediction model, since the median predictor is fast and efficient. The interband prediction uses hybrid context prediction. The hybrid context prediction is the combination of a linear prediction (LP) and a context prediction. Finally, the residual image of hybrid context prediction is coded by the arithmetic coding. We compare the proposed lossless compression algorithm with some of the existing algorithms for hyperspectral images such as 3D-CALIC, M-CALIC, LUT, LAIS-LUT, LUT-NN, DPCM (C-DPCM), JPEG-LS. The performance of the proposed lossless compression algorithm is evaluated. Simulation results show that our algorithm achieves high compression ratios with low complexity and computational cost.
A High Resolution Low Dissipation Hybrid Scheme for Compressible Flows
YU Jian; YAN Chao; JIANG Zhenhua
2011-01-01
In this paper,an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows.The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field,which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws(MUSCL) to capture discontinuities.The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme.The two ingredients in this hybrid scheme are switched with an indicator.Three typical indicators are chosen and compared.MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial.Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency.Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.
Hybrid tenso-vectorial compressive sensing for hyperspectral imaging
Li, Qun; Bernal, Edgar A.
2016-05-01
Hyperspectral imaging has a wide range of applications relying on remote material identification, including astronomy, mineralogy, and agriculture; however, due to the large volume of data involved, the complexity and cost of hyperspectral imagers can be prohibitive. The exploitation of redundancies along the spatial and spectral dimensions of a hyperspectral image of a scene has created new paradigms that overcome the limitations of traditional imaging systems. While compressive sensing (CS) approaches have been proposed and simulated with success on already acquired hyperspectral imagery, most of the existing work relies on the capability to simultaneously measure the spatial and spectral dimensions of the hyperspectral cube. Most real-life devices, however, are limited to sampling one or two dimensions at a time, which renders a significant portion of the existing work unfeasible. We propose a new variant of the recently proposed serial hybrid vectorial and tensorial compressive sensing (HCS-S) algorithm that, like its predecessor, is compatible with real-life devices both in terms of the acquisition and reconstruction requirements. The newly introduced approach is parallelizable, and we abbreviate it as HCS-P. Together, HCS-S and HCS-P comprise a generalized framework for hybrid tenso-vectorial compressive sensing, or HCS for short. We perform a detailed analysis that demonstrates the uniqueness of the signal reconstructed by both the original HCS-S and the proposed HCS-P algorithms. Last, we analyze the behavior of the HCS reconstruction algorithms in the presence of measurement noise, both theoretically and experimentally.
Image compression with a hybrid wavelet-fractal coder.
Li, J; Kuo, C J
1999-01-01
A hybrid wavelet-fractal coder (WFC) for image compression is proposed. The WFC uses the fractal contractive mapping to predict the wavelet coefficients of the higher resolution from those of the lower resolution and then encode the prediction residue with a bitplane wavelet coder. The fractal prediction is adaptively applied only to regions where the rate saving offered by fractal prediction justifies its overhead. A rate-distortion criterion is derived to evaluate the fractal rate saving and used to select the optimal fractal parameter set for WFC. The superior performance of the WFC is demonstrated with extensive experimental results.
A Hybrid Data Compression Scheme for Improved VNC
Xiaozheng (Jane Zhang
2007-04-01
Full Text Available Virtual Network Computing (VNC has emerged as a promising technology in distributed computing environment since its invention in the late nineties. Successful application of VNC requires rapid data transfer from one machine to another over a TCP/IP network connection. However transfer of screen data consumes much network bandwidth and current data encoding schemes for VNC are far from being ideal. This paper seeks to improve screen data compression techniques to enable VNC over slow connections and present a reasonable speed and image quality. In this paper, a hybrid technique is proposed for improving coding efficiency. The algorithm first divides a screen image into pre-defined regions and applies encoding schemes to each area according to the region characteristics. Second, correlation of screen data in consecutive frames is exploited where multiple occurrences of similar image contents are detected. The improved results are demonstrated in a dynamic environment with various screen image types and desktop manipulation.
Performance studies on mechanical + adsorption hybrid compression refrigeration cycles with HFC 134a
Banker, N.D.; Dutta, P.; Srinivasan, K. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560 012 (India); Prasad, M. [Thermal Systems Division, ISRO Satellite Centre, Bangalore 560 017 (India)
2008-12-15
This paper presents the results of an investigation on the efficacy of hybrid compression process for refrigerant HFC 134a in cooling applications. The conventional mechanical compression is supplemented by thermal compression using a string of adsorption compressors. Activated carbon is the adsorbent for the thermal compression segment. The alternatives of bottoming either mechanical or thermal compression stages are investigated. It is shown that almost 40% energy saving is realizable by carrying out a part of the compression in a thermal compressor compared to the case when the entire compression is carried out in a single-stage mechanical compressor. The hybrid compression is feasible even when low grade heat is available. Some performance indictors are defined and evaluated for various configurations. (author)
A novel image compression-encryption hybrid algorithm based on the analysis sparse representation
Zhang, Ye; Xu, Biao; Zhou, Nanrun
2017-06-01
Recent advances on the compressive sensing theory were invoked for image compression-encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression-encryption hybrid algorithm. The analysis sparse representation of the original image is obtained with an overcomplete fixed dictionary that the order of the dictionary atoms is scrambled, and the sparse representation can be considered as an encrypted version of the image. Moreover, the sparse representation is compressed to reduce its dimension and re-encrypted by the compressive sensing simultaneously. To enhance the security of the algorithm, a pixel-scrambling method is employed to re-encrypt the measurements of the compressive sensing. Various simulation results verify that the proposed image compression-encryption hybrid algorithm could provide a considerable compression performance with a good security.
Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua
2014-10-01
The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.
21 CFR 73.350 - Mica-based pearlescent pigments.
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Mica-based pearlescent pigments. 73.350 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.350 Mica-based pearlescent pigments. (a... color additive mixtures for coloring food. (b) Specifications. Mica-based pearlescent pigments...
Hybrid coding for split gray values in radiological image compression
Lo, Shih-Chung B.; Krasner, Brian; Mun, Seong K.; Horii, Steven C.
1992-05-01
Digital techniques are used more often than ever in a variety of fields. Medical information management is one of the largest digital technology applications. It is desirable to have both a large data storage resource and extremely fast data transmission channels for communication. On the other hand, it is also essential to compress these data into an efficient form for storage and transmission. A variety of data compression techniques have been developed to tackle a diversity of situations. A digital value decomposition method using a splitting and remapping method has recently been proposed for image data compression. This method attempts to employ an error-free compression for one part of the digital value containing highly significant value and uses another method for the second part of the digital value. We have reported that the effect of this method is substantial for the vector quantization and other spatial encoding techniques. In conjunction with DCT type coding, however, the splitting method only showed a limited improvement when compared to the nonsplitting method. With the latter approach, we used a nonoptimized method for the images possessing only the top three-most-significant- bit value (3MSBV) and produced a compression ratio of approximately 10:1. Since the 3MSB images are highly correlated and the same values tend to aggregate together, the use of area or contour coding was investigated. In our experiment, we obtained an average error-free compression ratio of 30:1 and 12:1 for 3MSB and 4MSB images, respectively, with the alternate value contour coding. With this technique, we clearly verified that the splitting method is superior to the nonsplitting method for finely digitized radiographs.
Two-band hybrid FIR-IIR filters for image compression.
Lin, Jianyu; Smith, Mark J T
2011-11-01
Two-band analysis-synthesis filters or wavelet filters are used pervasively for compressing natural images. Both FIR and IIR filters have been studied in this context, the former being the most popular. In this paper, we examine the compression performance of these two-band filters in a dyadic wavelet decomposition and attempt to isolate features that contribute most directly to the performance gain. Then, employing the general exact reconstruction condition, hybrid FIR-IIR analysis-synthesis filters are designed to maximize compression performance for natural images. Experimental results are presented that compare performance with the popular biorthogonal filters in terms of peak SNR, subjective quality, and computational complexity.
Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows
Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin
2017-03-01
The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.
On the development of high temperature ammonia-water hybrid absorption-compression heat pumps
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars
2015-01-01
Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...
A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT.
Deepu, Chacko John; Heng, Chun-Huat; Lian, Yong
2017-04-01
This paper presents a novel data compression and transmission scheme for power reduction in Internet-of-Things (IoT) enabled wireless sensors. In the proposed scheme, data is compressed with both lossy and lossless techniques, so as to enable hybrid transmission mode, support adaptive data rate selection and save power in wireless transmission. Applying the method to electrocardiogram (ECG), the data is first compressed using a lossy compression technique with a high compression ratio (CR). The residual error between the original data and the decompressed lossy data is preserved using entropy coding, enabling a lossless restoration of the original data when required. Average CR of 2.1 × and 7.8 × were achieved for lossless and lossy compression respectively with MIT/BIH database. The power reduction is demonstrated using a Bluetooth transceiver and is found to be reduced to 18% for lossy and 53% for lossless transmission respectively. Options for hybrid transmission mode, adaptive rate selection and system level power reduction make the proposed scheme attractive for IoT wireless sensors in healthcare applications.
A new hybrid jpeg image compression scheme using symbol reduction technique
Kumar, Bheshaj; Sinha, G R
2012-01-01
Lossy JPEG compression is a widely used compression technique. Normally the JPEG standard technique uses three process mapping reduces interpixel redundancy, quantization, which is lossy process and entropy encoding, which is considered lossless process. In this paper, a new technique has been proposed by combining the JPEG algorithm and Symbol Reduction Huffman technique for achieving more compression ratio. The symbols reduction technique reduces the number of symbols by combining together to form a new symbol. As a result of this technique the number of Huffman code to be generated also reduced. It is simple fast and easy to implement. The result shows that the performance of standard JPEG method can be improved by proposed method. This hybrid approach achieves about 20% more compression ratio than the Standard JPEG.
A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China
Wenyi Liu; Linzhi Liu; Gang Xu; Feifei Liang; Yongping Yang; Weide Zhang; Ying Wu
2014-01-01
Compressed air energy storage (CAES) is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG) as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-f...
Feasibility study of a hybrid wind turbine system – integration with compressed air energy storage
Sun, Hao; Luo, Xing; Wang, Jihong
2015-01-01
Wind has been recognized as one of major realistic clean energy sources for power generation to meet the continuously increased energy demand and to achieve the carbon emission reduction targets. However, the utilisation of wind energy encounters an inevitable challenge resulting from the nature of wind intermittency. To address this, the paper presents the recent research work at Warwick on the feasibility study of a new hybrid system by integrating a wind turbine with compressed air energy ...
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
21 CFR 73.1350 - Mica-based pearlescent pigments.
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Mica-based pearlescent pigments. 73.1350 Section 73.1350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1350 Mica-based pearlescent pigments....
Noor D. N.
2016-01-01
Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.
Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites
Mohaiman J. Sharba
2016-01-01
Full Text Available Monotonic (tensile and compression properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.
Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures
Jiaan Liu
2017-01-01
Full Text Available Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS and X-ray diffraction (XRD, respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation.
Timofeev, Evgeny; Norouzi, Farhang
2016-06-01
The motivation for using hybrid, explicit-implicit, schemes rather than fully implicit or explicit methods for some unsteady high-speed compressible flows with shocks is firstly discussed. A number of such schemes proposed in the past are briefly overviewed. A recently proposed hybridization approach is then introduced and used for the development of a hybrid, explicit-implicit, TVD (Total Variation Diminishing) scheme of the second order in space and time on smooth solutions in both, explicit and implicit, modes for the linear advection equation. Further generalizations of this finite-volume method for the Burgers, Euler and Navier-Stokes equations discretized on unstructured grids are mentioned in the concluding remarks.
A hybrid quantum encoding algorithm of vector quantization for image compression
Pang Chao-Yang; Zhou Zheng-Wei; Guo Guang-Can
2006-01-01
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.
On the development of high temperature ammonia-water hybrid absorption-compression heat pumps
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;
2015-01-01
Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure ......, and 140 bar up to 147 °C. If the compressor discharge temperature limit is increased to 250 °C and the vapour water content constraint is removed, this becomes: 182 °C, 193 °C and 223 °C....
Hybrid discrete cosine transform-discrete wavelet transform for progressive image compression
Boukaache, Abdennour; Doghmane, Noureddine
2012-01-01
In this paper, we propose an image compression algorithm that uses a hybrid transform and an improved modified set partitioning in hierarchical trees (SPIHT) coding algorithm. The proposed transform uses the subband discrete cosine transform to decompose the image into multiresolution subbands where the discrete wavelet transform is then used to code the low frequencies. Then, we use the SPIHT coding method to code the transformed coefficients. For the SPIHT algorithm, we have proposed a method to reduce the distortion introduced by the SPIHT technique between the original and reconstructed images. The obtained results show the efficiency of the proposed hybrid method in terms of peak signal-to-noise ratio and visual quality.
A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China
Wenyi Liu
2014-08-01
Full Text Available Compressed air energy storage (CAES is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-fuel CAES incorporates an external combustion heater into the power generation subsystem to heat the air from the recuperator and the air from the high-pressure air turbine. Coal is the fuel for the external combustion heater. The overall efficiency and exergy efficiency of the hybrid-fuel CAES are 61.18% and 59.84%, respectively. Given the same parameters, the cost of electricity (COE of the hybrid-fuel CAES, which requires less NG, is $5.48/MW∙h less than that of the gas-fuel CAES. Although the proposed CAES requires a relatively high investment in the current electricity system in North China, the proposed CAES will be likely to become competitive in the market, provided that the energy supplies are improved and the large scale grid-connection of wind power is realized.
Tongfeng Zhang
2016-01-01
Full Text Available A one-dimensional (1D hybrid chaotic system is constructed by three different 1D chaotic maps in parallel-then-cascade fashion. The proposed chaotic map has larger key space and exhibits better uniform distribution property in some parametric range compared with existing 1D chaotic map. Meanwhile, with the combination of compressive sensing (CS and Fibonacci-Lucas transform (FLT, a novel image compression and encryption scheme is proposed with the advantages of the 1D hybrid chaotic map. The whole encryption procedure includes compression by compressed sensing (CS, scrambling with FLT, and diffusion after linear scaling. Bernoulli measurement matrix in CS is generated by the proposed 1D hybrid chaotic map due to its excellent uniform distribution. To enhance the security and complexity, transform kernel of FLT varies in each permutation round according to the generated chaotic sequences. Further, the key streams used in the diffusion process depend on the chaotic map as well as plain image, which could resist chosen plaintext attack (CPA. Experimental results and security analyses demonstrate the validity of our scheme in terms of high security and robustness against noise attack and cropping attack.
Xiaodong Liu; Lijun Xuan; Hong Luo; Yidong Xia
2001-01-01
A reconstructed discontinuous Galerkin (rDG(P1P2)) method, originally introduced for the compressible Euler equations, is developed for the solution of the compressible Navier- Stokes equations on 3D hybrid grids. In this method, a piecewise quadratic polynomial solution is obtained from the underlying piecewise linear DG solution using a hierarchical Weighted Essentially Non-Oscillatory (WENO) reconstruction. The reconstructed quadratic polynomial solution is then used for the computation of the inviscid fluxes and the viscous fluxes using the second formulation of Bassi and Reay (Bassi-Rebay II). The developed rDG(P1P2) method is used to compute a variety of flow problems to assess its accuracy, efficiency, and robustness. The numerical results demonstrate that the rDG(P1P2) method is able to achieve the designed third-order of accuracy at a cost slightly higher than its underlying second-order DG method, outperform the third order DG method in terms of both computing costs and storage requirements, and obtain reliable and accurate solutions to the large eddy simulation (LES) and direct numerical simulation (DNS) of compressible turbulent flows.
Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm
Shafqat Ullah Khan
2016-01-01
Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.
Hybrid aerogels and bioactive aerogels under uniaxial compression: an in situ SAXS study
Esquivias, L.
2010-12-01
Full Text Available The complex structure of hybrid organic/inorganic aerogels is composed by an inorganic phase covalently bonded to an organic chain forming a copolymer. Conventional hybrid aerogels were studied as well as bioactive hybrid aerogels, that is, aerogels with a calcium active phase added. In this work, the relationship between mechanical response and nanostructure was studied, using a specifically designed sample-holder for in situ uniaxial compression obtaining at the same time the small-angle X-ray pattern from synchrotron radiation (SAXS. Structural elements can be described as a particulated silica core surrounded by the organic chains. These chains are compressed on the direction parallel to the load, and a relationship between macroscopic uniaxial compression and particle and pore deformations can be established.
La compleja estructura de los aerogeles híbridos orgánico/inorgánicos está compuesta por una fase inorgánica de sílice, unida mediante enlaces covalentes a una red de cadenas orgánicas. Se han estudiado composites híbridos convencionales y bioactivos, esto es, con una fase activa de calcio añadida. En este trabajo se ha investigado la relación entre la respuesta mecánica y la nanoestructura, con ayuda de un portamuestras específicamente diseñado para el estudio in situ de muestras bajo compresión uniaxial, a la vez que se obtiene el espectro de rayos-X a bajo-ángulo de radiación sincrotrón (SAXS. Los elementos estructurales se pueden describir como núcleos particulados de sílice rodeados de las cadenas orgánicas. Estas, se comprimen en la dirección paralela a la carga pudiéndose establecer una relación entre la compresión uniaxial macroscópica y la deformación de las partículas y poros que forman la estructura.
21 CFR 73.3128 - Mica-based pearlescent pigments.
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Mica-based pearlescent pigments. 73.3128 Section 73.3128 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... pigments. (a) Identity and specifications. The color additive is formed by depositing titanium or...
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Croia, M.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Gallo, A.; Gatti, G.; Giorgianni, F.; Giribono, A.; Li, W.; Lupi, S.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Di Pirro, G.; Romeo, S.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.
2016-08-01
The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.
Pompili, Riccardo; Bellaveglia, M; Biagioni, A; Castorina, G; Chiadroni, E; Cianchi, A; Croia, M; Di Giovenale, D; Ferrario, M; Filippi, F; Gallo, A; Gatti, G; Giorgianni, F; Giribono, A; Li, W; Lupi, S; Mostacci, A; Petrarca, M; Piersanti, L; Di Pirro, G; Romeo, S; Scifo, J; Shpakov, V; Vaccarezza, C; Villa, F
2017-01-01
The generation of ultra-short electron bunches with ultra-low timing-jitter relative to the photo-cathode (PC) laser has been experimentally proved for the first time at the SPARC_LAB test-facility (INFN-LNF, Frascati) exploiting a two-stage hybrid compression scheme. The first stage employs RF-based compression (velocity-bunching), which shortens the bunch and imprints an energy chirp on it. The second stage is performed in a non-isochronous dogleg line, where the compression is completed resulting in a final bunch duration below 90 fs (rms). At the same time, the beam arrival timing-jitter with respect to the PC laser has been measured to be lower than 20 fs (rms). The reported results have been validated with numerical simulations.
78 FR 35115 - Listing of Color Additives Exempt From Certification; Mica-Based Pearlescent Pigments
2013-06-12
... Certification; Mica-Based Pearlescent Pigments AGENCY: Food and Drug Administration, HHS. ACTION: Final rule... of mica-based pearlescent pigments in food (Sec. 73.350) and ingested drugs (Sec. 73.1350) (71 FR 31927, June 2, 2006). For those exposed to mica-based pearlescent pigments from their use in food...
Xia, Yidong
The objective this work is to develop a parallel, implicit reconstructed discontinuous Galerkin (RDG) method using Taylor basis for the solution of the compressible Navier-Stokes equations on 3D hybrid grids. This third-order accurate RDG method is based on a hierarchical weighed essentially non- oscillatory reconstruction scheme, termed as HWENO(P1P 2) to indicate that a quadratic polynomial solution is obtained from the underlying linear polynomial DG solution via a hierarchical WENO reconstruction. The HWENO(P1P2) is designed not only to enhance the accuracy of the underlying DG(P1) method but also to ensure non-linear stability of the RDG method. In this reconstruction scheme, a quadratic polynomial (P2) solution is first reconstructed using a least-squares approach from the underlying linear (P1) discontinuous Galerkin solution. The final quadratic solution is then obtained using a Hermite WENO reconstruction, which is necessary to ensure the linear stability of the RDG method on 3D unstructured grids. The first derivatives of the quadratic polynomial solution are then reconstructed using a WENO reconstruction in order to eliminate spurious oscillations in the vicinity of strong discontinuities, thus ensuring the non-linear stability of the RDG method. The parallelization in the RDG method is based on a message passing interface (MPI) programming paradigm, where the METIS library is used for the partitioning of a mesh into subdomain meshes of approximately the same size. Both multi-stage explicit Runge-Kutta and simple implicit backward Euler methods are implemented for time advancement in the RDG method. In the implicit method, three approaches: analytical differentiation, divided differencing (DD), and automatic differentiation (AD) are developed and implemented to obtain the resulting flux Jacobian matrices. The automatic differentiation is a set of techniques based on the mechanical application of the chain rule to obtain derivatives of a function given as
ZPEG: a hybrid DPCM-DCT based approach for compression of Z-stack images.
Khire, Sourabh; Cooper, Lee; Park, Yuna; Carter, Alexis; Jayant, Nikil; Saltz, Joel
2012-01-01
Modern imaging technology permits obtaining images at varying depths along the thickness, or the Z-axis of the sample being imaged. A stack of multiple such images is called a Z-stack image. The focus capability offered by Z-stack images is critical for many digital pathology applications. A single Z-stack image may result in several hundred gigabytes of data, and needs to be compressed for archival and distribution purposes. Currently, the existing methods for compression of Z-stack images such as JPEG and JPEG 2000 compress each focal plane independently, and do not take advantage of the Z-signal redundancy. It is possible to achieve additional compression efficiency over the existing methods, by exploiting the high Z-signal correlation during image compression. In this paper, we propose a novel algorithm for compression of Z-stack images, which we term as ZPEG. ZPEG extends the popular discrete-cosine transform (DCT) based image encoder to compress Z-stack images. This is achieved by decorrelating the neighboring layers of the Z-stack image using differential pulse-code modulation (DPCM). PSNR measurements, as well as subjective evaluations by experts indicate that ZPEG can encode Z-stack images at a higher quality as compared to JPEG, JPEG 2000 and JP3D at compression ratios below 50∶1.
Ankur Gupta; Garima Tripathi; Debrupa Lahiri; Kantesh Balani
2013-01-01
Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements.In the present work,UHMWPE based polymer composites were synthesized by synergistic reinforcing of bioactive hydroxyapatite (HA),bioinert aluminum oxide (Al2O3),and carbon nanotubes (CNTs) using compression molding.Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites.Microstructural analysis elicited variation in densification due to the size effect of the reinforcing particles.The hybrid composites exhibited hardness,elastic modulus and toughness comparable to that of UHMWPE.The interfacial effect of reinforcement phases has evinced the effectiveness of Al2O3 over HA and CNT reinforcements,depicting synergistic enhancement in hardness and elastic modulus.Weak interfacial bonding of polymer matrix with HA and CNT requires utilization of coupling agents to achieve enhanced mechanical properties without deteriorating cytocompatible properties.
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix
2014-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix
2015-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars
2015-01-01
load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation ratios for a number of ammonia mass...... fractions and heat pump loads. An exergo economic optimization is applied to minimize the lifetime cost of the system. Technological limitations are imposed to constrain the solution to commercial components. The best possible implementation is identified in terms of heat load, ammonia mass fraction...
Multiwavelet and Estimation by Interpolation AnalysisBased Hybrid Color Image Compression
Ali Hussien Miry
2008-01-01
Full Text Available Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained.
A Lossless hybrid wavelet-fractal compression for welding radiographic images.
Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud
2016-01-01
In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.
Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas
Ibrahim, H.; Dimitrova, M. [Wind Energy TechnoCentre, 51 Chemin de la mine, C.P. 1300, Murdochville, Quebec (Canada); Wind Energy Research Laboratory (WERL), Universite du Quebec a Rimouski, 300, allee des Ursulines, Quebec (Canada); Anti-icing Materials International Laboratory (AMIL), Universite du Quebec a Chicoutimi, 555, boulevard de l' Universite, Quebec (Canada); Younes, R. [Wind Energy Research Laboratory (WERL), Universite du Quebec a Rimouski, 300, allee des Ursulines, Quebec (Canada); 3M Laboratory - Faculty of Engineering, Lebanese University, Beirut (Lebanon); Ilinca, A. [Wind Energy Research Laboratory (WERL), Universite du Quebec a Rimouski, 300, allee des Ursulines, Quebec (Canada); Perron, J. [Anti-icing Materials International Laboratory (AMIL), Universite du Quebec a Chicoutimi, 555, boulevard de l' Universite, Quebec (Canada)
2010-05-15
Remote areas around the world predominantly rely on diesel-powered generators for their electricity supply, a relatively expensive and inefficient technology that is responsible for the emission of 1.2 million tons of greenhouse gas (GHG) annually, only in Canada. Wind-diesel hybrid systems (WDS) with various penetration rates have been experimented to reduce diesel consumption of the generators. After having experimented wind-diesel hybrid systems (WDS) that used various penetration rates, we turned our focus to that the re-engineering of existing diesel power plants can be achieved most efficiently, in terms of cost and diesel consumption, through the introduction of high penetration wind systems combined with compressed air energy storage (CAES). This article compares the available technical alternatives to supercharge the diesel that was used in this high penetration wind-diesel system with compressed air storage (WDCAS), in order to identify the one that optimizes its cost and performances. The technical characteristics and performances of the best candidate technology are subsequently assessed at different working regimes in order to evaluate the varying effects on the system. Finally, a specific WDCAS system with diesel engine downsizing is explored. This proposed design, that requires the repowering of existing facilities, leads to heightened diesel power output, increased engine lifetime and efficiency and to the reduction of fuel consumption and GHG emissions, in addition to savings on maintenance and replacement cost. (author)
Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping
2014-10-01
Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.
CCA performance of a new source list/EZW hybrid compression algorithm
Huber, A. Kris; Budge, Scott E.; Moon, Todd K.; Bingham, Gail E.
2001-11-01
A new data compression algorithm for encoding astronomical source lists is presented. Two experiments in combined compression and analysis (CCA) are described, the first using simulated imagery based upon a tractable source list model, and the second using images from SPIRIT III, a spaceborne infrared sensor. A CCA system consisting of the source list compressor followed by a zerotree-wavelet residual encoder is compared to alternatives based on three other astronomical image compression algorithms. CCA performance is expressed in terms of image distortion along with relevant measures of point source detection and estimation quality. Some variations of performance with compression bit rate and point source flux are characterized. While most of the compression algorithms reduce high-frequency quantum noise at certain bit rates, conclusive evidence is not found that such denoising brings an improvement in point source detection or estimation performance of the CCA systems. The proposed algorithm is a top performer in every measure of CCA performance; the computational complexity is relatively high, however.
Lemofouet, Sylvain; Rufer, Alfred
This paper presents a hybrid energy storage system mainly based on Compressed Air, where the storage and withdrawal of energy are done within maximum efficiency conditions. As these maximum efficiency conditions impose the level of converted power, an intermittent time-modulated operation mode is applied to the thermodynamic converter to obtain a variable converted power. A smoothly variable output power is achieved with the help of a supercapacitive auxiliary storage device used as a filter. The paper describes the concept of the system, the power-electronic interfaces and especially the Maximum Efficiency Point Tracking (MEPT) algorithm and the strategy used to vary the output power. In addition, the paper introduces more efficient hybrid storage systems where the volumetric air machine is replaced by an oil-hydraulics and pneumatics converter, used under isothermal conditions. Practical results are also presented, recorded from a low-power air motor coupled to a small DC generator, as well as from a first prototype of the hydro-pneumatic system. Some economical considerations are also made, through a comparative cost evaluation of the presented hydro-pneumatic systems and a lead acid batteries system, in the context of a stand alone photovoltaic home application. This evaluation confirms the cost effectiveness of the presented hybrid storage systems.
Technico-economical analysis of a hybrid wave power-air compression storage system
Hernandez-Torres, David; Bridier, Laurent; David, Mathieu; Lauret, Philippe; Ardiale, Thomas
2015-01-01
International audience; This paper presents a technico-economical analysis of a Pelamis wave power generator coupled with a proposed air compression storage system. Ocean wave measurements and forecasts are used from a site near the city of Saint-Pierre in Réunion island, France. The insular context requires both smoothing and forecast of the output power from the wave power system. The storage system is a solution to meet this requirement. Several power network services are defined by the ut...
A hybrid programming model for compressible gas dynamics using openCL
Bergen, Benjamin Karl [Los Alamos National Laboratory; Daniels, Marcus G [Los Alamos National Laboratory; Weber, Paul M [Los Alamos National Laboratory
2010-01-01
The current trend towards multicore/manycore and accelerated architectures presents challenges, both in portability, and also in the choices that developers must make on how to use the resources that these architectures provide. This paper explores some of the possibilities that are enabled by the Open Computing Language (OpenCL), and proposes a programming model that allows developers and scientists to more fully subscribe hybrid compute nodes, while, at the same time, reducing the impact of system failure.
VERIFICATION OF HYBRID NUMERICAL SCHEME FOR THE CASE OF COMPRESSIBLE JET IMPINGIMENT ON FLAT PLATE
2016-01-01
Full Text Available The article deals with the questions of mathematical modeling of compressible jet outflow from model nozzle and jet impingiment on flat plate at various values of n. pisoCentralFoam solver which is based on the Kurganov-Tadmor hy- brid numerical scheme, PISO algorithm and finite volume method, is used for the solution of this problem. The model, based on unsteady Reynolds equation and K-omega SST turbulence model with boundary functions is used for compressi- ble jet calculation. The problem definition for calculation of jet impingiment on flat plate is given. The simulation domainwas selected as a rectangle. Only a half of the nozzle was considered for simplification. The mixed boundary condition for pressure setting in case of free jet was used on the outlet of simulation domain. The special condition for the pressure with table data, allowed to increase the value of pressure gradually, was used on the inlet of simulation domain. The value of the jet pressure degree was selected as n = 2.5 and n = 5.0. The results of distribution of the velocity magnitude, field pressure, upon symmetry axes were received. The simulations were done with grids 100 000-500 000 cells. The average value of y+ was equal to 270. The calculations were done for the end time Tend = 0.01 s. Comparison of the results of pressure distribution calculation based on nozzle length on different grids with the results of the experiment is carried out. The coin- cidence to engineering accuracy of 5 % is received.
