WorldWideScience

Sample records for mhz spectral range

  1. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Paggi, A.; D' Abrusco, R. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected at 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.

  2. Spectral intensity dependence an isotropy of sources stronger than 0.1 Jy at 2700 MHz

    International Nuclear Information System (INIS)

    Balonek, T.J.; Broderick, J.J.; Condon, J.J.; Crawford, D.F.; Jauncey, D.L.

    1975-01-01

    The 1000-foot (305 m) telescope of the National Astronomy and Ionosphere Center was used to measure 430 MHz flux densities of sources stronger than 0.1 Jy at 2700 MHz. Distributions of the resulting two-point spectral indices α (430, 2700) of sources in the intensity range 0.1less than or equal toS<0.35 Jy were compared with α (318, 2700) distributions of sources stronger than 0.35 Jy at 2700 MHz. The median normal-component spectral index and fraction of flat-spectrum sources in the faintest sample do not continue the previously discovered trend toward increased spectral steepening of faint sources. This result differs from the prediction of simple evolutionary cosmological models and therefore favors the alternative explanation that local source-density inhomogeneities are responsible for the observed intensity dependence of spectral indices

  3. On the Nature of the mHz X-Ray QPOs from ULX M82 X-1: Evidence for Timing-Spectral (anti) Correlation

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1 we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its energy spectral power-law index. These quantities are known to correlate in stellar mass black holes (StMBHs) exhibiting Type-C QPOs (approx 0.2-15 Hz). The detection of such a correlation would strengthen the identification of its mHz QPOs as Type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of Type-C QPOs in StMBHs of known mass. We resolved the count rates of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling and identify observations in which M82 X-1 was at least as bright as source 5. Using only those observations, we detect QPOs in the frequency range of 36-210 mHz during which the energy spectral power-law index varied from 1.7-2.2. Interestingly, we find evidence for an anti-correlation (Pearsons correlation coefficient = -0.95) between the power-law index and the QPO centroid frequency. While such an anti-correlation is observed in StMBHs at high Type-C QPO frequencies (approx 5-15 Hz), the frequency range over which it holds in StMBHs is significantly smaller (factor of approx 1.5-3) than the QPO range reported here from M82 X-1 (factor of 6). However, it remains possible that contamination from source 5 can bias our result. Joint Chandra/XMM-Newton observations in the future can resolve this problem and confirm the timing-spectral anti-correlation reported here.

  4. On the Nature of the mHz X-ray Quasi-Periodic Oscillations from Ultraluminous X-ray source M82 X-1: Search for Timing-Spectral Correlations

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  5. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  6. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  7. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  8. Spectral long-range interaction of temporal incoherent solitons.

    Science.gov (United States)

    Xu, Gang; Garnier, Josselin; Picozzi, Antonio

    2014-02-01

    We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.

  9. Modular 125 ps resolution time interval digitizer for 10 MHz stop burst rates and 33 ms range

    International Nuclear Information System (INIS)

    Turko, B.

    1978-01-01

    A high resolution multiple stop time interval digitizer is described. It is capable of resolving stop burst rates of up to 10 MHz with an incremental resolution of 125 ps within a range of 33 ms. The digitizer consists of five CAMAC modules and uses a standard CAMAC crate and controller. All the functions and ranges are completely computer controlled. Any two subsequent stop pulses in a burst can be resolved within 100 ns due to a new dual interpolation technique employed. The accuracy is maintained by a high stability 125 MHz reference clock. Up to 131 stop events can be stored in a 48-bit, 10 MHz derandomizing storage register before the digitizer overflows. The experimental data are also given

  10. A Wide Spectral Range Reflectance and Luminescence Imaging System

    Directory of Open Access Journals (Sweden)

    Tapani Hirvonen

    2013-10-01

    Full Text Available In this study, we introduce a wide spectral range (200–2500 nm imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications.

  11. Detection Range Estimation of UV Spectral Band Laser Radar

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available Recently, has come into existence an interest in the systems operating in the ultra-violet (UF band of wavelengths, which use other spectral information (coefficients of reflection or radiation in UF range about location objects, than laser systems in the visible, near or average infrared bands. Thus, a point is not only to receive additional (in another spectral range information on location objects. Laser radiation in the UF spectral band of 0.315 – 0.4 microns is safer than laser radiation with the wavelengths of 0.38 – 1.4 microns.The work presents a comparative estimation of the detection systems range of laser radars in the UV and visible spectral bands for the following wavelengths of radiation:- UF band: 0.266 microns (the fourth harmonic of YAG-laser activated by neodymium ions, 0.308 microns (the XeCl-excimer laser, 0.355 microns (the third harmonic of YAG-laser activated by neodymium ions;- visible band: 0.532 microns (the second harmonic of YAG-laser activated by neodymium ions.Results of calculations show that for the horizontal pathway in the terrestrial atmosphere at the selected radiation wavelengths a detection range is in the range of 2510m – 5690 m.The maximum range of detection corresponds to the visible spectral band. A sweep range decreases with transition to the UF band. This is caused by the fact that with transition to the UF band there is a rise of atmosphere attenuation (generally, because of absorption by ozone, this effect being smoothed by reducing background radiation.In the UF band a wavelength of 0.355 microns is the most acceptable. For this wavelength a detection range is about 1,5 times less (in comparison with the visible band of 0.532 microns. However, this is the much more eye-safe wavelength. With transition to the UV band a detection range decreases not that much and can be compensated by changing parameters of transmitting or receiving channels of laser radar.

  12. VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-03-01

    We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).

  13. An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Lee, Hyung Kew; Kim, Wan-Seop

    2017-01-01

    This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF–1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z -matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10 −6 –10 −5 , proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range. (paper)

  14. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  15. Development of disposable membrane hydrophones for a frequency range from 1MHz to 10MHz.

    Science.gov (United States)

    Lee, Jae-Wan; Ohm, Won-Suk; Kim, Yong-Tae

    2017-11-01

    A method for fabricating disposable membrane hydrophones is presented. The disposable hydrophones are intended for onetime use in such damaging environments as chemically contaminating fluids and high-amplitude (peak amplitude ∼100MPa) shock wave fields, where the use of commercial membrane hydrophones is not recommended. Fabrication of a hydrophone is done using only off-the-shelf components and hand tools, which translates into ease of fabrication and orders-of-magnitude reduction in unit cost. In particular, poling and sputtering, the two processes that are chiefly responsible for the cost and difficulty associated with the conventional fabrication method, are replaced with the use of pre-poled polyvinylidene fluoride (PVDF) films and polyethylene terephthalate (PET)-coated aluminum foils, respectively. Despite the seemingly crude construction, these disposable hydrophones can exhibit voltage sensitivity response that compares favorably with that of commercial hydrophones. For example, one prototype having a 2mm×2mm active element shows the end-of-cable voltage sensitivity of -270 (±1.9) dB re 1V/μPa over the frequency range of 1-10MHz. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B

    Science.gov (United States)

    Taylor, R. E.; Fee, J. J.; Chin, M.

    1972-01-01

    A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.

  17. Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz

    Science.gov (United States)

    Willett, J. C.; Bailey, J. C.; Leteinturier, C.; Krider, E. P.

    1990-01-01

    New Fourier transforms of wideband time-domain electric fields (E) produced by lightning (recorded at the Kennedy Space Center during the summers of 1985 and 1987) were recorded in such a way that several different events in each lightning flash could be captured. Average HF spectral amplitudes for first return strokes, stepped-leader steps, and 'characteristic pulses' are given for significantly more events, at closer ranges, and with better spectral resolution than in previous literature reports. The method of recording gives less bias toward the first large event in the flash and thus yields a large sample of a wide variety of lightning processes. As a result, reliable composite spectral amplitudes are obtained for a number of different processes in cloud-to-ground lightning over the frequency interval from 0.2 to 20 MHz.

  18. A high dynamic range programmable CMOS front-end filter with a tuning range from 1850 to 2400 MHz

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais; Lee, Thomas H.; Bruun, Erik

    2005-01-01

    This paper presents a highly programmable front-end filter and amplifier intended to replace SAW filters and low noise amplifiers (LNA) in multi-mode direct conversion radio receivers. The filter has a 42 MHz bandwidth, is tunable from 1850 to 2400 MHz, achieves a 5.8 dB NF, -25 dBm in-band 1-d...

  19. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Franke, D.; Kreissl, J.; Künzel, H. [Heinrich-Hertz-Institut, Einsteinufer 37, 10587 Berlin (Germany)

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.

  20. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    International Nuclear Information System (INIS)

    Sadeev, T.; Arsenijević, D.; Bimberg, D.; Franke, D.; Kreissl, J.; Künzel, H.

    2015-01-01

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning

  1. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    International Nuclear Information System (INIS)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.

    2009-01-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  2. Two efficient methods for measuring hydrophone frequency response in the 100 kHz to 2 MHz range

    International Nuclear Information System (INIS)

    Harris, G R; Maruvada, S; Gammell, P M

    2004-01-01

    As new medical applications of ultrasound emerge with operating frequencies in the hundreds of kilohertz to low megahertz region, it becomes more important to have convenient calibration methods for hydrophones in this frequency range. Furthermore, short diagnostic ultrasound pulses affected by finite amplitude distortion require that the hydrophone frequency response be known well below the center frequency. National standards laboratories can provide accurate calibration data at these frequencies, but the two methods now employed, laser interferometry and three-transducer reciprocity, are both single-frequency techniques, and they can be time-consuming procedures. Therefore, two efficient methods for generating a wideband acoustic pressure spectrum have been implemented to cover this frequency range. In one method a high-voltage pulse generator was used to excite a thick piezoelectric ceramic disk, producing a plane-wave acoustic pressure transient <1 μs in duration with peak amplitude of about 40 kPa. In the other technique, time delay spectrometry (TDS), a purpose-built 1-3 piezoelectric composite source transducer weakly focused at 20 cm was swept over the 0-2 MHz range. Its transmitting voltage response at 1 MHz was 11 kPa/V. The broadband pulse technique has the advantage of being simpler to implement, but TDS has a much greater signal-to-noise ratio because of the frequency-swept narrowband filter employed

  3. Performance evaluation of the spectral centroid downshift method for attenuation estimation.

    Science.gov (United States)

    Samimi, Kayvan; Varghese, Tomy

    2015-05-01

    Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequencydomain approaches applied to this problem. In this study, a statistical analysis of this method's performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.

  4. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning

    International Nuclear Information System (INIS)

    Macfarlane, R.M.; Sun, Y.; Sellin, P.B.; Cone, R.L.

    2007-01-01

    Two-pulse and stimulated photon echoes and spectral hole burning were measured on the transition from the lowest component of the 4 I 15/2 manifold to the lowest component of 4 I 13/2 of Er 3+ in a silicate optical fiber at 1.6 K. The two-pulse echo decays gave decoherence times as long as 230 ns for magnetic fields above 2 T. A large field dependent contribution to the homogeneous line width of >2 MHz was found and interpreted in terms of coupling to magnetic tunneling modes (TLS) in the glass. The stimulated echoes measured at 2 T showed spectral diffusion of 0.8 MHz/decade of time between 0.4 and 500 μs. Spectral diffusion in this high field region is attributed to coupling to elastic TLS modes which have a distribution of flip rates in glasses. Time-resolved spectral hole burning at very low field showed stronger spectral diffusion of 5.7 MHz/decade of time, attributed to coupling to magnetic spin-elastic TLS modes

  5. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study

    International Nuclear Information System (INIS)

    Suo, Dingjie; Guo, Sijia; Jiang, Xiaoning; Jing, Yun; Lin, Weili

    2015-01-01

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2–4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency. (paper)

  6. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.

    Science.gov (United States)

    Bleeker, H J; Lewin, P A

    2000-01-01

    A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.

  7. Macular hole: 10 and 20-MHz ultrasound and spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Juliana Mantovani Bottós

    2012-12-01

    Full Text Available PURPOSE: Optical coherence tomography (OCT is valuable for macula evaluation. However, as this technique relies on light energy it cannot be performed in the presence of opaque media. In such cases, the ultrasound (US may predict some macular features. The aim of this study was to characterize images obtained by ultrasound with 10 and 20-MHz transducers comparing to OCT, as well as to analyze the relationship between the vitreous and retina in eyes with macular hole (MH. METHODS: 29 eyes of 22 patients with biomicroscopic evidence of MH at different stages were included. All patients were evaluated using ultrasonography with 10 and 20-MHz transducers and OCT. RESULTS: OCT identified signs of MH in 25 of 29 eyes. The remaining 4 cases not identified by US were pseudoholes caused by epiretinal membranes. In MH stages I (2 eyes and II (1 eye, both transducers were not useful to analyze the macular thickening, but suggestive findings as macular irregularity, operculum or partial posterior vitreous detachment (PVD were highlighted. In stages III (14 eyes and IV (5 eyes, both transducers identified the double hump irregularity and thickening. US could measure the macular thickness and other suggestive findings for MH: operculum, vitreomacular traction and partial or complete PVD. In cases of pseudoholes, US identified irregularities macular contour and a discrete depression. CONCLUSION: 10-MHz US was useful for an overall assessment of the vitreous body as well as its relationship to the retina. The 20-MHz transducer allowed valuable information on the vitreomacular interface and macular contour. OCT provides superior quality for fine morphological study of macular area, except in cases of opaque media. In these cases, and even if OCT is not available, the combined US study is able to provide a valid evaluation of the macular area improving therapeutic approach.

  8. Modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz

    Science.gov (United States)

    Spiger, R. J.; Murphree, J. S.; Anderson, H. R.; Loewenstein, R. F.

    1976-01-01

    A sounding rocket-borne electron detector of high time resolution is used to search for modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz and energy range 5-7 keV. Data were telemetered to ground via a 93-kHz subcarrier. A cross-correlation analysis of the data collected indicates low-level modulation near the detection threshold of the instrument. Two U-1 events are observed which are interpreted as indications of modulation. The two modulation events occur during a period of increasing flux for a region marking the boundary between two current sheets detected by the payload magnetometer. The strongest argument against interference contamination is the lack of any observable modulation at times other than those mentioned in the study.

  9. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    Science.gov (United States)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  10. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  11. Computational dosimetry in embryos exposed to electromagnetic plane waves over the frequency range of 10 MHz-1.5 GHz

    International Nuclear Information System (INIS)

    Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-01-01

    This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg -1 when the incident power density is at the reference level of ICNIRP guideline for general public environment. (note)

  12. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Science.gov (United States)

    2010-10-01

    ..., 2110-2150 MHz, and 2160-2200 MHz bands. 101.77 Section 101.77 Telecommunication FEDERAL COMMUNICATIONS...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify... a Police licensee, a Fire Licensee, or an Emergency Medical Licensee as defined in § 90.7 of this...

  13. Silicon photodiode with selective Zr/Si coating for extreme ultraviolet spectral range

    International Nuclear Information System (INIS)

    Aruev, P N; Barysheva, Mariya M; Ber, B Ya; Zabrodskaya, N V; Zabrodskii, V V; Lopatin, A Ya; Pestov, Alexey E; Petrenko, M V; Polkovnikov, V N; Salashchenko, Nikolai N; Sukhanov, V L; Chkhalo, Nikolai I

    2012-01-01

    The procedure of manufacturing silicon photodiodes with an integrated Zr/Si filter for extreme ultraviolet (EUV) spectral range is developed. A setup for measuring the sensitivity profile of detectors with spatial resolution better than 100 μm is fabricated. The optical properties of silicon photodiodes in the EUV and visible spectral ranges are investigated. Some characteristics of SPD-100UV diodes with Zr/Si coating and without it, as well as of AXUV-100 diodes, are compared. In all types of detectors a narrow region beyond the operating aperture is found to be sensitive to the visible light. (photodetectors)

  14. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    Science.gov (United States)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  15. Polarization observations of four southern pulsars at 1560 MHz

    Science.gov (United States)

    Wu, Xin-Ji; Manchester, R. N.; Lyne, A. G.

    1991-12-01

    Some interesting results from the mean pulse polarization observations of four southern pulsars made at the Australian National Radio Astronomy Observatory, Parkes, using the 64-m telescope in June and July, 1988, are presented. The 2 x 16 x 5 MHz filter system from Jodrell Bank has proved excellent in dedispersing the pulse signals and measuring their polarization properties. Data for the four pulsars are given in some detail, and their spectral behavior is discussed.

  16. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

    Science.gov (United States)

    Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2015-10-05

    We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

  17. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  18. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  19. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  20. Modal spectral analysis of piping: Determination of the significant frequency range

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1981-01-01

    This paper investigates the influence of the number of modes on the response of a piping system in a dynamic modal spectral analysis. It shows how the analysis can be limited to a specific frequency range of the pipe (independent of the frequency range of the response spectrum), allowing cost reduction without loss in accuracy. The 'missing mass' is taken into account through an original technique. (orig./HP)

  1. 500 MHz transient digitizers based on GaAs CCDs

    International Nuclear Information System (INIS)

    Bryman, D.A.; Constable, M.; Cresswell, J.V.; Daviel, A.; LeNoble, M.; Mildenberger, J.; Poutissou, R.

    1996-11-01

    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment studying rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCD's are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz. (authors)

  2. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  3. Providing primary standard calibrations beyond 20 MHz

    International Nuclear Information System (INIS)

    Bickley, C J; Zeqiri, B; Robinson, S P

    2004-01-01

    The number of applications of medical ultrasound utilising frequencies in excess of 20 MHz has shown a consistent increase over recent years. Coupled with the commercial availability of wide-bandwidth hydrophones whose response extends beyond 40 MHz, this has driven a growing need to develop hydrophone calibration techniques at elevated frequencies. The current National Physical Laboratory primary standard method of calibrating hydrophones is based on an optical interferometer. This has been in operation for around 20 years and provides traceability over the frequency range of 0.3 to 20 MHz. More recently, calibrations carried out using the interferometer have been extended to 60 MHz, although the uncertainties associated with these calibrations are poor, being in excess of ±20% at high frequencies. Major contributions to the degraded calibration uncertainties arise from poor signal-to-noise at higher frequencies, the frequency response of the photodiodes used and the noise floor of the instrument. To improve the uncertainty of hydrophone calibrations above 20 MHz, it has been necessary to build and commission a new interferometer. Important features of the new primary standard are its use of a higher power laser to improve the signal-to-noise ratio, along with photodiodes whose greater bandwidth to improve the overall frequency response. This paper describes the design of key aspects of the new interferometer. It also presents some initial results of the performance assessment, including a detailed comparison of calibrations of NPL reference membrane hydrophones, undertaken using old and new interferometers for calibration up to 40 MHz

  4. Data Quality Assessment Methods for the Eastern Range 915 MHz Wind Profiler Network

    Science.gov (United States)

    Lambert, Winifred C.; Taylor, Gregory E.

    1998-01-01

    The Eastern Range installed a network of five 915 MHz Doppler Radar Wind Profilers with Radio Acoustic Sounding Systems in the Cape Canaveral Air Station/Kennedy Space Center area to provide three-dimensional wind speed and direction and virtual temperature estimates in the boundary layer. The Applied Meteorology Unit, staffed by ENSCO, Inc., was tasked by the 45th Weather Squadron, the Spaceflight Meteorology Group, and the National Weather Service in Melbourne, Florida to investigate methods which will help forecasters assess profiler network data quality when developing forecasts and warnings for critical ground, launch and landing operations. Four routines were evaluated in this study: a consensus time period check a precipitation contamination check, a median filter, and the Weber-Wuertz (WW) algorithm. No routine was able to effectively flag suspect data when used by itself. Therefore, the routines were used in different combinations. An evaluation of all possible combinations revealed two that provided the best results. The precipitation contamination and consensus time routines were used in both combinations. The median filter or WW was used as the final routine in the combinations to flag all other suspect data points.

  5. 500 MHz transient digitizers based on GaAs CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D A; Constable, M; Cresswell, J V; Daviel, A; LeNoble, M; Mildenberger, J; Poutissou, R

    1996-11-01

    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment studying rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCD`s are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz. (authors). 12 refs., 15 figs.

  6. Michelson mode selector for spectral range stabilization in a self-sweeping fiber laser.

    Science.gov (United States)

    Tkachenko, A Yu; Vladimirskaya, A D; Lobach, I A; Kablukov, S I

    2018-04-01

    We report on spectral range stabilization in a self-sweeping laser by adding a narrowband fiber Bragg grating (FBG) to the output mirror in the Michelson configuration. The effects of FBG reflectivity and optical path difference in the Michelson interferometer on the laser spectral dynamics are investigated. Optimization of the interferometer allows us to demonstrate broadband (over 16 nm) self-sweeping operation and reduction of the start and stop wavelength fluctuations by two orders and one order of magnitude (∼100 and 15 times) for start and stop bounds, respectively (down to several picometers). The proposed approaches significantly improve quality of the spectral dynamics and facilitate application of the self-sweeping lasers.

  7. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    Science.gov (United States)

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  8. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-01-01

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 μW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely

  9. Characterization of Definity™ Ultrasound Contrast Agent at Frequency Range of 5–15 MHz

    NARCIS (Netherlands)

    Faez, Telli; Goertz, David; de Jong, N.

    2011-01-01

    The status of vasa vasorum, which can be imaged using ultrasound contrast agents, is an indication for the progression of atherosclerosis. The preferred ultrasound frequency for this purpose is between 5 and 15 MHz. Therefore, it is essential to have knowledge about the acoustic properties of

  10. A New and Inexpensive Pyranometer for the Visible Spectral Range

    OpenAIRE

    Martínez, Miguel A.; Andújar, José M.; Enrique, Juan M.

    2009-01-01

    This paper presents the design, construction and testing of a new photodiode-based pyranometer for the visible spectral range (approx. 400 to 750 nm), whose principal characteristics are: accuracy, ease of connection, immunity to noise, remote programming and operation, interior temperature regulation, cosine error minimisation and all this at a very low cost, tens of times lower than that of commercial thermopile-based devices. This new photodiode-based pyranometer overcomes traditional prob...

  11. Broadband Laser Ranging for Position Measurements in Shock Physics Experiments

    Science.gov (United States)

    Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie

    2017-06-01

    Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.

  12. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  13. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available Frequency-difference electrical impedance tomography (fdEIT reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz. In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  14. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Science.gov (United States)

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  15. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    Science.gov (United States)

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  17. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    Science.gov (United States)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  18. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Yang, Yongying; Zhou, Yudi; Luo, Jing; Bai, Jian; Shen, Yibing; Wang, Kaiwei; Liu, Chong; Su, Lin; Yang, Liming

    2016-04-04

    A field-widened Michelson interferometer (FWMI), which is intended as the spectroscopic discriminator in ground-based high-spectral-resolution lidar (HSRL) for atmospheric aerosol detection, is described in this paper. The structure, specifications and design of the developed prototype FWMI are introduced, and an experimental approach is proposed to optimize the FWMI assembly and evaluate its comprehensive characteristic simultaneously. Experimental results show that, after optimization process, the peak-to-valley (PV) value and root-mean-square (RMS) value of measured OPD variation for the FWMI are 0.04λ and 0.008λ respectively among the half divergent angle range of 1.5 degree. Through an active locking technique, the frequency of the FWMI can be locked to the laser transmitter with accuracy of 27 MHz for more than one hour. The practical spectral discrimination ratio (SDR) for the developed FWMI is evaluated to be larger than 86 if the divergent angle of incident beam is smaller than 0.5 degree. All these results demonstrate the great potential of the developed FWMI as the spectroscopic discriminator for HSRLs, as well as the feasibility of the proposed design and optimization process. This paper is expected to provide a good entrance for the lidar community in future HSRL developments using the FWMI technique.

  19. Development of a spectral analyzer for radio-frequencies; Etude et realisation d'un analyseur de spectres pour radio-frequences

    Energy Technology Data Exchange (ETDEWEB)

    Bourbigot, J [Commission a l' Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-04-01

    This report describes an apparatus designed to show on the screen of a cathode ray tube the amplitude and frequency distribution of the spectral components of a given signal. The frequency range is from 5 kHz to 25 MHz. Two fundamental elements are used in the development of this apparatus, a ferrite and a ring modulator. The basic properties of these elements are studied and discussed. A theoretical study for the determination of the fundamental parameters of the analyzer is presented in the Appendix. (author) [French] On decrit un appareil qui permet de representer sur l'ecran d'un tube a rayons cathodiques la distribution en frequence et en amplitude des composantes spectrales d'un signal donne. Il fonctionne dans la gamme de frequences s'etendant de 5 kHz a 25 MHz. Deux elements interviennent fondamentalement dans la realisation de cet appareil: un echantillon de ferrite et un modulateur en anneau. Des proprietes particulieres de ces elements sont etudiees et discutees. En annexe une theorie s'appliquant a la determination de parametres fondamentaux de l'analyseur est developpee. (auteur)

  20. Dielectric spectroscopy in aqueous solutions of paracetamol over the frequency range of 20 Hz to 2 MHz at 293.15 K temperature

    Science.gov (United States)

    Pandit, T. R.; Rana, V. A.

    2018-05-01

    Frequency domain dielectric relaxation spectroscopy plays an important role in the study of pharmaceutical drug molecules. The complex relative dielectric permittivity ɛ*(ω) = ɛ' - j ɛ" of aqueous solutions of paracetamol in the frequency range of 20 Hz to 2 MHz at a temperature range of 293.15 K are measured with the help of Agilent precision LCR meter E4980A along with four terminal liquid test fixture Agilent 16452A. Data of complex relative permittivity are used to calculate loss tangent for all concentrations of paracetamol in distilled water. Electrode polarization relaxation time has been calculated for all solutions. Effect of variation of concentrations of paracetamol in distilled water on these dielectric parameters is discussed.

  1. Analog Fiber Optic Link with DC-100 MHz Bandwidth

    National Research Council Canada - National Science Library

    Sullivan, C. A; Girardi, P. G; Lohrmann, Dieter R

    2008-01-01

    An analog fiber optic link covering the frequency range from DC to 100 MHz was designed, constructed, and tested, in order to connect a 10 kA pulse current probe to oscilloscopes for oscillographing...

  2. 47 CFR 15.242 - Operation in the bands 174-216 MHz and 470-668 MHz.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the bands 174-216 MHz and 470-668... bands 174-216 MHz and 470-668 MHz. (a) The marketing and operation of intentional radiators under the... services, facilities, and beds for use beyond 24 hours in rendering medical treatment and institutions and...

  3. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  4. Inertial-range structure of Gross–Pitaevskii turbulence within a spectral closure approximation

    International Nuclear Information System (INIS)

    Yoshida, Kyo; Arimitsu, Toshihico

    2013-01-01

    The inertial-range structure of turbulence obeying the Gross–Pitaevskii equation, the equation of motion for quantum fluids, is analyzed by means of a spectral closure approximation. It is revealed that, for the energy-transfer range, the spectrum of the order parameter field ψ obeys k −2 law for k ≪ k * and k −1 law for k ≫ k * , where k * is the wavenumber where the characteristic timescales associated with linear and nonlinear terms are of the same order. It is also shown that, for the particle-number-transfer range, the spectrum obeys k −1 law for k ≪ k *, n and k −1/3 law for k ≫ k *,n , where k *,n is the wavenumber corresponding to k * in the particle-number-transfer range. (paper)

  5. 47 CFR 101.69 - Transition of the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands from the fixed microwave...

    Science.gov (United States)

    2010-10-01

    ..., and 2160-2200 MHz bands from the fixed microwave services to personal communications services and...) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers... MHz bands from the fixed microwave services to personal communications services and emerging...

  6. Coupler Development and Gap Field Analysis for the 352 MHz Superconducting CH-Cavity

    CERN Document Server

    Liebermann, H; Ratzinger, U; Sauer, A C

    2004-01-01

    The cross-bar H-type (CH) cavity is a multi-gap drift tube structure based on the H-210 mode currently under development at IAP Frankfurt and in collaboration with GSI. Numerical simulations and rf model measurements showed that the CH-type cavity is an excellent candidate to realize s.c. multi-cell structures ranging from the RFQ exit energy up to the injection energy into elliptical multi-cell cavities. The reasonable frequency range is from about 150 MHz up to 800 MHz. A 19-cell, β=0.1, 352 MHz, bulk niobium prototype cavity is under development at the ACCEL-Company, Bergisch-Gladbach. This paper will present detailed MicroWave Studio simulations and measurements for the coupler development of the 352 MHz superconducting CH cavity. It will describe possibilities for coupling into the superconducting CH-Cavity. The development of the coupler is supported by measurement on a room temperature CH-copper model. We will present the first results of the measurements of different couplers, e.g. capacitiv...

  7. Free spectral range adjustment of a silicon rib racetrack resonator

    International Nuclear Information System (INIS)

    Keča, T; Matavulj, P; Headley, W; Mashanovich, G

    2012-01-01

    One of the most important parameters that describe the quality of photonic components and devices is the free spectral range (FSR). In this paper, the measured outgoing power of a silicon rib racetrack resonator was compared with calculated transfer functions derived by coupled mode theory. The influence of geometric parameters on the FSR and resonant wavelength has been investigated. By altering the values of the coupling length and racetrack radius, derived transfer functions were adjusted to match experimental data. This procedure gives the possibility of estimating the FSR and resonant wavelength for different geometric parameters and predicting resonator functionality.

  8. Laser Meter of Atmospheric Inhomogeneity Properties in UV Spectral Range

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available Development of laser systems designed to operate in conditions of the terrestrial atmosphere demands reliable information about the atmosphere condition. The aerosol lidars for operational monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere.Today the majority of aerosol lidars run in the visible range. However, in terms of safety (first of all to eyes also ultra-violet (UF range is of interest. A range of the wavelengths of the harmful effect on the eye retina is from 0.38 to 1.4 mμ. Laser radiation with the wavelengths less than 0.38 mμ and over 1.4 mμ influences the anterior ambient of an eye and is safer, than laser radiation with the wavelengths of 0.38 – 1.4 mμ.The paper describes a laser meter to measure characteristics of atmospheric inhomogeneity propertis in UF spectral range at the wavelength of 0.355 mμ.As a radiation source, the meter uses a semiconductor-pumped pulse solid-state Nd:YAG laser. As a receiving lens, Kassegren's scheme-implemented mirror lens with a socket to connect optical fibre is used in the laser meter. Radiation from the receiving lens is transported through the optical fibre to the optical block. The optical block provides spectral selection of useful signal and conversion of optical radiation into electric signal.To ensure a possibility for alignment of the optical axes of receiving lens and laser radiator the lens is set on the alignment platform that enables changing lens inclination and turn with respect to the laser.The software of the laser meter model is developed in the NI LabVIEW 2012 graphic programming environment.The paper gives the following examples: a typical laser echo signal, which is back scattered by the atmosphere and spatiotemporal distribution of variation coefficient of the volumetric factor of the back scattered atmosphere. Results of multi-day measurements show that an extent of the recorded aerosol

  9. Self-organised critical features in soil radon and MHz electromagnetic disturbances: Results from environmental monitoring in Greece

    International Nuclear Information System (INIS)

    Petraki, Ermioni; Nikolopoulos, Dimitrios; Fotopoulos, Anaxagoras; Panagiotaras, Dionisios; Koulouras, Grigorios; Zisos, Athanasios; Nomicos, Constantinos; Louizi, Anna; Stonham, John

    2013-01-01

    This paper addresses the issues of self-organised critical behaviour of soil-radon and MHz-electromagnetic disorders during intense seismic activity in SW Greece. A significant radon signal is re-analysed for environmental influences with Fast Fourier Transform and multivariate statistics. Self-organisation of signals is investigated via fractal evolving techniques and detrended fluctuation analysis. New lengthy radon data are presented and analysed accordingly. The data did not show self-similarities. Similar analysis applied to new important concurrent MHz-electromagnetic signals revealed analogous behaviour to radon. The signals precursory value is discussed. - Highlights: ► New radon–MHz signals for an area with peculiar radon disorders on 2008. ► Use of spectrograms-multivariate statistics in analysing environmental parameters. ► Spectral fractal techniques and Detrended Fluctuation Analysis in all signals. ► Pre-earthquake signals followed fractional Brownian motion model. ► Hurst analysis showed persistent–antipersistent self-organised critical patterns.

  10. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation

  11. An analog memory integrated circuit for waveform sampling up to 900 MHz

    International Nuclear Information System (INIS)

    Haller, G.M.; Wooley, B.A.

    1994-01-01

    The potential of switched-capacitor technology for acquiring analog signals in high-energy physics (HEP) applications has been demonstrated in a number of analog memory designs. The design and implementation of a switched-capacitor memory suitable for capturing high-speed analog waveforms is described. Highlights of the presented circuit are a 900 MHz sampling frequency (generated on chip), input signal independent cell pedestal and sampling instances, and cell gains that are insensitive to component sizes. A two-channel version of the memory with 32 cells for each channel has been integrate in a 2-μm complementary metal oxide semiconductor (CMOS) process with polysilicon-to-polysilicon capacitors. The measured rms cell response variation in a channel after cell pedestal subtraction is less than 0.3 mV across the full input signal range. The cell-to-cell gain matching is better than 0.01% rms, and the nonlinearity is less than 0.03% for a 2.5-V input range. The dynamic range of the memory exceeds 13 bits, and the peak signal-to-(noise + distortion) ratio for a 21.4 MHz sine wave sampled at 900 MHz is 59 dB

  12. Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis

    Science.gov (United States)

    Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.

    2013-06-01

    Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.

  13. Approaches to contactless optical thermometer in the NIR spectral range based on Nd{sup 3+} doped crystalline nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaldvee, K.; Nefedova, A.V. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Fedorenko, S.G. [Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090 (Russian Federation); Vanetsev, A.S. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Orlovskaya, E.O. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Puust, L.; Pärs, M.; Sildos, I. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Ryabova, A.V. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway, 31, Moscow 115409 (Russian Federation); Orlovskii, Yu.V., E-mail: orlovski@Lst.gpi.ru [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation)

    2017-03-15

    The fluorescence kinetics and spectral intensity ratio (FIR) methods for contactless optical temperature measurement in the NIR spectral range with Nd{sup 3+} doped YAG micro- and YPO{sub 4} nanocrystals are considered and the problems are revealed. The requirements for good temperature RE doped crystalline nanoparticles sensor are formulated.

  14. GOME-2A retrievals of tropospheric NO2 in different spectral ranges – influence of penetration depth

    Directory of Open Access Journals (Sweden)

    L. K. Behrens

    2018-05-01

    Full Text Available In this study, we present a novel nitrogen dioxide (NO2 differential optical absorption spectroscopy (DOAS retrieval in the ultraviolet (UV spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A satellite. We compare the results to those from an established NO2 retrieval in the visible (vis spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere.As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution.We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of  ∼  60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only  ∼  36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV.While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical

  15. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    CERN Document Server

    Wegrzecka, I

    1999-01-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  16. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    Science.gov (United States)

    Wegrzecka, Iwona; Wegrzecki, Maciej

    1999-04-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  17. The 938 MHz resonant damping loops for the 200 MHz SPS travelling wave cavities

    CERN Document Server

    Caspers, F

    2012-01-01

    Measurements of the beam stability in the SPS in 1982 - 1983 have shown a transversal instability for high intensity beams [1]. The fact that this related technical note is published nearly 30 years later, is related to the revival of interest in the frame of SPS impedance evaluation for LS1. Until now there was just a barely known paper folder available which could be consulted on request. The instability mentioned above was identified from beam measurements as raised by a deflecting mode at approximately 940 MHz in the 200 MHz travelling wave cavities of the SPS. Estimates showed that an attenuation of this particular mode by 20 dB would be desirable. In order to achieve this attenuation some vacuum ports on top of the cavities were available. For the damping devices three requirements had to be met: - sufficient damping at about 940 MHz - no serious change of cavity input VSWR at 200 MHz - no water cooling requirement for this higher order mode coupler.

  18. Spectral decomposition of MR spectroscopy signatures with use of eigenanalysis

    International Nuclear Information System (INIS)

    Hearshen, D.O.; Windham, J.P.; Roebuck, J.R.; Helpern, J.A.

    1989-01-01

    Partial-volume contamination and overlapping resonances are common problems in whole-body MR spectroscopy and can affect absolute or relative intensity and chemical-shift measurements. One technique, based on solution of constrained eigenvalue problems, treats spectra as N-dimensional signatures and minimizes contributions of undesired signatures while maximizing contributions of desired signatures in compromised spectra. Computer simulations and both high-resolution (400-MHz) and whole-body (63.8-MHz) phantom studies tested accuracy and reproducibility of spectral decomposition. Results demonstrated excellent decomposition and good reproducibility within certain constraints. The authors conclude that eigenanalysis may improve quantitation of spectra without introducing operator bias

  19. Quantum-cascade lasers in the 7-8 μm spectral range with full top metallization

    Science.gov (United States)

    Kurochkin, A. S.; Babichev, A. V.; Denisov, D. V.; Karachinsky, L. Ya; Novikov, I. I.; Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.; Bousseksou, A.; Egorov, A. Yu

    2018-03-01

    The paper demonstrates the generation of multistage quantum-cascade lasers (QCL) in the 7-8 μm spectral range in the pulse generation mode. The active region structure we used is based on a two-phonon resonance scheme. The QCL heterostructure based on a heteropair of In0.53Ga0.47As/Al0.48In0.52As solid alloys was grown by molecular beam epitaxy and includes 50 identical stages. A waveguide geometry with top cladding with full top metallization (surface- plasmon quantum-cascade lasers) has been used. The developed QCLs have demonstrated multimodal generation in the 7-8 μm spectral range in the pulse mode in the 78-250 K temperature range. The threshold current density for a 1.6 mm long laser and a 20 μm ridge width amounted to ˜ 2.8 kA/cm2 at a temperature of 78 К. A temperature increase to 250 K causes a long-wave shift of the wavelength from 7.6 to 7.9 μm and a jth increase to 5.0 kA/cm2.