Tan, Yu Jun; Tan, Xipeng; Yeong, Wai Yee; Tor, Shu Beng
2016-01-01
A hybrid 3D bioprinting approach using porous microscaffolds and extrusion-based printing method is presented. Bioink constitutes of cell-laden poly(D,L-lactic-co-glycolic acid) (PLGA) porous microspheres with thin encapsulation of agarose-collagen composite hydrogel (AC hydrogel). Highly porous microspheres enable cells to adhere and proliferate before printing. Meanwhile, AC hydrogel allows a smooth delivery of cell-laden microspheres (CLMs), with immediate gelation of construct upon printing on cold build platform. Collagen fibrils were formed in the AC hydrogel during culture at body temperature, improving the cell affinity and spreading compared to pure agarose hydrogel. Cells were proven to proliferate in the bioink and the bioprinted construct. High cell viability up to 14 days was observed. The compressive strength of the bioink is more than 100 times superior to those of pure AC hydrogel. A potential alternative in tissue engineering of tissue replacements and biological models is made possible by combining the advantages of the conventional solid scaffolds with the new 3D bioprinting technology. PMID:27966623
APPLICATION OF IMPROVED HYBRID COMPRESSION ALGORITHM IN GPS DATA COMPRESSION%改进的混合压缩算法在 GPS数据压缩中的应用
周桂宇; 马宪民; 李卫斌
2013-01-01
In the paper we introduce a hybrid compression algorithm , which is the combination of Huffman algorithm and RLE algorithm , for compressing the GPS data .This algorithm acquires statistical characteristics of GPS data according to the NMEA 0183 protocol , mixes Huffman algorithm and RLE algorithm to compress GPS data , to improve the coding efficiency and to restrain data expansion .Huffman algorithm has high compression rate on duplicated single-byte data while RLE algorithm has high compression rate on duplicated code segment.The flag bit is added in the process of encoding for the classification processing on GPS data in order to effectively identify the outputs of two kinds of algorithm when decoding and to ensure the complete decoding of compressed data .This improved hybrid compression algorithm is applied to local storage and 3G remote transmission of vehicle terminal GPS data , results show that the algorithm has clear improvement in compression performance of GPS data .%介绍一种Huffman算法与RLE（ Run-Length Encoding ）算法相结合的混合压缩算法对车载监控系统GPS数据进行压缩处理。该算法依据NMEA0183协议获取GPS数据的统计特性，混合对重复的单字节数据的压缩率高的Huffman算法以及对重复码段压缩率高的RLE算法，对GPS数据进行压缩，提高数据的编码效率，抑制数据膨胀。在编码过程中添加标志位，对GPS数据进行分类处理，便于解码时有效识别两种算法的输出，保证对压缩的数据进行完整解码。将改进的混合压缩算法应用于车载终端GPS数据的本地存储与3G远程传输，结果表明该算法对GPS数据的压缩性能具有明显提高。
Ankur Gupta Garima Tripathi Debrupa Lahiri Kantesh Balani
2013-01-01
...）, bioinert aluminum oxide （Al2O3）, and carbon nanotubes （CNTs） using compression molding. Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites...
Ibrahim, H.; Dimitrova, M. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire LREE; Quebec Univ., Chicoutimi, PQ (Canada). Laboratoire LIMA; Chabour, H.; Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire LREE; Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Laboratoire LIMA
2009-07-01
This paper reviewed the feasibility of using a hybrid wind-diesel-compressed air system to produce electricity at remote telecommunication stations. The hybrid system has been touted as a substitute for inefficient and costly diesel generators that contribute significant amounts of greenhouse gas to the atmosphere. In part 1 of this study, the authors compared different technical solutions for a high penetration wind-diesel system together with compressed air energy storage (CAES) and described the one that optimizes the performance and the cost of the overall system. Part 2 of the study examined the method of storing compressed air and the type of tank used. Results of numerical modeling of the system were then analyzed to determine the economic advantage of the hybrid system in terms of diesel fuel conservation and avoided greenhouse gases. It was concluded that the proposed design provides an increase in diesel power and efficiency, reduced fuel consumption and GHG emissions, in addition to economies on the maintenance and replacement cost of imported diesel. 3 tabs., 6 figs.
2013-09-06
... HUMAN SERVICES Food and Drug Administration 21 CFR Part 73 Listing of Color Additives Exempt From Certification; Mica-Based Pearlescent Pigments; Confirmation of Effective Date AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; confirmation of effective date. SUMMARY: The Food and...
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix;
2016-01-01
District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...
Ibrahim, H.; Dimitrova, M. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire LREE; Quebec Univ., Chicoutimi, PQ (Canada). Laboratoire LIMA; Chabour, H.; Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada). Laboratoire LREE; Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Laboratoire LIMA
2009-07-01
This paper reviewed the main characteristics of various electricity storage techniques and their potential for both long and short-term applications. In particular, it discussed the feasibility of using a hybrid wind-diesel-compressed air system to produce electricity at remote telecommunication stations. The hybrid system has been touted as a substitute for inefficient and costly diesel generators that contribute significant amounts of greenhouse gas to the atmosphere. Some low and high penetration wind-diesel hybrid systems have been studied in order to reduce the diesel consumption. This paper demonstrated that the use of a high penetration wind-diesel system together with compressed air energy storage (CAES) is a viable alternative to improve the overall percentage of renewable energy and reduce the cost of electricity in remote areas where a good wind resource is available. In part 1 of this study, the authors compared different technical solutions for the CAES system and described the one that optimizes the performance and the cost of the overall system. 3 figs.
Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers
Raaijmakers, Michiel; Ogieglo, Wojciech; Wiese, M.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin
2015-01-01
Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompa
Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers
Raaijmakers, M.J.T.; Ogieglo, W.; Wiese, M.; Wessling, M.; Nijmeijer, A.; Benes, N.E.
2015-01-01
Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompa
有限元混合网格的压缩%Compression of finite element hybrid mesh
曾建江; 陈文亮; 翟建军
2005-01-01
A method for encoding and compressing finite element models is proposed.The model may be various non-simple topological structures and contain any combinations of beams,triangular elements and quadrilateral elements.First the model is subdivided into simple meshes that are orientable and manifold.Based on the Edgebreaker algorithm,13 labelled pairs are introduced for quadrilateral meshes and five other labelled pairs are introduced for triangles.Then the connectivity information of mixed triangle/quadrilateral meshes is coded in a direct manner.Two other bits are used to record the wireframe information.For the pure wireframe model,Taubin s method is extended to compress it.The compression algorithm is implemented and evaluated.Experiments with several models show that the method achieves excellent compression ratios.%提出了一个对有限元模型进行编码压缩的方法.该模型的拓扑结构可以是任意型式,允许包含四边形单元、三角形单元和梁(杆)单元.有限元模型首先分解成一系列的可定向的流形模型.基于Edgebreaker算法,针对四边形网格遍历的情况引入13对标记,同时对混合网格中的三角形用5对标记来表示.这样,混合网格的连接信息可以采用一种直接的方式进行编码.然后再使用2比特位记录模型中的线框信息.对于完全线框模型,采用扩展后的Taubin方法进行压缩.该压缩算法已经实现并进行了测试.多个复杂模型的压缩实验表明该方法具有很好的压缩效率.
A small angle neutron scattering study of mica based glass-ceramics with applications in dentistry
Kilcoyne, S. H.; Bentley, P. M.; Al-Jawad, M.; Bubb, N. L.; Al-Shammary, H. A. O.; Wood, D. J.
2004-07-01
We are currently developing machinable and load-bearing mica-based glass-ceramics for use in restorative dental surgery. In this paper we present the results of an ambient temperature small angle neutron scattering (SANS) study of several such ceramics with chemical compositions chosen to optimise machinability and strength. The SANS spectra are all dominated by scattering from the crystalline-amorphous phase interface and exhibit Q-4 dependence (Porod scattering) indicating that, on a 100Å scale, the surface of the crystals is smooth.
Ibrahim, H.; Dimitrova, M. [TechnoCentre eolien Gaspesie-les Iles, Gaspe, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada)
2010-07-01
This poster reported on a study that examined the feasibility of using a hybrid wind-diesel-compressed air system to produce electricity at remote telecommunication stations. Low and high penetration wind-diesel hybrid systems were studied in order to reduce the diesel consumption. The use of a high penetration wind-diesel system together with compressed air energy storage (CAES) was shown to be a viable alternative to improve the overall percentage of renewable energy and reduce the cost of electricity in remote areas where a good wind resource is available. Different technical solutions for the CAES system were compared. refs., figs.
Xue, Bo; Farghaly, Ahmed A; Guo, Zhenzhao; Zhao, Pengg; Li, Hong; Zhou, Changren; Li, Lihua
2016-03-01
Calcium phosphate cement (CPC) has been used for bone restoration despite its intrinsic fragile property. In order to enhance the CPC mechanical properties, biopolymers were introduced as filler to prepare CPC based cements. Chitosan/tetracalcium phosphate (TTCP)/dicalcium phosphate anhydrous (DCPA) based cement for bone repair has been prepared in the study. Solidification of the prepared cement was carried out in a simulate body fluid at 37 degrees C. The introduction of chitosan improved the mechanical performance of the as-prepared CPC hybrid nanocomposite. FTIR, SEM, TEM, HRTEM, XRD, and SAED were used to characterize the CPC nanocomposite. Data simulations have been performed to assist in determining the crystalline phase/s in the CPC hybrid nanocomposite. Based on the SAED, HRTEM measurements and data simulations, a monoclinic phase of hydroxyapatite (HAP) with a plate-like structure was obtained in the CPC system, which is believed to be responsible for the observed enhancement in CPC mechanical properties. The obtained composite has a biocompatibility comparable to that of commercial sample.
Meeson, Richard L; Goodship, Allen E; Arthurs, Gareth I
2012-08-01
To determine mechanical differences between two plates with different requirements for supplementary casting after pancarpal arthrodesis (PCA): the Veterinary Instrumentation Hybrid Dynamic Compression Plate (HDCP), and the OrthoMed CastLess Arthrodesis Plate (CLP). In vitro mechanical analysis. HDCP(n = 10), CLP(10). Single-cycle load to failure using a materials-testing machine and cyclic loading between 38 and 380 N ± 5% to simulate estimated in vivo loads until failure or 10(6) cycles. Single-cycle to failure: bending stiffness was significantly higher for the HDCP(2269 ± 175 N/mm) than CLP(1754 ± 88 N/mm; P Bending structural stiffness was higher for the HDCP(3.8 ± 0.3 Nm(2) ) versus CLP(2.9 ± 0.2 Nm(2) ; P= .0022). A difference between the 2 plates for bending strength was not demonstrated; HDCP= 13.9 ± 1.4 Nm, CLP13.2 ± 0.5 Nm (P= .24). Cyclic Loading: no failures occurred with either plate type when plates were cycled to 10(6) cycles. There is no mechanical advantage in bending resistance afforded by the CLPover the HDCP. Fatigue failure of either plate during the convalescent period of an estimated 150,000-250,000 cycles is unlikely. Based on the bending performance, there is no evidence to support the use of the CLPover the HDCPfor castless PCA. © Copyright 2012 by The American College of Veterinary Surgeons.
徐欢欢; 李晨; 古兴瑾
2014-01-01
采用工程上常用的铺层角度，设计7组不同的铺层方式，通过拉伸与压缩实验研究了多向玻璃纤维(GF)／碳纤维(CF)混杂复合材料的拉伸和压缩性能，得到了拉伸与压缩过程中力–位移曲线图及相应的破坏形貌。提出了铺层角度混杂比(CF相对体积分数)的概念，研究了不同铺层角度的混杂比对复合材料拉伸和压缩性能的影响。结果表明，多向纤维混杂复合材料的拉伸与压缩性能与总混杂比无明显关系，而与不同铺层角度各自的混杂比有关。其中，0°铺层混杂比对其影响最大，90°铺层混杂比影响最小，±45°铺层混杂比的影响介于两者之间。当0°铺层混杂比为100%时，复合材料的拉伸与压缩性能最高，拉伸破坏表现为一次破坏，破坏时层间分离的程度最低；当0°铺层混杂比低于100%时，复合材料的拉伸破坏表现为二次破坏。复合材料的压缩破坏大多表现为一次破坏，且在破坏时GF的破坏大多表现为“屈曲失稳”的形式，从而减缓了CF的脆性断裂程度。%Seven group lay-up means were designed using common lay-up angle in in engineering and the tensile and compression properties of multi-directional hybrid composites reinforced by glass fiber (GF) and carbon fiber (CF) were gained, the force-displacement curves and corresponding damage morphology were got by experimental research. A conception of lay-up angle hybrid ratio (the relative volume fraction of CF) was proposed and the influences of different lay-up angle hybrid ratio on the tensile elastic modulus,tensile strength,compression elastic modulus and compression strength of the composites were also studied. The results show that the tensile and compression properties of the composites have little relation with the total hybrid ratio,but are related to the angle hybrid ratio. Among which,the 0° hybrid ratio affects the properties the most while 90° hybrid
马小菲; 张国利; 朱有欣; 陈光伟
2014-01-01
Quasi-static axial compression and three point bending tests are performed to study the compression and flexural performance of glass/kevlar hybrid composite pipe. The effect of braiding angle and fiber hybrid ratio on the compression and flexural performance of composite pipe are investigated and the fracture features are also analyzed. It is found that when the braiding angle is 30°, 45°and 60°respectively, the compression strength of composite pipe with glass/kevlar hybrid ratio 1∶1 is the lowest. The compression strength of 2G/2K-60 is 58.4 MPa, it decreases about 31.7%compared with pure glass fiber pipe G-60. In addition, with the same braiding angle, the bending strength of the tube is the highest with glass/kevlar hybrid ratio 1∶3. The tube G/3K-30 has the best bending performance. When glass/kevlar hybrid ratio is 3∶1, 1∶1 and 1∶3 respectively, the smaller braiding angle is, the bigger compression strength and bending strength will be. It is found that the fiber hybrid ratio and braiding parameters have an important influence on the compression and flexural failure mechanism of composite pipe.%通过玻璃/芳纶混杂纤维复合材料圆管的轴向静态压缩和三点弯曲实验，分析了复合材料圆管的压缩及弯曲性能，探讨了编织角和纤维混杂比对复合材料圆管压缩及弯曲性能的影响，并对其破坏形式进行了分析.结果表明：当编织角分别为30°、45°和60°时，玻璃/芳纶混杂比为1∶1时圆管的压缩强度最低，圆管2G/2K-60的压缩强度最低为58.4 MPa，比纯玻璃纤维圆管G-60降低了约31.7%；另外，在相同编织角下，玻璃/芳纶混杂比为1∶3时圆管的弯曲强度最高，复合材料圆管G/3K-30具有最好的弯曲性能；当玻璃/芳纶混杂比分别为3∶1、1∶1和1∶3时，编织角越小，圆管的压缩强度和弯曲强度越大.可见，复合材料圆管的压缩和弯曲破坏机理与纤维混杂比及编织工艺参数有关.
Position list word aligned hybrid
Deliege, Francois; Pedersen, Torben Bach
2010-01-01
Compressed bitmap indexes are increasingly used for efficiently querying very large and complex databases. The Word Aligned Hybrid (WAH) bitmap compression scheme is commonly recognized as the most efficient compression scheme in terms of CPU efficiency. However, WAH compressed bitmaps use a lot...... of storage space. This paper presents the Position List Word Aligned Hybrid (PLWAH) compression scheme that improves significantly over WAH compression by better utilizing the available bits and new CPU instructions. For typical bit distributions, PLWAH compressed bitmaps are often half the size of WAH...
Image data compression investigation
Myrie, Carlos
1989-01-01
NASA continuous communications systems growth has increased the demand for image transmission and storage. Research and analysis was conducted on various lossy and lossless advanced data compression techniques or approaches used to improve the efficiency of transmission and storage of high volume stellite image data such as pulse code modulation (PCM), differential PCM (DPCM), transform coding, hybrid coding, interframe coding, and adaptive technique. In this presentation, the fundamentals of image data compression utilizing two techniques which are pulse code modulation (PCM) and differential PCM (DPCM) are presented along with an application utilizing these two coding techniques.
"Compressed" Compressed Sensing
Reeves, Galen
2010-01-01
The field of compressed sensing has shown that a sparse but otherwise arbitrary vector can be recovered exactly from a small number of randomly constructed linear projections (or samples). The question addressed in this paper is whether an even smaller number of samples is sufficient when there exists prior knowledge about the distribution of the unknown vector, or when only partial recovery is needed. An information-theoretic lower bound with connections to free probability theory and an upper bound corresponding to a computationally simple thresholding estimator are derived. It is shown that in certain cases (e.g. discrete valued vectors or large distortions) the number of samples can be decreased. Interestingly though, it is also shown that in many cases no reduction is possible.
Nelson, S.C.
2002-11-14
This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less
王成山; 武震; 杨献莘; 张书槐; 刘一欣
2014-01-01
The micro compressed air energy storage system is a new type of energy storage systems capable of being combined with flywheel to form a hybrid energy storage system.The structure and principle of a hybrid energy storage system based on micro compressed air energy storage is described.The governor system model of micro compressed air energy storage is proposed based on the experimental data,which simulates the dynamics of pressure,temperature,valve,and turbine and so on.Finally,a comparison between experimental data and simulation results is given to verify the applicability and effectiveness of the proposed model. This work is supported by National Basic Research Program of China(973 Program)(No.2009CB219700).%微型压缩空气储能是一种新型的储能技术，可以与飞轮等组成混合储能系统。文中介绍了基于微型压缩空气储能的混合储能系统的结构及工作原理，根据现有设备的实验结果提出了压缩空气储能原动部分的数学模型，包括压缩空气压力、温度、阀门、透平等环节，并通过拟合的方法进行参数辨识。最后，搭建了混合储能系统的仿真算例，并通过仿真与实验数据的对比验证了模型的适用性和有效性。
Compressive Sensing DNA Microarrays
Richard G. Baraniuk
2009-01-01
Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.
Compressive sensing for urban radar
Amin, Moeness
2014-01-01
With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki
Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.
2013-10-15
Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.
Smith, J.R.
1993-10-15
The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.
Eckert, Thomas; Dostal, Leo; Helm, Martin; Schweigler, Christian
2016-01-01
In various applications the use of sorption chillers and heat pumps is limited by the available temperature level of the driving heat source or the heat sink for export of reject heat. These constraints can be overcome by integrating an efficient high-speed transonic turbo-compressor into the internal cycle of a thermally driven water/lithium bromide absorption heat pump. The operation in a hybrid heat pump with the refrigerant water implies specific challenges for the design of the compresso...
Bonding of a mica-based castable ceramic material with a tri-n-butylborane-initiated adhesive resin.
Morikawa, T; Matsumura, H; Atsuta, M
1996-07-01
Adhesive bonding of a mica-based castable ceramic material (Olympus Castable Ceramics, OCC) was evaluated in vitro with the use of a silane primer in conjunction with an adhesive luting material. The primer contained a silane coupler and 4-methacryloxyethyl trimellitate anhydride (4-META), while the methyl methacrylate (MMA)-based luting agent was initiated with a tri-n-butylborane derivative (TBB) and contained 4-META (4-META/MMA-TBB resin). Ceramic specimens were sanded with No. 600 silicon carbide paper followed by blasting with alumina and/or etching with ammonium bifluoride. The specimens were bonded with various combinations and shear bond strengths were determined. Both priming and alumina blasting enhanced the bond between 4-META resin and OCC. Although etching with ammonium bifluoride roughened the ceramic surface, this procedure did not improve the bond strength. Electron probe microanalysis of the ceramic surface revealed a decrease in silicon and aluminium elements after etching with ammonium bifluoride.
郭浩然; 庞建民
2012-01-01
High resolution terrain Digital Elevation Model (DEM) and orthophoto bring severely load including data storage, schedule and real-time rendering, etc.. A high performance terrain data compression method is proposed based on lifting wavelet transform and parallel hybrid entropy codec, and combined with Graphics Process Unit (GPU) Ray-casting to achieve large-scale 3D terrain visualization. First, the multi-resolution wavelet transform model of terrain tile is constructed to map the refinement and simplification operation. Then the multi-resolution quadtree of DEM and terrain texture is built separately based on lifting wavelet transform, the sparse wavelet coefficient generated from quantization is compressed by a hybrid entropy codec which combined with parallel run-length coding and variable-length Huffman coding. The compressed data are organized into progressive stream to do real-time decoding and rendering. The present lifting wavelet transform and hybrid entropy codec is implemented by Compute Unified Device Architecture (CUDA) in GPU. Experiment results show that the data compression ratio is effective with this method, PSNR and code-decode data throughput. High Frames Per Second (FPS) in real-time rendering satisfied the demand of interactive visualization.%高分辨率地形高程和影像数据给交互式3维地形可视化应用带来沉重压力,主要体现在数据存储、调度传输及实时渲染等方面.该文设计一种基于提升小波变换与并行混合熵编码的地形数据高性能压缩方法,并结合图形处理器(Graphics Process Unit,GPU)Ray-casting实现大规模3维地形可视化.首先建立多分辨率地形块的小波变换模型来映射其求精和化简操作；其次,基于提升小波变换分别构建格网数字高程模型(Digital Elevation Model,DEM)和地表纹理的多分辨率四叉树,对量化后的稀疏小波系数引入并行游程编码与并行变长霍夫曼编码相结合的混合熵编码进行压
Study on Jet-Compression Hybrid Refrigeration Cycle Driven by Heat and Power%热-电驱动喷射压缩复合制冷循环特性研究
王林; 谈莹莹; 梁坤峰; 安方涛; 陈宁
2014-01-01
Autocascade refrigeration can achieve lower refrigeration temperature easily,but it totally consumes high grade energy and its COP is low.Jet refrigeration can achieve the refrigeration effect by utilizing low grade heat sources.However,its refrigeration temperature is high.In order to utilize low grade heat to the domain of cryogenic freezing,jet/compression hybrid refrigeration cycle with mixed refrigerants driven by low grade heat and power was presented.The new cycle contributes to improving the efficiency of refrigeration significantly and achieving lower refrigeration temperature.On a basis of its mathematical model,the influences of compression ratio of the ejector and compressor on mechanical and thermal coefficient of performance(COPme/COPth) were analyzed.The results indicate that refrigeration efficiency of the hybrid refrigeration cycle is much higher than that of the traditional autocascade refrigeration cycle.%自复叠制冷循环具有获得制冷温度低优点,但其完全消耗的是高品位电能或机械能;喷射制冷具有利用低品位低温热源(60～100℃)制取冷量、且制冷温度较高时制冷效率高等优点,但难以获得较低制冷温度.因此,为了实现低品位热在低温冷冻领域高效利用并节省高品位电能,本文提出一种由低品位低温热源与电能联合驱动的混合工质喷射/压缩复合制冷循环.建立组成新循环各部件热力学数学模型,分析喷射器压缩比和压缩机压缩比对复合式制冷循环的热性能系数和机械性能系数影响,并与传统的自复叠制冷循环特性进行比较分析.研究表明,低品位热源与电能联合驱动喷射/压缩复合制冷循环较传统自复叠制冷循环可显著提高制冷效率并获得更低制冷温度.
陈光明; 石玉琦; 洪大良
2016-01-01
吸收式制冷是热能利用的重要形式之一，氨吸收式制冷中的 GAX(发生–吸收热交换器)循环具有相对较高的效率，吸收–压缩耦合的混合GAX循环可以进一步提高GAX循环效率。为了应对GAX循环中GAXA(发生–吸收热交换器吸收器)和GAXG(发生–吸收热交换器发生器)热量匹配问题，提出了一个改进的吸收–压缩混合 GAX 循环。研究了蒸发温度、冷凝温度、放气范围和换热温差对新循环和基础GAX 循环的影响。新循环较基础 GAX 循环性能在大部分工况下有显著提升，COP 提高可达30%以上，尽管如此，模拟现实新循环仍具有一定的适用范围。%Absorption refrigeration is one of the most important method on utilizing thermal energy. GAX (generator-absorber heat exchanger) cycle has a relatively high performance in ammonia absorption refrigeration family. Absorption-compression coupled hybrid GAX cycle can further improve the efficiency of GAX cycle. In order to solve the heat marching problem of GAXA (generator-absorber heat exchanger absorber) and GAXG (generator-absorber heat exchanger generator) heat exchangers, a modified novel absorption-compression hybrid GAX cycle was proposed. Effect of evaporation temperature, cooling temperature, degassing range and approach temperature on performance of new cycle and basic GAX cycle was studied. Performance of new cycle has a significant improvement, compared to basic GAX cycle, which 30% improvement can be achieved. Nevertheless, the scope of application of the new cycle varies with working conditions.
Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)
2012-07-01
Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)
Xenaki, Angeliki; Mosegaard, Klaus
2014-01-01
Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...
Adaptively Compressed Exchange Operator
Lin, Lin
2016-01-01
The Fock exchange operator plays a central role in modern quantum chemistry. The large computational cost associated with the Fock exchange operator hinders Hartree-Fock calculations and Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, even for systems consisting of hundreds of atoms. We develop the adaptively compressed exchange operator (ACE) formulation, which greatly reduces the computational cost associated with the Fock exchange operator without loss of accuracy. The ACE formulation does not depend on the size of the band gap, and thus can be applied to insulating, semiconducting as well as metallic systems. In an iterative framework for solving Hartree-Fock-like systems, the ACE formulation only requires moderate modification of the code, and can be potentially beneficial for all electronic structure software packages involving exchange calculations. Numerical results indicate that the ACE formulation can become advantageous even for small systems with tens...
Compressive Sensing Over Networks
Feizi, Soheil; Effros, Michelle
2010-01-01
In this paper, we demonstrate some applications of compressive sensing over networks. We make a connection between compressive sensing and traditional information theoretic techniques in source coding and channel coding. Our results provide an explicit trade-off between the rate and the decoding complexity. The key difference of compressive sensing and traditional information theoretic approaches is at their decoding side. Although optimal decoders to recover the original signal, compressed by source coding have high complexity, the compressive sensing decoder is a linear or convex optimization. First, we investigate applications of compressive sensing on distributed compression of correlated sources. Here, by using compressive sensing, we propose a compression scheme for a family of correlated sources with a modularized decoder, providing a trade-off between the compression rate and the decoding complexity. We call this scheme Sparse Distributed Compression. We use this compression scheme for a general multi...
Compression limits in cascaded quadratic soliton compression
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2008-01-01
Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....
Huang, Bormin
2011-01-01
Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-
Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.
2008-12-01
Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.
Focus on Compression Stockings
... the stocking every other day with a mild soap. Do not use Woolite™ detergent. Use warm water ... compression clothing will lose its elasticity and its effectiveness. Compression stockings last for about 4-6 months ...
A Compressive Superresolution Display
Heide, Felix
2014-06-22
In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.
Advances in the study of hybrid finite elements
无
2000-01-01
Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.
Microbunching and RF Compression
Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.
2010-05-23
Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.
Hyperspectral data compression
Motta, Giovanni; Storer, James A
2006-01-01
Provides a survey of results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. This work covers topics such as compression architecture, lossless compression, lossy techniques, and more. It also describes a lossless algorithm based on vector quantization.
Hildebrand, Richard J.; Wozniak, John J.
2001-01-01
A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.
Compressing Binary Decision Diagrams
Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter
2008-01-01
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...
Compressing Binary Decision Diagrams
Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...
Compressing Binary Decision Diagrams
Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter
2008-01-01
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...
Image Denoising of Wavelet based Compressed Images Corrupted by Additive White Gaussian Noise
Shyam Lal
2012-08-01
Full Text Available In this study an efficient algorithm is proposed for removal of additive white Gaussian noise from compressed natural images in wavelet based domain. First, the natural image is compressed by discrete wavelet transform and then proposed hybrid filter is applied for image denoising of compressed images corrupted by Additive White Gaussian Noise (AWGN. The proposed hybrid filter (HMCD is combination of non-linear fourth order partial differential equation and bivariate shrinkage function. The proposed hybrid filter provides better results in term of noise suppression with keeping minimum edge blurring as compared to other existing image denoising techniques for wavelet based compressed images. Simulation and experimental results on benchmark test images demonstrate that the proposed hybrid filter attains competitive image denoising performances as compared with other state-of-the-art image denoising algorithms. It is more effective particularly for the highly corrupted images in wavelet based compressed domain.
Compressing bitmap indexes for faster search operations
Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie
2002-04-25
In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed.
An efficient compression scheme for bitmap indices
Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie
2004-04-13
When using an out-of-core indexing method to answer a query, it is generally assumed that the I/O cost dominates the overall query response time. Because of this, most research on indexing methods concentrate on reducing the sizes of indices. For bitmap indices, compression has been used for this purpose. However, in most cases, operations on these compressed bitmaps, mostly bitwise logical operations such as AND, OR, and NOT, spend more time in CPU than in I/O. To speedup these operations, a number of specialized bitmap compression schemes have been developed; the best known of which is the byte-aligned bitmap code (BBC). They are usually faster in performing logical operations than the general purpose compression schemes, but, the time spent in CPU still dominates the total query response time. To reduce the query response time, we designed a CPU-friendly scheme named the word-aligned hybrid (WAH) code. In this paper, we prove that the sizes of WAH compressed bitmap indices are about two words per row for large range of attributes. This size is smaller than typical sizes of commonly used indices, such as a B-tree. Therefore, WAH compressed indices are not only appropriate for low cardinality attributes but also for high cardinality attributes.In the worst case, the time to operate on compressed bitmaps is proportional to the total size of the bitmaps involved. The total size of the bitmaps required to answer a query on one attribute is proportional to the number of hits. These indicate that WAH compressed bitmap indices are optimal. To verify their effectiveness, we generated bitmap indices for four different datasets and measured the response time of many range queries. Tests confirm that sizes of compressed bitmap indices are indeed smaller than B-tree indices, and query processing with WAH compressed indices is much faster than with BBC compressed indices, projection indices and B-tree indices. In addition, we also verified that the average query response time
Economic and environmental evaluation of compressed-air cars
Creutzig, Felix; Papson, Andrew; Schipper, Lee; Kammen, Daniel M.
2009-10-01
Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.
Lossless Medical Image Compression
Nagashree G
2014-06-01
Full Text Available Image compression has become an important process in today‟s world of information exchange. Image compression helps in effective utilization of high speed network resources. Medical Image Compression is very important in the present world for efficient archiving and transmission of images. In this paper two different approaches for lossless image compression is proposed. One uses the combination of 2D-DWT & FELICS algorithm for lossy to lossless Image Compression and another uses combination of prediction algorithm and Integer wavelet Transform (IWT. To show the effectiveness of the methodology used, different image quality parameters are measured and shown the comparison of both the approaches. We observed the increased compression ratio and higher PSNR values.
Celiac Artery Compression Syndrome
Mohammed Muqeetadnan
2013-01-01
Full Text Available Celiac artery compression syndrome is a rare disorder characterized by episodic abdominal pain and weight loss. It is the result of external compression of celiac artery by the median arcuate ligament. We present a case of celiac artery compression syndrome in a 57-year-old male with severe postprandial abdominal pain and 30-pound weight loss. The patient eventually responded well to surgical division of the median arcuate ligament by laparoscopy.
Spectral compression of single photons
Lavoie, Jonathan; Wright, Logan G; Fedrizzi, Alessandro; Resch, Kevin J
2013-01-01
Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generatio...
Compressed sensing & sparse filtering
Carmi, Avishy Y; Godsill, Simon J
2013-01-01
This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.Â Apart from compressed sensing this book contains other related app
Pearlman, William A
2013-01-01
This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S
Stiffness of compression devices
Giovanni Mosti
2013-03-01
Full Text Available This issue of Veins and Lymphatics collects papers coming from the International Compression Club (ICC Meeting on Stiffness of Compression Devices, which took place in Vienna on May 2012. Several studies have demonstrated that the stiffness of compression products plays a major role for their hemodynamic efficacy. According to the European Committee for Standardization (CEN, stiffness is defined as the pressure increase produced by medical compression hosiery (MCH per 1 cm of increase in leg circumference.1 In other words stiffness could be defined as the ability of the bandage/stockings to oppose the muscle expansion during contraction.
Page, P R
2003-01-01
We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.
Analysis of advanced solar hybrid desiccant cooling systems for buildings
Schlepp, D.; Schultz, K.
1984-10-01
This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.
IMAGE COMPRESSION APPROACH FOR MEDICAL PROCESSING USING MODIFIED NEURO MODELING
S. ABDUL KHADER JILANI
2010-09-01
Full Text Available Image compression is applied to many fields such as television broadcasting, remote sensing, image storage etc. Digitized images are compressed by a technique which exploits the redundancy of the images so that the number of bits required to represent the image can be reduced with acceptable degradation of the decoded image. The degradation of the image quality is limited wrt. the application used. There are various application where accuracy is of major concern. To achieve the objective of performance improvement with respect to decoded picture quality and compression ratios, compared to existing image compression techniques, a image compression technique using hybrid neural networks combining two different learning networks called Autoassociative multi-layer perceptron and self-organizing feature map is proposed.
Akkerman, J. W.
1982-01-01
New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.
Spectral Animation Compression
Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng
2015-01-01
This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.
Vascular compression syndromes.
Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas
2015-11-01
Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view.
Scoville, John
2011-01-01
A new approach to data compression is developed and applied to multimedia content. This method separates messages into components suitable for both lossless coding and 'lossy' or statistical coding techniques, compressing complex objects by separately encoding signals and noise. This is demonstrated by compressing the most significant bits of data exactly, since they are typically redundant and compressible, and either fitting a maximally likely noise function to the residual bits or compressing them using lossy methods. Upon decompression, the significant bits are decoded and added to a noise function, whether sampled from a noise model or decompressed from a lossy code. This results in compressed data similar to the original. For many test images, a two-part image code using JPEG2000 for lossy coding and PAQ8l for lossless coding produces less mean-squared error than an equal length of JPEG2000. Computer-generated images typically compress better using this method than through direct lossy coding, as do man...
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...
Improvement of Dynamic Performance of Hybrid Gas Bearings via Adjustable Lubrication
Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar
2013-01-01
the aerodynamic effect with the addition of external pressurization in a hybrid gas bearing. This study uses a mathematical model for hybrid lubrication of a compressible fluid film journal bearing with adjustable control of the external pressure, developed previously in [12]. The model is based on a compressible...
Ratsaby, Joel
2010-01-01
It is well known that text compression can be achieved by predicting the next symbol in the stream of text data based on the history seen up to the current symbol. The better the prediction the more skewed the conditional probability distribution of the next symbol and the shorter the codeword that needs to be assigned to represent this next symbol. What about the opposite direction ? suppose we have a black box that can compress text stream. Can it be used to predict the next symbol in the stream ? We introduce a criterion based on the length of the compressed data and use it to predict the next symbol. We examine empirically the prediction error rate and its dependency on some compression parameters.
Dheemanth H N
2016-07-01
Full Text Available Lempel–Ziv–Welch (LZW is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch. LZW compression is one of the Adaptive Dictionary techniques. The dictionary is created while the data are being encoded. So encoding can be done on the fly. The dictionary need not be transmitted. Dictionary can be built up at receiving end on the fly. If the dictionary overflows then we have to reinitialize the dictionary and add a bit to each one of the code words. Choosing a large dictionary size avoids overflow, but spoils compressions. A codebook or dictionary containing the source symbols is constructed. For 8-bit monochrome images, the first 256 words of the dictionary are assigned to the gray levels 0-255. Remaining part of the dictionary is filled with sequences of the gray levels.LZW compression works best when applied on monochrome images and text files that contain repetitive text/patterns.
Shocklets in compressible flows
袁湘江; 男俊武; 沈清; 李筠
2013-01-01
The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinuity, and Tollmien-Schlichting (T-S) wave in compressible flows are investigated. The relations between the three types of waves and shocklets are further analyzed and discussed. Different stages of the shocklet formation process are simulated. The results show that the three waves in compressible flows will transfer to shocklets only when the initial disturbance amplitudes are greater than the certain threshold values. In compressible boundary layers, the shocklets evolved from T-S wave exist only in a finite region near the surface instead of the whole wavefront.
Reference Based Genome Compression
Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy
2012-01-01
DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.
Singh, Shikha; Singhal, Vanika; Majumdar, Angshul
2016-01-01
This work addresses the problem of extracting deeply learned features directly from compressive measurements. There has been no work in this area. Existing deep learning tools only give good results when applied on the full signal, that too usually after preprocessing. These techniques require the signal to be reconstructed first. In this work we show that by learning directly from the compressed domain, considerably better results can be obtained. This work extends the recently proposed fram...
Reference Based Genome Compression
Chern, Bobbie; Ochoa, Idoia; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy
2012-01-01
DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target gen...
West, J.G.W. [Electrical Machines (United Kingdom)
1997-07-01
The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)
Alternative Compression Garments
Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.
2011-01-01
Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.
Lossless Compression of JPEG Coded Photo Collections.
Wu, Hao; Sun, Xiaoyan; Yang, Jingyu; Zeng, Wenjun; Wu, Feng
2016-04-06
The explosion of digital photos has posed a significant challenge to photo storage and transmission for both personal devices and cloud platforms. In this paper, we propose a novel lossless compression method to further reduce the size of a set of JPEG coded correlated images without any loss of information. The proposed method jointly removes inter/intra image redundancy in the feature, spatial, and frequency domains. For each collection, we first organize the images into a pseudo video by minimizing the global prediction cost in the feature domain. We then present a hybrid disparity compensation method to better exploit both the global and local correlations among the images in the spatial domain. Furthermore, the redundancy between each compensated signal and the corresponding target image is adaptively reduced in the frequency domain. Experimental results demonstrate the effectiveness of the proposed lossless compression method. Compared to the JPEG coded image collections, our method achieves average bit savings of more than 31%.
Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization
Dimitrova, Zlatina; Maréchal, François
2015-01-01
The largest applied convertors in passenger cars are the internal combustion engines – gasoline, diesel, adapted also for operating on alternative fuels and hybrid modes. The number of components that are necessary to realize modern future propulsion system is inexorably increasing. The need for efficiency improvement of the vehicle energy system induces the search for an innovative methodology during the design process. In this article the compressed air is investigated as an innovative solu...
Coabsorbent and thermal recovery compression heat pumping technologies
Staicovici, Mihail-Dan
2014-01-01
This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work. Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given. The author presen...
Compressive MUSIC with optimized partial support for joint sparse recovery
Kim, Jong Min; Ye, Jong Chul
2011-01-01
Multiple measurement vector (MMV) problem addresses the identification of unknown input vectors that share common sparse support. The MMV problems had been traditionally addressed either by sensor array signal processing or compressive sensing. However, recent breakthrough in this area such as compressive MUSIC (CS-MUSIC) or subspace-augumented MUSIC (SA-MUSIC) optimally combines the compressive sensing (CS) and array signal processing such that $k-r$ supports are first found by CS and the remaining $r$ supports are determined by generalized MUSIC criterion, where $k$ and $r$ denote the sparsity and the independent snapshots, respectively. Even though such hybrid approach significantly outperforms the conventional algorithms, its performance heavily depends on the correct identification of $k-r$ partial support by compressive sensing step, which often deteriorate the overall performance. The main contribution of this paper is, therefore, to show that as long as $k-r+1$ correct supports are included in any $k$...
Transverse Compression of Tendons.
Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B
2016-04-01
A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.
Vinay U. Kale
2010-05-01
Full Text Available This paper proposes a technique for image compression which uses the Wavelet-based Image/Texture Coding Hybrid (WITCH scheme [1] in combination with Huffman encoder. It implements a hybrid coding approach, while nevertheless preserving the features of progressive and lossless coding. The hybrid scheme was designed to encode the structural image information by Embedded Zerotree Wavelet (EZW encoding algorithm [2] and the stochastic texture in a model-based manner and this encoded data is then compressed using Huffman encoder. The scheme proposed here achieves superior subjective quality while increasing the compression ratio by more than a factor of three or even four. With this technique, it is possible to achieve compression ratios as high as 10 to 12 but with some minor distortions in the encoded image.
SYMBOLIC VERSOR COMPRESSION ALGORITHM
Li Hongbo
2009-01-01
In an inner-product space, an invertible vector generates a reflection with re-spect to a hyperplane, and the Clifford product of several invertible vectors, called a versor in Clifford algebra, generates the composition of the corresponding reflections, which is an orthogonal transformation. Given a versor in a Clifford algebra, finding another sequence of invertible vectors of strictly shorter length but whose Clifford product still equals the input versor, is called versor compression. Geometrically, versor compression is equivalent to decomposing an orthogoual transformation into a shorter sequence of reflections. This paper proposes a simple algorithm of compressing versors of symbolic form in Clifford algebra. The algorithm is based on computing the intersections of lines with planes in the corresponding Grassmann-Cayley algebra, and is complete in the case of Euclidean or Minkowski inner-product space.
Image compression for dermatology
Cookson, John P.; Sneiderman, Charles; Colaianni, Joseph; Hood, Antoinette F.
1990-07-01
Color 35mm photographic slides are commonly used in dermatology for education, and patient records. An electronic storage and retrieval system for digitized slide images may offer some advantages such as preservation and random access. We have integrated a system based on a personal computer (PC) for digital imaging of 35mm slides that depict dermatologic conditions. Such systems require significant resources to accommodate the large image files involved. Methods to reduce storage requirements and access time through image compression are therefore of interest. This paper contains an evaluation of one such compression method that uses the Hadamard transform implemented on a PC-resident graphics processor. Image quality is assessed by determining the effect of compression on the performance of an image feature recognition task.
Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar
2014-08-01
The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.
Alberto Apostolico
2009-08-01
Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.
Image compression in local helioseismology
Löptien, Björn; Gizon, Laurent; Schou, Jesper
2014-01-01
Context. Several upcoming helioseismology space missions are very limited in telemetry and will have to perform extensive data compression. This requires the development of new methods of data compression. Aims. We give an overview of the influence of lossy data compression on local helioseismology. We investigate the effects of several lossy compression methods (quantization, JPEG compression, and smoothing and subsampling) on power spectra and time-distance measurements of supergranulation flows at disk center. Methods. We applied different compression methods to tracked and remapped Dopplergrams obtained by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory. We determined the signal-to-noise ratio of the travel times computed from the compressed data as a function of the compression efficiency. Results. The basic helioseismic measurements that we consider are very robust to lossy data compression. Even if only the sign of the velocity is used, time-distance helioseismology is still...
Georgakilas, Vasilios; Koutsioukis, Apostolos; Petr, Martin; Tucek, Jiri; Zboril, Radek
2016-06-01
In this work, we demonstrate a significant improvement in the electrical conductivity of carbon nanostructured thin films, composed of graphene nanosheets and multiwalled carbon nanotubes, by compression/polishing. It is shown that the sheet resistance of compressed thin films of carbon nanostructures and hybrids is remarkably decreased in comparison with that of as-deposited films. The number of the interconnections, the distance between the nanostructures as well as their orientation are highly altered by the compression favoring the electrical conductivity of the compressed samples.
Fingerprints in Compressed Strings
Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li
2013-01-01
The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...
Multiple snapshot compressive beamforming
Gerstoft, Peter; Xenaki, Angeliki; Mecklenbrauker, Christoph F.
2015-01-01
For sound fields observed on an array, compressive sensing (CS) reconstructs the multiple source signals at unknown directions-of-arrival (DOAs) using a sparsity constraint. The DOA estimation is posed as an underdetermined problem expressing the field at each sensor as a phase-lagged superposition...
Compressive CFAR radar detection
Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.
2012-01-01
In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate Messag
Compressive CFAR Radar Processing
Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.
2013-01-01
In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Mess
Beamforming Using Compressive Sensing
2011-10-01
dB to align the peak at 7.3o. Comparing peaks to val- leys , compressive sensing provides a greater main to interference (and noise) ratio...elements. Acknowledgments This research was supported by the Office of Naval Research. The authors would like to especially thank of Roger Gauss and Joseph
Mechanical Properties of Layered Hybrid Fiber Reinforced Concrete
YUAN Hai-qing; CHEN Jing-tao; ZHU Ji-dong
2003-01-01
To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly.
Randomness Testing of Compressed Data
Chang, Weiling; Yun, Xiaochun; Wang, Shupeng; Yu, Xiangzhan
2010-01-01
Random Number Generators play a critical role in a number of important applications. In practice, statistical testing is employed to gather evidence that a generator indeed produces numbers that appear to be random. In this paper, we reports on the studies that were conducted on the compressed data using 8 compression algorithms or compressors. The test results suggest that the output of compression algorithms or compressors has bad randomness, the compression algorithms or compressors are not suitable as random number generator. We also found that, for the same compression algorithm, there exists positive correlation relationship between compression ratio and randomness, increasing the compression ratio increases randomness of compressed data. As time permits, additional randomness testing efforts will be conducted.
Stevens, Andrew J.; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.
2015-08-02
One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental
Hybrid Laminates for Application in North Conditions
Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.
2016-11-01
A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.
Tree compression with top trees
Bille, Philip; Gørtz, Inge Li; Landau, Gad M.;
2015-01-01
We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...
Tree compression with top trees
Bille, Philip; Gørtz, Inge Li; Landau, Gad M.
2013-01-01
We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...
Tree compression with top trees
Bille, Philip; Gørtz, Inge Li; Landau, Gad M.
2015-01-01
We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...
Reinterpreting Compression in Infinitary Rewriting
Ketema, J.; Tiwari, Ashish
2012-01-01
Departing from a computational interpretation of compression in infinitary rewriting, we view compression as a degenerate case of standardisation. The change in perspective comes about via two observations: (a) no compression property can be recovered for non-left-linear systems and (b) some standar
Lossless Compression of Broadcast Video
Martins, Bo; Eriksen, N.; Faber, E.
1998-01-01
We investigate several techniques for lossless and near-lossless compression of broadcast video.The emphasis is placed on the emerging international standard for compression of continous-tone still images, JPEG-LS, due to its excellent compression performance and moderatecomplexity. Except for one...
2013-01-01
The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.
Building indifferentiable compression functions from the PGV compression functions
Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde
2016-01-01
Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black...... cipher is ideal. We address the problem of building indifferentiable compression functions from the PGV compression functions. We consider a general form of 64 PGV compression functions and replace the linear feed-forward operation in this generic PGV compression function with an ideal block cipher...... independent of the one used in the generic PGV construction. This modified construction is called a generic modified PGV (MPGV). We analyse indifferentiability of the generic MPGV construction in the ideal cipher model and show that 12 out of 64 MPGV compression functions in this framework...
Compressive Principal Component Pursuit
Wright, John; Min, Kerui; Ma, Yi
2012-01-01
We consider the problem of recovering a target matrix that is a superposition of low-rank and sparse components, from a small set of linear measurements. This problem arises in compressed sensing of structured high-dimensional signals such as videos and hyperspectral images, as well as in the analysis of transformation invariant low-rank recovery. We analyze the performance of the natural convex heuristic for solving this problem, under the assumption that measurements are chosen uniformly at random. We prove that this heuristic exactly recovers low-rank and sparse terms, provided the number of observations exceeds the number of intrinsic degrees of freedom of the component signals by a polylogarithmic factor. Our analysis introduces several ideas that may be of independent interest for the more general problem of compressed sensing and decomposing superpositions of multiple structured signals.
On Network Functional Compression
Feizi, Soheil
2010-01-01
In this paper, we consider different aspects of the network functional compression problem where computation of a function (or, some functions) of sources located at certain nodes in a network is desired at receiver(s). The rate region of this problem has been considered in the literature under certain restrictive assumptions, particularly in terms of the network topology, the functions and the characteristics of the sources. In this paper, we present results that significantly relax these assumptions. Firstly, we consider this problem for an arbitrary tree network and asymptotically lossless computation. We show that, for depth one trees with correlated sources, or for general trees with independent sources, a modularized coding scheme based on graph colorings and Slepian-Wolf compression performs arbitrarily closely to rate lower bounds. For a general tree network with independent sources, optimal computation to be performed at intermediate nodes is derived. We introduce a necessary and sufficient condition...
Zhou, Tianyi
2011-01-01
Compressed sensing (CS) and 1-bit CS cannot directly recover quantized signals and require time consuming recovery. In this paper, we introduce \\textit{Hamming compressed sensing} (HCS) that directly recovers a k-bit quantized signal of dimensional $n$ from its 1-bit measurements via invoking $n$ times of Kullback-Leibler divergence based nearest neighbor search. Compared with CS and 1-bit CS, HCS allows the signal to be dense, takes considerably less (linear) recovery time and requires substantially less measurements ($\\mathcal O(\\log n)$). Moreover, HCS recovery can accelerate the subsequent 1-bit CS dequantizer. We study a quantized recovery error bound of HCS for general signals and "HCS+dequantizer" recovery error bound for sparse signals. Extensive numerical simulations verify the appealing accuracy, robustness, efficiency and consistency of HCS.
Compressive Spectral Renormalization Method
Bayindir, Cihan
2016-01-01
In this paper a novel numerical scheme for finding the sparse self-localized states of a nonlinear system of equations with missing spectral data is introduced. As in the Petviashivili's and the spectral renormalization method, the governing equation is transformed into Fourier domain, but the iterations are performed for far fewer number of spectral components (M) than classical versions of the these methods with higher number of spectral components (N). After the converge criteria is achieved for M components, N component signal is reconstructed from M components by using the l1 minimization technique of the compressive sampling. This method can be named as compressive spectral renormalization (CSRM) method. The main advantage of the CSRM is that, it is capable of finding the sparse self-localized states of the evolution equation(s) with many spectral data missing.
Speech Compression and Synthesis
1980-10-01
phonological rules combined with diphone improved the algorithms used by the phonetic synthesis prog?Im for gain normalization and time... phonetic vocoder, spectral template. i0^Th^TreprtTörc"u’d1sTuV^ork for the past two years on speech compression’and synthesis. Since there was an...from Block 19: speech recognition, pnoneme recogmtion. initial design for a phonetic recognition program. We also recorded ana partially labeled a
Shock compression of nitrobenzene
Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu; Fujihisa, Hiroshi; Aoki, Katsutoshi; Yoshida, Masatake; Kondo, Ken-Ichi
1999-06-01
The Hugoniot (4 - 30 GPa) and the isotherm (1 - 7 GPa) of nitrobenzene have been investigated by shock and static compression experiments. Nitrobenzene has the most basic structure of nitro aromatic compounds, which are widely used as energetic materials, but nitrobenzene has been considered not to explode in spite of the fact its calculated heat of detonation is similar to TNT, about 1 kcal/g. Explosive plane-wave generators and diamond anvil cell were used for shock and static compression, respectively. The obtained Hugoniot consists of two linear lines, and the kink exists around 10 GPa. The upper line agrees well with the Hugoniot of detonation products calculated by KHT code, so it is expected that nitrobenzene detonates in that area. Nitrobenzene solidifies under 1 GPa of static compression, and the isotherm of solid nitrobenzene was obtained by X-ray diffraction technique. Comparing the Hugoniot and the isotherm, nitrobenzene is in liquid phase under experimented shock condition. From the expected phase diagram, shocked nitrobenzene seems to remain metastable liquid in solid phase region on that diagram.
Compressed sensing electron tomography
Leary, Rowan, E-mail: rkl26@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Saghi, Zineb; Midgley, Paul A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Holland, Daniel J. [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom)
2013-08-15
The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform.
Ultraspectral sounder data compression review
Bormin HUANG; Hunglung HUANG
2008-01-01
Ultraspectral sounders provide an enormous amount of measurements to advance our knowledge of weather and climate applications. The use of robust data compression techniques will be beneficial for ultraspectral data transfer and archiving. This paper reviews the progress in lossless compression of ultra-spectral sounder data. Various transform-based, pre-diction-based, and clustering-based compression methods are covered. Also studied is a preprocessing scheme for data reordering to improve compression gains. All the coding experiments are performed on the ultraspectral compression benchmark dataset col-lected from the NASA Atmospheric Infrared Sounder (AIRS) observations.
Engineering Relative Compression of Genomes
Grabowski, Szymon
2011-01-01
Technology progress in DNA sequencing boosts the genomic database growth at faster and faster rate. Compression, accompanied with random access capabilities, is the key to maintain those huge amounts of data. In this paper we present an LZ77-style compression scheme for relative compression of multiple genomes of the same species. While the solution bears similarity to known algorithms, it offers significantly higher compression ratios at compression speed over a order of magnitude greater. One of the new successful ideas is augmenting the reference sequence with phrases from the other sequences, making more LZ-matches available.
Cetorelli, Nicola
2014-01-01
I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...
Jacob John, Maya
2009-04-01
Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...
Highly efficient frequency conversion with bandwidth compression of quantum light
Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine
2017-01-01
Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242
Highly efficient frequency conversion with bandwidth compression of quantum light
Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine
2017-01-01
Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.
Highly efficient frequency conversion with bandwidth compression of quantum light
Allgaier, Markus; Sansoni, Linda; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine
2016-01-01
Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, since elements based on parametric down-conversion sources, quantum dots, color centres or atoms are fundamentally different in their frequencies and bandwidths. While pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here, we demonstrate an engineered sum-frequency-conversion process in Lithium Niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 75.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks.
Economics of compressed air energy storage employing thermal energy storage
Schulte, S.C.; Reilly, R.W.
1979-11-01
The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.
Weimin Song; Jian Yin
2016-01-01
Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%,...
Ultrasound beamforming using compressed data.
Li, Yen-Feng; Li, Pai-Chi
2012-05-01
The rapid advancements in electronics technologies have made software-based beamformers for ultrasound array imaging feasible, thus facilitating the rapid development of high-performance and potentially low-cost systems. However, one challenge to realizing a fully software-based system is transferring data from the analog front end to the software back end at rates of up to a few gigabits per second. This study investigated the use of data compression to reduce the data transfer requirements and optimize the associated trade-off with beamforming quality. JPEG and JPEG2000 compression techniques were adopted. The acoustic data of a line phantom were acquired with a 128-channel array transducer at a center frequency of 3.5 MHz, and the acoustic data of a cyst phantom were acquired with a 64-channel array transducer at a center frequency of 3.33 MHz. The receive-channel data associated with each transmit event are separated into 8 × 8 blocks and several tiles before JPEG and JPEG2000 data compression is applied, respectively. In one scheme, the compression was applied to raw RF data, while in another only the amplitude of baseband data was compressed. The maximum compression ratio of RF data compression to produce an average error of lower than 5 dB was 15 with JPEG compression and 20 with JPEG2000 compression. The image quality is higher with baseband amplitude data compression than with RF data compression; although the maximum overall compression ratio (compared with the original RF data size), which was limited by the data size of uncompressed phase data, was lower than 12, the average error in this case was lower than 1 dB when the compression ratio was lower than 8.
Whalley, E.
The compression of liquids can be measured either directly by applying a pressure and noting the volume change, or indirectly, by measuring the magnitude of the fluctuations of the local volume. The methods used in Ottawa for the direct measurement of the compression are reviewed. The mean-square deviation of the volume from the mean at constant temperature can be measured by X-ray and neutron scattering at low angles, and the meansquare deviation at constant entropy can be measured by measuring the speed of sound. The speed of sound can be measured either acoustically, using an acoustic transducer, or by Brillouin spectroscopy. Brillouin spectroscopy can also be used to study the shear waves in liquids if the shear relaxation time is > ∼ 10 ps. The relaxation time of water is too short for the shear waves to be studied in this way, but they do occur in the low-frequency Raman and infrared spectra. The response of the structure of liquids to pressure can be studied by neutron scattering, and recently experiments have been done at Atomic Energy of Canada Ltd, Chalk River, on liquid D 2O up to 15.6 kbar. They show that the near-neighbor intermolecular O-D and D-D distances are less spread out and at shorter distances at high pressure. Raman spectroscopy can also provide information on the structural response. It seems that the O-O distance in water decreases much less with pressure than it does in ice. Presumably, the bending of O-O-O angles tends to increase the O-O distance, and so to largely compensate the compression due to the direct effect of pressure.
Sun, Qilin
2017-04-01
High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.
Statistical Mechanical Analysis of Compressed Sensing Utilizing Correlated Compression Matrix
Takeda, Koujin
2010-01-01
We investigate a reconstruction limit of compressed sensing for a reconstruction scheme based on the L1-norm minimization utilizing a correlated compression matrix with a statistical mechanics method. We focus on the compression matrix modeled as the Kronecker-type random matrix studied in research on multi-input multi-output wireless communication systems. We found that strong one-dimensional correlations between expansion bases of original information slightly degrade reconstruction performance.
Compressive full waveform lidar
Yang, Weiyi; Ke, Jun
2017-05-01
To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.
Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)
2017-07-01
Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H_{2} at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H_{2}) gas compressor with a
Beamforming using compressive sensing.
Edelmann, Geoffrey F; Gaumond, Charles F
2011-10-01
Compressive sensing (CS) is compared with conventional beamforming using horizontal beamforming of at-sea, towed-array data. They are compared qualitatively using bearing time records and quantitatively using signal-to-interference ratio. Qualitatively, CS exhibits lower levels of background interference than conventional beamforming. Furthermore, bearing time records show increasing, but tolerable, levels of background interference when the number of elements is decreased. For the full array, CS generates signal-to-interference ratio of 12 dB, but conventional beamforming only 8 dB. The superiority of CS over conventional beamforming is much more pronounced with undersampling.
Adam B. Sefkow
2006-09-01
Full Text Available Heavy ion drivers for warm dense matter and heavy ion fusion applications use intense charge bunches which must undergo transverse and longitudinal compression in order to meet the requisite high current densities and short pulse durations desired at the target. The neutralized drift compression experiment (NDCX at the Lawrence Berkeley National Laboratory is used to study the longitudinal neutralized drift compression of a space-charge-dominated ion beam, which occurs due to an imposed longitudinal velocity tilt and subsequent neutralization of the beam’s space charge by background plasma. Reduced theoretical models have been used in order to describe the realistic propagation of an intense charge bunch through the NDCX device. A warm-fluid model is presented as a tractable computational tool for investigating the nonideal effects associated with the experimental acceleration gap geometry and voltage waveform of the induction module, which acts as a means to pulse shape both the velocity and line density profiles. Self-similar drift compression solutions can be realized in order to transversely focus the entire charge bunch to the same focal plane in upcoming simultaneous transverse and longitudinal focusing experiments. A kinetic formalism based on the Vlasov equation has been employed in order to show that the peaks in the experimental current profiles are a result of the fact that only the central portion of the beam contributes effectively to the main compressed pulse. Significant portions of the charge bunch reside in the nonlinearly compressing part of the ion beam because of deviations between the experimental and ideal velocity tilts. Those regions form a pedestal of current around the central peak, thereby decreasing the amount of achievable longitudinal compression and increasing the pulse durations achieved at the focal plane. A hybrid fluid-Vlasov model which retains the advantages of both the fluid and kinetic approaches has been
Compressive sensing in medical imaging.
Graff, Christian G; Sidky, Emil Y
2015-03-10
The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.
Speech Compression Using Multecirculerletet Transform
Sulaiman Murtadha
2012-01-01
Full Text Available Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension on speech compression. DWT and MCT performances in terms of compression ratio (CR, mean square error (MSE and peak signal to noise ratio (PSNR are assessed. Computer simulation results indicate that the two dimensions MCT offer a better compression ratio, MSE and PSNR than DWT.
libpolycomp: Compression/decompression library
Tomasi, Maurizio
2016-04-01
Libpolycomp compresses and decompresses one-dimensional streams of numbers by means of several algorithms. It is well-suited for time-ordered data acquired by astronomical instruments or simulations. One of the algorithms, called "polynomial compression", combines two widely-used ideas (namely, polynomial approximation and filtering of Fourier series) to achieve substantial compression ratios for datasets characterized by smoothness and lack of noise. Notable examples are the ephemerides of astronomical objects and the pointing information of astronomical telescopes. Other algorithms implemented in this C library are well known and already widely used, e.g., RLE, quantization, deflate (via libz) and Burrows-Wheeler transform (via libbzip2). Libpolycomp can compress the timelines acquired by the Planck/LFI instrument with an overall compression ratio of ~9, while other widely known programs (gzip, bzip2) reach compression ratios less than 1.5.
Image Compression using GSOM Algorithm
SHABBIR AHMAD
2015-10-01
Full Text Available
Data compression on the sphere
McEwen, J D; Eyers, D M; 10.1051/0004-6361/201015728
2011-01-01
Large data-sets defined on the sphere arise in many fields. In particular, recent and forthcoming observations of the anisotropies of the cosmic microwave background (CMB) made on the celestial sphere contain approximately three and fifty mega-pixels respectively. The compression of such data is therefore becoming increasingly important. We develop algorithms to compress data defined on the sphere. A Haar wavelet transform on the sphere is used as an energy compression stage to reduce the entropy of the data, followed by Huffman and run-length encoding stages. Lossless and lossy compression algorithms are developed. We evaluate compression performance on simulated CMB data, Earth topography data and environmental illumination maps used in computer graphics. The CMB data can be compressed to approximately 40% of its original size for essentially no loss to the cosmological information content of the data, and to approximately 20% if a small cosmological information loss is tolerated. For the topographic and il...
Energy transfer in compressible turbulence
Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre
1995-01-01
This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.