  20. THE SECOND STAGE OF FERMI at ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    International Nuclear Information System (INIS)

    Allaria, E.; DeNinno, G.; Fawley, W.M.

    2009-01-01

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  1. VizieR Online Data Catalog: Spectral flux densities from 50MHz to 50GHz (Perley+, 2017)

    Science.gov (United States)

    Perley, R. A.; Butler, B. J.

    2017-06-01

    The VLA observations were made in five observing sessions: 1998 Mar 07-08, 1998 Oct 04-05, 2014 Oct 11-12, 2016 Jan 25-26 and 2016 Jan 27. The first two of these sessions were taken under Project ID AK461. These data were taken with the original VLA correlator, with 1.6MHz bandwidth. All other data were taken with the new Jansky VLA system. (3 data files).

  2. Crosstalk Models for Short VDSL2 Lines from Measured 30 MHz Data

    Directory of Open Access Journals (Sweden)

    Leshem A

    2006-01-01

    Full Text Available In recent years, there has been a growing interest in hybrid fiber-copper access solutions, as in fiber to the basement (FTTB and fiber to the curb/cabinet (FTTC. The twisted pair segment in these architectures is in the range of a few hundred meters, thus supporting transmission over tens of MHz. This paper provides crosstalk models derived from measured data for quad cable, lengths between 75 and 590 meters, and frequencies up to MHz. The results indicate that the log-normal statistical model (with a simple parametric law for the frequency-dependent mean fits well up to MHz for both FEXT and NEXT. This extends earlier log-normal statistical modeling and validation results for NEXT over bandwidths in the order of a few MHz. The fitted crosstalk power spectra are useful for modem design and simulation. Insertion loss, phase, and impulse response duration characteristics of the direct channels are also provided.

  3. X-ray time and spectral variability as probes of ultraluminous x-ray sources

    Science.gov (United States)

    Pasham, Dheeraj Ranga Reddy

    A long-standing debate in the field of ultraluminous X-ray sources (ULXs: luminosities > 3x1039 ergs s-1) is whether these objects are powered by stellar-mass black holes (mass range of 3-25 solar masses) undergoing hyper-accretion/emission or if they host the long-sought after class of intermediate-mass black holes (mass range of a few 100-1000 solar masses) accreting material at sub-Eddington rates. We present X-ray time and energy spectral variability studies of ULXs in order to understand their physical environments and accurately weigh their compact objects. A sample of ULXs exhibit quasi-periodic oscillations (QPOs) with centroid frequencies in the range of 10-200 mHz. The nature of the power density spectra (PDS) of these sources is qualitatively similar to stellar-mass black holes when they exhibit the so-called type-C low-frequency QPOs (frequency range of 0.2-15 Hz). However, the crucial difference is that the characteristic frequencies within the PDS of ULXs, viz., the break frequencies and the centroid frequencies of the QPOs, are scaled down by a factor of approximately 10-100 compared to stellar-mass black holes. It has thus been argued that the ULX mHz QPOs are the type-C low-frequency QPO analogs of stellar-mass black holes and that the observed difference in the frequencies (a fewx0.01 Hz compared with a few Hz) is due to the presence of intermediate-mass black holes ( MULX = (QPOstellar-mass black hole }/QPOULX)xM stellar-mass black hole, where M and QPO are the mass and the QPO frequency, respectively) within these ULXs. We analyzed all the archival XMM-Newton X-ray data of ULXs NGC 5408 X-1 and M82 X-1 in order to test the hypothesis that the ULX mHz QPOs are the type-C analogs by searching for a correlation between the mHz QPO frequency and the energy spectral power-law index as type-C QPOs show such a dependence. From our multi-epoch timing and spectral analysis of ULXs NGC 5408 X-1 and M82 X-1, we found that the mHz QPOs of these sources vary

  4. Electric properties of biodiesel in the range from 20 Hz to 20 MHz. Comparison with diesel fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Prieto, L.E. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); Sorichetti, P.A. [Laboratorio de Sistemas Liquidos, Facultad de Ingenieria, Universidad de Buenos Aires, Buenos Aires (Argentina); Romano, S.D. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); CONICET: Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, Buenos Aires, 1033 (Argentina)

    2008-07-15

    Determination of electric properties at the different steps of biodiesel (BD) production contributes to a better understanding of the influence of the variables. Measurements of complex permittivity and conductivity make possible to survey efficiently the diverse steps of the industrial-scale production process, from the conditioning of the raw material to the quality control of the final product. Moreover, electrical measurements are 'non-destructive' and require relatively small sample volumes. In this work, complex permittivity spectra of BD and DF from 20 Hz to 20 MHz are presented. Experimental data were taken in a range of temperatures from 25 to 75 C, measured with an accuracy of {+-}0.1 C. The measuring system used in this work requires a sample volume of 25cm{sup 3} and gives the real part of permittivity ({epsilon}{sup '}) with an accuracy better than 1%. Dielectric loss (tg{delta}) can be measured between 10{sup -2} and 10{sup 2}. (author)

  5. Imaging melanin cancer growth in-vivo using raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz and 100 MHz

    Science.gov (United States)

    Omar, Murad; Schwarz, Mathias; Soliman, Dominik; Symvoulidis, Panagiotis; Ntziachristos, Vasilis

    2016-03-01

    We used raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz, and at 100 MHz, to monitor tumor growth, and tumor angiogenesis, which is a central hallmark of cancer, in-vivo. In this study we compared the performance, and the effect of the 50 MHz, and the 100 MHz frequencies on the quality of the final image. The system is based on a reflection-mode implementation of RSOM. The detectors used are custom made, ultrawideband, and spherically focused. The use of such detectors enables light coupling from the same side as the detector, thus reflection-mode. Light is in turn coupled using a fiber bundle, and the detector is raster scanned in the xy-plane. Subsequently, to retrieve small features, the raw data are reconstructed using a multi-bandwidth, beamforming reconstruction algorithm. Comparison of the system performance at the different frequencies shows as expected a higher resolution in case of the 100 MHz detector compared to the 50 MHz. On the other hand the 50 MHz has a better SNR, can detect features from deeper layers, and has higher angular acceptance. Based on these characteristics the 50 MHz detector was mostly used. After comparing the performance we monitored the growth of B16F10 cells, melanin tumor, over the course of 9 days. We see correspondence between the optoacoustic measurements and the cryoslice validations. Additionally, in areas close to the tumor we see sprouting of new vessels, starting at day 4-5, which corresponds to tumor angiogenesis.

  6. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  7. Optical performance of B-layer ultra-shallow-junction silicon photodiodes in the VUV spectral range

    NARCIS (Netherlands)

    Shi, L.; Sarubbi, F.; Nanver, L.K.; Kroth, U.; Gottwald, A.; Nihtianov, S.

    2010-01-01

    In recent work, a novel silicon-based photodiode technology was reported to be suitable for producing radiation detectors for 193 nm deep-ultraviolet light and for the extreme-ultraviolet (EUV) spectral range. The devices were developed and fabricated at the Delft Institute of Microsystems and

  8. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  9. Prototype 350 MHz niobium spoke-loaded cavities

    International Nuclear Information System (INIS)

    Delayen, J. R.; Kedzie, M.; Mammosser, J.; Piller, C.; Shepard, K. W.

    1999-01-01

    This paper reports the development of 350 MHz superconducting cavities of a spoke-loaded geometry, intended for the velocity range 0.2 < v/c < 0.6. Two prototype single-cell cavities have been designed, one optimized for velocity v/c = 0.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details of the design and construction are discussed, along with the results of cold tests

  10. Prototype 350 MHz niobium spoke-loaded cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J. R.; Kedzie, M.; Mammosser, J.; Piller, C.; Shepard, K. W.

    1999-05-10

    This paper reports the development of 350 MHz superconducting cavities of a spoke-loaded geometry, intended for the velocity range 0.2 < v/c < 0.6. Two prototype single-cell cavities have been designed, one optimized for velocity v/c = 0.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details of the design and construction are discussed, along with the results of cold tests.

  11. 47 CFR 90.672 - Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the... Procedures and Process-Unacceptable Interference § 90.672 Unacceptable interference to non-cellular 800 MHz...

  12. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs.

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-22

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10(-7) in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  13. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  14. Waveform digitizing at 500 MHz

    International Nuclear Information System (INIS)

    Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.

    1988-01-01

    Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10 -10 . To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the (π + → μ + ν, μ + → e + ν/bar /nu//) decay sequence in scintillator. We report on the design and construction of 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February-May 1988 run showing performance of the system for the observation of the above decay. 8 figs

  15. Waveform digitizing at 500 MHz

    International Nuclear Information System (INIS)

    Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.

    1988-01-01

    Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10/sup /minus/10/. To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the π + → μ + → e + ν/bar /nu// decay sequence in scintillator. We report on the design and construction of over 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February--May 1988 run showing performance of the system for the observation of the above decay. 9 figs

  16. Electromagnetic emission from terrestrial lightning in the 0.1-30 MHz frequency range

    Science.gov (United States)

    Karashtin, A. N.; Gurevich, A. V.

    Results of measurements carried out at SURA facility of Radiophisical Research Institute and at Tien-Shan Mountain Scientific Station of Lebedev Physical Institute using specially designed installations for short electromagnetic pulse observation in the frequency range from 0.1 to 30 MHz are presented. Specific attention is paid to initial stage of the lightning discharge. It is shown that lightning can be initiated by extensive atmospheric showers caused by high energy cosmic ray particles. Analysis of emission of few thousand lightning discharges showed that • Short wave radio emission of lightning consists of a series of short pulses with duration from less than 100 nanoseconds to several microseconds separated well longer gaps. • Background noise between lightning discharges is not differ from one observed without thunderstorm activity (at given sensitivity). Usually it is the same between lightning pulses at least at the initial stage. • Each lightning discharge radio emission starts with a number of very short (less than 100 nanoseconds at 0.7 level) bi-polar pulses. Gaps between initial pulses vary from several microseconds to few hundreds of microseconds. No radio emission was observed before the first pulse during at least 500 milliseconds. Both positive and negative polarity of the first pulses occur in approximately equal proportion in different lightning discharges while the polarity was the same in any individual lightning. • First pulse amplitude, width and waveform are consistent with predicted by the theory of combined action of runaway breakdown and extensive atmospheric shower caused by cosmic ray particle of 1016 eV energy. Lightning discharges at other planets can be initiated by cosmic ray particles as well. This work was partly supported by ISTC grant # 2236p. The work of one of the authors (A. N. Karashtin) was also partly supported by INTAS grant # 03-51-5727.

  17. Performance analysis of commercial MOSFET packages in Class E converter operating at 2.56 MHz

    DEFF Research Database (Denmark)

    Nair, Unnikrishnan Raveendran; Munk-Nielsen, Stig; Jørgensen, Asger Bjørn

    2017-01-01

    resistance and high temperature operation over Si devices have aided in the paradigm shift towards wide bandgap devices. The low gate charge requirements of SiC MOSFETs enables use of these devices in radio frequency (RF) converters using resonant topologies operating at MHz frequency range. The RF...... are not commercially available and power modules have to be custom designed for these applications. This work demonstrates performance of various commercial MOSFET packages at frequency of 2.56 MHz. Commercial SiC MOSFETs in TO-247 and D2Pak packs are tested in Class E resonant converter operating at 2.56 MHz...

  18. The 136 MHz/400 MHz earth station antenna-noise temperature prediction program documentation for RAE-B

    Science.gov (United States)

    Chin, M.

    1972-01-01

    A simulation study to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods is described. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio (SNR) of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low-noise periods. Antenna-noise temperatures at 136 MHz and 400 MHz will be predicted for selected earth-based ground stations which will support RAE-B. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973. The RAE-B mission will be expecially susceptible to SNR degradation during the two eclipses of the Sun occurring in this period.

  19. Interferometer observations of quasars from the Jodrell Bank 966-MHz survey

    International Nuclear Information System (INIS)

    Owen, F.N.; Porcas, R.W.; Neff, S.G.

    1978-01-01

    Radio observations are reported of the 68 quasars with blue magnitudes < or =19.0 identified in the Jodrell Bank 966-MHz survey. The observations were made with the Green Bank interferometer at 2695 MHz with baselines ranging from 300 m to 35 km. Model brightness distributions are presented consisting of one to four elliptical Gaussian components. A limiting resolution of 0.1 arcsec was obtained in the best cases. For radio sources with steep spectra, angular sizes ranged from <0.2 to 85 arcsec. Only two of the sources with steep radio spectra were unresolved. The median angular size for the entire sample is 8 arcsec. For quasars larger than 10 arcsec, the structures can almost always be described in triple. Twenty-nine of the 30 such sources have outer lobes on either side of the optical source and 24 of the 30 have detectable central components. The ratio of the flux densities of the outer lobes varies over a wide range but has a median value of 1.8. The ratio of the flux density of the central component to the total flux density at 2695 MHz ranges from 1% to 95%, with a median value near 10%. The existence of triple structure in the vast majority of quasars, along the with failure to detect central components in blank field sources, suggests a close connection between the nuclear activity in the radio and optical regions of the spectrum. It is also consistent with a picture in which the difference between blank fields and quasars is just transient activity in the nucleus of a distant parent galaxy

  20. Cellular responses to 836 MHz and 1,765 GHz CDMA radiations

    International Nuclear Information System (INIS)

    Park, Woong Yang; Seo, Jeong Sun; Paik, Jung Ki; Lim, Kye Jae; Yoon, Hyun Bo

    2002-01-01

    The effect of radiofrequency (RF) radiation in the cellular phone communication range (836.5 MHz and 1.765 GHz code division multiple access, CDMA) on tumorigenesis and other health effect was measured using the in vitro cell culture system. To determine whether 836.5 MHz or 1.765 GHz CDMA radiations have any genotoxic effects to induce neoplastic transformation, C3H 10T1/2 cells were exposed to either of the above radiations at a specific absorption rate (SAR) of 35.6W/Kg (836.5 MHz) and 38.2 W/kg(1.765 GHz) or sham- exposed at the same time for 7 days. Cells were maintained in incubators and refed with fresh growth medium every 3 days. At this SAR, radiofrequency radiation did not induce neoplastic transformation in vitro. The extent of alteration in the kinetics of cell proliferation indicated no significant differences between RF-radiation- and sham-exposed cells with respect to MTS assay and 8-OHdG. Under this experimental conditions tested, there is no evidence for the induction of genotoxic indices in human and mouse cells exposed in vitro for 7 days to 836.5 MHz or 1.765 GHz RF radiation at SARs of up to 35.6 or 38.2 W/kg

  1. A new and inexpensive pyranometer for the visible spectral range.

    Science.gov (United States)

    Martínez, Miguel A; Andújar, José M; Enrique, Juan M

    2009-01-01

    This paper presents the design, construction and testing of a new photodiode-based pyranometer for the visible spectral range (approx. 400 to 750 nm), whose principal characteristics are: accuracy, ease of connection, immunity to noise, remote programming and operation, interior temperature regulation, cosine error minimisation and all this at a very low cost, tens of times lower than that of commercial thermopile-based devices. This new photodiode-based pyranometer overcomes traditional problems in this type of device and offers similar characteristics to those of thermopile-based pyranometers and, therefore, can be used in any installation where reliable measurement of solar irradiance is necessary, especially in those where cost is a deciding factor in the choice of a meter. This new pyranometer has been registered in the Spanish Patent and Trademark Office under the number P200703162.

  2. A New and Inexpensive Pyranometer for the Visible Spectral Range

    Directory of Open Access Journals (Sweden)

    Miguel A. Martínez

    2009-06-01

    Full Text Available This paper presents the design, construction and testing of a new photodiode-based pyranometer for the visible spectral range (approx. 400 to 750 nm, whose principal characteristics are: accuracy, ease of connection, immunity to noise, remote programming and operation, interior temperature regulation, cosine error minimisation and all this at a very low cost, tens of times lower than that of commercial thermopile-based devices. This new photodiode-based pyranometer overcomes traditional problems in this type of device and offers similar characteristics to those of thermopile-based pyranometers and, therefore, can be used in any installation where reliable measurement of solar irradiance is necessary, especially in those where cost is a deciding factor in the choice of a meter. This new pyranometer has been registered in the Spanish Patent and Trademark Office under the number P200703162.

  3. SIMULTANEOUS OBSERVATIONS OF GIANT PULSES FROM PULSAR PSR B0031-07 AT 38 AND 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Jr-Wei; Simonetti, John H.; Bear, Brandon [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Gough, Jonathan D. [Department of Chemistry, Lehman College, CUNY, Bronx, NY 10468 (United States); Newton, Joseph R. [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Kavic, Michael [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States)

    2016-03-15

    The first station of the Long Wavelength Array was used to study PSR B0031-07 with simultaneous observations at 38 and 74 MHz. We found that 158 (0.35%) of the observed pulses at 38 MHz and 221 (0.49%) of the observed pulses at 74 MHz qualified as giant pulses (GPs) in a total of 12 hr of observations. GPs are defined as having flux densities of a factor of ≥90 times that of an average pulse (AP) at 38 MHz and ≥80 times that of an AP at 74 MHz. The cumulative distribution of pulse strength follows a power law, with an index of −4.2 at 38 MHz and −4.9 at 74 MHz. This distribution has a much more gradual slope than would be expected if observing the tail of a Gaussian distribution of normal pulses. The dispersion measure (DM) value which resulted in the largest signal to noise for dedispersed pulses was DM = 10.9 pc cm{sup −3}. No other transient pulses were detected in the data in the wide DM range from 1 to 5000 pc cm{sup −3}. There were 12 GPs detected within the same period from both 38 and 74 MHz, meaning that the majority of them are not generated in a wide band.

  4. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  5. Collision of two shock waves as a hypothetical mechanism of producing drifting radio bursts in the 400-500 MHz range

    International Nuclear Information System (INIS)

    Karlicky, M.

    1978-01-01

    After the proton flare of July 3, 1974 a hitherto unclassified phenomenon with a diffusion ''banner'' and with a considerably decelerating drift within the type II and III burst drifts range was observed in the radio dynamic spectrum between 410 and 470 MHz. The hypothesis is presented that the phenomenon is due to the collision of two shock waves, propagating against one another, during which the flux of electromagnetic radiation is considerably enhanced relative to the sum of the fluxes of the electromagnetic radiation of the individual shock waves. The Newkirk 4-density model of the corona is used to describe the phenomenon, the mechanism of plasmon-plasmon conversion in electromagnetic radiation with a double plasma frequency is considered and, according to the parameters derived from the dynamic spectrum, the velocities, radii of curvature and direction of propagation of the anticipated shock waves are analysed in a simplifed symmetric case. (author)

  6. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  7. Preliminary evaluation of vector flow and spectral velocity estimation

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... line covering the vessel diameter. A commercial ultrasound scanner (ProFocus 2202, BK Medical, Denmark) and a 7.6 MHz linear transducer was used (8670, BK Medical). The mean vector blood flow angle estimations were calculated {52(18);55(23);60(16)}°. For comparison the fixed angles for spectral...... estimation were obtained {52;56;52}°. The mean vector velocity estimates at PS {76(15);95(17);77(16)}cm/s and at end diastole (ED) {17(6);18(6);24(6)}cm/s were calculated. For comparison spectral velocity estimates at PS {77;110;76}cm/s and ED {18;18;20}cm/s were obtained. The mean vector angle estimates...

  8. Magnetorefractive effect in La0.7Ca0.3MnO3 in the infrared spectral range

    International Nuclear Information System (INIS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Granovskii, A. B.; Gan'shina, E. A.; Naumov, S. V.; Kostromitina, N. V.; Elokhina, L. V.; Gonzalez, J.

    2010-01-01

    The reflection and magnetic reflection spectra, magnetic resistance, electrical properties, and equatorial Kerr effect in La 0.7 Ca 0.3 MnO 3 crystals have been complexly investigated. The measurements have been performed in wide temperature and spectral ranges in magnetic fields up to 3.5 kOe. It has been found that magnetic reflection is a high-frequency response in the infrared spectral range to the colossal magnetore-sistance near the Curie temperature. Correlation between the field and temperature dependences of the magnetic reflection and colossal magnetoresistance has been revealed. The previously developed theory of the magnetorefractive effect for metallic systems makes it possible to explain the experimental data at the qualitative level. Both demerits of the theory of the magnetorefractive effect in application to the magnets and possible additional mechanisms responsible for the magnetic reflection are discussed.

  9. Status of the mechanical design of the 650 MHz cavities for Project X

    Energy Technology Data Exchange (ETDEWEB)

    Barbanotti, S.; Grimm, C.; Champion, M.; Foley, M.; Ginsburg, C.M.; Gonin, I.; Peterson, T.; Ristori, L.; Yakovlev, V.; /Fermilab

    2011-03-01

    In the high-energy section of the Project X Linac, acceleration of H{sup -} ions takes place in superconducting cavities operating at 650 MHz. Two families of five-cell elliptical cavities are planned: beta = 0.61 and beta = 0.9. A specific feature of the Project X Linac is low beam loading, and thus, low bandwidth and higher sensitivity to microphonics. Efforts to optimize the mechanical design of the cavities to improve their mechanical stability in response to the helium bath pressure fluctuations will be presented. These efforts take into account constraints such as cost and ease of fabrication. Also discussed will be the overall design status of the cavities and their helium jackets. The proposed design of the 3 GeV Project X superconducting (SC) Linac employs 650 MHz five-cell elliptical cavities to accelerate 1.0 mA of average H-beam current in the 160-3000 MeV energy range. The 650 MHz region of the Linac is divided into two sections with two different geometric phase velocity factors: beta = 0.61 to cover the 160-520 MeV range and beta = 0.9 to cover the 520-3000 MeV range. Approximately 40 beta = 0.61 and 150 beta = 0.9 cavities are currently planned for the project. An R&D program is in progress at FNAL, in collaboration with TJNAF and India, to develop the 650 MHz cavities for the proposed Linac design. This R&D program includes the design and fabrication of several beta = 0.61 and beta = 0.9 single-cell prototypes for evaluation prior to production of the five-cell cavities. FNAL has contracted AES to fabricate the beta = 0.9 prototypes, while TJNAF is building beta = 0.61 prototypes of their own design. In the remainder of this paper we will restrict our discussion to the five-cell beta = 0.9 cavities.

  10. Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range

    Directory of Open Access Journals (Sweden)

    Robert Kucharski

    2017-06-01

    Full Text Available GaN substrates grown by the ammonothermal method are analyzed by Fast Fourier Transformation Spectroscopy in order to study the impact of doping (both n- and p-type on their transparency in the near-infrared, mid-infrared, and terahertz spectral range. It is shown that the introduction of dopants causes a decrease in transparency of GaN substrates in a broad spectral range which is attributed to absorption on free carriers (n-type samples or dopant ionization (p-type samples. In the mid-infrared the transparency cut-off, which for a semi-insulating GaN is at ~7 µm due to an absorption on a second harmonic of optical phonons, shifts towards shorter wavelengths due to an absorption on free carriers up to ~1 µm at n ~ 1020 cm−3 doping level. Moreover, a semi-insulating GaN crystal shows good transparency in the 1–10 THz range, while for n-and p-type crystal, the transparency in this spectral region is significantly quenched below 1%. In addition, it is shown that in the visible spectral region n-type GaN substrates with a carrier concentration below 1018 cm−3 are highly transparent with the absorption coefficient below 3 cm−1 at 450 nm, a satisfactory condition for light emitting diodes and laser diodes operating in this spectral range.

  11. Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale

    Directory of Open Access Journals (Sweden)

    Anne Clasen

    2015-11-01

    Full Text Available Forest biochemical and biophysical variables and their spatial and temporal distribution are essential inputs to process-orientated ecosystem models. To provide this information, imaging spectroscopy appears to be a promising tool. In this context, the present study investigates the potential of spectral unmixing to derive sub-pixel crown component fractions in a temperate deciduous forest ecosystem. However, the high proportion of foliage in this complex vegetation structure leads to the problem of saturation effects, when applying broadband vegetation indices. This study illustrates that multiple endmember spectral mixture analysis (MESMA can contribute to overcoming this challenge. Reference fractional abundances, as well as spectral measurements of the canopy components, could be precisely determined from a crane measurement platform situated in a deciduous forest in North-East Germany. In contrast to most other studies, which only use leaf and soil endmembers, this experimental setup allowed for the inclusion of a bark endmember for the unmixing of components within the canopy. This study demonstrates that the inclusion of additional endmembers markedly improves the accuracy. A mean absolute error of 7.9% could be achieved for the fractional occurrence of the leaf endmember and 5.9% for the bark endmember. In order to evaluate the results of this field-based study for airborne and satellite-based remote sensing applications, a transfer to Airborne Imaging Spectrometer for Applications (AISA and simulated Environmental Mapping and Analysis Program (EnMAP and Sentinel-2 imagery was carried out. All sensors were capable of unmixing crown components with a mean absolute error ranging between 3% and 21%.

  12. A 2 MHz 3-port analog isolation and fanout module

    International Nuclear Information System (INIS)

    Beadle, E.R.

    1995-01-01

    In many accelerator based data acquisition systems, signal isolation is a necessary feature so ground loops are avoided. Here, a 3-port isolated circuit providing 1:3 fanout, buffering and amplification over a multi-megahertz bandwidth is presented. The circuit accepts a single input and drives 3 independently isolated output channels, up to ± 10 V into 50 ohms. The input and output isolation is supplied via a dual optocoupler, and the power isolation is achieved with DC/DC converters. In each channel, a voltage feedback amplifier is used in combination with the optocoupler to form a transimpedance configuration with the gain-bandwidth product (GBP) set by a pair of resistors. The feedback amplifier linearizes the optocoupler transfer characteristics using a servo technique and also controls the circuit drift, nonlinearity, and bandwidth. The circuit has demonstrated long-term drift of 4 MHz, and a SNR of >55 db in a 1 MHz bandwidth with < 1% THD for a 10 V amplitude sinusoidal input. With few modifications, this design is capable of providing input/output gain and bandwidth in the range of 10--50 MHz

  13. A 70 MHz pulsing beam system for protons

    International Nuclear Information System (INIS)

    An Shizhong; Zhang Tianjue; Wu Longcheng; Lv Yinlong; Song Guofang; Guan Fengping; Jia Xianlu

    2008-01-01

    A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction as China Institute of Atomic Energy (CIAE). A 70 MHz continuous H - beam with the energy of dozens of keV or a hundred keV will be pulsed to pulse length of less than 10 ns with the repetition rate of 1-8 MHz. A 70.487 MHz buncher will be used to compress the DC beam into the RF phase acceptance of ±30° of the CRM cyclotron. The 2.2 MHz sine waveform will be used for the chopper. A pulse with the repetition rate to 4.4 MHz and pulse length less than 10 ns is expected after CRM cyclotron. (authors)

  14. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  15. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  16. VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)

    Science.gov (United States)

    Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir

    2018-01-01

    The VLA Low Band Ionosphere and Transient Experiment (VLITE; ) is a commensal observing system on the Karl G. Janksy Very Large Array (VLA) which was developed by the Naval Research Laboratory and NRAO. A 64 MHz sub-band from the prime focus 240-470 MHz dipoles is correlated during nearly all regular VLA observations. VLITE uses dedicated samplers and fibers, as well as a custom designed, real-time DiFX software correlator, and requires no additional resources from the VLA system running the primary science program. The experiment has been operating since November 2014 with 10 antennas; a recent expansion in summer 2017 increased that number to 16 and more than doubled the number of baselines.The VLA Sky Survey (VLASS; ), is an ongoing survey of the entire sky visible to the VLA at a frequency of 2-4 GHz. The observations are made using an "on-the-fly" (OTF) continuous RA scanning technique which fills in the sky by observing along rows of constant declination. VLITE breaks the data into 2-second integrations and correlates these at a central position every 1.5 degrees. All data for each correlator position is imaged separately, corrected and weighted by an appropriately elongated primary beam model, and then combined in the image plane to create a mosaic of the sky. A catalog of the sources is extracted to provide a 340 MHz sky model.We present preliminary images and catalogs from the 2017 VLASS observations which began in early September, 2017, and continued on a nearly daily basis throughout the fall. In addition to providing a unique sky model at 340 MHz, these data complement VLASS by providing spectral indices for all cataloged sources.

  17. NICER Discovers mHz Oscillations and Marginally Stable Burning in GS 1826-24

    Science.gov (United States)

    Strohmayer, Tod E.; Gendreau, Keith C.; Keek, Laurens; Bult, Peter; Mahmoodifar, Simin; Chakrabarty, Deepto; Arzoumanian, Zaven; NICER Science Team

    2018-01-01

    To date, marginally stable thermonuclear burning, evidenced as mHz X-ray flux oscillations, has been observed in only five accreting neutron star binaries, 4U 1636-536, 4U 1608-52, Aql X-1, 4U 1323-619 and Terzan 5 X-2. Here we report the discovery with NASA's Neutron Star Interior Composition Explorer (NICER) of such oscillations from the well-known X-ray burster GS 1826-24. NICER observed GS 1826-24 on 9 September, 2017 for a total exposure of about 4 ksec. Timing analysis revealed highly significant oscillations at a frequency of 8.2 mHz in two successive pointings. The oscillations have a fractional modulation amplitude of approximately 3% for photon energies less than 6 keV. The observed frequency is consistent with the range observed in the other mHz QPO systems, and indeed is slightly higher than the frequency measured in 4U 1636-536 below which mHz oscillations ceased and unstable burning (X-ray bursts) resumed. We discuss the mass accretion rate dependence of the oscillations as well as the X-ray spectrum as a function of pulsation phase. We place the observations in the context of the current theory of marginally stable burning and briefly discuss the potential for constraining neutron star properties using mHz oscillations.

  18. Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range.

    Science.gov (United States)

    Shuvaev, A M; Astakhov, G V; Pimenov, A; Brüne, C; Buhmann, H; Molenkamp, L W

    2011-03-11

    We report the observation of a giant Faraday effect, using terahertz (THz) spectroscopy on epitaxial HgTe thin films at room temperature. The effect is caused by the combination of the unique band structure and the very high electron mobility of HgTe. Our observations suggest that HgTe is a high-potential material for applications as optical isolator and modulator in the THz spectral range.

  19. A statistical study of faint radio sources at 81.5 MHz

    International Nuclear Information System (INIS)

    Duffett-Smith, P.J.; Purvis, A.; Hewish, A.

    1980-01-01

    The method of interplanetary scintillations (IPS) together with the technique of background deflection analysis (P(D)) have been used to determine the mean angular size and the sky density of scintillating radio sources in the range 2 to 3 Jy at 81.5 MHz. It is found that the radio power from a high proportion of the sources in this range comes from one or two components of angular diameter about 0.7 arcsec. (author)

  20. Spectral Index Properties of millijansky Radio Sources in ATLAS

    Science.gov (United States)

    Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.

    2012-01-01

    At the faintest radio flux densities (S1.4GHz 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.

  1. 47 CFR 101.82 - Reimbursement and relocation expenses in the 2110-2150 MHz and 2160-2200 MHz bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Reimbursement and relocation expenses in the... License Transfers, Modifications, Conditions and Forfeitures § 101.82 Reimbursement and relocation expenses in the 2110-2150 MHz and 2160-2200 MHz bands. (a) Reimbursement and relocation expenses for the...

  2. Inversion of the OH 1720-MHz line

    International Nuclear Information System (INIS)

    Elitzur, M.

    1975-01-01

    It is shown that the OH 1720-MHz line can be strongly inverted by collisions which excite the rotation states. It is also argued that radiative pumps (of any wave length) can invert strongly only the 1612-MHz line. (author)

  3. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser.

    Science.gov (United States)

    Zhang, Shumin; Lu, Fuyun; Dong, Xinyong; Shum, Ping; Yang, Xiufeng; Zhou, Xiaoqun; Gong, Yandong; Lu, Chao

    2005-11-01

    We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multi-channel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8 nm, or 99 GHz at 1555 nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

  4. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  5. Automatic Echographic Detection of Halloysite Clay Nanotubes in a Low Concentration Range.

    Science.gov (United States)

    Conversano, Francesco; Pisani, Paola; Casciaro, Ernesto; Di Paola, Marco; Leporatti, Stefano; Franchini, Roberto; Quarta, Alessandra; Gigli, Giuseppe; Casciaro, Sergio

    2016-04-11

    Aim of this work was to investigate the automatic echographic detection of an experimental drug delivery agent, halloysite clay nanotubes (HNTs), by employing an innovative method based on advanced spectral analysis of the corresponding "raw" radiofrequency backscatter signals. Different HNT concentrations in a low range (5.5-66 × 10 10 part/mL, equivalent to 0.25-3.00 mg/mL) were dispersed in custom-designed tissue-mimicking phantoms and imaged through a clinically-available echographic device at a conventional ultrasound diagnostic frequency (10 MHz). The most effective response (sensitivity = 60%, specificity = 95%), was found at a concentration of 33 × 10 10 part/mL (1.5 mg/mL), representing a kind of best compromise between the need of enough particles to introduce detectable spectral modifications in the backscattered signal and the necessity to avoid the losses of spectral peculiarity associated to higher HNT concentrations. Based on theoretical considerations and quantitative comparisons with literature-available results, this concentration could also represent an optimal concentration level for the automatic echographic detection of different solid nanoparticles when employing a similar ultrasound frequency. Future dedicated studies will assess the actual clinical usefulness of the proposed approach and the potential of HNTs for effective theranostic applications.

  6. 77 FR 22720 - Service Rules for Advanced Wireless Services in the 2000-2020 MHz and 2180-2200 MHz Bands, etc.

    Science.gov (United States)

    2012-04-17

    ... operations in 1930-1995 MHz and uplink operations in 2000-2020 MHz. To address this apparent tension, we seek... includes broadcast auxiliary service (BAS) and cable television service (CARS) operations, as well as...

  7. Observation of solar radio bursts using swept-frequency radiospectrograph in 20 - 40 MHz band

    International Nuclear Information System (INIS)

    Aoyama, Takashi; Oya, Hiroshi.

    1987-01-01

    A new station for the observation of solar decametric radio bursts has been developed at Miyagi Vocational Training College in Tsukidate, Miyagi, Japan. Using the swept frequency radiospectrograph covering a frequency range from 20 MHz to 40 MHz within 200 msec, with bandwidth of 30 kHz, the radio outbursts from the sun have been currently monitored with colored dynamic spectrum display. After July 1982, successful observations provide the data which include all types of solar radio bursts such as type I, II, III, IV and V in the decametric wavelength range. In addition to these typical radio bursts, rising tone bursts with fast drift rate followed by strong type III bursts and a series of bursts repeating rising and falling tone bursts with slow drift rate have been observed. (author)

  8. Spectral response analysis of PVDF capacitive sensors

    Science.gov (United States)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  9. Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz).

    Science.gov (United States)

    Shynkaryk, Mykola V; Ji, Taehyun; Alvarez, Valente B; Sastry, Sudhir K

    2010-09-01

    The ohmic heating (OH) rate of peaches was studied at fixed electric field strength of 60 V.cm⁻¹, square-shaped instant reversal bipolar pulses, and frequencies varying within 50 Hz to 1 MHz. Thermal damage of tissue was evaluated from electrical admittivity. It showed that the time for half disruption (τ(T)) of tissue was required more than 10 h at temperatures below 40 °C. However, cellular thermal disruption occurred almost instantly (τ(T) 90 °C). Electrical conductivity σ(o) and admittivity σ(o)* of tissue at T(o)= 0 °C and their temperature coefficients (m, m*) were calculated. For freeze-thawed tissues, σ and σ* as well as m and m* were nearly indifferent to the frequency. However, for the intact tissue, both σ(o), σ(o)* and m, m* were frequency dependent. For freeze-thawed product, the power factor (P) was approximately equal to 1 and indifferent to the frequency and temperature. On the other hand, strong frequency dependence was observed for intact tissue with the minimum P approximately equal to 0.68 in the range of tens of kHz. The time required to reach a target temperature t(f) was evaluated. The t(f) increased with frequency up to the middle of the range of tens of kHz and thereafter continuously decreased. Samples exposed to the low-frequency electric field demonstrated faster electro-thermal damage rates. The textural relaxation data supported more intense damage kinetics at low-frequency OH. It has been demonstrated that a combination of high-frequency OH with pasteurization at moderate temperature followed by rapid cooling minimizes texture degradation of peach tissue. In this study, we investigated the electric field frequency effect on the rate of OH of peaches. It was shown that the time required for reaching the target temperature is strongly dependent upon the frequency. Samples exposed to low-frequency OH demonstrated higher electro-thermal damage rates. It has been shown that the combination of high-frequency OH with

  10. 47 CFR 90.355 - LMS operations below 512 MHz.

    Science.gov (United States)

    2010-10-01

    ... PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.355 LMS... LMS station and the nearest co-channel base station of another licensee operating a voice system is 75... MHz, 150-170 MHz, and 450-512 MHz bands may use either base-mobile frequencies currently assigned the...

  11. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    Science.gov (United States)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  12. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-09-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  13. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  14. High-power circulator test results at 350 and 700 MHz

    International Nuclear Information System (INIS)

    Roybal, W.; Bradley, J.T.; Rees, D.E.