Perceptually Lossless Wavelet Compression
Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John
1996-01-01
The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp -1), where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We propose a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a 'perceptually lossless' quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Compressive light field sensing.
Babacan, S Derin; Ansorge, Reto; Luessi, Martin; Matarán, Pablo Ruiz; Molina, Rafael; Katsaggelos, Aggelos K
2012-12-01
We propose a novel design for light field image acquisition based on compressive sensing principles. By placing a randomly coded mask at the aperture of a camera, incoherent measurements of the light passing through different parts of the lens are encoded in the captured images. Each captured image is a random linear combination of different angular views of a scene. The encoded images are then used to recover the original light field image via a novel Bayesian reconstruction algorithm. Using the principles of compressive sensing, we show that light field images with a large number of angular views can be recovered from only a few acquisitions. Moreover, the proposed acquisition and recovery method provides light field images with high spatial resolution and signal-to-noise-ratio, and therefore is not affected by limitations common to existing light field camera designs. We present a prototype camera design based on the proposed framework by modifying a regular digital camera. Finally, we demonstrate the effectiveness of the proposed system using experimental results with both synthetic and real images.
S. Abhishek
2016-07-01
Full Text Available It is well understood that in any data acquisition system reduction in the amount of data reduces the time and energy, but the major trade-off here is the quality of outcome normally, lesser the amount of data sensed, lower the quality. Compressed Sensing (CS allows a solution, for sampling below the Nyquist rate. The challenging problem of increasing the reconstruction quality with less number of samples from an unprocessed data set is addressed here by the use of representative coordinate selected from different orders of splines. We have made a detailed comparison with 10 orthogonal and 6 biorthogonal wavelets with two sets of data from MIT Arrhythmia database and our results prove that the Spline coordinates work better than the wavelets. The generation of two new types of splines such as exponential and double exponential are also briefed here .We believe that this is one of the very first attempts made in Compressed Sensing based ECG reconstruction problems using raw data.
Ma, JiaLi; Zhang, TanTan; Dong, MingChui
2015-05-01
This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.
Mroueh, Youssef; Rosasco, Lorenzo
2013-01-01
We introduce q-ary compressive sensing, an extension of 1-bit compressive sensing. We propose a novel sensing mechanism and a corresponding recovery procedure. The recovery properties of the proposed approach are analyzed both theoretically and empirically. Results in 1-bit compressive sensing are recovered as a special case. Our theoretical results suggest a tradeoff between the quantization parameter q, and the number of measurements m in the control of the error of the resulting recovery a...
Introduction to compressible fluid flow
Oosthuizen, Patrick H
2013-01-01
IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices
Compressive sensing of sparse tensors.
Friedland, Shmuel; Li, Qun; Schonfeld, Dan
2014-10-01
Compressive sensing (CS) has triggered an enormous research activity since its first appearance. CS exploits the signal's sparsity or compressibility in a particular domain and integrates data compression and acquisition, thus allowing exact reconstruction through relatively few nonadaptive linear measurements. While conventional CS theory relies on data representation in the form of vectors, many data types in various applications, such as color imaging, video sequences, and multisensor networks, are intrinsically represented by higher order tensors. Application of CS to higher order data representation is typically performed by conversion of the data to very long vectors that must be measured using very large sampling matrices, thus imposing a huge computational and memory burden. In this paper, we propose generalized tensor compressive sensing (GTCS)-a unified framework for CS of higher order tensors, which preserves the intrinsic structure of tensor data with reduced computational complexity at reconstruction. GTCS offers an efficient means for representation of multidimensional data by providing simultaneous acquisition and compression from all tensor modes. In addition, we propound two reconstruction procedures, a serial method and a parallelizable method. We then compare the performance of the proposed method with Kronecker compressive sensing (KCS) and multiway compressive sensing (MWCS). We demonstrate experimentally that GTCS outperforms KCS and MWCS in terms of both reconstruction accuracy (within a range of compression ratios) and processing speed. The major disadvantage of our methods (and of MWCS as well) is that the compression ratios may be worse than that offered by KCS.
Uncommon upper extremity compression neuropathies.
Knutsen, Elisa J; Calfee, Ryan P
2013-08-01
Hand surgeons routinely treat carpal and cubital tunnel syndromes, which are the most common upper extremity nerve compression syndromes. However, more infrequent nerve compression syndromes of the upper extremity may be encountered. Because they are unusual, the diagnosis of these nerve compression syndromes is often missed or delayed. This article reviews the causes, proposed treatments, and surgical outcomes for syndromes involving compression of the posterior interosseous nerve, the superficial branch of the radial nerve, the ulnar nerve at the wrist, and the median nerve proximal to the wrist. Copyright © 2013 Elsevier Inc. All rights reserved.
Image Compression Algorithms Using Dct
Er. Abhishek Kaushik
2014-04-01
Full Text Available Image compression is the application of Data compression on digital images. The discrete cosine transform (DCT is a technique for converting a signal into elementary frequency components. It is widely used in image compression. Here we develop some simple functions to compute the DCT and to compress images. An image compression algorithm was comprehended using Matlab code, and modified to perform better when implemented in hardware description language. The IMAP block and IMAQ block of MATLAB was used to analyse and study the results of Image Compression using DCT and varying co-efficients for compression were developed to show the resulting image and error image from the original images. Image Compression is studied using 2-D discrete Cosine Transform. The original image is transformed in 8-by-8 blocks and then inverse transformed in 8-by-8 blocks to create the reconstructed image. The inverse DCT would be performed using the subset of DCT coefficients. The error image (the difference between the original and reconstructed image would be displayed. Error value for every image would be calculated over various values of DCT co-efficients as selected by the user and would be displayed in the end to detect the accuracy and compression in the resulting image and resulting performance parameter would be indicated in terms of MSE , i.e. Mean Square Error.
Word aligned bitmap compression method, data structure, and apparatus
Wu, Kesheng; Shoshani, Arie; Otoo, Ekow
2004-12-14
The Word-Aligned Hybrid (WAH) bitmap compression method and data structure is a relatively efficient method for searching and performing logical, counting, and pattern location operations upon large datasets. The technique is comprised of a data structure and methods that are optimized for computational efficiency by using the WAH compression method, which typically takes advantage of the target computing system's native word length. WAH is particularly apropos to infrequently varying databases, including those found in the on-line analytical processing (OLAP) industry, due to the increased computational efficiency of the WAH compressed bitmap index. Some commercial database products already include some version of a bitmap index, which could possibly be replaced by the WAH bitmap compression techniques for potentially increased operation speed, as well as increased efficiencies in constructing compressed bitmaps. Combined together, this technique may be particularly useful for real-time business intelligence. Additional WAH applications may include scientific modeling, such as climate and combustion simulations, to minimize search time for analysis and subsequent data visualization.
Faster Energy Efficient Column Compression Multiplication
Ramkumar, B
2011-01-01
In this work we demonstrate that faster, energy efficient, column compression multiplication, can be achieved by using a combination of two design techniques: partitioning of the partial products into two parts for independent parallel column compression and acceleration of the final addition using a hybrid adder proposed in this work. In order to demonstrate the efficacy of the techniques we have chosen the Dadda multiplier as an example. Based on the proposed techniques 8, 16, 32 and 64-bit Dadda multipliers are developed and compared with the regular Dadda multiplier. The performance of the proposed multiplier is analyzed by evaluating the delay, area and power, with 180 nm process technologies on interconnect and layout using industry standard design and layout tools. The result analysis shows that the 64-bit regular Dadda multiplier is as much as 41.1% slower than the proposed multiplier and requires only 1.4% and 3.7% less area and power respectively. Also the power-delay product of the proposed design ...
An underwater acoustic data compression method based on compressed sensing
郭晓乐; 杨坤德; 史阳; 段睿
2016-01-01
The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit (IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit (OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.
Berger, Jens; Frankenfeld, Ulrich; Lindenstruth, Volker; Plamper, Patrick; Roehrich, Dieter; Schaefer, Erich; W. Schulz, Markus; M. Steinbeck, Timm; Stock, Reinhard; Sulimma, Kolja; Vestboe, Anders; Wiebalck, Arne E-mail: wiebalck@kip.uni-heidelberg.de
2002-08-21
In the collisions of ultra-relativistic heavy ions in fixed-target and collider experiments, multiplicities of several ten thousand charged particles are generated. The main devices for tracking and particle identification are large-volume tracking detectors (TPCs) producing raw event sizes in excess of 100 Mbytes per event. With increasing data rates, storage becomes the main limiting factor in such experiments and, therefore, it is essential to represent the data in a way that is as concise as possible. In this paper, we present several compression schemes, such as entropy encoding, modified vector quantization, and data modeling techniques applied on real data from the CERN SPS experiment NA49 and on simulated data from the future CERN LHC experiment ALICE.
Berger, Jens; Lindenstruth, Volker; Plamper, Patrick; Röhrich, Dieter; Schafer, Erich; Schulz, M W; Steinbeck, T M; Stock, Reinhard; Sulimma, Kolja; Vestbo, Anders S; Wiebalck, Arne
2002-01-01
In the collisions of ultra-relativistic heavy ions in fixed-target and collider experiments, multiplicities of several ten thousand charged particles are generated. The main devices for tracking and particle identification are large-volume tracking detectors (TPCs) producing raw event sizes in excess of 100 Mbytes per event. With increasing data rates, storage becomes the main limiting factor in such experiments and, therefore, it is essential to represent the data in a way that is as concise as possible. In this paper, we present several compression schemes, such as entropy encoding, modified vector quantization, and data modeling techniques applied on real data from the CERN SPS experiment NA49 and on simulated data from the future CERN LHC experiment ALICE.
Berger, Jens; Frankenfeld, Ulrich; Lindenstruth, Volker; Plamper, Patrick; Röhrich, Dieter; Schäfer, Erich; Schulz, Markus W.; Steinbeck, Timm M.; Stock, Reinhard; Sulimma, Kolja; Vestbø, Anders; Wiebalck, Arne
2002-08-01
In the collisions of ultra-relativistic heavy ions in fixed-target and collider experiments, multiplicities of several ten thousand charged particles are generated. The main devices for tracking and particle identification are large-volume tracking detectors (TPCs) producing raw event sizes in excess of 100 Mbytes per event. With increasing data rates, storage becomes the main limiting factor in such experiments and, therefore, it is essential to represent the data in a way that is as concise as possible. In this paper, we present several compression schemes, such as entropy encoding, modified vector quantization, and data modeling techniques applied on real data from the CERN SPS experiment NA49 and on simulated data from the future CERN LHC experiment ALICE.
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
Central cooling: compressive chillers
Christian, J.E.
1978-03-01
Representative cost and performance data are provided in a concise, useable form for three types of compressive liquid packaged chillers: reciprocating, centrifugal, and screw. The data are represented in graphical form as well as in empirical equations. Reciprocating chillers are available from 2.5 to 240 tons with full-load COPs ranging from 2.85 to 3.87. Centrifugal chillers are available from 80 to 2,000 tons with full load COPs ranging from 4.1 to 4.9. Field-assemblied centrifugal chillers have been installed with capacities up to 10,000 tons. Screw-type chillers are available from 100 to 750 tons with full load COPs ranging from 3.3 to 4.5.
Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;
1999-01-01
An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...... is observed between stiffness reduction and accumulated creep. A failure model based on the total work during the fatigue life is rejected, and a modified work model based on elastic, viscous and non-recovered viscoelastic work is experimentally supported, and an explanation at a microstructural level...
Vitanyi, Paul M B
2011-01-01
First we consider pair-wise distances for literal objects consisting of finite binary files. These files are taken to contain all of their meaning, like genomes or books. The distances are based on compression of the objects concerned, normalized, and can be viewed as similarity distances. Second, we consider pair-wise distances between names of objects, like "red" or "christianity." In this case the distances are based on searches of the Internet. Such a search can be performed by any search engine that returns aggregate page counts. We can extract a code length from the numbers returned, use the same formula as before, and derive a similarity or relative semantics between names for objects. The theory is based on Kolmogorov complexity. We test both similarities extensively experimentally.
Some durability aspects of hybrid alkaline cements
Donatello S.
2014-04-01
Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements
Adaptive compressive sensing camera
Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold
2013-05-01
We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).
Application specific compression : final report.
Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.
2008-12-01
With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.
Streaming Compression of Hexahedral Meshes
Isenburg, M; Courbet, C
2010-02-03
We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.
Data Compression with Linear Algebra
Etler, David
2015-01-01
A presentation on the applications of linear algebra to image compression. Covers entropy, the discrete cosine transform, thresholding, quantization, and examples of images compressed with DCT. Given in Spring 2015 at Ocean County College as part of the honors program.
Compressed sensing for body MRI.
Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh
2017-04-01
The introduction of compressed sensing for increasing imaging speed in magnetic resonance imaging (MRI) has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This article presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and nonlinear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the article discusses current challenges and future opportunities. 5 J. Magn. Reson. Imaging 2017;45:966-987. © 2016 International Society for Magnetic Resonance in Medicine.
Prediction of properties of intraply hybrid composites
Chamis, C. C.; Sinclair, J. H.
1979-01-01
Equations based on the mixtures rule are presented for predicting the physical, thermal, hygral, and mechanical properties of unidirectional intraply hybrid composites (UIHC) from the corresponding properties of their constituent composites. Bounds were derived for uniaxial longitudinal strengths, tension, compression, and flexure of UIHC. The equations predict shear and flexural properties which agree with experimental data from UIHC. Use of these equations in a composites mechanics computer code predicted flexural moduli which agree with experimental data from various intraply hybrid angleplied laminates (IHAL). It is indicated, briefly, how these equations can be used in conjunction with composite mechanics and structural analysis during the analysis/design process.
Compression Maps and Stable Relations
Price, Kenneth L
2011-01-01
Balanced relations were defined by G. Abrams to extend the convolution product used in the construction of incidence rings. We define stable relations,which form a class between balanced relations and preorders. We also define a compression map to be a surjective function between two sets which preserves order, preserves off-diagonal relations, and has the additional property every transitive triple is the image of a transitive triple. We show a compression map preserves the balanced and stable properties but the compression of a preorder may be stable and not transitive. We also cover an example of a stable relation which is not the compression of a preorder. In our main theorem we provide necessary and sufficient conditions for a finite stable relation to be the compression of a preorder.
Compressive Sensing for Quantum Imaging
Howland, Gregory A.
This thesis describes the application of compressive sensing to several challenging problems in quantum imaging with practical and fundamental implications. Compressive sensing is a measurement technique that compresses a signal during measurement such that it can be dramatically undersampled. Compressive sensing has been shown to be an extremely efficient measurement technique for imaging, particularly when detector arrays are not available. The thesis first reviews compressive sensing through the lens of quantum imaging and quantum measurement. Four important applications and their corresponding experiments are then described in detail. The first application is a compressive sensing, photon-counting lidar system. A novel depth mapping technique that uses standard, linear compressive sensing is described. Depth maps up to 256 x 256 pixel transverse resolution are recovered with depth resolution less than 2.54 cm. The first three-dimensional, photon counting video is recorded at 32 x 32 pixel resolution and 14 frames-per-second. The second application is the use of compressive sensing for complementary imaging---simultaneously imaging the transverse-position and transverse-momentum distributions of optical photons. This is accomplished by taking random, partial projections of position followed by imaging the momentum distribution on a cooled CCD camera. The projections are shown to not significantly perturb the photons' momenta while allowing high resolution position images to be reconstructed using compressive sensing. A variety of objects and their diffraction patterns are imaged including the double slit, triple slit, alphanumeric characters, and the University of Rochester logo. The third application is the use of compressive sensing to characterize spatial entanglement of photon pairs produced by spontaneous parametric downconversion. The technique gives a theoretical speedup N2/log N for N-dimensional entanglement over the standard raster scanning technique
Hybrid microelectronic technology
Moran, P.
Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.
Advances in compressible turbulent mixing
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Karaarslan, Ahmet Adnan; Karakaşli, Ahmet; Karci, Tolga; Aycan, Hakan; Yildirim, Serhat; Sesli, Erhan
2015-06-01
The aim is to present our new method of compression, a compression tube instead of conventional compression screw and to investigate the difference of proximal locking screw bending resistance between compression screw application (6 mm wide contact) and compression tube (two contact points with 13 mm gap) application. We formed six groups each consisting of 10 proximal locking screws. On metal cylinder representing lesser trochanter level, we performed 3-point bending tests with compression screw and with compression tube. We determined the yield points of the screws in 3-point bending tests using an axial compression testing machine. We determined the yield point of 5 mm screws as 1963±53 N (mean±SD) with compression screw, and as 2929±140 N with compression tubes. We found 51% more locking screw bending resistance with compression tube than with compression screw (p=0,000). Therefore compression tubes instead of compression screw must be preferred at femur compression nails.
Compressed Submanifold Multifactor Analysis.
Luu, Khoa; Savvides, Marios; Bui, Tien; Suen, Ching
2016-04-14
Although widely used, Multilinear PCA (MPCA), one of the leading multilinear analysis methods, still suffers from four major drawbacks. First, it is very sensitive to outliers and noise. Second, it is unable to cope with missing values. Third, it is computationally expensive since MPCA deals with large multi-dimensional datasets. Finally, it is unable to maintain the local geometrical structures due to the averaging process. This paper proposes a novel approach named Compressed Submanifold Multifactor Analysis (CSMA) to solve the four problems mentioned above. Our approach can deal with the problem of missing values and outliers via SVD-L1. The Random Projection method is used to obtain the fast low-rank approximation of a given multifactor dataset. In addition, it is able to preserve the geometry of the original data. Our CSMA method can be used efficiently for multiple purposes, e.g. noise and outlier removal, estimation of missing values, biometric applications. We show that CSMA method can achieve good results and is very efficient in the inpainting problem as compared to [1], [2]. Our method also achieves higher face recognition rates compared to LRTC, SPMA, MPCA and some other methods, i.e. PCA, LDA and LPP, on three challenging face databases, i.e. CMU-MPIE, CMU-PIE and Extended YALE-B.
The OMV Data Compression System Science Data Compression Workshop
Lewis, Garton H., Jr.
1989-01-01
The Video Compression Unit (VCU), Video Reconstruction Unit (VRU), theory and algorithms for implementation of Orbital Maneuvering Vehicle (OMV) source coding, docking mode, channel coding, error containment, and video tape preprocessed space imagery are presented in viewgraph format.
Wearable EEG via lossless compression.
Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo
2016-08-01
This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.
Context-Aware Image Compression.
Jacky C K Chan
Full Text Available We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling.
Designing experiments through compressed sensing.
Young, Joseph G.; Ridzal, Denis
2013-06-01
In the following paper, we discuss how to design an ensemble of experiments through the use of compressed sensing. Specifically, we show how to conduct a small number of physical experiments and then use compressed sensing to reconstruct a larger set of data. In order to accomplish this, we organize our results into four sections. We begin by extending the theory of compressed sensing to a finite product of Hilbert spaces. Then, we show how these results apply to experiment design. Next, we develop an efficient reconstruction algorithm that allows us to reconstruct experimental data projected onto a finite element basis. Finally, we verify our approach with two computational experiments.
Compressive myelopathy in fluorosis: MRI
Gupta, R.K. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Agarwal, P. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Kumar, S. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Surana, P.K. [Department of Neurology, SGPGIMS, Lucknow-226014 (India); Lal, J.H. [MR Section, Department of Radiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow-226014 (India); Misra, U.K. [Department of Neurology, SGPGIMS, Lucknow-226014 (India)
1996-05-01
We examined four patients with fluorosis, presenting with compressive myelopathy, by MRI, using spin-echo and fast low-angle shot sequences. Cord compression due to ossification of the posterior longitudinal ligament (PLL) and ligamentum flavum (LF) was demonstrated in one and ossification of only the LF in one. Marrow signal was observed in the PLL and LF in all the patients on all pulse sequences. In patients with compressive myelopathy secondary to ossification of PLL and/or LF, fluorosis should be considered as a possible cause, especially in endemic regions. (orig.). With 2 figs., 1 tab.
Partial transparency of compressed wood
Sugimoto, Hiroyuki; Sugimori, Masatoshi
2016-05-01
We have developed novel wood composite with optical transparency at arbitrary region. Pores in wood cells have a great variation in size. These pores expand the light path in the sample, because the refractive indexes differ between constituents of cell and air in lumen. In this study, wood compressed to close to lumen had optical transparency. Because the condition of the compression of wood needs the plastic deformation, wood was impregnated phenolic resin. The optimal condition for high transmission is compression ratio above 0.7.
Compressive phase-only filtering at extreme compression rates
Pastor-Calle, David; Pastuszczak, Anna; Mikołajczyk, Michał; Kotyński, Rafał
2017-01-01
We introduce an efficient method for the reconstruction of the correlation between a compressively measured image and a phase-only filter. The proposed method is based on two properties of phase-only filtering: such filtering is a unitary circulant transform, and the correlation plane it produces is usually sparse. Thanks to these properties, phase-only filters are perfectly compatible with the framework of compressive sensing. Moreover, the lasso-based recovery algorithm is very fast when phase-only filtering is used as the compression matrix. The proposed method can be seen as a generalization of the correlation-based pattern recognition technique, which is hereby applied directly to non-adaptively acquired compressed data. At the time of measurement, any prior knowledge of the target object for which the data will be scanned is not required. We show that images measured at extremely high compression rates may still contain sufficient information for target classification and localization, even if the compression rate is high enough, that visual recognition of the target in the reconstructed image is no longer possible. The method has been applied by us to highly undersampled measurements obtained from a single-pixel camera, with sampling based on randomly chosen Walsh-Hadamard patterns.
Global Well-posedness of Compressible Bipolar Navier-Stokes-Poisson Equations
Yi Quan LIN; Cheng Chun HAO; Hai Liang LI
2012-01-01
We consider the initial value problem for multi-dimensional bipolar compressible NavierStokes-Poisson equations,and show the global existence and uniqueness of the strong solution in hybrid Besov spaces with the initial data close to an equilibrium state.
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars
2015-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) is a technology suitable for industrial scale heat pumps in the process industry. A helpful tool in the design of cost effective and low environmental impact energy conversion systems, such as the HACHP, is the application...
Xiangwei Li
2014-12-01
Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.
Li, Xiangwei; Lan, Xuguang; Yang, Meng; Xue, Jianru; Zheng, Nanning
2014-12-05
Compressive Sensing Imaging (CSI) is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS) acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.
Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)
2016-01-01
A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.
has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...
Compressive Acquisition of Dynamic Scenes
Sankaranarayanan, Aswin C; Chellappa, Rama; Baraniuk, Richard G
2012-01-01
Compressive sensing (CS) is a new approach for the acquisition and recovery of sparse signals and images that enables sampling rates significantly below the classical Nyquist rate. Despite significant progress in the theory and methods of CS, little headway has been made in compressive video acquisition and recovery. Video CS is complicated by the ephemeral nature of dynamic events, which makes direct extensions of standard CS imaging architectures and signal models difficult. In this paper, we develop a new framework for video CS for dynamic textured scenes that models the evolution of the scene as a linear dynamical system (LDS). This reduces the video recovery problem to first estimating the model parameters of the LDS from compressive measurements, and then reconstructing the image frames. We exploit the low-dimensional dynamic parameters (the state sequence) and high-dimensional static parameters (the observation matrix) of the LDS to devise a novel compressive measurement strategy that measures only the...
Normalized Compression Distance of Multiples
Cohen, Andrew R
2012-01-01
Normalized compression distance (NCD) is a parameter-free similarity measure based on compression. The NCD between pairs of objects is not sufficient for all applications. We propose an NCD of finite multisets (multiples) of objacts that is metric and is better for many applications. Previously, attempts to obtain such an NCD failed. We use the theoretical notion of Kolmogorov complexity that for practical purposes is approximated from above by the length of the compressed version of the file involved, using a real-world compression program. We applied the new NCD for multiples to retinal progenitor cell questions that were earlier treated with the pairwise NCD. Here we get significantly better results. We also applied the NCD for multiples to synthetic time sequence data. The preliminary results are as good as nearest neighbor Euclidean classifier.
Compression fractures of the back
Taking steps to prevent and treat osteoporosis is the most effective way to prevent compression or insufficiency fractures. Getting regular load-bearing exercise (such as walking) can help you avoid bone loss.
Compressed sensing for distributed systems
Coluccia, Giulio; Magli, Enrico
2015-01-01
This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...
Preprocessing of compressed digital video
Segall, C. Andrew; Karunaratne, Passant V.; Katsaggelos, Aggelos K.
2000-12-01
Pre-processing algorithms improve on the performance of a video compression system by removing spurious noise and insignificant features from the original images. This increases compression efficiency and attenuates coding artifacts. Unfortunately, determining the appropriate amount of pre-filtering is a difficult problem, as it depends on both the content of an image as well as the target bit-rate of compression algorithm. In this paper, we explore a pre- processing technique that is loosely coupled to the quantization decisions of a rate control mechanism. This technique results in a pre-processing system that operates directly on the Displaced Frame Difference (DFD) and is applicable to any standard-compatible compression system. Results explore the effect of several standard filters on the DFD. An adaptive technique is then considered.
Compressed gas fuel storage system
Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)
2001-01-01
A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.
Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels.
Javadi, Alireza; Zheng, Qifeng; Payen, Francois; Javadi, Abdolreza; Altin, Yasin; Cai, Zhiyong; Sabo, Ronald; Gong, Shaoqin
2013-07-10
Hybrid organic aerogels consisting of polyvinyl alcohol (PVA), cellulose nanofibrils (CNFs), and graphene oxide nanosheets (GONSs) were prepared using an environmentally friendly freeze-drying process. The material properties of these fabricated aerogels were measured and analyzed using various characterization techniques including compression testing, scanning electron microscopy, thermogravimetric (TGA) analysis, Brunauer-Emmet-Teller (BET) surface area analysis, and contact angle measurements. These environmentally friendly, biobased hybrid organic aerogels exhibited a series of desirable properties including a high specific compressive strength and compressive failure strain, ultralow density and thermal conductivity, good thermal stability, and moisture resistance, making them potentially useful for a broad range of applications including thermal insulation.
Shock compression of polyvinyl chloride
Neogi, Anupam; Mitra, Nilanjan
2016-04-01
This study presents shock compression simulation of atactic polyvinyl chloride (PVC) using ab-initio and classical molecular dynamics. The manuscript also identifies the limits of applicability of classical molecular dynamics based shock compression simulation for PVC. The mechanism of bond dissociation under shock loading and its progression is demonstrated in this manuscript using the density functional theory based molecular dynamics simulations. The rate of dissociation of different bonds at different shock velocities is also presented in this manuscript.
Network compression as a quality measure for protein interaction networks.
Loic Royer
Full Text Available With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients.
Bridgman's concern (shock compression science)
Graham, R. A.
1994-07-01
In 1956 P. W. Bridgman published a letter to the editor in the Journal of Applied Physics reporting results of electrical resistance measurements on iron under static high pressure. The work was undertaken to verify the existence of a polymorphic phase transition at 130 kbar (13 GPa) reported in the same journal and year by the Los Alamos authors, Bancroft, Peterson, and Minshall for high pressure, shock-compression loading. In his letter, Bridgman reported that he failed to find any evidence for the transition. Further, he raised some fundamental concerns as to the state of knowledge of shock-compression processes in solids. Later it was determined that Bridgman's static pressure scale was in error, and the shock observations became the basis for calibration of pressure values in static high pressure apparatuses. In spite of the error in pressure scales, Bridgman's concerns on descriptions of shock-compression processes were perceptive and have provided the basis for subsequent fundamental studies of shock-compressed solids. The present paper, written in response to receipt of the 1993 American Physical Society Shock-Compression Science Award, provides a brief contemporary assessment of those shock-compression issues which were the basis of Bridgman's 1956 concerns.
Hidden force opposing ice compression
Sun, Chang Q; Zheng, Weitao
2012-01-01
Coulomb repulsion between the unevenly-bound bonding and nonbonding electron pairs in the O:H-O hydrogen-bond is shown to originate the anomalies of ice under compression. Consistency between experimental observations, density functional theory and molecular dynamics calculations confirmed that the resultant force of the compression, the repulsion, and the recovery of electron-pair dislocations differentiates ice from other materials in response to pressure. The compression shortens and strengthens the longer-and-softer intermolecular O:H lone-pair virtual-bond; the repulsion pushes the bonding electron pair away from the H+/p and hence lengthens and weakens the intramolecular H-O real-bond. The virtual-bond compression and the real-bond elongation symmetrize the O:H-O as observed at ~60 GPa and result in the abnormally low compressibility of ice. The virtual-bond stretching phonons ( 3000 cm-1) softened upon compression. The cohesive energy of the real-bond dominates and its loss lowers the critical temperat...
Poly(acrylamide-MWNTs hybrid hydrogel with extremely high mechanical strength
Feng Huanhuan
2016-01-01
Full Text Available Poly(acrylamide-multiwalled carbon nanotubes (PAAm-MWNTs hybrid hydrogels were prepared through the radiation-induced polymerization and crosslinking of the aqueous solution of acrylamide and well-dispersed MWNTs for the first time. The PAAm gels obtained by the radiation-induced polymerization and cosslinking showed very high mechanical strengths, and the PAAm-MWNTs hybrid hydrogels had improved mechanical properties compared with the PAAm gels, and hence the PAAm-MWNTs hybrid hydrogels showed extremely high compressive and tensile strengths. The hybrid hydrogels with water contents more than 80 wt.% usually did not fracture even at compressive strengths close to or even more than 60 MPa and strains more than 97%. And the hybrid hydrogels had very high elongations (more than 2000% in some cases, especially when the water content was high. The tensile strengths were in sub-MPa. The hybrid PAAm-MWNTs hydrogel is one of the strongest hydrogel even made.
AN INTRODUCTION TO A HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE
A.A. Hairuddin
2014-12-01
Full Text Available Homogeneous charge compression ignition (HCCI engine technology is relatively new and has not matured sufficiently to be commercialised compared with conventional engines. It can use spark ignition or compression ignition engine configurations, capitalizing on the advantages of both: high engine efficiency with low emissions levels. HCCI engines can use a wide range of fuels with low emissions levels. Due to these advantages, HCCI engines are suitable for use in a hybrid engine configuration, where they can reduce the fuel consumption even further. However, HCCI engines have some disadvantages, such as knocking and a low to medium operating load range, which need to be resolved before the engine can be commercialised. Therefore, a comprehensive study has to be performed to understand the behaviour of HCCI engines.
Braüner, Torben
2011-01-01
Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....
Continuity Controlled Hybrid Automata
Bergstra, J. A.; Middelburg, C.A.
2004-01-01
We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...
Evaluation of heat engine for hybrid vehicle application
Schneider, H. W.
1984-01-01
The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.
Comparing image compression methods in biomedical applications
Libor Hargas
2004-01-01
Full Text Available Compression methods suitable for image processing are described in this article in biomedical applications. The compression is often realized by reduction of irrelevance or redundancy. There are described lossless and lossy compression methods which can be use for compress of images in biomedical applications and comparison of these methods based on fidelity criteria.
29 CFR 1917.154 - Compressed air.
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed...
Noise Robust Joint Sparse Recovery using Compressive Subspace Fitting
Kim, Jong Min; Ye, Jong Chul
2011-01-01
We study a multiple measurement vector (MMV) problem where multiple signals share a common sparse support set and are sampled by a common sensing matrix. Although we can expect that joint sparsity can improve the recovery performance over a single measurement vector (SMV) problem, compressive sensing (CS) algorithms for MMV exhibit performance saturation as the number of multiple signals increases. Recently, to overcome these drawbacks of CS approaches, hybrid algorithms that optimally combine CS with sensor array signal processing using a generalized MUSIC criterion have been proposed. While these hybrid algorithms are optimal for critically sampled cases, they are not efficient in exploiting the redundant sampling to improve noise robustness. Hence, in this work, we introduce a novel subspace fitting criterion that extends the generalized MUSIC criterion so that it exhibits near-optimal behaviors for various sampling conditions. In addition, the subspace fitting criterion leads to two alternative forms of c...
A. Esposito
2016-07-01
Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.
Esposito, A.; Polosa, A.D.
2016-01-01
We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.
Compressibility, turbulence and high speed flow
Gatski, Thomas B
2013-01-01
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and
30 CFR 75.1730 - Compressed air; general; compressed air systems.
2010-07-01
... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... pressure has been relieved from that part of the system to be repaired. (d) At no time shall compressed air... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems...
Platos, Jan
2008-01-01
Today there are many universal compression algorithms, but in most cases is for specific data better using specific algorithm - JPEG for images, MPEG for movies, etc. For textual documents there are special methods based on PPM algorithm or methods with non-character access, e.g. word-based compression. In the past, several papers describing variants of word-based compression using Huffman encoding or LZW method were published. The subject of this paper is the description of a word-based compression variant based on the LZ77 algorithm. The LZ77 algorithm and its modifications are described in this paper. Moreover, various ways of sliding window implementation and various possibilities of output encoding are described, as well. This paper also includes the implementation of an experimental application, testing of its efficiency and finding the best combination of all parts of the LZ77 coder. This is done to achieve the best compression ratio. In conclusion there is comparison of this implemented application wi...
Morphological Transform for Image Compression
Luis Pastor Sanchez Fernandez
2008-05-01
Full Text Available A new method for image compression based on morphological associative memories (MAMs is presented. We used the MAM to implement a new image transform and applied it at the transformation stage of image coding, thereby replacing such traditional methods as the discrete cosine transform or the discrete wavelet transform. Autoassociative and heteroassociative MAMs can be considered as a subclass of morphological neural networks. The morphological transform (MT presented in this paper generates heteroassociative MAMs derived from image subblocks. The MT is applied to individual blocks of the image using some transformation matrix as an input pattern. Depending on this matrix, the image takes a morphological representation, which is used to perform the data compression at the next stages. With respect to traditional methods, the main advantage offered by the MT is the processing speed, whereas the compression rate and the signal-to-noise ratio are competitive to conventional transforms.
Compressive Sensing in Communication Systems
Fyhn, Karsten
2013-01-01
Wireless communication is omnipresent today, but this development has led to frequency spectrum becoming a limited resource. Furthermore, wireless devices become more and more energy-limited, due to the demand for continual wireless communication of higher and higher amounts of information....... The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...
Compressive Sensing for MIMO Radar
Yu, Yao; Poor, H Vincent
2009-01-01
Multiple-input multiple-output (MIMO) radar systems have been shown to achieve superior resolution as compared to traditional radar systems with the same number of transmit and receive antennas. This paper considers a distributed MIMO radar scenario, in which each transmit element is a node in a wireless network, and investigates the use of compressive sampling for direction-of-arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOA of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center for further processing.
Compressive Sensing with Optical Chaos
Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.
2016-12-01
Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals.
Compressive behavior of fine sand.
Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)
2010-04-01
The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.
Instability of ties in compression
Buch-Hansen, Thomas Cornelius
2013-01-01
Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since......-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis....
Continuity Controlled Hybrid Automata
Bergstra, J.A.; Middelburg, C.A.
2004-01-01
We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of
Continuity controlled Hybrid Automata
Bergstra, J.A.; Middelburg, C.A.
2008-01-01
We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of
Fast, efficient lossless data compression
Ross, Douglas
1991-01-01
This paper presents lossless data compression and decompression algorithms which can be easily implemented in software. The algorithms can be partitioned into their fundamental parts which can be implemented at various stages within a data acquisition system. This allows for efficient integration of these functions into systems at the stage where they are most applicable. The algorithms were coded in Forth to run on a Silicon Composers Single Board Computer (SBC) using the Harris RTX2000 Forth processor. The algorithms require very few system resources and operate very fast. The performance of the algorithms with the RTX enables real time data compression and decompression to be implemented for a wide range of applications.
[Vascular compression of the duodenum].
Acosta, B; Guachalla, G; Martínez, C; Felce, S; Ledezma, G
1991-01-01
The acute vascular compression of the duodenum is a well-recognized clinical entity, characterized by recurrent vomiting, abdominal distention, weight loss, post prandial distress. The cause of compression is considered to be effect produced as a result of the angle formed by the superior mesenteric vessels and sometimes by one of its first two branches, and vertebrae and paravertebral muscles, when the angle between superior mesenteric vessels and the aorta it's lower than 18 degrees we can saw this syndrome. The duodenojejunostomy is the best treatment, as well as in our patient.
GPU-accelerated compressive holography.
Endo, Yutaka; Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi
2016-04-18
In this paper, we show fast signal reconstruction for compressive holography using a graphics processing unit (GPU). We implemented a fast iterative shrinkage-thresholding algorithm on a GPU to solve the ℓ1 and total variation (TV) regularized problems that are typically used in compressive holography. Since the algorithm is highly parallel, GPUs can compute it efficiently by data-parallel computing. For better performance, our implementation exploits the structure of the measurement matrix to compute the matrix multiplications. The results show that GPU-based implementation is about 20 times faster than CPU-based implementation.
Compressing the Inert Doublet Model
Blinov, Nikita; Morrissey, David E; de la Puente, Alejandro
2015-01-01
The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. This stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. We derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.
Wavelet and wavelet packet compression of electrocardiograms.
Hilton, M L
1997-05-01
Wavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.
Maxwell's Demon and Data Compression
Hosoya, Akio; Shikano, Yutaka
2011-01-01
In an asymmetric Szilard engine model of Maxwell's demon, we show the equivalence between information theoretical and thermodynamic entropies when the demon erases information optimally. The work gain by the engine can be exactly canceled out by the work necessary to reset demon's memory after optimal data compression a la Shannon before the erasure.
Grid-free compressive beamforming
Xenaki, Angeliki; Gerstoft, Peter
2015-01-01
The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high...
LIDAR data compression using wavelets
Pradhan, B.; Mansor, Shattri; Ramli, Abdul Rahman; Mohamed Sharif, Abdul Rashid B.; Sandeep, K.
2005-10-01
The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the LIDAR data compression. A newly developed data compression approach to approximate the LIDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become a case in point for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original LIDAR data. The results show that this method can be used for significant reduction of data set.
Compressed Blind De-convolution
Saligrama, V
2009-01-01
Suppose the signal x is realized by driving a k-sparse signal u through an arbitrary unknown stable discrete-linear time invariant system H. These types of processes arise naturally in Reflection Seismology. In this paper we are interested in several problems: (a) Blind-Deconvolution: Can we recover both the filter $H$ and the sparse signal $u$ from noisy measurements? (b) Compressive Sensing: Is x compressible in the conventional sense of compressed sensing? Namely, can x, u and H be reconstructed from a sparse set of measurements. We develop novel L1 minimization methods to solve both cases and establish sufficient conditions for exact recovery for the case when the unknown system H is auto-regressive (i.e. all pole) of a known order. In the compressed sensing/sampling setting it turns out that both H and x can be reconstructed from O(k log(n)) measurements under certain technical conditions on the support structure of u. Our main idea is to pass x through a linear time invariant system G and collect O(k lo...
Compressing spatio-temporal trajectories
Gudmundsson, Joachim; Katajainen, Jyrki; Merrick, Damian
2009-01-01
A trajectory is a sequence of locations, each associated with a timestamp, describing the movement of a point. Trajectory data is becoming increasingly available and the size of recorded trajectories is getting larger. In this paper we study the problem of compressing planar trajectories such tha...
Range Compressed Holographic Aperture Ladar
2017-06-01
digital holography, laser, active imaging, remote sensing, laser imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8...slow speed tunable lasers, while relaxing the need to precisely track the transceiver or target motion. In the following section we describe a scenario...contrast targets. As shown in Figure 28, augmenting holographic ladar with range compression relaxes the dependence of image reconstruction on
Compressive passive millimeter wave imager
Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C
2015-01-27
A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.
Hydrogen hybrid vehicle engine development: Experimental program
Van Blarigan, P. [Sandia National Lab., Livermore, CA (United States)
1995-09-01
A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.
Van der Pal, M.; Van den Heuvel, K. [Energieonderzoek Centrum Nederland ECN, Petten (Netherlands); Infante Ferreira, C. [Technische Universiteit Delft TUD, Delft (Netherlands)
2011-09-15
ECN has recently started research on a hybrid adsorption-compression heat transformer concept. Using this technology low-temperature waste heat can be reused, yielding considerable primary energy savings. A study in cooperation with the Delft University of Technology shows the hybrid technology can already be used with waste heat temperatures of 70C, e.g. in the drying process in a paper factory. The technology is also economically feasible. [Dutch] ECN is onlangs begonnen met onderzoek naar hybride adsorptiecompressie warmtetransformatoren. Deze technologie kan worden gebruikt om restwarmte op te waarderen naar nuttige warmte. Hiermee kunnen grote besparingen worden behaald op primair energiegebruik. Een studie uitgevoerd in samenwerking met de TU Delft toont aan dat deze technologie bruikbaar is met restwarmte vanaf 70C, bijvoorbeeld van een papierfabfiek. Naast technologisch is de technologie ook economisch haalbaar gebleken.
Semantic Source Coding for Flexible Lossy Image Compression
Phoha, Shashi; Schmiedekamp, Mendel
2007-01-01
Semantic Source Coding for Lossy Video Compression investigates methods for Mission-oriented lossy image compression, by developing methods to use different compression levels for different portions...
Infraspinatus muscle atrophy from suprascapular nerve compression.
Cordova, Christopher B; Owens, Brett D
2014-02-01
Muscle weakness without pain may signal a nerve compression injury. Because these injuries should be identified and treated early to prevent permanent muscle weakness and atrophy, providers should consider suprascapular nerve compression in patients with shoulder muscle weakness.
ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)
Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler
2005-12-01
The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity
Experimental study into a hybrid PCCI/CI concept for next-generation heavy-duty diesel engines
Doosje, E.; Willems, F.P.T.; Baert, R.S.G.; Dijk, M.D. van
2012-01-01
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conven
Considerations and Algorithms for Compression of Sets
Larsson, Jesper
compression algorithm that allows transparent incorporation of various estimates for probability distribution. Our experimental results allow the conclusion that set compression can benefit from incorporat- ing statistics, using our method or variants of previously known techniques.......We consider compression of unordered sets of distinct elements. After a discus- sion of the general problem, we focus on compressing sets of fixed-length bitstrings in the presence of statistical information. We survey techniques from previous work, suggesting some adjustments, and propose a novel...
Cascaded quadratic soliton compression at 800 nm
Bache, Morten; Bang, Ole; Moses, Jeffrey;
2007-01-01
We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
Still image and video compression with MATLAB
Thyagarajan, K
2010-01-01
This book describes the principles of image and video compression techniques and introduces current and popular compression standards, such as the MPEG series. Derivations of relevant compression algorithms are developed in an easy-to-follow fashion. Numerous examples are provided in each chapter to illustrate the concepts. The book includes complementary software written in MATLAB SIMULINK to give readers hands-on experience in using and applying various video compression methods. Readers can enhance the software by including their own algorithms.
Simultaneous denoising and compression of multispectral images
Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.
2013-01-01
A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.
Image quality (IQ) guided multispectral image compression
Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik
2016-05-01
Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.
Brain image Compression, a brief survey
Saleha Masood
2013-01-01
Full Text Available Brain image compression is known as a subfield of image compression. It allows the deep analysis and measurements of brain images in different modes. Brain images are compressed to analyze and diagnose in an effective manner while reducing the image storage space. This survey study describes the different existing techniques regarding brain image compression. The techniques come under different categories. The study also discusses these categories.
Position index preserving compression of text data
Akhtar, Nasim; Rashid, Mamunur; Islam, Shafiqul; Kashem, Mohammod Abul; Kolybanov, Cyrll Y.
2011-01-01
Data compression offers an attractive approach to reducing communication cost by using available bandwidth effectively. It also secures data during transmission for its encoded form. In this paper an index based position oriented lossless text compression called PIPC ( Position Index Preserving Compression) is developed. In PIPC the position of the input word is denoted by ASCII code. The basic philosopy of the secure compression is to preprocess the text and transform it into some intermedia...
Hayami Takeda
2013-05-01
Full Text Available Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite. The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials.
Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters.
Yuan, Ningxiao; Xu, Lu; Zhang, Lu; Ye, Haowen; Zhao, Jianhao; Liu, Zhong; Rong, Jianhua
2016-10-01
Hybrid polyacrylamide/bacterial cellulose nanofiber clusters (PAM/BC) hydrogels with high strength, toughness and recoverability were synthesized by in situ polymerization of acrylamide monomer in BC nanofiber clusters suspension. The hybrid gels exhibited an extremely large elongation at break of 2200%, and a high fracture stress of 1.35MPa. Additionally, the original length of hydrogels could be recovered after releasing the tensile force. Compressive results showed that the PAM/BC hybrid gels could reach a strain of about 99% without break, and was able to completely recover its original shape immediately after releasing the compression force. The compressive stress at 99% reached as high as 30MPa. Nearly no hysteresis in cyclic compressive tests was observed with these hybrid gels. The FT-IR, XRD and TGA analysis showed that hydrogen bonds between the PAM chains and BC nanofiber clusters mainly contributed to the superior mechanical properties of hybrid hydrogels. The cell viability results suggested that PAM/BC hybrid hydrogel was benign for biomedical application. These PAM/BC hydrogels offer a great promise as biomaterials such as bone and cartilage repair materials.
Boron-Filled Hybrid Carbon Nanotubes
Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar
2016-07-01
A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.
Boron-Filled Hybrid Carbon Nanotubes
Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar
2016-01-01
A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526
H.264/AVC Video Compression on Smartphones
Sharabayko, M. P.; Markov, N. G.
2017-01-01
In this paper, we studied the usage of H.264/AVC video compression tools by the flagship smartphones. The results show that only a subset of tools is used, meaning that there is still a potential to achieve higher compression efficiency within the H.264/AVC standard, but the most advanced smartphones are already reaching the compression efficiency limit of H.264/AVC.
BPCS steganography using EZW lossy compressed images
Spaulding, Jeremiah; Noda, Hideki; Shirazi, Mahdad N.; Kawaguchi, Eiji
2002-01-01
This paper presents a steganography method based on an embedded zerotree wavelet (EZW) compression scheme and bit-plane complexity segmentation (BPCS) steganography. The proposed steganography enables us to use lossy compressed images as dummy files in bit-plane-based steganographic algorithms. Large embedding rates of around 25% of the compressed image size were achieved with little noticeable degradation in image quality.
Experimental investigation of the ecological hybrid refrigeration cycle
Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman
2014-09-01
The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.
Experimental investigation of the ecological hybrid refrigeration cycle
Cyklis Piotr
2014-09-01
Full Text Available The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.
Tensile and Compressive Responses of Ceramic and Metallic Nanoparticle Reinforced Mg Composites
Quy Bau Nguyen
2013-05-01
Full Text Available In the present study, room temperature mechanical properties of pure magnesium, Mg/ZrO2 and Mg/(ZrO2 + Cu composites with various compositions are investigated. Results revealed that the use of hybrid (ZrO2 + Cu reinforcements in Mg led to enhanced mechanical properties when compared to that of single reinforcement (ZrO2. Marginal reduction in mechanical properties of Mg/ZrO2 composites were observed mainly due to clustering of ZrO2 particles in Mg matrix and lack of matrix grain refinement. Addition of hybrid reinforcements led to grain size reduction and uniform distribution of hybrid reinforcements, globally and locally, in the hybrid composites. Macro- and micro- hardness, tensile strengths and compressive strengths were all significantly increased in the hybrid composites. With respect to unreinforced magnesium, failure strain was almost unchanged under tensile loading while it was reduced under compressive loading for both Mg/ZrO2 and Mg/(ZrO2 + Cu composites.
Stability of compressible boundary layers
Nayfeh, Ali H.
1989-01-01
The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.
Conservative regularization of compressible flow
Krishnaswami, Govind S; Thyagaraja, Anantanarayanan
2015-01-01
Ideal Eulerian flow may develop singularities in vorticity w. Navier-Stokes viscosity provides a dissipative regularization. We find a local, conservative regularization - lambda^2 w times curl(w) of compressible flow and compressible MHD: a three dimensional analogue of the KdV regularization of the one dimensional kinematic wave equation. The regulator lambda is a field subject to the constitutive relation lambda^2 rho = constant. Lambda is like a position-dependent mean-free path. Our regularization preserves Galilean, parity and time-reversal symmetries. We identify locally conserved energy, helicity, linear and angular momenta and boundary conditions ensuring their global conservation. Enstrophy is shown to remain bounded. A swirl velocity field is identified, which transports w/rho and B/rho generalizing the Kelvin-Helmholtz and Alfven theorems. A Hamiltonian and Poisson bracket formulation is given. The regularized equations are used to model a rotating vortex, channel flow, plane flow, a plane vortex ...
Compressing DNA sequence databases with coil
Hendy Michael D
2008-05-01
Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.
Antiproton compression and radial measurements
Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.
2008-08-01
Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.
From hybrid swarms to swarms of hybrids
The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...
The Hybrid Museum: Hybrid Economies of Meaning
Vestergaard, Vitus
2013-01-01
this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....
EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.
Hybrid Management in Hospitals
Byrkjeflot, Haldor; Jespersen, Peter Kragh
2010-01-01
Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...
Compressibility effects on turbulent mixing
Panickacheril John, John; Donzis, Diego
2016-11-01
We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.
Laser Compression of Nanocrystalline Metals
Meyers, M. A.; Jarmakani, H. N.; Bringa, E. M.; Earhart, P.; Remington, B. A.; Vo, N. Q.; Wang, Y. M.
2009-12-01
Shock compression in nanocrystalline nickel is simulated over a range of pressures (10-80 GPa) and compared with experimental results. Laser compression carried out at Omega and Janus yields new information on the deformation mechanisms of nanocrystalline Ni. Although conventional deformation does not produce hardening, the extreme regime imparted by laser compression generates an increase in hardness, attributed to the residual dislocations observed in the structure by TEM. An analytical model is applied to predict the critical pressure for the onset of twinning in nanocrystalline nickel. The slip-twinning transition pressure is shifted from 20 GPa, for polycrystalline Ni, to 80 GPa, for Ni with g. s. of 10 nm. Contributions to the net strain from the different mechanisms of plastic deformation (partials, perfect dislocations, twinning, and grain boundary shear) were quantified in the nanocrystalline samples through MD calculations. The effect of release, a phenomenon often neglected in MD simulations, on dislocation behavior was established. A large fraction of the dislocations generated at the front are annihilated.
Hyperspectral images lossless compression using the 3D binary EZW algorithm
Cheng, Kai-jen; Dill, Jeffrey
2013-02-01
This paper presents a transform based lossless compression for hyperspectral images which is inspired by Shapiro (1993)'s EZW algorithm. The proposed compression method uses a hybrid transform which includes an integer Karhunrn-Loeve transform (KLT) and integer discrete wavelet transform (DWT). The integer KLT is employed to eliminate the presence of correlations among the bands of the hyperspectral image. The integer 2D discrete wavelet transform (DWT) is applied to eliminate the correlations in the spatial dimensions and produce wavelet coefficients. These coefficients are then coded by a proposed binary EZW algorithm. The binary EZW eliminates the subordinate pass of conventional EZW by coding residual values, and produces binary sequences. The binary EZW algorithm combines the merits of well-known EZW and SPIHT algorithms, and it is computationally simpler for lossless compression. The proposed method was applied to AVIRIS images and compared to other state-of-the-art image compression techniques. The results show that the proposed lossless image compression is more efficient and it also has higher compression ratio than other algorithms.
Moerman, Kevin M; Nagel, Thomas
2015-01-01
This paper discusses tension-compression asymmetry properties of Ogden hyperelastic formulations. It is shown that if all negative or all positive Ogden coefficients are used, tension-compression asymmetry occurs the degree of which cannot be separately controlled from the degree of non-linearity. A simple hybrid form is therefore proposed providing separate control over the tension-compression asymmetry. It is demonstrated how this form relates to a newly introduced generalised strain tensor class which encompasses both the tension-compression asymmetric Seth-Hill strain class and the tension-compression symmetric Ba\\v{z}ant strain class. If the control parameter is set to q=0.5 a tension-compression symmetric form involving Ba\\v{z}ant strains is obtained with the property {\\Psi}({\\lambda}_1,{\\lambda}_2,{\\lambda}_3 )={\\Psi}(1/{\\lambda}_1 ,1/{\\lambda}_2 ,1/{\\lambda}_3 ). The symmetric form may be desirable for the definition of ground matrix contributions in soft tissue modelling allowing all deviation from t...
Image Compression Using Discrete Wavelet Transform
Mohammad Mozammel Hoque Chowdhury
2012-07-01
Full Text Available Image compression is a key technology in transmission and storage of digital images because of vast data associated with them. This research suggests a new image compression scheme with pruning proposal based on discrete wavelet transformation (DWT. The effectiveness of the algorithm has been justified over some real images, and the performance of the algorithm has been compared with other common compression standards. The algorithm has been implemented using Visual C++ and tested on a Pentium Core 2 Duo 2.1 GHz PC with 1 GB RAM. Experimental results demonstrate that the proposed technique provides sufficient high compression ratios compared to other compression techniques.
Compression Waves and Phase Plots: Simulations
Orlikowski, Daniel
2011-01-01
Compression wave analysis started nearly 50 years ago with Fowles.[1] Coperthwaite and Williams [2] gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general.[3] One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.
Mathematical theory of compressible fluid flow
Von Mises, Richard
2012-01-01
Mathematical Theory of Compressible Fluid Flow covers the conceptual and mathematical aspects of theory of compressible fluid flow. This five-chapter book specifically tackles the role of thermodynamics in the mechanics of compressible fluids. This text begins with a discussion on the general theory of characteristics of compressible fluid with its application. This topic is followed by a presentation of equations delineating the role of thermodynamics in compressible fluid mechanics. The discussion then shifts to the theory of shocks as asymptotic phenomena, which is set within the context of
Video compressive sensing using Gaussian mixture models.
Yang, Jianbo; Yuan, Xin; Liao, Xuejun; Llull, Patrick; Brady, David J; Sapiro, Guillermo; Carin, Lawrence
2014-11-01
A Gaussian mixture model (GMM)-based algorithm is proposed for video reconstruction from temporally compressed video measurements. The GMM is used to model spatio-temporal video patches, and the reconstruction can be efficiently computed based on analytic expressions. The GMM-based inversion method benefits from online adaptive learning and parallel computation. We demonstrate the efficacy of the proposed inversion method with videos reconstructed from simulated compressive video measurements, and from a real compressive video camera. We also use the GMM as a tool to investigate adaptive video compressive sensing, i.e., adaptive rate of temporal compression.
Electric and hybrid vehicle environmental control subsystem study
Heitner, K. L.
1980-01-01
An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.
On The Modelling Of Hybrid Aerostatic - Gas Journal Bearings
Morosi, Stefano; Santos, Ilmar
2011-01-01
Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...... modeling for hybrid lubrication of a compressible fluid film journal bearing. Additional forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving...
S. Asaoka
2005-01-01
@@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].
Mesoscale hybrid calibration artifact
Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.
2010-09-07
A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.
Weimin Song
2016-08-01
Full Text Available Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF and carbon fiber (CF was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC, carbon fiber reinforced concrete (CFRC and hybrid fiber reinforced concrete (HFRC were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.
秦燕军; 王忠义; 曹小刚; 田杰谟
2001-01-01
AIM To investigate the influence of crystallization temperature on microstructures of mica-based machinable glass-ceramics used for CAD/CAM dental restorations. METHODS According to the requirements of dental restorative materials, K2O-MgO-MgF2-SiO2 glass-ceramics system was chosen to make tetrasilicic fluormica glass-ceramics and three different temperatures were used to finish the crystallization procedure. Differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to observe the crystallization behavior, crystalline phases and microstructures of the glass-ceramics. Three point bending strength was also measured. RESULTS Grain shape changes from spherical to platelike as crystallization temperature went up. Improving crystallization temperature was increase the grain size, aspect ratio and flexural strength of the mica, while the crystalline phase is not affected by temperature changes. CONCLUSION Microstructures of the glass-ceramics are determined by crystallization temperature.%目的研究晶化温度对牙科CAD/CAM加工用四硅氟云母微晶玻璃微观结构的影响. 方法选用K2O-MgO-MgF2-SiO2系统来制备云母微晶玻璃，通过差热分析(DTA)、X射线衍射分析(XRD)、扫描电子显微镜观测(SEM)及三点弯曲强度的测试，比较了三种不同晶化温度对四硅氟云母微晶玻璃的晶化特性、微观结构及抗弯强度的影响. 结果随着晶化温度的逐步升高，四硅氟云母晶粒的形态由球形转变为片层状，晶粒尺寸和径厚比逐步增大，微晶玻璃的抗弯强度也逐步升高，但其晶相组成未发生明显变化. 结论晶化温度对四硅氟云母微晶玻璃的微观结构起决定作用.
秦燕军; 王忠义; 曹小刚; 田杰谟
2001-01-01
目的：研究牙科CAD/CAM加工用四硅氟云母微晶玻璃的微观结构对其力学性能的影响。方法：采用K2O-MgO-MgF2-SiO2系统来研制云母微晶玻璃，通过差热分析(DTA)、X射线衍射分析(XRD)、扫描电子显微镜观测(SEM)及力学性能测试，比较了三种不同晶化温度下，四硅氟云母微晶玻璃的微观结构对其力学性能影响。结果：随着晶化温度的逐步升高，四硅氟云母的晶粒大小和径厚比逐步增大，抗弯强度和断裂韧性亦逐渐增高，维氏硬度和脆性指数随温度升高而降低。结论：云母微晶玻璃的微观结构对其力学性能起决定作用，而微观结构与晶化温度密切相关。%Objective:To investigate the influence of microstructure onmechanical properties of mica-based machinable glass-ceramics used for CAD/CAM restorations.Methods:According to the requirements of dental restorative materials, K2O-MgO-MgF2-SiO2 system was chosen to form tetrasilicic fluormica glass-ceramics and three different temperatures were used to finish crystallization process.Differential thermal analysis(DTA),X-ray diffractometer(XRD) and scanning electron microscopy(SEM) were used to observe the crystallization behavior,crystalline phases and microstructures of the glass-ceramics.Influence of microstructure on mechanical properties of the glass-ceramics was compared.Results:Improving crystallization temperature can increase the grain sizes and aspect ratio of mica and improve the three-point bending strength and fracture toughness of the glass-ceramics.Vickers hardness and the index of brittleness decrease with increasing of temperature.Conclusion:The mechanical properties of the glass-ceramic are determined by its microstructure,while the latter has a close relationship with crystallization temperature.
Compression therapy in elderly and overweight patients.
Reich-Schupke, Stefanie; Murmann, Friederike; Altmeyer, Peter; Stücker, Markus
2012-03-01
According to the current demography of the western population, age and weight will have increasing impact on medical therapies. The aim of the analysis was to examine if there are differences in the use of compression therapy depending on age and BMI. Questioning of 200 consecutive phlebological patients (C2-C6) with a compression therapy time of > 2 weeks. Analysis of 110 returned questionnaires. Sub-analysis according to age (≥ 60 years vs. 60 years even need the help of another person to apply compression. Patients ≥ 25 kg/m2 have an ulcer stocking significantly more often (15 % vs. 4.3 %, p = 0.05) and need the help of family members to put on the compression therapy (11.7 % vs. 2.1 %, p = 0.04). There is a tendency of patients ≥ 25 kg/m2 to complain more often about a constriction of compression therapy (35 % vs. 19.2 %, p = 0.06). There are special aspects that have to be regarded for compression therapy in elderly and overweight patients. Data should encourage prescribers, sellers and manufacturers of compression therapy to use compression in a very differentiated way for these patients and to consider: Is the recommended compression therapy right for this patient (pressure, material, type)? What advice and adjuvants do the patients need to get along more easily with the compression therapy? Are there any new materials or adjuvants that allow those increasing groups of people to get along with compression therapy alone?
Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter
1998-01-01
Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…
Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...
Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.
1993-01-01
A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.
Intraply Hybrid Composite Design
Chamis, C. C.; Sinclair, J. H.
1986-01-01
Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.
Hybrid quantum information processing
Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)
2014-12-04
I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.
Chapter 22: Compressed Air Evaluation Protocol
Benton, N.
2014-11-01
Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.
Binary-phase compression of stretched pulses
Lozovoy, Vadim V.; Nairat, Muath; Dantus, Marcos
2017-10-01
Pulse stretching and compression are essential for the energy scale-up of ultrafast lasers. Here, we consider a radical approach using spectral binary phases, containing only two values (0 and π) for stretching and compressing laser pulses. We numerically explore different strategies and present results for pulse compression of factors up to a million back to the transform limit and experimentally obtain results for pulse compression of a factor of one hundred, in close agreement with numerical calculations. Imperfections resulting from binary-phase compression are addressed by considering cross-polarized wave generation filtering, and show that this approach leads to compressed pulses with contrast ratios greater than ten orders of magnitude. This new concept of binary-phase stretching and compression, if implemented in a multi-layer optic, could eliminate the need for traditional pulse stretchers and more importantly expensive compressors.