    2000-01-01

    The high-power RF systems for the Accelerator Production of Tritium (APT) program require high-power circulators at 350 MHz and 700 MHz to protect 1 MW Continuous Wave (CW) klystrons from reflected power. The 350 MHz circulator is based on the CERN, EXF, and APS designs and has performed very well. The 700 MHz circulator is a new design. Prototype 700 MHz circulators have been high-power tested at Los Alamos National Laboratory (LANL). The first of these circulators has satisfied performance requirements. The circulator requirements, results from the testing, and lessons learned from this development are presented and discussed

  15. Age dependence of dielectric properties of bovine brain and ocular tissues in the frequency range of 400 MHz to 18 GHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard

    2005-01-01

    In order to identify possible age-dependent dielectric properties of brain and eye tissues in the frequency range of 400 MHz to 18 GHz, measurements on bovine grey and white matter as well as on cornea, lens (cortical) and the vitreous body were performed using a commercially available open-ended coaxial probe and a computer-controlled vector network analyser. Freshly excised tissues of 52 animals of two age groups (42 adult animals, i.e. 16-24 month old and 10 young animals, i.e. 4-6 month old calves) were examined within 8 min (brain tissue) and 15 min (eye tissue), respectively, of the animals' death. Tissue temperatures for the measurements were 32 ± 1 0 C and 25 ± 1 0 C for brain and eye tissues, respectively. Statistical analysis of the measured data revealed significant differences in the dielectric properties of white matter and cortical lens tissue between the adult and the young group. In the case of white matter the mean values of conductivity and permittivity of young tissue were 15%-22% and 12%-15%, respectively, higher compared to the adult tissue in the considered frequency range. Similarly, young cortical lens tissue was 25%-76% higher in conductivity and 27%-39% higher in permittivity than adult cortical lens tissue

  16. A simple-architecture fibered transmission system for dissemination of high stability 100 MHz signals

    Science.gov (United States)

    Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.

    2018-05-01

    We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.

  17. Coherent spectral amplitude coded label detection for DQPSK payload signals in packet-switched metropolitan area networks

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Guerrero Gonzalez, Neil; Jensen, Jesper Bevensee

    2011-01-01

    We report on an experimental demonstration of a frequency swept local oscillator-based spectral amplitude coding (SAC) label detection for DQPSK signals after 40km of fiber transmission. Label detection was performed for a 10.7Gbaud DQPSK signal labeled with a SAC label composed of four......-frequency tones with 500MHz spectral separation. Successful label detection and recognition is achieved with the aid of digital signal processing that allows for substantial reduction of the complexity of the detection optical front-end....

  18. Simulation of the High-Pass Filter for 56MHz Cavity for RHIC

    International Nuclear Information System (INIS)

    Wu, Q.; Ben-Zvi, I.

    2010-01-01

    The 56MHz Superconducting RF (SRF) cavity for RHIC places high demands High Order Mode (HOM) damping, as well as requiring a high field at gap with fundamental mode frequency. The damper of 56MHz cavity is designed to extract all modes to the resistance load outside, including the fundamental mode. Therefore, the circuit must incorporate a high-pass filter to reflect back the fundamental mode into the cavity. In this paper, we show the good frequency response map obtained from our filter's design. We extract a circuit diagram from the microwave elements that simulate well the frequency spectrum of the finalized filter. We also demonstrate that the power dissipation on the filter over its frequency range is small enough for cryogenic cooling.

  19. Status of HLT1 sequence and path towards 30 MHz

    CERN Document Server

    De Cian, Michel; Gligorov, Vladimir; Hasse, Christoph; Hulsbergen, Wouter; Latham, Thomas Edward; Ponce, Sebastien; Quagliani, Renato; Schreiner, Henry Fredrick; Stemmle, Simon Benedikt; Van Tilburg, Jeroen; Zdybal, Milosz Jerzy; Williams, J Michael

    2018-01-01

    We present the current status of the HLT1 reconstruction sequence for the LHCb upgrade, both in terms of the number of events which can be processed per second and the achievable physics performance on a selected range of benchmark modes. We present detailed profiling of the various algorithms, describe the bottlenecks, and outline a strategy towards an HLT1 able to process the LHCb upgrade data at 30 MHz

  20. 47 CFR 90.259 - Assignment and use of frequencies in the bands 216-220 MHz and 1427-1432 MHz.

    Science.gov (United States)

    2010-10-01

    ... MHz band are secondary to the Wireless Medical Telemetry Service except in the locations specified in... operations are secondary to the Wireless Medical Telemetry Service in the 1429-1431.5 MHz band. (3) All... 47 Telecommunication 5 2010-10-01 2010-10-01 false Assignment and use of frequencies in the bands...

  1. High resolution observed in 800 MHz DNP spectra of extremely rigid type III secretion needles

    International Nuclear Information System (INIS)

    Fricke, Pascal; Mance, Deni; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Baldus, Marc; Lange, Adam

    2016-01-01

    The cryogenic temperatures at which dynamic nuclear polarization (DNP) solid-state NMR experiments need to be carried out cause line-broadening, an effect that is especially detrimental for crowded protein spectra. By increasing the magnetic field strength from 600 to 800 MHz, the resolution of DNP spectra of type III secretion needles (T3SS) could be improved by 22 %, indicating that inhomogeneous broadening is not the dominant effect that limits the resolution of T3SS needles under DNP conditions. The outstanding spectral resolution of this system under DNP conditions can be attributed to its low overall flexibility.

  2. High resolution observed in 800 MHz DNP spectra of extremely rigid type III secretion needles

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Pascal [Leibniz-Institut für Molekulare Pharmakologie, Department of Molecular Biophysics (Germany); Mance, Deni [Utrecht University, NMR Research Group, Bijvoet Center for Biomolecular Research (Netherlands); Chevelkov, Veniamin [Leibniz-Institut für Molekulare Pharmakologie, Department of Molecular Biophysics (Germany); Giller, Karin; Becker, Stefan [Max Planck Institute for Biophysical Chemistry, Department of NMR-Based Structural Biology (Germany); Baldus, Marc [Utrecht University, NMR Research Group, Bijvoet Center for Biomolecular Research (Netherlands); Lange, Adam, E-mail: alange@fmp-berlin.de [Leibniz-Institut für Molekulare Pharmakologie, Department of Molecular Biophysics (Germany)

    2016-08-15

    The cryogenic temperatures at which dynamic nuclear polarization (DNP) solid-state NMR experiments need to be carried out cause line-broadening, an effect that is especially detrimental for crowded protein spectra. By increasing the magnetic field strength from 600 to 800 MHz, the resolution of DNP spectra of type III secretion needles (T3SS) could be improved by 22 %, indicating that inhomogeneous broadening is not the dominant effect that limits the resolution of T3SS needles under DNP conditions. The outstanding spectral resolution of this system under DNP conditions can be attributed to its low overall flexibility.

  3. Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range

    OpenAIRE

    Robert Kucharski; Łukasz Janicki; Marcin Zajac; Monika Welna; Marcin Motyka; Czesław Skierbiszewski; Robert Kudrawiec

    2017-01-01

    GaN substrates grown by the ammonothermal method are analyzed by Fast Fourier Transformation Spectroscopy in order to study the impact of doping (both n- and p-type) on their transparency in the near-infrared, mid-infrared, and terahertz spectral range. It is shown that the introduction of dopants causes a decrease in transparency of GaN substrates in a broad spectral range which is attributed to absorption on free carriers (n-type samples) or dopant ionization (p-type samples). In the mid-in...

  4. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway.

    Science.gov (United States)

    Gökçek-Saraç, Çiğdem; Er, Hakan; Kencebay Manas, Ceren; Kantar Gok, Deniz; Özen, Şükrü; Derin, Narin

    2017-09-01

    To demonstrate the molecular effects of acute and chronic exposure to both 900 and 2100 MHz radiofrequency electromagnetic radiation (RF-EMR) on the hippocampal level/activity of some of the enzymes - including PKA, CaMKIIα, CREB, and p44/42 MAPK - from N-methyl-D-aspartate receptor (NMDAR)-related signaling pathways. Rats were divided into the following groups: sham rats, and rats exposed to 900 and 2100 MHz RF-EMR for 2 h/day for acute (1 week) or chronic (10 weeks), respectively. Western blotting and activity measurement assays were used to assess the level/activity of the selected enzymes. The obtained results revealed that the hippocampal level/activity of selected enzymes was significantly higher in the chronic groups as compared to the acute groups at both 900 and 2100 MHz RF-EMR exposure. In addition, hippocampal level/activity of selected enzymes was significantly higher at 2100 MHz RF-EMR than 900 MHz RF-EMR in both acute and chronic groups. The present study provides experimental evidence that both exposure duration (1 week versus 10 weeks) and different carrier frequencies (900 vs. 2100 MHz) had different effects on the protein expression of hippocampus in Wistar rats, which might encourage further research on protection against RF-EMR exposure.

  5. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    Science.gov (United States)

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  6. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    International Nuclear Information System (INIS)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B.; Thais, Frédéric; Loisel, Guillaume; Blenski, T.; Poirier, M.; Busquet, M.; Bastiani-Ceccotti, S.; Serres, F.; Ducret, J. E.; Foelsner, W.; Gilles, D.; Turck-Chieze, S.

    2012-01-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  7. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B. [CEA, DAM, DIF, 91297 Arpajon (France); Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M. [CEA, DSM, IRAMIS, Service Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France); Busquet, M. [ARTEP Inc, Ellicott City, Maryland 21042 (United States); Bastiani-Ceccotti, S.; Serres, F. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Ducret, J. E. [CELIA, UMR5107, CEA, CNRS, Universite de Bordeaux, 33400 Talence (France); Foelsner, W. [Max Planck Instituet fuer Quantum Optik, 85748 Garching (Germany); Gilles, D.; Turck-Chieze, S. [CEA, DSM, IRFU, Service d' astrophysique, 91191 Gif-sur-Yvette (France)

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  8. Cambridge observations at 38-115 MHz and their implications for space astronomy

    International Nuclear Information System (INIS)

    Saunders, R.

    1987-01-01

    The design and performance of the Cambridge LF telescopes are reviewed. Consideration is given to the 151-MHz 6C telescope, the 38-MHz and 151-MHz LF synthesis telescopes, 81.5-MHz interplanetary scintillation observations with the 3.6-hectare array, long-baseline interferometry at 81.5 MHz, and the use of the Jodrell Bank MERLIN for 151-MHz closure-phase observations of bright sources. The strict limitation on the field mappable at a given resolution in ground-based observations at these frequencies is pointed out, and some outstanding astronomical problems requiring 0.3-30-MHz space observations are listed. 7 references

  9. Considerations of Physical Design and Implementation for 5 MHz-100 W LLC Resonant DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Akinori Hariya

    2016-01-01

    Full Text Available Recently, high power-density, high power-efficiency, and wide regulation range isolated DC-DC converters have been required. This paper presents considerations of physical design and implementation for wide regulation range MHz-level LLC resonant DC-DC converters. The circuit parameters are designed with 3–5 MHz-level switching frequency. Also, the physical parameters and the size of the planar transformer are optimized by using derived equations and finite element method (FEM with Maxwell 3D. Some experiments are done with prototype LLC resonant DC-DC converter using gallium nitride high electron mobility transistors (GaN-HEMTs; the input voltage is 42–53 V, the reference output voltage is 12 V, the load current is 8 A, the maximum switching frequency is about 5 MHz, the total volume of the circuit is 4.1 cm3, and the power density of the prototype converter is 24.4 W/cc.

  10. Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order

    Science.gov (United States)

    Yang, Chun; Feiguin, Adrian

    We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.

  11. Optimization of attenuation estimation in reflection for in vivo human dermis characterization at 20 MHz.

    Science.gov (United States)

    Fournier, Céline; Bridal, S Lori; Coron, Alain; Laugier, Pascal

    2003-04-01

    In vivo skin attenuation estimators must be applicable to backscattered radio frequency signals obtained in a pulse-echo configuration. This work compares three such estimators: short-time Fourier multinarrowband (MNB), short-time Fourier centroid shift (FC), and autoregressive centroid shift (ARC). All provide estimations of the attenuation slope (beta, dB x cm(-1) x MHz(-1)); MNB also provides an independent estimation of the mean attenuation level (IA, dB x cm(-1)). Practical approaches are proposed for data windowing, spectral variance characterization, and bandwidth selection. Then, based on simulated data, FC and ARC were selected as the best (compromise between bias and variance) attenuation slope estimators. The FC, ARC, and MNB were applied to in vivo human skin data acquired at 20 MHz to estimate betaFC, betaARC, and IA(MNB), respectively (without diffraction correction, between 11 and 27 MHz). Lateral heterogeneity had less effect and day-to-day reproducibility was smaller for IA than for beta. The IA and betaARC were dependent on pressure applied to skin during acquisition and IA on room and skin-surface temperatures. Negative values of IA imply that IA and beta may be influenced not only by skin's attenuation but also by structural heterogeneity across dermal depth. Even so, IA was correlated to subject age and IA, betaFC, and betaARC were dependent on subject gender. Thus, in vivo attenuation measurements reveal interesting variations with subject age and gender and thus appeared promising to detect skin structure modifications.

  12. Infrared normal spectral emissivity of Ti-6Al-4V alloy in the 500-1150 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Risueno, E. [CIC Energigune, Parque Tecnologico, Albert Einstein 48, 01510 Minano, Alava, Spain. (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer First heating cycle acts as a annealing, relieving the surface stresses. Black-Right-Pointing-Pointer Stress relieving occurs mainly above 900 K. Black-Right-Pointing-Pointer Emissivity decreases between 0.35 and 0.10 in the 2.5-22 {mu}m spectral range. Black-Right-Pointing-Pointer Emissivity increases linearly with temperature, with the same slope for {lambda} > 10 {mu}m. Black-Right-Pointing-Pointer Good agreement between resistivity and emissivity by means of Hagen-Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti-6Al-4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 {mu}m to about 0.10 at 22 {mu}m. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen-Rubens equation.

  13. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  14. A 10.7 MHz CMOS SC radio IF filter using orthogonal hardware modulation

    NARCIS (Netherlands)

    Quinn, P.J.; Hartingsveldt, van K.; Roermund, van A.H.M.

    2000-01-01

    FM radio receivers require an IF filter for channel selection, customarily set at an IF center frequency of 10.7 MHz. Up until now, the limitations of integrated radio selectivity filters in terms of power dissipation, dynamic range, and cost are such that it is still required to use an external

  15. Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors.

    Science.gov (United States)

    Hwang, Insik; Kim, Jaehyun; Lee, Minkyung; Lee, Min-Wook; Kim, Hee-Joong; Kwon, Hyuck-In; Hwang, Do Kyung; Kim, Myunggil; Yoon, Haeyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2017-11-09

    Purified semiconducting single-walled carbon nanotubes (sc-SWCNTs) have been researched for optoelectronic applications due to their high absorption coefficient from the visible to even the near-infrared (NIR) region. Nevertheless, the insufficient electrical characteristics and incompatibility with conventional CMOS processing have limited their wide utilization in this emerging field. Here, we demonstrate highly detective and wide spectral/dynamic range phototransistors incorporating floated heterojunction active layers which are composed of low-temperature sol-gel processed n-type amorphous indium gallium zinc oxide (a-IGZO) stacked with a purified p-type sc-SWCNT layer. To achieve a high and broad spectral/dynamic range photo-response of the heterogeneous transistors, photochemically functionalized sc-SWCNT layers were carefully implemented onto the a-IGZO channel area with a floating p-n heterojunction active layer, resulting in the suppression of parasitic charge leakage and good bias driven opto-electrical properties. The highest photosensitivity (R) of 9.6 × 10 2 A W -1 and a photodetectivity (D*) of 4 × 10 14 Jones along with a dynamic range of 100-180 dB were achieved for our phototransistor in the spectral range of 400-780 nm including continuous and minimal frequency independent behaviors. More importantly, to demonstrate the diverse application of the ultra-flexible hybrid photosensor platform as skin compatible electronics, the sc-SWCNT/a-IGZO phototransistors were fabricated on an ultra-thin (∼1 μm) polyimide film along with a severe static and dynamic electro-mechanical test. The skin-like phototransistors showed excellent mechanical stability such as sustainable good electrical performance and high photosensitivity in a wide dynamic range without any visible cracks or damage and little noise interference after being rolled-up on the 150 μm-thick optical fiber as well as more than 1000 times cycling.

  16. In-vivo validation of fast spectral velocity estimation techniques – preliminary results

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Gran, Fredrik; Pedersen, Mads Møller

    2008-01-01

    Spectral Doppler is a common way to estimate blood velocities in medical ultrasound (US). The standard way of estimating spectrograms is by using Welch's method (WM). WM is dependent on a long observation window (OW) (about 100 transmissions) to produce spectrograms with sufficient spectral...... resolution and contrast. Two adaptive filterbank methods have been suggested to circumvent this problem: the Blood spectral Power Capon method (BPC) and the Blood Amplitude and Phase Estimation method (BAPES). Previously, simulations and flow rig experiments have indicated that the two adaptive methods can...... was scanned using the experimental ultrasound scanner RASMUS and a B-K Medical 5 MHz linear array transducer with an angle of insonation not exceeding 60deg. All 280 spectrograms were then randomised and presented to a radiologist blinded for method and OW for visual evaluation: useful or not useful. WMbw...

  17. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  18. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  19. On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua

    2018-04-01

    The power spectrum of magnetic fluctuations has a break at the high-frequency end of the inertial range. Beyond this break, the spectrum becomes steeper than the Kolmogorov law f ‑5/3. The break frequency was found to be associated with plasma beta (β). However, the full-range β dependence of the ion-scale spectral break has not been presented before in observational studies. Here we show the continuous variation of the break frequency on full-range β in the solar wind turbulence. By using measurements from the WIND and Ulysses spacecraft, we show the break frequency (f b ) normalized, respectively, by the frequencies corresponding to ion inertial length (f di ), ion gyroradius ({f}ρ i), and cyclotron resonance scale (f ri ) as a function of β for 1306 intervals. Their β values spread from 0.005 to 20, which nearly covers the full β range of the observed solar wind turbulence. It is found that {f}b/{f}{di} ({f}b/{f}ρ i) generally decreases (increases) with β, while {f}b/{f}{ri} is nearly a constant. We perform a linear fit on the statistical result, and obtain the empirical formulas {f}b/{f}{di}∼ {β }-1/4, {f}b/{f}ρ i∼ {β }1/4, and {f}b/{f}{ri}∼ 0.90 to describe the relation between f b and β. We also compare our observations with a numerical simulation and the prediction by ion cyclotron resonance theory. Our result favors the idea that the cyclotron resonance is an important mechanism for energy dissipation at the spectral break. When β ≪ 1 and β ≫ 1, the break at f di and {f}ρ i may also be associated with other processes.

  20. 78 FR 42701 - Improving Public Safety Communications in the 800 MHz Band

    Science.gov (United States)

    2013-07-17

    ...] Improving Public Safety Communications in the 800 MHz Band AGENCY: Federal Communications Commission. ACTION...-901 MHz/935- 940 MHz band (900 MHz B/ILT Band) to allow a qualified entity to file an application for..., manufacturing, energy) to non-commercial (e.g., clerical, educational, philanthropic, medical). In 2004, the...

  1. 47 CFR 90.353 - LMS operations in the 902-928 MHz band.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false LMS operations in the 902-928 MHz band. 90.353... operations in the 902-928 MHz band. LMS systems may be authorized within the 902-928 MHz band, subject to the..., scientific, and medical (ISM) devices and radiolocation Government stations that operate in the 902-928 MHz...

  2. Full-range k-domain linearization in spectral-domain optical coherence tomography.

    Science.gov (United States)

    Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A

    2011-03-10

    A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.

  3. B-mode for thyroid nodule characterization at 7.5 MHz versus 13 MHz; Attualita' dell'ecografia nel modo B nella caratterizzazione delle malattie nodulari tiroidee: studio ecografiaco di confronto con sonde da 7.5 e da 13 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Amodio, F.; Carbone, M.; Rossi, E.; Brunese, L.; Vallone, G. [Neaples Univ., Neaples (Italy). Dipt. di Scienze Biomorfologiche, Ist. di Scienze Radiologiche; Pisano, G.; Iorio, S. [Neaples Univ., Neaples (Italy). Dipt. di Scienze Biomorfologiche, Sez. di Anatomia Patologica e Citopatologica; Benincasa, G. [Neaples Univ., Neaples (Italy). Dipt. di Scienze Biomorfologiche, Ist. di Endocrinologia, Medicina Interna e Malattie della Nutrizione

    1999-09-01

    The paper investigates B-mode ultrasonography capabilities in diagnosis and characterizing thyroid nodules and compared the personal experience findings with those of few analytical studies in the literature. It is also compared the diagnostic accuracy of conventional 7.5 MHz versus more recent 13 MHz transducers. [Italian] Lo studio presenta i dati sull'accuratezza diagnostica dell'ecografia nel modo B con trasduttore da 7.5 MHz con quella di un trasduttore di piu' recente commercializzazione da 13 MHz. E' una tappa fondamentale nell'iter diagnostico del nodulo tiroideo, se integrata con lo studio qualitativo (color e power Doppler) e semiquantitativo (Doppler pulsato) della vascolarizzazione nodulare.

  4. Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008

    Directory of Open Access Journals (Sweden)

    J. Jung

    2010-06-01

    Full Text Available As a part of the IGAC (International Global Atmospheric Chemistry Mega-cities program, aerosol physical and optical properties were continuously measured from March 2007 to March 2008 at an urban site (37.57° N, 126.94° E in Seoul, Korea. Spectral optical properties of long-range transported Asian dust and pollution aerosols have been investigated based on the year long measurement data. Optically measured black carbon/thermally measured elemental carbon (BC/EC ratio showed clear monthly variation with high values in summer and low values in winter mainly due to the enhancement of light attenuation by the internal mixing of EC. Novel approach has been suggested to retrieve the spectral light absorption coefficient (babs from Aethalometer raw data by using BC/EC ratio. Mass absorption efficiency, σabs (=babs/EC at 550 nm was determined to be 9.0±1.3, 8.9±1.5, 9.5±2.0, and 10.3±1.7 m2 g−1 in spring, summer, fall, and winter, respectively with an annual mean of 9.4±1.8 m2 g−1. Threshold values to classify severe haze events were suggested in this study. Increasing trend of aerosol single scattering albedo (SSA with wavelength was observed during Asian dust events while little spectral dependence of SSA was observed during long-range transport pollution (LTP events. Satellite aerosol optical thickness (AOT and Hysplit air mass backward trajectory analyses as well as chemical analysis were performed to characterize the dependence of spectral optical properties on aerosol type. Results from this study can provide useful information for studies on regional air quality and aerosol's effects on climate change.

  5. Infrared normal spectral emissivity of Ti–6Al–4V alloy in the 500–1150 K temperature range

    International Nuclear Information System (INIS)

    González-Fernández, L.; Risueño, E.; Pérez-Sáez, R.B.; Tello, M.J.

    2012-01-01

    Highlights: ► First heating cycle acts as a annealing, relieving the surface stresses. ► Stress relieving occurs mainly above 900 K. ► Emissivity decreases between 0.35 and 0.10 in the 2.5–22 μm spectral range. ► Emissivity increases linearly with temperature, with the same slope for λ > 10 μm. ► Good agreement between resistivity and emissivity by means of Hagen–Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti–6Al–4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 μm to about 0.10 at 22 μm. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen–Rubens equation.

  6. Spectral analysis of geological materials in the Central Volcanic Range of Costa Rica and its relationship to the remote detection of anomalies

    OpenAIRE

    Rejas, J. G.; Martínez-Frías, J.; Martínez, R.; Bonatti, J.

    2014-01-01

    The aim of this work is the comparative study of methods for calculating spectral anomalies from imaging spectrometry in several test areas of the Central Volcanic Range (CVR) of Costa Rica. In the detection of anomalous responses it is assumed no prior knowledge of the targets, so that the pixels are automatically separated according to their spectral information significantly differentiated with respect to a background to be estimated, either globally for the full scene, either locally by i...

  7. Radio quite site qualification for the Brasilian Southern Space Observatory by monitoring the low frequency 10-240 MHz Eletromagnetic Spectrum

    Science.gov (United States)

    da Rosa, Guilherme Simon; Schuch, Nelson Jorge; Espindola Antunes, Cassio; Gomes, Natanael

    The monitoring of the level of the radio interference in the Site of the Brazilian Southern Space Observatory - SSO/CRS/CIE/INPE - MCT, (29S, 53W), São Martinho da Serra, RS, in south a of Brazil, aims to gather spectral data for the Observatory's Site qualification as a radio quite site for installation of Radio Astronomy instrumentation, free of radio noise. The determination of the radio interference level is being conducted by using a spectrum analyzer and Omni directional antennas remotely controlled through a GPIB interface, via IEEE 488 bus, and programs written in C language. That procedure allows the scanning of the Electromagnetic Spectrum power over the examined frequency range from 10 - 240MHz. The methodology for these tests was to amplify the radio signal from the antenna by a block amplifier. Subsequently, the received signals are evaluated by the spectrum analyzer. A dedicated PC computer is used for the control and data acquisition, with the developed software. The data are instantly stored in digital format and remotely transferred via VNC software from the SSO-Observatory Site to the Radio Frequency and Telecommunication Laboratory at the Southern Regional Space Research Center - CRS/CIE/INPE - MCT, in Santa Maria, RS, for analysis and storage on the radio interference data base for long period. It is compared the SSO's Electromagnetic Spectrum data obtained since the beginning of the 1990's decade, before the Site constructions, with the current observed data. Some radio transmissions were found in the observed frequency range due to some local FMs, mostly between 93.5 MHz to 105.7 MHz, which were observed in previous monitoring. A good evidence of the site quality is the fact that the power of the Electromagnetic Spectrum is much lower than that measured at the Radio Frequency and Telecommunication Laboratory, in Santa Maria, RS, where the signals do not exceed -60 dB. On the Site of the SSO, due to the low power observed, weak radio signals

  8. Parameters of 1-4 mHz (Pc5/Pi3) ULF pulsations during the intervals preceding non-triggered substorms at high geomagnetic latitudes

    Science.gov (United States)

    Nosikova, Nataliya; Yagova, Nadezda; Baddeley, Lisa; Kozyreva, Olga; Lorentzen, Dag; Pilipenko, Vyacheslav

    2017-04-01

    One of the important questions for understanding substorm generation is the possible existence of specific pre-substorm variations of plasma, particles and electromagnetic field parameters. In this case analyzing of isolated non-triggered substorms (i.e. substorms that occur under quiet geomagnetic conditions without any visible triggers in IMF or SW) gives benefits for investigation of processes of substorm preparation. It was shown in previous studies that during a few hours preceding a non-triggered isolated substorm, coherent geomagnetic and aurroral luminosity pulsations are observed. Moreover, PSD, amplitudes of geomagnetic fluctuations in Pc5/Pi3 (1-4 mHz) frequency range and some spectral parameters differ from those registered on days without substorms. In present work this sort of pulsations has been studied in details. Features of longitudinal and latitudinal profiles are presented. Possible correlation with ULF disturbances in IMF and SW as well as in the magnetotail/magnetosheath are discussed.

  9. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  10. Synthesis, growth, spectral, electrical, mechanical and thermal characterization of a potential optical material: γ-glycine single crystal

    Science.gov (United States)

    Sivakumar, N.; Jayavel, R.; Anbalagan, G.; Yadav, R. R.

    2018-06-01

    Gamma glycine, an organic material was grown by slow solvent evaporation method. Conventional polythermal method was employed in the temperature range, 30-50 °C to obtain the solubility and the metastable zonewidth. The crystal and molecular structures were analyzed by X-ray powder diffraction, FT-IR and FT-Raman spectral studies. Optical refractive index was determined by prism coupling technique and was found to be 1.4488. Electrical properties such as ac conductivity and activation energy were studied for different temperatures in the frequency range from 40 Hz to 6 MHz. The dc electrical conductivity was estimated from the Cole-Cole plot and the values were found to be 2.19 × 10-6 Sm-1 at 353K and 1.46 × 10-6 Sm-1 at 373K respectively. Mechanical studies on the grown crystal revealed that the material belongs to soft materials category. Thermal conductivity and specific heat capacities were estimated by Hot Disk Thermal Constants Analyzer.

  11. Acceleration performance of a 50-MHz split coaxial RFQ and the design of a 25.5-MHz prototype

    International Nuclear Information System (INIS)

    Tokuda, N.; Arai, S.; Fukushima, T.; Morimoto, T.; Tojyo, E.

    1989-03-01

    Acceleration tests on a 50-MHz split coaxial RFQ have been conducted at INS. The 2-m long RFQ has accelerated protons from 2 to 60 keV. The experimental results concerning beam emittance and transmission efficiency agree with predictions of a computer simulation. Following this success, we are fabricating a 25.5-MHz prototype of 2-m long. The issues of the study are to establish a structure standing a high-power operation and to accelerate heavy ions with a charge-to-mass ratio larger than 1/30. (author)

  12. Discrimination between landmine and mine-like targets using wavelets and spectral analysis

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Mohana

    2013-06-01

    Ground penetrating radar (GPR is a powerful and non-destructive geophysical approach with a wide range of advantages in the field of landmine inspection. In the present paper, we apply different simulation models with Vivaldi antenna and mine-like targets by using the CST Microwave studio program. The field work is carried out by using a GPR device of model SIR 2000 from GSSI (Geophysical Survey Systems Incorporation connected to 900 MHz antenna where the targets were buried in sand soil. Depending on the fact that the receiving powers (reflected, refracted and scattered from the different materials are different, we study the spectral power densities for the received power from the different targets. The techniques used in this study are: direct fast Fourier transform, short time Fourier transform (spectrogram, wavelets transform and denoising techniques. Our results ought to be considered as finger prints for different scanned targets during this work. So we can discriminate between landmines and mine-like targets.

  13. Experimental Evaluation of Several Key Factors Affecting Root Biomass Estimation by 1500 MHz Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    John C. Bain

    2017-12-01

    Full Text Available Accurate quantification of coarse roots without disturbance represents a gap in our understanding of belowground ecology. Ground penetrating radar (GPR has shown significant promise for coarse root detection and measurement, however root orientation relative to scanning transect direction, the difficulty identifying dead root mass, and the effects of root shadowing are all key factors affecting biomass estimation that require additional research. Specifically, many aspects of GPR applicability for coarse root measurement have not been tested with a full range of antenna frequencies. We tested the effects of multiple scanning directions, root crossover, and root versus soil moisture content in a sand-hill mixed oak community using a 1500 MHz antenna, which provides higher resolution than the oft used 900 MHz antenna. Combining four scanning directions produced a significant relationship between GPR signal reflectance and coarse root biomass (R2 = 0.75 (p < 0.01 and reduced variability encountered when fewer scanning directions were used. Additionally, significantly fewer roots were correctly identified when their moisture content was allowed to equalize with the surrounding soil (p < 0.01, providing evidence to support assertions that GPR cannot reliably identify dead root mass. The 1500 MHz antenna was able to identify roots in close proximity of each other as well as roots shadowed beneath shallower roots, providing higher precision than a 900 MHz antenna. As expected, using a 1500 MHz antenna eliminates some of the deficiency in precision observed in studies that utilized lower frequency antennas.

  14. Dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 0.5–8.5 eV

    Directory of Open Access Journals (Sweden)

    C. Sturm

    2015-10-01

    Full Text Available The dielectric tensor of Ga2O3 in the monoclinic (β phase was determined by generalized spectroscopic ellipsometry in a wide spectral range from 0.5 eV to 8.5 eV as well as by density functional theory calculations combined with many-body perturbation theory including quasiparticle and excitonic effects. The dielectric tensors obtained by both methods are in excellent agreement with each other and the observed transitions in the dielectric function are assigned to the corresponding valence bands. It is shown that the off-diagonal element of the dielectric tensor reaches values up to |εxz| ≈ 0.30 and cannot be neglected. Even in the transparent spectral range where it is quite small (|εxz| < 0.02 it causes a rotation of the dielectric axes around the symmetry axis of up to 20°.

  15. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Mishra, Anurag [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeunggi-do 440-746 (Korea, Republic of); Ellingboe, Albert R. [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9, Ireland and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-09-15

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHz power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.

  16. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    International Nuclear Information System (INIS)

    Pan, Y Z; Miao, J G; Liu, W J; Huang, X J; Wang, Y B

    2014-01-01

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking. (letter)

  17. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.; For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Hwy, WA 6009 (Australia); Crocker, R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bhandari, S.; Callingham, J. R.; Gaensler, B. M.; Hancock, P. J.; Lenc, E. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Sydney NSW (Australia); Hurley-Walker, N.; Seymour, N. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Offringa, A. R. [Netherlands Institute for Radio Astronomy (ASTRON), P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Hanish, D. J. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), P.O. Box 76, Epping, NSW 1710 (Australia); Dwarakanath, K. S. [Raman Research Institute, Bangalore 560080 (India); Hindson, L. [Centre of Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); McKinley, B., E-mail: anna.kapinska@uwa.edu.au [School of Physics, The University of Melbourne, Parkville, VIC 3010 (Australia); and others

    2017-03-20

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGC 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).

  18. Discovery of a 7 mHz X-Ray Quasi-Periodic Oscillation from the Most Massive Stellar-Mass Black Hole IC 10 X-1

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard F.

    2013-01-01

    We report the discovery with XMM-Newton of an approx.. = 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33 sigma confidence level and has a fractional amplitude (% rms) and a quality factor, Q is identical with nu/delta nu, of approx. = 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of approx. = -2, and a QPO at 7 mHz. At frequencies approx. > 0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the "heartbeat" mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz "dipper QPOs" of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  19. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  20. Radio spectra of pulsars. Pt. 1

    International Nuclear Information System (INIS)

    Izekova, V.A.; Kuzmin, A.D.; Malofeev, V.M.; Shitov, Yu.P.

    1981-01-01

    The results of flux pulsar radioemission measurements at meter wavelength, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value is vsub(m) = 130 +- 80 MHz. Averaged on many pulsars, the spectral index is negative in the 39-61 MHz frequency range (anti ALPHA 39 sub(-) 61 = -1.4 +- 0.4) and passes through zero at frequencies of about 100 MHz, becoming positive in the 100-400 MHz frequency range. It was noticed that the spectral index in the 100-400 MHz interval depends upon such pulsar periods as α 100 sub(-) 400 = 0.7 log p + 0.9. Using the spectra, more precise radio luminosities of pulsars have been computed. (orig.)

  1. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range

    Science.gov (United States)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther

    2018-04-01

    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  2. Comparison of 864 and 935 MHz microwave radiation effects on cell culture

    International Nuclear Information System (INIS)

    Pavicic, I.; Trosic, I.; Sarolic, A.

    2005-01-01

    The aim of our study was to evaluate and compare the effect of 864 and 935 MHz microwave radiation on proliferation, colony forming and viability of Chinese hamster lung cells, cell line V79. Cell cultures were exposed both to the 864 MHz microwave field in transversal electromagnetic mode cell (TEM-cell) and to the 935 MHz field in Gigahertz transversal electromagnetic mode cell (GTEM-cell) for 1, 2 and 3 hours. Philips PM 5508 generator connected with a signal amplifier generated the frequency of 864 MHz, whereas Hewlett Packard HP8657A signal generator was used to generate the frequency of 935 MHz. The average specific absorption rate (SAR) was 0.08 W/kg for 864 MHz and 0.12 W/kg for 935 MHz. To determine the cell growth, V79 cells were plated in the concentration of 1x10 4 cells per milliliter of nutrient medium. Cells were cultured in a humidified atmosphere at 37 degrees of C in 5% CO 2 . Cell proliferation was determined by cell counts for each hour of exposure during the five post-exposure days. To identify colony-forming ability, cells were cultivated in the concentration of 40 cells/mL of medium and incubated as described above. Colony-forming ability was assessed for each exposure time by colony count on post-exposure day 7. Trypan blue exclusion test was used to determine cell viability. On post-exposure day 3, the growth curve of 864 MHz irradiated cells showed a significant decrease (p less than 0.05) after 2 and 3 hours of exposure in comparison with control cells. Cells exposed to 935 MHz radiation showed a significant decrease (p less than 0.05) after 3 hours of exposure on post-exposure day 3. Both the colony-forming ability and viability of 864 MHz and 935 MHz exposed cells did not significantly differ from matched control cells. In conclusion, both applied RF/MW fields have shown similar effects on cell culture growth, colony forming and cell viability of the V79 cell line.(author)

  3. Spectral Slope as an Indicator of Pasture Quality

    Directory of Open Access Journals (Sweden)

    Rachel Lugassi

    2014-12-01

    Full Text Available In this study, we develop a spectral method for assessment of pasture quality based only on the spectral information obtained with a small number of wavelengths. First, differences in spectral behavior were identified across the near infrared–shortwave infrared spectral range that were indicative of changes in chemical properties. Then, slopes across different spectral ranges were calculated and correlated with the changes in crude protein (CP, neutral detergent fiber (NDF and metabolic energy concentration (MEC. Finally, partial least squares (PLS regression analysis was applied to identify the optimal spectral ranges for accurate assessment of CP, NDF and MEC. Six spectral domains and a set of slope criteria for real-time evaluation of pasture quality were suggested. The evaluation of three level categories (low, medium, high for these three parameters showed a success rate of: 73%–96% for CP, 72%–87% for NDF and 60%–85% for MEC. Moreover, only one spectral range, 1748–1764 nm, was needed to provide a good estimation of CP, NDF and MEC. Importantly, five of the six selected spectral regions were not affected by water absorbance. With some modifications, this rationale can be applied to further analyses of pasture quality from airborne sensors.

  4. Sustaining GHz oscillation of carbon nanotube based oscillators via a MHz frequency excitation

    International Nuclear Information System (INIS)

    Motevalli, Benyamin; Taherifar, Neda; Liu, Jefferson Zhe

    2016-01-01

    There have been intensive studies to investigate the properties of gigahertz nano-oscillators based on multi-walled carbon nanotubes (MWCNTs). Many of these studies, however, revealed that the unique telescopic translational oscillations in such devices would damp quickly due to various energy dissipation mechanisms. This challenge remains the primary obstacle against its practical applications. Herein, we propose a design concept in which a GHz oscillation could be re-excited by a MHz mechanical motion. This design involves a triple-walled CNT, in which sliding of the longer inner tube at a MHz frequency can re-excite and sustain a GHz oscillation of the shorter middle tube. Our molecular dynamics (MD) simulations prove this design concept at ∼10 nm scale. A mathematical model is developed to explore the feasibility at a larger size scale. As an example, in an oscillatory system with the CNT’s length above 100 nm, the high oscillatory frequency range of 1.8–3.3 GHz could be excited by moving the inner tube at a much lower frequency of 53.4 MHz. This design concept together with the mechanical model could energize the development of GHz nano-oscillators in miniaturized electro-mechanical devices. (paper)

  5. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz

    Directory of Open Access Journals (Sweden)

    Ruben M. Sandoval

    2016-12-01

    Full Text Available IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN and Mobile Ad-hoc Networks (MANET, from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a “default” communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.

  6. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz.

    Science.gov (United States)

    Sandoval, Ruben M; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-12-31

    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a "default" communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.

  7. Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion.

    Science.gov (United States)

    Dai, Yitang; Li, Jilong; Zhang, Ziping; Yin, Feifei; Li, Wangzhe; Xu, Kun

    2017-07-10

    Traditional photonics-assisted real-time Fourier transform (RTFT) usually suffers from limited chromatic dispersion, huge volume, or large time delay and attendant loss. In this paper we propose frequency-to-time mapping (FTM) by spectrally-discrete dispersion to increase frequency sensitivity greatly. The novel media has periodic ON/OFF intensity frequency response while quadratic phase distribution along disconnected channels, which de-chirps matched optical input to repeated Fourier-transform-limited output. Real-time FTM is then obtained within each period. Since only discrete phase retardation rather than continuously-changed true time delay is required, huge equivalent dispersion is then available by compact device. Such FTM is theoretically analyzed, and implementation by cascaded optical ring resonators is proposed. After a numerical example, our theory is demonstrated by a proof-of-concept experiment, where a single loop containing 0.5-meters-long fiber is used. FTM under 400-MHz unambiguous bandwidth and 25-MHz resolution is reported. Highly-sensitive and linear mapping is achieved with 6.25 ps/MHz, equivalent to ~4.6 × 10 4 -km standard single mode fiber. Extended instantaneous bandwidth is expected by ring cascading. Our proposal may provide a promising method for real-time, low-latency Fourier transform.

  8. Brightness distribution data on 2918 radio sources at 365 MHz

    International Nuclear Information System (INIS)

    Cotton, W.D.; Owen, F.N.; Ghigo, F.D.

    1975-01-01

    This paper is the second in a series describing the results of a program attempting to fit models of the brightness distribution to radio sources observed at 365 MHz with the Bandwidth Synthesis Interferometer (BSI) operated by the University of Texas Radio Astronomy Observatory. Results for a further 2918 radio sources are given. An unresolved model and three symmetric extended models with angular sizes in the range 10--70 arcsec were attempted for each radio source. In addition, for 348 sources for which other observations of brightness distribution are published, the reference to the observations and a brief description are included

  9. 27.12 MHz Radiofrequency Ablation for Benign Cutaneous Lesions

    Directory of Open Access Journals (Sweden)

    Dong Hyun Kim

    2016-01-01

    Full Text Available As surgical and/or ablative modalities, radiofrequency (RF has been known to produce good clinical outcomes in dermatology. Recently, 27.12 MHz RF has been introduced and has several advantages over conventional 4 or 6 MHz in terms of the precise ablation and lesser pain perception. We aimed to evaluate the clinical efficacy and safety of 27.12 MHz RF for the treatment of benign cutaneous lesions. Twenty female patient subjects were enrolled. Digital photography and a USB microscope camera were used to monitor the clinical results before one session of treatment with 27.12 MHz RF and after 1 and 3 weeks. Treated lesions included telangiectasias, cherry and spider angiomas, skin tags, seborrheic keratoses, lentigo, milium, dilated pore, acne, piercing hole, and one case of neurofibroma. For vascular lesions, clinical results were excellent for 33.3%, good for 44.4%, moderate for 11.1%, and poor for 11.1%. For nonvascular lesions (epidermal lesions and other benign cutaneous lesions, clinical results were excellent for 48.3%, good for 45.2%, moderate for 3.2%, and poor for 3.2%. No serious adverse events were observed. Mild adverse events reported were slight erythema, scale, and crust. The 27.12 MHz RF treatment of benign vascular and nonvascular lesions appears safe and effective after 3 weeks of follow-up.

  10. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    Science.gov (United States)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  11. ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astro-Math Building, AS/NTU, 1 Roosevelt Road Sec. 4, Taipei 10617, Taiwan (China); Masui, Kiyoshi Wesley [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada); Oppermann, Niels; Pen, Ue-Li [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto ON, M5S 3H8 (Canada); Peterson, Jeffrey B., E-mail: ywliao@asiaa.sinica.edu.tw [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Avenue, Pittsburgh PA 15213 (United States)

    2016-12-20

    Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project. The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.

  12. ACCURATE POLARIZATION CALIBRATION AT 800 MHz WITH THE GREEN BANK TELESCOPE

    International Nuclear Information System (INIS)

    Liao, Yu-Wei; Chang, Tzu-Ching; Kuo, Cheng-Yu; Masui, Kiyoshi Wesley; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.

    2016-01-01

    Polarization leakage of foreground synchrotron emission is a critical issue in H i intensity mapping experiments. While the sought-after H i emission is unpolarized, polarized foregrounds such as Galactic and extragalactic synchrotron radiation, if coupled with instrumental impurity, can mimic or overwhelm the H i signals. In this paper, we present the methodology for polarization calibration at 700–900 MHz, applied on data obtained from the Green Bank Telescope (GBT). We use astrophysical sources, both polarized and unpolarized sources including quasars and pulsars, as calibrators to characterize the polarization leakage and control systematic effects in our GBT H i intensity mapping project. The resulting fractional errors on polarization measurements on boresight are well controlled to within 0.6%–0.8% of their total intensity. The polarized beam patterns are measured by performing spider scans across both polarized quasars and pulsars. A dominant Stokes I to V leakage feature and secondary features of Stokes I to Q and I to U leakages in the 700–900 MHz frequency range are identified. These characterizations are important for separating foreground polarization leakage from the H i 21 cm signal.

  13. Evaluation Of Electromagnetic Fields For Frequencies 900 MHz-1 800 MHz In Tirana

    Directory of Open Access Journals (Sweden)

    Kuqi Dhurata

    2015-07-01

    Full Text Available Abstract The massive use of mobile phone as a communication tool nowadays is accompanied the ever increasing interest of the public and researchers for the possibly impact on human health as a result of exposure to the electromagnetic fields that accompany these devices. Therefore knowing the level of exposure electromagnetic fields of this electronic equipment has been and will be in the future interest object to the public and the subject of study for the researchers. In this paper are presents the results of measurements of electromagnetic fields for the frequencies 900 MHz - 1800 MHz used in mobile telephone in Tirana. These frequencies are included in the area radio frequency RF and Microwave MW 300 Hz - 300 GHz in the spectrum of electromagnetic waves and belong to non-ionizing radiation. The measurements were performed in different areas of Tirana. The purpose is to assess the level of exposure electromagnetic fields especially near areas where mobile antennas are mounted construction of dynamic digital mapping and comparison with the permitted levels of the exposure defined by the International Commission of Non Ionizing Radiation Protection ICNIRP. Through this publication the aim of the authors is to provide real information and reliable for the population.

  14. A soft mHz quasi periodic oscillation in the fastest accreting millisecond pulsar.

    Science.gov (United States)

    Ferrigno, C.; Bozzo, E.; Sanna, A.; Pintore, F.; Papitto, A.; Riggio, A.; Burderi, L.; Di Salvo, T.; Iaria, R.; D'ai, A.

    2017-10-01

    We illustrate the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint Nustar and XMM-Newton observation performed during the source outburst in 2015. The lightcurve of the source is characterized by a flaring behavior, with typical rise and decay timescales of ˜120 s. The flares are accompanied by a remarkable spectral variability, with the X- ray emission being generally softer at the peak of the flares. A strong QPO is detected at ˜8 mHz in the power spectrum of the source and clearly associated to its flaring-like behaviour. This feature has the strongest power at soft X-rays (hearth-beat in the black-hole binary GRS 1915+105, or, less likely, to unstable nuclear burning on the neutron star surface, as observed in the burster 4U 1636-536. This phenomenology could be ideally studied with the large throughput and wide energy coverage of present and future instruments.

  15. Reduction of environmental MHz noise for SQUID application

    Energy Technology Data Exchange (ETDEWEB)

    Araya, T. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: araya@sup.ee.es.osaka-u.ac.jp; Kitamura, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Kamishiro, M. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sakuta, K. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Itozaki, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: itozaki@ee.es.osaka-u.ac.jp

    2006-10-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise.

  16. Reduction of environmental MHz noise for SQUID application

    International Nuclear Information System (INIS)

    Araya, T.; Kitamura, Y.; Kamishiro, M.; Sakuta, K.; Itozaki, H.

    2006-01-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise

  17. Characterization of an Atmospheric-Pressure Argon Plasma Generated by 915 MHz Microwaves Using Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Robert Miotk

    2017-01-01

    Full Text Available The paper presents the investigations of an atmospheric-pressure argon plasma generated at 915 MHz microwaves using the optical emission spectroscopy (OES. The 915 MHz microwave plasma was inducted and sustained in a waveguide-supplied coaxial-line-based nozzleless microwave plasma source. The aim of presented investigations was to estimate parameters of the generated plasma, that is, excitation temperature of electrons Texc, temperature of plasma gas Tg, and concentration of electrons ne. Assuming that excited levels of argon atoms are in local thermodynamic equilibrium, Boltzmann method allowed in determining the Texc temperature in the range of 8100–11000 K. The temperature of plasma gas Tg was estimated by comparing the simulated spectra of the OH radical to the measured one in LIFBASE program. The obtained Tg temperature ranged in 1200–2800 K. Using a method based on Stark broadening of the Hβ line, the concentration of electrons ne was determined in the range from 1.4 × 1015 to 1.7 × 1015 cm−3, depending on the power absorbed by the microwave plasma.

  18. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  19. A HIGH-RESOLUTION, MULTI-EPOCH SPECTRAL ATLAS OF PECULIAR STARS INCLUDING RAVE, GAIA , AND HERMES WAVELENGTH RANGES

    International Nuclear Information System (INIS)

    Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaz

    2010-01-01

    We present an Echelle+CCD, high signal-to-noise ratio, high-resolution (R = 20,000) spectroscopic atlas of 108 well-known objects representative of the most common types of peculiar and variable stars. The wavelength interval extends from 4600 to 9400 A and includes the RAVE, Gaia, and HERMES wavelength ranges. Multi-epoch spectra are provided for the majority of the observed stars. A total of 425 spectra of peculiar stars, which were collected during 56 observing nights between 1998 November and 2002 August, are presented. The spectra are given in FITS format and heliocentric wavelengths, with accurate subtraction of both the sky background and the scattered light. Auxiliary material useful for custom applications (telluric dividers, spectrophotometric stars, flat-field tracings) is also provided. The atlas aims to provide a homogeneous database of the spectral appearance of stellar peculiarities, a tool useful both for classification purposes and inter-comparison studies. It could also serve in the planning and development of automated classification algorithms designed for RAVE, Gaia, HERMES, and other large-scale spectral surveys. The spectrum of XX Oph is discussed in some detail as an example of the content of the present atlas.

  20. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi

  1. A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz

    Directory of Open Access Journals (Sweden)

    Dinh Khanh Ho

    2017-06-01

    Full Text Available This paper presents a novel dual-band rectenna for RF energy harvesting system. This rectenna is created from a dual-band antenna and a dual-band rectifier which operates at GSM bands (900 MHz and 1800 MHz. The printed monopole antenna is miniaturized by two meander-lines. The received signal from the receiving antenna is rectified by a voltage double using Schottky diode SMS-7630. The rectifier is optimized for low input power level of -20dBm using harmonic balance. Prototype is designed and fabricated. The simulation is validated by measurement with power conversion efficiency of 20% and 40.8% (in measurement at the input power level of -20dBm. The proposed rectenna has output voltage from 183-415 mV. From the measured results, this rectenna provides the possibility to harvest the ambient electromagnetic energy for powering low-power electronic devices.

  2. 47 CFR 80.303 - Watch on 156.800 MHz (Channel 16).

    Science.gov (United States)

    2010-10-01

    ... Section 80.303 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Coast Station Safety... maintain a safety watch on the frequency 156.800 MHz except when transmitting on 156.800 MHz. (b) A coast...

  3. The detection of prostatic carcinoma. 4- or 7-MHz transrectal ultrasonography?

    NARCIS (Netherlands)

    Vleeming, R.; Noordzij, J. W.; de Reijke, T. M.; Kurth, K. H.

    1993-01-01

    In this prospective study a comparison of 4-versus 7-MHz transrectal ultrasonography for the detection of prostatic carcinoma is reported. A total of 150 prostates were biopsied due to suspicion of malignancy arising at either digital rectal examination, 4- and/or 7-MHz transrectal ultrasonography,

  4. Developments and directions in 200 MHz very high power RF at LAMPF

    International Nuclear Information System (INIS)

    Cliff, R.; Bush, E.D.; DeHaven, R.A.; Harris, H.W.; Parsons, M.

    1991-01-01

    The Los Alamos Meson Physics Facility (LAMPF), is a linear particle accelerator a half-mile long. It produces an 800 million electron- volt hydrogen-ion beam at an average current of more than one milliamp. The first RF section of the accelerator consists of four Alvarez drift-tube structures. Each of these structures is excited by an amplifier module at a frequency of 201.25 MHz. These amplifiers operate at a duty of 13 percent or more and at peak pulsed power levels of about 2.5 million watts. The second RF accelerator section consists of forty-four side-coupled-cavity structures. Each of these is excited by an amplifier module at a frequency of 805 MHz. These amplifiers operate at a duty of up to 12 percent and at peak pulsed power levels of about 1.2 million watts. The relatively high average beam current in the accelerator places a heavy demand upon components in the RF systems. The 201-MHz modules have always required a large share of maintenance efforts. In recent years, the four 201.25 MHz modules have been responsible for more than twice as much accelerator down-time as have the forty-four 805 MHz modules. This paper reviews recent, ongoing, and planned improvements in the 201-MHz systems. The Burle Industries 7835 super power triode is used in the final power amplifiers of each of the 201-MHz modules. This tube has been modified for operation at LAMPF by the addition of Penning ion vacuum''pumps.'' This has enabled more effective tube conditioning and restarting. A calorimetry system of high accuracy is in development to monitor tube plate-power dissipation

  5. Electromagnetic radiation-2450 MHz exposure causes cognition ...

    Indian Academy of Sciences (India)

    83

    Electromagnetic radiation-2450 MHz exposure causes cognition deficit with mitochondrial. 1 ... decrease in levels of acetylcholine, and increase in activity of acetyl ...... neuronal apoptosis and cognitive disturbances in sevoflurane or propofol ...

  6. Spectral behavior of a terahertz quantum-cascade laser.

    Science.gov (United States)

    Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A

    2009-10-26

    In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

  7. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.; Favre, Cécile [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Schilke, Peter [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Lis, Dariusz C.; Emprechtinger, Martin; Phillips, Thomas G. [Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Bell, Tom A.; Cernicharo, José; Esplugues, Gisela B. [Centro de Astrobiología (CSIC/INTA), Laboratiorio de Astrofísica Molecular, Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Blake, Geoffrey; Kleshcheva, Maria [Division of Geological and Planetary Sciences, California Institute of Technology, MS 150-21, Pasadena, CA 91125 (United States); Gupta, Harshal; Pearson, John [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lord, Steven [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Marcelino, Nuria [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); McGuire, Brett A. [Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125 (United States); Plume, Rene [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 (Canada); Van der Tak, Floris [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen (Netherlands); and others

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.

  8. Frequency Arrangement For 700 MHz Band

    Directory of Open Access Journals (Sweden)

    Ancans G.

    2015-02-01

    Full Text Available The 694-790 MHz (700 MHz band was allocated by the 2012 World Radiocommunication Conference (WRC-12 in ITU Region 1 (Europe included, to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT. At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15. In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.

  9. Spectral counting assessment of protein dynamic range in cerebrospinal fluid following depletion with plasma-designed immunoaffinity columns

    Directory of Open Access Journals (Sweden)

    Borg Jacques

    2011-06-01

    Full Text Available Abstract Background In cerebrospinal fluid (CSF, which is a rich source of biomarkers for neurological diseases, identification of biomarkers requires methods that allow reproducible detection of low abundance proteins. It is therefore crucial to decrease dynamic range and improve assessment of protein abundance. Results We applied LC-MS/MS to compare the performance of two CSF enrichment techniques that immunodeplete either albumin alone (IgYHSA or 14 high-abundance proteins (IgY14. In order to estimate dynamic range of proteins identified, we measured protein abundance with APEX spectral counting method. Both immunodepletion methods improved the number of low-abundance proteins detected (3-fold for IgYHSA, 4-fold for IgY14. The 10 most abundant proteins following immunodepletion accounted for 41% (IgY14 and 46% (IgYHSA of CSF protein content, whereas they accounted for 64% in non-depleted samples, thus demonstrating significant enrichment of low-abundance proteins. Defined proteomics experiment metrics showed overall good reproducibility of the two immunodepletion methods and MS analysis. Moreover, offline peptide fractionation in IgYHSA sample allowed a 4-fold increase of proteins identified (520 vs. 131 without fractionation, without hindering reproducibility. Conclusions The novelty of this study was to show the advantages and drawbacks of these methods side-to-side. Taking into account the improved detection and potential loss of non-target proteins following extensive immunodepletion, it is concluded that both depletion methods combined with spectral counting may be of interest before further fractionation, when searching for CSF biomarkers. According to the reliable identification and quantitation obtained with APEX algorithm, it may be considered as a cheap and quick alternative to study sample proteomic content.

  10. 78 FR 28749 - Private Land Mobile Radio Stations Below 800 MHz

    Science.gov (United States)

    2013-05-16

    ... these proposals, with the exception of those issues relating to Wireless Medical Telemetry Services... accomplished in the PLMR bands below 800 MHz. A trunked radio system employs technology that can search two or... prohibited by Sec. 1.935). We also take this opportunity to correct the 800 MHz band trunking rules to set...

  11. The X-Shooter spectral library

    NARCIS (Netherlands)

    Chen, Y. P.; Trager, S. C.; Peletier, R. F.; Lançon, A.; Prugniel, Ph.; Koleva, M.

    2012-01-01

    We are building a new spectral library with the X-Shooter instrument on ESO's VLT: XSL, the X-Shooter Spectral Library. We present our progress in building XSL, which covers the wavelength range from the near-UV to the near-IR with a resolution of R˜10000. As of now we have collected spectra for

  12. Change of the spectral sensitivity range of thin-film AlGaAs/GaAs -photoreceivers under influence of ultrasonic waves

    International Nuclear Information System (INIS)

    Zaveryukhina, N. N.; Zaveryukhin, B. N.; Zaveryukhina, E. B.

    2007-01-01

    Full text: The task of controlled variation of the physical properties of semiconductor materials under the action of external factors is an important problem in the physics of semiconductors. As is well known, one such factor is ultrasonic radiation: propagating in a semiconductor crystal, acoustic (ultrasonic) waves change its properties, in particular, the optical characteristics. In the context of solving the above task, it is expedient to continue investigations of the effect of ultrasonic waves on the characteristics of semiconductor devices. This report presents the results of experimental investigations of the influence of ultrasonic waves on the spectral characteristics of photoreceivers based on AlGaAs/GaAs- heterostructures. The study showed that an exposure to ultrasonic radiation leads to a change, depending on the ultrasonic treatment (UST) parameters, in the spectral characteristics of gallium arsenide crystals, the base materials of modern semiconductor photoelectronics. Some results showed evidence of the positive character of changes in the characteristics of A 3 B 5 -based photoreceivers under the action of ultrasonic waves. The effect of ultrasonic waves on the spectral sensitivity of photoreceivers based on AlGaAs/GaAs- heterostructures has been studied. Ultrasonic treatment of a zinc-doped graded-gap Al x Ga 1-x As- film leads to the formation of a surface layer sensitive to electromagnetic radiation in the wavelength range < 0,55m. It is established that this layer is formed as a result of the acoustostimulated inward diffusion of zinc from the surface to the bulk of the graded-gap layer. The observed expansion of the short-wavelength sensitivity range and an increase in the efficiency of nonequilibrium charge carrier collection in AlGaAs/GaAs- photoreceivers are due to improvement of the crystal defect structure and the dopant redistribution under the action of ultrasound. (authors)

  13. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100 nm range

    Energy Technology Data Exchange (ETDEWEB)

    Canada, J.; Maj, A. [Departamento de Termodinamica Aplicada, Universidad Politecnica de Valencia, Camino de Vera, s/n. 46022 Valencia (Spain); Utrillas, M.P.; Martinez-Lozano, J.A.; Pedros, R.; Gomez-Amo, J.L. [Departamento de Fisica de la Tierra y Termodinamica, Facultat de Fisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain)

    2007-10-15

    An automatic global and direct solar spectral irradiance system has been designed based on two LICOR spectro radiometers equipped with fibre optics and remote cosine sensors. To measure direct irradiance a sun tracker based on step motors has been developed. The whole system is autonomous and works continuously. From the measurements provided by this system a spectral irradiance database in the 330-1100 nm range has been created. This database contains normal direct and global horizontal irradiances as well as diffuse irradiance on a horizontal plane, together with total atmospheric optical thickness and aerosol optical depth. (author)

  14. Behaviour of spectral entropy, spectral edge frequency 90%, and alpha and beta power parameters during low-dose propofol infusion.

    LENUS (Irish Health Repository)

    Mahon, P

    2012-02-03

    BACKGROUND: In this study we analyse the behaviour, potential clinical application and optimal cortical sampling location of the spectral parameters: (i) relative alpha and beta power; (ii) spectral edge frequency 90%; and (iii) spectral entropy as monitors of moderate propofol-induced sedation. METHODS: Multi-channel EEG recorded from 12 ASA 1 (American Society of Anesthesiologists physical status 1) patients during low-dose, target effect-site controlled propofol infusion was used for this analysis. The initial target effect-site concentration was 0.5 microg ml(-1) and increased at 4 min intervals in increments of 0.5 to 2 microg ml(-1). EEG parameters were calculated for 2 s epochs in the frequency ranges 0.5-32 and 0.5-47 Hz. All parameters were calculated in the channels: P4-O2, P3-O1, F4-C4, F3-C3, F3-F4, and Fp1-Fp2. Sedation was assessed clinically using the OAA\\/S (observer\\'s assessment of alertness\\/sedation) scale. RESULTS: Relative beta power and spectral entropy increased with increasing propofol effect-site concentration in both the 0.5-47 Hz [F(18, 90) = 3.455, P<0.05 and F(18, 90) = 3.33, P<0.05, respectively] and 0.5-32 Hz frequency range. This effect was significant in each individual channel (P<0.05). No effect was seen of increasing effect-site concentration on relative power in the alpha band. Averaged across all channels, spectral entropy did not outperform relative beta power in either the 0.5-32 Hz [Pk=0.79 vs 0.814 (P>0.05)] or 0.5-47 Hz range [Pk=0.81 vs 0.82 (P>0.05)]. The best performing indicator in any single channel was spectral entropy in the frequency range 0.5-47 Hz in the frontal channel F3-F4 (Pk=0.85). CONCLUSIONS: Relative beta power and spectral entropy when considered over the propofol effect-site range studied here increase in value, and correlate well with clinical assessment of sedation.

  15. Adjustment of a goniometer for X-rays optics calibration in the spectral range 1.5-20 KeV

    International Nuclear Information System (INIS)

    Legistre, S.

    1992-10-01

    The aim of this memoir is the adjustment of a (θ, 2θ) goniometer coupled to X-rays source to calibrate mirrors (single layers like C, Ni, Au, etc... and multilayers like C/W, Si/W, etc...) in the spectral range 1.5 - 20 keV. For each kind of tested optics the adjustment of the goniometer include the procedure alignment of the different components (X-ray source, collimation slits, optics, detectors) and the first reflectivity measurements. Those measurements are compared those realized at LURE, using synchrotron radiation provided by SUPER ACO storage ring, and to a theoretical simulation

  16. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  17. Development of 650 MHz (β=0.9) single-cell SCRF cavity

    International Nuclear Information System (INIS)

    Bagre, M.; Jain, V.; Yedle, A.; Maurya, T.; Yadav, A.; Puntambekar, A.; Goswami, S.G.; Choudhary, R.S.; Sandha, S.; Dwivedi, J.; Kane, G.V.; Mahawar, A.; Mohania, P.; Shrivastava, P.; Sharma, S.; Gupta, R.; Sharma, S.D.; Joshi, S.C.; Mistri, K.K.; Prakash, P.N.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology has initiated the work on development of Superconducting Radio Frequency (SCRF) cavities and associated technologies as part of R and D activities for upcoming Spallation Neutron Source (SNS) project involving superconducting Linear Accelerator (LINAC). It is planned to use 650 MHz SCRF cavities for the medium and high energy section of the proposed LINAC. Under Indian Institution Fermilab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology is also working on development of 650 MHz (β=0.9) SCRF cavities proposed to be used in the high energy section of Project-X at FNAL. The work has been initiated with design and development of 650 MHz single cell SCRF cavity. FE analysis was done to estimate change in frequency with temperature as well as to estimate the frequency of the cavity at different cavity manufacturing stages. The development cycle comprises of design and manufacturing of forming tooling, machining, welding and RF measurement fixtures as well as design for manufacturing. The half-cell and beam tubes forming and machining of all parts were done using in-house facilities. The Electron beam welding was carried out at Inter-University Accelerator Centre (IUAC), New Delhi under a MoU. One 650 MHz single cell SCRF cavity has been recently manufactured. In this paper we present the development efforts on manufacturing and pre-qualification of 650 MHz (β=0.9) single cell SCRF cavity. (author)

  18. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    Energy Technology Data Exchange (ETDEWEB)

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Rubtsov, Grigory I. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation)

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  19. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.

    Science.gov (United States)

    Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan

    2015-07-13

    Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.

  20. TiO(2) doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range.

    Science.gov (United States)

    Azouani, R; Tieng, S; Chhor, K; Bocquet, J-F; Eloy, P; Gaigneaux, E M; Klementiev, K; Kanaev, A V

    2010-10-07

    We report an original method of preparation of OCN-doped TiO(2) for photocatalysis in the visible spectral range. The preparation is achieved by a sol-gel route using titanium tetraisopropoxide precursor. Special attention was paid to fluid micromixing, which enables homogeneous reaction conditions in the reactor bulk and monodispersity of the produced clusters/nanoparticles. The dopant hydroxyurea (HyU, CH(4)N(2)O(2)) is injected into the reactive fluid at the nucleation stage, which lasts tens of milliseconds. The doping results in a strong yellow coloration of the nanocolloids due to the absorption band in the spectral range 380-550 nm and accelerates the aggregation kinetics of both nuclei at the induction stage and sub-nuclei units (clusters) at the nucleation stage. FTIR, Raman and UV-visible absorption analyses show the formation of a stable HyU-TiO(2) complex. EXAFS spectra indicate no appreciable changes of the first-shell Ti atom environment. The doping agent takes available surface sites of TiO(2) clusters/nanoparticles attaining ∼10% molar loading. The reaction kinetics then accelerates due to a longer collisional lifetime between nanoparticles induced by the formation of a weak [double bond, length as m-dash]OTi bond. The OCN-group bonding to titanium atoms produces a weakening of the C[double bond, length as m-dash]O double bond and a strengthening of the C-N and N-O bonds.

  1. Impact of foliage on LoRa 433MHz propagation in tropical environment

    Science.gov (United States)

    Ahmad, Khairol Amali; Salleh, Mohd Sharil; Segaran, Jivitraa Devi; Hashim, Fakroul Ridzuan

    2018-02-01

    LoRa is being considered as one of the promising system for Low-Power-Wide-Area-Network (LPWAN) to support the growth of Internet of Things (IoT) applications. Designed to operate in the industrial, scientific and medical (ISM) bands, LoRa had been tested and evaluated mainly in Europe and US in the 868 MHz and 915 MHz modulation bands. Using chirp spread spectrum technology, LoRa is expected to be robust against degredation. This paper provides some early results in the performance of LoRa signal propagation of 433 MHz modulation in tropical foliage environments.

  2. Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0-8.5 eV

    Science.gov (United States)

    Sturm, C.; Schmidt-Grund, R.; Zviagin, V.; Grundmann, M.

    2017-08-01

    The full dielectric tensor of monoclinic Ga2O3 (β-phase) was determined by generalized spectroscopic ellipsometry in the spectral range from 1.0 eV up to 8.5 eV and temperatures in the range from 10 K up to 300 K. By using the oriented dipole approach, the energies and broadenings of the excitonic transitions are determined as a function of the temperature, and the exciton-phonon coupling properties are deduced.

  3. Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range

    Science.gov (United States)

    Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin

    2013-12-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.

  4. Spectral filter for splitting a beam with electromagnetic radiation having wavelengths in the extreme ultraviolet (EUV) or soft X-Ray (Soft X) and the infrared (IR) wavelength range

    NARCIS (Netherlands)

    van Goor, F.A.; Bijkerk, Frederik; van den Boogaard, Toine; van den Boogaard, A.J.R.; van der Meer, R.

    2012-01-01

    Spectral filter for splitting the primary radiation from a generated beam with primary electromagnetic radiation having a wavelength in the extreme ultraviolet (EUV radiation) or soft X-ray (soft X) wavelength range and parasitic radiation having a wavelength in the infrared wavelength range (IR

  5. 47 CFR 22.970 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone...

    Science.gov (United States)

    2010-10-01

    ...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...

  6. 318-MHz variability of complete samples of extragalactic radio sources. II

    International Nuclear Information System (INIS)

    Dennison, B.; Broderick, J.J.; Ledden, J.E.; O'Dell, S.L.; Condon, J.J.

    1981-01-01

    We report the remainder of two- and three-epoch 318-MHz observations of extragalactic sources in samples complete to 3 Jy at 1400 MHz and 1 Jy at 5000 MHz. From analysis of this low-frequency variability survey, we find that steep-spectrum (α> or =0.5) sources do not appear to vary, but about 40% of all flat-spectrum (α<0.5) sources exhibit low-frequency variability exceeding 8% over approx.5 yr. Among the flat-spectrum sources, those with inverted spectra show the largest fractional variations. We also find that the incidence of low-frequency variability is strongly correlated with the determination that a source is an optically violent variable. These statistical properties are consistent with models invoking relativistic beaming of radio and optical emission

  7. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation and their refractive index determination

    International Nuclear Information System (INIS)

    Bogomolov, G.D.; Jeong, Uk Young; Zhizhin, G.N.; Nikitin, A.K.; Zavyalov, V.V.; Kazakevich, G.M.; Lee, Byung Cheol

    2005-01-01

    First experiments for observation of surface electromagnetic waves (SEW) in the terahertz spectral range generated on dense aluminum films covering the optical quality glass plates are presented in this paper. Coherent radiation of the new free-electron laser covering the frequency range from 30 to 100cm -1 was used. The interference technique employing SEW propagation in the part of one shoulder of the asymmetric interferometer was applied. From the interference pattern the real part of SEW's effective refractive index ae ' was determined for the two laser emission wavelengths: at λ=150μm-ae ' =1+5x10 -5 , at λ=110μm-ae ' =1+8x10 -4 . High sensitivity of the interference patterns to overlayers made of Ge and Si with thickness of 100nm was demonstrated as well

  8. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range

    International Nuclear Information System (INIS)

    Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.

    2014-01-01

    Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.

  9. Opo lidar sounding of trace atmospheric gases in the 3 – 4 μm spectral range

    Directory of Open Access Journals (Sweden)

    Romanovskii Oleg A.

    2018-01-01

    Full Text Available The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO generation to lidar sounding of the atmosphere in the spectral range 3–4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG is based on differential absorption lidar (DIAL method and differential optical absorption spectroscopy (DOAS. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  10. Wave disturbances in the solar corona: radio observations at 24.5-25.5 MHz

    International Nuclear Information System (INIS)

    Kobrin, M.M.; Snegriev, S.D.

    1984-01-01

    We present an analysis of observations of fluctuations in the integrated flux of radio emission from the ''quiet'' sun. The observations were made on the UTR-2 radiotelescope, simultaneously at 11 frequencies in the range 24.5-25.5 MHz. Control observations of Taurus were made in order to allow for the effects of the earth's ionosphere. We measured the phase dependences between oscillations in the radio emission intensity which looked like wave trains. From these measurements we found that for periods of about 10 min we always observed disturbances propagating from the lower levels of the corona to the upper levels. The frequency drift in the trains is observed to be about 10 -3 MHz/sec, corresponding to a disturbance velocity of about 100 km/sec. This may be associated with the propagation of magnetosonic waves. Our estimates show that the observed effects cannot be explained by a bremsstrahlung mechanism: We need to rely on plasma mechanisms in order to explain how the radio emission is generated

  11. Spectral concentration in the nonrelativistic limit

    International Nuclear Information System (INIS)

    Gesztesy, F.; Grosse, H.; Thaller, B.

    1982-01-01

    First order relativistic corrections to the Schroedinger operator according to Foldy and Wouthuysen are rigorously discussed in the framework of singular perturbation theory. For Coulomb plus short-range interactions we investigate the corresponding spectral properties and prove spectral concentration and existence of first order pseudoeigenvalues in the nonrelativistic limit. (Author)

  12. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  13. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  14. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, Per [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Eland, John H. D. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Baker, Neville [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2012-01-15

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  15. Early 500 MHz prototype LEP RF Cavity with superposed storage cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The principle of transferring the RF power back and forth between the accelerating cavity and a side-coupled storage cavity was demonstrated with this 500 MHz prototype. In LEP, the accelerating frequency was 352.2 MHz, and accelerating and storage cavities were consequently larger. See also 8002294, 8006061, 8407619X, and Annual Reports 1980, p.115; 1981, p.95; 1985, vol.I, p.13.

  16. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Deneva, J. S. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Stovall, K.; Martinez, J. G.; Jenet, F. [Center for Advanced Radio Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); McLaughlin, M. A.; Bates, S. D.; Bagchi, M. [Department of Physics, West Virginia University, 111 White Hall, Morgantown, WV 26506 (United States); Freire, P. C. C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2013-09-20

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsars with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.

  17. Influence of fused aromatic ring on the stability of charge transfer complex between iodine and some five membered heterocyclic molecules through ultrasonic and spectral studies

    Science.gov (United States)

    Ulagendran, V.; Balu, P.; Kannappan, V.; Kumar, R.; Jayakumar, S.

    2017-08-01

    The charge transfer (CT) interaction between two fused heterocyclic compounds with basic pyrrole group as donors, viz., indole (IND) and carbazole (CAR), and iodine (acceptor) in DMSO medium is investigated by ultrasonic and UV-visible spectral methods at 303 K. The formation of CT complex in these systems is established from the trend in acoustical and excess thermo acoustical properties with molar concentration. The frequency acoustic spectra (FAS) is also carried out on these two systems for two fixed concentrations 0.002 M and 0.02 M, and in the frequency range 1 MHz-10 MHz to justify the frequency chosen for ultrasonic study. The absorption coefficient values in solution are computed and discussed. The formation constants of these complexes are determined using Kannappan equation in ultrasonic method. The formation of 1:1 complexes between iodine and IND, CAR was established by the theory of Benesi - Hildebrand in the UV-visible spectroscopic method. The stability constants of the CT complexes determined by spectroscopic and ultrasonic methods show a similar trend. These values also indicate that the presence of fused aromatic ring influences significantly when compared with K values of similar CT complexes of parent five membered heterocyclic compound (pyrrole) reported by us earlier.

  18. The LANSCE 805 MHZ RF System History and Status

    CERN Document Server

    Lynch, Michael; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) linear accelerator runs at 201.25 MHz for acceleration to 100 MeV. The remainder of the acceleration to 800 MeV is at 805 MHz. This is done with 44 accelerator cavity stages driven by 805 MHz klystrons. Each klystron has a peak power capability of 1.25 MeV. Originally, 97 klystrons were purchased, which was 70 from Varian/CPI and 27 from Litton. The 44 RF systems are laid out in sectors with either 6 or 7 klystrons per sector. The klystrons in each sector are powered from a common HV sytem. The current arrangement uses the Varian/CPI klystrons in 6 of the 7 sectors and Litton klystrons in the remaining sector. With that arrangement there are 38 CPI klystrons installed and 1 spare klystron per sector and 6 Litton klystrons installed in the final sector with 2 spares. The current average life of all of the operating and spare klystrons (52 total) is >112,000 filament hours and >93,000 HV hours. That is three times the typical klystron lifetime today f...

  19. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  20. RF Power Detector/Monitor Upgrade for the 500MHz Systems at the ALS

    International Nuclear Information System (INIS)

    Baptiste, K.

    2003-01-01

    Several systems rely on the accurate and linear detection of 500 MHz signals, (the fundamental frequency of both the Booster Ring and Storage Ring) over a dynamic range in excess of 25dB. Prior to this upgrade, the detector/monitor was diode based and though this type of detector could handle the dynamic range requirement it could not do so in an accurate and linear manner. In order to meet the requirements (dynamic range greater than or equal to 25dB, accurate and linear to +-0.25dB over the range, and additional circuitry to interface to the legacy control system and interlocks), a new RF Power Detector/Monitor has been developed using two AD8361, Analog Devices Tru RMS Detectors and a fuzzy comparator, which extends the overall detector's range to twice that of the AD8361. Further information is available [www.analogedevices.com/]. Details of the design requirements and the detector/monitor's circuit as well as the performance of the detector will be presented

  1. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation

    International Nuclear Information System (INIS)

    Panagopoulos, D. J; Chavdoula, E. D.; Nezis, I. P.; Margaritis, L. H.