Bit-Optimal Lempel-Ziv compression
Ferragina, Paolo; Venturini, Rossano
2008-01-01
One of the most famous and investigated lossless data-compression scheme is the one introduced by Lempel and Ziv about 40 years ago. This compression scheme is known as "dictionary-based compression" and consists of squeezing an input string by replacing some of its substrings with (shorter) codewords which are actually pointers to a dictionary of phrases built as the string is processed. Surprisingly enough, although many fundamental results are nowadays known about upper bounds on the speed and effectiveness of this compression process and references therein), ``we are not aware of any parsing scheme that achieves optimality when the LZ77-dictionary is in use under any constraint on the codewords other than being of equal length'' [N. Rajpoot and C. Sahinalp. Handbook of Lossless Data Compression, chapter Dictionary-based data compression. Academic Press, 2002. pag. 159]. Here optimality means to achieve the minimum number of bits in compressing each individual input string, without any assumption on its ge...
Envera Variable Compression Ratio Engine
Charles Mendler
2011-03-15
Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low
Digital image compression in dermatology: format comparison.
Guarneri, F; Vaccaro, M; Guarneri, C
2008-09-01
Digital image compression (reduction of the amount of numeric data needed to represent a picture) is widely used in electronic storage and transmission devices. Few studies have compared the suitability of the different compression algorithms for dermatologic images. We aimed at comparing the performance of four popular compression formats, Tagged Image File (TIF), Portable Network Graphics (PNG), Joint Photographic Expert Group (JPEG), and JPEG2000 on clinical and videomicroscopic dermatologic images. Nineteen (19) clinical and 15 videomicroscopic digital images were compressed using JPEG and JPEG2000 at various compression factors and TIF and PNG. TIF and PNG are "lossless" formats (i.e., without alteration of the image), JPEG is "lossy" (the compressed image has a lower quality than the original), JPEG2000 has a lossless and a lossy mode. The quality of the compressed images was assessed subjectively (by three expert reviewers) and quantitatively (by measuring, point by point, the color differences from the original). Lossless JPEG2000 (49% compression) outperformed the other lossless algorithms, PNG and TIF (42% and 31% compression, respectively). Lossy JPEG2000 compression was slightly less efficient than JPEG, but preserved image quality much better, particularly at higher compression factors. For its good quality and compression ratio, JPEG2000 appears to be a good choice for clinical/videomicroscopic dermatologic image compression. Additionally, its diffusion and other features, such as the possibility of embedding metadata in the image file and to encode various parts of an image at different compression levels, make it perfectly suitable for the current needs of dermatology and teledermatology.
Improved cuckoo search with particle swarm optimization for classification of compressed images
Vamsidhar Enireddy; Reddi Kiran Kumar
2015-12-01
The need for a general purpose Content Based Image Retrieval (CBIR) system for huge image databases has attracted information-technology researchers and institutions for CBIR techniques development. These techniques include image feature extraction, segmentation, feature mapping, representation, semantics, indexing and storage, image similarity-distance measurement and retrieval making CBIR system development a challenge. Since medical images are large in size running to megabits of data they are compressed to reduce their size for storage and transmission. This paper investigates medical image retrieval problem for compressed images. An improved image classification algorithm for CBIR is proposed. In the proposed method, RAW images are compressed using Haar wavelet. Features are extracted using Gabor filter and Sobel edge detector. The extracted features are classified using Partial Recurrent Neural Network (PRNN). Since training parameters in Neural Network are NP hard, a hybrid Particle Swarm Optimization (PSO) – Cuckoo Search algorithm (CS) is proposed to optimize the learning rate of the neural network.
Fluid Compressibility Effects on the Dynamic Response of Hydrostatic Journal Bearings
Sanandres, Luis A.
1991-01-01
A theoretical analysis for the dynamic performance characteristics of laminar flow, capillar/orifice compensated hydrostatic journal bearings is presented. The analysis considers in detail the effect of fluid compressibility in the bearing recesses. At high frequency excitations beyond a break frequency, the bearing hydrostatic stiffness increases sharply and it is accompanied by a rapid decrease in direct damping. Also, the potential of pneumatic hammer instability (negative damping) at low frequencies is likely to occur in hydrostatic bearing applications handling highly compressible fluids. Useful design criteria to avoid undesirable dynamic operating conditions at low and high frequencies are determined. The effect of fluid recess compressibility is brought into perspective, and found to be of utmost importance on the entire frequency spectrum response and stability characteristics of hydrostatic/hybrid journal bearings.
Shock compression response of poly(4-methyl-1-pentene) plastic to 985 GPa
Root, Seth, E-mail: sroot@sandia.gov; Mattsson, Thomas R.; Cochrane, Kyle; Lemke, Raymond W. [Sandia National Laboratories, Albuquerque, New Mexico 87125 (United States); Knudson, Marcus D. [Sandia National Laboratories, Albuquerque, New Mexico 87125 (United States); Institute for Shock Physics and Department of Physics, Washington State University, Pullman, Washington 99164 (United States)
2015-11-28
Poly(4-methyl-1-pentene) plastic (PMP) is a hydrocarbon polymer with potential applications to inertial confinement fusion experiments and as a Hugoniot impedance matching standard for equation of state experiments. Using Sandia's Z-machine, we performed a series of flyer plate experiments to measure the principal Hugoniot and reshock states of PMP up to 985 GPa. The principal Hugoniot measurements validate density functional theory (DFT) calculations along the Hugoniot. The DFT calculations are further analyzed using a bond tracking method to understand the dissociation pathway under shock compression. Complete dissociation occurs at a compression factor similar to other sp3-hybridized, C-C bonded systems, which suggests a limiting compression for C-C bonds. The combined experimental and DFT results provide a solid basis for constructing an equation of state model for PMP.
Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H
2016-08-01
Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.
Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun
2016-01-01
Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...
Algorithmic height compression of unordered trees.
Ben-Naoum, Farah; Godin, Christophe
2016-01-21
By nature, tree structures frequently present similarities between their sub-parts. Making use of this redundancy, different types of tree compression techniques have been designed in the literature to reduce the complexity of tree structures. A popular and efficient way to compress a tree consists of merging its isomorphic subtrees, which produces a directed acyclic graph (DAG) equivalent to the original tree. An important property of this method is that the compressed structure (i.e. the DAG) has the same height as the original tree, thus limiting partially the possibility of compression. In this paper we address the problem of further compressing this DAG in height. The difficulty is that compression must be carried out on substructures that are not exactly isomorphic as they are strictly nested within each-other. We thus introduced a notion of quasi-isomorphism between subtrees that makes it possible to define similar patterns along any given path in a tree. We then proposed an algorithm to detect these patterns and to merge them, thus leading to compressed structures corresponding to DAGs augmented with return edges. In this way, redundant information is removed from the original tree in both width and height, thus achieving minimal structural compression. The complete compression algorithm is then illustrated on the compression of various plant-like structures.
He, Song
2017-04-01
Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is
Instability of ties in compression
Buch-Hansen, Thomas Cornelius
2013-01-01
Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...
Ab initio compressive phase retrieval
Marchesini, S
2008-01-01
Any object on earth has two fundamental properties: it is finite, and it is made of atoms. Structural information about an object can be obtained from diffraction amplitude measurements that account for either one of these traits. Nyquist-sampling of the Fourier amplitudes is sufficient to image single particles of finite size at any resolution. Atomic resolution data is routinely used to image molecules replicated in a crystal structure. Here we report an algorithm that requires neither information, but uses the fact that an image of a natural object is compressible. Intended applications include tomographic diffractive imaging, crystallography, powder diffraction, small angle x-ray scattering and random Fourier amplitude measurements.
Lossless Compression of Digital Images
Martins, Bo
Presently, tree coders are the best bi-level image coders. The currentISO standard, JBIG, is a good example.By organising code length calculations properly a vast number of possible models (trees) can be investigated within reasonable time prior to generating code.A number of general-purpose coders...... version that is substantially faster than its precursorsand brings it close to the multi-pass coders in compression performance.Handprinted characters are of unequal complexity; recent work by Singer and Tishby demonstrates that utilizing the physiological process of writing one can synthesize cursive...
Antiproton compression and radial measurements
Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y
2008-01-01
Control of the radial proﬁle of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial proﬁle, and its relation to that of the electron plasma. We also measure the outer radial proﬁle by ejecting antiprotons to the trap wall using an octupole magnet.
Lossless Compression of Broadcast Video
Martins, Bo; Eriksen, N.; Faber, E.
1998-01-01
complexity, difficult but natural material is compressed up to 20\\% better than with coding using lossless JPEG-LS. More complex schemes lower the bit rate even further. A real-time implementation of JPEG-LS may be carried out in a DSP environment or a FPGA environment. Conservative analysis supported...... with actual measurements on a DSP suggests that a real-time implementation may be carried out using about 5 DSPs. An FPGA based solution is estimated to demand 4 or 6 FPGAs (each 40.000 gate equivalent)...
Image Quality Meter Using Compression
Muhammad Ibrar-Ul-Haque
2016-01-01
Full Text Available This paper proposed a new technique to compressed image blockiness/blurriness in frequency domain through edge detection method by applying Fourier transform. In image processing, boundaries are characterized by edges and thus, edges are the problems of fundamental importance. The edges have to be identified and computed thoroughly in order to retrieve the complete illustration of the image. Our novel edge detection scheme for blockiness and blurriness shows improvement of 60 and 100 blocks for high frequency components respectively than any other detection technique.
Photovoltaic driven vapor compression cycles
Anand, D. K.
Since the vast majority of heat pumps, air conditioning and refrigeration equipment employs the vapor compression cycle (VCC), the use of renewable energy represents a significant opportunity. As discussed in this report, it is clear that the use of photovoltaics (PV) to drive the VCC has more potential than any other active solar cooling approach. This potential exists due to improvements in not only the PV cells but VCC machinery and control algorithms. It is estimated that the combined improvements will result in reducing the PV cell requirements by as much as one half.
Compression des fichiers son de type wave.
BAKLI, Meriem
2014-01-01
Ce travail de projet de fin d’étude s’intéresse à une étude comparative sur la compression d’un fichier son. La compression est l'action utilisée pour réduire la taille physique d'un bloc d'information.. Il existe plusieurs algorithmes pour la compression comme HUFFMAN, …etc. Nous avons fait la compression d’un fichier son de format WAVE non compressé à un fichier MP3 compressé avec différent format de codage, différent frame et quelque soit le fichier mono où stéréo. A partir ...
Direct numerical simulation of compressible isotropic turbulence
LI; Xinliang(李新亮); FU; Dexun(傅德薰); MAYanwen(马延文)
2002-01-01
Direct numerical simulation (DNS) of decaying compressible isotropic turbulence at tur-bulence Mach numbers of Mt = 0.2-0.7 and Taylor Reynolds numbers of 72 and 153 is per-formed by using the 7th order upwind-biased difference and 8th order center difference schemes.Results show that proper upwind-biased difference schemes can release the limit of "start-up"problem to Mach numbers.Compressibility effects on the statistics of turbulent flow as well as the mechanics of shockletsin compressible turbulence are also studied, and the conclusion is drawn that high Mach numberleads to more dissipation. Scaling laws in compressible turbulence are also analyzed. Evidence isobtained that scaling laws and extended self similarity (ESS) hold in the compressible turbulentflow in spite of the presence of shocklets, and compressibility has little effect on scaling exponents.
Accelerating Lossless Data Compression with GPUs
Cloud, R L; Ward, H L; Skjellum, A; Bangalore, P
2011-01-01
Huffman compression is a statistical, lossless, data compression algorithm that compresses data by assigning variable length codes to symbols, with the more frequently appearing symbols given shorter codes than the less. This work is a modification of the Huffman algorithm which permits uncompressed data to be decomposed into indepen- dently compressible and decompressible blocks, allowing for concurrent compression and decompression on multiple processors. We create implementations of this modified algorithm on a current NVIDIA GPU using the CUDA API as well as on a current Intel chip and the performance results are compared, showing favorable GPU performance for nearly all tests. Lastly, we discuss the necessity for high performance data compression in today's supercomputing ecosystem.
Image Compression Using Harmony Search Algorithm
Ryan Rey M. Daga
2012-09-01
Full Text Available Image compression techniques are important and useful in data storage and image transmission through the Internet. These techniques eliminate redundant information in an image which minimizes the physical space requirement of the image. Numerous types of image compression algorithms have been developed but the resulting image is still less than the optimal. The Harmony search algorithm (HSA, a meta-heuristic optimization algorithm inspired by the music improvisation process of musicians, was applied as the underlying algorithm for image compression. Experiment results show that it is feasible to use the harmony search algorithm as an algorithm for image compression. The HSA-based image compression technique was able to compress colored and grayscale images with minimal visual information loss.
Industrial Compressed Air System Energy Efficiency Guidebook.
United States. Bonneville Power Administration.
1993-12-01
Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.
LDPC Codes for Compressed Sensing
Dimakis, Alexandros G; Vontobel, Pascal O
2010-01-01
We present a mathematical connection between channel coding and compressed sensing. In particular, we link, on the one hand, \\emph{channel coding linear programming decoding (CC-LPD)}, which is a well-known relaxation of maximum-likelihood channel decoding for binary linear codes, and, on the other hand, \\emph{compressed sensing linear programming decoding (CS-LPD)}, also known as basis pursuit, which is a widely used linear programming relaxation for the problem of finding the sparsest solution of an under-determined system of linear equations. More specifically, we establish a tight connection between CS-LPD based on a zero-one measurement matrix over the reals and CC-LPD of the binary linear channel code that is obtained by viewing this measurement matrix as a binary parity-check matrix. This connection allows the translation of performance guarantees from one setup to the other. The main message of this paper is that parity-check matrices of "good" channel codes can be used as provably "good" measurement ...
Hemifacial spasm and neurovascular compression.
Lu, Alex Y; Yeung, Jacky T; Gerrard, Jason L; Michaelides, Elias M; Sekula, Raymond F; Bulsara, Ketan R
2014-01-01
Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve.
Dual compression is not an uncommon type of iliac vein compression syndrome.
Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu
2017-03-13
Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.
Computational and experimental study of air hybrid engine concepts
Lee, Cho-Yu
2011-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The air hybrid engine absorbs the vehicle kinetic energy during braking, stores it in an air tank in the form of compressed air, and reuses it to start the engine and to propel a vehicle during cruising and acceleration. Capturing, storing and reusing this braking energy to achieve stop-start operation and to give additional power can therefore improve fuel economy, particularly in cities and ...
Adaptive hybrid subband image coding with DWT, DCT, and modified DPCM
Kim, Tae W.; Choe, Howard C.; Griswold, Norman C.
1997-04-01
Image coding based on subband decomposition with DPCM and PCM has received much attention in the areas of image compression research and industry. In this paper we present a new adaptive image subband coding with discrete wavelet transform, discrete cosine transform, and a modified DPCM. The main contribution of this work is the development of a simple, yet effective image compression and transmission algorithm. An important feature of this algorithm is the hybrid modified DPCM coding scheme which produces both simple, but significant, image compression and transmission coding.
Efficiency of Compressed Air Energy Storage
Elmegaard, Brian; Brix, Wiebke
2011-01-01
The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making...
Technique for chest compressions in adult CPR
Rajab Taufiek K
2011-12-01
Full Text Available Abstract Chest compressions have saved the lives of countless patients in cardiac arrest as they generate a small but critical amount of blood flow to the heart and brain. This is achieved by direct cardiac massage as well as a thoracic pump mechanism. In order to optimize blood flow excellent chest compression technique is critical. Thus, the quality of the delivered chest compressions is a pivotal determinant of successful resuscitation. If a patient is found unresponsive without a definite pulse or normal breathing then the responder should assume that this patient is in cardiac arrest, activate the emergency response system and immediately start chest compressions. Contra-indications to starting chest compressions include a valid Do Not Attempt Resuscitation Order. Optimal technique for adult chest compressions includes positioning the patient supine, and pushing hard and fast over the center of the chest with the outstretched arms perpendicular to the patient's chest. The rate should be at least 100 compressions per minute and any interruptions should be minimized to achieve a minimum of 60 actually delivered compressions per minute. Aggressive rotation of compressors prevents decline of chest compression quality due to fatigue. Chest compressions are terminated following return of spontaneous circulation. Unconscious patients with normal breathing are placed in the recovery position. If there is no return of spontaneous circulation, then the decision to terminate chest compressions is based on the clinical judgment that the patient's cardiac arrest is unresponsive to treatment. Finally, it is important that family and patients' loved ones who witness chest compressions be treated with consideration and sensitivity.
Compression Techniques for Improved Algorithm Computational Performance
Zalameda, Joseph N.; Howell, Patricia A.; Winfree, William P.
2005-01-01
Analysis of thermal data requires the processing of large amounts of temporal image data. The processing of the data for quantitative information can be time intensive especially out in the field where large areas are inspected resulting in numerous data sets. By applying a temporal compression technique, improved algorithm performance can be obtained. In this study, analysis techniques are applied to compressed and non-compressed thermal data. A comparison is made based on computational speed and defect signal to noise.
Wavelet transform approach to video compression
Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay
1995-04-01
In this research, we propose a video compression scheme that uses the boundary-control vectors to represent the motion field and the embedded zerotree wavelet (EZW) to compress the displacement frame difference. When compared to the DCT-based MPEG, the proposed new scheme achieves a better compression performance in terms of the MSE (mean square error) value and visual perception for the same given bit rate.
Quantum Data Compression of a Qubit Ensemble
Rozema, Lee A.; Mahler, Dylan H.; Hayat, Alex; Turner, Peter S.; Steinberg, Aephraim M.
2014-01-01
Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compre...
Image Processing by Compression: An Overview
2012-01-01
International audience; This article aims to present the various applications of data compression in image processing. Since some time ago, several research groups have been developing methods based on different data compression techniques to classify, segment, filter and detect digital images fakery. It is necessary to analyze the relationship between different methods and put them into a framework to better understand and better exploit the possibilities that compression provides us respect...
New Theory and Algorithms for Compressive Sensing
2009-03-06
are compressed by a factor of 10 or more when expressed in terms of their largest Fourier or wavelet coefficients. The usual approach to acquiring a...information conversion 2.2.1 Compressive sensing background Compressive Sensing (CS) provides a framework for acquisition of an N × 1 discrete -time signal...1) This optimization problem, also known as Basis Pursuit with Denoising (BPDN) [10] can be solved with tradi- tional convex programming techniques
Recent progress in the development of pulse compression gratings
Hocquet S.
2013-11-01
Full Text Available The PETAL facility uses chirped pulse amplification (CPA technique. This system needs large pulse compression gratings that request damage threshold better than 4 J/cm2 in normal beam at 1.053 μm for 500 fs pulses. In this paper, we will show recent grating designs with either multilayer dielectrics or hybrid metal-dielectric structures. We have shown in previous works that damage threshold is driven by the enhancement of the near electric field inside the pillars of the grating. This was evidenced from a macroscopic point of view by means of laser damage testing. We will show that damage morphology during damage initiation at the scale of the grating groove is also consistent with this electric field dependence.
The hybrid two stage anticlockwise cycle for ecological energy conversion
Cyklis Piotr
2016-01-01
Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.
Comparing biological networks via graph compression
Hayashida Morihiro
2010-09-01
Full Text Available Abstract Background Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges. Results This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks. Conclusions Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.
Stability of compressible reacting mixing layer
Shin, D. S.; Ferziger, J. H.
1991-01-01
Linear instability of compressible reacting mixing layers is analyzed with emphasis on the effects of heat release and compressibility. Laminar solutions of the compressible boundary-layer equations are used as the base flows. The parameters of this study are the adiabatic flame temperature, the Mach number of the upper stream, frequency, wavenumber, and the direction of propagation of the disturbance wave. Stability characteristics of the flow are presented. Three groups of unstable modes are found when the Mach number and/or heat release are large. Finally, it is shown that the unstable modes are two-dimensional for large heat release even in highly compressible flow.
The applicability of the wind compression model
Cariková, Zuzana
2014-01-01
Compression of the stellar winds from rapidly rotating hot stars is described by the wind compression model. However, it was also shown that rapid rotation leads to rotational distortion of the stellar surface, resulting in the appearance of non-radial forces acting against the wind compression. In this note we justify the wind compression model for moderately rotating white dwarfs and slowly rotating giants. The former could be conducive to understanding density/ionization structure of the mass outflow from symbiotic stars and novae, while the latter can represent an effective mass-transfer mode in the wide interacting binaries.
Compression Properties of Polyester Needlepunched Fabric
Sanjoy Debnath, Ph.D.
2009-12-01
Full Text Available In the present paper, a study of the effects of fabricweight, fiber cross-sectional shapes (round, hollowand trilobal and presence of reinforcing materialon the compression properties (initial thickness,percentage compression, percentage thickness lossand percentage compression resilience of polyesterneedle punched industrial nonwoven fabrics ispresented. It was found that for fabrics with noreinforcing material, the initial thickness,compression, and thickness loss were higher thanfabrics with reinforcing material, irrespectiveoffiber cross-section. Compression resilience datashowed the reverse trend. Initial thickness fortrilobal cross-sectional fabric sample was highestfollowed by round and hollow cross-sectionedpolyester needle punched fabrics. The polyesterfabric made from hollow cross-sectioned fibersshowed the least percentage compression at everylevel of fabric weights. The trilobal cross-sectionedpolyester fabric sample showed higher thicknessloss followed by round and hollow cross-sectionedpolyester fabric samples respectively. The hollowcross-sectioned polyester fabric samples showedmaximum compression resilience followed byround and trilobal cross-sectioned polyestersamples irrespective of fabric weights. The initialthickness increases, but percentage compression,thickness loss and compression resilience decreaseswith the increase in fabric weight irrespective offiber cross-sectional shapes.
Spinal cord compression due to ethmoid adenocarcinoma.
Johns, D R; Sweriduk, S T
1987-10-15
Adenocarcinoma of the ethmoid sinus is a rare tumor which has been epidemiologically linked to woodworking in the furniture industry. It has a low propensity to metastasize and has not been previously reported to cause spinal cord compression. A symptomatic epidural spinal cord compression was confirmed on magnetic resonance imaging (MRI) scan in a former furniture worker with widely disseminated metastases. The clinical features of ethmoid sinus adenocarcinoma and neoplastic spinal cord compression, and the comparative value of MRI scanning in the neuroradiologic diagnosis of spinal cord compression are reviewed.
Efficient compression of molecular dynamics trajectory files.
Marais, Patrick; Kenwood, Julian; Smith, Keegan Carruthers; Kuttel, Michelle M; Gain, James
2012-10-15
We investigate whether specific properties of molecular dynamics trajectory files can be exploited to achieve effective file compression. We explore two classes of lossy, quantized compression scheme: "interframe" predictors, which exploit temporal coherence between successive frames in a simulation, and more complex "intraframe" schemes, which compress each frame independently. Our interframe predictors are fast, memory-efficient and well suited to on-the-fly compression of massive simulation data sets, and significantly outperform the benchmark BZip2 application. Our schemes are configurable: atomic positional accuracy can be sacrificed to achieve greater compression. For high fidelity compression, our linear interframe predictor gives the best results at very little computational cost: at moderate levels of approximation (12-bit quantization, maximum error ≈ 10(-2) Å), we can compress a 1-2 fs trajectory file to 5-8% of its original size. For 200 fs time steps-typically used in fine grained water diffusion experiments-we can compress files to ~25% of their input size, still substantially better than BZip2. While compression performance degrades with high levels of quantization, the simulation error is typically much greater than the associated approximation error in such cases.
Memory hierarchy using row-based compression
Loh, Gabriel H.; O'Connor, James M.
2016-10-25
A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.
Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;
2014-01-01
Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....
Comparative compressibility of hydrous wadsleyite
Chang, Y.; Jacobsen, S. D.; Thomas, S.; Bina, C. R.; Smyth, J. R.; Frost, D. J.; Hauri, E. H.; Meng, Y.; Dera, P. K.
2010-12-01
Determining the effects of hydration on the density and elastic properties of wadsleyite, β-Mg2SiO4, is critical to constraining Earth’s global geochemical water cycle. Whereas previous studies of the bulk modulus (KT) have studied either hydrous Mg-wadsleyite, or anhydrous Fe-bearing wadsleyite, the combined effects of hydration and iron are under investigation. Also, whereas KT from compressibility studies is relatively well constrained by equation of state fitting to P-V data, the pressure derivative of the bulk modulus (K’) is usually not well constrained either because of poor data resolution, uncertainty in pressure calibrations, or narrow pressure ranges of previous single-crystal studies. Here we report the comparative compressibility of dry versus hydrous wadsleyite with Fo90 composition containing 1.9(2) wt% H2O, nearly the maximum water storage capacity of this phase. The composition was characterized by EMPA and nanoSIMS. The experiments were carried out using high-pressure, single-crystal diffraction up to 30 GPa at HPCAT, Advanced Photon Source. By loading three crystals each of hydrous and anhydrous wadsleyite together in the same diamond-anvil cell, we achieve good hkl coverage and eliminate the pressure scale as a variable in comparing the relative value of K’ between the dry and hydrous samples. We used MgO as an internal diffraction standard, in addition to recording ruby fluorescence pressures. By using neon as a pressure medium and about 1 GPa pressure steps up to 30 GPa, we obtain high-quality diffraction data for constraining the effect of hydration on the density and K’ of hydrous wadsleyite. Due to hydration, the initial volume of hydrous Fo90 wadsleyite is larger than anhydrous Fo90 wadsleyite, however the higher compressibility of hydrous wadsleyite leads to a volume crossover at 6 GPa. Hydration to 2 wt% H2O reduces the bulk modulus of Fo90 wadsleyite from 170(2) to 157(2) GPa, or about 7.6% reduction. In contrast to previous
Blind compressive sensing dynamic MRI.
Lingala, Sajan Goud; Jacob, Mathews
2013-06-01
We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the nonorthogonal nature of the dictionary basis functions. Since the number of degrees-of-freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting l1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler subproblems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the l1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the l0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding. Our
Magnetic Flux Compression in Plasmas
Velikovich, A. L.
2012-10-01
Magnetic flux compression (MFC) as a method for producing ultra-high pulsed magnetic fields had been originated in the 1950s by Sakharov et al. at Arzamas in the USSR (now VNIIEF, Russia) and by Fowler et al. at Los Alamos in the US. The highest magnetic field produced by explosively driven MFC generator, 28 MG, was reported by Boyko et al. of VNIIEF. The idea of using MFC to increase the magnetic field in a magnetically confined plasma to 3-10 MG, relaxing the strict requirements on the plasma density and Lawson time, gave rise to the research area known as MTF in the US and MAGO in Russia. To make a difference in ICF, a magnetic field of ˜100 MG should be generated via MFC by a plasma liner as a part of the capsule compression scenario on a laser or pulsed power facility. This approach was first suggested in mid-1980s by Liberman and Velikovich in the USSR and Felber in the US. It has not been obvious from the start that it could work at all, given that so many mechanisms exist for anomalously fast penetration of magnetic field through plasma. And yet, many experiments stimulated by this proposal since 1986, mostly using pulsed-power drivers, demonstrated reasonably good flux compression up to ˜42 MG, although diagnostics of magnetic fields of such magnitude in HED plasmas is still problematic. The new interest of MFC in plasmas emerged with the advancement of new drivers, diagnostic methods and simulation tools. Experiments on MFC in a deuterium plasma filling a cylindrical plastic liner imploded by OMEGA laser beam led by Knauer, Betti et al. at LLE produced peak fields of 36 MG. The novel MagLIF approach to low-cost, high-efficiency ICF pursued by Herrmann, Slutz, Vesey et al. at Sandia involves pulsed-power-driven MFC to a peak field of ˜130 MG in a DT plasma. A review of the progress, current status and future prospects of MFC in plasmas is presented.
BSA Hybrid Synthesized Polymer
Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO
2006-01-01
Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.
Ronkko, Mauno; Ravn, Anders P.
1997-01-01
a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....
V. Dvadnenko
2016-06-01
Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.
Nanoscale Organic Hybrid Electrolytes
Nugent, Jennifer L.
2010-08-20
Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid radiator cooling system
France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.
2016-03-15
A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.
Hybrid Unifying Variable Supernetwork Model
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the
Large Unifying Hybrid Supernetwork Model
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.
Sankaran Venugopal; K K Rajesh; V Ramanujachari
2011-01-01
With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...
National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...
A New Approach for Fingerprint Image Compression
Mazieres, Bertrand
1997-12-01
The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefacts which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.
Genetic disorders producing compressive radiculopathy.
Corey, Joseph M
2006-11-01
Back pain is a frequent complaint seen in neurological practice. In evaluating back pain, neurologists are asked to evaluate patients for radiculopathy, determine whether they may benefit from surgery, and help guide management. Although disc herniation is the most common etiology of compressive radiculopathy, there are many other causes, including genetic disorders. This article is a discussion of genetic disorders that cause or contribute to radiculopathies. These genetic disorders include neurofibromatosis, Paget's disease of bone, and ankylosing spondylitis. Numerous genetic disorders can also lead to deformities of the spine, including spinal muscular atrophy, Friedreich's ataxia, Charcot-Marie-Tooth disease, familial dysautonomia, idiopathic torsional dystonia, Marfan's syndrome, and Ehlers-Danlos syndrome. However, the extent of radiculopathy caused by spine deformities is essentially absent from the literature. Finally, recent investigation into the heritability of disc degeneration and lumbar disc herniation suggests a significant genetic component in the etiology of lumbar disc disease.
Photon counting compressive depth mapping
Howland, Gregory A; Ware, Matthew R; Howell, John C
2013-01-01
We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 x 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 x 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.
Compressed Encoding for Rank Modulation
Gad, Eyal En; Jiang,; Bruck, Jehoshua
2011-01-01
Rank modulation has been recently proposed as a scheme for storing information in flash memories. While rank modulation has advantages in improving write speed and endurance, the current encoding approach is based on the "push to the top" operation that is not efficient in the general case. We propose a new encoding procedure where a cell level is raised to be higher than the minimal necessary subset - instead of all - of the other cell levels. This new procedure leads to a significantly more compressed (lower charge levels) encoding. We derive an upper bound for a family of codes that utilize the proposed encoding procedure, and consider code constructions that achieve that bound for several special cases.
Construction and compression of Dwarf
XIANG Long-gang; FENG Yu-cai; GUI Hao
2005-01-01
There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. Ifa partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more compressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of "ALL" cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.
Fragment separator momentum compression schemes
Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)
2011-07-21
We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.
Fragment separator momentum compression schemes.
Bandura, L.; Erdelyi, B.; Hausmann, M.; Kubo, T.; Nolen, J.; Portillo, M.; Sherrill, B.M. (Physics); (MSU); (Northern Illinois Univ.); (RIKEN)
2011-07-21
We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.
Isotropic polarization of compressible flows
Zhu, Jian-Zhou
2015-01-01
The helical absolute equilibrium of a compressible adiabatic flow presents not only the polarization between the two purely helical modes of opposite chiralities but also that between the vortical and acoustic modes, deviating from the equipartition predicted by {\\sc Kraichnan, R. H.} [1955 The Journal of the Acoustical Society of America {\\bf 27}, 438--441.] Due to the existence of the acoustic mode, even if all Fourier modes of one chiral sector in the sharpened Helmholtz decomposition [{\\sc Moses, H. E.} 1971 SIAM ~(Soc. Ind. Appl. Math.) J. Appl. Math. {\\bf 21}, 114--130] are thoroughly truncated, negative temperature and the corresponding large-scale concentration of vortical modes are not allowed, unlike the incompressible case.
Compression molding of aerogel microspheres
Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)
1998-03-24
An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.
Compression molding of aerogel microspheres
Pekala, R.W.; Hrubesh, L.W.
1998-03-24
An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.
Nonrepetitive Colouring via Entropy Compression
Dujmović, Vida; Wood, David R
2011-01-01
A vertex colouring of a graph is \\emph{nonrepetitive} if there is no path whose first half receives the same sequence of colours as the second half. A graph is nonrepetitively $k$-choosable if given lists of at least $k$ colours at each vertex, there is a nonrepetitive colouring such that each vertex is coloured from its own list. It is known that every graph with maximum degree $\\Delta$ is $c\\Delta^2$-choosable, for some constant $c$. We prove this result with $c=4$. We then prove that every subdivision of a graph with sufficiently many division vertices per edge is nonrepetitively 6-choosable. The proofs of both these results are based on the Moser-Tardos entropy-compression method, and a recent extension by Grytczuk, Kozik and Micek for the nonrepetitive choosability of paths. Finally, we prove that every graph with pathwidth $k$ is nonrepetitively ($2k^2+6k+1$)-colourable.
MIMO Radar Using Compressive Sampling
Yu, Yao; Poor, H Vincent
2009-01-01
A MIMO radar system is proposed for obtaining angle and Doppler information on potential targets. Transmitters and receivers are nodes of a small scale wireless network and are assumed to be randomly scattered on a disk. The transmit nodes transmit uncorrelated waveforms. Each receive node applies compressive sampling to the received signal to obtain a small number of samples, which the node subsequently forwards to a fusion center. Assuming that the targets are sparsely located in the angle- Doppler space, based on the samples forwarded by the receive nodes the fusion center formulates an l1-optimization problem, the solution of which yields target angle and Doppler information. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than required by other approaches. This implies power savings during the communication phase between the receive nodes and the fusion center. Performance in the presence of a jammer is analyzed for the case of slowly moving targets. Issues rel...
Compressed sensing traction force microscopy.
Brask, Jonatan Bohr; Singla-Buxarrais, Guillem; Uroz, Marina; Vincent, Romaric; Trepat, Xavier
2015-10-01
Adherent cells exert traction forces on their substrate, and these forces play important roles in biological functions such as mechanosensing, cell differentiation and cancer invasion. The method of choice to assess these active forces is traction force microscopy (TFM). Despite recent advances, TFM remains highly sensitive to measurement noise and exhibits limited spatial resolution. To improve the resolution and noise robustness of TFM, here we adapt techniques from compressed sensing (CS) to the reconstruction of the traction field from the substrate displacement field. CS enables the recovery of sparse signals at higher resolution from lower resolution data. Focal adhesions (FAs) of adherent cells are spatially sparse implying that traction fields are also sparse. Here we show, by simulation and by experiment, that the CS approach enables circumventing the Nyquist-Shannon sampling theorem to faithfully reconstruct the traction field at a higher resolution than that of the displacement field. This allows reaching state-of-the-art resolution using only a medium magnification objective. We also find that CS improves reconstruction quality in the presence of noise. A great scientific advance of the past decade is the recognition that physical forces determine an increasing list of biological processes. Traction force microscopy which measures the forces that cells exert on their surroundings has seen significant recent improvements, however the technique remains sensitive to measurement noise and severely limited in spatial resolution. We exploit the fact that the force fields are sparse to boost the spatial resolution and noise robustness by applying ideas from compressed sensing. The novel method allows high resolution on a larger field of view. This may in turn allow better understanding of the cell forces at the multicellular level, which are known to be important in wound healing and cancer invasion. Copyright © 2015 Acta Materialia Inc. Published by Elsevier
Survey of data compression techniques
Gryder, R.; Hake, K.
1991-09-01
PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM's design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.
Survey of data compression techniques
Gryder, R.; Hake, K.
1991-09-01
PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM`s design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.
From hybrid swarms to swarms of hybrids
Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber
2015-01-01
Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.
Phase Imaging: A Compressive Sensing Approach
Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.; Pohl, Darius; Nielsch, Kornelius; Rellinghaus, Bernd
2017-07-01
Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a high stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn
Experimental Study of Fractal Image Compression Algorithm
Chetan R. Dudhagara
2012-08-01
Full Text Available Image compression applications have been increasing in recent years. Fractal compression is a lossy compression method for digital images, based on fractals. The method is best suited for textures and natural images, relying on the fact that parts of an image often resemble other parts of the same image. In this paper, a study on fractal-based image compression and fixed-size partitioning will be made, analyzed for performance and compared with a standard frequency domain based image compression standard, JPEG. Sample images will be used to perform compression and decompression. Performance metrics such as compression ratio, compression time and decompression time will be measured in JPEG cases. Also the phenomenon of resolution/scale independence will be studied and described with examples. Fractal algorithms convert these parts into mathematical data called "fractal codes" which are used to recreate the encoded image. Fractal encoding is a mathematical process used to encode bitmaps containing a real-world image as a set of mathematical data that describes the fractal properties of the image. Fractal encoding relies on the fact that all natural, and most artificial, objects contain redundant information in the form of similar, repeating patterns called fractals.
Bioimpedance of soft tissue under compression.
Dodde, R E; Bull, J L; Shih, A J
2012-06-01
In this paper compression-dependent bioimpedance measurements of porcine spleen tissue are presented. Using a Cole-Cole model, nonlinear compositional changes in extracellular and intracellular makeup; related to a loss of fluid from the tissue, are identified during compression. Bioimpedance measurements were made using a custom tetrapolar probe and bioimpedance circuitry. As the tissue is increasingly compressed up to 50%, both intracellular and extracellular resistances increase while bulk membrane capacitance decreases. Increasing compression to 80% results in an increase in intracellular resistance and bulk membrane capacitance while extracellular resistance decreases. Tissues compressed incrementally to 80% show a decreased extracellular resistance of 32%, an increased intracellular resistance of 107%, and an increased bulk membrane capacitance of 64% compared to their uncompressed values. Intracellular resistance exhibits double asymptotic curves when plotted against the peak tissue pressure during compression, possibly indicating two distinct phases of mechanical change in the tissue during compression. Based on these findings, differing theories as to what is happening at a cellular level during high tissue compression are discussed, including the possibility of cell rupture and mass exudation of cellular material.
College Students' Preference for Compressed Speech Lectures.
Primrose, Robert A.
To test student reactions to compressed-speech lectures, tapes for a general education course in oral communication were compressed to 49 to 77 percent of original time. Students were permitted to check them out via a dial access retrieval system. Checkouts and use of tapes were compared with student grades at semester's end. No significant…
Triceps skinfold compressibility in hospitalized patients
Sousa, Ana Sofia; Pichel, Fernando; Amaral, Teresa F
2017-06-05
To explore triceps skinfold (TSF) compressibility and its associated factors among hospitalized patients. A cross-sectional study was conducted among hospitalized adult patients. Evolution of tissue compressibility during two seconds was registered and 120 TSF values were obtained using a digital calliper. Compressibility was determined according to the difference between the initial value and the final value (TSF difference) and according to time (τ). Multivariable linear regression models were performed in order to identify factors associated with TSF compressibility. One hundred and six patients (30.2% aged ≥ 65 years) composed the study sample. Compressibility based on TSF difference was independently associated with TSF thickness (regression coefficient, 95% confidence interval [CI] = 0.38, 0.01-0.05, p = 0.002) and nutritional risk (regression coefficient, 95% CI = 0.23, 0.12-1.23, p = 0.018), but time of compressibility (τ) was not significantly associated with any of the studied variables. Among a sample of hospitalized patients, undernutrition risk and higher TSF thickness were factors independently associated with higher compressibility assessed by the difference between the initial and final TSF value. Time of compressibility (τ) was not affected by any of the studied factors.
Hardware compression using common portions of data
Chang, Jichuan; Viswanathan, Krishnamurthy
2015-03-24
Methods and devices are provided for data compression. Data compression can include receiving a plurality of data chunks, sampling at least some of the plurality of data chunks extracting a common portion from a number of the plurality of data chunks based on the sampling, and storing a remainder of the plurality of data chunks in memory.
Lossless Compression on MRI Images Using SWT.
Anusuya, V; Raghavan, V Srinivasa; Kavitha, G
2014-10-01
Medical image compression is one of the growing research fields in biomedical applications. Most medical images need to be compressed using lossless compression as each pixel information is valuable. With the wide pervasiveness of medical imaging applications in health-care settings and the increased interest in telemedicine technologies, it has become essential to reduce both storage and transmission bandwidth requirements needed for archival and communication of related data, preferably by employing lossless compression methods. Furthermore, providing random access as well as resolution and quality scalability to the compressed data has become of great utility. Random access refers to the ability to decode any section of the compressed image without having to decode the entire data set. The system proposes to implement a lossless codec using an entropy coder. 3D medical images are decomposed into 2D slices and subjected to 2D-stationary wavelet transform (SWT). The decimated coefficients are compressed in parallel using embedded block coding with optimized truncation of the embedded bit stream. These bit streams are decoded and reconstructed using inverse SWT. Finally, the compression ratio (CR) is evaluated to prove the efficiency of the proposal. As an enhancement, the proposed system concentrates on minimizing the computation time by introducing parallel computing on the arithmetic coding stage as it deals with multiple subslices.
Efficiency of Compressed Air Energy Storage
Elmegaard, Brian; Brix, Wiebke
2011-01-01
The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines...
A singular limit for compressible rotating fluids
Feireisl, Eduard; Novotny, Antonin
2010-01-01
We consider a singular limit problem for the Navier-Stokes system of a rotating compressible fluid, where the Rossby and Mach numbers tend simultaneously to zero. The limit problem is identified as the 2-D Navier-Stokes system in the ``horizontal'' variables containing an extra term that accounts for compressibility in the original system.
Compression of Short Text on Embedded Systems
Rein, S.; Gühmann, C.; Fitzek, Frank
2006-01-01
The paper details a scheme for lossless compression of a short data series larger than 50 bytes. The method uses arithmetic coding and context modelling with a low-complexity data model. A data model that takes 32 kBytes of RAM already cuts the data size in half. The compression scheme just takes...
Integration of Wind Turbines with Compressed Air Energy Storage
Arsie, I.; Marano, V.; Rizzo, G.; Moran, M.
2009-08-01
Some of the major limitations of renewable energy sources are represented by their low power density and intermittent nature, largely depending upon local site and unpredictable weather conditions. These problems concur to increase the unit costs of wind power, so limiting their diffusion. By coupling storage systems with a wind farm, some of the major limitations of wind power, such as a low power density and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air Energy Storage (CAES) is analyzed, and the state of art on such systems is discussed. A Matlab/Simulink model of a hybrid power plant consisting of a wind farm coupled with CAES is then presented. The model has been successfully validated starting from the operating data of the McIntosh CAES Plant in Alabama. Time-series neural network-based wind speed forecasting are employed to determine the optimal daily operation strategy for the storage system. A detailed economic analysis has been carried out: investment and maintenance costs are estimated based on literature data, while operational costs and revenues are calculated according to energy market prices. As shown in the paper, the knowledge of the expected available energy is a key factor to optimize the management strategies of the proposed hybrid power plant, allowing to obtain environmental and economic benefits.
Solid iron compressed up to 560 GPa.
Ping, Y; Coppari, F; Hicks, D G; Yaakobi, B; Fratanduono, D E; Hamel, S; Eggert, J H; Rygg, J R; Smith, R F; Swift, D C; Braun, D G; Boehly, T R; Collins, G W
2013-08-09
Dynamic compression by multiple shocks is used to compress iron up to 560 GPa (5.6 Mbar), the highest solid-state pressure yet attained for iron in the laboratory. Extended x-ray absorption fine structure (EXAFS) spectroscopy offers simultaneous density, temperature, and local-structure measurements for the compressed iron. The data show that the close-packed structure of iron is stable up to 560 GPa, the temperature at peak compression is significantly higher than expected from pure compressive work, and the dynamic strength of iron is many times greater than the static strength based on lower pressure data. The results provide the first constraint on the melting line of iron above 400 GPa.
Quantum data compression of a qubit ensemble.
Rozema, Lee A; Mahler, Dylan H; Hayat, Alex; Turner, Peter S; Steinberg, Aephraim M
2014-10-17
Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.
Image compression algorithm using wavelet transform
Cadena, Luis; Cadena, Franklin; Simonov, Konstantin; Zotin, Alexander; Okhotnikov, Grigory
2016-09-01
Within the multi-resolution analysis, the study of the image compression algorithm using the Haar wavelet has been performed. We have studied the dependence of the image quality on the compression ratio. Also, the variation of the compression level of the studied image has been obtained. It is shown that the compression ratio in the range of 8-10 is optimal for environmental monitoring. Under these conditions the compression level is in the range of 1.7 - 4.2, depending on the type of images. It is shown that the algorithm used is more convenient and has more advantages than Winrar. The Haar wavelet algorithm has improved the method of signal and image processing.
A Novel Fractal Wavelet Image Compression Approach
SONG Chun-lin; FENG Rui; LIU Fu-qiang; CHEN Xi
2007-01-01
By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.
Video Coding Technique using MPEG Compression Standards
A. J. Falade
2013-06-01
Full Text Available Digital video compression technologies have become part of life, in the way visual information is created, communicated and consumed. Some application areas of video compression focused on the problem of optimizing storage space and transmission bandwidth (BW. The two dimensional discrete cosine transform (2-D DCT is an integral part of video and image compression, which is used in Moving Picture Expert Group (MPEG encoding standards. Thus, several video compression algorithms had been developed to reduce the data quantity and provide the acceptable quality standard. In the proposed study, the Matlab Simulink Model (MSM has been used for video coding/compression. The approach is more modern and reduces error resilience image distortion.
Adiabatic Liquid Piston Compressed Air Energy Storage
Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder
the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, an underground cavern is used as a pressure vessel for the storage of the compressed air. Both systems...... are in the range of 100 MW electrical power output with several hours of production stored as compressed air. In this range, enormous volumes are required, which make underground caverns the only economical way to design the pressure vessel. Both systems use axial turbine compressors to compress air when charging......), but no such units are in operation at present. The CAES system investigated in this project uses a different approach to avoid compression heat loss. The system uses a pre-compressed pressure vessel full of air. A liquid is pumped into the bottom of the vessel when charging and the same liquid is withdrawn through...
Mathematical transforms and image compression: A review
Satish K. Singh
2010-07-01
Full Text Available It is well known that images, often used in a variety of computer and other scientific and engineering applications, are difficult to store and transmit due to their sizes. One possible solution to overcome this problem is to use an efficient digital image compression technique where an image is viewed as a matrix and then the operations are performed on the matrix. All the contemporary digital image compression systems use various mathematical transforms for compression. The compression performance is closely related to the performance by these mathematical transforms in terms of energy compaction and spatial frequency isolation by exploiting inter-pixel redundancies present in the image data. Through this paper, a comprehensive literature survey has been carried out and the pros and cons of various transform-based image compression models have also been discussed.
Compressed Sensing with Rank Deficient Dictionaries
Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn
2012-01-01
In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C....../A) step in a GPS receiver. Simulations show that for this application the proposed choice of measurement matrix yields an increase in SNR performance of up to 5 − 10 dB, compared to the conventional choice of a fully random measurement matrix. Furthermore, the compressed sensing based C/A step is compared...
Adaptive Remote Sensing Texture Compression on GPU
Xiao-Xia Lu
2010-11-01
Full Text Available Considering the properties of remote sensing texture such as strong randomness and weak local correlation, a novel adaptive compression method based on vector quantizer is presented and implemented on GPU. Utilizing the property of Human Visual System (HVS, a new similarity measurement function is designed instead of using Euclid distance. Correlated threshold between blocks can be obtained adaptively according to the property of different images without artificial auxiliary. Furthermore, a self-adaptive threshold adjustment during the compression is designed to improve the reconstruct quality. Experiments show that the method can handle various resolution images adaptively. It can achieve satisfied compression rate and reconstruct quality at the same time. Index is coded to further increase the compression rate. The coding way is designed to guarantee accessing the index randomly too. Furthermore, the compression and decompression process is speed up with the usage of GPU, on account of their parallelism.
Compressed classification learning with Markov chain samples.
Cao, Feilong; Dai, Tenghui; Zhang, Yongquan; Tan, Yuanpeng
2014-02-01
In this article, we address the problem of compressed classification learning. A generalization bound of the support vector machines (SVMs) compressed classification algorithm with uniformly ergodic Markov chain samples is established. This bound indicates that the accuracy of the SVM classifier in the compressed domain is close to that of the best classifier in the data domain. In a sense, the fact that the compressed learning can avoid the curse of dimensionality in the learning process is shown. In addition, we show that compressed classification learning reduces the learning time at the price of decreasing the classification accuracy, but the decrement can be controlled. The numerical experiments further verify the results claimed in this article.
An efficient medical image compression scheme.
Li, Xiaofeng; Shen, Yi; Ma, Jiachen
2005-01-01
In this paper, a fast lossless compression scheme is presented for the medical image. This scheme consists of two stages. In the first stage, a Differential Pulse Code Modulation (DPCM) is used to decorrelate the raw image data, therefore increasing the compressibility of the medical image. In the second stage, an effective scheme based on the Huffman coding method is developed to encode the residual image. This newly proposed scheme could reduce the cost for the Huffman coding table while achieving high compression ratio. With this algorithm, a compression ratio higher than that of the lossless JPEG method for image can be obtained. At the same time, this method is quicker than the lossless JPEG2000. In other words, the newly proposed algorithm provides a good means for lossless medical image compression.
Temporal Resolution Enhancement in Compressed Video Sequences
Robert L. Stevenson
2001-01-01
Full Text Available Compressed video may possess a number of artifacts, both spatial and temporal. Spatial compression artifacts arise as a result of quantization of the transform-domain coefficients, and are often manifested as blocking and ringing artifacts. Temporal limitations in compressed video occur when the encoder, in an effort to reduce bandwidth, drops frames. Omitting frames decreases the reconstructed frame rate, which can cause motion to appear jerky and uneven. This paper discusses a method to increase the frame rate of video compressed with the DCT by inserting images between received frames of the sequence. The Bayesian formulation of the restoration prevents spatial compression artifacts in the received frames from propagating to the reconstructed frames.
Theoretical study on stability of hybrid bilayers
Silva, Thiago S.; de Lima Bernardo, Bertúlio; Azevedo, Sèrgio
2015-04-01
Motivated by the recent experimental realization of the hybrid nanostructure of graphene and boron nitride (h-BN) sheet, and studies of gap modulation by strain, we use first principles calculations based on density functional theory to investigate the effects of strain in hybrid bilayers composed of two monolayers of graphene with a nanodomain of {{B}3}{{N}3}. The calculations were made with two different approximations for the functional exchange-correlation, GGA and VDW-DF. We investigate the modification in the electronic structure and structural properties of various configurations of the hybrid bilayers. Among the configurations, those with Bernal stacking are found to be more stable when compared to the others. Studies of the compressive strain influence were made only in the structure that has been shown to be the most stable. We have found that the two approximations used in the calculations exhibit the same results for the electronic properties of all structures. The opening of the energy gap due to strain was possible in the calculations by using the GGA approximation, but the same does not happen in the calculations using the VDW-DF approximation. Our analysis shows that the VDW-DF approximation is better suited for studies involving surfaces.
Isostatic compression of buffer blocks. Middle scale
Ritola, J.; Pyy, E. [VTT Technical Research Centre of Finland, Espoo (Finland)
2012-01-15
Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately
Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)
2014-05-15
Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)
Hybrid intelligent engineering systems
Jain, L C; Adelaide, Australia University of
1997-01-01
This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.
Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars
contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial...
Collins, P.J.
2005-01-01
In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na
Olderog, Ernst-Rüdiger; Ravn, Anders Peter
2007-01-01
An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....
SONG Ruizhi; HU Tiegang; ZHOU Longbao; LIU Shenghua; LI Wei
2007-01-01
The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether.The results show that dimethyl ether (DME) HCCI engine can work stably and can realize zero nitrogen oxides (NOx)emission and smokeless combustion under the compression ratio of both 10.7 and 14.The combustion process has obvious two stage combustion characteristics at ε = 10.7(εrefers to compression ratio),and the combustion beginning point is decided by the compression temperature,which varies very little with the engine load;the combustion beginning point is closely related to the engine load (concentration of mixture) with the increase in the compression temperature,and it moves forward versus crank angle with the increase in the engine load at ε = 14;the combustion durations are shortened with the increase in the engine load under both compression ratios.
Mishnaevsky, Leon; Dai, Gaoming
2014-01-01
A computational study of the effect of microstructure of hybrid carbon/glass fiber composites on their strength is presented. Unit cells with hundreds of randomly located and misaligned fibers of various properties and arrangements are subject to tensile and compression loading, and the evolution...... of fiber damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanoreinforcement, load sharing rules on the strength and damage resistance of composites are studied. It was observed that hybrid composites under uniform displacement loading might have lower...... strength than pure composites, while the strength of hybrid composites under inform force loading increases steadily with increasing the volume content of carbon fibers....
Development of a hybrid scaffold and a bioreactor for cartilage regeneration
LEE Seung-Jae; LEE In Hwan; PARK Jeong Hun; GWAK So-Jung; RHIE Jong-Won; CHO Dong-Woo; KO Tae Jo; KIM Dong Sung
2009-01-01
We developed a hybrid scaffold and a bioreactor for cartilage regeneration. The hybrid scaffold was developed as combination of two components: a biodegradable framework and hydrogel-containing chondrocytes. We performed the MTT cell proliferation assay to compare the proliferation and viability of chondrocytes on three types of scaffolds: an alginate gel, the hybrid scaffold, and an alginate sponge. Cells were encapsulated in 2% agarose gel. The bioreactor consisted of a circulation system and a compression system. We performed dynamic cell culture on these agarose gels in the bioreactor for 3 days.
Moir, R.W.
1980-09-09
The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.
Hybrid propulsion technology program
1990-01-01
Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.
The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...
The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...
Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete
Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd
2014-04-01
Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%.
Moré, G.; Pesquer, L.; Blanes, I.; Serra-Sagristà, J.; Pons, X.
2012-12-01
delimiting coastline, avoiding the confusion between elevation and no-data values. Six (from March 2005 to May 2007) geometrically corrected Landsat-5 images on the path-row 197-031 have been used. The six optical bands and the NDVI for each date have been introduced in a powerful hybrid classification process. The training areas and the ground truth have been obtained from the Mapa de Cobertes del Sòl de Catalunya (v. 3), a land cover map created by photointerpretation of 0.5 m orthophotomaps acquired between 2005 and 2007 and covering all the extension of Catalonia. The legend has been reduced from 233 categories to 21. Preliminary results have shown that the effect on land cover classification of applying lossy compression to the DEM used in the radiometric correction is small (lower than 1%) even for compression ratios up to 200:1. Comparing classification performance after a compression of 5:1 and and a compression of 200:1 with both coding standards showed that: a) the percentage of correctly classified image was 73%; b) 20% was wrongly classified; c) 3.5% was wrongly classified at compression ratio 5:1; and d) also 3.5% was wrongly classified at compression ratio 200:1. These results are the first in the literature to analyze the effect of DEM lossy compressing when DEM are employed for radiometric correction.
Cascaded Soliton Compression of Energetic Femtosecond Pulses at 1030 nm
Bache, Morten; Zhou, Binbin
2012-01-01
We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved.......We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved....
Backpropagation Neural Network Implementation for Medical Image Compression
Kamil Dimililer
2013-01-01
Full Text Available Medical images require compression, before transmission or storage, due to constrained bandwidth and storage capacity. An ideal image compression system must yield high-quality compressed image with high compression ratio. In this paper, Haar wavelet transform and discrete cosine transform are considered and a neural network is trained to relate the X-ray image contents to their ideal compression method and their optimum compression ratio.
MAFCO: a compression tool for MAF files.
Luís M O Matos
Full Text Available In the last decade, the cost of genomic sequencing has been decreasing so much that researchers all over the world accumulate huge amounts of data for present and future use. These genomic data need to be efficiently stored, because storage cost is not decreasing as fast as the cost of sequencing. In order to overcome this problem, the most popular general-purpose compression tool, gzip, is usually used. However, these tools were not specifically designed to compress this kind of data, and often fall short when the intention is to reduce the data size as much as possible. There are several compression algorithms available, even for genomic data, but very few have been designed to deal with Whole Genome Alignments, containing alignments between entire genomes of several species. In this paper, we present a lossless compression tool, MAFCO, specifically designed to compress MAF (Multiple Alignment Format files. Compared to gzip, the proposed tool attains a compression gain from 34% to 57%, depending on the data set. When compared to a recent dedicated method, which is not compatible with some data sets, the compression gain of MAFCO is about 9%. Both source-code and binaries for several operating systems are freely available for non-commercial use at: http://bioinformatics.ua.pt/software/mafco.
Cloud Optimized Image Format and Compression
Becker, P.; Plesea, L.; Maurer, T.
2015-04-01
Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.
GPU Lossless Hyperspectral Data Compression System
Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.
2014-01-01
Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.
Segmentation-based CT image compression
Thammineni, Arunoday; Mukhopadhyay, Sudipta; Kamath, Vidya
2004-04-01
The existing image compression standards like JPEG and JPEG 2000, compress the whole image as a single frame. This makes the system simple but inefficient. The problem is acute for applications where lossless compression is mandatory viz. medical image compression. If the spatial characteristics of the image are considered, it can give rise to a more efficient coding scheme. For example, CT reconstructed images have uniform background outside the field of view (FOV). Even the portion within the FOV can be divided as anatomically relevant and irrelevant parts. They have distinctly different statistics. Hence coding them separately will result in more efficient compression. Segmentation is done based on thresholding and shape information is stored using 8-connected differential chain code. Simple 1-D DPCM is used as the prediction scheme. The experiments show that the 1st order entropies of images fall by more than 11% when each segment is coded separately. For simplicity and speed of decoding Huffman code is chosen for entropy coding. Segment based coding will have an overhead of one table per segment but the overhead is minimal. Lossless compression of image based on segmentation resulted in reduction of bit rate by 7%-9% compared to lossless compression of whole image as a single frame by the same prediction coder. Segmentation based scheme also has the advantage of natural ROI based progressive decoding. If it is allowed to delete the diagnostically irrelevant portions, the bit budget can go down as much as 40%. This concept can be extended to other modalities.
Lossless compression of VLSI layout image data.
Dai, Vito; Zakhor, Avideh
2006-09-01
We present a novel lossless compression algorithm called Context Copy Combinatorial Code (C4), which integrates the advantages of two very disparate compression techniques: context-based modeling and Lempel-Ziv (LZ) style copying. While the algorithm can be applied to many lossless compression applications, such as document image compression, our primary target application has been lossless compression of integrated circuit layout image data. These images contain a heterogeneous mix of data: dense repetitive data better suited to LZ-style coding, and less dense structured data, better suited to context-based encoding. As part of C4, we have developed a novel binary entropy coding technique called combinatorial coding which is simultaneously as efficient as arithmetic coding, and as fast as Huffman coding. Compression results show C4 outperforms JBIG, ZIP, BZIP2, and two-dimensional LZ, and achieves lossless compression ratios greater than 22 for binary layout image data, and greater than 14 for gray-pixel image data.
A NOVEL MULTIDICTIONARY BASED TEXT COMPRESSION
Y. Venkataramani
2012-01-01
Full Text Available The amount of digital contents grows at a faster speed as a result does the demand for communicate them. On the other hand, the amount of storage and bandwidth increases at a slower rate. Thus powerful and efficient compression methods are required. The repetition of words and phrases cause the reordered text much more compressible than the original text. On the whole system is fast and achieves close to the best result on the test files. In this study a novel fast dictionary based text compression technique MBRH (Multidictionary with burrows wheeler transforms, Run length coding and Huffman coding is proposed for the purpose of obtaining improved performance on various document sizes. MBRH algorithm comprises of two stages, the first stage is concerned with the conversion of input text into dictionary based compression .The second stage deals mainly with reduction of the redundancy in multidictionary based compression by using BWT, RLE and Huffman coding. Bib test files of input size of 111, 261 bytes achieves compression ratio of 0.192, bit rate of 1.538 and high speed using MBRH algorithm. The algorithm has attained a good compression ratio, reduction of bit rate and the increase in execution speed.
On the compressibility effects in mixing layers
Khlifi Hechmi
2016-01-01
Full Text Available Previous studies of compressible flows carried out in the past few years have shown that the pressure-strain is the main indicator of the structural compressibility effects. Undoubtedly, this terms plays a key role toward strongly changing magnitude of the turbulent Reynolds stress anisotropy. On the other hand, the incompressible models of the pressure-strain correlation have not correctly predicted compressible turbulence at high speed shear flow. Consequently, a correction of these models is needed for precise prediction of compressibility effects. In the present work, a compressibility correction of the widely used incompressible Launder Reece and Rodi model making their standard coefficients dependent on the turbulent and convective Mach numbers is proposed. The ability of the model to predict the developed mixing layers in different cases from experiments of Goebel and Dutton is examined. The predicted results with the proposed model are compared with DNS and experimental data and those obtained by the compressible model of Adumitroiae et al. and the original LRR model. The results show that the essential compressibility effects on mixing layers are well captured by the proposed model.