    2007-01-01

    In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay '' a well known technique widely used for detecting fragmented DNA in various types of cells'' was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29''43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within ''safety levels'' alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17''20, 2000, pp. 169''175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545''578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of

  2. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-05-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  3. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu, E-mail: sscha@kaeri.re.kr [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Kim, Yujong; Lee, Byung Cheol [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Lee, Seung Hyun [Department of Energy Science, Sungkyunkwan University(SKKU), Suwon 16419 (Korea, Republic of); Buaphad, Pikad [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Accelerator and Nuclear Fusion Physical Engineering, University of Science and Technology(UST), Daejeon 34113 (Korea, Republic of)

    2017-05-21

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  4. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    International Nuclear Information System (INIS)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-01-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  5. New methods of highly efficient controlled generation of radiation by liquid crystal nanostructures in a wide spectral range

    International Nuclear Information System (INIS)

    Bagayev, S N; Klementyev, V M; Nyushkov, B N; Pivtsov, V S; Trashkeev, S I

    2012-01-01

    We report the recent results of research focused on a new kind of soft matter-the liquid-crystal nanocomposites with controllable mechanical and nonlinear optical properties. These are promising media for implementation of ultra-compact photonic devices and efficient sources of coherent radiation in a wide spectral range. We overview the technology of preparation of nematic-liquid-crystal media saturated with disclination defects. The defects were formed in different ways: by embedding nanoparticles and molecular objects, by exposure to alpha-particle flux. The defect locations were controlled by applying an electric field. We also present and discuss the recently discovered features of nematic-liquid-crystal media: a thermal orientation effect leading to the fifth-order optical nonlinearity, enormous second-order susceptibility revealed by measurements, and structural changes upon exposure to laser radiation. We report on efficient generation of harmonics, sum and difference optical frequencies in nematic-liquid-crystal media. In addition, transformation of laser radiation spectra to spectral supercontinua, and filamentation of laser beams were also observed in nematic-liquid-crystal media. We conclude that most nonlinear optical effects result from changes of the orientational order in the examined nematic liquid crystals. These changes lead to the symmetry breaking and disclination appearances.

  6. Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range for the geographic classification of Italian exravirgin olive oils

    Science.gov (United States)

    Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.

    2004-03-01

    Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.

  7. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  8. Estimation of organic carbon deposition into forest ecosystems by determination of the spectral absorption of rainwater in range of ultraviolet radiation (SAC254)

    International Nuclear Information System (INIS)

    Bartels, U.

    1988-01-01

    Organic compounds are mostly neglected within deposition measurement programs because their determination is expensive and complicated. A very simple and rapid estimation of total organic carbon (TOC) is possible by determination of the spectral absorption coefficient in the range of ultraviolet radiation at 254 nm wave-length (SAC 254 ): TOC (mg/1) = 0,5 SAC 254 (m −1 ) - 0,15 (author) [de

  9. Comparison of 250 MHz R10K Origin 2000 and 400 MHz Origin 2000 Using NAS Parallel Benchmarks

    Science.gov (United States)

    Turney, Raymond D.; Thigpen, William W. (Technical Monitor)

    2001-01-01

    This report describes results of benchmark tests on Steger, a 250 MHz Origin 2000 system with R10K processors, currently installed at the NASA Ames National Advanced Supercomputing (NAS) facility. For comparison purposes, the tests were also run on Lomax, a 400 MHz Origin 2000 with R12K processors. The BT, LU, and SP application benchmarks in the NAS Parallel Benchmark Suite and the kernel benchmark FT were chosen to measure system performance. Having been written to measure performance on Computational Fluid Dynamics applications, these benchmarks are assumed appropriate to represent the NAS workload. Since the NAS runs both message passing (MPI) and shared-memory, compiler directive type codes, both MPI and OpenMP versions of the benchmarks were used. The MPI versions used were the latest official release of the NAS Parallel Benchmarks, version 2.3. The OpenMP versions used were PBN3b2, a beta version that is in the process of being released. NPB 2.3 and PBN3b2 are technically different benchmarks, and NPB results are not directly comparable to PBN results.

  10. Low-power digital ASIC for on-chip spectral analysis of low-frequency physiological signals

    International Nuclear Information System (INIS)

    Nie Zedong; Zhang Fengjuan; Li Jie; Wang Lei

    2012-01-01

    A digital ASIC chip customized for battery-operated body sensing devices is presented. The ASIC incorporates a novel hybrid-architecture fast Fourier transform (FFT) unit that is capable of scalable spectral analysis, a licensed ARM7TDMI IP hardcore and several peripheral IP blocks. Extensive experimental results suggest that the complete chip works as intended. The power consumption of the FFT unit is 0.69 mW at 1 MHz with 1.8 V power supply. The low-power and programmable features of the ASIC make it suitable for ‘on-the-fly’ low-frequency physiological signal processing. (semiconductor integrated circuits)

  11. Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies

    Science.gov (United States)

    Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira

    2018-03-01

    A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.

  12. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  13. arXiv Blue and violet graviton spectra from a dynamical refractive index

    CERN Document Server

    Giovannini, Massimo

    We show that the spectral energy distribution of relic gravitons mildly increases for frequencies smaller than the $\\mu$Hz and then flattens out whenever the refractive index of the tensor modes is dynamical during a quasi-de Sitter stage of expansion. For a conventional thermal history the high-frequency plateau ranges between the mHz and the audio band but it is supplemented by a spike in the GHz region if a stiff post-inflationary phase precedes the standard radiation-dominated epoch. Even though the slope is blue at intermediate frequencies, it may become violet in the MHz window. For a variety of post-inflationary histories, including the conventional one, a dynamical index of refraction leads to a potentially detectable spectral energy density in the kHz and in the mHz regions while all the relevant phenomenological constraints are concurrently satisfied.

  14. Ultra-fast and calibration-free temperature sensing in the intrapulse mode

    KAUST Repository

    Chrystie, Robin S. M.; Nasir, Ehson F.; Farooq, Aamir

    2014-01-01

    A simultaneously time-resolved and calibration-free sensor has been demonstrated to measure temperature at the nanosecond timescale at repetition rates of 1.0 MHz. The sensor benefits from relying on a single laser, is intuitive and straightforward to implement, and can sweep across spectral ranges in excess of 1 cm-1. The sensor can fully resolve rovibrational features of the CO molecule, native to combustion environments, in the mid-infrared range near X = 4.85 μm at typical combustion temperatures (800-2500 K) and pressures (1-3 atm). All of this is possible through the exploitation of chirp in a quantum cascade laser, operating at a duty cycle of 50%, and by using high bandwidth (500 MHz) photodetection. Here, we showcase uncluttered, spectrally-pure Voigt profile fitting with accompanying peak SNRs of 150, resulting in a typical temperature precision of 0.9% (1u) at an effective time-resolution of 1.0 MHz. Our sensor is applicable to other species, and canbe integrated into commercial technologies.

  15. Ultra-fast and calibration-free temperature sensing in the intrapulse mode

    KAUST Repository

    Chrystie, Robin S. M.

    2014-11-20

    A simultaneously time-resolved and calibration-free sensor has been demonstrated to measure temperature at the nanosecond timescale at repetition rates of 1.0 MHz. The sensor benefits from relying on a single laser, is intuitive and straightforward to implement, and can sweep across spectral ranges in excess of 1 cm-1. The sensor can fully resolve rovibrational features of the CO molecule, native to combustion environments, in the mid-infrared range near X = 4.85 μm at typical combustion temperatures (800-2500 K) and pressures (1-3 atm). All of this is possible through the exploitation of chirp in a quantum cascade laser, operating at a duty cycle of 50%, and by using high bandwidth (500 MHz) photodetection. Here, we showcase uncluttered, spectrally-pure Voigt profile fitting with accompanying peak SNRs of 150, resulting in a typical temperature precision of 0.9% (1u) at an effective time-resolution of 1.0 MHz. Our sensor is applicable to other species, and canbe integrated into commercial technologies.

  16. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  17. Spectral and spatial shaping of Smith-Purcell radiation

    Science.gov (United States)

    Remez, Roei; Shapira, Niv; Roques-Carmes, Charles; Tirole, Romain; Yang, Yi; Lereah, Yossi; Soljačić, Marin; Kaminer, Ido; Arie, Ady

    2017-12-01

    The Smith-Purcell effect, observed when an electron beam passes in the vicinity of a periodic structure, is a promising platform for the generation of electromagnetic radiation in previously unreachable spectral ranges. However, most of the studies of this radiation were performed on simple periodic gratings, whose radiation spectrum exhibits a single peak and its higher harmonics predicted by a well-established dispersion relation. Here, we propose a method to shape the spatial and spectral far-field distribution of the radiation using complex periodic and aperiodic gratings. We show, theoretically and experimentally, that engineering multiple peak spectra with controlled widths located at desired wavelengths is achievable using Smith-Purcell radiation. Our method opens the way to free-electron-driven sources with tailored angular and spectral responses, and gives rise to focusing functionality for spectral ranges where lenses are unavailable or inefficient.

  18. Assessment of cutaneous radiation fibrosis by 20 MHz-sonography

    International Nuclear Information System (INIS)

    Gottloeber, P.; Braun-Falco, B.; Plewig, G.; Kerscher, M.; Peter, R.U.; Nadeshina, N.

    1996-01-01

    Radiation fibrosis is the cardinal symptom of the chronicle stage of the cutaneous radiation syndrome. The degree of cutaneous fibrosis can clinically be estimated by palpation. High-frequency 20 MHz-sonography is an established, noninvasive procedure, which renders an exact determination of skin thickness and additionally densitometry is possible. We investigated 15 survivors of the Chernobyl accident in 1986, who developed symptoms of the chronic stage of the cutaneous radiation syndrome. We determined skin thickness and echogenicity of skin areas clinically suggestive of radiation fibrosis before, during and after treatment. 20 MHz-sonography showed a distinct enlargement of the echorich corium and a reduction of the subcutaneous fatty tissue in comparison with the unaffected, contralateral skin, here demonstrating typical features of radiation fibrosis, namely dermal fibrosis and reactive pseudoatrophy and fatty tissue. The histology presented an increase and swelling of the collagen fibers and atypical fibroblastic cells. The patients received treatment with low-dose interferon y (Polyfcron R , 3 x 50μg s.C., three times per week) up to 30 months. A marked reduction of skin thickness and echogenicity reaching nearly normal values could be observed. We conclude that 20 MHz-sonography is an easy to apply, noninvasive, well established procedure to quantify cutaneous radiation fibrosis and to assess therapeutic outcome

  19. A broad-band (0.2-8 MHz) multiple-harmonic VITROVAC-filled acceleration structure

    Energy Technology Data Exchange (ETDEWEB)

    Ausset, P.; Charruau, G.; De Menezes, D.; Fougeron, C. [Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Etzkorn, F.J.; Papureanu, S.; Schnase, A.; Meuth, H. [Forschungszentrum Juelich GmbH (Germany)

    1994-12-31

    Higher or multiple-harmonic acceleration drives in synchrotrons are desirable, when passing the transition point, applying stochastic cooling on a bunched beam, or for many other longitudinal beam manipulations, as bunch stretching or compression. As proof-of-principle, virtually arbitrary, digitally synthesized voltage waveforms, employing contents up to fourth harmonic in the range 0.2-8 MHz, could be generated at the gap of one single (symmetric re-entrant) cavity, filled with discs of the novel ferritic amorphous metal VITROVAC of VAC, Hanau. A 10 kW amplifier produces voltages in the kV-range. As relevant examples, we achieved a flat-top waveform suitable for the transition (+27 deg, 10{sup -3} max. error), a fourth-order flattened bucket for bunched-beam cooling, and a harmonic bucket with linear restoring force. The compact cavity system should be well suited for any proton or heavy ion device operating in this frequency range, and therapy-oriented rings. (author). 9 refs., 6 figs.

  20. A broad-band (0.2-8 MHz) multiple-harmonic VITROVAC-filled acceleration structure

    International Nuclear Information System (INIS)

    Ausset, P.; Charruau, G.; De Menezes, D.; Fougeron, C.; Etzkorn, F.J.; Papureanu, S.; Schnase, A.; Meuth, H.

    1994-01-01

    Higher or multiple-harmonic acceleration drives in synchrotrons are desirable, when passing the transition point, applying stochastic cooling on a bunched beam, or for many other longitudinal beam manipulations, as bunch stretching or compression. As proof-of-principle, virtually arbitrary, digitally synthesized voltage waveforms, employing contents up to fourth harmonic in the range 0.2-8 MHz, could be generated at the gap of one single (symmetric re-entrant) cavity, filled with discs of the novel ferritic amorphous metal VITROVAC of VAC, Hanau. A 10 kW amplifier produces voltages in the kV-range. As relevant examples, we achieved a flat-top waveform suitable for the transition (+27 deg, 10 -3 max. error), a fourth-order flattened bucket for bunched-beam cooling, and a harmonic bucket with linear restoring force. The compact cavity system should be well suited for any proton or heavy ion device operating in this frequency range, and therapy-oriented rings. (author). 9 refs., 6 figs

  1. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip

    2015-01-01

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  2. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  3. Search for a stochastic background of 100-MHz gravitational waves with laser interferometers.

    Science.gov (United States)

    Akutsu, Tomotada; Kawamura, Seiji; Nishizawa, Atsushi; Arai, Koji; Yamamoto, Kazuhiro; Tatsumi, Daisuke; Nagano, Shigeo; Nishida, Erina; Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi; Fukushima, Mitsuhiro; Yamazaki, Toshitaka; Fujimoto, Masa-Katsu

    2008-09-05

    This Letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of approximately 10;{-16} Hz;{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h{100};{2}Omega_{gw}<6 x 10;{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.

  4. Spectral Textile Detection in the VNIR/SWIR Band

    Science.gov (United States)

    2015-03-01

    which have spectral similarities to background vegetation , are generally more difficult to detect than animal fibers such as wool and artificial fibers...effectiveness at long ranges, and spectral dismount detection currently relies on detecting skin pixels. In scenarios where skin is not exposed, spectral...training set. Classifiers with optimized parameters are used to classify contact data with artificially added noise and remotely-sensed hyperspectral data

  5. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  6. MIMOSA. A 32 channel 40 MHz Camac scaler

    International Nuclear Information System (INIS)

    Beer, A.; Bourgeois, F.; Critin, G.

    1981-01-01

    This report describes a 32 channel, 24 bit, 40 MHz single width Camac scaler based on the memory increment technique. The characteristics of the module are given and its logic is briefly described. Circuit diagrams and component lists are given. (orig.)

  7. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    Science.gov (United States)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  8. USGS Digital Spectral Library splib06a

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    Introduction We have assembled a digital reflectance spectral library that covers the wavelength range from the ultraviolet to far infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, plants, vegetation communities, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from laboratory, aircraft, and spacecraft instrumentation requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopy of minerals and related materials of importance to a variety of research programs being conducted at the U.S. Geological Survey. Much of this library grew out of the need for spectra to support imaging spectroscopy studies of the Earth and planets. Imaging spectrometers, such as the National Aeronautics and Space Administration (NASA) Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) or the NASA Cassini Visual and Infrared Mapping Spectrometer (VIMS) which is currently orbiting Saturn, have narrow bandwidths in many contiguous spectral channels that permit accurate definition of absorption features in spectra from a variety of materials. Identification of materials from such data requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. Our research involves the use of the spectral library to identify the components in a spectrum of an unknown. Therefore, the quality of the library must be very good. However, the quality required in a spectral library to successfully perform an investigation depends on the scientific questions to be answered and the type of algorithms to be used. For example, to map a mineral using imaging spectroscopy and the mapping algorithm of Clark and others (1990a, 2003b

  9. Spectral Imaging of Portolan Charts

    Science.gov (United States)

    France, Fenella G.; Wilson, Meghan A.; Ghez, Anita

    2018-05-01

    Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.

  10. A 200 MHz 35 MW Multiple Beam Klystron for Accelerator Applications. Final Report

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Read, Michael; Ferguson, Patrick; Marsden, David

    2011-01-01

    Calabazas Creek Research, Inc. (CCR) performed initial development of a compact and reliable 35 MW, multiple beam klystron (MBK) at 200 MHz with a pulse length of 0.125 ms and a 30 Hz repetition rate. The device was targeted for acceleration and ionization cooling of a muon collider, but there are several other potential applications in this frequency range. The klystron uses multiple beams propagating in individual beam tunnels to reduce space charge and allow reduction in the accelerating voltage. This allows a significant reduction in length over a single beam source. More importantly this allows more efficient and less expensive power supplies. At 200 MHz, the interaction circuit for a single beam klystron would be more than six meters long to obtain 50% efficiency and 50 dB gain. This would require a beam voltage of approximately 400 kV and current of 251 A for a microperveance of 1.0. For an eight beam MBK with the same beam perveance, a three meter long interaction circuit achieves the same power and gain. Each beam operates at 142 kV and 70A. The Phase I demonstrated that this device could be fabricated with funding available in a Phase II program and could achieve the program specifications.

  11. Flat ended steel wires, backscattering targets for calibrating over a large dynamic range

    NARCIS (Netherlands)

    Lubbers, Jaap; Graaff, Reindert

    2006-01-01

    A series of flat ended stainless steel wires was constructed and experimentally evaluated as point targets giving a calibrated backscattering over a large range (up to 72 dB) for ultrasound frequencies in the range 2 to 10 MHz. Over a range of 36 dB, theory was strictly followed (within 1 dB),

  12. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  13. Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.

    Science.gov (United States)

    Johns, Lennart D; Straub, Stephen J; Howard, Samuel M

    2007-01-01

    Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established.

  14. Design of 325 MHz spoke cavity

    International Nuclear Information System (INIS)

    Sha Peng; Huang Hong; Dai Jianping; Zu Guoquan; Li Han

    2012-01-01

    Spoke cavity can be used in the low-energy section of the proton accelerator. It has many significant advantages: compact structure, high value of R/Q, etc. The ADS (Accelerator Driven System) project will adopt many spoke cavities with different β values. Therefore, IHEP has began the research of β=0.14, 325 MHz spoke cavity. In this pa per, the dimensions, RF performances and mechanical properties of it are studied. (authors)

  15. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  16. Results of tests of the X2274 high power tetrode in a JT-60 110 to 130 MHz ICRH amplifier

    International Nuclear Information System (INIS)

    Remsen, D.B.; Loring, C.M.; McNees, S.G.; Moriyama, S.; Ogawa, Y.; Anno, K.; Fujii, T.; Terakado, M.; Kogure, S.; Nagashima, T.; Ohta, M.

    1990-09-01

    This paper reports the results of tests of the newly developed Varian EIMAC X2274 in the JAERI JT-60 ICRH system at pulse lengths up to 6 seconds at 131 MHz. It is our belief that these tests achieved the highest long pulse, or CW, power that has ever been delivered by a single power grid tube at frequencies above 100 MHz. Varian's EIMAC X2274, developed in conjunction with General Atomics and the US Department of Energy, uses an improved pyrolytic graphite grid configuration which provides significantly better vhf performance than the grids of the X2242 tetrode which was tested in this system in 1989. The EIMAC X2274 combines the improved grids with a new anode design which reduces the required water flow approximately 50% and increases the maximum anode dissipation 80%. All tests were performed at 131 MHz, the system's highest operating frequency. Tests of both prototype EIMAC X2274s produced essentially identical results. The basic objectives of these tests were: to demonstrate that the system with the EIMAC X2274 can reliably produce 1.5 MW at 130 MHz at 5 second pulse lengths for the JT-60U tokamak and to collect data for use in the design of future high power ICRH systems. In these tests the tube and system produced up to 1.7 MW at pulse lengths up to 5.4 seconds: i.e, the EIMAC X2274 in this system can easily meet Objective 1. The remainder of this paper shows that Objective 2 has been fulfilled. In addition to the high power tests, operational range tests were performed under variable VSWR conditions. Unlike the EIMAC X2242 tests were rf current heating of the screen grid limited output power, system parameters, rather than tube parameters, limited the output power in the high power tests. Operational range tests were conducted at output power levels chosen to be well within the system's anode cooling capability

  17. A compact, large-range interferometer for precision measurement and inertial sensing

    Science.gov (United States)

    Cooper, S. J.; Collins, C. J.; Green, A. C.; Hoyland, D.; Speake, C. C.; Freise, A.; Mow-Lowry, C. M.

    2018-05-01

    We present a compact, fibre-coupled interferometer with high sensitivity and a large working range. We propose to use this interferometer as a readout mechanism for future inertial sensors, removing a major limiting noise source, and in precision positioning systems. The interferometer’s peak sensitivity is 2 × 10-{14} m \\sqrt{Hz-1} at 70 Hz and 7 × 10-{11} m \\sqrt{Hz-1} at 10 mHz. If deployed on a GS-13 geophone, the resulting inertial sensing output will be limited by the suspension thermal noise of the reference mass from 10 mHz to 2 Hz.

  18. The X-shooter Spectral Library and Carbon stars

    NARCIS (Netherlands)

    Gonneau, A.; Lançon, A.; Trager, S. C.; Chen, Y.; Peletier, R.; Aringer, B.; Nowotny, W.; Cambrésy, L.; Martins, F.; Nuss, E.; Palacios, A.

    2013-01-01

    Until recently, most empirical stellar spectral libraries were limited to a certain wavelength range or combined data from different stars, taken by different instruments of which some have low spectral resolution, limiting for instance our ability to analyze galaxies jointly in the ultraviolet, the

  19. Proton and electron impact on molecular and atomic oxygen: I. High resolution fluorescence spectra in the visible and VUV spectral range and emission cross-sections for dissociative ionisation and excitation of O2

    International Nuclear Information System (INIS)

    Wilhelmi, O.; Schartner, K.H.

    2000-01-01

    For pt.II see ibid., vol.11, p.45-58, 2000. Molecular oxygen O 2 was dissociated in collisions with protons and electrons in the intermediate velocity range (p + -energies: 17-800 keV, e - -energies: 0.2-2 keV). Fluorescence from excited atomic and singly ionised fragments and from singly ionised molecules was detected in the VUV and in the visible and near UV spectral range. Highly resolved spectra are presented for the VUV (46-131 nm) and the near UV/visible (340-605 nm) spectral range. Absolute emission cross-sections have been determined for dissociative ionisation and excitation leading to fluorescence in the VUV. Results are compared with published data. (orig.)

  20. Spiral Slotted Microstrip Antenna Design for 700 MHz Band Application

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses González

    2016-01-01

    Full Text Available This work describes the design and implementation of spiral slotted microstrip antenna. Recently, just like other countries, in Mexico, terrestrial digital television has been implemented (analogic shutdown; as a consequence, the 700 MHz UFH Band (698–806 MHz has been opened to new telecommunications services, particularly wireless mobile communication. This technological advance represents a radio mobile antenna design challenge because it is necessary to design an antenna whose dimensions must be small enough, which satisfies gain, resonance frequency, and bandwidth requirements and is of low cost.

  1. 47 CFR 90.1408 - Organization and structure of the 700 MHz public/private partnership.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Organization and structure of the 700 MHz public/private partnership. 90.1408 Section 90.1408 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Partnership § 90.1408 Organization and structure of the 700 MHz public/private partnership. (a) The Upper 700...

  2. 47 CFR 27.1308 - Organization and structure of the 700 MHz public/private partnership.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Organization and structure of the 700 MHz public/private partnership. 27.1308 Section 27.1308 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Partnership § 27.1308 Organization and structure of the 700 MHz public/private partnership. (a) The Upper 700...

  3. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  4. VLA observations of NGC 1265 at 4886 MHz

    International Nuclear Information System (INIS)

    Owen, F.N.; Burns, J.O.; Rudnick, L.

    1978-01-01

    Observations are presented of the head-tail radio galaxy NGC 1265, made with the VLA at 4886 MHz. The total intensity brightness distribution has a resolution of 1' x 1'.5 and an rms noise of approx.150 μJy/beam area. These observations, combined with data at 2695 and 8085 MHz on a 35 km baseline in Green Bank, show that the nuclear component is less than 0'.1 and has a slightly inverted spectrum.The VLA map reveals a narrow continuous stream of emission leading away from the nucleus and out into the lower-surface brightness tail. Several small knots are superposed on the stream. This brightness distribution is compared with the independent-blob model of Jaffe and Perola. We find that the brightness distribution predicted by this model does not agree well with the observed brightness distribution. We suggest that a hot interstellar medium in the galaxy may be necessary to explain the complex structure

  5. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.; Khalil, Waleed; Salama, Khaled N.

    2016-01-01

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm

  6. The spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range

    CERN Document Server

    Chen Yong; Wei Ya Guang; Tao Ye

    2002-01-01

    Synchrotron radiation source was used to investigated the spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range. The various energy transfers at room temperature and 10 K, including from host or Gd sup 3 sup + ions to Eu sup 3 sup + ions and transfer between Eu sup 3 sup + ions at two different lattice sites, were discussed. In addition the emission spectra under 186 nm and 276 nm excitation were compared from the view of quantum cutting. The results indicate that Gd sub 2 SiO sub 5 :Eu sup 3 sup + is a kind of material with potential high efficiency quantum cutting

  7. Quantum efficiency of cesium iodide photocathodes in the 120-220 nm spectral range traceable to a primary detector standard

    CERN Document Server

    Rabus, H; Richter, M; Ulm, G; Friese, J; Gernhäuser, R; Kastenmüller, A; Maier-Komor, P; Zeitelhack, K

    1999-01-01

    Differently prepared CsI samples have been investigated in the 120-220 nm spectral range for their quantum efficiency, spatial uniformity and the effect of radiation aging. The experiments were performed at the PTB radiometry laboratory at the Berlin synchrotron radiation facility BESSY. A calibrated GaAsP Schottky photodiode was used as transfer detector standard to establish traceability to the primary detector standard, because this type of photodiode - unlike silicon p-on-n photodiodes - proved to be of sufficiently stable response when exposed to vacuum ultraviolet radiation. The paper reviews the experimental procedures that were employed to characterize and calibrate the GaAsP photodiode and reports the results that were obtained on the investigated CsI photocathodes.

  8. 47 CFR 80.1061 - Special requirements for 406.0-406.1 MHz EPIRB stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for 406.0-406.1 MHz EPIRB stations. 80.1061 Section 80.1061 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY... entitled RTCM Paper 77-02/SC110-STD, “RTCM Recommended Standards for 406 MHz Satellite Emergency Position...

  9. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  10. A versatile source of polarization entangled photons for quantum network applications

    International Nuclear Information System (INIS)

    Kaiser, Florian; Issautier, Amandine; Ngah, Lutfi A; Alibart, Olivier; Martin, Anthony; Tanzilli, Sébastien

    2013-01-01

    We report a versatile and practical approach for the generation of high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photons at a telecom wavelength associated with an advanced energy-time to polarization transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulation of single-photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 80 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters. (letter)

  11. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    2001-04-01

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  12. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.

    Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  13. Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter

    International Nuclear Information System (INIS)

    Hirvonen, Juha-Matti; Poikonen, Tuomas; Vaskuri, Anna; Kärhä, Petri; Ikonen, Erkki

    2013-01-01

    A spectrally adjustable radiance source based on light-emitting diodes (LEDs) has been constructed for spectral responsivity measurements of radiance and luminance meters. A 300 mm integrating sphere source with adjustable output port is illuminated using 30 thermally stabilized narrow-band LEDs covering the visible wavelength range of 380–780 nm. The functionality of the measurement setup is demonstrated by measuring the relative spectral responsivities of a luminance meter and a photometer head with cosine-corrected input optics. (paper)

  14. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué , Kamal H.; Emwas, Abdul-Hamid M.; Power, William P.

    2010-01-01

    on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry

  15. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  16. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  17. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  18. Multi scale modeling of 2450MHz electric field effects on microtubule mechanical properties.

    Science.gov (United States)

    Setayandeh, S S; Lohrasebi, A

    2016-11-01

    Microtubule (MT) rigidity and response to 2450MHz electric fields were investigated, via multi scale modeling approach. For this purpose, six systems were designed and simulated to consider all types of feasible interactions between α and β monomers in MT, by using all atom molecular dynamics method. Subsequently, coarse grain modeling was used to design different lengths of MT. Investigation of effects of external 2450MHz electric field on MT showed MT less rigidity in the presence of such field, which may perturb its functions. Moreover, an additional computational setup was designed to study effects of 2450MHz field on MT response to AFM tip. It was found, more tip velocity led to MT faster transformation and less time was required to change MT elastic response to plastic one, applying constant radius. Moreover it was observed smaller tip caused to increase required time to change MT elastic response to plastic one, considering constant velocity. Furthermore, exposing MT to 2450MHz field led to no significant changes in MT response to AFM tip, but quick change in MT elastic response to plastic one. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  20. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  1. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  2. Salinity and spectral reflectance of soils

    Science.gov (United States)

    Szilagyi, A.; Baumgardner, M. F.

    1991-01-01

    The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.

  3. Some results of observations of solar radio bursts of the ''drift pairs'' type near 25 and 12.5 MHz

    International Nuclear Information System (INIS)

    Abranin, Eh.P.; Bazelyan, L.L.; Goncharov, N.Yu.; Zajtsev, V.V.; Zinichev, V.A.; Levin, B.N.; Rapoport, V.O.; Tsybko, Ya.G.; Gor'kovskij Gosudarstvennyj Univ.

    1977-01-01

    The drift pairs in the frequency range of 12-13 MHz and 24-26 MHz are considered. It is shown that double bursts may be observed both at the second and at the first harmonics. The time interval between the elements of the double burst remains practically unchanged. This fact creates difficulties when interpreting double bursts due to the radio echo in the solar corona. It is suggested that the double (and generally multiple) structure of burst may be associated with the successive transmission of a fast electron beam in regions of double plasma resonance. It is considered that the radiation occurs due to cyclotron instability at the forward front of the electron beam travelling along the decreasing magnetic field of the coronal ray. It is shown that the properties of these burst can be explained by the proposed mechanism of drift pairs formation

  4. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  5. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  6. Upconversion based spectral imaging in 6 to 8 μm spectral regime

    DEFF Research Database (Denmark)

    Junaid, Saher; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    Spectral imaging in the 6 to 8μm range has great potential for medical diagnostics. Here a novel technique based on frequency upconversion of the infrared images to the near visible for subsequent acquisition using a Si-CCD camera is investigated. The upconversion unit consists of an AgGaS2 crystal...

  7. Influence of 1800 MHz GSM-like electromagnetic radiation exposure on fracture healing.

    Science.gov (United States)

    Aslan, Ahmet; Kırdemır, Vecihi; Kocak, Ahmet; Atay, Tolga; Baydar, Metin Lütfi; Özerdemoglu, Remzi Arif; Aydogan, Nevres Hürriyet

    2014-02-01

    In this study, we aimed to investigate whether 1800 MHz frequency electromagnetic radiation (EMR) has an effect on bone healing. A total of 30 Wistar albino rats were divided into two equal groups. Fractures were created in the right tibias of all rats; next, intramedullary fixations with K-wire were performed. A control group (Group I) was kept under the same experimental conditions except without EMR exposure. Rats in Group II were exposed to an 1800 MHz frequency EMR for 30 min a day for 5 days a week. Next, radiological, mechanical, and histological examinations were performed to evaluate tibial fracture healing. Radiological, histological and mechanical scores were not significantly different between groups (respectively, p = 0.114, p = 0.184 and p = 0.083), and all of these scores were lower than those of the controls. EMR at 1800 MHz frequency emitted from cellular phones has no effect on bone fracture healing. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  8. Nouvelle application de control des cavités 200 MHz RF du PS (CERN)

    CERN Document Server

    Cotte, D

    2011-01-01

    Le système Radio Fréquence (RF) 200MHz du PS est un outil essentiel pour la préparation des faisceaux haute intensité du PS. Dans l’anneau PS on trouve 6 cavités 200 MHz utilisées pour contrôler : • l’émittance longitudinale des « bunches » • le processus de « Rebunching » du faisceau avant de l’envoyer au SPS. Chaque cavité est pilotée par des événements appelés « timing » et suit une fonction de tension programmée. Cependant, l’électronique utilisée pour piloter les cavités 200 MHz du PS est obsolète et sa fiabilité non garantie pour cause du manque de pièces de rechange. Ce document décrit le fonctionnement du nouveau programme d’application qui fait abstraction de l’ancienne matrice hardware. Elle suit les recommandations décrites dans l’étude d’une nouvelle structure pour le système RF 200MHz du PS. [1

  9. Telemetry Group Inter-Range Instrumentation Group Range Commanders Council

    Science.gov (United States)

    1975-11-01

    PMR-AFWR-NWC- AFETR -•AMTEC-ADTC-AFFTC-AFSCF REPLY TO STEWS-SA-R ATTN OF, SuWu, IRIG Standard 106-73 (Revised November 1975) TO% Holders of IRIG...ETV-TM-67-16, "Multiple-Link Reception Through Wideband Nonlinear Components," 31 March 1967. 1. Purpose - To provide guidelines for the most effective ...telemetering must be restricted to .the 1435-1535 MHz and 2200-2300 MHz bands, effective 1 January 1970, in ord’er to permit unrestricted use of the 225-400

  10. Relative spectral response calibration using Ti plasma lines

    Science.gov (United States)

    Teng, FEI; Congyuan, PAN; Qiang, ZENG; Qiuping, WANG; Xuewei, DU

    2018-04-01

    This work introduces the branching ratio (BR) method for determining relative spectral responses, which are needed routinely in laser induced breakdown spectroscopy (LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.

  11. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  12. Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV-VUV range

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Zimmerer, G.; Shiran, N.; Voronova, V.; Nesterkina, V.; Gektin, A.; Shimamura, K.; Villora, E.; Jing, F.; Shalapska, T.; Voloshinovskii, A.

    2008-01-01

    Spectral-kinetic study of Pr 3+ luminescence has been performed for LiLuF 4 :Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr 3+ 4f 2 →4f 5d excitation spectra is shown for LiLuF 4 :Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr 3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF 4 :Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF 4 :Pr crystals are considered as the promising luminescent materials possessing the efficient Pr 3+3 P 0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu 3+ host ion and Pr 3+ impurity is discussed

  13. Optical properties of InGaAs/InGaAlAs quantum wells for the 1520–1580 nm spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Gladyshev, A. G., E-mail: andrey.gladyshev@connector-optics.com; Novikov, I. I.; Karachinsky, L. Ya.; Denisov, D. V. [Connector Optics OOO (Russian Federation); Blokhin, S. A.; Blokhin, A. A.; Nadtochiy, A. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Kurochkin, A. S. [St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (Russian Federation); Egorov, A. Yu. [Connector Optics OOO (Russian Federation)

    2016-09-15

    The optical properties of elastically strained semiconductor heterostructures with InGaAs/InGaAlAs quantum wells (QWs), intended for use in the formation of the active region of lasers emitting in the spectral range 1520–1580 nm, are studied. Active regions with varied lattice mismatch between the InGaAs QWs and the InP substrate are fabricated by molecular beam epitaxy. The maximum lattice mismatch for the InGaAs QWs is +2%. The optical properties of the elastically strained InGaAlAs/InGaAs/InP heterostructures are studied by the photoluminescence method in the temperature range from 20 to 140°C at various power densities of the excitation laser. Investigation of the optical properties of InGaAlAs/InGaAs/InP experimental samples confirms the feasibility of using the developed elastically strained heterostructures for the fabrication of active regions for laser diodes with high temperature stability.

  14. CAMEX-4 MIPS 915 MHZ DOPPLER WIND PROFILER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The University of Alabama in Huntsville (UAH) Mobile Integrated Profiling System (MIPS) is a mobile atmospheric profiling system. It includes a 915 MHz Doppler...

  15. The Phase Servo Tuner Control system of the ALS 500 MHz cavity

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.

    1993-05-01

    Three 500 MHz cavities are used in the Booster and Storage Ring of the Advanced Light Source (ALS). Due to different varying parameters, a control system is required to keep the cavities in tune during operation. The tuning of the 500 MHz cavity is achieved by detecting the phase error between the drive signal and the cavity probe signal. The error signal is amplified and used to drive a stepping motor which in turn moves a metallic cylinder in or out of the cavity to achieve tuning

  16. Status of 174 MHz RF system for BEP

    International Nuclear Information System (INIS)

    Biryuchevsky, Yu.A.; Gorniker, E.I.; Kendjebulatov, E.K.; Krutikhin, S.A.; Kurkin, G.Ya.; Petrov, V.M.; Pilan, A.M.

    2012-01-01

    The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will increase the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system.

  17. Exploration of Integrated Visible to Near-, Shortwave-, and Longwave-Infrared (Full-Range) Spectral Analysis

    Science.gov (United States)

    2014-09-01

    wavelength region .................................... 67 Table 7. Description of comparison locations...concentration and characteristics of the silicate bonds. Sulfates, phosphates, oxides, and hydroxides also exhibit strong features in the LWIR. Because...authors suggested that full spectral coverage would provide complementary information about the mineralogical and mineral chemistry patterns. The

  18. CAMEX-4 MIPS 915 MHZ DOPPLER WIND PROFILER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 MIPS 915 MHZ Doppler Wind Profiler dataset was collected by the University of Alabama in Huntsville (UAH) Mobile Integrated Profiling System (MIPS),...

  19. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  20. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  1. Fundamental damper power calculation of the 56 MHz SRF cavity for RHIC

    International Nuclear Information System (INIS)

    Wu, Q.; Bellavia, S.; Ben-Zvi, I.; Grau, M.; Miglionico, G.; Pai, C.

    2011-01-01

    At each injection period during RHIC's operation, the beam's frequency sweeps across a wide range, and some of its harmonics will cross the frequency of the 56MHz SRF cavity. To avoid excitation of the cavity at these times, we designed a fundamental damper for the quarter-wave resonator to damp the cavity heavily. The power extracted by the fundamental damper should correspond to the power handling ability of the system at all stages. In this paper, we discuss the power output from the fundamental damper when it is fully extracted, inserted, and any intermediate point. A Fundamental Damper (FD) will greatly reduce the cavity's Q factor to ∼300 during the acceleration phase of the beam. However, when the beam is at store and the FD is removed, the cavity is excited by both the yellow and the blue beams at 2 x 0.3A to attain the required 2MV voltage across its gap. The cavity then is operated to increase the luminosity of the RHIC experiments. Table 1 lists the parameters of the FD. Figure 1 shows the configuration of the FD fully inserted into the 56MHz SRF cavity; this complete insertion is defined as the start location (0cm) of FD simulation, an assumption we make throughout this paper. The power consumed by the cavity while maintaining the beam's energy and its orbit is compensated by the 28MHz accelerating cavities in the storage ring. The power dissipation of the external load is dynamic with respect to the position of the FD during its extraction. As a function of the external Q and the EM field in the cavity, the power should peak with the FD at a certain vertical location. Our calculation of the power extracted is detailed in the following sections. Figure 2 plots the frequency change in the cavity, and the external Q against the changes in position of the FD. The location of the FD is selected carefully such that the frequency will approach the designed working point from the lower side only. The loaded Q of the cavity is 223 when the FD is fully

  2. Investigations in a drift chamber using 250 MHz analogue-digital-converters

    International Nuclear Information System (INIS)

    Scharf, F.A.

    1993-06-01

    The performance of a new 250 MHz FADC module was investigated in a small drift chamber system. Straight tracks were induced in the chamber volume by UV-LASER beams. The time resolution was determined from drift time measurements for four neighbouring signal wires. By use of a beam splitter a pair of parallel beams was produced. An appropriate rotation of this pair relative to the signal wire plane allowed the determination of the double hit resolution. A comparison of the obtained values with the results achieved with 100 MHz FADC modules showed that the new module is well suited for chamber read out. The attainable improvements however are small. (orig.) [de

  3. Analysis of the Herschel/HIFI 1.2 THz Wide Spectral Survey of the Orion Kleinmann-Low Nebula

    Science.gov (United States)

    Crockett, Nathan R.

    This dissertation presents a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this massive star forming region in the sub-mm with high spectral resolution, and include frequencies >1 THz where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 36 molecules (76 isotopologues). Combining this dataset with ground based mm spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission assuming local thermodynamic equilibrium (LTE). Because of the wide frequency coverage, our models are constrained over an unprecedented range in excitation energy, including states at or close to ground up to energies where emission is no longer detected. A χ2 analysis indicates that most of our models reproduce the observed emission well. In particular complex organics, some with thousands of transitions, are well fit by LTE models implying that gas densities are high (>10^6 cm^-3) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H2 column densities also derived from the HIFI survey. The rotation temperature distribution of molecules detected toward the hot core is much wider relative to the compact ridge, plateau, and extended ridge. We find that complex N-bearing species, cyanides in particular, systematically probe hotter gas than complex O-bearing species. This indicates complex N-bearing molecules may be more difficult to remove from grain surfaces or that hot gas phase formation routes are important for these species. We also present a detailed non-LTE analysis of H2S emission toward the hot core which suggests

  4. Design of 118 MHz twelfth harmonic cavity of APS PAR

    International Nuclear Information System (INIS)

    Kang, Y.W.; Kustom, R.L.; Bridges, J.F.

    1992-01-01

    Two radio frequency (RF) cavities are needed in the Positron Accumulator Ring (PAR) of the Advanced Photon Source. One is for the first harmonic frequency at 9.8 MHz, and the other is for the twelfth harmonic frequency at 118 MHz. This note reports on the design of the 118 MHz RF cavity. Computer models are used to find the mode frequencies, impedances, Q-factors, and field distributions in the cavity. The computer codes MAFIA, URMEL, and URMEL-T are useful tools which model and simulate the resonance characteristics of a cavity. These codes employ the finite difference method to solve Maxwell's equations. MAFIA is a three-dimensional problem solver and uses square patches to approximate the inner surface of a cavity. URMEL and URMEL-T are two-dimensional problem solvers and use rectangular and triangular meshes, respectively. URMEL-T and MAFIA can handle problems with arbitrary dielectric materials located inside the boundary. The cavity employs a circularly cylindrical ceramic window to limit the vacuum to the beam pipe. The ceramic window used in the modeling will have a wall thickness of 0.9 cm. This wall thickness is not negligible in determining the resonant frequencies of the cavity. In the following, results of two- and three-dimensional modeling of the cavities using the URMEL-T and MAFIA codes are reported

  5. GPU-Based High-performance Imaging for Mingantu Spectral RadioHeliograph

    Science.gov (United States)

    Mei, Ying; Wang, Feng; Wang, Wei; Chen, Linjie; Liu, Yingbo; Deng, Hui; Dai, Wei; Liu, Cuiyin; Yan, Yihua

    2018-01-01

    As a dedicated solar radio interferometer, the MingantU SpEctral RadioHeliograph (MUSER) generates massive observational data in the frequency range of 400 MHz-15 GHz. High-performance imaging forms a significantly important aspect of MUSER’s massive data processing requirements. In this study, we implement a practical high-performance imaging pipeline for MUSER data processing. At first, the specifications of the MUSER are introduced and its imaging requirements are analyzed. Referring to the most commonly used radio astronomy software such as CASA and MIRIAD, we then implement a high-performance imaging pipeline based on the Graphics Processing Unit technology with respect to the current operational status of the MUSER. A series of critical algorithms and their pseudo codes, i.e., detection of the solar disk and sky brightness, automatic centering of the solar disk and estimation of the number of iterations for clean algorithms, are proposed in detail. The preliminary experimental results indicate that the proposed imaging approach significantly increases the processing performance of MUSER and generates images with high-quality, which can meet the requirements of the MUSER data processing. Supported by the National Key Research and Development Program of China (2016YFE0100300), the Joint Research Fund in Astronomy (No. U1531132, U1631129, U1231205) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Nos. 11403009 and 11463003).

  6. 76 FR 51271 - Implementing a Nationwide, Broadband, Interoperable Public Safety Network in the 700 MHz Band

    Science.gov (United States)

    2011-08-18

    ... 700 MHz Band AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: In this document... medical services, Incorporation by reference, Individuals with disabilities, Radio, Reporting and...- 798 MHz bands. * * * * * Service Availability. The use of a public safety broadband network on a day...

  7. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation.

    Science.gov (United States)

    Liu, Wenhui; Zheng, Xinmin; Qu, Zaiqing; Zhang, Ming; Zhou, Chun; Ma, Ling; Zhang, Yuanzhen

    2012-10-01

    This study examined the impact of 935MHz phone-simulating electromagnetic radiation on embryo implantation of pregnant mice. Each 7-week-old Kunming (KM) female white mouse was set up with a KM male mouse in a single cage for mating overnight after induction of ovulation. In the first three days of pregnancy, the pregnant mice was exposed to electromagnetic radiation at low-intensity (150 μW/cm(2), ranging from 130 to 200 μW/cm(2), for 2- or 4-h exposure every day), mid-intensity (570 μW/cm(2), ranging from 400 to 700 μW/cm(2), for 2- or 4-h exposure every day) or high-intensity (1400 μW/cm(2), ranging from 1200 to 1500 μW/cm(2), for 2- or 4-h exposure every day), respectively. On the day 4 after gestation (known as the window of murine embryo implantation), the endometrium was collected and the suspension of endometrial glandular cells was made. Laser scanning microscopy was employed to detect the mitochondrial membrane potential and intracellular calcium ion concentration. In high-intensity, 2- and 4-h groups, mitochondrial membrane potential of endometrial glandular cells was significantly lower than that in the normal control group (Pelectromagnetic radiation and longer length of the radiation are required to inflict a remarkable functional and structural damage to mitochondrial membrane. Our data demonstrated that electromagnetic radiation with a 935-MHz phone for 4 h conspicuously decreased mitochondrial membrane potential and lowered the calcium ion concentration of endometrial glandular cells. It is suggested that high-intensity electromagnetic radiation is very likely to induce the death of embryonic cells and decrease the chance of their implantation, thereby posing a high risk to pregnancy.

  8. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure.

    Directory of Open Access Journals (Sweden)

    Ju Hwan Kim

    Full Text Available The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs. EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF of 835 MHz at a specific absorption rate (SAR of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress.

  9. 500 MHz transient digitizers based on GaAs CCDs

    International Nuclear Information System (INIS)

    Bryman, D.; Cresswell, J.V.; LeNoble, M.; Poutissou, R.

    1990-10-01

    A wide bandwidth transient digitizer based on a recently produced gallium arsenide charged coupled device is under development. The CCDs have 128 pixels and operate at 500 MHz. Initial testing of prototype modules in Experiment 787 at Brookhaven National Laboratory is reported. (Author) (8 refs., 10 figs.)

  10. Design Considerations for the LHC 200 MHz RF System

    CERN Document Server

    Boussard, Daniel; Kindermann, H P; Linnecar, Trevor Paul R; Marque, S; Tückmantel, Joachim

    2000-01-01

    The longitudinal beam transfer from the SPS into the LHC 400 MHz buckets will not be free of losses without a lower frequency capture system and a fast longitudinal damping system in LHC. We present a complete study of a combined system using four identical copper cavities at 200 MHz delivering 3 MV total CW voltage and having still enough bandwidth to achieve fast longitudinal damping. The shape of a cavity was designed according to the accelerating mode performance, its tuning and the higher order mode spectrum with respect to the LHC beam lines and their possible attenuation. The possibility to park the cavities during coast was included. The local heat load and the corresponding cooling water distribution as well as deformations were studied and techniques to build the cavity with all ports at low cost are proposed. The parameters of the RF generators, couplers and detuning are determined. Simulations of the total LHC RF system incorporating real delays, generator bandwidth and the control loops confirm t...

  11. Spectral properties of common intraocular lens (IOL) types

    Science.gov (United States)

    Milne, Peter J.; Chapon, Pascal F.; Hamaoui, Marie; Parel, Jean-Marie A.; Clayman, H.; Rol, Pascal O.

    1999-06-01

    Currently over 50 kinds of intraocular lenses (IOLs) are approved for patient use in the treatment of cataracts and ametropia. These lenses are manufactured from at least 2 kinds of silicones as well as several kinds of acrylic polymers including polyHEMA, Poly HOXEMA, a range of polymethacrylate and polyacrylate formulations. We sought to measure spectral transmission curves of a range of IOLS in the UV-visible and near IR spectral regions in order to better characterize their optical properties and to provide a baseline from which to assess their alteration following implantation over time. Consideration of how this may best be achieved are discussed. The variable ability of both explained IOLs and some samples from a range of manufacturers to block UV wavelengths is commented upon.

  12. Single-shot parallel full range complex Fourier-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Huang Bingjie; Bu Peng; Nan Nan; Wang Xiangzhao

    2011-01-01

    We present a method of parallel full range complex Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free two-dimensional (2-D) cross-sectional image, i.e. a full range B-scan tomogram, by a single shot of 2-D CCD camera. This method is based on a spatial carrier technique, in which the spatial carrier-frequency is instantaneously introduced into the 2-D spectral interferogram registered in parallel FDOCT by using a grating-generated reference beam. The spatial-carrier-contained 2-D spectral interferogram is processed through Fourier transformation to obtain a complex 2-D spectral interferogram. From the 2-D complex spectral interferomgram, a full range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging an onion sample.

  13. The quiet Sun brightness temperature at 408 MHz

    International Nuclear Information System (INIS)

    Avignon, Y.; Lantos, P.; Palagi, F.; Patriarchi, P.

    1975-01-01

    The flux of the radio quiet Sun and the brightness temperature at 408 MHz (73cm) are derived from measurements with the E-W Nancay interferometer and the E-W arm of the Medicina North Cross. It is shown that the lowest envelopes, which defined the radio quiet Sun, correspond to transits of extended coronal holes across the disk of the Sun. (Auth.)

  14. 75 FR 9210 - Wireless Telecommunications Bureau Seeks Comment on Petition for Rulemaking Regarding 700 MHz...

    Science.gov (United States)

    2010-03-01

    [email protected] or call the Consumer & Governmental Affairs Bureau at 202-418-0530 (Voice), 202-418-0432 (TTY... the Commission to ``assure that consumers will have access to all paired 700 MHz spectrum that the Commission licenses, to act so that the entire 700 MHz band will develop in a competitive fashion, and to...

  15. Spectral quality requirements for effluent identification

    Science.gov (United States)

    Czerwinski, R. N.; Seeley, J. A.; Wack, E. C.

    2005-11-01

    We consider the problem of remotely identifying gaseous materials using passive sensing of long-wave infrared (LWIR) spectral features at hyperspectral resolution. Gaseous materials are distinguishable in the LWIR because of their unique spectral fingerprints. A sensor degraded in capability by noise or limited spectral resolution, however, may be unable to positively identify contaminants, especially if they are present in low concentrations or if the spectral library used for comparisons includes materials with similar spectral signatures. This paper will quantify the relative importance of these parameters and express the relationships between them in a functional form which can be used as a rule of thumb in sensor design or in assessing sensor capability for a specific task. This paper describes the simulation of remote sensing datacontaining a gas cloud.In each simulation, the spectra are degraded in spectral resolution and through the addition of noise to simulate spectra collected by sensors of varying design and capability. We form a trade space by systematically varying the number of sensor spectral channels and signal-to-noise ratio over a range of values. For each scenario, we evaluate the capability of the sensor for gas identification by computing the ratio of the F-statistic for the truth gas tothe same statistic computed over the rest of the library.The effect of the scope of the library is investigated as well, by computing statistics on the variability of the identification capability as the library composition is varied randomly.

  16. First derivative versus absolute spectral reflectance of citrus varieties

    Science.gov (United States)

    Blazquez, Carlos H.; Nigg, H. N.; Hedley, Lou E.; Ramos, L. E.; Sorrell, R. W.; Simpson, S. E.

    1996-06-01

    Spectral reflectance measurements from 400 to 800 nm were taken from immature and mature leaves of grapefruit ('McCarty' and 'Rio Red'), 'Minneola' tangelo, 'Satsuma' mandarin, 'Dancy' tangerine, 'Nagami' oval kumquat, and 'Valencia' sweet orange, at the Florida Citrus Arboretum, Division of Plant Industry, Winter Haven, Florida. Immature and mature leaves of 'Minneola' tangelo had greater percent reflectance in the 400 to 800 nm range than the other varieties and leaf ages measured. The slope of the citrus spectral curves in the 800 nm range was not as sharp as conventional spectrometers, but had a much higher reflectance value than those obtained with a DK-2 spectrometer. Statistical analyses of absolute spectral data yielded significant differences between mature and immature leaves and between varieties. First derivative data analyses did not yield significant differences between varieties.

  17. The potential for extending the spectral range accessible to the european X-ray free electron laser in the direction of longer wavelengths

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    The baseline specifications of European XFEL give a range of wavelengths between 0.1 nm and 2 nm. This wavelength range at fixed electron beam energy 17.5 GeV can be covered by operating the SASE FEL with three undulators which have different period and tunable gap. A study of the potential for the extending the spectral range accessible to the XFEL in the direction of longer wavelengths is presented. The extension of the wavelength range to 6 nm would be cover the water window in the VUV region, opening the facility to a new class of experiments. There are at least two possible sources of VUV radiation associated with the X-ray FEL; the "low (2.5 GeV) energy electron beam dedicated" and the " 17.5 GeV spent beam parasitic" (or "after-burner") source modes. The second alternative, "after-burner undulator" is the one we regard as most favorable. It is possible to place an undulator as long as 80 meters after 2 nm undulator. Ultimately, VUV undulator would be able to deliver output power approaching 100 GW. A b...

  18. Calibration of SAR probes in waveguide at 900 MHz

    International Nuclear Information System (INIS)

    Jokela, K.; Puranen, L.; Hyysalo, P.

    1998-01-01

    The radiation safety tests for hand-held mobile phones require precise calibration of the small electric field probes used for the measurement of SAR in phantoms simulating the human body. In this study a calibration based on a rectangular waveguide was developed for SAR calibrations at 900 MHz

  19. MEMS Tunable Antennas to Address LTE 600 MHz-bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2015-01-01

    The broadcast television spectrum around 600 MHz has been freed in the united states and will be put for auction to wireless carriers in 2015. The newest generation of mobile communication standards will be deployed on these newly available bands, to provide mobile device users with an enhanced c...

  20. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  1. PROBING THE SOLAR ATMOSPHERE USING OSCILLATIONS OF INFRARED CO SPECTRAL LINES

    International Nuclear Information System (INIS)

    Penn, M. J.; Schad, T.; Cox, E.

    2011-01-01

    Oscillations were observed across the whole solar disk using the Doppler shift and line center intensity of spectral lines from the CO molecule near 4666 nm with the National Solar Observatory's McMath/Pierce solar telescope. Power, coherence, and phase spectra were examined, and diagnostic diagrams reveal power ridges at the solar global mode frequencies to show that these oscillations are solar p-modes. The phase was used to determine the height of formation of the CO lines by comparison with the IR continuum intensity phase shifts as measured in Kopp et al.; we find that the CO line formation height varies from 425 km μ > 0.5. The velocity power spectra show that while the sum of the background and p-mode power increases with height in the solar atmosphere as seen in previous work, the power in the p-modes only (background subtracted) decreases with height. The CO line center intensity weakens in regions of stronger magnetic fields, as does the p-mode oscillation power. Across most of the solar surface the phase shift is larger than the expected value of 90 0 for an adiabatic atmosphere. We fit the phase spectra at different disk positions with a simple atmospheric model to determine that the acoustic cutoff frequency is about 4.5 mHz with only small variations, but that the thermal relaxation frequency drops significantly from 2.7 to 0 mHz at these heights in the solar atmosphere.

  2. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    International Nuclear Information System (INIS)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-01-01

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation

  3. Resonant ULF absorption in storm time conditions

    Directory of Open Access Journals (Sweden)

    Badin V.I.

    2017-03-01

    Full Text Available The work deals with ULF radar observations of the high-latitude ionosphere. Doppler data from the Norwegian STARE instrument are analyzed for the moderate magnetic storm observed on December 31, 1999 – January 01, 2000. Upon averaging the Doppler signals along radar beams, the spectral power of signals is determined for each beam as a function of frequency ranging from 1 to 10 mHz. Sharp drops (about 10 dB of spectral powers with frequency are found for all radar beams. A variational analysis of spectral powers is carried out by least squares, with power drops being modeled by stepwise profiles constructed of mean spectral powers preceding and succeeding the drops. Using this variational analysis, the frequency of the power drop is determined for each radar beam. Being averaged over all beams, this frequency is 4.8±0.5 mHz. The results obtained are interpreted as resonant absorption of ultra-low-frequency (ULF waves occurring on eigenfrequencies of magnetic field lines over wave propagation from the magnetopause deep into the magnetosphere.

  4. 76 FR 62309 - Implementing a Nationwide, Broadband, Interoperable Public Safety Network in the 700 MHz Band

    Science.gov (United States)

    2011-10-07

    ... the 700 MHz Band AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: In this... spectrum of the 700 MHz band. The Commission dismissed the request, but clarified that a reasonably broad... personnel including, but not limited to, activities of police, fire and medical emergency first responders...

  5. Development of 650 MHz solid state RF amplifier for proton accelerator

    International Nuclear Information System (INIS)

    Jain, Akhilesh; Sharma, Deepak; Gupta, Alok; Tiwari, Ashish; Rao, Nageswar; Sekar, Vasanthi; Lad, M.; Hannurkar, P.R.; Gupta, P.D.

    2011-01-01

    Design and development of 30 kW high powers RF source at 650 MHz, using solid RF state technology, has been initiated at RRCAT. The indigenous technology development efforts will be useful for the proposed high power proton accelerators for SNS/ADS applications. In this 650 MHz amplifier scheme, 30 kW CW RF power will be generated using modular combination of 8 kW amplifier units. Necessary studies were carried out for device selection, choice of amplifier architecture and design of high power combiners and dividers. Presently RF amplifier delivering 250 W at 650 MHz has been fabricated and tested. Towards development of high power RF components, design and engineering prototyping of 16-port power combiner, directional coupler and RF dummy loads has been completed. The basic 8 kW amplifier unit is designed to provide power gain of 50 dB, bandwidth of 20 MHz and spurious response below 30 dB from fundamental signal. Based on the results of circuit simulation studies and engineering prototyping of amplifier module, two RF transistor viz. MRF3450 and MRF 61K were selected as solid state active devices. Impedance matching network in amplifier module is designed using balanced push pull configuration with transmission line BALUN. Due to high circulating current near drain side, metal clad RF capacitors were selected which helps in avoiding hot spot from output transmission path, ensuring continuous operation at rated RF power without damage to RF board. 350 W circulator is used to protect the RF devices from reflected power. Based on the prototype design and measured performance, one of these RF transistors will be selected to be used as workhorse for all amplifier modules. Two amplifier modules are mounted on water cooled copper heat-sink ensuring proper operating temperature for reliable and safe operation of amplifier. Also real time control system and data logger has been developed to provide DAQ and controls in each rack. For power combining and power measurement

  6. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  7. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  8. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  9. Charge domain filter operating up to 20 MHz clock frequency

    NARCIS (Netherlands)

    Gal, R.A.J.; Wallinga, Hans

    1983-01-01

    An analog sampled data low pass third order Butterworth filter has been realised in a buried channel CCD technology. This Charge Domain Filter, composed of transversal and recursive CCD filter sections, has been tested at clock frequencies up to 20 MHz.

  10. Q0 Degradation of LANL 700-MHZ β = 0.64 Elliptical Cavities and ANL 340 MHZ Spoke Cavities

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Chan, Kwok-Chi D.; Edwards, Randall L.; Gentzlinger, Robert C.; Kelley, John Patrick; Krawczyk, Frank L.; Madrid, Michael A.; Montoya, Debbie I.; Schrage, Dale L.; Shapiro, Alan H.

    2002-01-01

    The quality factor (Q 0 ) of most of the six LANL β = 0.64 700-MHz 5-cell elliptical cavities starts to drop at E acc = 8-10 MV/m, which may be related to multipacting. Residual resistances of these cavities were measured to be 5.0-7.6 n(Omega). The sensitivity of surface resistance to the external magnetic field was measured to be 0.22 n(Omega)/mG. Q disease tests have shown no significant Q 0 degradation for both elliptical cavities and a spoke cavity with our 100 (micro)m BCP.

  11. Bio-WiTel: A Low-Power Integrated Wireless Telemetry System for Healthcare Applications in 401-406 MHz Band of MedRadio Spectrum.

    Science.gov (United States)

    Srivastava, Abhishek; Sankar K, Nithin; Chatterjee, Baibhab; Das, Devarshi; Ahmad, Meraj; Kukkundoor, Rakesh Keshava; Saraf, Vivek; Ananthapadmanabhan, Jayachandran; Sharma, Dinesh Kumar; Baghini, Maryam Shojaei

    2018-03-01

    This paper presents a low-power integrated wireless telemetry system (Bio-WiTel) for healthcare applications in 401-406 MHz frequency band of medical device radiocommunication (MedRadio) spectrum. In this paper, necessary design considerations for telemetry system for short-range (upto 3 m) communication of biosignals are presented. These considerations help greatly in making important design decisions, which eventually lead to a simple, low power, robust, and reliable wireless system implementation. Transmitter (TX) and receiver (RX) of Bio-WiTel system have been fabricated in 180 nm mixed mode CMOS technology. While radiating -18 dBm output power to a 50 antenna, the packaged TX IC consumes 250 μW power in 100% on state from 1 V supply, whereas the RX IC consumes 990 μW power from 1.8 V supply with a sensitivity of -75 dBm. Measurement results show that TX fulfils the spectral mask requirement at a maximum data rate of 72 kb/s. The measured bit error rate (BER) of RX is less than for a data rate of 200 kb/s. The proposed Bio-WiTel system is tested successfully in home and hospital environments for the communication of electrocardiogram and photoplethysmogram signals at a data rate of 57.6 kb/s with a measured BER of <10 for a maximum distance of 3 m.

  12. Detection of plum pox virus infection in selection plum trees using spectral imaging

    Science.gov (United States)

    Angelova, Liliya; Stoev, Antoniy; Borisova, Ekaterina; Avramov, Latchezar

    2016-01-01

    Plum pox virus (PPV) is among the most studied viral diseases in the world in plants. It is considered to be one of the most devastating diseases of stone fruits in terms of agronomic impact and economic importance. Noninvasive, fast and reliable techniques are required for evaluation of the pathology in selection trees with economic impact. Such advanced tools for PPV detection could be optical techniques as light-induced fluorescence and diffuse reflectance spectroscopies. Specific regions in the electromagnetic spectra have been found to provide information about the physiological stress in plants, and consequently, diseased plants usually exhibit different spectral signature than non-stressed healthy plants in those specific ranges. In this study spectral reflectance and chlorophyll fluorescence were used for the identification of biotic stress caused by the pox virus on plum trees. The spectral responses of healthy and infected leaves from cultivars, which are widespread in Bulgaria were investigated. The two applied techniques revealed statistically significant differences between the spectral data of healthy plum leaves and those infected by PPV in the visible and near-infrared spectral ranges. Their application for biotic stress detection helps in monitoring diseases in plants using the different plant spectral properties in these spectral ranges. The strong relationship between the results indicates the applicability of diffuse reflectance and fluorescence techniques for conducting health condition assessments of vegetation and their importance for plant protection practices.

  13. Wireless network of stand-alone end effect probes for soil in situ permittivity measurements over the 100MHZ-6GHz frequency range

    Science.gov (United States)

    Demontoux, François; Bircher, Simone; Ruffié, Gilles; Bonnaudiin, Fabrice; Wigneron, Jean-Pierre; Kerr, Yann

    2017-04-01

    Microwave remote sensing and non-destructive analysis are a powerful way to provide properties estimation of materials. Numerous applications using microwave frequency behavior of materials (remote sensing above land surfaces, non-destructive analysis…) are strongly dependent on the material's permittivity (i.e. dielectric properties). This permittivity depends on numerous parameters such as moisture, texture, temperature, frequency or bulk density. Permittivity measurements are generally carried out in the laboratory. Additionally, dielectric mixing models allow, over a restricted range of conditions, the assessment of a material's permittivity. in-situ measurements are more difficult to obtain. Some in situ measurement probes based on permittivity properties of soil exist (e.g. Time Domain Reflectometers and Transmissometers, capacitance and impedance sensors). They are dedicated to the acquisition of soil moisture data based on permittivity (mainly the real part) estimations over a range of frequencies from around 50 MHz to 1 or 2 GHz. Other Dielectric Assessment Kits exist but they are expensive and they are rather dedicated to laboratory measurements. Furthermore, the user can't address specific issues related to particular materials (e.g. organic soils) or specific measurement conditions (in situ long time records). At the IMS Laboratory we develop probes for in situ soil permittivity measurements (real and imaginary parts) in the 0.5 - 6 GHz frequency range. They are based on the end effect phenomenon of a coaxial waveguide and so are called end effect probes in this paper. The probes can be connected to a portable Vector Network Analyzer (VNA, ANRITSU MS2026A) for the S11 coefficient measurements needed to compute permittivity. It is connected to a PC to record data using an USB connection. This measurement set-up is already used for in situ measurement of soil properties in the framework of the European Space Agency's (ESA) SMOS space mission. However

  14. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity

  15. A 900 MHz RF energy harvesting system in 40 nm CMOS technology with efficiency peaking at 47% and higher than 30% over a 22dB wide input power range

    NARCIS (Netherlands)

    Wang, J.; Jiang, Y.; Dijkhuis, J.; Dolmans, G.; Gao, H.; Baltus, P.G.M.

    2017-01-01

    A 900 MHz RF energy harvesting system is proposed for a far-field wireless power transfer application. The topology of a single-stage CMOS rectifier loaded with an integrated boost DC-DC converter is implemented in a 40 nm CMOS technology. The co-design of a cross-coupled CMOS rectifier and an

  16. The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range

    Science.gov (United States)

    Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.

    2013-08-01

    Context. Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. Aims: A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. Methods: We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. Results: We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. Conclusions: We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7 L⊙ luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. Appendix A is available in electronic form at http://www.aanda.org

  17. New Control Structure of the 200 MHz RF System in the CERN PS

    CERN Document Server

    Damerau, H; CERN. Geneva. AB Department

    2008-01-01

    The 200 MHz RF system is an essential tool for the preparation of high-intensity beams in the CERN PS. Presently, six RF cavities are operated to control the longitudinal bunch emittance and rebunching of the beam before the transfer to the SPS. Cavities are selected for the various processes with a dedicated hardware matrix, switching the individual timing pulses and voltage programs per cavity. However, the electronics used for the matrix hardware is obsolete and its reliability cannot be guaranteed due to a lack of spare modules and components. Instead of replacing the old hardware matrix by modern hardware, this note describes a new control structure for the 200MHz RF system so that no dedicated hardware will be required anymore. The implementation of the new control structure is based on two main concepts. Firstly, linked timing trees per blow-up or rebunching are used to handle all related timing and to store one row of the matrix. Secondly, as a reflection of the RF signal generation for the 200 MHz sy...

  18. Characteristics of SiO{sub 2} etching with a C{sub 4}F{sub 8}/Ar/CHF{sub 3}/O{sub 2} gas mixture in 60-MHz/2-MHz dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, M. H.; Kang, S. K.; Park, J. Y.; Yeom, G. Y. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-11-15

    Nanoscale SiO{sub 2} contact holes were etched by using C{sub 4}F{sub 8}/CHF{sub 3}/O{sub 2}/Ar gas mixtures in dual frequency capacitively coupled plasmas (DF-CCPs) where a 60-MHz source power was applied to the top electrode while a 2-MHz bias power was applied to the bottom electrode. The initial increase in the CHF{sub 3} gas flow rate at a fixed CHF{sub 3}+O{sub 2} flow rate increased the SiO{sub 2} etch rate as well as SiO{sub 2} etch selectivity over that of the amorphous carbon layer (ACL). When the high-frequency (HF) power was increased both SiO{sub 2} etch rate and the etch selectivity over ACL were increased. For a 300 W/500 W power ratio of 60-MHz HF power/ 2-MHz low-freqeuncy (LF) and a gas mixture of Ar (140 sccm) /C{sub 4}F{sub 8} (30 sccm) /CHF{sub 3} (25 sccm) /O{sub 2} (5 sccm) while maintaining 20 mTorr, an anisotropic etch profile with an SiO{sub 2} etch rate of 3350 A/min and an etch selectivity of higher than 6 over ACL could be obtained.

  19. 805 MHz Beta = 0.47 Elliptical Accelerating Structure R & D

    Energy Technology Data Exchange (ETDEWEB)

    S. Bricker; C. Compton; W. Hartung; M. Johnson; F. Marti; J. Popierlarski; R. C. York; et al

    2008-09-22

    A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q{sub 0}) were between 7 {center_dot} 10{sup 9} and 1.4 {center_dot} 10{sup 10} at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules. A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.

  20. [Identification of Dendrobium varieties by Fourier transform infrared spectroscopy combined with spectral retrieval].

    Science.gov (United States)

    Liu, Fei; Wang, Yuan-zhong; Deng, Xing-yan; Jin, Hang; Yang, Chun-yan

    2014-06-01

    The infrared spectral of stems of 165 trees of 23 Dendrobium varieties were obtained by means of Fourier transform infrared spectroscopy technique. The spectra show that the spectra of all the samples were similar, and the main components of stem of Dendrobium is cellulose. By the spectral professional software Omnic8.0, three spectral databases were constructed. Lib01 includes of the average spectral of the first four trees of every variety, while Lib02 and Lib03 are constructed from the first-derivative spectra and the second-derivative spectra of average spectra, separately. The correlation search, the square difference retrieval and the square differential difference retrieval of the spectra are performed with the spectral database Lib01 in the specified range of 1 800-500 cm(-1), and the yield correct rate of 92.7%, 74.5% and 92.7%, respectively. The square differential difference retrieval of the first-derivative spectra and the second-derivative spectra is carried out with Lib02 and Lib03 in the same specified range 1 800-500 cm(-1), and shows correct rate of 93.9% for the former and 90.3% for the later. The results show that the first-derivative spectral retrieval of square differential difference algorithm is more suitabe for discerning Dendrobium varieties, and FTIR combining with the spectral retrieval method can identify different varieties of Dendrobium, and the correlation retrieval, the square differential retrieval, the first-derivative spectra and second-derivative spectra retrieval in the specified spectral range are effective and simple way of distinguishing different varieties of Dendrobium.

  1. Performance of the first European 482 MHz wind profiler radar with RASS under operational conditions

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, H.; Engelbart, D.; Goersdorf, U.; Lehmann, V.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium; Dibbern, J.; Neuschaefer, J.W.

    1998-10-01

    The first 482 MHz wind profiler radar (WPR) in Europe completed with a radio-acoustic sounding system (RASS) has been operated at the meteorological observatory Lindenberg since July 3rd, 1996 after a comprehensive study regarding the investigation of frequency compatibility between the WPR and the television channel 22 (478-486 MHz). The WPR can operate with different height and time resolutions (e.g. 250 m in the so-called low mode or 500 m in the high mode). A height range of up to approximately 16 km can be realized in the high mode. The installed WPR/RASS combination allows also the measurement of profiles of the virtual temperature with the low mode resolution in the height range from 500 m up to approximately 4000 m. The main objective of this contribution is the investigation of the accuracy and the availability of this new remote sensing system. First results of the accuracy can be given on the base of about 1000 intercomparisons between WPR/RASS and rawinsonde data. The bias of the horizontal wind velocities is less than 0.4 m/s in the low mode and 0.7 m/s in the high mode (from 3 to 10 km) and therefore smaller than the average accuracy of both systems. The bias of the temperature measurements is less than 1 K and can be improved by some corrections in future. A first statistics of the data availability can be shown based on nearly 6000 profiles of wind and temperature. The 80% availability of the WPR/RASS was determined with 12.8 km for wind and 2.3 km for temperature measurements. The new possibilities of investigating the troposphere as well as the lowest part of the stratosphere are presented by measurement examples from February and March 1997. (orig.) 22 refs.

  2. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  3. Development of 400- to 450-MHz RFQ resonator-cavity mechanical designs

    International Nuclear Information System (INIS)

    Hansborough, L.D.

    1982-01-01

    In the development of the radio-frequency quadrupole (RFQ) linac, the resonator cavity's mechanical design may be a challenge similar in magnitude to that of the development of the accelerator structure itself. Experience with the all-copper 425-MHz RFQ proof-of-principle linac has demonstrated that the resonator cavity must be structurally stiff and easily tunable. This experience has led to development of copper-plated steel structures having vanes that may be moved within a cylinder for tuning. Design of a flexible vane-to-cylinder radio-frequency (rf) joint, the vane, and the cylinder has many constraints dictated by the small-diameter cavities in the 400-MHz-frequency region. Two types of flexible, mechanical vane-to-cylinder rf joints are being developed at Los Alamos: the C-seal and the rf clamp-joint

  4. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  5. 47.8 GHz InPHBT quadrature VCO with 22% tuning range

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Johansen, Tom Keinicke; Krozer, Viktor

    2007-01-01

    A 38-47.8 GHz quadrature voltage controlled oscillator (QVCO) in InP HBT technology is presented. The measured output power is - 15 dBm. The simulated phase noise ranges from -84 to -86 dBc/Hz at 1 MHz offset. It is believed that this is the first millimetre-wavc QVCO implemented in InP HBT...

  6. A Spectral Library of Emissivity Spectra for MERTIS on BepiColombo

    Science.gov (United States)

    Maturilli, A.; Helbert, J.; Varatharajan, I.; D'Amore, M.; Hiesinger, H.

    2018-05-01

    At PSL we measured emissivity spectra in vacuum for a suite of Mercury surface analogues for temperatures from 100°C to >400°C. The spectral library is completed by reflectance on samples fresh and post-heating (0.2 to 200 µm spectral range).

  7. Analysis of errors in spectral reconstruction with a Laplace transform pair model

    International Nuclear Information System (INIS)

    Archer, B.R.; Bushong, S.C.

    1985-01-01

    The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)

  8. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [Health Protection Agency, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at {approx}130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at {approx}120 MHz and {approx}160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at {approx}180 and {approx}600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the

  9. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2006-01-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ∼130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ∼120 MHz and ∼160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ∼180 and ∼600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the

  10. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling

    2013-01-01

    to describe the spectral slope transition as well as the limit for application of the Taylor hypothesis. The stability parameter calculated from point measurements, the bulk Richardson number, is found insufficient to represent the various atmospheric structures that have their own spectral behaviours under...... spectra show universal characteristics, in agreement with the findings in literature, including the energy amplitude and the −5/3 spectral slope in the mesoscale range transitioning to a slope of −3 for synoptic and planetary scales. The integral time-scale of the local weather is found to be useful...... different stability conditions, such as open cells and gravity waves. For stationary conditions, the mesoscale turbulence is found to bear some characteristics of two-dimensional isotropy, including (1) very minor vertical variation of spectra; (2) similar spectral behaviour for the along- and across...