A high-resolution DNS study of compressible flow past an LPT blade in a cascade
Ranjan, Rajesh; Narasimha, Roddam
2016-01-01
Flow past a low pressure turbine blade in a cascade at $Re \\approx 52000$ and angle of incidence $\\alpha = 45.5^{0}$ is solved using a code developed in-house for solving 3D compressible Navier-Stokes equations. This code, named ANUROOP, has been developed in the finite volume framework using kinetic energy preserving second order central differencing scheme for calculating fluxes, and is compatible with hybrid grids. ANUROOP was verified and validated against several test cases with Mach numbers ranging from 0.1 (Taylor-Green vortex) to 1.5 (compressible turbulent channel flow). The code was found to be robust and stable, and the kinetic energy decay obeys the compressible Navier-Stokes equations. A hybrid grid, with a high resolution hexahedral orthogonal mesh in the boundary layer and unstructured (also hexahedral) elements in the rest of the domain, is used for the turbine blade simulation. Total grid size (160 million) is approximately an order of magnitude higher than in previous simulations for the sam...
Concrete-Filled-Large Deformable FRP Tubular Columns under Axial Compressive Loading
Omar I. Abdelkarim
2015-10-01
Full Text Available The behavior of concrete-filled fiber tubes (CFFT polymers under axial compressive loading was investigated. Unlike the traditional fiber reinforced polymers (FRP such as carbon, glass, aramid, etc., the FRP tubes in this study were designed using large rupture strains FRP which are made of recycled materials such as plastic bottles; hence, large rupture strain (LRS FRP composites are environmentally friendly and can be used in the context of green construction. This study performed finite element (FE analysis using LS-DYNA software to conduct an extensive parametric study on CFFT. The effects of the FRP confinement ratio, the unconfined concrete compressive strength ( , column size, and column aspect ratio on the behavior of the CFFT under axial compressive loading were investigated during this study. A comparison between the behavior of the CFFTs with LRS-FRP and those with traditional FRP (carbon and glass with a high range of confinement ratios was conducted as well. A new hybrid FRP system combined with traditional and LRS-FRP is proposed. Generally, the CFFTs with LRS-FRP showed remarkable behavior under axial loading in strength and ultimate strain. Equations to estimate the concrete dilation parameter and dilation angle of the CFFTs with LRS-FRP tubes and hybrid FRP tubes are suggested.
Compressive sensing for nuclear security.
Gestner, Brian Joseph
2013-12-01
Special nuclear material (SNM) detection has applications in nuclear material control, treaty verification, and national security. The neutron and gamma-ray radiation signature of SNMs can be indirectly observed in scintillator materials, which fluoresce when exposed to this radiation. A photomultiplier tube (PMT) coupled to the scintillator material is often used to convert this weak fluorescence to an electrical output signal. The fluorescence produced by a neutron interaction event differs from that of a gamma-ray interaction event, leading to a slightly different pulse in the PMT output signal. The ability to distinguish between these pulse types, i.e., pulse shape discrimination (PSD), has enabled applications such as neutron spectroscopy, neutron scatter cameras, and dual-mode neutron/gamma-ray imagers. In this research, we explore the use of compressive sensing to guide the development of novel mixed-signal hardware for PMT output signal acquisition. Effectively, we explore smart digitizers that extract sufficient information for PSD while requiring a considerably lower sample rate than conventional digitizers. Given that we determine the feasibility of realizing these designs in custom low-power analog integrated circuits, this research enables the incorporation of SNM detection into wireless sensor networks.
Strength Modeling of High-Strength Concrete with Hybrid Fibre Reinforcement
A. Ravichandran
2009-01-01
Full Text Available The low tensile strength and limited ductility, the unavoidable deficiency, of concrete can be overcome by the addition of fibres. High strength concrete (HSC of 60 MPa containing hybrid fibres, combination of steel and polyolefin fibres, at different volume fraction of 0.5, 1.0, 1.5 and 2.0% were compared in terms of compressive, splitting tensile strength and flexural properties with HSC containing no fibres. Test results showed that the fibres when used in hybrid form could result in enhanced flexural toughness compared to steel fibre reinforced concrete [HSFRC]. The compressive strength of the fibre-reinforced concrete reached maximum at 1.5% volume fractions and the splitting tensile strength and modulus of rupture improved with increasing volume fraction. Strength models were established to predict the compressive and splitting tensile strength and modulus of rupture of the fibre-reinforced concrete. The models give prediction matching the measurements.
Strength Evaluation of Steel-Nylon Hybrid Fibre Reinforced Concrete
Maniram Kumar
2014-07-01
Full Text Available When fibres like steel, glass, polypropylene, nylon, carbon, aramid, polyester, jute, etc are mixed with concrete known as fibre reinforced concrete. To overcome the deficiencies of concrete; fibres are added to improve the performance of concrete. In this research hybrid reinforced concrete is made by using steel and nylon 6 fibres. The inclusion of both steel and nylon 6 fibres are used in order to combine the benefits of both fibers; structural improvements provided by steel fibers and the resistance to plastic shrinkage improvements provided by nylon fibers. So the aim of this project is to investigate the mechanical properties (compressive strength, flexure strength and split tensile strength of hybrid fiber reinforced concrete under compression, flexure & tension. The total volume of fibre was taken 0.75 % of total volume of concrete. In this experimental work, four different concrete mix proportions were casted with fibres and one mix without fibres. Four different mix combinations of steel- nylon 6 fibres were 100-00%, 75-25%, 50-50% and 25-75%. Superplasticizer was used in all mixes to make concrete more workable. The results shown that compressive, split tensile and flexural strength of hybrid fibre reinforced concrete increase by increasing quantity of steel and nylon 6 fibres. The increase in compressive and tensile strength due to incorporation of steel fibre is greater than that of using nylon fibre. For the nylon 6 fibres, adding more fibres into the concrete has a limited improvement on splitting tensile strength. Inclusion of nylon 6 fibres along with steel fibres results in considerable improvement in flexural strength as compared to solo steel fibre.
Review Article: An Overview of Image Compression Techniques
M. Marimuthu
2012-12-01
Full Text Available To store an image, large quantities of digital data are required. Due to limited bandwidth, image must be compressed before transmission. However, image compression reduces the image fidelity, when an image is compressed at low bitrates. Hence, the compressed images suffer from block artifacts. To meet this, several compression schemes have been developed in image processing. This study presents an overview of compression techniques for image applications. It covers the lossy and lossless compression algorithm used for still image and other applications. The focus of this article is based on the overview of VLSI DCT architecture for image compression. Further, this new approach may provide better results.
Properties of Compressive Strength and Heating Value of Compressed Semi-Carbonized Sugi thinning
Sawai, Toru; Kajimoto, Takeshi; Akasaka, Motofumi; Kaji, Masuo; Ida, Tamio; Fuchihata, Manabu; Honjyo, Takako; Sano, Hiroshi
Sugi thinnings with small diameter that are not suitable for lumber can be considered as important domestic energy resources. To utilize Sugi thinnings as alternative fuel of coal cokes, properties of compressive strength and heating value of compressed semi-carbonized wood fuel are investigated. To enhance the heating value, "semi-carbonization", that is the pyrolysis in the temperature range between 200 and 400 degree, is conducted. From the variation of heating value and energy yield of char with pyrolysis temperature, the semi-carbonization pyrolysis is found to be the upgrading technology to convert the woody biomass into the high energy density fuel at high energy yield. To increase the compressive strength, "Cold Isostatic Pressing" method is adopted. The compressive strength of the compressed wood fuel decreases with pyrolysis temperature, while the heating value increases. The drastic decrease in the compressive strength is observed at temperature of 250 degree. The increase in the hydrostatic compression pressure improves the compressive strength for an entire range of semi-carbonization pyrolysis. The alternative fuel with high heating value and high compressive strength can be produced by the semi-carbonization processing at temperature of 280 degree for wood fuel compressed at hydrostatic pressure of 200MPa.
Digital Image Compression Using Artificial Neural Networks
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Simulation of Compressive Failure in Fiber Composites
Veluri, Badrinath; Jensen, Henrik Myhre
Kinkband formation is a non-linear phenomenon involving interacting effects of non-linear material behavior of the matrix materials and fiber buckling including fiber misalignment in fiber composites under compressive loading. Taking into account the non-linearties of the constituents...... understanding of the influence of the macro-geometry and micro-geometry. In addition studying the mechanics of kinkband formation, focus is also directed in computing the critical compressive stress for steady state kinkband broadening under compression in the fiber direction. The present theory demonstrates...
Evolution Of Nonlinear Waves in Compressing Plasma
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
17 Pseudoaneurysms Treated by Padding and Compression
WANGLu-ping; MEIXiao-rong; XUYu-lan; LIUYi; ZHENGCheng-fei; WANGGang
2004-01-01
To introduce the method and curative effect of treating pseudoaneurysms by padding and compression. Method: retrospectively analyze the curative effect of treating 17 pseudoaneurysms bypadding hard things and compression. Result: 15 of them was completely recovered by doing so,murmur disappeared and the local skin became even, there was no recurrences and complications after 0.5-3year's following up,but the other two were the same as before the therapy. Conclusion: pseudoaneurysms can be treated effectively by padding and compression
ECG data compression using Jacobi polynomials.
Tchiotsop, Daniel; Wolf, Didier; Louis-Dorr, Valérie; Husson, René
2007-01-01
Data compression is a frequent signal processing operation applied to ECG. We present here a method of ECG data compression utilizing Jacobi polynomials. ECG signals are first divided into blocks that match with cardiac cycles before being decomposed in Jacobi polynomials bases. Gauss quadratures mechanism for numerical integration is used to compute Jacobi transforms coefficients. Coefficients of small values are discarded in the reconstruction stage. For experimental purposes, we chose height families of Jacobi polynomials. Various segmentation approaches were considered. We elaborated an efficient strategy to cancel boundary effects. We obtained interesting results compared with ECG compression by wavelet decomposition methods. Some propositions are suggested to improve the results.
Compression of a bundle of light rays.
Marcuse, D
1971-03-01
The performance of ray compression devices is discussed on the basis of a phase space treatment using Liouville's theorem. It is concluded that the area in phase space of the input bundle of rays is determined solely by the required compression ratio and possible limitations on the maximum ray angle at the output of the device. The efficiency of tapers and lenses as ray compressors is approximately equal. For linear tapers and lenses the input angle of the useful rays must not exceed the compression ratio. The performance of linear tapers and lenses is compared to a particular ray compressor using a graded refractive index distribution.
Face Tracking in the Compressed Domain
Fonseca Pedro Miguel
2006-01-01
Full Text Available A compressed domain generic object tracking algorithm offers, in combination with a face detection algorithm, a low-compu-tational-cost solution to the problem of detecting and locating faces in frames of compressed video sequences (such as MPEG-1 or MPEG-2. Objects such as faces can thus be tracked through a compressed video stream using motion information provided by existing forward and backward motion vectors. The described solution requires only low computational resources on CE devices and offers at one and the same time sufficiently good location rates.
Face Tracking in the Compressed Domain
Fonseca, Pedro Miguel; Nesvadba, Jan
2006-12-01
A compressed domain generic object tracking algorithm offers, in combination with a face detection algorithm, a low-compu-tational-cost solution to the problem of detecting and locating faces in frames of compressed video sequences (such as MPEG-1 or MPEG-2). Objects such as faces can thus be tracked through a compressed video stream using motion information provided by existing forward and backward motion vectors. The described solution requires only low computational resources on CE devices and offers at one and the same time sufficiently good location rates.
Compressed Gas Safety for Experimental Fusion Facilities
Lee C. Cadwallader
2004-09-01
Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.
Compressed sensing and sparsity in photoacoustic tomography
Haltmeier, Markus; Moon, Sunghwan; Burgholzer, Peter
2016-01-01
Increasing the imaging speed is a central aim in photoacoustic tomography. In this work we address this issue using techniques of compressed sensing. We demonstrate that the number of measurements can significantly be reduced by allowing general linear measurements instead of point wise pressure values. A main requirement in compressed sensing is the sparsity of the unknowns to be recovered. For that purpose we develop the concept of sparsifying temporal transforms for three dimensional photoacoustic tomography. Reconstruction results for simulated and for experimental data verify that the proposed compressed sensing scheme allows to significantly reducing the number of spatial measurements without reducing the spatial resolution.
Compressive sensing with a microwave photonic filter
Chen, Ying; Yu, Xianbin; Chi, Hao
2015-01-01
In this letter, we present a novel approach to realizing photonics-assisted compressive sensing (CS) with the technique of microwave photonic fi ltering. In the proposed system, an input spectrally sparse signal to be captured and a random sequence are modulated on an optical carrier via two Mach...... to a frequency- dependent power fading, low-pass fi ltering required in the CS is then realized. A proof-of-concept ex- periment for compressive sampling and recovery of a signal containing three tones at 310 MHz, 1 GHz and 2 GHz with a compression factor up to 10 is successfully demonstrated. More simulation...
Combined Sparsifying Transforms for Compressive Image Fusion
ZHAO, L.
2013-11-01
Full Text Available In this paper, we present a new compressive image fusion method based on combined sparsifying transforms. First, the framework of compressive image fusion is introduced briefly. Then, combined sparsifying transforms are presented to enhance the sparsity of images. Finally, a reconstruction algorithm based on the nonlinear conjugate gradient is presented to get the fused image. The simulations demonstrate that by using the combined sparsifying transforms better results can be achieved in terms of both the subjective visual effect and the objective evaluation indexes than using only a single sparsifying transform for compressive image fusion.
Spectral Compressive Sensing with Polar Interpolation
Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco
2013-01-01
Existing approaches to compressive sensing of frequency-sparse signals focuses on signal recovery rather than spectral estimation. Furthermore, the recovery performance is limited by the coherence of the required sparsity dictionaries and by the discretization of the frequency parameter space....... In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...
Lossless wavelet compression on medical image
Zhao, Xiuying; Wei, Jingyuan; Zhai, Linpei; Liu, Hong
2006-09-01
An increasing number of medical imagery is created directly in digital form. Such as Clinical image Archiving and Communication Systems (PACS), as well as telemedicine networks require the storage and transmission of this huge amount of medical image data. Efficient compression of these data is crucial. Several lossless and lossy techniques for the compression of the data have been proposed. Lossless techniques allow exact reconstruction of the original imagery, while lossy techniques aim to achieve high compression ratios by allowing some acceptable degradation in the image. Lossless compression does not degrade the image, thus facilitating accurate diagnosis, of course at the expense of higher bit rates, i.e. lower compression ratios. Various methods both for lossy (irreversible) and lossless (reversible) image compression are proposed in the literature. The recent advances in the lossy compression techniques include different methods such as vector quantization. Wavelet coding, neural networks, and fractal coding. Although these methods can achieve high compression ratios (of the order 50:1, or even more), they do not allow reconstructing exactly the original version of the input data. Lossless compression techniques permit the perfect reconstruction of the original image, but the achievable compression ratios are only of the order 2:1, up to 4:1. In our paper, we use a kind of lifting scheme to generate truly loss-less non-linear integer-to-integer wavelet transforms. At the same time, we exploit the coding algorithm producing an embedded code has the property that the bits in the bit stream are generated in order of importance, so that all the low rate codes are included at the beginning of the bit stream. Typically, the encoding process stops when the target bit rate is met. Similarly, the decoder can interrupt the decoding process at any point in the bit stream, and still reconstruct the image. Therefore, a compression scheme generating an embedded code can
Plasma heating by electric field compression.
Avinash, K; Kaw, P K
2014-05-09
Plasma heating by compression of electric fields is proposed. It is shown that periodic cycles of external compression followed by the free expansion of electric fields in the plasma cause irreversible, collisionless plasma heating and corresponding entropy generation. As a demonstration of general ideas and scalings, the heating is shown in the case of a dusty plasma, where electric fields are created due to the presence of charged dust. The method is expected to work in the cases of compression of low frequency or dc electric fields created by other methods. Applications to high power laser heating of plasmas using this scheme are discussed.
Compressed Gas Safety for Experimental Fusion Facilities
Lee C. Cadwallader
2004-09-01
Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.
Spinal epidural compression in chronic lymphocytic leukemia.
Michalevicz, R; Burstein, A; Razon, N; Reider, I; Ilie, B
1989-11-01
Spinal epidural compression is a rare neurologic complication in patients with lymphoma. It occurs mostly in those with intermediate-grade to high-grade malignancy disease. This type of neurologic involvement has not been described in chronic lymphocytic leukemia (CLL). A patient with a long, stable CLL course developed spinal epidural compression and consequently died. The frequency of spinal epidural compression in lymphoma, according to the histologic subtypes and the considerations in making the right choice of therapy are discussed in light of the presented case.
Pulse Compression Technique of Radio Fuze
HU Xiu-juan; DENG Jia-hao; SANG Hui-ping
2006-01-01
The advantages of using phase-coded pulse compression technique for radio fuze systems are evaluated. With building mathematical models a matched filter has be en implemented successfully. Various simulations for pulse compression waveform coding were done to evaluate the performance of fuze system under noisy environment. The results of the simulation and the data analysis show that the phase-coded pulse compression gets a good result in the signal identification of the radio fuze with matched filter. Simultaneously, a suitable sidelobe suppression filter is established by simulation, the suppressed sidelobe level is acceptable to radio fuze application.
Comparison of different Fingerprint Compression Techniques
Ms.Mansi Kambli
2010-09-01
Full Text Available The important features of wavelet transform and different methods in compression of fingerprint images have been implemented. Image quality is measured objectively using peak signal to noise ratio (PSNR and mean square error (MSE.A comparative study using discrete cosine transform based Joint Photographic Experts Group(JPEG standard , wavelet based basic Set Partitioning in Hierarchical trees(SPIHT and Modified SPIHT is done. The comparison shows that Modified SPIHT offers better compression than basic SPIHT and JPEG. The results will help application developers to choose a good wavelet compression system for their applications.
Hybrid electric vehicles TOPTEC
NONE
1994-06-21
This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.
Hybrid systems with constraints
Daafouz, Jamal; Sigalotti, Mario
2013-01-01
Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to
Bazeia, D; Losano, L
2016-01-01
This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.
Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)
2017-02-15
This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)
Hybrid silicon evanescent devices
Alexander W. Fang
2007-07-01
Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.
The effect of using hybrid nanomaterials on drying shrinkage and strength of cement pastes
Saaid I. Zaki
2016-04-01
Full Text Available The aim of this work is to study the effect of nanomaterials on the properties of cement paste, the experimental program included three parts: a- two types of nanosilica, locally produced NS1 and imported NS2, b- nanoclay (NC and c- Hybrid nanoparticles (NS1 & NC. In each part, cement paste was used with different percentages of nanoparticles. Compressive strength and drying shrinkage tests were applied in each part on the cured and uncured samples. The results showed that the compressive strength improved in the cement paste mixtures in the cured condition, the optimum percentages was 1% for NS1, 1% for NS2, 5% for NC, and 5% (0.5%NS1 & 4.5%NC for hybrid nanoparticles. The drying shrinkage increases with adding nanosilica and hybrid nanoparticles, while it decreases when adding NC.
Polyurethane foam with multi walled carbon nanotubes/magnesium hybrid filler
Adnan, Sinar Arzuria; Zainuddin, Firuz; Zaidi, Nur Hidayah Ahmad; Akil, Hazizan Md.; Ahmad, Sahrim
2016-07-01
The purpose of this paper is to investigate the effect of multiwalled carbon nanotubes (MWCNTs)/magnesium (Mg) hybrid filler in polyurethane (PU) foams with different weight percentages (0.5 wt.% to 3.0 wt.%). The PU/MWCNTs/Mg foam composites were formed by reaction of based palm oil polyol (POP) with methylene diphenyl diisocyanate (MDI) with ratio 1:1.1 by weight. The foam properties were evaluated in density, morphology and compressive strength. The addition of 2.5 wt.% hybrid filler showed the higher density in 59.72 kg/m3 and thus contribute to the highest compressive strength at 1.76 MPa. The morphology show cell in closed structure and addition hybrid filler showed uneven structure.
Chaotic mixer improves microarray hybridization.
McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R
2004-02-15
Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.
Excimer Laser Pulse Compress With Pulse Feedback
2008-01-01
<正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can
Defocus cue and saliency preserving video compression
Khanna, Meera Thapar; Chaudhury, Santanu; Lall, Brejesh
2016-11-01
There are monocular depth cues present in images or videos that aid in depth perception in two-dimensional images or videos. Our objective is to preserve the defocus depth cue present in the videos along with the salient regions during compression application. A method is provided for opportunistic bit allocation during the video compression using visual saliency information comprising both the image features, such as color and contrast, and the defocus-based depth cue. The method is divided into two steps: saliency computation followed by compression. A nonlinear method is used to combine pure and defocus saliency maps to form the final saliency map. Then quantization values are assigned on the basis of these saliency values over a frame. The experimental results show that the proposed scheme yields good results over standard H.264 compression as well as pure and defocus saliency methods.
Pulse compression and prepulse suppression apparatus
Dane, C.B.; Hackel, L.A.; George, E.V.; Miller, J.L.; Krupke, W.F.
1993-11-09
A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).
Improve Compressed Air System Performance with AIRMaster+
None
2005-05-01
AIRMaster+ provides a systematic apporach for assessing the supply-side performance of compressed air systems. Using plant-specific data, the software effectively evaluates supply-side operational costs for various equipment configurations and system pro
Compressive multi-mode superresolution display
Heide, Felix
2014-01-01
Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image. © 2014 Optical Society of America.
Seneca Compressed Air Energy Storage (CAES) Project
None
2012-11-30
This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.
Hyperspectral image data compression based on DSP
Fan, Jiming; Zhou, Jiankang; Chen, Xinhua; Shen, Weimin
2010-11-01
The huge data volume of hyperspectral image challenges its transportation and store. It is necessary to find an effective method to compress the hyperspectral image. Through analysis and comparison of current various algorithms, a mixed compression algorithm based on prediction, integer wavelet transform and embedded zero-tree wavelet (EZW) is proposed in this paper. We adopt a high-powered Digital Signal Processor (DSP) of TMS320DM642 to realize the proposed algorithm. Through modifying the mixed algorithm and optimizing its algorithmic language, the processing efficiency of the program was significantly improved, compared the non-optimized one. Our experiment show that the mixed algorithm based on DSP runs much faster than the algorithm on personal computer. The proposed method can achieve the nearly real-time compression with excellent image quality and compression performance.
Smoking and the compression of morbidity
W.J. Nusselder (Wilma); C.W.N. Looman (Caspar); P.J. Marang-van de Mheen; H. van de Mheen (Dike); J.P. Mackenbach (Johan)
2000-01-01
textabstractOBJECTIVE: To examine whether eliminating smoking will lead to a reduction in the number of years lived with disability (that is, absolute compression of morbidity). DESIGN: Multistate life table calculations based on the longitudinal GLOBE study (the Nether
Compression of Short Text on Embedded Systems
Rein, S.; Gühmann, C.; Fitzek, Frank
2006-01-01
The paper details a scheme for lossless compression of a short data series larger than 50 bytes. The method uses arithmetic coding and context modelling with a low-complexity data model. A data model that takes 32 kBytes of RAM already cuts the data size in half. The compression scheme just takes...... a few pages of source code,is scaleablein memory size, and may be useful in sensor or cellular networks to spare bandwidth. As we demonstrate the method allows for battery savings when applied to mobile phones.......The paper details a scheme for lossless compression of a short data series larger than 50 bytes. The method uses arithmetic coding and context modelling with a low-complexity data model. A data model that takes 32 kBytes of RAM already cuts the data size in half. The compression scheme just takes...
3D MHD Simulations of Spheromak Compression
Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team
2015-11-01
The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.
Compression therapy after ankle fracture surgery
Winge, R; Bayer, L; Gottlieb, H
2017-01-01
PURPOSE: The main purpose of this systematic review was to investigate the effect of compression treatment on the perioperative course of ankle fractures and describe its effect on edema, pain, ankle joint mobility, wound healing complication, length of stay (LOS) and time to surgery (TTS). The aim...... undergoing surgery, testing either intermittent pneumatic compression, compression bandage and/or compression stocking and reporting its effect on edema, pain, ankle joint mobility, wound healing complication, LOS and TTS. To conclude on data a narrative synthesis was performed. RESULTS: The review included...... eight studies (451 patients). Seven studies found a significant effect on edema, two studies described a significant reduction in pain, one a positive effect on ankle movement, two a positive effect on wound healing, one a reduction in LOS and finally two studies reported reduction in TTS. A systematic...
Magnetic compression of an FRC plasma
Okada, S.; Kitano, K.; Matsumoto, H. [Plasma Physics Laboratory, Faculty of Engineering, Osaka Univ., Suita, Osaka (JP)] [and others
1999-04-01
Confinement of a plasma with field-reversed configuration (FRC) is predicted to be improved if it is compressed only axially, keeping the magnetic flux between the separatrix and the confining chamber (flux conserver) wall unchanged, while allowing the plasma to expand radially. The prediction is based on an empirical scaling law of FRC confinement and on the assumption that the compression is done adiabatically. The apparatus for this axial compression was developed and the axial compression experiment was actually carried out by decreasing the distance of the mirror fields between which the FRC plasma is confined by 30% and the plasma life time of about 500 {mu}s was increased by about 50 {mu}s. (author)
Flight Lossless Data Compression Electronics Project
National Aeronautics and Space Administration — The proposed work seeks to drastically increase the capability of the lossless data compression technology embedded in the currently used flight part known as USES...
Compression asphyxia from a human pyramid.
Tumram, Nilesh Keshav; Ambade, Vipul Namdeorao; Biyabani, Naushad
2015-12-01
In compression asphyxia, respiration is stopped by external forces on the body. It is usually due to an external force compressing the trunk such as a heavy weight on the chest or abdomen and is associated with internal injuries. In present case, the victim was trapped and crushed under the falling persons from a human pyramid formation for a "Dahi Handi" festival. There was neither any severe blunt force injury nor any significant pathological natural disease contributing to the cause of death. The victim was unable to remove himself from the situation because his cognitive responses and coordination were impaired due to alcohol intake. The victim died from asphyxia due to compression of his chest and abdomen. Compression asphyxia resulting from the collapse of a human pyramid and the dynamics of its impact force in these circumstances is very rare and is not reported previously to the best of our knowledge.
Fully compressive tides in galaxy mergers
Renaud, Florent; Naab, Thorsten; Theis, Christian
2009-01-01
The disruptive effect of galactic tides is a textbook example of gravitational dynamics. However, depending on the shape of the potential, tides can also become fully compressive. When that is the case, they might trigger or strengthen the formation of galactic substructures (star clusters, tidal dwarf galaxies), instead of destroying them. We perform N-body simulations of interacting galaxies to quantify this effect. We demonstrate that tidal compression occurs repeatedly during a galaxy merger, independently of the specific choice of parameterization. With a model tailored to the Antennae galaxies, we show that the distribution of compressive tides matches the locations and timescales of observed substructures. After extending our study to a broad range of parameters, we conclude that neither the importance of the compressive tides (~15% of the stellar mass) nor their duration (~ 10 Myr) are strongly affected by changes in the progenitors' configurations and orbits. Moreover, we show that individual clumps ...
optimizing compressive strength characteristics of hollow building ...
eobe
This paper evaluates the compressive strength of sandcrete hollow building blocks when its sand fraction is partially replaced ... defines sandcrete blocks as composite materials made .... industry as well as the economy of Nigeria, if there is no.
Smoking and the compression of morbidity
W.J. Nusselder (Wilma); C.W.N. Looman (Caspar); P.J. Marang-van de Mheen; H. van de Mheen (Dike); J.P. Mackenbach (Johan)
2000-01-01
textabstractOBJECTIVE: To examine whether eliminating smoking will lead to a reduction in the number of years lived with disability (that is, absolute compression of morbidity). DESIGN: Multistate life table calculations based on the longitudinal GLOBE study (the
Wavelet transform in electrocardiography--data compression.
Provazník, I; Kozumplík, J
1997-06-01
An application of the wavelet transform to electrocardiography is described in the paper. The transform is used as a first stage of a lossy compression algorithm for efficient coding of rest ECG signals. The proposed technique is based on the decomposition of the ECG signal into a set of basic functions covering the time-frequency domain. Thus, non-stationary character of ECG data is considered. Some of the time-frequency signal components are removed because of their low influence to signal characteristics. Resulting components are efficiently coded by quantization, composition into a sequence of coefficients and compression by a run-length coder and a entropic Huffman coder. The proposed wavelet-based compression algorithm can compress data to average code length about 1 bit/sample. The algorithm can be also implemented to a real-time processing system when wavelet transform is computed by fast linear filters described in the paper.
Compression of interferometric radio-astronomical data
Offringa, A R
2016-01-01
The volume of radio-astronomical data is a considerable burden in the processing and storing of radio observations with high time and frequency resolutions and large bandwidths. Lossy compression of interferometric radio-astronomical data is considered to reduce the volume of visibility data and to speed up processing. A new compression technique named "Dysco" is introduced that consists of two steps: a normalization step, in which grouped visibilities are normalized to have a similar distribution; and a quantization and encoding step, which rounds values to a given quantization scheme using a dithering scheme. Several non-linear quantization schemes are tested and combined with different methods for normalizing the data. Four data sets with observations from the LOFAR and MWA telescopes are processed with different processing strategies and different combinations of normalization and quantization. The effects of compression are measured in image plane. The noise added by the lossy compression technique acts ...
Evolution Strategies for Laser Pulse Compression
Monmarché, Nicolas; Fanciulli, Riccardo; Willmes, Lars; Talbi, El-Ghazali; Savolainen, Janne; Collet, Pierre; Schoenauer, Marc; van der Walle, P.; Lutton, Evelyne; Back, Thomas; Herek, Jennifer Lynn
2008-01-01
This study describes first steps taken to bring evolutionary optimization technology from computer simulations to real world experimentation in physics laboratories. The approach taken considers a well understood Laser Pulse Compression problem accessible both to simulation and laboratory experiment
Mužíková, Jitka; Kubíčková, Alena
2016-09-01
The paper evaluates and compares the compressibility and compactibility of directly compressible tableting materials for the preparation of hydrophilic gel matrix tablets containing tramadol hydrochloride and the coprocessed dry binders Prosolv® SMCC 90 and Disintequik™ MCC 25. The selected types of hypromellose are Methocel™ Premium K4M and Methocel™ Premium K100M in 30 and 50 % concentrations, the lubricant being magnesium stearate in a 1 % concentration. Compressibility is evaluated by means of the energy profile of compression process and compactibility by the tensile strength of tablets. The values of total energy of compression and plasticity were higher in the tableting materials containing Prosolv® SMCC 90 than in those containing Disintequik™ MCC 25. Tramadol slightly decreased the values of total energy of compression and plasticity. Tableting materials containing Prosolv® SMCC 90 yielded stronger tablets. Tramadol decreased the strength of tablets from both coprocessed dry binders.