  11. Design and Realization of FIR Filter for Inter Satellite Link at 50-90 MHZ Frequency using FPGA

    Directory of Open Access Journals (Sweden)

    Yuyu Wahyu

    2016-12-01

    Full Text Available In this paper, design and realization of FIR filter with a bandwidth of 40 MHz at 50-90 MHz frequency has been proposed. The design was destined to be implemented on the Inter Satellite Links (ISL. This kind of filter had been selected due to a need in linear phase responseon the ISL data communication. Equiripple method was used to design the filter becauseof its reliability in minimizing the magnitude errors. The design of this FIR filter was conducted with theoretical calculation and simulation using the R2012b Matlab. For the implementation, FPGA was used with a VHDL as the programming language with a help of Xilinx ISE Design Suite 14.5. Simulation results in Matlab and Simulink indicated that the filter design could be well implemented on ISL at frequency of 50 MHz - 90 MHz with stopband of 60 db. The phase responseresult of the realized design is quite linear so that the filter is suitable for data communication on the ISL.

  12. Spectral estimation for characterization of acoustic aberration.

    Science.gov (United States)

    Varslot, Trond; Angelsen, Bjørn; Waag, Robert C

    2004-07-01

    Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.

  13. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    Science.gov (United States)

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  14. The spectral link in mean-velocity profile of turbulent plane-Couette flows

    Science.gov (United States)

    Zhang, Dongrong; Gioia, Gustavo; Chakraborty, Pinaki

    2015-03-01

    In turbulent pipe and plane-Couette flows, the mean-velocity profile (MVP) represents the distribution of local mean (i.e., time-averaged) velocity on the cross section of a flow. The spectral theory of MVP in pipe flows (Gioia et al., PRL, 2010) furnishes a long-surmised link between the MVP and turbulent energy spectrum. This missing spectral link enables new physical insights into an imperfectly understood phenomenon (the MVP) by building on the well-known structure of the energy spectrum. Here we extend this theory to plane-Couette flows. Similar to pipe flows, our analysis allows us to express the MVP as a functional of the spectrum, and to relate each feature of the MVP relates to a specific spectral range: the buffer layer to the dissipative range, the log layer to the inertial range, and the wake (or the lack thereof) to the energetic range. We contrast pipe and plane-Couette flows in light of the theory.

  15. Spectral confocal reflection microscopy using a white light source

    Science.gov (United States)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  16. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  17. Analysis of Electromagnetic Propagation from MHz to THz with a Memory-Optimised CPML-FDTD Algorithm

    Directory of Open Access Journals (Sweden)

    A. Rodríguez-Sánchez

    2018-01-01

    Full Text Available FDTD method opened a fertile research area on the numerical analysis of electromagnetic phenomena under a wide range of media and propagation conditions, providing an extensive analysis of electromagnetic behaviour like propagation, reflection, refraction, and multitrajectory phenomena. In this paper, we present an optimised FDTD-CPML algorithm, focused in saving memory while increasing the performance of the algorithm. We particularly implement FDTD-CPML method at high frequency bands, used in several telecommunications applications as well as in nanoelectromagnetism. We show an analysis of the performance of the algorithm in single and double precision, as well as a stability of the algorithm analysis, from where we conclude that the implemented CPML ABC constitutes a robust choice in terms of precision and accuracy for the high frequencies herein considered. It is important to recall that the CPML ABC parameters provided in this paper are fixed for the tested range of frequencies, that is, from MHz to THz.

  18. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank

    2007-06-15

    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  19. 75 FR 9586 - Solicitation of Participation In and Public Meeting to Discuss Public Safety 700 MHz Broadband...

    Science.gov (United States)

    2010-03-03

    ... to local, state and tribal public safety agencies (i.e. fire, police, emergency medical services...\\ Implementing a Nationwide, Broadband, Interoperable Public Safety Network in the 700 MHz Band, FCC WT Docket No... technology deployed in the 700 MHz bands, specific to the needs of public safety agencies. NIST has developed...

  20. High-speed optical coherence tomography by circular interferometric ranging

    Science.gov (United States)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  1. 47 CFR 90.315 - Special provisions governing use of frequencies in the 476-494 MHz band (TV Channels 15, 16, 17...

    Science.gov (United States)

    2010-10-01

    ... in the 476-494 MHz band (TV Channels 15, 16, 17) in the Southern Louisiana-Texas Offshore Zone. 90... RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Authorization in the Band 470-512 MHz (UHF-TV Sharing) § 90.315 Special provisions governing use of frequencies in the 476-494 MHz band (TV Channels 15, 16...

  2. Development of a high-power 432 MHz DTL

    International Nuclear Information System (INIS)

    Naito, F.; Kato, T.; Takasaki, E.; Yamazaki, Y.; Kawasumi, T.; Suzuki, K.; Iino, Y.

    1992-01-01

    A high-power model of a 432 MHz Drift-Tube Linac is under construction. It will accelerate H - ions from 3 to 5.4 MeV, and is a prototype of the DTL for the Japanese Hadron Project. Several new techniques have been developed for constructing the DTL: fabricating and assembling methods of permanent quadrupole magnet and a drift tube, alignment of the drift tube, and a method of connecting the tanks. (Author) 6 refs., 5 figs

  3. Comparison of temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna: Results in ex vivo porcine livers

    International Nuclear Information System (INIS)

    Sun Yuanyuan; Cheng Zhigang; Dong Lei; Zhang Guoming; Wang Yang; Liang Ping

    2012-01-01

    Objective: To compare temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna in ex vivo porcine livers. Materials and methods: The 915- and 2450-MHz microwave ablation and thermal monitor system were used in this study. A total of 56 ablation zones and 280 temperature data were obtained in ex vivo porcine livers. The output powers were 50, 60, 70, and 80 W and the setting time was 600 s. The temperature curve of every temperature spot, the short- and long-axis diameters of the coagulation zones were recorded and measured. Results: At all four power output settings, the peak temperatures of every temperature spot had a tendency to increase accordingly as the MW output power was increased, and except for 5 mm away from the antenna, the peak temperatures for the 915 MHz cooled-shaft antenna were significantly higher than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Meanwhile, the short- and long-axis diameters for the 915 MHz cooled-shaft antenna were significantly larger than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Conclusion: The 915 MHz cooled-shaft antenna can yield a significantly larger ablation zone and achieve higher temperature in ablation zone than a 2450 MHz cooled-shaft antenna in ex vivo porcine livers.

  4. A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M; Herman, P R

    2005-09-29

    Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.

  5. A High Isolation MIMO Antenna without Decoupling Structure for LTE 700 MHz

    Directory of Open Access Journals (Sweden)

    Yanjie Wu

    2015-01-01

    Full Text Available This paper presents a long-term evolution (LTE 700 MHz band multiple-input-multiple-output (MIMO antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λ at 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz with S11≤−6 dB and S21≤−23 dB.

  6. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  7. Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer

    Science.gov (United States)

    Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther

    2017-12-01

    Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state

  8. Automated multifunction apparatus for spectral and polarization measurements

    International Nuclear Information System (INIS)

    Stepanov, A.N.; Kurakov, A.Ya.

    1992-01-01

    An automated spectral apparatus is described that is based on an SDL-2 spectrometer for spectral and polarization measurements with small specimens (0.15 x 0.15 mm) by the Fourier-coefficient method in the visible and ultraviolet regions over a wide range of temperatures. The absorption, dichroism, birefringence, and polarization orientation of natural waves are determined simultaneously in a single measurement cycle. Polarization-luminescence spectra can also be recorded from one region of the specimen without its adjustment. 3 refs., 3 figs

  9. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  10. LAMPF 201.25-MHz linac field distribution

    International Nuclear Information System (INIS)

    Jameson, R.A.; Halbig, J.K.

    1978-01-01

    Returning of the 201.25-MHz accelerator structure field distributions after the 1975 shutdown is described, and final data are given for use in beam dynamics studies. Several improvements made in procedures included a different method for stopband closure check and a positive method for postcoupler clamping. To obtain accurate results for the first tank a rigorous data reduction technique that included the removal of a ''signature'' due to the bead-pull string itself was used. Other special studies are reported, including the effects of vacuum, bead size, slug tuners, and a bead-pull method for measuring the cavity quality factor Q

  11. Surface impedance of BaFe2-xNixAs2 in the radio frequency range

    Directory of Open Access Journals (Sweden)

    A. Abbassi

    2012-08-01

    Full Text Available We report measurements of the temperature dependence of the surface impedance in superconducting BaFe1.93Ni0.07As2 crystals using the radiofrequency reflection technique in the 5range. An LC resonant circuit with a phase sensitive detection was used at 92MHz. A measurement assembly with point contacts was used at 30MHz. The recent discovery of iron based arsenide superconductors BaFe2-xNixAs2 has attracted much interest. For a Ni doping level of 7% the superconducting phase transition is found around 20K. The temperature dependence of the superconducting penetration depth was determined.

  12. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  13. Investigation of Range Profiles from a Simplified Ship on Rough Sea Surface and Its Multipath Imaging Mechanisms

    Directory of Open Access Journals (Sweden)

    Siyuan He

    2012-01-01

    Full Text Available The range profiles of a two-dimension (2 D perfect electric conductor (PEC ship on a wind-driven rough sea surface are derived by performing an inverse discrete Fourier transform (IDFT on the wide band backscattered field. The rough sea surface is assuming to be a PEC surface. The back scattered field is computed based on EM numerical simulation when the frequencies are sampled between 100 MHz and 700 MHz. Considering the strong coupling interactions between the ship and sea, the complicated multipath effect to the range profile characteristics is fully analyzed based on the multipath imaging mechanisms. The coupling mechanisms could be explained by means of ray theory prediction and numerical extraction of the coupling currents. The comparison of the range profile locations between ray theory prediction and surface current simulation is implemented and analyzed in this paper. Finally, the influence of different sea states on the radar target signatures has been examined and discussed.

  14. Optimized design of a low-resistance electrical conductor for the multimegahertz range

    Science.gov (United States)

    Kurs, André; Kesler, Morris; Johnson, Steven G.

    2011-04-01

    We propose a design for a conductive wire composed of several mutually insulated coaxial conducting shells. With the help of numerical optimization, it is possible to obtain electrical resistances significantly lower than those of a heavy-gauge copper wire or litz wire in the 2-20 MHz range. Moreover, much of the reduction in resistance can be achieved for just a few shells; in contrast, litz wire would need to contain ˜104 strands to perform comparably in this frequency range.

  15. 47 CFR 25.252 - Special requirements for ancillary terrestrial components operating in the 2000-2020 MHz/2180...

    Science.gov (United States)

    2010-10-01

    ..., including takeoff and landing paths. (5) Exceed an aggregate power flux density of −51.8 dBW/m2 in a 1.23 MHz bandwidth at all airport runways and aircraft stand areas, including takeoff and landing paths and...) Be located less than 820 meters from a U.S. Earth Station facility operating in the 2200-2290 MHz...

  16. A Concept of Multi-Mode High Spectral Resolution Lidar Using Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Jin Yoshitaka

    2016-01-01

    Full Text Available In this paper, we present the design of a High Spectral Resolution Lidar (HSRL using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI with the same free spectral range (FSR as the transmitted laser. The transmitted laser light is measured as a reference signal with the same MZI. By scanning the MZI periodically with a scanning range equal to the mode spacing, we can identify the maximum Mie and the maximum Rayleigh signals using the reference signal. The cross talk due to the spectral width of each laser mode can also be estimated.

  17. Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Men, Shaojie; Wang, Ruikang K.

    2017-11-01

    There is an increasing demand for imaging tools in clinical dermatology that can perform in vivo wide-field morphological and functional examination from surface to deep tissue regions at various skin sites of the human body. The conventional spectral-domain optical coherence tomography-based angiography (SD-OCTA) system is difficult to meet these requirements due to its fundamental limitations of the sensitivity roll-off, imaging range as well as imaging speed. To mitigate these issues, we demonstrate a swept-source OCTA (SS-OCTA) system by employing a swept source based on a vertical cavity surface-emitting laser. A series of comparisons between SS-OCTA and SD-OCTA are conducted. Benefiting from the high system sensitivity, long imaging range, and superior roll-off performance, the SS-OCTA system is demonstrated with better performance in imaging human skin than the SD-OCTA system. We show that the SS-OCTA permits remarkable deep visualization of both structure and vasculature (up to ˜2 mm penetration) with wide field of view capability (up to 18×18 mm2), enabling a more comprehensive assessment of the morphological features as well as functional blood vessel networks from the superficial epidermal to deep dermal layers. It is expected that the advantages of the SS-OCTA system will provide a ground for clinical translation, benefiting the existing dermatological practice.

  18. Mechanical design and fabrication of a 425-MHz H- buncher

    International Nuclear Information System (INIS)

    Wilson, N.G.; Precechtel, D.

    1987-01-01

    A beam buncher has been designed, fabricated, and installed on the accelerator test stand (ATS) to match the 2-MeV output beam of a 425-MHz H - radio-frequency quadrupole (RFQ) into a 425-MHz drift-tube linac (DTL). The buncher configuration provides integral-matching permanent-magnet quadrupoles (PMQ) at the exit of the RFQ and one βλ across the buncher accelerating gap; a third PMQ is the first DTL half-cell magnet. Located between the second and third PMQs is a 50-Ω, capacitively coupled, beam-sensing pickup loop. Cooling channels are provided in each of the brazed OFHC copper wall sections. Vacuum pumping of the buncher is provided by a cryogenic refrigerator vacuum pump through an array of small-diameter holes in the buncher cavity wall. Mechanical features of the buncher, the brazing and electron-beam welding of the solid-copper buncher structure, and the beam pickup loop are described in this paper. The buncher has been tuned, installed, and operated at full power on the ATS

  19. The PS 13.3-20 MHZ RF Systems for LHC

    CERN Document Server

    Garoby, R; Haase, M; Krusche, A; Maesen, P; Morvillo, M; Paoluzzi, M; Rossi, C

    2003-01-01

    As part of the preparation of the PS as an injector for the LHC, a prototype 20 MHz rf system has been used, to demonstrate that the nominal longitudinal performance of the proton beam for LHC can be obtained using multiple bunch-splittings. Based on these successful results obtained during 2000, the development of the operational rf system began in 2001. To allow the preparation of bunch trains with a bunch spacing of 25 or 75 ns, this system must operate either at 20 or 13.3 MHz respectively. Two new ferrite cavities and their associated amplifiers have been designed and built. Each one can provide a maximum voltage of 20 kV peak during 200 ms with a 10% duty cycle. The cavities are equipped with fast (~20 ms) gap shorting relays, and rf feedback reduces their Q below 10 at both frequencies. A single system is sufficient to generate the nominal beam for LHC. The second one will then be both a "hot spare" and a very valuable performance enhancement providing the possibility of handling a larger than nominal ...

  20. The broadband spectral energy distributions of SDSS blazars

    Science.gov (United States)

    Li, Huai-Zhen; Chen, Luo-En; Jiang, Yun-Guo; Yi, Ting-Feng

    2015-07-01

    We compiled the radio, optical and X-ray data of blazars from the Sloan Digital Sky Survey database, and presented the distribution of luminosities and broadband spectral indices. The distribution of luminosities shows that the averaged luminosity of flat spectrum radio quasars (FSRQs) is larger than that of BL Lacertae (BL Lac) objects. On the other hand, the broadband spectral energy distribution reveals that FSRQs and low energy peaked BL Lac objects have similar spectral properties, but high energy peaked BL Lac objects have a distinct spectral property. This may be due to the fact that different subclasses of blazars have different intrinsic environments and are at different cooling levels. Even so, a unified scheme is also revealed from the color-color diagram, which hints that there are similar physical processes operating in all objects under a range of intrinsic physical conditions or beaming parameters. Supported by the National Natural Science Foundation of China.

  1. Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow

    Science.gov (United States)

    Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; Martí-Vidal, I.

    2018-03-01

    We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N-S direction ( ≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system. We also discuss HST/NICMOS [FeII] 1.64 μm and H2 2.12 μm images of Arp 299-A, which show similar features to those unveiled by our 150 MHz LOFAR observations, providing strong morphological support for the outflow scenario. Finally, we discuss unpublished Na I D spectra that confirm the outflow nature of this structure. From energetic arguments, we rule out the low-luminosity active galactic nucleus in Arp 299-A as a driver for the outflow. On the contrary, the powerful, compact starburst in the central regions of Arp 299-A provides plenty of mechanical energy to sustain an outflow, and we conclude that the intense supernova (SN) activity in the nuclear region of Arp 299-A is driving the observed outflow. We estimate that the starburst wind can support a mass-outflow rate in the range (11-63 M⊙ yr-1) at speeds of up to 370-890 km s-1, and is relatively young, with an estimated kinematic age of 3-7 Myr. Those results open an avenue to the use of low-frequency (150 MHz), sub-arcsecond imaging with LOFAR to detect outflows in the central regions of local luminous infrared galaxies.

  2. Ultraviolet spectral reflectance of carbonaceous materials

    Science.gov (United States)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.; Gillis-Davis, Jeffrey J.; Pitman, Karly M.; Roush, Ted L.; Hendrix, Amanda R.; Lucey, Paul G.

    2018-06-01

    A number of planetary spacecraft missions have carried instruments with sensors covering the ultraviolet (UV) wavelength range. However, there exists a general lack of relevant UV reflectance laboratory data to compare against these planetary surface remote sensing observations in order to make confident material identifications. To address this need, we have systematically analyzed reflectance spectra of carbonaceous materials in the 200-500 nm spectral range, and found spectral-compositional-structural relationships that suggest this wavelength region could distinguish between otherwise difficult-to-identify carbon phases. In particular (and by analogy with the infrared spectral region), large changes over short wavelength intervals in the refractive indices associated with the trigonal sp2π-π* transition of carbon can lead to Fresnel peaks and Christiansen-like features in reflectance. Previous studies extending to shorter wavelengths also show that anomalous dispersion caused by the σ-σ* transition associated with both the trigonal sp2 and tetrahedral sp3 sites causes these features below λ = 200 nm. The peak wavelength positions and shapes of π-π* and σ-σ* features contain information on sp3/sp2, structure, crystallinity, and powder grain size. A brief comparison with existing observational data indicates that the carbon fraction of the surface of Mercury is likely amorphous and submicroscopic, as is that on the surface of the martian satellites Phobos and Deimos, and possibly comet 67P/Churyumov-Gerasimenko, while further coordinated observations and laboratory experiments should refine these feature assignments and compositional hypotheses. The new laboratory diffuse reflectance data reported here provide an important new resource for interpreting UV reflectance measurements from planetary surfaces throughout the solar system, and confirm that the UV can be rich in important spectral information.

  3. 47 CFR 95.1119 - Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band.

    Science.gov (United States)

    2010-10-01

    ... devices operating in the 608-614 MHz band. For a wireless medical telemetry device operating within the... 47 Telecommunication 5 2010-10-01 2010-10-01 false Specific requirements for wireless medical telemetry devices operating in the 608-614 MHz band. 95.1119 Section 95.1119 Telecommunication FEDERAL...

  4. Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Martel, P.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Minguez, E.

    2013-01-01

    In this work the spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated for a wide range of plasma conditions which cover situations where corona, local thermodynamic and non-local thermodynamic equilibrium regimes are found. An analysis of the influence of the thermodynamic regime on these magnitudes is also carried out by means of comparisons of the results obtained from collisional-radiative, corona or Saha–Boltzmann equations. All the calculations presented in this work were performed using ABAKO/RAPCAL code. -- Highlights: ► Spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated. ► Corona, local thermodynamic and non-local thermodynamic equilibrium regimes are analyzed. ► Simulations performed using the computational package ABAKO/RAPCAL. ► A criterion for the establishment of the thermodynamic regime is proposed.

  5. 47 CFR 22.603 - 488-494 MHz fixed service in Hawaii.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false 488-494 MHz fixed service in Hawaii. 22.603 Section 22.603 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... fixed service in Hawaii. Before filing applications for authorization of inter-island control and/or...

  6. Photophysics of GaN single-photon emitters in the visible spectral range

    Science.gov (United States)

    Berhane, Amanuel M.; Jeong, Kwang-Yong; Bradac, Carlo; Walsh, Michael; Englund, Dirk; Toth, Milos; Aharonovich, Igor

    2018-04-01

    In this work, we present a detailed photophysical analysis of recently discovered, optically stable single-photon emitters (SPEs) in gallium nitride (GaN). Temperature-resolved photoluminescence measurements reveal that the emission lines at 4 K are three orders of magnitude broader than the transform-limited width expected from excited-state lifetime measurements. The broadening is ascribed to ultrafast spectral diffusion. The photophysical study on several emitters at room temperature (RT) reveals an average brightness of (427 ±215 )kCounts /s . Finally, polarization measurements from 14 emitters are used to determine visibility as well as dipole orientation of defect systems within the GaN crystal. Our results underpin some of the fundamental properties of SPEs in GaN both at cryogenic and RT, and define the benchmark for future work in GaN-based single-photon technologies.

  7. Development of a 352 MHz Cell-Coupled Drift Tube Linac Prototype

    CERN Document Server

    Cuvet, Y; Völlinger, C; Vretenar, M; Gerigk, F

    2004-01-01

    At linac energies above 40 MeV, alternative structures to the conventional Drift Tube Linac can be used to increase efficiency and to simplify construction and alignment. In the frame of the R&D activities for the CERN SPL and Linac4, a prototype of Cell-Coupled Drift Tube Linac (CCDTL) at 352 MHz has been designed and built. This particular CCDTL concept is intended to cover the energy range from 40 to 90 MeV and consists of modules of ~5 m length made of 3-gap DTL tanks linked by coupling cells. The focusing quadrupoles are placed between tanks, and are aligned independently from the RF structure. The CCDTL prototype consists of two half tanks connected by a coupling cell and requires an RF power of 120 kW to achieve the design gradient. RF tests will be made at low and high power, the latter up to a 20% duty cycle. This paper introduces the main features of this CCDTL design and describes the RF and mechanical design of the prototype.

  8. Multiple resonant absorber with prism-incorporated graphene and one-dimensional photonic crystals in the visible and near-infrared spectral range

    Science.gov (United States)

    Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.

    2018-04-01

    A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.

  9. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    Science.gov (United States)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  10. Correction for spectral mismatch effects on the calibration of a solar cell when using a solar simulator

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, C.H.

    1981-01-15

    A general expression has been derived to enable calculation of the calibration error resulting from simulator-solar AMX spectral mismatch and from reference cell-test cell spectral mismatch. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.

  11. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  12. Spectral emissivity measurements of liquid refractory metals by spectrometers combined with an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Okada, Junpei T; Paradis, Paul-François; Ito, Yusuke; Masaki, Tadahiko; Watanabe, Yuki

    2012-01-01

    A spectral emissivity measurement system combined with an electrostatic levitator was developed for high-temperature melts. The radiation intensity from a high-temperature sample was measured with a multichannel photospectrometer (MCPD) over the 700–1000 nm spectral range, while a Fourier transform infrared spectrometer (FTIR) measured the radiation over the 1.1–6 µm interval. These spectrometers were calibrated with a blackbody radiation furnace, and the spectral hemispherical emissivity was calculated. The system's capability was evaluated with molten zirconium samples. The spectral hemispherical emissivity of molten zirconium showed a negative wavelength dependence and an almost constant variation over the 1850–2210 K temperature range. The total hemispherical emissivity of zirconium calculated by integrating the spectral hemispherical emissivity was found to be around 0.32, which showed good agreement with the literature values. The constant pressure heat capacity of molten zirconium at melting temperature was calculated to be 40.9 J mol −1 K −1 . (paper)

  13. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  14. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  15. Numerical Investigation and Experimental Demonstration of Chaos from Two-Stage Colpitts Oscillator in the Ultrahigh Frequency Range

    DEFF Research Database (Denmark)

    Bumeliene, S.; Tamasevicius, A.; Mykolaitis, G.

    2006-01-01

    A hardware prototype of the two-stage Colpitts oscillator employing the microwave BFG520 type transistors with the threshold frequency of 9 GHz and designed to operate in the ultrahigh frequency range (300–1000 MHz) is described. The practical circuit in addition to the intrinsic two-stage oscill......A hardware prototype of the two-stage Colpitts oscillator employing the microwave BFG520 type transistors with the threshold frequency of 9 GHz and designed to operate in the ultrahigh frequency range (300–1000 MHz) is described. The practical circuit in addition to the intrinsic two......-stage oscillator contains an emitter follower acting as a buffer and minimizing the influence of the load. The circuit is investigated both numerically and experimentally. Typical phase portraits, Lyapunov exponents, Lyapunov dimension and broadband continuous power spectra are presented. The main advantage...

  16. 300-MHz optical discriminator-counter

    International Nuclear Information System (INIS)

    Turko, B.; Lo, C.C.

    1981-07-01

    The prediction of future CO 2 content in the atmosphere is not completely credible because the oceanographers and terrestrial ecologists do not agree on the global CO 2 balance. Very precise measurements of O 2 /N 2 ratio using Raman scattering over a few years' period could provide important information and lead to the explanation of the disparity in the atmospheric CO 2 balance. An optical discriminator-counter has been developed to count closely spaced optical events in the few photon level. Simulated optical events as close as 2.5 ns apart had been positively detected by using selected photomultipliers and optimized discriminators. Testing of the optical discriminator-counter was done by using an electrical pulse pair spaced 3 ns apart and also by a similar optical pulse pair generated by fast light-emitting diode. The photomultiplier is capable of counting an average single photoelectron pulse frequency of 50 MHz and has a sensitive detecting area of 50 mm in diameter. The discriminator performance is discussed

  17. Dielectric characterization of materials at microwave frequency range

    Directory of Open Access Journals (Sweden)

    J. de los Santos

    2003-01-01

    Full Text Available In this study a coaxial line was used to connect a microwave-frequency Network Analyzer and a base moving sample holder for dielectric characterization of ferroelectric materials in the microwave range. The main innovation of the technique is the introduction of a special sample holder that eliminates the air gap effect by pressing sample using a fine pressure system control. The device was preliminary tested with alumina (Al2O3 ceramics and validated up to 2 GHz. Dielectric measurements of lanthanum and manganese modified lead titanate (PLTM ceramics were carried out in order to evaluate the technique for a high permittivity material in the microwave range. Results showed that such method is very useful for materials with high dielectric permittivities, which is generally a limiting factor of other techniques in the frequency range from 50 MHz to 2 GHz.

  18. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna

    Directory of Open Access Journals (Sweden)

    Adolfo Di Serio

    2017-12-01

    Full Text Available Internet of Things (IoT technology is rapidly emerging in medical applications as it offers the possibility of lower-cost personalized healthcare monitoring. At the present time, the 2.45 GHz band is in widespread use for these applications but in this paper, the authors investigate the potential of the 915 MHz ISM band in implementing future, wearable IoT devices. The target sensor is a wrist-worn wireless heart rate and arterial oxygen saturation (SpO2 monitor with the goal of providing efficient wireless functionality and long battery lifetime using a commercial Sub-GHz low-power radio transceiver. A detailed analysis of current consumption for various wireless protocols is also presented and analyzed. A novel 915 MHz antenna design of compact size is reported that has good resilience to detuning by the human body. The antenna also incorporates a matching network to meet the challenging bandwidth requirements and is fabricated using standard, low-cost FR-4 material. Full-Wave EM simulations are presented for the antenna placed in both free-space and on-body cases. A prototype antenna is demonstrated and has dimensions of 44 mm × 28 mm × 1.6 mm. The measured results at 915 MHz show a 10 dB return loss bandwidth of 55 MHz, a peak realized gain of − 2.37 dBi in free-space and − 6.1 dBi on-body. The paper concludes by highlighting the potential benefits of 915 MHz operation for future IoT devices.

  19. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna.

    Science.gov (United States)

    Di Serio, Adolfo; Buckley, John; Barton, John; Newberry, Robert; Rodencal, Matthew; Dunlop, Gary; O'Flynn, Brendan

    2017-12-22

    Internet of Things (IoT) technology is rapidly emerging in medical applications as it offers the possibility of lower-cost personalized healthcare monitoring. At the present time, the 2.45 GHz band is in widespread use for these applications but in this paper, the authors investigate the potential of the 915 MHz ISM band in implementing future, wearable IoT devices. The target sensor is a wrist-worn wireless heart rate and arterial oxygen saturation (SpO2) monitor with the goal of providing efficient wireless functionality and long battery lifetime using a commercial Sub-GHz low-power radio transceiver. A detailed analysis of current consumption for various wireless protocols is also presented and analyzed. A novel 915 MHz antenna design of compact size is reported that has good resilience to detuning by the human body. The antenna also incorporates a matching network to meet the challenging bandwidth requirements and is fabricated using standard, low-cost FR-4 material. Full-Wave EM simulations are presented for the antenna placed in both free-space and on-body cases. A prototype antenna is demonstrated and has dimensions of 44 mm × 28 mm × 1.6 mm. The measured results at 915 MHz show a 10 dB return loss bandwidth of 55 MHz, a peak realized gain of - 2.37 dBi in free-space and - 6.1 dBi on-body. The paper concludes by highlighting the potential benefits of 915 MHz operation for future IoT devices.

  20. 47 CFR 25.254 - Special requirements for ancillary terrestrial components operating in the 1610-1626.5 MHz/2483.5...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Special requirements for ancillary terrestrial components operating in the 1610-1626.5 MHz/2483.5-2500 MHz bands. 25.254 Section 25.254 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical...

  1. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  2. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  3. The all-sky 408 MHz survey

    International Nuclear Information System (INIS)

    Haslam, C.G.T.; Salter, C.J.; Stoffel, H.

    1981-01-01

    A brief outline of the results of this survey is presented. The 408 MHz All-sky Survey has been made from four radio continuum surveys observed between 1965 and 1978, using the Jodrell Bank MKI telescope (Haslam et al., 1970), the Effelsberg 100 metre telescope (Haslam et al., 1974) and the Parkes 64 metre telescope (Haslam et al., 1975). A detailed description of the survey data reduction and calibration methods, with preliminary astronomical results will soon be published (Haslam et al., 1980a) and a second paper will give an atlas of maps at the full survey resolution of 51' arc between half power points (Haslam et al., 1980b). A map, smoothed to a gaussian beam with resolution between half power poitns of 3 0 , is presented. (Auth.)

  4. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Reichert

    2016-09-01

    Full Text Available We present a first quantification of the near-infrared (NIR water vapor continuum absorption from an atmospheric radiative closure experiment carried out at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.. Continuum quantification is achieved via radiative closure using radiometrically calibrated solar Fourier transform infrared (FTIR absorption spectra covering the 2500 to 7800 cm−1 spectral range. The dry atmospheric conditions at the Zugspitze site (IWV 1.4 to 3.3 mm enable continuum quantification even within water vapor absorption bands, while upper limits for continuum absorption can be provided in the centers of window regions. Throughout 75 % of the 2500 to 7800 cm−1 spectral range, the Zugspitze results agree within our estimated uncertainty with the widely used MT_CKD 2.5.2 model (Mlawer et al., 2012. In the wings of water vapor absorption bands, our measurements indicate about 2–5 times stronger continuum absorption than MT_CKD, namely in the 2800 to 3000 cm−1 and 4100 to 4200 cm−1 spectral ranges. The measurements are consistent with the laboratory measurements of Mondelain et al. (2015, which rely on cavity ring-down spectroscopy (CDRS, and the calorimetric–interferometric measurements of Bicknell et al. (2006. Compared to the recent FTIR laboratory studies of Ptashnik et al. (2012, 2013, our measurements are consistent within the estimated errors throughout most of the spectral range. However, in the wings of water vapor absorption bands our measurements indicate typically 2–3 times weaker continuum absorption under atmospheric conditions, namely in the 3200 to 3400, 4050 to 4200, and 6950 to 7050 cm−1 spectral regions.

  5. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  6. Frequency metrology of a photomixing source for gas phase spectroscopy

    Science.gov (United States)

    Hindle, Francis; Mouret, Gael; Yang, Chun; Cuisset, Arnaud; Bocquet, Robin; Lours, Michel; Rovera, Daniele

    2010-08-01

    The availability of frequency combs has opened new possibilities for the measurement of optical frequencies. Photomixing is an attractive solution for high resolution THz spectroscopy of gases due to the narrow spectral resolution and ability to access the 100 GHz to 3.5 THz range. One limitation of present photomixing spectrometers is the accuracy with which the THz frequency is established. Measurement of the centre frequency gas phase molecular transitions requires an accuracy better than 100 kHz in order to allow spectroscopic constants to be determined. Standard optical techniques like those employed in wavelength meters can only provide accuracies in the order of 50 MHz. We have used a turnkey fibre based frequency comb and a standard photomixing configuration to realize a THz synthesizer with an accuracy of around 50kHz. Two ECDLs used to pump the photomixer are phase locked onto the frequency comb and provide a tuning range of 10 MHz. In order to extend the tuning range an additional phase locked ECLD has been added to obtain a range in excess of 100 MHz. The absorption profiles of many Doppler limited transitions of carbonyl sulphide and formaldehyde have been measured to validate this instrument.

  7. A 500-600 MHz GaN power amplifier with RC-LC stability network

    Science.gov (United States)

    Ma, Xinyu; Duan, Baoxing; Yang, Yintang

    2017-08-01

    A 500-600 MHz high-efficiency, high-power GaN power amplifier is designed and realized on the basis of the push-pull structure. The RC-LC stability network is proposed and applied to the power amplifier circuit for the first time. The RC-LC stability network can significantly reduce the high gain out the band, which eliminates the instability of the power amplifier circuit. The developed power amplifier exhibits 58.5 dBm (700 W) output power with a 17 dB gain and 85% PAE at 500-600 MHz, 300 μs, 20% duty cycle. It has the highest PAE in P-band among the products at home and abroad. Project supported by the National Key Basic Research Program of China (No. 2014CB339901).

  8. Spectral curves of surface reflectance in some Antarctic regions

    International Nuclear Information System (INIS)

    Lupi, A.; Tomasi, C.; Orsini, A.; Cacciari, A.; Vitale, V.; Georgiadis, T.; Casacchia, R.; Salvatori, R.; Salvi, S.

    2001-01-01

    Four surface reflectance models of solar radiation were determined by examining several sets of field measurements taken for clear-sky conditions at various sites in Antarctica. Each model consists of the mean spectral curve of surface reflectance in the 0.25-2.7 μm wavelength range and of the dependence curve of total abedo on the solar elevation angle h, within the range from 5 0 to 55 0 . The TNB (Terra Nova Bay) model refers to a rocky terrain where granites are predominant; the NIS (Nansen Ice Sheet) model to a glacier surface made uneven by sastrugi and streaked by irregular fractures; the HAP (High Altitude Plateau) model to a flat ice surface covered by fresh snow and scored by light sastrugi; and the RIS (Ross Ice Shelf) model to an area covered by the sea ice pack presenting many discontinuities in the reflectance features, due to melt water lakes, puddles, refrozen ice and snow pots. The reflectance curve obtained for the TNB model presents gradually increasing values as wavelength increases through the visible spectral range and almost constant values at infrared wavelengths, giving a total albedo value equal to 0.264 at = 30 0 , which increases by about 80% through the lower range of h and decreases by 12% through the upper range. The reflectance curves of the NIS, HAP and RIS models are all peaked at visible wavelengths and exhibit decreasing values throughout the infrared spectral range, giving values of total albedo equal to 0.464, 0.738 and 0.426 at h 30 0 , respectively. These values were estimated to increase by 8-14% as h decreases from 30 0 to 5 0 and to decrease by 2-4% only as h increases from 30 0 to 55 0

  9. A comparison of EEG spectral entropy with conventional quantitative ...

    African Journals Online (AJOL)

    Adele

    and decrease with increasing depth of anaesthesia. Spectral en- tropy yields two scales: Response Entropy (RE), ranging between. 0 to100, is an amalgam of EEG and frontal muscle activity while. State Entropy (SE), consisting mainly of EEG activity in a lower frequency band, ranges from 0 to 91.2 Initial reports have pro-.

  10. FRB121102: First detection across 5 - 8 GHz and spectral properties from the Breakthrough Listen instrument

    Science.gov (United States)

    Gajjar, Vishal; Siemion, Andrew; MacMohan, David; Croft, Steve; Hellbourg, Greg; Isaacson, Howard; Enriquez, J. Emilio; Price, Daniel; Lebofsky, Matt; De Boer, David; Werthimer, Dan; Hickish, Jack; Brinkman, Casey; Chatterjee, Shami; Ransom, Scott M.; Law, Casey; Hessels, Jason W. T.; Cordes, Jim; Spitler, Laura; Lynch, Ryan; McLaughlin, Maura; Scholz, Paul; Marcote, Benito; Bower, Geoffrey C.; Tendulkar, Shriharsh

    2018-01-01

    Fast Radio Bursts (FRBs) are some of the most energetic and enigmatic events in the Universe. The origin of these sources is among the most challenging questions of modern-day astrophysics. Thus, it is imperative to understand the properties of these bursts across a range of radio frequencies. Among the known FRBs, FRB121102 is the only source known to show repeated bursts [Spitler et al., Nature, 531, 7593 202-205, 2016], which can allow a detailed investigation of various origin models. In August 2017, we initiated a campaign observing FRB 121102 using the Breakthrough Listen Digital Backend with the C-band receiver at the Robert C. Byrd Green Bank Telescope (GBT). We recorded baseband voltage data across 5.4 GHz of bandwidth, completely covering the C-band receiver's nominal 4-8 GHz band [MacMahon et al. arXiv:1707.06024v2]. The recorded data were searched for dispersed pulses consistent with the known dispersion measure of FRB 121102 (557 pc cm-3) using high-speed GPU software tools. We detected 21 bursts above our detection threshold of 6 sigmas in the first 60-minutes, out of which 18 occurred in the first 30-minutes only. To our knowledge, this is the highest event rate seen for FRB121102 at any observing frequency. These observations are the highest frequency and widest bandwidth detection of bursts from FRB 121102 (or any other FRB) obtained to-date. We note that individual bursts show marked changes in spectral extent ranging from hundreds of MHz to several GHz. We have used high frequency dynamic spectra of these bursts to estimate the characteristic scintillation bandwidth and correlation time-scale. We also found distinctive temporal structures, separated by a few milliseconds, in three of the strongest bursts, with each sub-structure exhibiting varied spectral features. We will discuss our findings and how these detections of FRB 121102 around 8 GHz opens up a new regime in scrutinizing various origin models. We will also highlight the unique

  11. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  12. A 100 MHz synchronized OEIC photoreceiver in n-well, CMOS technology

    DEFF Research Database (Denmark)

    Kamel, Ayadi; Danielsen, Per Lander

    1998-01-01

    We analyze and demonstrate a synchronized CMOS photoreceiver for the conversion of optical inputs of pulse-light to electronic digital signals. Small-signal and photonic analysis of the proposed circuit are detailed. The photoreceiver was operated at 100 MHz with only 13.3 fJ/pulse of 830-nm inpu...

  13. Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) as materials for vertical-cavity surface-emitting lasers in the mid-infrared spectral range of 4–5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Pashkeev, D. A., E-mail: d.pashkeev@gmail.com; Selivanov, Yu. G.; Chizhevskii, E. G.; Zasavitskiy, I. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2016-02-15

    The optical properties of epitaxial layers and heterostructures based on Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) are analyzed in the context of designing Bragg mirrors and vertical-cavity surface-emitting lasers for the midinfrared spectral range. It is shown that the optimal heteropair for laser microcavities is Pb{sub 1–x}Eu{sub x}Te(x ≈ 0.06)/EuTe. On the basis of this heteropair, highly reflective Bragg mirrors consisting of just three periods and featuring a reflectance of R ⩾ 99.8% at the center of the stop band are grown by molecular-beam epitaxy on BaF{sub 2} (111) substrates. Single-mode optically pumped vertical-cavity surface-emitting lasers for the 4–5 μm spectral range operating at liquid-nitrogen temperatures are demonstrated.

  14. Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs.

    Science.gov (United States)

    He, Hao; Zhou, Lianqun; Wang, Yi; Li, Chuanyu; Yao, Jia; Zhang, Wei; Zhang, Qingwen; Li, Mingyu; Li, Haiwen; Dong, Wen-fei

    2015-01-01

    A 20 MHz quartz crystal microbalance (QCM) sensor coated with in situ self-assembled molecularly imprinted polymers (MIPs) was presented for the detection of trace microcystin-LR (MC-LR) in drinking water. The sensor performance obtained using the in situ self-assembled MIPs was compared with traditionally synthesized MIPs on 20 MHz and normal 10 MHz QCM chip. The results show that the response increases by more than 60% when using the in situ self-assembly method compared using the traditionally method while the 20 MHz QCM chip provides four-fold higher response than the 10 MHz one. Therefore, the in situ self-assembled MIPs coated on a high frequency QCM chip was used in the sensor performance test to detect MC-LR in tap water. It showed a limit of detection (LOD) of 0.04 nM which is lower than the safety guideline level (1 nM MC-LR) of drinking water in China. The low sensor response to other analogs indicated the high specificity of the sensor to MC-LR. The sensor showed high stability and low signal variation less than 2.58% after regeneration. The lake water sample analysis shows the sensor is possible for practical use. The combination of the higher frequency QCM with the in situ self-assembled MIPs provides a good candidate for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz

    International Nuclear Information System (INIS)

    Huang, Chih-Chung

    2010-01-01

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r 2 ) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm -1 at 30 MHz to 0.47 Nepers mm -1 at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a

  16. Electromagnetic Compatibility Studies: LTE BS vs. Aeronautical Radionavigation Services in 694-790 MHz Frequency Band

    Directory of Open Access Journals (Sweden)

    Stankevičius Evaldas

    2014-10-01

    Full Text Available This paper presents the sharing analysis of the 694–790 MHz frequency band for Mobile services IMT and Aeronautical radio-navigation services (ARNS using SEAMCAT (established by CEPT software based on the statistical simulation (Monte-Carlo method. In 2012 the World Radiocommunication Conference (WRC-12 decided to allocate the 694–790 MHz frequency band (the so-called 700 MHz band to mobile services IMT (excluding aeronautical mobile after WRC-15 conference. But this agreement raises electromagnetic compatibility problems, which should be solved until WRC-15 [1]. This study was carried out in two phases: first applying theoretical analysis, then statistical Monte-Carlo simulations with SEAMCAT software tool in order to verify results obtained in theoretical approach. Analytical calculations shows that the required protection distances between ARNS stations and the MS base stations are 132 km. The obtained results from SEAMCAT simulations indicate that separation distance should be above 100 km. These results illustrate that the systems are not electromagnetically compatible. The possible mitigation technic could be antenna pattern correction.

  17. 47 CFR 90.267 - Assignment and use of frequencies in the 450-470 MHz band for low power use.

    Science.gov (United States)

    2010-10-01

    ...-470 MHz band for low power use. 90.267 Section 90.267 Telecommunication FEDERAL COMMUNICATIONS... Special Frequencies or Frequency Bands § 90.267 Assignment and use of frequencies in the 450-470 MHz band... medical radio telemetry device with an output power not to exceed 20 milliwatts without specific...

  18. A High Current Proton Linac with 352 MHz SC Cavities

    CERN Document Server

    Pagani, C; Pierini, P

    1996-01-01

    A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three beta-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 M$ at 10 mA, reaching up to 280 M$ for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high effic...

  19. Characterization of the SPS 800MHz travelling wave cavities.

    CERN Document Server

    Bazyl, Dmitry

    2015-01-01

    It is well known that HOMs in RF cavities are a potentially dangerous source of beam impedance. Therefore, HOMs (both longitudinal and transverse) can drive the beam unstable . The 800MHz cavities of the SPS were studied in the past. However, very little documentation was left behind. Currently, the performance of the SPS is limited by a longitudinal beam instability. In order to study this instability, an accurate impedance model of the whole SPS is needed.

  20. Ultrasonic characterisation of malignant melanoma of choroid

    Directory of Open Access Journals (Sweden)

    John Sheila

    1998-01-01

    Full Text Available An in-vitro study of wave spectral analysis in 8 enucleated eyes was conducted in order to differentiate histological subtypes of malignant melanoma. To obtain the backscattering coefficient for the tissues, we used a broadband focussed transducer with a frequency range of 7-12 MHz and a centre frequency of 10 MHz. Experimental measurement of backscattering coefficient and attenuation coefficient at various frequencies was done by substitution techniques. The backscattering coefficient, scatterer size, and root mean square velocity fluctuation were derived by the numerical method, while the attenuation coefficient at 1 MHz was derived from attenuation coefficient at different frequencies. This study revealed that backscattering coefficient and attenuation coefficient, over a frequency range of 7-12 MHz, show an increase in the spindle cell type compared to the mixed cell type of malignant melanoma. Particularly, the scatterer size was significantly higher in the spindle cell group (p = 0.013 in contrast to the mixed cell type. Spindle cells have uniform and compact histological pattern which contributes to an increase in scatterer size and root mean square velocity fluctuation. The ultrasonically obtained parameters have been shown to have a good correlation with the histology of malignant melanoma.

  1. Broadband superluminescent diodes and semiconductor optical amplifiers for the spectral range 750 - 800 nm

    International Nuclear Information System (INIS)

    Il'chenko, S N; Kostin, Yu O; Kukushkin, I A; Ladugin, M A; Lapin, P I; Lobintsov, A A; Marmalyuk, Aleksandr A; Yakubovich, S D

    2011-01-01

    We have studied superluminescent diodes (SLDs) and semiconductor optical amplifiers (SOAs) based on an (Al x Ga 1-x )As/GaAs single quantum well structure with an Al content x ∼ 0.1 in a 10-nm-thick active layer. Depending on the length of the active channel, the single-mode fibre coupled cw output power of the SLDs is 1 to 30 mW at a spectral width of about 50 nm. The width of the optical gain band in the active channel exceeds 40 nm. Preliminary operating life tests have demonstrated that the devices are sufficiently reliable. (lasers)

  2. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1995-01-01

    A circuit has been designed for digitizing PMT signals over a wide dynamic range (17-18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Test results of a multirange device are presented for the first time. (orig.)

  3. Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavity for the LHC Update

    International Nuclear Information System (INIS)

    Li, Zenghai

    2010-01-01

    Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R and D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.

  4. The spectral emissivity of the anode of a carbon arc.

    Science.gov (United States)

    Schurer, K

    1968-03-01

    Data in the literature on the spectral emissivity of carbon and graphite show a great divergence, ranging from 0.75 to 0.99 in the visible region. A new determination has been undertaken at a number of wavelengths using an integrating sphere and modulated light. Emissivities ranging from 0.99 in the visible to 0.96 at 0.28 micro and 1.7 micro have been found for several different graphite anodes; the values for lampblack anodes are about 0.005 lower. There is a good agreement with the highest values thus far published. Most of the literature data on the spectral radiance of the anode are consistent with the emissivities found by the present author.

  5. 805 MHz β = 0.47 Elliptical Accelerating Structure R and D. Final Report

    International Nuclear Information System (INIS)

    Bricker, S.; Compton, C.; Hartung, W.; Johnson, M.; Marti, F.; Popierlarski, J.; York, R.C.

    2008-01-01

    A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q 0 ) were between 7 · 10 9 and 1.4 · 10 10 at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules. A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.

  6. Design study of a 25.5-MHz split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, Shigeaki; Imanishi, Akira; Morimoto, Teruhisa; Shibuya, Shinji; Tojyo, Eiki; Tokuda, Noboru.

    1989-08-01

    A 25.5-MHz split coaxial RFQ with modulated vanes is now being fabricated. The RFQ, 2.1 m in length and 0.9 m in diameter, will accelerate ions with a charge-to-mass ratio greater than 1/30 from 1 keV/n up to 45.4 keV/n. The design works on beam dynamics and cavity fabrication are reported. (author)

  7. Development of A 402.5 MHz 140 kW Inductive Output Tube

    International Nuclear Information System (INIS)

    Ives, R. Lawrence; Read, Michael; Jackson, Robert

    2012-01-01

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  8. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  9. BNL 703 MHz SRF cryomodule demonstration

    International Nuclear Information System (INIS)

    Burrill, A.; Ben-Zvi, I.; Calaga, R.; Dalesio, L.; Dottavio, T.; Gassner, D.; Hahn, H.; Hoff, L.; Kayran, D.; Kewisch, J.; Lambiase, R.; Lederle, D.; Litvinenko, V.; Mahler, G.; McIntyre, G.

    2009-01-01

    This paper will present the preliminary results of the testing of the 703 MHz SRF cryomodule designed for use in the ampere class ERL under construction at Brookhaven National Laboratory. The preliminary cavity tests, carried out at Thomas Jefferson Laboratory, demonstrated cavity performance of 20 MV/m with a Qo of 1 x 10 10 , results we expect to reproduce in the horizontal configuration. This test of the entire string assembly will allow us to evaluate all of the additional cryomodule components not previously tested in the VTA and will prepare us for our next milestone test which will be delivery of electrons from our injector through the cryomodule to the beam dump. This will also be the first demonstration of an accelerating cavity designed for use in an ampere class ERL, a key development which holds great promise for future machines

  10. Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate

    International Nuclear Information System (INIS)

    Miotk, R; Hrycak, B; Jasinski, M; Mizeraczyk, J

    2012-01-01

    In this paper results of optical emission spectroscopic (OES) study of atmospheric pressure microwave 915 MHz argon plasma are presented. The plasma was generated in microwave plasma source (MPS) cavity-resonant type. The aim of research was determination of electron excitation temperature T exc gas temperature Tg and electron number density n e . All experimental tests were performed with a gas flow rate of 100 and 200 l/min and absorbed microwave power PA from 0.25 to 0.9 kW. The emission spectra at the range of 300 – 600 nm were recorded. Boltzmann plot method for argon 5p – 4s and 5d – 4p transition lines allowed to determine T exc at level of 7000 K. Gas temperature was determined by comparing the measured and simulated spectra using LIFBASE program and by analyzing intensities of two groups of unresolved rotational lines of the OH band. Gas temperature ranged 600 – 800 K. The electron number density was determined using the method based on the Stark broadening of hydrogen H β line. The measured n e rang ed 2 × 10 15 − 3.5×10 15 cm −3 , depending on the absorbed microwave power. The described MPS works very stable with various working gases at high flow rates, that makes it an attractive tool for different gas processing.

  11. The Green Bank Third (GB3) survey of extragalactic radio sources at 1400 MHz

    International Nuclear Information System (INIS)

    Rys, S.; Machalski, J.

    1987-01-01

    The NRAO 91-m radio telescope in Green Bank, West Virginia was used to make a 1400-MHz sky survey covering an area of 0.0988 sr at declinations 70 deg ≤ δ 1950 < 76.8 deg with 10.1 x 10.5 arcmin resolution. This survey ends the series of smaller than 1-sr surveys made at 1400 MHz with that telescope and four-feed radiometer. A catalogue of 502 radiosources is presented, statistically complete to 112 mJy, which is about five times the rms noise and extragalactic confusion. The observations and data reduction are briefly summarized; the position and flux density errors are discussed. 13 refs., 2 tabs. (author)

  12. Design Study for 10MHz Beam Frequency of Post-Accelerated RIBs at HIE-ISOLDE

    CERN Document Server

    Fraser, M A; Magdau, I B

    2013-01-01

    An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28MHz REX (Radioactive ion beam EXperiment) RFQ [1] with a subharmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.

  13. Measurement of electrodynamics characteristics of higher order modes for harmonic cavity at 2400 MHz

    Science.gov (United States)

    Shashkov, Ya V.; Sobenin, N. P.; Gusarova, M. A.; Lalayan, M. V.; Bazyl, D. S.; Donetskiy, R. V.; Orlov, A. I.; Zobov, M. M.; Zavadtsev, A. A.

    2016-09-01

    In the frameworks of the High Luminosity Large Hadron Collider (HL-LHC) upgrade program an application of additional superconducting harmonic cavities operating at 800 MHz is currently under discussion. As a possible candidate, an assembly of two cavities with grooved beam pipes connected by a drift tube and housed in a common cryomodule, was proposed. In this article we discuss measurements of loaded Q-factors of higher order modes (HOM) performed on a scaled aluminium single cell cavity prototype with the fundamental frequency of 2400 MHz and on an array of two such cavities connected by a narrow beam pipe. The measurements were performed for the system with and without the matching load in the drift tube..

  14. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    Science.gov (United States)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  15. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  16. Implementations of three OCT angiography (OCTA) methods with 1.7 MHz A-scan rate OCT system on imaging of human retinal and choroidal vasculature

    Science.gov (United States)

    Poddar, Raju; Werner, John S.

    2018-06-01

    We present noninvasive depth-resolved imaging of human retinal and choroidal microcirculation with an ultrahigh-speed (1.7 MHz A-scans/s), Fourier-domain mode locked (FDML) swept-source optical coherence tomography (SS-OCT) system having a central wavelength of 1065 nm. Three OCT angiography (OCTA) motion based contrast methods, namely phase variance (PV), amplitude decorrelation (AD) and Joint Spectral and Time domain OCT (STdOCT) were implemented. The OCTA imaging was performed with a field of view of 16° (5 mm × 5 mm) and 30° (9 mm × 9 mm), on the retina. A qualitative comparison of images obtained with all three OCTA methods is demonstrated using the same eye of a healthy volunteer. Different parameters, namely acquisition time, scanning area, and scanning density, are discussed. The phase-variance OCTA (PV-OCTA) method produced relatively better results than the other two. Different features regarding the retinal and choroidal vessels are described in different subjects.

  17. Spectral computations for bounded operators

    CERN Document Server

    Ahues, Mario; Limaye, Balmohan

    2001-01-01

    Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...

  18. MHz gravitational waves from short-term anisotropic inflation

    International Nuclear Information System (INIS)

    Ito, Asuka; Soda, Jiro

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10 −26 ∼10 −27 are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  19. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  20. Fiber optics frequency comb enabled linear optical sampling with operation wavelength range extension.

    Science.gov (United States)

    Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming

    2018-02-01

    Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.

  1. Spectral Induced Polarization of Low-pH Concrete. Influence of the Electrical Double Layer and Pore Size

    Science.gov (United States)

    Leroy, P. G.; Gaboreau, S.; Zimmermann, E.; Hoerdt, A.; Claret, F.; Huisman, J. A.; Tournassat, C.

    2017-12-01

    Low-pH concretes are foreseen to be used in nuclear waste disposal. Understanding their reactivity upon the considered host-rock is a key point. Evolution of mineralogy, porosity, pore size distribution and connectivity can be monitored in situ using geophysical methods such as induced polarization (IP). This electrical method consists of injecting an alternating current and measuring the resulting voltage in the porous medium. Spectral IP (SIP) measurements in the 10 mHz to 10 kHz frequency range were carried out on low-pH concrete and cement paste first in equilibrium and then in contact with a CO2 enriched and diluted water. We observed a very high resistivity of the materials (> 10 kOhm m) and a strong phase shift between injected current and measured voltage (superior to 40 mrad and above 100 mrad for frequencies > 100 Hz). These observations were modelled by considering membrane polarization with ion exclusion in nanopores whose surface electrical properties were computed using a basic Stern model of the cement/water interface. Pore size distribution was deduced from SIP and was compared to the measured ones. In addition, we observed a decrease of the material resistivity due to the dissolution of cement in contact with external water. Our results show that SIP may be a valuable method to monitor the mineralogy and the petrophysical and transport properties of cements.

  2. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  3. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  4. Production and Test of 352 MHZ Niobum-Sputtered Reduced-$\\beta$ Cavities

    CERN Document Server

    Benvenuti, Cristoforo; Calatroni, Sergio; Chiaveri, Enrico; Tückmantel, Joachim

    1997-01-01

    Three types of 352 MHz single-cell cavities foreseen for different particle speeds (v/c=0.8, 0.625 and 0.48) have been designed and built with the niobium sputtered on copper technique. We report on the results of the cold tests at 4.5 and 2.5 K and the actual status of the data analysis.

  5. Δt tuneup procedure for the LAMPF 805-MHz linac

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1976-05-01

    An important part of tuning the LAMPF accelerator is the adjustment of the phases and amplitudes in the 805-MHz linac. The technique used is called the Δt procedure because of the time-of-flight measurements that are required. The theory behind the Δt procedure, a brief description of the hardware, and a description of the many computer programs that have been written to implement the procedure are presented

  6. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  7. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    Science.gov (United States)

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  8. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  9. Site Characterization in the Urban Area of Tijuana, B. C., Mexico by Means of: H/V Spectral Ratios, Spectral Analysis of Surface Waves, and Random Decrement Method

    Science.gov (United States)

    Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.

    2009-05-01

    Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral

  10. Gamma-ray spectral map of standard pottery. Pt. 1

    International Nuclear Information System (INIS)

    Yellin, J.

    1984-01-01

    The gamma-ray spectrum of a neutron activated Standard Pottery is analyzed completely by means of spectral line shape fitting. A detailed spectral map of the standard is presented as it is typically used in pottery analysis. The spectrum obtained by a planar geometry Ge(Li) detector converts the energy range 11 to 409 keV. The map is intended to serve as a guide to the uninitiated user of Standard Pottery as well as a basis of comparison with other standards employed in pottery provenience work. It is shown that the process of calibrating detectors for spectral line interference can be greatly aided by means of a general approach to spectrum analysis and that much usefull information can be obtained by a general approach to pottery spectrum analysis. (orig.)

  11. 915 MHz microwave ablation with high output power in in vivo porcine spleens

    International Nuclear Information System (INIS)

    Gao Yongyan; Wang Yang; Duan Yaqi; Li Chunling; Sun Yuanyuan; Zhang Dakun; Lu Tong; Liang Ping

    2010-01-01

    Objective: The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. Materials and methods: MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Results: Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p .05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43 ± 0.52 and 4.95 ± 0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p o C respectively. Conclusion: With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases.

  12. 0.45 v and 18 μA/MHz MCU SOC with Advanced Adaptive Dynamic Voltage Control (ADVC

    Directory of Open Access Journals (Sweden)

    Uzi Zangi

    2018-05-01

    Full Text Available An ultra-low-power MicroController Unit System-on-Chip (MCU SOC is described with integrated DC to DC power management and Adaptive Dynamic Voltage Control (ADVC mechanism. The SOC, designed and fabricated in a 40 nm ULP standard CMOS technology, includes the complete Synopsys ARC EM5D core MCU, featuring a full set of DSP instructions and minimizing energy consumption at a wide range of frequencies: 312 K–80 MHz. A number of unique low voltage digital libraries, comprising of approximately 300 logic cells and sequential elements, were used for the MCU SOC design. On-die silicon sensors were utilized to continuously change the operating voltage to optimize power/performance for a given frequency and environmental conditions, and also to resolve yield and life time problems, while operating at low voltages. A First Fail (FFail mechanism, which can be digitally and linearly controlled with up to 8 bits, detects the failing SOC voltage at a given frequency. The core operates between 0.45–1.1 V volts with a direct battery connection for an input voltage of 1.6–3.6 V. Measurement results show that the peak energy efficiency is 18μW/MHz. A comparison to state-of-the-art commercial SOCs is presented, showing a 3–5× improved current/DMIPS (Dhrystone Million Instructions per second compared to the next best chip.

  13. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  14. Age-related changes in spectral transmittance of the human crystalline lens in situ.

    Science.gov (United States)

    Sakanishi, Yoshihito; Awano, Masakazu; Mizota, Atsushi; Tanaka, Minoru; Murakami, Akira; Ohnuma, Kazuhiko

    2012-01-01

    It was the aim of this study to measure spectral transmission of the human crystalline lens in situ. The crystalline lens was illuminated by one of four light-emitting diodes of different colors. The relative spectral transmittance of the human crystalline lens was measured with the Purkinje-Sanson mirror images over a wide range of ages. The study evaluated 36 crystalline lenses of 28 subjects aged 21-76 years. There was a significant correlation between the age and spectral transmittance for blue light. Spectral transmittance of the crystalline lens in situ could be measured with Purkinje-Sanson mirror images. Copyright © 2012 S. Karger AG, Basel.

  15. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  16. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  17. Fast wave heating experiments in the ion cyclotron range of frequencies on ATF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, M; Shepard, T D; Goulding, R H [Oak Ridge National Lab., TN (United States); and others

    1992-07-01

    Fast wave heating experiments in the ion cyclotron range of frequencies (ICRF) were performed on target plasmas produced by 350 kW of electron cyclotron heating at 53 GHz and also by neutral beam injection in the Advanced Toroidal Facility (ATF). Various heating regimes were investigated in the frequency range between 9.2 MHz and 28.8 MHz with magnetic fields of 0.95 T and 1.9 T on axis. The nominal pulse lengths of up to 200 kW RF power were in the range between 100 and 400 ms. Data from spectroscopy, loading measurements, and edge RF and Langmuir probes were used to characterize the RF induced effects on the ATF plasma. In the hydrogen minority regime at low plasma density, large suprathermal ion tails were observed with a neutral particle analyser. At high density (n-bar{sub e} {>=} 5.0 x 10{sup 13} cm{sup -3}) substantial increases in antenna loading were observed, but ICRF power was insufficient to produce definitive heating results. A two-dimensional RF heating code, ORION, and a Fokker-Planck code, RFTRANS, were used to simulate these experiments. A simulation of future high power, higher density experiments in ATF indicates improved bulk heating results due to the improved loading and more efficient thermalization of the minority tail. (author). 29 refs, 16 figs, 3 tabs.

  18. Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Shashkov, Ya.V., E-mail: shashkovyv@mail.ru [National Research Nuclear University MEPhI, Moscow (Russian Federation); Sobenin, N.P.; Petrushina, I.I. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Zobov, M.M. [Laboratori Nazionali di Frascati INFN, Rome (Italy)

    2014-12-11

    At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.

  19. Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities

    Science.gov (United States)

    Shashkov, Ya. V.; Sobenin, N. P.; Petrushina, I. I.; Zobov, M. M.

    2014-12-01

    At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.

  20. Lanthanide ions as spectral converters for solar cells

    NARCIS (Netherlands)

    van der Ende, B.M.; Aarts, L.; Meijerink, A.

    2009-01-01

    The use of lanthanide ions to convert photons to different, more useful, wavelengths is well-known from a wide range of applications (e.g. fluorescent tubes, lasers, white light LEDs). Recently, a new potential application has emerged: the use of lanthanide ions for spectral conversion in solar

  1. Measuring personal exposure from 900MHz mobile phone base stations in Australia and Belgium using a novel personal distributed exposimeter

    NARCIS (Netherlands)

    Bhatt, Chhavi Raj; Thielens, Arno; Redmayne, Mary; Abramson, Michael J; Billah, Baki; Sim, Malcolm R; Vermeulen, Roel; Martens, Luc; Joseph, Wout; Benke, Geza

    2016-01-01

    The aims of this study were to: i) measure personal exposure in the Global System for Mobile communications (GSM) 900MHz downlink (DL) frequency band with two systems of exposimeters, a personal distributed exposimeter (PDE) and a pair of ExpoM-RFs, ii) compare the GSM 900MHz DL exposures across

  2. 480 MHz 10-tap Clock Generator Using Edge-Combiner DLL for USB 2.0 Applications

    Directory of Open Access Journals (Sweden)

    Takashi Kawamoto

    2012-01-01

    Full Text Available A clock generator with an edge-combiner DLL (ECDLL has been developed for USB 2.0 applications. The clock generator generates 480 MHz 10-tap output signals from a 12 MHz reference signal and consists of three DLLs to shrink the design area so that it is smaller than a conventional one based on a PLL. Each DLL is applied to our proposed shot pulse reset technique to prevent from a harmonic lock and is applied to a voltage-controlled delay line (VCDL with a trimming function to operate against any process voltage temperature (PVT variations. A 90 nm CMOS process was used to fabricate our proposed clock generator. The 480 MHz 10-tap output signals satisfy the USB 2.0 specifications. A power consumption is less than 1.3 mW and a locking time is less than 3.5 μs, which are far less than a conventional one, 10.0 μs. The design area is 200×225 μm, which is half that of the conventional one.

  3. Determination of the electron-hole pair creation energy for semiconductors from the spectral responsivity of photodiodes

    CERN Document Server

    Scholze, F; Kuschnerus, P; Rabus, H; Richter, M; Ulm, G

    2000-01-01

    Ionizing radiation can be detected by the measurement of the charge carriers produced in a detector. The improved semiconductor technology now allows detectors operating near the physical limits of the detector materials to be designed. The mean energy required for producing an electron-hole pair, W, is a material property of the semiconductor. Here, the determination of W from the spectral responsivity of photodiodes is demonstrated. Using spectrally dispersed synchrotron radiation, different types of semiconductor photodiodes have been examined in the UV-, VUV-, and soft X-ray spectral range. Their spectral responsivity was determined with relative uncertainties between 0.4% and 1% using a cryogenic electrical-substitution radiometer as primary detector standard. Results are presented for silicon n-on-p junction photodiodes and for GaAsP/Au Schottky diodes at room temperature. The investigations for silicon covered the complete spectral range from 3 to 1500 eV, yielding a constant value W=(3.66+-0.03) eV fo...

  4. A 500-MHz x-ray counting system with a silicon avalanche photodiode

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2009-01-01

    In the present measurements using a Si-APD X-ray detector and a 500-MHz counting system, the maximum output rate of 3.3x10 8 s -1 was achieved for 8-keV X-rays in beamline BL-14A of the Photon Factory. A small Si-APD of 4-pF electric capacity was used as the detector device in order to output a pulse of a width shorter than 2 ns on the baseline. For processing the fast pulses, the discriminator and the scaler having a throughput of >500 MHz, were prepared. Since the acceleration frequency at the PF ring was 500.1 MHz and the empty-bunch spacing was 12/312 bunches per circumference, the expected maximum rate was 4.8x10 8s-1 according to the counting model for a pulsed photon source. The reason why the present system did not reach the expected value was the baseline shift at the amplifier outputs. The rise of +0.2 V was observed at a discriminator output of 3.3x10 8 s -1 , while the pulse height was lower than 0.2 V. The baseline shift was caused by an AC coupling circuit in the amplifier. If a DC coupling circuit can be used for the amplifier, instead of the AC coupling circuit, or an active adjustment to compensate the baseline shift is installed, the counting system will show an ideal response. Although the present system including NIM modules was not so compact, we would like to develop a new fast-counting circuit for a Si-APD array detector of more than 100 channels of small pixels, in near future. (author)

  5. HiRes camera and LIDAR ranging system for the Clementine mission

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Kordas, J.F.; Lewis, I.T. [and others

    1995-04-01

    Lawrence Livermore National Laboratory developed a space-qualified High Resolution (HiRes) imaging LIDAR (Light Detection And Ranging) system for use on the DoD Clementine mission. The Clementine mission provided more than 1.7 million images of the moon, earth, and stars, including the first ever complete systematic surface mapping of the moon from the ultra-violet to near-infrared spectral regions. This article describes the Clementine HiRes/LIDAR system, discusses design goals and preliminary estimates of on-orbit performance, and summarizes lessons learned in building and using the sensor. The LIDAR receiver system consists of a High Resolution (HiRes) imaging channel which incorporates an intensified multi-spectral visible camera combined with a Laser ranging channel which uses an avalanche photo-diode for laser pulse detection and timing. The receiver was bore sighted to a light-weight McDonnell-Douglas diode-pumped ND:YAG laser transmitter that emmitted 1.06 {micro}m wavelength pulses of 200 mJ/pulse and 10 ns pulse-width, The LIDAR receiver uses a common F/9.5 Cassegrain telescope assembly. The optical path of the telescope is split using a color-separating beamsplitter. The imaging channel incorporates a filter wheel assembly which spectrally selects the light which is imaged onto a custom 12 mm gated image intensifier fiber-optically-coupled into a 384 x 276 pixel frame transfer CCD FPA. The image intensifier was spectrally sensitive over the 0.4 to 0.8 {micro}m wavelength region. The six-position filter wheel contained 4 narrow spectral filters, one broadband and one blocking filter. At periselene (400 km) the HiRes/LIDAR imaged a 2.8 km swath width at 20-meter resolution. The LIDAR function detected differential signal return with a 40-meter range accuracy, with a maximum range capability of 640 km, limited by the bit counter in the range return counting clock.

  6. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens

    2006-01-01

    . In this study, the optical properties of different types of surfaces to be cleaned and the dirt found in finishing pig units were investigated in the visual and the near infrared (VIS-NIR) optical range. Four types of commonly used materials in pig buildings, i.e. concrete, plastic, wood and steel were applied...... and after high-pressure water cleaning. The spectral signatures of the surface materials and dirt attached to the surfaces showed that it is possible to make discrimination and hence to classify areas that are visually clean. When spectral bands 450, 600, 700 and 800 nm are chosen, there are at least two...

  7. Interference Measurements in the European 868 MHz ISM Band with Focus on LoRa and SigFox

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Vejlgaard, Benny; Kovács, István

    2017-01-01

    In this measurement study the signal activity and power levels are measured in the European Industrial, Scientific, and Medical band 863-870 MHz in the city of Aalborg, Denmark. The target is to determine if there is any interference, which may impact deployment of Internet of Things devices....... The focus is on the Low Power Wide Area technologies LoRa and SigFox. The measurements show that there is a 22-33 % probability of interfering signals above -105 dBm within the mandatory LoRa and SigFox 868.0-868.6 MHz band in a shopping area and a business park in downtown Aalborg, which thus limits...... the potential coverage and capacity of LoRa and SigFox. However, the probability of interference is less than 3 % in the three other measurement locations in Aalborg. Finally, a hospital and an industrial area are shown to experience high activity in the RFID subband 865-868 MHz, while the wireless audio band...

  8. The study of 80 MHz self starting passively mode-locked Erbium-Doped Fiber Laser via nonlinear polarization rotation with SESAM

    International Nuclear Information System (INIS)

    Qamar, F.

    2013-01-01

    Erbium-Doped Fiber Laser, EDF L, passively mode-locked via only Nonlinear Polarization Rotation, NPR, and via NPR with Semiconductor Saturable Absorber Mirror, SESAM, is studied. Self start single pulse train with pulse width of 114 fs and repetition rate (PRR) of 80 MHz has been obtained when 55 cm EDFL, passively mode-locked via NPR only. Inserting SESAM in EDFL cavity leads to shorten the pulse width up to 88 fs, increases the amplitude stability up to 96% and lower the phase noise jittering to around 26 fsec. Stable second harmonic self starting passively mode-locked EDFL with pulse width of 284 fs has also been observed only when SESAM was used in the cavity. Multi-pulsed system passively mode-locked via NPR for EDFL length of 80 cm with time difference between the successive multi-pulses ranged from few picoseconds to nanoseconds, has been observed. The time difference can be controlled by the polarizer controller and the half wave plate. Further controlling of the cavity polarization leads to developing the multiple mode locking pulses train to second harmonic mode-locking pulse train with PRR of 160MHz and pulse width of 156 fs. Three harmonic superposed trains of mode locked pulse have been achieved only when SESAM added to the cavity. (author)

  9. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  10. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  11. High-speed multispectral videography with a periscope array in a spectral shaper.

    Science.gov (United States)

    Hashimoto, Kazuki; Mizuno, Hikaru; Nakagawa, Keiichi; Horisaki, Ryoichi; Iwasaki, Atsushi; Kannari, Fumihiko; Sakuma, Ichiro; Goda, Keisuke

    2014-12-15

    We present a simple method for continuous snapshot multispectral imaging or multispectral videography that achieves high-speed spectral video recording without the need for mechanical scanning and much computation for datacube construction. The enabling component of this method is an array of periscopes placed in a prism-based spectral shaper that spectrally separates the image without image deformation. As a proof-of-principle demonstration, we show five-color multispectral video recording in the visible range (200×200 pixels per spectral image frame) at a record high frame rate of at least 2800 frames per second. Our experimental results indicate that this method holds promise for various industrial and biomedical applications such as remote sensing, food inspection, and endoscopy.

  12. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    Science.gov (United States)

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.

  13. A search for interplanetary scintillation of Cygnus A at 81.5 MHz

    International Nuclear Information System (INIS)

    Tsien, S.C.; Duffett-Smith, P.J.

    1982-01-01

    IPS observations of Cygnus A at 81.5 MHz with the Cambridge 3.6-hectare array set an upper limit on the scintillation of 0.07 per cent of the total flux density. This suggests that the hotspots seen at high frequencies are much less prominent at low frequencies. (author)

  14. Study of the spectral and energy characteristics of lasing in the green spectral region by lithium fluoride with radiation color centers

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P.; Kalinov, V.S.; Mikhnov, S.A.; Ovseichuk, S.I.

    1987-06-01

    The spectral and energy characteristics of lasers utilizing lithium fluoride with F2 and F3(+) color centers in transverse and longitudinal pumping schemes are studied. The feasibility of obtaining stable narrow-band radiation in the 510-570 nm range using a selective resonator is demonstrated. Consideration is given to the effect of lithium-fluoride crystal processing by excimer laser radiation at a wavelength of 308 nm on the spectroscopic and lasing characteristics of the F3(+) color center. After this processing, the laser efficiency in the green spectral region increases by more than a factor of two (reaching an efficiency of 14 percent). 7 references.

  15. Operation of a 473 MHz four-rod cavity RFQ

    International Nuclear Information System (INIS)

    Kazimi, R.; Huson, F.R.; Mackay, W.W.; Meitzler, C.R.

    1992-01-01

    We have constructed a new type of four-rod Radio Frequency Quadrupole to operate at 473 MHz. Four-rod structures have not previously been built for such a high frequency. The RFQ is designed to accelerate 10 mA of H - ions from 30 keV to 0.5 MeV. The rf measurements and beam test of the RFQ have been performed successfully. Here we present operational results of the RFQ system including measurements of the beam current, the required rf power, energy, energy spread, and emittance. (Author) 8 refs., 6 figs., 2 tabs

  16. Enkephalins: Raman spectral analysis and comparison as function of pH 1-13

    DEFF Research Database (Denmark)

    Abdali, Salim; Refstrup, Pia; Nielsen, O.F.

    2003-01-01

    Raman spectral studies are carried out on Leu- and Met-enkephalin as a function of the pH value in the range of 1-13. The molecules are dissolved in KCI solvent and the pH is controlled at each value. Spectral analyses reveal the dependence of the structural conformation on the pH, and a comparis...

  17. Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Edstrom Jr., D. [Fermilab; Ruan, J. [Fermilab

    2016-10-09

    We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.

  18. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  19. Field profile and loading measurements on higher order modes in a two cell 500 MHz superconducting structure

    International Nuclear Information System (INIS)

    Barry, W.; Edighoffer, J.; Chattopadhyay, S.; Fornaca, S.

    1992-08-01

    The Infrared Free Electron Laser, being designed at LBL as part of the Chemical Dynamics Research Laboratory, is based on a 500 MHz superconducting linac driver that consists of five 4-cell structures of the CERN/DESY type. A 500 MHz, 2-cell version of this structure is being used in a joint Stanford/LBL/BNL program to study accelerator issues relevant to the FEL applications. As part of this study, field profile and loading measurements of higher order modes have been made on the prototype structure

  20. The Role of the Location of Personal Exposimeters on the Human Body in Their Use for Assessing Exposure to the Electromagnetic Field in the Radiofrequency Range 98–2450 MHz and Compliance Analysis: Evaluation by Virtual Measurements

    Directory of Open Access Journals (Sweden)

    Krzysztof Gryz

    2015-01-01

    Full Text Available The use of radiofrequency (98–2450 MHz range personal exposimeters to measure the electric field (E-field in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from −96 to +133%, measurement errors with respect to the unperturbed E-field value. When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions. However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements.