WorldWideScience

Sample records for mhz rf windows

  1. A 201 MHz RF cavity design with non-stressed pre-curved Be windows for muon cooling channels

    International Nuclear Information System (INIS)

    Li, Derun; Ladran, A.; Staples, J.; Virostek, S.; Zisman, M.; Lau, W.; Yang, S.; Rimmer, R.A.

    2003-01-01

    We present a 201-MHz RF cavity design for muon cooling channels with non-stressed and pre-curved Be foils to terminate the beam apertures. The Be foils are necessary to improve the cavity shunt impedance with large beam apertures needed for accommodating large transverse size muon beams. Be is a low-Z material with good electrical and thermal properties. It presents an almost transparent window to muon beams, but terminates the RF cavity electro-magnetically. Previous designs use pre-stressed flat Be foils in order to keep cavity from detuning resulted from RF heating on the window surface. Be foils are expensive, and it is difficult to make them under desired tension. An alternative design is to use pre-curved and non-stressed Be foils where the buckling direction is known, and frequency shifts can be properly predicted. We will present mechanical simulations on the Be foils in this paper

  2. High power RF test of an 805 MHz RF cavity for a muon cooling channel

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Rimmer, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Summers, D.; Norem, J.

    2002-01-01

    We present recent high power RF test results on an 805 MHz cavity for a muon cooling experiment at Lab G in Fermilab. In order to achieve high accelerating gradient for large transverse emittance muon beams, the cavity design has adopted a pillbox like shape with 16 cm diameter beam iris covered by thin Be windows, which are demountable to allow for RF tests of different windows. The cavity body is made from copper with stiff stainless steel rings brazed to the cavity body for window attachments. View ports and RF probes are available for visual inspections of the surface of windows and cavity and measurement of the field gradient. Maximum of three thermo-couples can be attached to the windows for monitoring the temperature gradient on the windows caused by RF heating. The cavity was measured to have Q 0 of about 15,000 with copper windows and coupling constant of 1.3 before final assembling. A 12 MW peak power klystron is available at Lab G in Fermilab for the high power test. The cavity and coupler designs were performed using the MAFIA code in the frequency and the time domain. Numerical simulation results and cold test measurements on the cavity and coupler will be presented for comparisons

  3. A continuous wave RF vacuum window

    International Nuclear Information System (INIS)

    Walton, R.

    1999-09-01

    An essential part of an ICRF system to be used in fusion reactor is the RF window. This is fitted in a coaxial transmission line. It forms a vacuum and tritium boundary between the antenna, situated inside the machine, and the transmission line, which feeds it. A double window is required with a vacuum inter-space. The dielectric, which forms the vacuum boundary, must be brazed into its housing. The window must be of a robust construction, and capable of withstanding both axial and radial loads. The vacuum boundaries should be thick walled in order act as a suitable tritium barrier. A further requirement is that the window is capable of continuous operation. The design of such a window is presented below. A half scale prototype has been manufactured, which has successfully completed RF, vacuum, and mechanical testing at JET, but has no water cooling, which is a requirement for continuous operation. The design presented here is for a window to match the existing 30 Ω main transmission lines at JET. It employs two opposed ceramic dielectric cones with a much increased angle of incidence compared with existing JET windows. The housing is machined from titanium. Small corona rings are used, and the tracking distance along the ceramic surface is large. The geometry minimizes the peak electric field strength. The design uses substantial pre-stressing during manufacture, to produce a compressive stress field throughout the dielectric material. Significant tensile stresses in the ceramic, and therefore the possibility of fracture due to applied thermal and mechanical loading, are eliminated in this way. A full-scale actively cooled RF window using this basic design should be capable of continuous use at 50 kV in the 20 - 90 MHz range. A half scale, inertially cooled prototype window has been designed, built and tested successfully at JET to 48 kV for up to 20 seconds. The prototype uses alumina for the dielectric, whereas beryllia is more appropriate for continuous

  4. Technology development of solid state rf systems at 350 MHz and 325 MHz for RF accelerator

    International Nuclear Information System (INIS)

    Rama Rao, B.V.; Mishra, J.K.; Pande, Manjiri; Gupta, S.K.

    2011-01-01

    For decades vacuum tubes and klystrons have been used in high power application such as RF accelerators and broadcast transmitters. However, now, the solid-state technology can give power output in kilowatt regime. Higher RF power output can be achieved by combining several solid-state power amplifier modules using power combiners. This technology presents several advantages over traditional RF amplifiers, such as simpler start-up procedure, high modularity, high redundancy and flexibility, elimination of high voltage supplies and high power circulators, low operational cost, online maintenance without shut down of RF power station and no warm up time. In BARC, solid state amplifier technology development is being done both at 350 MHz and 325 MHz using RF transistors such as 1 kW LDMOS and 350 Watt VDMOS. Topology of input and output matching network in RF modules developed, consist of two L type matching sections with each section having a combination of series micro-strip line and parallel capacitor. The design is of equal Q for both the sections and of 25 ohm characteristics impedance of micro strip lines. Based on this, lengths of micro strips lines and values of shunt capacitors have been calculated. The calculated and simulated values of network elements have been compared. Similarly power combiners have been designed and developed based on Wilkinson techniques without internal resistors and using coaxial technology. This paper presents design and development of RF power amplifier modules, associated power combiner technologies and then integrated RF power amplifier. (author)

  5. Status of 174 MHz RF system for BEP

    International Nuclear Information System (INIS)

    Biryuchevsky, Yu.A.; Gorniker, E.I.; Kendjebulatov, E.K.; Krutikhin, S.A.; Kurkin, G.Ya.; Petrov, V.M.; Pilan, A.M.

    2012-01-01

    The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will increase the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system.

  6. High-power RF window and coupler development for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported

  7. Development of C-band High-Power Mix-Mode RF Window

    CERN Document Server

    Michizono, S; Matsumoto, T; Nakao, K; Takenaka, T

    2004-01-01

    High power c-band (5712 MHz) rf system (40 MW, 2 μs, 50 Hz) is under consideration for the electron-linac upgrade aimed for the super KEKB project. An rf window, which isolates the vacuum and pass the rf power, is one of the most important components for the rf system. The window consists of a ceramic disk and a pill-box housing. The mix-mode rf window is designed so as to decrease the electric field on the periphery of the ceramic disk. A resonant ring is assembled in order to examine the high-power transmission test. The window was tested up to the transmission power of 160 MW. The rf losses are also measured during the rf operation.

  8. Commissioning of the 400 MHz LHC RF System

    CERN Document Server

    Ciapala, Edmond; Baudrenghien, P; Brunner, O; Butterworth, A; Linnecar, T; Maesen, P; Molendijk, J; Montesinos, E; Valuch, D; Weierud, F

    2008-01-01

    The installation of the 400 MHz superconducting RF system in LHC is finished and commissioning is under way. The final RF system comprises four cryo-modules each with four cavities in the LHC tunnel straight section round IP4. Also underground in an adjacent cavern shielded from the main tunnel are the sixteen 300 kW klystron RF power sources with their high voltage bunkers, two Faraday cages containing RF feedback and beam control electronics, and racks containing all the slow controls. The system and the experience gained during commissioning will be described. In particular, results from conditioning the cavities and their movable main power couplers and the setting up of the low level RF feedbacks will be presented.

  9. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  10. A 700 MHZ, 1 MW CW RF System for a FEL 100mA RF Photoinjector

    CERN Document Server

    Roybal, William; Reass, William; Rees, Daniel; Tallerico, Paul J; Torrez, Phillip A

    2005-01-01

    This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires ~96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2½-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector.

  11. High-power RF window design for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N.; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered

  12. Design Considerations for the LHC 200 MHz RF System

    CERN Document Server

    Boussard, Daniel; Kindermann, H P; Linnecar, Trevor Paul R; Marque, S; Tückmantel, Joachim

    2000-01-01

    The longitudinal beam transfer from the SPS into the LHC 400 MHz buckets will not be free of losses without a lower frequency capture system and a fast longitudinal damping system in LHC. We present a complete study of a combined system using four identical copper cavities at 200 MHz delivering 3 MV total CW voltage and having still enough bandwidth to achieve fast longitudinal damping. The shape of a cavity was designed according to the accelerating mode performance, its tuning and the higher order mode spectrum with respect to the LHC beam lines and their possible attenuation. The possibility to park the cavities during coast was included. The local heat load and the corresponding cooling water distribution as well as deformations were studied and techniques to build the cavity with all ports at low cost are proposed. The parameters of the RF generators, couplers and detuning are determined. Simulations of the total LHC RF system incorporating real delays, generator bandwidth and the control loops confirm t...

  13. RF Tests of an 805 MHz Pillbox Cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    D. Li; J. Corlett; R. MacGill; M. Zisman; J. Norem; A. Moretti; Z. Qian; J. Wallig; V. Wu; Y. Torun; R.A. Rimmer

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows over beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, following several weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested with and without the external magnetic field. 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, indicating that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emission significantly. A gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection of the Be window surface found no visual damage, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning the cavity in a strong magnetic field has been developed. More thorough window and cavity surface inspection is under way

  14. RF tests of an 805 MHz pillbox cavity at Lab G of Fermilab

    International Nuclear Information System (INIS)

    Li, Derun; Corlett, J.; MacGill, R.; Wallig, J.; Zisman, M.; Moretti, A.; Qian, Z.; Wu, V.; Rimmer, R.; Norem, J.; Torun, Y.

    2003-01-01

    We report recent high power RF tests on an 805 MHz RF pillbox cavity with demountable windows for beam apertures at Lab G of Fermilab, a dedicated facility for testing of MUCOOL (muon cooling) components. The cavity is installed inside a superconducting solenoidal magnet. A 12 MW peak RF power klystron is used for the tests. The cavity has been processed both with and without magnetic field. Without magnetic field, a gradient of 34 MV/m was reached rather quickly with very low sparking rate. In a 2.5 T solenoidal field, a 16 MV/m gradient was achieved, and it had to take many weeks of conditioning. Strong multipacting effects associated with high radiation levels were measured during the processing with the magnetic field. More recently Be windows with TiN-coated surface have been installed and tested at conditions of with and without the external magnetic field. A conservative 16 MV/m gradient without magnetic field was reached quickly as planned. Less multipacting was observed during the conditioning, it indicated that the TiN-coated surface on the windows had indeed helped to reduce the secondary electron emissions significantly. A modest gradient of 16.5 MV/m was finally achieved with magnet on in solenoidal mode and the field up to 4 T. Preliminary inspection on Be windows surface found no damage at all, in comparison with Cu windows where substantial surface damage was found. Preliminary understanding of conditioning cavity in a strong magnetic field has been developed. More through window and cavity surface inspection is under way

  15. The LANSCE 805 MHZ RF System History and Status

    CERN Document Server

    Lynch, Michael; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) linear accelerator runs at 201.25 MHz for acceleration to 100 MeV. The remainder of the acceleration to 800 MeV is at 805 MHz. This is done with 44 accelerator cavity stages driven by 805 MHz klystrons. Each klystron has a peak power capability of 1.25 MeV. Originally, 97 klystrons were purchased, which was 70 from Varian/CPI and 27 from Litton. The 44 RF systems are laid out in sectors with either 6 or 7 klystrons per sector. The klystrons in each sector are powered from a common HV sytem. The current arrangement uses the Varian/CPI klystrons in 6 of the 7 sectors and Litton klystrons in the remaining sector. With that arrangement there are 38 CPI klystrons installed and 1 spare klystron per sector and 6 Litton klystrons installed in the final sector with 2 spares. The current average life of all of the operating and spare klystrons (52 total) is >112,000 filament hours and >93,000 HV hours. That is three times the typical klystron lifetime today f...

  16. A 201-MHz Normal Conducting RF Cavity for the International MICE Experiment

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.J.; Virostek, Steve; Zisman, Michael S.; Rimmer, Robert

    2008-01-01

    MICE is a demonstration experiment for the ionization cooling of muon beams. Eight RF cavities are proposed to be used in the MICE cooling channel. These cavities will be operated in a strong magnetic field; therefore, they must be normal conducting. The cavity design and construction are based on the successful experience and techniques developed for a 201-MHz prototype cavity for the US MUCOOL program. Taking advantage of a muon beamΛ s penetration property, the cavity employs a pair of curved thin beryllium windows to terminate conventional beam irises and achieve higher cavity shunt impedance. The cavity resembles a round, closed pillbox cavity. Two half-shells spun from copper sheets are joined by e-beam welding to form the cavity body. There are four ports on the cavity equator for RF couplers, vacuum pumping and field probes. The ports are formed by means of an extruding technique.

  17. 352.2 MHz rf system for the ESRF

    International Nuclear Information System (INIS)

    Jacob, J.; David, C.

    1988-01-01

    This paper reports that ESRF's 352.2 MHz RF system that uses 1 MW-CW klystrons and five-cell LEP type cavities has been adopted. In the storage ring (SR), two klystrons will feed a total of four cavities in order to provide the maximum required accelerating voltage of 8.9 MV. In the injector synchrotron (SY), two cavities fed by one klystron in a cycling mode at 10 Hz will give the maximum needed accelerating voltage of 7.3 MV. In multibunch operation of the SR, coupled bunch oscillations will be driven by the higher order modes (HOMs) of the cavities, and may limit the maximum beam current to about 60 mA. Spare ports will allow to install HOM dampers on the cavities in order to raise the instability thresholds above the design current of 100 mA. In addition, active feed back systems may be implemented

  18. Development of L-band pillbox RF window

    International Nuclear Information System (INIS)

    Takeuchi, Y.; Fukuda, S.; Hisamatsu, H.; Saito, Y.; Takahashi, A.

    1994-01-01

    A pillbox RF output window was developed for the L-band pulsed klystron for the Japanese Hadron Project (JHP) 1-GeV proton linac. The window was designed to withstand a peak RF power of 6 MW, where the pulse width is 600 μsec and the repetition rate is 50 Hz. A high power model was fabricated using an alumina ceramic which has a low loss tangent of 2.5x10 -5 . A high power test was successfully performed up to a 113 kW RF average power with a 4 MW peak power, a 565 μsec pulse width and a 50 Hz repetition rate. By extrapolating the data of this high power test, the temperature rise of the ceramic is estimated low enough at the full RF power of 6 MW. Thus this RF window is expected to satisfy the specifications of the L-band Klystron. (author)

  19. Eight-MHz RF-hyperthermia for advanced urological malignancies

    International Nuclear Information System (INIS)

    Hisazumi, Haruo; Nakajima, Kazuyoshi

    1986-01-01

    Eight-MHz radiofrequency hyperthermia (H) using a Thermotron-RF Model 8, and its combination with irradiation (RH), anticancer drugs (CH) or anticancer drugs plus irradiation (CRH), were carried out for a total of 48 urological malignancies: 10 cases of renal cancer, 1 of renal pelvic cancer, 2 of uretetral cancer, 19 of bladder cancer, 5 of prostatic cancer, 9 of metastatic lesion of urological cancers and 2 of other urological cancers. All had failed in previous treatments, or had not undergone surgery because of their poor general condition. Four cases, including 2 of bladder cancer, 1 of prostatic cancer and 1 of metastatic lesion of bladder cancer, were treated with H. Twenty-five cases, including 3 renal cancer cases, were treated with RH. Seven of the 10 cases of renal cancer were treated with mitomycin C-microcapsule embolization prior to RH (CRH). Twelve of the 23 cases with urothelial cancer or its metastasis, including 1 of renal pelvic cancer, 10 of bladder cancer and 1 of metastatic lesion of bladder cancer, received combined treatment of THP-adriamycin, one of the derivatives of adriamycin, by i.v. and RF-heating (CH). Hyperthermia was given twice a week, totalling 10 sessions in 5 weeks. Intratumoral temperature was kept above 42.5 deg C for 30 to 40 minutes during one-hour heating. Complete tumor disappearance was obtained in the 5 bladder cancer cases. Partial tumor regression, defined as a regression of 50 % or more, was obtained in 11 cases. As side effects, mild skin burns and anorexia were observed in approximately 30 to 40 % of cases. Seven obese cases, who had subcutaneous tissue 15 mm thick or more, developed fat tissue induration after treatment. (author)

  20. High power RF window deposition apparatus, method, and device

    Science.gov (United States)

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  1. High power test of RF window and coaxial line in vacuum

    International Nuclear Information System (INIS)

    Sun, D.; Champion, M.; Gormley, M.; Kerns, Q.; Koepke, K.; Moretti, A.

    1993-01-01

    Primary rf input couplers for the superconducting accelerating cavities of the TESLA electron linear accelerator test to be performed at DESY, Hamburg, Germany are under development at both DESY and Fermilab. The input couplers consist of a WR650 waveguide to coaxial line transition with an integral ceramic window, a coaxial connection to the superconducting accelerating cavity with a second ceramic window located at the liquid nitrogen heat intercept location, and bellows on both sides of the cold window to allow for cavity motion during cooldown, coupling adjustments and easier assembly. To permit in situ high peak power processing of the TESLA superconducting accelerating cavities, the input couplers are designed to transmit nominally 1 ms long, 2 MW peak, 1.3 GHz rf pulses from the WR650 waveguide at room temperature to the cavities at 1.8 K. The coaxial part of the Fermilab TESLA input coupler design has been tested up to 1.7 MW using the prototype 805 MHz rf source located at the A0 service building of the Tevatron. The rf source, the testing system and the test results are described

  2. Investigation and Prediction of RF Window Performance in APT Accelerators

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1997-01-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate β superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak-RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak-RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak-RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics

  3. Development and Measurement of Strain Free RF Photoinjector Vacuum Windows

    CERN Document Server

    Biedron, Sandra G

    2004-01-01

    RF photoinjectors produce the highest brightness electron bunches only under nearly ideal illumination by a drive laser. The vacuum window used to introduce the laser beam is an essential element that may potentially degrade any distribution, making it difficult or impossible to know the actual uniformity achieved at the cathode. Because of the necessity to obtain ultrahigh vacuum near the photoinjector, some restrictions are imposed on the fabrication technology available to manufacture distortion-free windows. At the UV wavelengths commonly used for photoinjectors, it is challenging to measure and eliminate degradation caused by vacuum windows. Here, we discuss the initial laser-based measurements of a strain-free, coated, UHV window manufactured by Insulator Seal in collaboration with members of Brookhaven and Argonne National Laboratories.

  4. RF windows used at s-band pulsed klystrons in KEK linac

    Energy Technology Data Exchange (ETDEWEB)

    Michizono, S.; Saito, Y. [KEK, National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-04-01

    The breakdown of the alumina RF-windows used in high-power klystrons is one of the most serious problems in the development of klystrons. This breakdown results from excess heating of alumina due to multipactor bombardments and/or localized RF dissipations. A statistical research of window materials was carried out, and high-power tests were performed in order to develop RF windows having high durability for the KEKB klystrons. The breakdown mechanism of RF windows is being considered. An improved RF window installed in a KEKB klystron is also being tested. (J.P.N)

  5. Early 500 MHz prototype LEP RF Cavity with superposed storage cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The principle of transferring the RF power back and forth between the accelerating cavity and a side-coupled storage cavity was demonstrated with this 500 MHz prototype. In LEP, the accelerating frequency was 352.2 MHz, and accelerating and storage cavities were consequently larger. See also 8002294, 8006061, 8407619X, and Annual Reports 1980, p.115; 1981, p.95; 1985, vol.I, p.13.

  6. A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz

    Directory of Open Access Journals (Sweden)

    Dinh Khanh Ho

    2017-06-01

    Full Text Available This paper presents a novel dual-band rectenna for RF energy harvesting system. This rectenna is created from a dual-band antenna and a dual-band rectifier which operates at GSM bands (900 MHz and 1800 MHz. The printed monopole antenna is miniaturized by two meander-lines. The received signal from the receiving antenna is rectified by a voltage double using Schottky diode SMS-7630. The rectifier is optimized for low input power level of -20dBm using harmonic balance. Prototype is designed and fabricated. The simulation is validated by measurement with power conversion efficiency of 20% and 40.8% (in measurement at the input power level of -20dBm. The proposed rectenna has output voltage from 183-415 mV. From the measured results, this rectenna provides the possibility to harvest the ambient electromagnetic energy for powering low-power electronic devices.

  7. Development of 650 MHz solid state RF amplifier for proton accelerator

    International Nuclear Information System (INIS)

    Jain, Akhilesh; Sharma, Deepak; Gupta, Alok; Tiwari, Ashish; Rao, Nageswar; Sekar, Vasanthi; Lad, M.; Hannurkar, P.R.; Gupta, P.D.

    2011-01-01

    Design and development of 30 kW high powers RF source at 650 MHz, using solid RF state technology, has been initiated at RRCAT. The indigenous technology development efforts will be useful for the proposed high power proton accelerators for SNS/ADS applications. In this 650 MHz amplifier scheme, 30 kW CW RF power will be generated using modular combination of 8 kW amplifier units. Necessary studies were carried out for device selection, choice of amplifier architecture and design of high power combiners and dividers. Presently RF amplifier delivering 250 W at 650 MHz has been fabricated and tested. Towards development of high power RF components, design and engineering prototyping of 16-port power combiner, directional coupler and RF dummy loads has been completed. The basic 8 kW amplifier unit is designed to provide power gain of 50 dB, bandwidth of 20 MHz and spurious response below 30 dB from fundamental signal. Based on the results of circuit simulation studies and engineering prototyping of amplifier module, two RF transistor viz. MRF3450 and MRF 61K were selected as solid state active devices. Impedance matching network in amplifier module is designed using balanced push pull configuration with transmission line BALUN. Due to high circulating current near drain side, metal clad RF capacitors were selected which helps in avoiding hot spot from output transmission path, ensuring continuous operation at rated RF power without damage to RF board. 350 W circulator is used to protect the RF devices from reflected power. Based on the prototype design and measured performance, one of these RF transistors will be selected to be used as workhorse for all amplifier modules. Two amplifier modules are mounted on water cooled copper heat-sink ensuring proper operating temperature for reliable and safe operation of amplifier. Also real time control system and data logger has been developed to provide DAQ and controls in each rack. For power combining and power measurement

  8. Modulation improvements in the 201 MHZ RF generators at LAMPF

    International Nuclear Information System (INIS)

    Parsons, W.M.; Lyles, J.T.M.; Harris, H.W.

    1992-01-01

    Radio-frequency generators, operating at 201 MHz, power the first four stages of the Los Alamos Meson Physics Facility (LAMPF) accelerator. Each generator consists of four stages of seriesconnected, vacuum-tube amplifiers. The modulation scheme for each stage is different. The fist amplifier is a grid-modulated tetrode that produces 500 W peak-power. The second amplifier is a drive-modulated tetrode that produces 5 kill peak-power. The third stage is a grid- and plate-modulated tetrode that produces 130 kill peak-power. The last stage is a plate-modulated triode that produces 2.5 MW peak power. A modernization program has been initiated to improve the reliability of each of these stages. The first two stages of each generator are being replaced with a single, drive-modulated, solid-state amplifier. Specifications for the amplifier design, and requirements for integration into the system are presented. The third stage will be converted to a drive-modulated system using the current tetrode. This modification involves the development of a 17-kV, 15-A switching supply to replace the present plate-modulator. Design requirements for this switching supply are presented. The final stage will remain plate-modulated but will contain a new driver unit for the modulator tube

  9. Developments and directions in 200 MHz very high power RF at LAMPF

    International Nuclear Information System (INIS)

    Cliff, R.; Bush, E.D.; DeHaven, R.A.; Harris, H.W.; Parsons, M.

    1991-01-01

    The Los Alamos Meson Physics Facility (LAMPF), is a linear particle accelerator a half-mile long. It produces an 800 million electron- volt hydrogen-ion beam at an average current of more than one milliamp. The first RF section of the accelerator consists of four Alvarez drift-tube structures. Each of these structures is excited by an amplifier module at a frequency of 201.25 MHz. These amplifiers operate at a duty of 13 percent or more and at peak pulsed power levels of about 2.5 million watts. The second RF accelerator section consists of forty-four side-coupled-cavity structures. Each of these is excited by an amplifier module at a frequency of 805 MHz. These amplifiers operate at a duty of up to 12 percent and at peak pulsed power levels of about 1.2 million watts. The relatively high average beam current in the accelerator places a heavy demand upon components in the RF systems. The 201-MHz modules have always required a large share of maintenance efforts. In recent years, the four 201.25 MHz modules have been responsible for more than twice as much accelerator down-time as have the forty-four 805 MHz modules. This paper reviews recent, ongoing, and planned improvements in the 201-MHz systems. The Burle Industries 7835 super power triode is used in the final power amplifiers of each of the 201-MHz modules. This tube has been modified for operation at LAMPF by the addition of Penning ion vacuum''pumps.'' This has enabled more effective tube conditioning and restarting. A calorimetry system of high accuracy is in development to monitor tube plate-power dissipation

  10. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  11. New Control Structure of the 200 MHz RF System in the CERN PS

    CERN Document Server

    Damerau, H; CERN. Geneva. AB Department

    2008-01-01

    The 200 MHz RF system is an essential tool for the preparation of high-intensity beams in the CERN PS. Presently, six RF cavities are operated to control the longitudinal bunch emittance and rebunching of the beam before the transfer to the SPS. Cavities are selected for the various processes with a dedicated hardware matrix, switching the individual timing pulses and voltage programs per cavity. However, the electronics used for the matrix hardware is obsolete and its reliability cannot be guaranteed due to a lack of spare modules and components. Instead of replacing the old hardware matrix by modern hardware, this note describes a new control structure for the 200MHz RF system so that no dedicated hardware will be required anymore. The implementation of the new control structure is based on two main concepts. Firstly, linked timing trees per blow-up or rebunching are used to handle all related timing and to store one row of the matrix. Secondly, as a reflection of the RF signal generation for the 200 MHz sy...

  12. Buffer Chemical Polishing and RF Testing of the 56 MHz SRF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Burrill,A.

    2009-01-01

    The 56 MHz cavity presents a unique challenge in preparing it for RF testing prior to construction of the cryomodule. This challenge arises due to the physical dimensions and subsequent weight of the cavity, and is further complicated by the coaxial geometry, and the need to properly chemically etch and high pressure rinse the entire inner surface prior to RF testing. To the best of my knowledge, this is the largest all niobium SRF cavity to be chemically etched and subsequently tested in a vertical dewar at 4K, and these processes will be the topic of this technical note.

  13. 1 MW, 352.2 MHz, CW and Pulsed RF test stand

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Tyagi, Rajiv; Hannurkar, P.R.

    2011-01-01

    A 1 MW, 352.2 MHz, RF test stand based on Thales make TH 2089 klystron amplifier is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for characterization and qualification of RF components, cavities and related subsystems. Provision to vary RF power from 50 kW to 1 MW with adequate flexibility for testing wide range of HV components, RF components and cavities is incorporated in this test stand. The paper presents a brief detail of various power supplies like high voltage cathode bias power supply, modulating anode power supply, filament power supply, electromagnet power supplies and ion pump power supplies along with their interconnections for biasing TH 2089 klystron amplifier. A digital control and interlock system is being developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test set up. This RF test stand will be a unique national facility, capable of providing both CW and pulse RF power for realizing reliable RF power sources for various projects including the development of high energy proton linac under ADSS program of the Department of Atomic Energy. (author)

  14. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  15. Nouvelle application de control des cavités 200 MHz RF du PS (CERN)

    CERN Document Server

    Cotte, D

    2011-01-01

    Le système Radio Fréquence (RF) 200MHz du PS est un outil essentiel pour la préparation des faisceaux haute intensité du PS. Dans l’anneau PS on trouve 6 cavités 200 MHz utilisées pour contrôler : • l’émittance longitudinale des « bunches » • le processus de « Rebunching » du faisceau avant de l’envoyer au SPS. Chaque cavité est pilotée par des événements appelés « timing » et suit une fonction de tension programmée. Cependant, l’électronique utilisée pour piloter les cavités 200 MHz du PS est obsolète et sa fiabilité non garantie pour cause du manque de pièces de rechange. Ce document décrit le fonctionnement du nouveau programme d’application qui fait abstraction de l’ancienne matrice hardware. Elle suit les recommandations décrites dans l’étude d’une nouvelle structure pour le système RF 200MHz du PS. [1

  16. Testing of inductive output tube based RF amplifier for 650 MHz SRF cavities

    International Nuclear Information System (INIS)

    Mandal, A.; Som, S.; Manna, S.K.; Ghosh, S.; Seth, S.; Thakur, S.K.; Saha, S.; Panda, U.S.

    2012-01-01

    A 650 MHz IOT based RF amplifier has been developed in VECC. It can be used to power several cavity modules in high energy high current proton linear accelerator to be built for ADSS programme in India and in Project-X at Fermilab, USA. The IOT based amplifier requires different powers supplies, water cooling and forced air cooling for its operation. A Programmable Logic Controller (PLC) based interlocks has been incorporated to take care of systematic on/off of the power supplies and driver amplifier, water flow, air flow and other interlocks for the safe operation of the RF System. In addition to that EPICS based RF operating console and data logging/monitoring system has been added. (author)

  17. Development of an S-band high-power pillbox-type RF window

    International Nuclear Information System (INIS)

    Miura, A.; Matsumoto, H.

    1992-01-01

    We report on the development of RF windows used to handle a high transmission power up to 110 MW for the Japan Linear Collider. A detailed simulation on multipactoring has been carried out. The results were compared with cathode-luminescence on the surface of alumina RF windows experimentally observed with power transmission up to 200 MW. (Author) 10 refs., 9 figs

  18. The PS 13.3-20 MHZ RF Systems for LHC

    CERN Document Server

    Garoby, R; Haase, M; Krusche, A; Maesen, P; Morvillo, M; Paoluzzi, M; Rossi, C

    2003-01-01

    As part of the preparation of the PS as an injector for the LHC, a prototype 20 MHz rf system has been used, to demonstrate that the nominal longitudinal performance of the proton beam for LHC can be obtained using multiple bunch-splittings. Based on these successful results obtained during 2000, the development of the operational rf system began in 2001. To allow the preparation of bunch trains with a bunch spacing of 25 or 75 ns, this system must operate either at 20 or 13.3 MHz respectively. Two new ferrite cavities and their associated amplifiers have been designed and built. Each one can provide a maximum voltage of 20 kV peak during 200 ms with a 10% duty cycle. The cavities are equipped with fast (~20 ms) gap shorting relays, and rf feedback reduces their Q below 10 at both frequencies. A single system is sufficient to generate the nominal beam for LHC. The second one will then be both a "hot spare" and a very valuable performance enhancement providing the possibility of handling a larger than nominal ...

  19. Progress on the high-current 704 MHz superconducting RF cavity at BNL

    International Nuclear Information System (INIS)

    Xu, W.; Astefanous, C.; Belomestnykh, S.; Ben-Zvi, I.

    2012-01-01

    The 704 MHz high current superconducting cavity has been designed with consideration of both performance of fundamental mode and damping of higher order modes. A copper prototype cavity was fabricated by AES and delivered to BNL. RF measurements were carried out on this prototype cavity, including fundamental pass-band and HOM spectrum measurements, HOM studies using bead-pull setup, prototyping of antenna-type HOM couplers. The measurements show that the cavity has very good damping for the higher-order modes, which was one of the main goals for the high current cavity design. 3D cavity models were simulated with Omega3P code developed by SLAC to compare with the measurements. The paper describes the cavity design, RF measurement setups and results for the copper prototype. The progress with the niobium cavity fabrication will also be described.

  20. Design of traveling wave windows for the PEP-II RF coupling network

    International Nuclear Information System (INIS)

    Kroll, N.M.; Ng, C.K.; Judkins, J.; Neubauer, M.

    1995-05-01

    The waveguide windows in the PEP-II RF coupling network have to withstand high power of 500 kW. Traveling wave windows have lower power dissipation than conventional self-matched windows, thus rendering the possibility of less stringent mechanical design. The traveling wave behavior is achieved by providing a reflecting iris on each side of the window, and depending on the configuration of the irises, traveling wave windows are characterized as inductive or capacitive types. A numerical design procedure using MAFIA has been developed for traveling wave windows. The relative advantages of inductive and capacitive windows are discussed. Furthermore, the issues of bandwidth and multipactoring are also addressed

  1. Multiplacting analysis on 650 MHz, BETA 0.61 superconducting RF LINAC cavity

    International Nuclear Information System (INIS)

    Seth, Sudeshna; Som, Sumit; Mandal, Aditya; Ghosh, Surajit; Saha, S.

    2013-01-01

    Design, analysis and development of high-β multi-cell elliptical shape Superconducting RF linac cavity has been taken up by VECC, Kolkata as a part of IIFC collaboration. The project aims to provide the-art technology achieving very high electric field gradient in superconducting linac cavity, which can be used in high energy high current proton linear accelerator to be built for ADSS/SNS programme in India and in Project-X at Fermilab, USA. The performance of this type of superconducting RF structure can be greatly affected due to multipacting when we feed power to the cavity. Multipacting is a phenomenon of resonant electron multiplication in which a large number of electrons build up an electron Avalanche which absorbs RF Energy leading to remarkable power losses and heating of the walls, making it impossible to raise the electric field by increasing the RF Power. Multipacting analysis has been carried out for 650 MHz, β=0.61, superconducting elliptical cavity using 2D code MultiPac 2.1 and 3 D code CST particle studio and the result is presented in this paper. (author)

  2. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    International Nuclear Information System (INIS)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-01-01

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured

  3. New high power 200 MHz RF system for the LANSCE drift tube linac

    International Nuclear Information System (INIS)

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-01-01

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H + proton beam, and injects H - to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode reg-sign is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed

  4. High power tests of X-band RF windows at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Otake, Yuji [Earthquake Research Inst., Tokyo Univ., Tokyo (Japan); Tokumoto, Shuichi; Kazakov, Sergei Yu.; Odagiri, Junichi; Mizuno, Hajime

    1997-04-01

    Various RF windows comprising a short pill-box, a long pill-box, a TW (traveling wave)-mode and three TE11-mode horn types have been developed for an X-band high-power pulse klystron with two output windows for JLC (Japan Linear Collider). The output RF power of the klystron is designed to be 130 MW with the 800 ns pulse duration. Since this X-band klystron has two output windows, the maximum RF power of the window must be over 85 MW. The design principle for the windows is to reduce the RF-power density and/or the electric-field strength at the ceramic part compared with that of an ordinary pill-box-type window. Their reduction is effective to increase the handling RF power of the window. To confirm that the difference among the electric-field strengths depends on their RF structures, High-power tests of the above-mentioned windows were successfully carried out using a traveling-wave resonator (TWR) for the horns and the TW-mode type and, installing them directly to klystron output waveguides for the short and long pill-box type. Based upon the operation experience of S-band windows, two kinds of ceramic materials were used for these tests. The TE11-mode 1/2{lambda}g-1 window was tested up to the RF peak-power of 84 MW with the 700 ns pulse duration in the TWR. (J.P.N)

  5. High-resolution simulations of the thermophysiological effects of human exposure to 100 MHz RF energy

    International Nuclear Information System (INIS)

    Nelson, David A; Curran, Allen R; Nyberg, Hans A; Marttila, Eric A; Mason, Patrick A; Ziriax, John M

    2013-01-01

    Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm −2 ) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (T amb = 31 °C, PD = 8 mW cm −2 ). Skin temperature increases attributable to RF exposure were modest, with the exception of a ‘hot spot’ in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature. (paper)

  6. New Control Structure of the 10 MHz RF System in the CERN PS

    CERN Document Server

    Damerau, H

    2013-01-01

    The 10MHz cavities comprise the main RF system in the CERN PS and the only one that allows acceleration. In total 11 tunable cavities (10 operational and a hot spare, grouped into 3+1 tuning groups and up to presently 6 voltage program groups) are distributed all around the circumference of the PS ring. Next to the RF drive signal each of the cavities is controlled by a voltage program and timing pulses to open and close the relays to short-circuit the cavity gaps. These control signals are presently generated by a dedicated hardware matrix. It translates voltage functions and relay timing pulses per cavity group into functions and timings per cavity. However, due to its central position in the RF beam control system, the dedicated hardware matrix can cause significant downtime in case of a major hardware failure. Instead of upgrading the existing obsolete hardware, this note suggests a replacement by standard controls hardware and dedicated application software. Thanks to advanced software concepts like “M...

  7. rf measurements and tuning of the 750 MHz radio frequency quadrupole

    Science.gov (United States)

    Koubek, Benjamin; Grudiev, Alexej; Timmins, Marc

    2017-08-01

    In the framework of the program on medical applications a compact 750 MHz RFQ has been designed and built to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5 λ which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning. In this paper we present the tuning algorithm, the tuning procedure and rf measurements of the RFQ.

  8. rf measurements and tuning of the 750 MHz radio frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Benjamin Koubek

    2017-08-01

    Full Text Available In the framework of the program on medical applications a compact 750 MHz RFQ has been designed and built to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5λ which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning. In this paper we present the tuning algorithm, the tuning procedure and rf measurements of the RFQ.

  9. RF Measurements and Tuning of the 750 MHz HF-RFQ

    CERN Document Server

    Koubek, Benjamin; Timmins, Marc; CERN. Geneva. ATS Department

    2017-01-01

    In the frame of the program on medical applications CERN has built a compact 750 MHz RFQ to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 {\\lambda} MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5 which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning by means of the alignment of the pumping ports and fixed tuners. This report summarises the tuning procedure, RF and bead pull measurements of the RFQ.

  10. RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity

    International Nuclear Information System (INIS)

    Virostek, S.; Li, D.

    2005-01-01

    A finite element analysis has been carried out to characterize the RF, thermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling channel. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. The high-gradient closed-cell cavity is currently being fabricated for the MICE (international Muon Ionization Cooling Experiment) and MUCOOL experiments. The 1200 mm diameter cavity is constructed of 6 mm thick copper sheet and incorporates a rounded pillbox-like profile with an open beam iris terminated by 420 mm diameter, 0.38 mm thick curved beryllium foils. Tuning is accomplished through elastic deformation of the cavity, and cooling is provided by external water passages. Details of the analysis methodology will be presented including a description of the ANSYS macro that computes the heat loads from the RF solution and applies them directly to the thermal model. The process and results of a calculation to determine the resulting frequency shift due to thermal and structural distortion of the cavity will also be presented

  11. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu, E-mail: sscha@kaeri.re.kr [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Kim, Yujong; Lee, Byung Cheol [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Lee, Seung Hyun [Department of Energy Science, Sungkyunkwan University(SKKU), Suwon 16419 (Korea, Republic of); Buaphad, Pikad [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Accelerator and Nuclear Fusion Physical Engineering, University of Science and Technology(UST), Daejeon 34113 (Korea, Republic of)

    2017-05-21

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  12. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-05-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  13. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    International Nuclear Information System (INIS)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-01-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  14. 470‐MHz–698‐MHz IEEE 802.15.4m Compliant RF CMOS Transceiver

    Directory of Open Access Journals (Sweden)

    Youngho Seo

    2018-04-01

    Full Text Available This paper proposes an IEEE 802.15.4m compliant TV white‐space orthogonal frequency‐division multiplexing (TVWS‐(OFDM radio frequency (RF transceiver that can be adopted in advanced metering infrastructures, universal remote controllers, smart factories, consumer electronics, and other areas. The proposed TVWS‐OFDM RF transceiver consists of a receiver, a transmitter, a 25% duty‐cycle local oscillator generator, and a delta‐sigma fractional‐N phase‐locked loop. In the TV band from 470 MHz to 698 MHz, the highly linear RF transmitter protects the occupied TV signals, and the high‐Q filtering RF receiver is tolerable to in‐band interferers as strong as −20 dBm at a 3‐MHz offset. The proposed TVWS‐OFDM RF transceiver is fabricated using a 0.13‐μm CMOS process, and consumes 47 mA in the Tx mode and 35 mA in the Rx mode. The fabricated chip shows a Tx average power of 0 dBm with an error‐vector‐magnitude of  3%, and a sensitivity level of −103 dBm with a packet‐error‐rate of 3%. Using the implemented TVWS‐OFDM modules, a public demonstration of electricity metering was successfully carried out.

  15. Electron Heating Mode Transitions in Nitrogen (13.56 and 40.68) MHz RF-CCPs

    Science.gov (United States)

    Erozbek Gungor, Ummugul; Bilikmen, Sinan Kadri; Akbar, Demiral

    2015-09-01

    Capacitively coupled radio frequency plasmas (RF-CCPs) are commonly used in plasma material processing. Parametrical structure of the plasma determines the demands of processing applications. For example; high density plasmas in gamma mode are mostly preferred for etching applications while stabile plasmas in gamma mode are usually used in sputtering applications. For this reason, characterization of the plasma is very essential before surface modification of the materials. In this work, analysis of electron heating mode transition in high frequency (40.68 MHz) RF-CCP was deeply investigated. The plasma was generated in a home-made (500 × 400 mm2) stainless steel cylindrical reactor in which two identical (200 mm in diameter) electrodes were placed with 40 mm interval. In addition, L-type automatic matching network system was connected to the 40.68 MHz RF generator to get high accuracy. Moreover, the pure (99.995 %) nitrogen was used as an activation gas on account of having an appreciable impression in plasma processing applications. Furthermore, diagnostic measurements of the plasma were done by using the Impedans Langmuir single and double probe systems. It was found that two transition points; α- γ (pressure dependent) and γ- α (RF power dependent) were observed in both medium and high RF-CCPs. As a result, the α- γ pressure transition increased, whereas the γ- α power transition remained constant by changing the RF frequency sources.

  16. Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for RF transmission windows

    International Nuclear Information System (INIS)

    Hazelton, C.; Rice, J.; Snead, L.L.; Zinkle, S.J.

    1998-01-01

    The behavior of electrically insulating ceramics was investigated before and after exposure to neutron radiation. Mechanical, thermal and dielectric specimens were studied after exposure to a fast neutron dose of 0.1 displacements per atom (dpa) at Oak Ridge National Laboratory (ORNL). Four materials were compared to alumina: polycrystalline spinel, aluminum nitride, sialon and silicon nitride. Mechanical bend tests were performed before and after irradiation. Thermal diffusivity was measured using a room temperature laser flash technique. Dielectric loss factor was measured at 105 MHz with a special high resolution resonance cavity. The materials exhibited a significant degradation of thermal diffusivity and an increase in dielectric loss tangent. The flexural strength and physical dimensions were not significantly affected by the 0.1 dpa level of neutron radiation. The aluminum nitride and S silicon nitride showed superior RF window performance over the sialon and the alumina. The results are compared to radiation studies on similar materials

  17. Multipacting study of the RF window at the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Song, J. J.

    1999-01-01

    Multipacting current can cause breakdowns in high power rf components such as input couplers, waveguide windows, and higher-order mode (HOM) dampers. To understand and prevent the loss of a ceramic window or an input coupler in the Advanced Photon Source (APS) storage ring rf cavity, the multipacting phenomenon is being investigated experimentally. This paper begins with a description of simple model, presents a hardware design, and concludes with measurement of multipacting. Multipacting is explored in conjunction with conditioning the cavities and interaction with the stored beam

  18. RF Power Detector/Monitor Upgrade for the 500MHz Systems at the ALS

    International Nuclear Information System (INIS)

    Baptiste, K.

    2003-01-01

    Several systems rely on the accurate and linear detection of 500 MHz signals, (the fundamental frequency of both the Booster Ring and Storage Ring) over a dynamic range in excess of 25dB. Prior to this upgrade, the detector/monitor was diode based and though this type of detector could handle the dynamic range requirement it could not do so in an accurate and linear manner. In order to meet the requirements (dynamic range greater than or equal to 25dB, accurate and linear to +-0.25dB over the range, and additional circuitry to interface to the legacy control system and interlocks), a new RF Power Detector/Monitor has been developed using two AD8361, Analog Devices Tru RMS Detectors and a fuzzy comparator, which extends the overall detector's range to twice that of the AD8361. Further information is available [www.analogedevices.com/]. Details of the design requirements and the detector/monitor's circuit as well as the performance of the detector will be presented

  19. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  20. Development of high pressure rinsing set up for 650 MHz, 5- cell superconducting RF cavity cleaning

    International Nuclear Information System (INIS)

    Suhane, S.K.; Chauhan, S.K.; Bose, A.; Kokil, S.V.; Rajput, D.S.; Oraon, B.; Md Hussain; Sahu, A.; Raghavendra, S.; Joshi, S.C.

    2015-01-01

    High pressure rinsing (HPR) is an ultra-cleanliness process for the surface preparation of high field superconducting RF cavities. Any dust particle or chemical residue on the interior of cavity causes field emission. Jets of high pressure (80-100 bar) ultra pure water dislodge surface contaminants that normally resist removal with conventional rinsing procedures, leading to substantial reduction in field emission and better cavity performance. For cleaning of 650 MHz, 5-cell SRF cavities, a high pressure rinsing set up has been developed at RRCAT. The HPR tool has a rotating wand coaxial with the vertically mounted SRF cavity that is moving up and down. Fan style spray nozzles are attached to the end of the rotating wand and the water jets emerging from spray nozzles scan the entire internal surface of the cavity. The set-up was installed in a specially built clean area meeting cleanliness class 100 standards. The ultrapure water with resistivity 2 ≥ 18 MΩ-cm required for rinsing is obtained from a dedicated water purification system installed for this purpose. The paper describes the salient design and constructional details of the high pressure rinsing set up. Characterization of water jet parameters based on the momentum transfer between the water jet and a load cell is also presented. (author)

  1. Design aspects of 13.56MHz, 1kW, CW-RF oscillator for plasma production

    International Nuclear Information System (INIS)

    Kumar, Sunil; Kadia, Bhavesh; Singh, Raj; Varia, Atul; Srinivas, Y S S; Kulkarni, S V

    2010-01-01

    RF produced plasma has many applications in plasma processing and also it is useful in studying the fundamental characteristics of the plasma. A 1KW RF Hartley oscillator is designed and tested at 13.56 MHz. This has been built at RF section of Institute for Plasma Research by using EIMAC (3CX1200A7) triode tube. The RF source is operated in the grounded cathode mode. Triode 3CX1200A7 is operated in class AB and the feedback is Cathode grounded. The tube has sufficient margin in terms of plate dissipation and Grid dissipation that makes it suitable to withstand momentarily load mismatch. To optimize the RF source along with HVDC power supply many mechanical and electrical aspects have been thought of to enhance the overall quality of the system. This source mainly has three sections (The RF section, HVDC Power supply and soft start Filament Power supply). The system is compact and is housed in a 80 cm x 60 cm x 1800 cm aluminum panel. This paper describes the specifications, design criteria, circuit used, operating parameters of 1KW Oscillator along with HVDC power supply with necessary interlocks, tests conducted and results obtained of this 1 KW grounded grid Hartley Oscillator on 50 ohm dummy load. This system has been tested for 8 hours of continuous operation without any appreciable deterioration of the RF output power.

  2. Design, fabrication and low power RF testing of a prototype beta=1, 1050 MHz cavity developed for electron linac

    International Nuclear Information System (INIS)

    Sarkar, S.; Mondal, J.; Mittal, K.C.

    2013-01-01

    A single cell 1050 MHz β = 1 elliptical cavity has been designed for possible use in High energy electron accelerator. A prototype Aluminium cavity has been fabricated by die punch method and low power testing of the cavity has been carried out by using VNA. The fundamental mode frequency of the prototype cavity is found out to be 1051.38 MHz and Q (loaded) and Q0 values corresponding to 2 modes are 8439 and 10013 respectively. Cell to cell coupling coefficient is 1.82 % from measurement which matches with the designed value (1.84%). The higher order mode frequencies are also measured and electric field of the cavity is confirmed by bead pull method. Low power RF measurements on the prototype cavity indicate that the critical RF parameters (Qo, f, Kc etc) for the cavity are consistent with the designed value. (author)

  3. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Hiroyuki, E-mail: hiroyuki.ao@j-parc.jp [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Asano, Hiroyuki [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Naito, Fujio [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ouchi, Nobuo; Tamura, Jun [Japan Atomic Energy Agency (JAEA), J-PARC Center, Accelerator Division, 2-4, Shirakara Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Takata, Koji [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-02-11

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al{sub 2}O{sub 3}. The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density.

  4. Impedance matching of pillbox-type RF windows and direct measurement of the ceramic relative dielectric constant

    International Nuclear Information System (INIS)

    Ao, Hiroyuki; Asano, Hiroyuki; Naito, Fujio; Ouchi, Nobuo; Tamura, Jun; Takata, Koji

    2014-01-01

    Impedance matching of RF windows that minimizes the RF reflection is necessary to prevent localized standing waves between an RF window and a cavity, which may cause thermal and/or multipactoring issues. It has been observed that the impedance matching condition of the pillbox-type RF window, checked by voltage standing wave ratio (VSWR) measurement, depends on the manufacturing lot of the window ceramic disk made of 95% purity Al 2 O 3 . The present report proposes new procedures for impedance matching as follows: (i) The relative dielectric constant of the ceramic window is directly measured using the resonant frequency of a cavity made by temporarily combining the pillbox part of the RF window and two short-circuiting plates. (ii) The dimensions of the pillbox section including the ceramic disk are fixed on the basis of the measured relative dielectric constant. To confirm this procedure, three RF windows were fabricated using the same type of ceramic material, and successful impedance matching of these windows was performed (VSWR<1.05). The measured results also suggest that the relative dielectric constant increases linearly with increasing density and that the impedance matching condition is mainly affected by variations of the relative dielectric constant due to shrinkage of the alumina during sintering. -- Highlights: • We measured the relative dielectric constant of an RF window ceramic directly. • We used the circular TE011-mode frequency of the pillbox part of an RF window itself. • The dimensions of the pillbox part were fixed on the basis of the measurement result. • Three RF windows were fabricated, and VSWR <1.05 for these windows was performed. • The relative dielectric constant increases linearly with increasing ceramic density

  5. Dielectric changes in neutron-irradiated rf window materials

    International Nuclear Information System (INIS)

    Frost, H.M.; Clinard, F.W. Jr.

    1987-01-01

    Ceramics used for windows in ECRH heating systems for magnetically-confined fusion reactors must retain adequate properties during and after intense neutron irradiation. Of particular concern is a decrease in transmissivity, a parameter inversely related to the product of dielectric constant K and loss tangent tanδ. Samples of polycrystalline Al 2 O 3 and BeO were irradiated to 1 x 10 26 n/m 2 at 660K in the EBR-II fission reactor, and the above properties subsequently measured at 95 GHz. It was found that ktanδ for both materials doubled, implying a doubling of thermal stresses and a consequent reduction of time-to-failure from an assumed one year to 20 min for beryllia and 2 s for alumina. In the case of BeO, a large increase in reflectance of the incident millimeter-wave power results from dielectrically uncompensated swelling. This phenomenon could significantly degrade source performance

  6. Analysis of a grid window structure for RF cavities in a Muon cooling channel

    International Nuclear Information System (INIS)

    Ladran, A.; Li, D.; Moretti, A.; Rimmer, R.; Staples, J.; Virostek, S.; Zisman, M.

    2003-01-01

    We report on the electromagnetic and thermal analysis of a grid window structure for high gradient, low frequency RF cavities. Windows may be utilized to close the beam iris and increase shunt impedance of closed-cell RF cavities. This work complements previous work presented for windows made of solid beryllium foil. An electromagnetic and thermal analysis of the thin wall tubes in a grid pattern was conducted using both MAFIA4 and ANSYS finite element analyses. The results from both codes agreed well for a variety of grid configurations and spacing. The grid configuration where the crossing tubes touched was found to have acceptable E-Fields and H-Fields performance. The thermal profiles for the grid will also be shown to determine a viable cooling profile

  7. Design of a 5 GHz window in a lower hybrid r.f. system

    International Nuclear Information System (INIS)

    Maebara, S.; Ikeda, Y.; Seki, M.; Imai, T.

    1995-01-01

    A new pill-box window at a frequency of 5GHz, which has an oversized length in both the axial and the radial direction, has been designed to reduce the r.f. power density and the electric field strength at the ceramics. The dimension of the new pill-box is optimized from the numerical calculation and a voltage standing-wave ratio of less than 1.02 is obtained. The r.f. power density and the maximum electric field strength are reduced to about 40% and 66% of the standard pill-box window respectively. It is evaluated that the power capability of the new oversized pill-box window by cooling edge of ceramics is more than 500kW with continuous-wave operation. ((orig.))

  8. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  9. Design and development of 75 MHz 1 kW RF system with micro-controller based protection and control

    International Nuclear Information System (INIS)

    Rosily, Sherry; Pande, Manjiri; Handu, V.K.

    2011-01-01

    A 75 MHz, 1 kW Radio Frequency (RF) system has been successfully tested on a 50 ohm load, along with a microcontroller based protection circuit for protection of the system against the possible problems that may occur during RF power coupling to Radio Frequency Quadrapole (RFQ) load. This paper describes major challenges faced during the development and methods by which they have been overcome. Measurement of the tube anode temperature which is at 4 kV dc and 1 kW RF power is one of these. Confidence provided by these successful experiences has inspired an exploration of possibilities for further enhancement of the present system. These are also discussed in the paper. (author)

  10. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    International Nuclear Information System (INIS)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L; Joshi, L M; Nangru, S C

    2010-01-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  11. Development of multi-channel high power rectangular RF window for LHCD system employing high temperature vacuum brazing technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P K; Ambulkar, K K; Parmar, P R; Virani, C G; Thakur, A L [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Joshi, L M; Nangru, S C, E-mail: pramod@ipr.res.i [Central Electronics Engineering Research Institute, Pilani, Rajasthan 333 031 (India)

    2010-02-01

    A 3.7 GHz., 120 kW (pulsed), lower hybrid current drive (LHCD) system is employed to drive non-inductive plasma current in ADITYA tokamak. The rf power is coupled to the plasma through grill antenna and is placed in vacuum environment. A vacuum break between the pressurized transmission line and the grill antenna is achieved with the help of a multi (eight) channel rectangular RF vacuum window. The phasing between adjacent channels of 8-channel window (arranged in two rows) is important for launching lower hybrid waves and each channel should have independent vacuum window so that phase information is retained. The geometrical parameter of the grill antenna, like periodicity (9mm), channel dimensions (cross sectional dimension of 76mm x 7mm), etc. is to be maintained. These design constraint demanded a development of a multi channel rectangular RF vacuum window. To handle rf losses and thermal effects, high temperature vacuum brazing techniques is desired. Based on the above requirements we have successfully developed a multi channel rectangular rf vacuum window employing high temperature vacuum brazing technique. During the development process we could optimize the chemical processing parameters, brazing process parameters, jigs and fixtures for high temperature brazing and leak testing, etc. Finally the window is tested for low power rf performance using VNA. In this paper we would present the development of the said window in detail along with its mechanical, vacuum and rf performances.

  12. A Multi Mega Watt Continuous Wave RF Window for Particle Accelerator Applications. Final Technical Report

    International Nuclear Information System (INIS)

    Vguyen-Tuong, V.

    2004-01-01

    In this analysis the proposed 10MW window design is free of multipacting on the ceramic surface for the full power range, both in the traveling wave and full reflection mode. Near 7MW and 8MW in the traveling wave mode, multipacting might show up on the outer conductor of the matching section. These multipacting barriers are however very soft and are expected to be easily eliminated by regular RF processing. The multipacting analysis can identify early design problems while it is unable to provide certainty in design success and testing of window designs is the only certain measure of freedom from multipacting

  13. Design and construction of the advanced photon source 352-MHz rf system switching control

    International Nuclear Information System (INIS)

    Horan, D.; Solita, L.; Reigle, D.; Dimonte, N.

    1997-01-01

    A switching control system has been designed and built to provide the capability of rapidly switching the waveguide and low-level cabling between different klystrons to operate the Advanced Photon Source storage ring in the event of a failure of a klystron system or to perform necessary repairs and preventative maintenance. The twelve possible modes of operation allow for complete redundancy of the booster synchrotron rf system and either a maximum of two storage ring rf systems to be completely off-line or one system to be used as a power source for an rf test stand. A programmable controller is used to send commands to intermediate control panels which interface to WR2300 waveguide switches and phase shifters, rf cavity interlock and low-level rf distribution systems, and klystron power supply controls for rapid reconfiguration of the rf systems in response to a mode-selection command. Mode selection is a local manual operation using a keyswitch arrangement which prevents more than one mode from being selected at a time. The programmable controller also monitors for hardware malfunction and guards against open-quotes hot-switchingclose quotes of the rf systems. The rf switching controls system is monitored via the Experimental Physics and Industrial Control System (EPICS) for remote system status check

  14. Development and performance test of a new high power RF window in S-band PLS-II LINAC

    Science.gov (United States)

    Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki

    2017-12-01

    A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.

  15. Design and construction of a 500 KW CW, 400 MHz klystron to be used as RF power source for LHC/RF component tests

    CERN Document Server

    Frischholz, Hans; Pearson, C

    1998-01-01

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with t...

  16. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  17. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  18. Stroboscopic topographies on iron borate crystal in 9.6 MHz rf magnetic field

    International Nuclear Information System (INIS)

    Mitsui, Takaya; Imai, Yasuhiko; Kikuta, Seishi

    2003-01-01

    The influence of magnetoacoustic wave on the crystal deformation was studied by stroboscopic double crystal X-ray topography. The acoustic wave was excited by the rf magnetic field, which was synchronized with synchrotron radiation X-ray pulse. In measured rocking curves of FeBO 3 (4 4 4) reflection, we observed, for the first time, that the application of rf magnetic field (|H rf | max >8.4 Oe) brought about the extreme narrowing of full width at half maximum (FWHM). Recorded topographs showed that the narrowing of FWHM was due to the magnetoacoustic standing wave which is excited in FeBO 3 crystal. In our experiments, the influence of additional static magnetic field on the magnetoacoustic standing wave of FeBO 3 crystal was investigated too

  19. Combined treatment of radiotherapy and local hyperthermia using 8 MHz RF-wave for advanced carcinoma of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Nobukazu

    1988-01-01

    During the period from January 1983 through September 1986, 13 patients with carcinoma of the breast were treated with local hyperthermia combined with radiotherapy. Six patients were inoperable advanced cases and the other 7 were recurrent cases. Local heat was applied with an 8-MHz RF-capacitive heating equipment, once or twice a week after radiotherapy, for 40 approx. 60 minutes per session. Of the 6 cases with inoperable advanced lesions, 4 achieved CR and the other 2 achieved PRa (80 approx. 100 % regression), and of the 7 cases with local recurrent tumors, 3 achieved CR and the other 4 achieved PRa. As complications of the thermoradiotherapy, grade I-II skin burns were observed in 9 cases, pain around the ribs in 8 cases, mild lassitude in 2 cases, persistent tachycardia in 1 case and acute erosive gastritis in 1 case. It is worth noting that CR was achieved in these huge tumors, which can not be controlled by radiotherapy alone.

  20. Fermilab 500 GeV main accelerator rf cavity 128 MHz mode damper

    International Nuclear Information System (INIS)

    Kerns, Q.A.; Miller, H.W.

    1977-01-01

    The Fermilab 500-GeV main accelerating system has been operating for a year now with the aid of 128-MHz mode dampers. Such dampers proved to be necessary to achieve stable operation and a reasonably smooth slow spill at intensities of approximately 2 x 10 13 protons per pulse, and furthermore are low-cost and reliable. The approach used to identify troublesome modes, the observed beam blow-up without dampers, and the steps taken to design and install suitable dampers on eighteen main ring cavities are discussed. Spectrum analyzer pictures help illustrate the performance

  1. Development of superconducting RF cavity at 1050 MHz frequency for an electron LINAC

    International Nuclear Information System (INIS)

    Sarkar, S.G.; Mondal, J.; Mittal, K.C.

    2011-01-01

    This paper reports the design of a prototype superconducting cavity at 1050 MHz and design of associated die punch and machining fixtures for the cavity fabrication. The cavity is of β= 1 and elliptical in shape. The circle-straight line-ellipse-type structure design has been optimized by 'SUPERFISH' - a 2 dimensional code for cavity tuning. The 3 Dimensional EM field analysis of the cavity structure has been done using 'CST' software. The ratio of the maximum surface electric field to the accelerating gradient, E pk /E acc , is optimised to 1.984 and H pk /E acc is optimised to 4.141 mT/(MV/m). Bore radius of the cavity has been chosen such a way so that the cell-to-cell coupling remains as high as 1.85%. The cavity is designed to achieve 25 MV/m accelerating gradient. (author)

  2. RF tests on the INS 25.5-MHz split coaxial RFQ

    International Nuclear Information System (INIS)

    Shibuya, S.; Arai, S.; Imanishi, A.; Morimoto, T.; Tojyo, E.; Tokuda, N.

    1990-09-01

    A 25.5-MHz split coaxial RFQ with modulated vanes has been constructed. This RFQ will accelerate heavy ions with a charge-to-mass ratio greater than 1/30. We have finished field measurements and obtained the following results: the field strengths between neighboring vanes are same within ±0.6 % over the vane length; the distribution of the intervane voltage in the axial direction is almost flat. Through high power tests so far conducted, we have attained an intervane voltage of 110 kV under a pulse operation with a peak power of 70 kW and a duty factor of 0.9 %. The cavity is thus almost ready for acceleration tests. (author)

  3. Transmission line matching simulation for 350 MHz RF driver for 400 KeV (deuterium) RFQ based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Sharma, Sonal; Pande, Manjiri; Handu, V.K.

    2009-01-01

    A 60 KW, 350 MHz tetrode based high power RF system is being developed for 400 KeV RFQ based 14 MeV neutron generator in Bhabha Atomic Research Centre to study physics of coupled neutron sources and subcritical assembly. This RF system requires a 2.5 kW RF driver which is being designed by using tetrode TH-393. At such high frequency i.e. 350 MHz, lumped components are not practically useful due to radiation losses. Therefore, techniques such as coaxial line with stub tuning are preferred, which minimizes these losses. Simulation of two such stub tuning based matched coaxial lines at the input and output of the tube has been done by using CST studio. CST STUDIO is a special tool for the 3D EM simulation of high frequency components

  4. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-01-01

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 μW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely

  5. R.F. Beam Recombination ("Funnelling") at the CERN PSB by Means of an 8 MHz Dipole Magnet

    Science.gov (United States)

    Nassibian, G.; Schindl, K.

    1985-10-01

    For filling the Antiproton Accumulator ring, the beam in the PS must be concentrated within one quarter of its circumference. A first step is to inject as much beam as possible into two groups of five PS buckets each occupying one quarter of its periphery. For this purpose, beams from the 4-ring injector synchrotron (PSB) are recombined in pairs by means of an RF dipole magnet which permits longitudinal interleaving of successive bunches. Each PSB bunch being slightly under 180° in length, two of them can fit into a (stationary) PS bucket. It is shown that the use of a sinusoidal deflecting field instead of the ideal square wave results in only a modest growth of the transverse emittance of the recombined beams. The increase of longitudinal emittance by a factor of 3, inherent to the scheme is also acceptable for the PS machine. We discuss the beam dynamics aspects, the construction of the 8 MHz, 250 gauss meter deflecting magnet and the experimental results.

  6. Combined treatment of radiotherapy and local hyperthermia using 8 MHz RF-wave for advanced carcinoma of the breast

    International Nuclear Information System (INIS)

    Fuwa, Nobukazu

    1988-01-01

    During the period from January 1983 through September 1986, 13 patients with carcinoma of the breast were treated with local hyperthermia combined with radiotherapy. Six patients were inoperable advanced cases and the other 7 were recurrent cases. Local heat was applied with an 8-MHz RF-capacitive heating equipment, once or twice a week after radiotherapy, for 40 ∼ 60 minutes per session. Of the 6 cases with inoperable advanced lesions, 4 achieved CR and the other 2 achieved PRa (80 ∼ 100 % regression), and of the 7 cases with local recurrent tumors, 3 achieved CR and the other 4 achieved PRa. As complications of the thermoradiotherapy, grade I-II skin burns were observed in 9 cases, pain around the ribs in 8 cases, mild lassitude in 2 cases, persistent tachycardia in 1 case and acute erosive gastritis in 1 case. It is worth noting that CR was achieved in these huge tumors, which can not be controlled by radiotherapy alone. (author)

  7. Design of an RF window for L-band CW klystron based on thermal-stress analysis

    International Nuclear Information System (INIS)

    Yamaguchi, Seiya; Sato, Isamu; Konashi, Kenji; Ohshika, Junji.

    1993-01-01

    Design of klystron RF window has been performed based on a thermal-stress analysis for L-band CW electron linac for nuclear wastes transmutation. It was shown that the hoop stress for a modified disk is 46% of that of normal disk. Thermal load test has been done which indicated that the modified disk is proof against power twice as much as that for the normal disk. (author)

  8. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO4 films for smart window applications

    Directory of Open Access Journals (Sweden)

    C. Anil Kumar

    2015-10-01

    Full Text Available We report irreversible thermochromic behaviour of BaWO4 (BWO films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO3 as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films deposited at 800 °C exhibited pure tetragonal phase. FESEM images revealed that as the average particle sizes of the films are higher as compared with the thickness of the films and is explained based on Avrami type nucleation and growth. The transmittance of the films decreases with an increase in deposition temperature up to 600 °C and increases thereafter. Films deposited at 600 °C show ≤ 20% transmittance, looking at the films deposited at room temperature and 800 °C exhibits 90 and 70%, respectively. The refractive index and extinction coefficient of the films show profound dependence on crystallinity and packing density. The optical bandgap of BWO films increases significantly with an increase in O2% during the deposition. The optical bandgap of the BWO films deposited at different temperatures in pure argon plasma, are in the range of 3.7 to 3.94 eV whereas the films deposited at 600 °C under different O2 plasma are in the range of 3.6 - 4.5 eV. The formations of colour centres are associated with the oxygen vacancies, which are clearly seen from the optical bandgap studies. The observed irreversible thermochromic behaviour in BWO films is attributed to the presence of oxygen vacancies that arises due to the electrons trapped at oxygen vacancies causing an inter valence charge transfer of W5+ to W6+ and is confirmed through the change in the optical density (ΔOD. Further, the Raman spectra are being used to quantify the presence

  9. Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

    In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

  10. Design of a low-power 433/915-MHz RF front-end with a current-reuse common-gate LNA

    International Nuclear Information System (INIS)

    Jing Yiou; Lu Huaxiang

    2013-01-01

    This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier (LNA), current-reuse V—I converter, active double balanced mixer and transimpedance amplifier for short range device (SRD) applications. With the proposed current-reuse LNA, the DC consumption of the front-end reduces considerably while maintaining sufficient performance needed by SRD devices. The RF front-end was fabricated in 0.18 μm RFCMOS process and occupies a silicon area of just 0.11 mm 2 . Operating in 433 MHz band, the measurement results show the RF front-end achieves a conversion gain of 29.7 dB, a double side band noise figure of 9.7 dB, an input referenced third intercept point of −24.9 dBm with only 1.44 mA power consumption from 1.8 V supply. Compared to other reported front-ends, it has an advantage in power consumption. (semiconductor integrated circuits)

  11. Control interlock and monitoring system for 80 KW IOT based RF power amplifier system at 505.812 MHz for Indus-2

    International Nuclear Information System (INIS)

    Kumar, Gautam; Deo, R.K.; Jain, M.K.; Bagre, Sunil; Hannurkar, P.R.

    2013-01-01

    For 80 kW inductive output tube (IOT) based RF power amplifier system at 505.812 MHz for Indus-2, a control, interlock and monitoring system is realized. This is to facilitate proper start-up and shutdown of the amplifier system, monitor various parameters to detect any malfunction during its operation and to bring the system in a safe stage, thereby assuring reliable operation of the amplifier system. This high power amplifier system incorporates interlocks such as cooling interlocks, various voltage and current interlocks and time critical RF interlocks. Processing of operation sequence, cooling interlocks and various voltage and current interlocks have been realized by using Siemens make S7-CPU-315-2DP (CPU) based programmable logic controller (PLC) system. While time critical or fast interlocks have been realized by using Siemens make FPGA based Boolean Co-processor FM-352-5 which operates in standalone mode. Siemens make operating panel OP277 6'' is being used as a human machine interface (HMI) device for command, data, alarm generation and process parameter monitoring. (author)

  12. Dynamics and performance of the free electron laser at Super-Aco with a harmonic RF cavity set on 500 MHz

    International Nuclear Information System (INIS)

    Nutarelli, D.

    2000-01-01

    This work is dedicated to the development of the potentialities of the free electron laser that has been installed on the storage ring Super-Aco at Orsay university. We have studied the dynamics of the electron beam inside a harmonic RF cavity set on 500 MHz. The impact of the geometric characteristics of the optical cavity on the transverse overlapping between laser radiation and the electron beam has been studied in details. An important part of the work has been the assessment of the optical characterization of the dielectric multi-layer mirrors of the cavity. For that purpose a complete system has been designed to assess the changes in optical properties of mirrors during laser operation. Another important part of this work was the study of the interaction process between laser radiation and the electron bunch leading to saturation. This interaction process has been simulated through a new model and some predictions given by this model have been successfully confronted to experimental data. The installation of the harmonic RF cavity has led to a significant increase of the laser radiation gain and the value of the mean power of the laser radiation has reached 300 mW. An interesting application of this technique is the generation of high energy gamma photons through Compton backscattering. A collimated 35 MeV-energy photon beam has been produced at Super-Aco with a rate of 5.10 6 photons per second. (A.C.)

  13. RF Magnetron Sputtering Deposited W/Ti Thin Film For Smart Window Applications

    Science.gov (United States)

    Oksuz, Lutfi; Kiristi, Melek; Bozduman, Ferhat; Uygun Oksuz, Aysegul

    2014-10-01

    Electrochromic (EC) devices can change reversible and persistent their optical properties in the visible region (400-800 nm) upon charge insertion/extraction according to the applied voltage. A complementary type EC is a device containing two electrochromic layers, one of which is anodically colored such as vanadium oxide (V2 O5) while the other cathodically colored such as tungsten oxide (WO3) which is separated by an ionic conduction layer (electrolyte). The use of a solid electrolyte such as Nafion eliminates the need for containment of the liquid electrolyte, which simplifies the cell design, as well as improves safety and durability. In this work, the EC device was fabricated on a ITO/glass slide. The WO3-TiO2 thin film was deposited by reactive RF magnetron sputtering using a 2-in W/Ti (9:1%wt) target with purity of 99.9% in a mixture gas of argon and oxygen. As a counter electrode layer, V2O5 film was deposited on an ITO/glass substrate using V2O3 target with the same conditions of reactive RF magnetron sputtering. Modified Nafion was used as an electrolyte to complete EC device. The transmittance spectra of the complementary EC device was measured by optical spectrophotometry when a voltage of +/-3 V was applied to the EC device by computer controlled system. The surface morphology of the films was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) (Fig. 2). The cyclic voltammetry (CV) for EC device was performed by sweeping the potential between +/-3 V at a scan rate of 50 mV/s.

  14. A 900 MHz RF energy harvesting system in 40 nm CMOS technology with efficiency peaking at 47% and higher than 30% over a 22dB wide input power range

    NARCIS (Netherlands)

    Wang, J.; Jiang, Y.; Dijkhuis, J.; Dolmans, G.; Gao, H.; Baltus, P.G.M.

    2017-01-01

    A 900 MHz RF energy harvesting system is proposed for a far-field wireless power transfer application. The topology of a single-stage CMOS rectifier loaded with an integrated boost DC-DC converter is implemented in a 40 nm CMOS technology. The co-design of a cross-coupled CMOS rectifier and an

  15. Tuning of Lee Path Loss Model based on recent RF measurements in 400 MHZ conducted in Riyadh City, Saudi Arabia

    International Nuclear Information System (INIS)

    Alotaibi, Faihan D.; Ali, Adel A.

    2008-01-01

    In mobile radio systems, path loss models are necessary for proper planning, interference estimations, frequently assignments and cell parameters which are basic for network planning process as well as Location Based Services (LBS) techniques that are not based on GPS system. Empirical models are the most adjustable models that can be suited to different types of environments. In this paper, the Lee path loss model has been tuned using Least Square (LS) algorithm to fit measured data for TETRA system operating 400 MHz in Riyadh urban and suburbs. Consequently, Lee model's parameter (L0, y) are obtained for the targeted areas. The performance of the tuned Lee model is then compared to the three most widely used empirical path loss models: Hat, ITU-R and Cost 231 Walfisch-Ikegami non line-of-sight (CWI-NLOS) path loss models. The performance criterion selected for the comparison of various empirical path loss models are the Root Mean Square Error (RMSE) and goodness of fit (R2). The RMSE and R2between the actual and predicted data are calculated for various path loss models. It turned that the tuned Lee model outperforms the other empirical models. (author)

  16. Development of a Magnetron Resonance Frequency Auto Tuning System for Medical Xband [9300 MHz] RF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-05-15

    The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.

  17. Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, S [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Eom, S J [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Schuderer, J [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstrasse 43, 8004 Zurich (Switzerland); Apostel, U [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Tillmann, T [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Dasenbrock, C [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Kuster, N [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland)

    2005-11-07

    The objective of this study was the determination of the thermal regulatory and the thermal breakdown thresholds for in-tube restrained B6C3F1 and NMRI mice exposed to radiofrequency electromagnetic fields at 905 MHz. Different levels of the whole-body averaged specific absorption rate (SAR 0, 2, 5, 7.2, 10, 12.6 and 20 W kg{sup -1}) have been applied to the mice inside the 'Ferris Wheel' exposure setup at 22 {+-} 2 {sup 0}C and 30-70% humidity. The thermal responses were assessed by measurement of the rectal temperature prior, during and after the 2 h exposure session. For B6C3F1 mice, the thermal response was examined for three different weight groups (20 g, 24 g, 29 g), both genders and for pregnant mice. Additionally, NMRI mice with a weight of 36 g were investigated for an interstrain comparison. The thermal regulatory threshold of in-tube restrained mice was found at SAR levels between 2 W kg{sup -1} and 5 W kg{sup -1}, whereas the breakdown of regulation was determined at 10.1 {+-} 4.0 W kg{sup -1}(K = 2) for B6C3F1 mice and 7.7 {+-} 1.6 W kg{sup -1}(K = 2) for NMRI mice. Based on a simplified power balance equation, the thresholds show a clear dependence upon the metabolic rate and weight. NMRI mice were more sensitive to thermal stress and respond at lower SAR values with regulation and breakdown. The presented data suggest that the thermal breakdown for in-tube restrained mice, whole-body exposed to radiofrequency fields, may occur at SAR levels of 6 W kg{sup -1}(K = 2) at laboratory conditions.

  18. Significant RF-EMF and thermal levels observed in a computational model of a person with a tibial plate for grounded 40 MHz exposure.

    Science.gov (United States)

    McIntosh, Robert L; Iskra, Steve; Anderson, Vitas

    2014-05-01

    Using numerical modeling, a worst-case scenario is considered when a person with a metallic implant is exposed to a radiofrequency (RF) electromagnetic field (EMF). An adult male standing on a conductive ground plane was exposed to a 40 MHz vertically polarized plane wave field, close to whole-body resonance where maximal induced current flows are expected in the legs. A metal plate (50-300 mm long) was attached to the tibia in the left leg. The findings from this study re-emphasize the need to ensure compliance with limb current reference levels for exposures near whole-body resonance, and not just rely on compliance with ambient electric (E) and magnetic (H) field reference levels. Moreover, we emphasize this recommendation for someone with a tibial plate, as failure to comply may result in significant tissue damage (increases in the localized temperature of 5-10 °C were suggested by the modeling for an incident E-field of 61.4 V/m root mean square (rms)). It was determined that the occupational reference level for limb current (100 mA rms), as stipulated in the 1998 guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP), is satisfied if the plane wave incident E-field levels are no more than 29.8 V/m rms without an implant and 23.4 V/m rms for the model with a 300 mm implant. © 2014 Wiley Periodicals, Inc.

  19. Irreversible thermochromic response of RF sputtered nanocrystalline BaWO{sub 4} films for smart window applications

    Energy Technology Data Exchange (ETDEWEB)

    Anil Kumar, C.; Santhosh Kumar, T.; Pamu, D., E-mail: pamu@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati -781039 (India)

    2015-10-15

    We report irreversible thermochromic behaviour of BaWO{sub 4} (BWO) films for the first time. BWO films have been deposited at different substrate temperatures (RT, 200, 400, 600 and 800 °C) using RF magnetron sputtering in pure argon plasma. BWO films deposited at 800 °C exhibit crystalline nature. Also, BWO films deposited in the temperature range of 400 - 600 °C exhibit WO{sub 3} as a secondary phase and its weight percentage decreases with an increase in deposition temperature, whereas the films deposited at 800 °C exhibited pure tetragonal phase. FESEM images revealed that as the average particle sizes of the films are higher as compared with the thickness of the films and is explained based on Avrami type nucleation and growth. The transmittance of the films decreases with an increase in deposition temperature up to 600 °C and increases thereafter. Films deposited at 600 °C show ≤ 20% transmittance, looking at the films deposited at room temperature and 800 °C exhibits 90 and 70%, respectively. The refractive index and extinction coefficient of the films show profound dependence on crystallinity and packing density. The optical bandgap of BWO films increases significantly with an increase in O{sub 2}% during the deposition. The optical bandgap of the BWO films deposited at different temperatures in pure argon plasma, are in the range of 3.7 to 3.94 eV whereas the films deposited at 600 °C under different O{sub 2} plasma are in the range of 3.6 - 4.5 eV. The formations of colour centres are associated with the oxygen vacancies, which are clearly seen from the optical bandgap studies. The observed irreversible thermochromic behaviour in BWO films is attributed to the presence of oxygen vacancies that arises due to the electrons trapped at oxygen vacancies causing an inter valence charge transfer of W{sup 5+} to W{sup 6+} and is confirmed through the change in the optical density (ΔOD). Further, the Raman spectra are being used to

  20. Design of 250-MW CW RF system for APT

    International Nuclear Information System (INIS)

    Rees, D.

    1997-01-01

    The design for the RF systems for the APT (Accelerator Production of Tritium) proton linac will be presented. The linac produces a continuous beam power of 130 MW at 1300 MeV with the installed capability to produce up to a 170 MW beam at 1700 MeV. The linac is comprised of a 350 MHz RFQ to 7 MeV followed in sequence by a 700 MHz coupled-cavity drift tube linac, coupled-cavity linac, and superconducting (SC) linac to 1700 MeV. At the 1700 MeV, 100 mA level the linac requires 213 MW of continuous-wave (CW) RF power. This power will be supplied by klystrons with a nominal output power of 1.0 MW. 237 kystrons are required with all but three of these klystrons operating at 700 MHz. The klystron count includes redundancy provisions that will be described which allow the RF systems to meet an operational availability in excess of 95 percent. The approach to achieve this redundancy will be presented for both the normal conducting (NC) and SC accelerators. Because of the large amount of CW RF power required for the APT linac, efficiency is very important to minimize operating cost. Operation and the RF system design, including in-progress advanced technology developments which improve efficiency, will be discussed. RF system performance will also be predicted. Because of the simultaneous pressures to increase RF system reliability, reduce tunnel envelope, and minimize RF system cost, the design of the RF vacuum windows has become an important issue. The power from a klystron will be divided into four equal parts to minimize the stress on the RF vacuum windows. Even with this reduction, the RF power level at the window is at the upper boundary of the power levels employed at other CW accelerator facilities. The design of a 350 MHz, coaxial vacuum window will be presented as well as test results and high power conditioning profiles. The transmission of 950 kW, CW, power through this window has been demonstrated with only minimal high power conditioning

  1. Prototype rf cavity for the HISTRAP accelerator

    International Nuclear Information System (INIS)

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C

  2. Design of 118 MHz twelfth harmonic cavity of APS PAR

    International Nuclear Information System (INIS)

    Kang, Y.W.; Kustom, R.L.; Bridges, J.F.

    1992-01-01

    Two radio frequency (RF) cavities are needed in the Positron Accumulator Ring (PAR) of the Advanced Photon Source. One is for the first harmonic frequency at 9.8 MHz, and the other is for the twelfth harmonic frequency at 118 MHz. This note reports on the design of the 118 MHz RF cavity. Computer models are used to find the mode frequencies, impedances, Q-factors, and field distributions in the cavity. The computer codes MAFIA, URMEL, and URMEL-T are useful tools which model and simulate the resonance characteristics of a cavity. These codes employ the finite difference method to solve Maxwell's equations. MAFIA is a three-dimensional problem solver and uses square patches to approximate the inner surface of a cavity. URMEL and URMEL-T are two-dimensional problem solvers and use rectangular and triangular meshes, respectively. URMEL-T and MAFIA can handle problems with arbitrary dielectric materials located inside the boundary. The cavity employs a circularly cylindrical ceramic window to limit the vacuum to the beam pipe. The ceramic window used in the modeling will have a wall thickness of 0.9 cm. This wall thickness is not negligible in determining the resonant frequencies of the cavity. In the following, results of two- and three-dimensional modeling of the cavities using the URMEL-T and MAFIA codes are reported

  3. RF power diagnostics and control on the DIII-D, 4 MW 30--120 MHz fast wave current drive system (FWCD)

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Allen, J.C.; Callis, R.W.; Cary, W.P.; Harris, T.E.

    1995-10-01

    The Fast Wave Current Drive System uses three 2 MW transmitters to drive three antennas inside the DIII-D vacuum vessel. This paper describes the diagnostics for this system. The diagnostics associated with the General Atomics Fast Wave Current Drive System allow the system tuning to be analyzed and modified on a between shot basis. The transmitters can be exactly tuned to match the plasma with only one tuning shot into the plasma. This facilitates maximum rf power utilization

  4. High-power RF cavity R ampersand D for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Rimmer, R.; Lambertson, G.; Hodgson, J.

    1994-06-01

    We describe the development of a high-power test model of the 476 MHz RF cavity for the PEP-II B Factory. This cavity is designed to demonstrate the feasibility of a high-power design with higher-order mode (HOM) damping waveguides and the fabrication technologies involved, and it can also be used to evaluate aperture or loop couplers and various RF windows. Changes to the RF design to reduce peak surface heating are discussed and results of finite-element analyses of temperature and stress are presented. Fabrication methods for the prototype and subsequent production cavities are discussed

  5. KEY COMPARISON: Final report on CCEM key comparison CCEM.RF-K10.CL (GT-RF/99-2) 'Power in 50 Ω coaxial lines, frequency: 50 MHz to 26 GHz' measurement techniques and results

    Science.gov (United States)

    Janik, Dieter; Inoue, T.; Michaud, A.

    2006-01-01

    This report summarizes the results and the measuring methods of an international key comparison between twelve national metrology institutes (NMIs) and is concerning the calibration factor of RF power sensors in the coaxial 3.5 mm line for frequencies up to 26 GHz. Two RF power travelling standards fitted with male PC 3.5 mm connectors were measured at seven frequencies. The following NMIs participated: NMIJ (Japan), NRC (Canada), NIST (USA), METAS (Switzerland), CSIR-NML (South Africa), NMIA (Australia), NPL (UK), SiQ (Slovenia), IEN (Italy), VNIIFTRI (Russian Federation), SPRING (Singapore) and PTB (Germany), as the pilot laboratory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  6. Characterization and modelling of low-pressure rf discharges at 2-500 MHz for miniature alkali vapour dielectric barrier discharge lamps

    International Nuclear Information System (INIS)

    Venkatraman, Vinu; Shea, Herbert; Pétremand, Yves; Rooij, Nico de

    2012-01-01

    Low-pressure dielectric barrier discharge (DBD) alkali vapour lamps are of particular interest for portable atomic clocks because they (1) could enable low-power operation, (2) generate the precise required wavelength, (3) are planar simplifying chip-level integration and (4) use external electrodes, which increases the lifetime. Given the stringent requirements on lamps for atomic clocks, it is important to identify the parameters that can be optimized to meet these performance requirements (size, power consumption, stability, reliability). We report on the electrical and optical characteristics of dielectric barrier plasma discharges observed in two configurations: (1) in a vacuum chamber over a wide low-pressure range (2-100 mbar) for three different buffer gases (He, Ar, N 2 ) driven at different frequencies between 2 and 500 MHz and (2) on microfabricated hermetically sealed Rb vapour cells filled with 30 and 70 mbar of Ar. We discuss the optimum conditions for a low-power and stable operation of a Rb vapour DBD lamp, aimed at chip-scale atomic clocks. We also present the electrical modelling of the discharge parameters to understand the power distribution mechanisms and the input power to discharge power coupling efficiency.

  7. IOT based RF power systems as an alternative to klystron amplifier in Indus-2 at the rate 505.812 MHz

    International Nuclear Information System (INIS)

    Deo, R.K.; Jain, M.K.; Kumar, Gautam; Lad, Mahendra; Badapanda, M.K.; Bagre, Sunil; Upadhyay, Rinki; Tripathi, Akhilesh; Rao, J.N.; Pandiyar, Mohan; Hannurkar, P.R.

    2013-01-01

    Due to non-availability of replacement Klystron tube in Indus-2, an IOT based high power RF amplifier system is realized. It is based on E2V make 80 kW IOTD2130 tube with its circuit assembly IMD2000ST. This amplifier system is easily available commercially due to its application in DTV broadcast. It has inherent advantages over klystron amplifier viz. high efficiency (η), less phase and amplitude sensitivity to HV ripple, higher linearity, compactness and less cooling requirement. This high power IOT amplifier is tested with its required control system, cooling system, electron gun auxiliary supplies, beam supply and focusing supply. The nominal beam voltage for this IOT is -36 kV however amplifier was tested successfully with indigenously developed -32 kV, crowbar less power supply. The optimum load impedance for IOT beam was calculated for this bias voltage ( 32kV). For the required load impedance, coupling coefficient (β) of output coupler to the O/P cavity was estimated and accordingly loop angle was adjusted. The amplifier has been tested up to 50 kW with amplifier efficiency 60% and gain 23 dB at - 32 kV beam voltage. (author)

  8. 201 MHz Cavity R and D for MUCOOL and MICE

    International Nuclear Information System (INIS)

    Li, Derun; Virostek, Steve; Zisman, Michael; Norem, Jim; Bross, Alan; Moretti, Alfred; Norris, Barry; Torun, Yagmur; Phillips, Larry; Rimmer, Robert; Stirbet, Mircea; Reep, Michael; Summers, Don

    2006-01-01

    We describe the design, fabrication, analysis and preliminary testing of the prototype 201 MHz copper cavity for a muon ionization cooling channel. Cavity applications include the Muon Ionization Cooling Experiment (MICE) as well as cooling channels for a neutrino factory or a muon collider. This cavity was developed by the US muon cooling (MUCOOL) collaboration and is being tested in the MUCOOL Test Area (MTA) at Fermilab. To achieve a high accelerating gradient, the cavity beam irises are terminated by a pair of curved, thin beryllium windows. Several fabrication methods developed for the cavity and windows are novel and offer significant cost savings as compared to conventional construction methods. The cavity's thermal and structural performances are simulated with an FEA model. Preliminary high power RF commissioning results will be presented

  9. Electromagnetic and mechanical design of gridded radio-frequency cavity windows

    Energy Technology Data Exchange (ETDEWEB)

    Alsharo' a, Mohammad M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2004-12-01

    Electromagnetic, thermal and structural analyses of radio-frequency (RF) cavities were performed as part of a developmental RF cavity program for muon cooling. RF cavities are necessary to provide longitudinal focusing of the muons and to compensate for their energy loss. Closing the cavity ends by electrically conducting windows reduces the power requirement and increases the on-axis electric field for a given maximum surface electric field. Many factors must be considered in the design of RF cavity windows. RF heating can cause the windows to deform in the axial direction of the cavity. The resulting thermal stresses in the window must be maintained below the yield stress of the window material. The out-of-plane deflection must be small enough so that the consequent frequency shift is tolerable. For example, for an 805 MHz cavity, the out-of-plane deflection must be kept below 25 microns to prevent the frequency of the cavity from shifting more than 10 kHz. In addition, the window design should yield smooth electric and magnetic fields, terminate field leakage beyond the window, and minimize beam scattering. In the present thesis, gridded-tube window designs were considered because of their high structural integrity. As a starting point in the analysis, a cylindrical pillbox cavity was considered as a benchmark problem. Analytical and finite element solutions were obtained for the electric and magnetic fields, power loss density, and temperature profile. Excellent agreement was obtained between the analytical and finite element results. The finite element method was then used to study a variety of gridded-tube windows. It was found that cooling of the gridded-tube windows by passing helium gas inside the tubes significantly reduces the out-of-plane deflection and the thermal stresses. Certain tube geometries and grid patterns were found to satisfy all of the design requirements.

  10. Progress on the RF Coupling Coil Module Design for the MICE Channel

    International Nuclear Information System (INIS)

    Li, D.; Green, M.A.; Virostek, S.P.; Zisman, M.S.; Lau, W.; White, A.E.; Yang, S.Q.

    2005-01-01

    We describe the progress on the design of the RF coupling coil (RFCC) module for the international Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Laboratory (RAL) in the UK. The MICE cooling channel design consists of one SFOFO cell that is similar to that of the US Study-II of a neutrino factory. The MICE RFCC module comprises a superconducting solenoid, mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises, which allows for independent control of the phase in each cavity and for the RF power to be fed separately. The coil package that surrounds the RF cavities is mounted on a vacuum vessel. The RF vacuum is shared between the cavities and the vacuum vessel around the cavities such that there is no differential pressure on the thin beryllium windows. This paper discusses the design progress of the RFCC module and the fabrication progress of a prototype 201.25-MHz cavity

  11. Versatile rf controller

    International Nuclear Information System (INIS)

    Howard, D.

    1985-05-01

    The low level rf system developed for the new Bevatron local injector provides precise control and regulation of the rf phase and amplitude for three 200 MHz linac cavities. The main features of the system are: extensive use of inexpensive, off-the-shelf components, ease of maintenance, and adaptability to a wide range of operation frequencies. The system utilizes separate function, easily removed rf printed circuit cards interconnected via the edge connectors. Control and monitoring are available both locally and through the computer. This paper will describe these features as well as the few component changes that would be required to adapt the techniques to other operating frequencies. 2 refs

  12. Understanding Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  13. Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities

    International Nuclear Information System (INIS)

    Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; Norem, J.; Li, D.; Zisman, M.; Torun, Y.; Rimmer, R.; Errede, D.

    2005-01-01

    There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity

  14. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  15. High power RF systems for LEHIPA of ADS

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Rao, B.V.R.; Mishra, J.K.; Patel, Niranjan; Gupta, S.K.

    2011-01-01

    Worldwide accelerator driven sub-critical system (ADS) has generated a huge interest for various reasons. In India, as a part of accelerator driven sub-critical system (ADS) program, a normal conducting, low energy high intensity proton accelerator (LEHIPA) of energy 20 MeV and beam current of 30 mA is being developed in Bhabha Atomic Research Centre (BARC). LEHIPA comprises of Electron Cyclotron Resonance (ECR) ion source (50 KeV), Radio Frequency Quadrupole (RFQ) accelerator (3 MeV) and Drift tube Linac (DTL) 1 and 2 (10 MeV and 20 MeV respectively). As per the accelerator physics design, RFQ requires nearly 530 kW RF power while each of DTL need 900 kW. Each accelerating cavity will be driven by a one- megawatt (CW) klystron based high power RF (HPRF) system at 352.21 MHz. Three such RF systems will be developed. The RF system has been designed around five cavity klystron tube TH2089F (Thales make) capable of delivering 1 MW continuous wave power at 352.21 MHz. The klystron has a gain of 40 dB and efficiency around 62 %. Each of the RF system comprises of a low power solid state driver (∼ 100 W), klystron tube, harmonic filter, directional coupler, Y-junction circulator (AFT make), RF load and WR2300 wave guide based RF transmission line each of 1 MW capacity. It also includes other subsystems like bias supplies (high voltage (HV) and low voltage (LV)), HV interface system, interlock and protection circuits, dedicated low conductivity water-cooling, pulsing circuitry/mechanisms etc. WR 2300 based RF transmission line transmits and feeds the RE power from klystron source to respective accelerating cavity. This transmission line starts from second port of the circulator and consists of straight sections, full height to half height transition, magic Tee, termination load at the centre of magic tee, half height sections, directional couplers and RE windows. For X-ray shielding, klystron will be housed in a lead (3 mm) based shielded cage. This system set up has a

  16. RF and feedback systems

    International Nuclear Information System (INIS)

    Boussard, D.

    1994-01-01

    The radiofrequency system of the Tau Charm Factory accelerating 10 11 particles per bunch and a circulating current of 0.5 A is presented. In order to produce the very short bunches required, the RF system of TCF must provide a large RF voltage (8 MV) at a frequency in the neighbourhood of 400-500 MHz. It appears very attractive to produce the high voltage required with superconducting cavities, for which wall losses are negligible. A comparison between the sc RF system proposed and a possible copper system run at an average 1 MV/m, shows the clear advantage of sc cavities for TCF. (R.P.). 2 figs,. 1 tab

  17. Radiation measurements during cavities conditioning on APS RF test stand

    International Nuclear Information System (INIS)

    Grudzien, D.M.; Kustom, R.L.; Moe, H.J.; Song, J.J.

    1993-01-01

    In order to determine the shielding structure around the Advanced Photon Source (APS) synchrotron and storage ring RF stations, the X-ray radiation has been measured in the near field and far field regions of the RF cavities during the normal conditioning process. Two cavity types, a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity, are used on the APS and are conditioned in the RF test stand. Vacuum measurements are also taken on a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity. The data will be compared with data on the five-cell cavities from CERN

  18. 47 CFR 90.1335 - RF safety.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false RF safety. 90.1335 Section 90.1335 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Wireless Broadband Services in the 3650-3700 MHz Band § 90.1335 RF safety...

  19. Analog techniques in CEBAF's RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology. Diode related devices are being replaced by analog IC's in the CEBAF RF control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. RF signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  20. Analog techniques in CEBAF'S RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional rf technology. Diode-related devices are being replaced by analog IC's in the CEBAF rf control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. Rf signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  1. Design of 325 MHz spoke cavity

    International Nuclear Information System (INIS)

    Sha Peng; Huang Hong; Dai Jianping; Zu Guoquan; Li Han

    2012-01-01

    Spoke cavity can be used in the low-energy section of the proton accelerator. It has many significant advantages: compact structure, high value of R/Q, etc. The ADS (Accelerator Driven System) project will adopt many spoke cavities with different β values. Therefore, IHEP has began the research of β=0.14, 325 MHz spoke cavity. In this pa per, the dimensions, RF performances and mechanical properties of it are studied. (authors)

  2. An updated overview of the LEB RF system

    International Nuclear Information System (INIS)

    Rogers, J.D.; Ferrell, J.H.; Curbow, J.E.; Friedrichs, C.

    1992-01-01

    Each of the Low Energy Booster (LEB) rf systems consists of the following major subsystems: a vacuum tube final rf amplifier driven by a solid state rf amplifier, a ferrite-tuned rf cavity used to bunch and accelerate the beam, a low-level rf system including rf feedback systems, a computer-based supervisory control system, and associated power supplies. The LEB rf system is broadband with the exception of the rf cavity, which is electronically tuned from approximately 47.5 MHz to 59.7 MHz in 50 ms. The design and development status of the LEB rf system is presented, with particular emphasis on the cavity and tuner, and the tuner bias power supply

  3. Effect of High Solenoidal Magnetic Fields on Breakdown Voltages of High Vacuum 805 MHz Cavities

    CERN Document Server

    Moretti, A; Geer, S; Qian, Z

    2004-01-01

    The demonstration of muon ionization cooling by a large factor is necessary to demonstrate the feasilibility of a collider or neutrino factory. An important cooling experiment, MICE [1], has been proposed to demonstrate 10 % cooling which will validate the technology. Ionization cooling is accomplished by passing a high-emittance beam in a multi-Tesla solenoidal channel alternately through regions of low Z material and very high accelerating RF Cavities. To determine the effect of very large solenoidal magnetic fields on the generations of Dark current, X-Rays and breakdown Voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station, and a large bore 5 T solenoidal superconducting magnet containing a pill box type Cavity with thin removable window apertures allowing dark current studies and breakdown studies of different materials. The results of this study will be presented. The study has shown that the peak achievab...

  4. The RF system for the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at Los Alamos

    International Nuclear Information System (INIS)

    Lynch, M.T.; Rees, D.; Tallerico, P.; Regan, A.

    1996-01-01

    To develop and demonstrate the crucial front end of the APT accelerator and some of the critical components for APT, Los Alamos is building a CW proton accelerator (LEDA) to provide 100 mA at up to 40 MeV. LEDA will be installed where the SDI-sponsored Ground Test Accelerator was located. The first accelerating structure for LEDA is a 7-MeV RFQ operating at 350 MHz, followed by several stages of a coupled-cavity Drift Tube Linac (CCDTL) operating at 700 MHz. The first stage of LEDA will go to 12 MeV. Higher energies, up to 40 MeV, come later in the program. Three 1.2-MW CW RF systems will be used to power the RFQ. This paper describes the RF systems being assembled for LEDA, including the 350 and 700-MHz klystrons, the High Voltage Power Supplies, transmitters, RF transport, window/coupler assemblies, and controls. Some of the limitations imposed by the schedule and the building itself are addressed

  5. RF Coupler Design for the TRIUMF ISAC-II Superconducting Quarter Wave Resonator

    CERN Document Server

    Poirier, R L; Harmer, P; Laxdal, R E; Mitra, A K; Sekatchev, I; Waraich, B; Zvyagintsev, V

    2004-01-01

    An RF Coupler for the ISAC-II medium beta (β=0.058 and 0.071) superconducting quarter wave resonators was designed and tested at TRIUMF. The main goal of this development was to achieve stable operation of superconducting cavities at high acceleration gradients and low thermal load to the helium refrigeration system. The cavities will operate at 6 MV/m acceleration gradient in overcoupled mode at a forward power 200 W at 106 MHz. The overcoupling provides ±20 Hz cavity bandwidth, which improves the stability of the RF control system for fast helium pressure fluctuations, microphonics and environmental noise. Choice of materials, cooling with liquid nitrogen, aluminum nitride RF window and thermal shields insure a small thermal load on the helium refrigeration system by the Coupler. An RF finger contact which causedμdust in the coupler housing was eliminated without any degradation of the coupler performance. RF and thermal calculations, design and test results on the coupler are p...

  6. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  7. Racetrack microtron rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs

  8. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway.

    Science.gov (United States)

    Gökçek-Saraç, Çiğdem; Er, Hakan; Kencebay Manas, Ceren; Kantar Gok, Deniz; Özen, Şükrü; Derin, Narin

    2017-09-01

    To demonstrate the molecular effects of acute and chronic exposure to both 900 and 2100 MHz radiofrequency electromagnetic radiation (RF-EMR) on the hippocampal level/activity of some of the enzymes - including PKA, CaMKIIα, CREB, and p44/42 MAPK - from N-methyl-D-aspartate receptor (NMDAR)-related signaling pathways. Rats were divided into the following groups: sham rats, and rats exposed to 900 and 2100 MHz RF-EMR for 2 h/day for acute (1 week) or chronic (10 weeks), respectively. Western blotting and activity measurement assays were used to assess the level/activity of the selected enzymes. The obtained results revealed that the hippocampal level/activity of selected enzymes was significantly higher in the chronic groups as compared to the acute groups at both 900 and 2100 MHz RF-EMR exposure. In addition, hippocampal level/activity of selected enzymes was significantly higher at 2100 MHz RF-EMR than 900 MHz RF-EMR in both acute and chronic groups. The present study provides experimental evidence that both exposure duration (1 week versus 10 weeks) and different carrier frequencies (900 vs. 2100 MHz) had different effects on the protein expression of hippocampus in Wistar rats, which might encourage further research on protection against RF-EMR exposure.

  9. RF transport

    International Nuclear Information System (INIS)

    Choroba, Stefan

    2013-01-01

    This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)

  10. Windows Azure

    CERN Document Server

    Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

    2013-01-01

    A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

  11. A 70 MHz pulsing beam system for protons

    International Nuclear Information System (INIS)

    An Shizhong; Zhang Tianjue; Wu Longcheng; Lv Yinlong; Song Guofang; Guan Fengping; Jia Xianlu

    2008-01-01

    A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction as China Institute of Atomic Energy (CIAE). A 70 MHz continuous H - beam with the energy of dozens of keV or a hundred keV will be pulsed to pulse length of less than 10 ns with the repetition rate of 1-8 MHz. A 70.487 MHz buncher will be used to compress the DC beam into the RF phase acceptance of ±30° of the CRM cyclotron. The 2.2 MHz sine waveform will be used for the chopper. A pulse with the repetition rate to 4.4 MHz and pulse length less than 10 ns is expected after CRM cyclotron. (authors)

  12. RF MEMS

    Indian Academy of Sciences (India)

    At the bare die level the insertion loss, return loss and the isolation ... ing and packaging of a silicon on glass based RF MEMS switch fabricated using DRIE. ..... follows the power law based on the asperity deformation model given by Pattona & ... Surface mount style RF packages (SMX series 580465) from Startedge Corp.

  13. Window Stories

    DEFF Research Database (Denmark)

    Hauge, Bettina

    This research project has investigated 17 households in Germany (cities and rural areas). The main aim was to learn about the significance of the window to these people: What they think of their windows, how, when and why they use them in their everyday life, if they have a favorite window and wh...

  14. The effects of 1800 MHz radiofrequency waves on lipid peroxidation in pregnant rabbits

    International Nuclear Information System (INIS)

    Tomruk, Arin; Guler, Goknur; Seyhan, Nesrin

    2008-01-01

    II (non-pregnant +RF exposed group); 3) Group III (pregnant group); 4) Group IV (pregnant + RF exposed group). For each exposure groups (Group II, Group IV) rabbits were exposed to pulsed 1800 MHz radiofrequency radiation (217 Hz GSM modulation; 20dBm) 15 min/day during a week. MDA levels were quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). TBARS levels were determined in liver tissues of rabbits by using Uchiyama and Mihara's spectrophotometric method. Statistical analyses were carried out using SPSS software (SPSS 11.5 for windows, SPSS Inc., Chicago, USA). Mann-Whitney U test were performed on the data of biochemical variables to examine the difference among groups. It was found increased TBARS levels in Group II statistically significant (p<0.004) with respect to Group I. While, it was observed that TBARS levels were found increased during pregnancy period, the effect of short-term pulsed RF exposure on TBARS levels were determined during this period. Depending on the results obtained from this study, TBARS levels were found also increased in Group IV statistically significant (p<0.006) with respect to Group II. Consequently, increased TBARS levels can be evaluated as oxidative effects of pulsed 1800 MHz RF radiation on lipids and be assumed that increased LPO products mediated by free radicals may be indicators of subsequent reactions that occur to form other oxygen toxicity in tissues. (author)

  15. RF characterization and testing of ridge waveguide transitions for RF power couplers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh; Jose, Mentes; Singh, G.N. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Girish [Department of Electrical Engineering, IIT Bombay, Mumbai 400076,India (India); Bhagwat, P.V. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-12-01

    RF characterization of rectangular to ridge waveguide transitions for RF power couplers has been carried out by connecting them back to back. Rectangular waveguide to N type adapters are first calibrated by TRL method and then used for RF measurements. Detailed information is obtained about their RF behavior by measurements and full wave simulations. It is shown that the two transitions can be characterized and tuned for required return loss at design frequency of 352.2 MHz. This opens the possibility of testing and conditioning two transitions together on a test bench. Finally, a RF coupler based on these transitions is coupled to an accelerator cavity. The power coupler is successfully tested up to 200 kW, 352.2 MHz with 0.2% duty cycle.

  16. The sonic window: second generation results

    Science.gov (United States)

    Walker, William F.; Fuller, Michael I.; Brush, Edward V.; Eames, Matthew D. C.; Owen, Kevin; Ranganathan, Karthik; Blalock, Travis N.; Hossack, John A.

    2006-03-01

    Medical Ultrasound Imaging is widely used clinically because of its relatively low cost, portability, lack of ionizing radiation, and real-time nature. However, even with these advantages ultrasound has failed to permeate the broad array of clinical applications where its use could be of value. A prime example of this untapped potential is the routine use of ultrasound to guide intravenous access. In this particular application existing systems lack the required portability, low cost, and ease-of-use required for widespread acceptance. Our team has been working for a number of years to develop an extremely low-cost, pocket-sized, and intuitive ultrasound imaging system that we refer to as the "Sonic Window." We have previously described the first generation Sonic Window prototype that was a bench-top device using a 1024 element, fully populated array operating at a center frequency of 3.3 MHz. Through a high degree of custom front-end integration combined with multiplexing down to a 2 channel PC based digitizer this system acquired a full set of RF data over a course of 512 transmit events. While initial results were encouraging, this system exhibited limitations resulting from low SNR, relatively coarse array sampling, and relatively slow data acquisition. We have recently begun assembling a second-generation Sonic Window system. This system uses a 3600 element fully sampled array operating at 5.0 MHz with a 300 micron element pitch. This system extends the integration of the first generation system to include front-end protection, pre-amplification, a programmable bandpass filter, four sample and holds, and four A/D converters for all 3600 channels in a set of custom integrated circuits with a combined area smaller than the 1.8 x 1.8 cm footprint of the transducer array. We present initial results from this front-end and present benchmark results from a software beamformer implemented on the Analog Devices BF-561 DSP. We discuss our immediate plans for further

  17. LEDA RF distribution system design and component test results

    International Nuclear Information System (INIS)

    Roybal, W.T.; Rees, D.E.; Borchert, H.L.; McCarthy, M.; Toole, L.

    1998-01-01

    The 350 MHz and 700 MHz RF distribution systems for the Low Energy Demonstration Accelerator (LEDA) have been designed and are currently being installed at Los Alamos National Laboratory. Since 350 MHz is a familiar frequency used at other accelerator facilities, most of the major high-power components were available. The 700 MHz, 1.0 MW, CW RF delivery system designed for LEDA is a new development. Therefore, high-power circulators, waterloads, phase shifters, switches, and harmonic filters had to be designed and built for this applications. The final Accelerator Production of Tritium (APT) RF distribution systems design will be based on much of the same technology as the LEDA systems and will have many of the RF components tested for LEDA incorporated into the design. Low power and high-power tests performed on various components of these LEDA systems and their results are presented here

  18. High-power circulator test results at 350 and 700 MHz

    International Nuclear Information System (INIS)

    Roybal, W.; Bradley, J.T.; Rees, D.E.

    2000-01-01

    The high-power RF systems for the Accelerator Production of Tritium (APT) program require high-power circulators at 350 MHz and 700 MHz to protect 1 MW Continuous Wave (CW) klystrons from reflected power. The 350 MHz circulator is based on the CERN, EXF, and APS designs and has performed very well. The 700 MHz circulator is a new design. Prototype 700 MHz circulators have been high-power tested at Los Alamos National Laboratory (LANL). The first of these circulators has satisfied performance requirements. The circulator requirements, results from the testing, and lessons learned from this development are presented and discussed

  19. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  20. The design and development of a multilayer RF circuit card

    OpenAIRE

    Ferro, John Francis

    1991-01-01

    The goal of this project was to design an airborne radio frequency circuit card that was very light weight, occupied a small volume, and operated from 20 Mhz to 1500 Mhz. The circuit card being reported on is called an RF multicoupler, and is one of two cards used in a radio frequency distribution unit (RFD). This unit interfaces a large number of receivers to various antennas. In the past this type of circuitry was done by cascading discrete connectorized RF compo...

  1. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  2. Rf Station For Ion Beam Staking In Hirfl-csr

    CERN Document Server

    Arbuzov, V S; Bushuev, A A; Dranichnikov, A N; Gorniker, E I; Kendjebulatov, E K; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Rashenko, V V; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    BINP has developed and produced the RF station for Institute of Modern Physics (IMP), Lanzhou, China, for multipurpose accelerator complex with electron cooling. The RF station will be used for accumulation of ion beams in the main ring of the system. It was successfully tested in IMP and installed into the main accelerator ring of the complex. The RF station includes accelerating RF cavity and RF power generator with power supplies. The station works within frequency range 6.0 - 14.0 MHz, maximum voltage across the accelerating gap of the RF cavity - 20 kV. In the RF cavity the 200 VNP ferrite is utilized. A residual gas pressure in vacuum chamber does not exceed 2,5E-11 mbar. Maximum output power of the RF generator 25 kW. The data acquisition and control of the RF station is based on COMPACT - PCI bus and provides all functions of monitoring and control.

  3. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  4. Proper Installation of Replacement Windows | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  5. Window Glazing Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. Window Frame Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. Performance Standards for Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. Benefits of Efficient Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  9. Assessing Window Replacement Options | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  10. Windows for New Construction | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  11. Window Operator Types | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  12. Performance analysis of commercial MOSFET packages in Class E converter operating at 2.56 MHz

    DEFF Research Database (Denmark)

    Nair, Unnikrishnan Raveendran; Munk-Nielsen, Stig; Jørgensen, Asger Bjørn

    2017-01-01

    resistance and high temperature operation over Si devices have aided in the paradigm shift towards wide bandgap devices. The low gate charge requirements of SiC MOSFETs enables use of these devices in radio frequency (RF) converters using resonant topologies operating at MHz frequency range. The RF...... are not commercially available and power modules have to be custom designed for these applications. This work demonstrates performance of various commercial MOSFET packages at frequency of 2.56 MHz. Commercial SiC MOSFETs in TO-247 and D2Pak packs are tested in Class E resonant converter operating at 2.56 MHz...

  13. RF properties of high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Bohn, C.L.; Delayen, J.R.; Dos Santos, D.I.; Lanagan, M.T.; Shepard, K.W.

    1988-01-01

    We have investigated the rf properties of high-T/sub c/ superconductors over a wide range of temperature, frequency, and rf field amplitude. We have tested both bulk polycrystalline samples and thick films on silver substrates. At 150 MHz and 4.2 K, we have measured a surface resistance of 18 μ/sup /OMEGA// at low rf field and 3.6 m/sup /OMEGA// at an rf field of 270 gauss. All samples showed a strong dependence of the surface resistance on rf field; however, no breakdown of the superconducting state has been observed up to the highest field achieved (320 gauss). 9 refs., 4 figs., 1 tab

  14. Cathode follower RF system with frequency modulation

    International Nuclear Information System (INIS)

    Irie, Y.; Yano, Y.; Kaneko, N.; Kobayashi, Y.

    1994-01-01

    A model RF system with a cathode follower was tested under frequency modulation in the 1-3.5 MHz range. The repetition rate was 40 Hz. The oscillation was stable, and the output impedance was measured to be around 20 ohm. (author)

  15. Cw rf operation of the FMIT RFQ

    International Nuclear Information System (INIS)

    Fazio, M.V.; Brandeberry, F.E.

    1985-01-01

    The 80-MHz RFQ for the Fusion Materials Irradiation Test Facility prototype accelerator has been rf conditioned for cw operation to the design field level of 17.5 MV/m (1.68 x Kilpatrick limit). Experimental results and operating experience will be discussed

  16. Studies of RF Breakdown of Metals in Dense Gases

    CERN Document Server

    Hanlet, Pierrick M; Ankenbrandt, Charles; Johnson, Rolland P; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Paul, Kevin; Popovic, Milorad; Yarba, Victor; Yonehara, Katsuya

    2005-01-01

    A study of RF breakdown of metals in gases has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 800 MHz test cell has been used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, chromium, and beryllium electrodes as functions of hydrogen and helium gas density. These results are compared to the predicted or known RF breakdown behavior of these metals in vacuum.

  17. Beam test with the HIMAC RF control system

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sato, K.; Itano, A.

    1992-01-01

    RF system of the HIMAC synchrotron has been developed and tested in the factory. With the high power system, we could sweep the acceleration frequency from 1MHz to 8MHz with the acceleration voltage of 6KV. The performance of the RF control system has been confirmed with a developed simulator of the synchrotron oscillation. Following these two tests in the factory, we had a beam test of the RF control system at TARN-II in INS (Institute for Nuclear Study, University of Tokyo). This paper describes the beam test and its results. (author)

  18. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  19. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  20. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  1. Operation of a 473 MHz four-rod cavity RFQ

    International Nuclear Information System (INIS)

    Kazimi, R.; Huson, F.R.; Mackay, W.W.; Meitzler, C.R.

    1992-01-01

    We have constructed a new type of four-rod Radio Frequency Quadrupole to operate at 473 MHz. Four-rod structures have not previously been built for such a high frequency. The RFQ is designed to accelerate 10 mA of H - ions from 30 keV to 0.5 MeV. The rf measurements and beam test of the RFQ have been performed successfully. Here we present operational results of the RFQ system including measurements of the beam current, the required rf power, energy, energy spread, and emittance. (Author) 8 refs., 6 figs., 2 tabs

  2. The CEBAF RF Separator System Upgrade

    International Nuclear Information System (INIS)

    Hovater, J.; Mark Augustine; Al Guerra; Richard Nelson; Robert Terrell; Mark Wissmann

    2004-01-01

    The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decided to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance

  3. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  4. Operating experience of upgraded radio frequency source at 76 MHz coupled to heavy ion RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shiju, A.; Patel, N.R.; Shrotriya, S.D.; Bhagwat, P.V.

    2015-01-01

    A heavy ion radio frequency quadrupole (RFQ) accelerator has been developed at BARC (BARC). A RF source which was designed and developed at 76 MHz earlier, has been upgraded and coupled to heavy ion RFQ successfully. The DC bias supplies of this source have been replaced with new supplies having high efficiency and well filteration against RF interference (RFI). The driver of main power amplifier has been replaced with indigenously designed and developed unit. The earlier introduced microcontroller based interlock experienced RF noise issues. So, this circuit has been modified with the new circuit. With these modifications, the performance of the RF source was improved. Additionally, a separate low power RF source of around 100 + Watt was designed, developed and integrated with RFQ for its RF conditioning. This paper describes the details of up gradation of technologies implemented and coupling experience of this RF source with heavy ion RFQ. (author)

  5. The 136 MHz/400 MHz earth station antenna-noise temperature prediction program documentation for RAE-B

    Science.gov (United States)

    Chin, M.

    1972-01-01

    A simulation study to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods is described. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio (SNR) of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low-noise periods. Antenna-noise temperatures at 136 MHz and 400 MHz will be predicted for selected earth-based ground stations which will support RAE-B. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973. The RAE-B mission will be expecially susceptible to SNR degradation during the two eclipses of the Sun occurring in this period.

  6. The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B

    Science.gov (United States)

    Taylor, R. E.; Fee, J. J.; Chin, M.

    1972-01-01

    A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.

  7. Measurement of RF characteristics of magnetic alloys for an RF cavity of the accumulator cooler ring

    International Nuclear Information System (INIS)

    Watanabe, M.; Chiba, Y.; Katayama, T.; Koseki, T.; Ohtomo, K.; Tsutsui, H.

    2004-01-01

    The magnetic alloy (MA)-loaded RF cavity has been studied for an RF stacking system of the accumulator cooler ring (ACR). RF characteristics of several high-permeability MA cores were measured in the frequency range between 1 and 50 MHz. The effects of the cut-core configuration, cutting the core and leaving air gaps between two circular halves, were also investigated. The results show that the shunt impedance remains high and the appropriate inductance and Q-value can be obtained by increasing the gap width of the cut core in the frequency region of the ACR cavity

  8. 27.12 MHz Radiofrequency Ablation for Benign Cutaneous Lesions

    Directory of Open Access Journals (Sweden)

    Dong Hyun Kim

    2016-01-01

    Full Text Available As surgical and/or ablative modalities, radiofrequency (RF has been known to produce good clinical outcomes in dermatology. Recently, 27.12 MHz RF has been introduced and has several advantages over conventional 4 or 6 MHz in terms of the precise ablation and lesser pain perception. We aimed to evaluate the clinical efficacy and safety of 27.12 MHz RF for the treatment of benign cutaneous lesions. Twenty female patient subjects were enrolled. Digital photography and a USB microscope camera were used to monitor the clinical results before one session of treatment with 27.12 MHz RF and after 1 and 3 weeks. Treated lesions included telangiectasias, cherry and spider angiomas, skin tags, seborrheic keratoses, lentigo, milium, dilated pore, acne, piercing hole, and one case of neurofibroma. For vascular lesions, clinical results were excellent for 33.3%, good for 44.4%, moderate for 11.1%, and poor for 11.1%. For nonvascular lesions (epidermal lesions and other benign cutaneous lesions, clinical results were excellent for 48.3%, good for 45.2%, moderate for 3.2%, and poor for 3.2%. No serious adverse events were observed. Mild adverse events reported were slight erythema, scale, and crust. The 27.12 MHz RF treatment of benign vascular and nonvascular lesions appears safe and effective after 3 weeks of follow-up.

  9. Characterization of the SPS 800MHz travelling wave cavities.

    CERN Document Server

    Bazyl, Dmitry

    2015-01-01

    It is well known that HOMs in RF cavities are a potentially dangerous source of beam impedance. Therefore, HOMs (both longitudinal and transverse) can drive the beam unstable . The 800MHz cavities of the SPS were studied in the past. However, very little documentation was left behind. Currently, the performance of the SPS is limited by a longitudinal beam instability. In order to study this instability, an accurate impedance model of the whole SPS is needed.

  10. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  11. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation

  12. Reduced field TE01 X-Band traveling wave window

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Callin, R.S.; Tantawi, S.G.; Wright, E.L.

    1995-01-01

    The RF electric field is reduced by more than a factor of two using a pair of symmetrically located irises in a new type of klystron window operating in the TE 01 mode at X-Band. The advantages of this window over the usual TE 01 half-wave resonant window are discussed as well as theory and operating results. Ultra high purity alumina formed by the HIP process is used. This window has been successfully tested at 100 MW with a 1.5 microsecond RF pulse width and is being used on the XL series klystrons

  13. Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Links | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Efficient Windows Collaborative | Home

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. FAQ | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Glossary | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    International Nuclear Information System (INIS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-01-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012 © . RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance

  19. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  20. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  1. Window shopping

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'A large window for surprises' was how Gordon Kane of Michigan summarized the potential of the proposed 84-kilometre US Superconducting Supercollider (SSC). With George Trilling of Berkeley unable to attend this year's High Energy Physics Conference at Vanderbilt University, Nashville, Tennessee, from 8-10 October, Kane played a dual role - looking ahead to SSC physics, and summarizing the meeting

  2. RF installation for the grain disinfestation

    CERN Document Server

    Zajtzev, B V; Kobetz, A F; Rudiak, B I

    2001-01-01

    The ecologically pure method of grain product disinfestations through the grain treatment with the RF electric field is described. The experimental data obtained showed that with strengths of the electrical RF field of E=5 kV/cm and frequency of 80 MHz the relative death rate is 100%.The time of the grain treatment it this case is 1 sec. The pulses with a duration of 600 mu s and repetition rate of 2 Hz were used, the duration of the front was 10 mu s. The schematic layout of installation with a productivity of 50 tones/h and power of 10 kW is given.

  3. Performance of the Brookhaven photocathode rf gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Ingold, G.; Kirk, H.G.; Leung, K.P.; Malone, R.; Pogorelsky, I.; Srinivasan-Rao, T.; Rogers, J.; Tsang, T.; Sheehan, J.; Ulc, S.; Woodle, M.; Xie, J.; Zhang, R.S.; Lin, L.Y.; McDonald, K.T.; Russell, D.P.; Hung, C.M.; Wang, X.J.

    1991-01-01

    The Brookhaven Accelerator Test Facility (ATF) uses a photocathode rf gun to provide a high-brightness electron beam intended for FEL and laser-acceleration experiments. The rf gun consists of 1 1/2 cells driven at 2856 MHz in π-mode with a maximum cathode field of 100 MV/m. To achieve long lifetimes, the photocathode development concentrates on robust metals such as copper, yttrium and samarium. We illuminate these cathodes with a 10-ps, frequency-quadrupled Nd:YAG laser. We describe the initial operation of the gun, including measurements of transverse and longitudinal emittance, quantum efficiencies, and peak current. The results are compared to models

  4. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  5. High-powered, solid-state rf systems

    International Nuclear Information System (INIS)

    Reid, D.W.

    1987-01-01

    Over the past two years, the requirement to supply megawatts of rf power for space-based applications at uhf and L-band frequencies has caused dramatic increases in silicon solid-state power capabilities in the frequency range from 10 to 3000 MHz. Radar and communications requirements have caused similar increases in gallium arsenide solid-state power capabilities in the frequency ranges from 3000 to 10,000 MHz. This paper reviews the present state of the art for solid-state rf amplifiers for frequencies from 10 to 10,000 MHz. Information regarding power levels, size, weight, and cost will be given. Technical specifications regarding phase and amplitude stability, efficiency, and system architecture will be discussed. Solid-stage rf amplifier susceptibility to radiation damage will also be examined

  6. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  7. Design and development of RF system for vertical test stand for characterization of superconducting RF cavities

    International Nuclear Information System (INIS)

    Mohania, Praveen; Rajput, Vikas; Baxy, Deodatta; Agrawal, Ankur; Mahawar, Ashish; Adarsh, Kunver; Singh, Pratap; Shrivastava, Purushottam

    2011-01-01

    RRCAT is developing a Vertical Test Stand (VTS) to test and qualify 1.3 GHz/650 MHz, SCRF Cavities in collaboration with Fermi National Accelerator Laboratory (FNAL) under Indian Institutions' Fermilab Collaboration. The technical details for VTS is being provided by FNAL, USA. The RF System of VTS needs to provide stable RF power to SCRF cavity with control of amplitude, relative phase and frequency. The incident, reflected, transmitted power and field decay time constant of the cavity are measured to evaluate cavity performance parameters (E, Qo). RF Power is supplied via 500 W Solid State amplifier, 1270-1310 MHz being developed by PHPMS, RRCAT. VTS system is controlled by PXI Platform and National Instruments LabVIEW software. Low Level RF (LLRF) system is used to track the cavity frequency using Phase Locked Loop (PLL). The system is comprised of several integrated functional modules which would be assembled, optimized, and tested separately. Required components and instruments have been identified and procurement for the same is underway. Inhouse development for the Solid State RF amplifier and instrument interfacing is in progress. This paper describes the progress on the development of the RF system for VTS. (author)

  8. RF Power Generation in LHC

    CERN Document Server

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  9. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  10. The RF system of FELI

    International Nuclear Information System (INIS)

    Morii, Y.; Miyauchi, Y.; Koga, A.; Abe, H.; Keishi, T.; Bessho, I.; Tomimasu, T.

    1994-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20 μm (infra red region) to 0.35 μm (ultra violet region), using an S-band linac. The building will be completed in November 1993 and installation of the linac will start in December 1993. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714 MHz SHB (subharmonic buncher), a 2856 MHz standing wave type buncher, and 7 ETL (Electrotechnical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power); 24 μs - 24 MW, 12.5 μs - 34 MW, 0.5 μs - 70 MW. Each klystron modulator has the PFN consisting of 4 parallel networks of 24 capacitors and 24 inductors, and it has a line switch of an optical thyristor stack. These equipments are manufactured now, and an S-band klystron and modulator will be combined to test their performance at the works of NISSIN ELECTRIC Co. in October 1993. (author)

  11. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    generate coupling strengths of C x/Co ˜0.1%, which is a 6.1x improvement over previous efforts. The filter structure utilizes electrical tuning to correct frequency mismatches due to process variations, where a dc tuning voltage of 12.1 V improves the filter insertion loss by 1.8 dB and yields the desired equiripple passband shape. An electrical equivalent circuit is presented that captures not only the ideal filter response, but also parasitic non-idealities that create electrical feed-through, where simulation of the derived equivalent circuit matches the measured filter spectrum closely both in-band and out-of-band. The combined 2.7dB passband insertion loss and 50dB stopband rejection of the demonstrated 206-element 0.09% bandwidth 223.4-MHz differential micromechanical disk filter represents a landmark for capacitive-gap transduced micromechanical resonator technology. This demonstration proves that the mere introduction of small gaps, on the order of 39 nm, goes a long way towards moving this technology from a research curiosity to practical performance specs commensurate with the needs of actual RF channel-selecting receiver front-ends. It also emphasizes the need for tuning and defensive stress-relieving structural design when percent bandwidths and gaps shrink, all demonstrated by the work herein. Perhaps most encouraging is that the models presented in dissertation used to design the filter and predict its behavior seem to be all be spot on. This means that predictions using these models foretelling 1-GHz filters with sub-200O impedances enabled by 20nm-gaps might soon come true, bringing this technology ever closer to someday realizing the ultra-low power channel-selecting communication front-ends targeted for autonomous set-and-forget sensor networks. Work towards these goals continues.

  12. Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity

    Directory of Open Access Journals (Sweden)

    J. Norem

    2003-07-01

    Full Text Available We present measurements of dark currents and x rays in a six cell 805 MHz cavity, taken as part of an rf development program for muon cooling, which requires high power, high stored energy, low frequency cavities operating in a strong magnetic field. We have done the first systematic study of the behavior of high power rf in a strong (2.5–4 T magnetic field. Our measurements extend over a very large dynamic range in current and provide good fits to the Fowler-Nordheim field emission model assuming mechanical structures produce field enhancements at the surface. The locally enhanced field intensities we derive at the tips of these emitters are very large, (∼10  GV/m, and should produce tensile stresses comparable to the tensile strength of the copper cavity walls and should be capable of causing breakdown events. We also compare our data with estimates of tensile stresses from a variety of accelerating structures. Preliminary studies of the internal surface of the cavity and window are presented, which show splashes of copper with many sharp cone shaped protrusions and wires which can explain the experimentally measured field enhancements. We discuss a “cold copper” breakdown mechanism and briefly review alternatives. We also discuss a number of effects due to the 2.5 T solenoidal fields on the cavity such as altered field emission due to mechanical deformation of emitters, and dark current ring beams, which are produced from the irises by E×B drifts during the nonrelativistic part of the acceleration process.

  13. Strategic Windows

    DEFF Research Database (Denmark)

    Risberg, Annette; King, David R.; Meglio, Olimpia

    We examine the importance of speed and timing in acquisitions with a framework that identifies management considerations for three interrelated acquisition phases (selection, deal closure and integration) from an acquiring firm’s perspective. Using a process perspective, we pinpoint items within ...... acquisition phases that relate to speed. In particular, we present the idea of time-bounded strategic windows in acquisitions consistent with the notion of kairòs, where opportunities appear and must be pursued at the right time for success to occur....

  14. Window shopping

    OpenAIRE

    Oz Shy

    2013-01-01

    The terms "window shopping" and "showrooming" refer to the activity in which potential buyers visit a brick-and-mortar store to examine a product but end up either not buying it or buying the product from an online retailer. This paper analyzes potential buyers who differ in their preference for after-sale service that is not offered by online retailers. For some buyers, making a trip to the brick-and-mortar store is costly; however, going to the store to examine the product has the advantage...

  15. Fundamental Frequency Tuning and Its Influence on LHC 200MHz ACN Cavity

    CERN Document Server

    Linnecar, Trevor Paul R; Tückmantel, Joachim; CERN. Geneva. SPS and LHC Division

    2001-01-01

    To study the influence of the tuner on the fundamental mode frequency, the Q factor as well as the shunt impedance of the LHC 200MHz ACN cavities, 3D simulations have been done in the frequency domain using MAFIA. Curves giving the variation of RF frequency and other RF parameters with tuner position relative to the inner surface of the cavity have been obtained for the fundamental mode. This paper details the simulation results.

  16. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  17. The CEBAF RF separator system

    International Nuclear Information System (INIS)

    Hovater, C.; Arnold, G.; Fugitt, J.; Harwood, L.; Kazimi, R.; Lahti, G.; Mammosser, J.; Nelson, R.; Piller, C.; Turlington, L.

    1996-01-01

    The 4 GeV CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) is arranged in a five-pass racetrack configuration, with two superconducting radio-frequency (SRF) linacs joined by independent magnetic transport arcs. The 1497 MHz continuous electron beam is composed of three interlaced variable-intensity 499 MHz beams that can be independently directed from any of the five passes to any of the three experimental halls. Beam extraction is made possible by a system of nine warm sub-harmonic separator cavities capable of delivering a 100 urad kick to any pass at a maximum machine energy of 6 GeV. Each separator cavity is a half-wavelength, two cell design with a high transverse shunt impedance and a small transverse dimension. The cavities are powered by 1 kW solid state amplifiers operating at 499 MHz. Cavity phase and gradient control are provided through a modified version of the same control module used for the CEBAF SRF cavity controls. The system has recently been tested while delivering beam to Hall C. In this paper we present a description of the RF separator system and recent test results with beam. (author)

  18. ICH antenna development on the ORNL RF Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Bigelow, T.S.; Haste, G.R.; Hoffman, D.J.; Livesey, R.L.

    1987-01-01

    A compact resonant loop antenna is installed on the ORNL Radio Frequency Test Facility (RFTF). Facility characteristics include a steady-state magnetic field of ∼ 0.5 T at the antenna, microwave-generated plasmas with n e ∼ 10 12 cm -3 and T e ∼ 8 eV, and 100 kW of 25-MHz rf power. The antenna is tunable from ∼22--75 MHz, is designed to handle ≥1 MW of rf power, and can be moved 5 cm with respect to the port flange. Antenna characteristics reported and discussed include the effect of magnetic field on rf voltage breakdown at the capacitor, the effects of magnetic field and plasma on rf voltage breakdown between the radiating element and the Faraday shield, the effects of graphite on Faraday shield losses, and the efficiency of coupling to the plasma. 2 refs., 4 figs

  19. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  20. A low-power RF system with accurate synchronization for a S-band RF-gun using a laser-triggered photocathode

    International Nuclear Information System (INIS)

    Otake, Y.; Naito, T.; Shintake, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    An S-band RF-gun using a laser-triggered photocathode and its low-power RF system have been constructed. The main elements of the low-power RF system comprise a 600-W amplifier, an amplitude modulator, a phase detector, a phase shifter and a frequency-divider module. Synchronization between the RF fields for acceleration and the mode-locked laser pulses for beam triggering are among the important points concerning the RF-gun. The frequency divider module which down-converts from 2856 MHz(RF) to 89.25 MHz(laser), and the electrical phase-shifter were specially developed for stable phase control. The phase jitter of the frequency divider should be less than 10 ps to satisfy our present requirements. The first experiments to trigger and accelerate beams with the above-mentioned system were carried out in January, 1992. (Author) 6 figs., 5 refs

  1. Modulator considerations for the SNS RF system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The Spallation Neutron Source (SNS) is an intense neutron source for neutron scattering experiments. The project is in the research stage, with construction funding beginning next year. The SNS is comprised of an ion source, a 1,000 MeV, H - linear accelerator, an accumulator ring, a neutron producing target, and experimental area to utilize the scattering of the neutrons. The linear accelerator is RF driven, and the peak beam current is 27 mA and the beam duty factor is 5.84%. The peak RF power required is 104 MW, and the H - beam pulse length is 0.97 ms at a 60 Hz repetition rate. The RF pulses must be about 0.1 ms longer than the beam pulses, due to the Q of the accelerating cavities, and the time required to establish control of the cavity fields. The modulators for the klystrons in this accelerator are discussed in this paper. The SNS is designed to be expandable, so the beam power can be doubled or even quadrupled in the future. One of the double-power options is to double the beam pulse length and duty factor. The authors are specifying the klystrons to operate in this twice-duty-factor mode, and the modulator also should be expandable to 2 ms pulses at 60 Hz. Due to the long pulse length and low RF frequency of 805 MHz, the klystron power is specified at 2.5 MW peak, and the RF system will have 56 klystrons at 805 MHz, and three 1.25 MW peak power klystrons at 402.5 MHz for the low energy portion of the accelerator. The low frequency modulators are conventional floating-deck modulation anode control systems

  2. Rf power systems for the national synchrotron light source

    International Nuclear Information System (INIS)

    Dickinson, T.; Rheaume, R.H.

    1981-01-01

    The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described

  3. Biologically Inspired Radio-Frequency (RF) Direction Finding

    Science.gov (United States)

    2015-12-15

    microcontroller unit (MCU) - arduino duemilanove. The interrogator consists of one DIGI xbee s2, one ultrasonic receiver, one arduino , a pair of PIFAs...out a localization request using 2450 MHz band, and the arduino at the interrogator mandates the xbee to emit an RF signal and to start the timer...Once the xbee at the tag receives the RF signal, the arduino at the tag will request the ultrasonic module to emit an ultrasound and the xbee to

  4. RF-driven ion source with a back-streaming electron dump

    Science.gov (United States)

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  5. A divide-down RF source generation system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Horan, D.; Lenkszus, F.; Laird, R.

    1997-01-01

    A divide-down rf source system has been designed and built at Argonne National Laboratory to provide harmonically-related and phase-locked rf source signals between the APS 352-MHz storage ring and booster synchrotron rf systems and the 9.77-MHz and 117-MHz positron accumulator ring rf systems. The design provides rapid switching capability back to individual rf synthesizers for each one. The system also contains a digital bucket phase shifter for injection bucket selection. Input 352-MHz rf from a master synthesizer is supplied to a VXI-based ECL divider board which produces 117-MHz and 9.77-MHz square-wave outputs. These outputs are passed through low-pass filters to produce pure signals at the required fundamental frequencies. These signals, plus signals at the same frequencies from independent synthesizers, are fed to an interface chassis where source selection is made via local/remote control of coaxial relays. This chassis also produces buffered outputs at each frequency for monitoring and synchronization of ancillary equipment

  6. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  7. RF Design of the LCLS Gun

    International Nuclear Information System (INIS)

    Limborg-Deprey, C.

    2010-01-01

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun (1), referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee (2). Files and reference documents are compiled in Section IV.

  8. Design of RF structures for a superconducting proton linac

    International Nuclear Information System (INIS)

    Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)

  9. Evaluation Of Electromagnetic Fields For Frequencies 900 MHz-1 800 MHz In Tirana

    Directory of Open Access Journals (Sweden)

    Kuqi Dhurata

    2015-07-01

    Full Text Available Abstract The massive use of mobile phone as a communication tool nowadays is accompanied the ever increasing interest of the public and researchers for the possibly impact on human health as a result of exposure to the electromagnetic fields that accompany these devices. Therefore knowing the level of exposure electromagnetic fields of this electronic equipment has been and will be in the future interest object to the public and the subject of study for the researchers. In this paper are presents the results of measurements of electromagnetic fields for the frequencies 900 MHz - 1800 MHz used in mobile telephone in Tirana. These frequencies are included in the area radio frequency RF and Microwave MW 300 Hz - 300 GHz in the spectrum of electromagnetic waves and belong to non-ionizing radiation. The measurements were performed in different areas of Tirana. The purpose is to assess the level of exposure electromagnetic fields especially near areas where mobile antennas are mounted construction of dynamic digital mapping and comparison with the permitted levels of the exposure defined by the International Commission of Non Ionizing Radiation Protection ICNIRP. Through this publication the aim of the authors is to provide real information and reliable for the population.

  10. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  11. RF Scenarios for Pb54+ Ions in the PS2

    CERN Document Server

    Benedikt, M; Hancock, S; CERN. Geneva. AB Department

    2008-01-01

    This note analyses some of the rf scenarios that are presently being considered for lead ions in the PS2. An earlier note principally concerning protons [1] highlighted the problem of the large revolution frequency swing of ions in the PS2 and the issue of bunching factor with direct injection from the LEIR machine. We present solutions based on additional rf systems in LEIR and consider the 40 MHz principal rf system proposed for the PS2 in the earlier work to have switchable tuning ranges to cover the large frequency swing required.

  12. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  13. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip

    2015-01-01

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  14. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  15. Pulsed RF Sources for Linear Colliders

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-01-01

    These proceedings represent papers presented at the workshop on pulsed RF sources for linear colliders. The workshop examined the performance of RF sources for possible future linear colliders. Important sources were presented on new type of klystrons, gyrotrons and gyroklystrons. A number of auxiliary topics were covered, including modulators, pulse compression, power extraction, windows, electron guns and gun codes. The workshop was sponsored by the International Committee for Future Accelerators(ICFA), the U.S. Department of Energy and the Center for Accelerator Physics at Brookhaven National Laboratory. There were forty one papers presented at the workshop and all forty one have been abstracted for the Energy Science and Technology database

  16. RF Processing of the Couplers for the SNS Superconducting Cavities

    International Nuclear Information System (INIS)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-01-01

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities

  17. Pembuatan Dan Analisis Exciter Generator Rf Untuk Siklotron Proton Decy-13

    OpenAIRE

    Prajitno, Prajitno

    2011-01-01

    PEMBUATAN DAN ANALISIS EXCITER GENERATOR RF UNTUK SIKLOTRON PROTON DECY-13.Telah dilakukan analisis dan pembuatan exciter generator RF untuk siklotron proton 13MeV. Generator RFakan digunakan sebagai sumber tegangan pemercepat bolak-Balik siklotron DECY-13 rancangan PTAPBBATAN.Berdasarkan dokumen rancangan dasar yang telah dibuat siklotron Decy-13 akan menggunakanmedan magnet 1,275 Tesla, sehingga frekuensi generator RF bila menggunakan harmonik keempat adalah77,667 MHz. Salah satu teknik pem...

  18. Development of 400- to 450-MHz RFQ resonator-cavity mechanical designs

    International Nuclear Information System (INIS)

    Hansborough, L.D.

    1982-01-01

    In the development of the radio-frequency quadrupole (RFQ) linac, the resonator cavity's mechanical design may be a challenge similar in magnitude to that of the development of the accelerator structure itself. Experience with the all-copper 425-MHz RFQ proof-of-principle linac has demonstrated that the resonator cavity must be structurally stiff and easily tunable. This experience has led to development of copper-plated steel structures having vanes that may be moved within a cylinder for tuning. Design of a flexible vane-to-cylinder radio-frequency (rf) joint, the vane, and the cylinder has many constraints dictated by the small-diameter cavities in the 400-MHz-frequency region. Two types of flexible, mechanical vane-to-cylinder rf joints are being developed at Los Alamos: the C-seal and the rf clamp-joint

  19. A precision master trigger system for SLC based on the accelerator RF drive system

    International Nuclear Information System (INIS)

    Koontz, R.F.; Leger, G.; Paffrath, L.; Wilmunder, A.

    1984-01-01

    A new trigger system consisting of a single 476 MHz rf doublet pulse superimposed on the main 476 MHz rf Drive Line signal that transits the 3 km accelerator has been implemented and is working well. This paper describes the general concept of this system, outlines the operation of the main master trigger generator, the fiducial (476 MHz doublet) generator, and the fiducial pickoff system. A companion paper by Paffrath et al describes the counter electronics that produces precision timed triggers for all SLC operations along the accelerator. (orig.)

  20. Design and development of embedded control system for high power RF test facility

    International Nuclear Information System (INIS)

    Nageswara Rao, J.; Badapanda, M.K.; Upadhyay, Rinki; Tripathi, Akhilesh; Hannurkar, P.R.

    2013-01-01

    Design and development of an embedded control system for the control, interlock and operation of 1MW, 352.2 MHz TH2089 klystron based RF test facility. The key components of the control system are NI compact Re configurable Input Output (cRIO) system and Windows based PC. The cRIO system's rugged hardware architecture includes a 1.06 GHz Dual-Core embedded controller with Real Time (RT) Operating System, a reconfigurable Field Programmable Gate Array (FPGA) chassis for custom I/O timing, control and processing; and I/O modules. Windows based Graphical User Interface (GUI) has been developed to guide the user through start-up procedure, to set the operating parameters and also to display the status information of all the signals. The application software for data logging and publishing of the acquired data namely set, read back and status signals of auxiliary power supplies and machine safety interlocks has been developed in LabVIEW RT module and is running on embedded controller. Machine safety interlock logic has been implemented in FPGA to meet the time criticality. (author)

  1. RF system considerations for accelerator production of tritium and the transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1993-01-01

    RF driven proton accelerators for the transmutation of nuclear waste (ATW) or for the production of tritium (APT) require unprecedented amounts of CW RF power at UHF frequencies. For both systems, the baseline design is for 246 MW at 700 MHz and 8,5 MW at 350 MHz. The main technical challenges are how to design and build such a large system so that it has excellent reliability, high efficiency, and reasonable capital cost. The issues associated with the selection of the RF amplifier and the sizes of the power supplies are emphasized in this paper

  2. Auto-tuning systems for J-PARC LINAC RF cavities

    International Nuclear Information System (INIS)

    Fang, Z.; Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S.; Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E.

    2014-01-01

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  3. Auto-tuning systems for J-PARC LINAC RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z., E-mail: fang@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E. [Japan Atomic Energy Agency (JAEA), 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2014-12-11

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  4. Perpendicular biased ferrite tuned RF cavity for the TRIUMF KAON Factory booster ring

    International Nuclear Information System (INIS)

    Poirier, R.L.; Enegren, T.; Haddock, C.

    1989-03-01

    The rf cavity for the booster ring requires a frequency swing of 46 MHz to 62 MHz at a repetition rate of 50 Hz. The possibility of using the LANL booster cavity design with a yttrium garnet ferrite tuner biased perpendicular to the rf field, in the longitudinal direction, is being investigated. In order to minimize the stray magnetic biasing field on the beam axis, an alternative scheme similar to the design being proposed for the LANL main ring cavity in which the ferrite is perpendicular biased in the radial direction, is being considered. The behaviour of the rf cavity and the magnetizing circuit for both designs are discussed

  5. A New RF System for the CEBAF Normal Conducting Cavities

    International Nuclear Information System (INIS)

    Curt Hovater; Hai Dong; Alicia Hofler; George Lahti; John Musson; Tomasz Plawski

    2004-01-01

    The CEBAF Accelerator at Jefferson Lab is a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. CEBAF also has numerous normal conducting cavities for beam conditioning in the injector and for RF extraction to the experimental halls. The RF systems that presently control these cavities are becoming expensive to maintain, therefore a replacement RF control system is now being developed. For the new RF system, cavity field control is maintained digitally using an FPGA which contains the feedback algorithm. The system incorporates digital down conversion, using quadrature under-sampling at an IF frequency of 70 MHz. The VXI bus-crate was chosen as the operating platform because of its excellent RFI/EMI properties and its compatibility with the EPICS control system. The normal conducting cavities operate at both the 1497 MHz accelerating frequency and the sub-harmonic frequency of 499 MHz. To accommodate this, the ne w design will use different receiver-transmitter daughter cards for each frequency. This paper discusses the development of the new RF system and reports on initial results

  6. PLC based development of control, monitoring and interlock for 100 kW, 45.6 MHz ICRH system

    International Nuclear Information System (INIS)

    Jadav, Hiralal; Joshi, Rameshkumar; Mali, Aniruddh K.; Kadia; Bhavesh; Parmar; Maganbhai, Kiritkumar; Kulkarni, S.V.

    2015-01-01

    This paper presents details of PLC based system development for 100KW at the rate 45.6 MHz. Presently in ICRH RF DAC (Data acquisition and control) system existing based on real time VME and linux operating system. The ICRH system consists of 1.5 MW RF generator operating at 22- 40MHz which is used for second harmonic heating and pre-ionization experiments on SST-1 Tokamak at 1.5T and 3T magnetic field operation respectively. The task of PLC system in RF ICRH is to control, monitoring and interlocks HVDC power supply signal. Voltage and current signal of 2 kW, 20 kW, tetrode for 100 kW RF tube electrode like Filament, Control grid, Plate, Screen grid, signal monitor and voltage set raised by PLC analog IO module. Acknowledgement of the HVDC supply Filament, Control grid, Plate, Screen grid power supply is monitor and interlocks by PLC Digital IO module to interlocks stop the RF pulse and off HV power supply. The RF pulse(shot) to trigger signal generator (5mw) RF power output feed to LPA then chain of 2 KW, 20 KW, 100 KW at the rate 45.6 MHz. The programming logic controller (PLC) software is written in ladder language for AH500 Delta make using ISP Soft 2.04 and GUI is in the table form to control and monitor the parameters. Communication of PLC to PC by ethernet LAN network. (author)

  7. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  8. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  9. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure.

    Directory of Open Access Journals (Sweden)

    Ju Hwan Kim

    Full Text Available The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs. EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF of 835 MHz at a specific absorption rate (SAR of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress.

  10. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  11. High Power RF Transmitters for ICRF Applications on EAST

    International Nuclear Information System (INIS)

    Mao Yuzhou; Yuan Shuai; Zhao Yanping; Zhang Xinjun; Chen Gen; Cheng Yan; Wang Lei; Ju Songqing; Deng Xu; Qin Chengming; Yang Lei; Kumazawa, R.

    2013-01-01

    An Ion Cyclotron Range of Frequency (ICRF) system with a radio frequency (RF) power of 4 × 1.5 MW was developed for the Experimental Advanced Superconducting Tokamak (EAST). High RF power transmitters were designed as a part of the research and development (R and D) for an ICRF system with long pulse operation at megawatt levels in a frequency range of 25 MHz to 70 MHz. Studies presented in this paper cover the following parts of the high power transmitter: the three staged high power amplifier, which is composed of a 5 kW wideband solid state amplifier, a 100 kW tetrode drive stage amplifier and a 1.5 MW tetrode final stage amplifier, and the DC high voltage power supply (HVPS). Based on engineering design and static examinations, the RF transmitters were tested using a matched dummy load where an RF output power of 1.5 MW was achieved. The transmitters provide 6 MW RF power in primary phase and will reach a level up to 12 MW after a later upgrade. The transmitters performed successfully in stable operations in EAST and HT-7 devices. Up to 1.8 MW of RF power was injected into plasmas in EAST ICRF heating experiments during the 2010 autumn campaign and plasma performance was greatly improved.

  12. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  13. Windows server cookbook for Windows server 2003 and Windows 2000

    CERN Document Server

    Allen, Robbie

    2005-01-01

    This practical reference guide offers hundreds of useful tasks for managing Windows 2000 and Windows Server 2003, Microsoft's latest server. These concise, on-the-job solutions to common problems are certain to save you many hours of time searching through Microsoft documentation. Topics include files, event logs, security, DHCP, DNS, backup/restore, and more

  14. Cellular responses to 836 MHz and 1,765 GHz CDMA radiations

    International Nuclear Information System (INIS)

    Park, Woong Yang; Seo, Jeong Sun; Paik, Jung Ki; Lim, Kye Jae; Yoon, Hyun Bo

    2002-01-01

    The effect of radiofrequency (RF) radiation in the cellular phone communication range (836.5 MHz and 1.765 GHz code division multiple access, CDMA) on tumorigenesis and other health effect was measured using the in vitro cell culture system. To determine whether 836.5 MHz or 1.765 GHz CDMA radiations have any genotoxic effects to induce neoplastic transformation, C3H 10T1/2 cells were exposed to either of the above radiations at a specific absorption rate (SAR) of 35.6W/Kg (836.5 MHz) and 38.2 W/kg(1.765 GHz) or sham- exposed at the same time for 7 days. Cells were maintained in incubators and refed with fresh growth medium every 3 days. At this SAR, radiofrequency radiation did not induce neoplastic transformation in vitro. The extent of alteration in the kinetics of cell proliferation indicated no significant differences between RF-radiation- and sham-exposed cells with respect to MTS assay and 8-OHdG. Under this experimental conditions tested, there is no evidence for the induction of genotoxic indices in human and mouse cells exposed in vitro for 7 days to 836.5 MHz or 1.765 GHz RF radiation at SARs of up to 35.6 or 38.2 W/kg

  15. Inversion of the OH 1720-MHz line

    International Nuclear Information System (INIS)

    Elitzur, M.

    1975-01-01

    It is shown that the OH 1720-MHz line can be strongly inverted by collisions which excite the rotation states. It is also argued that radiative pumps (of any wave length) can invert strongly only the 1612-MHz line. (author)

  16. Commissioning of the TRIUMF ISAC RF system

    International Nuclear Information System (INIS)

    Fong, K.; Fang, S.; Laverty, M.; Lu, J.; Poirier, R.L.

    2001-09-01

    The ISAC RF system at present consists of a Radio Frequency Quadrupole accelerator, five Drift Tube Linear Accelerators, six bunchers, two choppers and a bunch rotator. The RFQ operates at the fundamental frequency of 35.36 MHz, while the DTLs operate at the third harmonic frequency of 106.08 MHz. The operating power ranges from 45 W to 120 W for the choppers, 1 kW to 20 kW for the DTLs and bunchers, and 80 kW for the RFQ. These cavities have been commissioned to operate synchronously with both closed-loop amplitude and phase regulation, as well as automatic tuning of the cavities. This paper gives a brief summary of the commissioning experience. (author)

  17. Design Guidance for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. Selection Process for New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  19. Selection Process for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  20. Design Guidance for Replacement Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  1. Replacement Windows for Existing Homes Homes | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  2. Proper Installation of New Windows | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Facial tightening with an advanced 4-MHz monopolar radiofrequency device.

    Science.gov (United States)

    Taub, Amy F; Tucker, Robert D; Palange, Andrea

    2012-11-01

    Over the past 10 years, radiofrequency (RF) technology has been utilized for nonablative treatments for the treatment of rhytides and skin laxity. This manuscript reviews the scientific background of collagen synthesis in vivo and in response to RF energy as well as a clinical study of 17 patients receiving a series of facial treatments with a 4-MHz monopolar RF (Pellevé, Ellman International, Inc, Oceanside, NY). Clinical methods, results, and a review of the literature for RF aesthetic treatments of the face are presented. Seventeen patients were treated in one site with 6 total treatments scheduled as follows: 1 session was performed every 15 days for 2 consecutive sessions, 1 session every month for 2 consecutive sessions, and 1 session every 2 months for 2 consecutive sessions. Both the treating physician and the patients via live viewing and comparison with baseline photographs performed assessment of results. Results are reported as averages across the 17 patients. Two weeks after the first treatment, patients noted an overall average of 25% to 30% improvement. Just before the last or sixth treatment, there was an average of 50% improvement noted by the physician, with patients ranking an average self-improvement of 48%. The treating physician rated average improvement of 46% compared with baseline, whereas the patients ranked average improvement of 30% compared with baseline at 1 year after treatment was initiated (6 months after the final treatment). Patients find this treatment to be very well tolerated, with minimal to no discomfort and no downtime or significant side effects. The Pellevé 4-MHz monopolar RF device is effective, safe, and very well tolerated for treating laxity, texture, and wrinkles of the skin without complication or discomfort. Evidence in the literature supports the scientific mechanism of action of acute collagen modification and continued neocollagenesis observed with the system. In this cohort, patients maintain approximately 50

  4. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  5. Development and energization of IOT based RF amplifier

    International Nuclear Information System (INIS)

    Mandal, A.; Som, S.; Raj, P.R.; Manna, S.K.; Ghosh, S.; Seth, S.; Thakurta, S.; Thakur, S.K.; Saha, S.; Panda, U.S.

    2013-01-01

    A 704 MHz IOT based CW RF amplifier has been developed in VECC. It can also be used with proper tuning to power cavity modules operating at 650 MHz in high energy high intensity proton linear accelerator proposed to be built for ADSS/SNS programme in India and Project-X at Fermilab, USA. This IOT based amplifier provides up to 60 kW continuous wave RF power at 700 MHz. It required various power supplies, LCW cooling and forced air cooling for its operation. The auxiliary power supplies like Grid, Filament and Ion-pump, are floated and mounted on an isolated frame, i.e., HV deck. The mains inputs are electrically isolated by means of isolation transformer. Also, a Programmable Logic Controller (PLC) based interlocks along with high voltage collector power supply has been designed and developed for the safe operation of the RF amplifier. This paper discusses about various developments and energization of the IOT based RF amplifier with high power dummy load. (author)

  6. Provide Views | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. Reduced Fading | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. EWC Members | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  9. Visible Transmittance | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  10. Gas Fills | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  11. EWC Membership | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  12. Reducing Condensation | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  13. Improved Comfort | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Financing & Incentives | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  15. Tools & Resources | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  16. Books & Publications | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  17. Design Considerations | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  18. An RF cavity for barrier bucket experiment in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, M.; Iwashita, Y. [Kyoto Univ. (Japan); Mori, Y. [and others

    1998-11-01

    A barrier bucket experiment in the AGS is planed in 1998. An accumulation of the beam, which intensity of 1.0 x 10{sup 14}ppp is, acceleration after the injection with a barrier bucket scheme and other RF gymnastics experiments will be studied. An isolated RF pulse of 40 kV per cavity is necessary for the experiment. The RF frequency is 2 MHz and the isolated pulse is generated at the repetition rate of the revolution frequency of 357 kHz. We have developed the barrier cavity for this experiment. The cavity is loaded with FINEMET core. It has low Q value but high shunt impedance. It makes the necessary power less than that of ferrite-loaded cavity for an isolated RF pulse. (author)

  19. Accelerating Rf Station For Hirfl-csr, Lanzhou, China

    CERN Document Server

    Arbuzov, V S; Dranichnikov, A N; Gorniker, E I; Kondakov, A A; Kondaurov, M; Kruchkov, Ya G; Krutikhin, S A; Kurkin, G Ya; Mironenko, L A; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A M; Sedlyarov, I K; Selivanov, A N; Shteinke, A R; Vajenin, N F

    2004-01-01

    In accordance with the plan of cooperation with the Institute of Modern Physics (IMP), Lanzhou, China, the Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia has produced and supplied an accelerating RF station for the multipurpose Cooling Storage Ring system (CSR), which is being constructed at IMP. The RF station had been tested at IMP site and now is installed into the Main Ring of the facilities. The RF station operates in the frequency range of 0.25~1.7 MHz. Maximum accelerating voltage is 8 kV. The resonance frequency of the RF cavity is tuned in the whole frequency range by biasing of ferrites, which are used in the cavity. Ferrites of 600NN type were produced by a firm manufacture "Magneton", St. Petersburg. The pressure in the cavity vacuum chamber is lower, than 3·10-11

  20. Design of RF system for CYCIAE-230 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-11

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push–pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  1. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  2. High-Power Ka-Band Window and Resonant Ring

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2006-01-01

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs

  3. Low-Level RF Control of Microphonics in Superconducting Spoke-Loaded Cavities

    International Nuclear Information System (INIS)

    Conway, Z.A.; Kelly, M.P.; Sharamentov, S.I.; Shepard, K.W.; Davis, G.; Delayen, Jean; Doolittle, Lawrence

    2007-01-01

    This paper presents the results of cw RF frequency control and RF phase-stabilization experiments performed with a piezoelectric fast tuner mechanically coupled to a superconducting, 345 MHz, < = 0.5 triple-spoke-loaded cavity operating at 4.2K. The piezoelectric fast tuner damped low-frequency microphonic-noise by an order of magnitude. Two methods of RF phase-stabilization were characterized: overcoupling with negative phase feedback, and also fast mechanical tuner feedback. The = 0.5 triple-spoke-loaded cavity RF field amplitude and phase errors were controlled to ±0.5% and ±30 respectively.

  4. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  5. RF guns: a review

    International Nuclear Information System (INIS)

    Travier, C.

    1990-06-01

    Free Electron Lasers and future linear colliders require very bright electron beams. Conventional injectors made of DC guns and RF bunchers have intrinsic limitations. The recently proposed RF guns have already proven their capability to produce bright beams. The necessary effort to improve further these performances and to gain reliability is now undertaken by many laboratories. More than twenty RF gun projects both thermionic and laser-driven are reviewed. Their specific characteristics are outlined and their nominal performances are given

  6. Windows and doors

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    A complete manual is presented on windows and doors for the housing contractor. In order to understand the role of windows and doors in a house's energy performance, an introduction explains the house as a system of components that can have effects on each other. Further chapters explain in detail the parts of a window, window types and RSI values; window servicing and repair; window replacement; parts of a door, door types and RSI values; door service and repair, including weatherstripping; door replacement; and how to ensure quality, service, and customer satisfaction. A glossary of terms is included. 61 figs., 3 tabs.

  7. Windows 10 simplified

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 quickly and painlessly with this beginner's guide Windows 10 Simplified is your absolute beginner's guide to the ins and outs of Windows. Fully updated to cover Windows 10, this highly visual guide covers all the new features in addition to the basics, giving you a one-stop resource for complete Windows 10 mastery. Every page features step-by-step screen shots and plain-English instructions that walk you through everything you need to know, no matter how new you are to Windows. You'll master the basics as you learn how to navigate the user interface, work with files, create

  8. Windows 10 for dummies

    CERN Document Server

    Rathbone, Andy

    2015-01-01

    The fast and easy way to get up and running with Windows 10 Windows 10 For Dummies covers the latest version of Windows and gets you up and running with the changes and new features you'll find in this updated operating system. Packed with time-saving tips to help you get the most out of the software, this helpful Windows 10 guide shows you how to manage Windows tasks like navigating the interface with a mouse or touchscreen, connecting to the web, and troubleshooting problems and making quick fixes. Assuming no prior knowledge of the software, Windows 10 For Dummies addresses the updates to

  9. RF high voltage performance of RF transmission line components on the DIII-D Fast Wave Current Drive (FWCD) system

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Callis, R.W.; Cary, W.P.; Phelps, D.A.; Ponce, D.; Baity, F.W.; Barber, G.

    1995-01-01

    The performance of the high voltage rf components of the DIII-D Fast Wave Current Drive System (FWCD) have been evaluated under various conditions of insulator configuration, insulator material, insulating gas and gas pressure. The insulator materials that have been investigated are alumina, steatite, pyrex, quartz, and teflon. The results of this evaluation are discussed in this paper. Additionally a rf high potter was developed to aid in the evaluation of rf high voltage components. The high potter consists of a 50 Ω, 1/4 wavelength cavity with a variable position short and a 50 ohm matched tap at one end of the cavity. With this configuration rf voltages were generated in excess of 100 kVp in the frequency range 30 to 60 MHz

  10. RF high voltage performance of RF transmission line components on the DIII-D Fast Wave Current Drive (FWCD) System

    International Nuclear Information System (INIS)

    Ferguson, S.W.; Callis, R.W.; Cary, W.P.; Phelps, D.A.; Ponce, D.; Baity, F.W.; Barber, G.

    1995-12-01

    The performance of the high voltage rf components of the DIII-D Fast Wave Current Drive System (FWCD) have been evaluated under various conditions of insulator configuration, insulator material, insulating gas and gas pressure. The insulator materials that have been investigated are alumina, steatite, pyrex, quartz, and teflon. The results of this evaluation are discussed in this paper. Additionally a rf high potter was developed to aid in the evaluation of rf high voltage components. The high potter consists of a 50 Ω, 1/4 wavelength cavity with a variable position short and a 50 ohm matched tap at one end of the cavity. With this configuration rf voltages were generated in excess of 100 kVp in the frequency range 30 to 60 MHz

  11. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  12. Early prototype of a superconducting RF cavity for LEP

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    As early as 1979, before LEP became an approved project, studies were located in the ISR Division. Although Cu-cavities were foreseen, certainly for the 1st energy-stage, superconducting cavities were explored as a possible alternative for the 2nd energy-stage. This began with very basic studies of manufacture and properties of Nb-cavities. This one, held by Mr.Girel, was made from bulk Nb-sheet, 2.5 mm thick. It was dimensioned for tests at 500 MHz (LEP accelerating RF was 352.2 MHz). See also 8004204, 8007354, 8209255, 8210054, 8312339.

  13. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  14. Low Level RF System for Jefferson Lab Cryomodule Test Facility

    International Nuclear Information System (INIS)

    Tomasz Plawski; Trent Allison; Jean Delayen; J. Hovater; Thomas Powers

    2003-01-01

    The Jefferson Lab Cryomodule Test Facility (CMTF) has been upgraded to test and commission SNS and CEBAF Energy Upgrade cryomodules. Part of the upgrade was to modernize the superconducting cavity instrumentation and control. We have designed a VXI based RF control system exclusively for the production testing of superconducting cavities. The RF system can be configured to work either in Phase Locked Loop (PLL) or Self Excited Loop (SEL) mode. It can be used to drive either SNS 805 MHz or CEBAF Energy Upgrade 1497 MHz superconducting cavities and can be operated in pulsed or continuous wave (CW) mode. The base design consists of RF-analog and digital sections. The RF-analog section includes a Voltage Control Oscillator (VCO), phase detector, IandQ modulator and ''low phase shift'' limiter. The digital section controls the analog section and includes ADC, FPGA, and DAC . We will discuss the design of the RF system and how it relates to the support of cavity testing

  15. Schematic Window Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this IRAD is to produce a generic launch window analyzer (SWM) that allows for large-scale rapid analysis of a launch window and orbit design trade space....

  16. Interplay of the influence of oxygen partial pressure and rf power on ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... extra heating) and low pressure p = 0.5 mTorr, varying the rf power density between P = 0.57 and 2.83 W cm−2 at different relative oxygen ... thin films are used as window layers in solar cells [1–3]. Sput- tering (especially rf ... defect density [11,12]. In the literature there are works reporting the effect of rf.

  17. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-01-01

    In this paper, the author reports on RF power sources for accelerator applications. The approach will be with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. The author pays close attention to electron- positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. Circular machines, cyclotrons, synchrotrons, etc. have usually not been limited by the RF power available and the machine builders have usually had their RF power source requirements met off the shelf. The main challenge for the RF scientist has been then in the areas of controls. An interesting example of this is in the Conceptual Design Report of the Superconducting Super Collider (SSC) where the RF system is described in six pages of text in a 700-page report. Also, the cost of that RF system is about one-third of a percent of the project's total cost. The RF system is well within the state of the art and no new power sources need to be developed. All the intellectual effort of the system designer would be devoted to the feedback systems necessary to stabilize beams during storage and acceleration, with the main engineering challenges (and costs) being in the superconducting magnet lattice

  18. RF Energy Compressor

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1980-02-01

    The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/

  19. Development of 350 MHz/1000 Watt intermediate power amplifier for 400 keV RFQ accelerator

    International Nuclear Information System (INIS)

    Pande, M.M.; Patel, N.R.; Shinde, K.R.; Rao, M.K.V.; Handu, V.K.

    2005-01-01

    Two numbers of high power RF systems, each delivering around 35 to 40 kW of power at 350 MHz are being developed in BARC. These High Power Amplifiers (HPA) cater to the total need of 70 kW of RF power required by the 400 keV (Deuterium) RFQ accelerator. This RFQ will replace the existing 400 keV DC accelerator of 14 MeV Neutron Generator. The RFQ will accelerate a deuterium beam from 50 keV to 400 keV to impinge upon a tritium target inside a sub critical assembly. Each of these 35 / 40 KW HPA requires a drive power of around 1000 / 1500 Watt respectively. Hence a intermediate power amplifier (IPA) bas been designed to deliver the power of 1000 Watt at the rate of 350 MHz. The paper describes the development of this amplifier

  20. Progress on a prototype main ring rf cavity

    International Nuclear Information System (INIS)

    Swain, G.; Kandarian, R.; Thiessen, H.A.; Poirier, R.; Smythe, W.R.

    1989-01-01

    A prototype rf cavity and rf drive system for a hadron facility main ring has been designed and will be tested in the Proton Storage Ring (PSR) at Los Alamos as a part of a collaborative effort between LANL and TRIUMF. The cavity uses an orthogonally biased ferrite tuner. The design provides for accelerating gap voltages up to 200 kV for the 49.3 to 50.8 MHz range. Progress on the cavity construction and testing is described. 13 refs., 5 figs

  1. Practical RF system design

    CERN Document Server

    Egan, William F

    2003-01-01

    he ultimate practical resource for today's RF system design professionals Radio frequency components and circuits form the backbone of today's mobile and satellite communications networks. Consequently, both practicing and aspiring industry professionals need to be able to solve ever more complex problems of RF design. Blending theoretical rigor with a wealth of practical expertise, Practical RF System Design addresses a variety of complex, real-world problems that system engineers are likely to encounter in today's burgeoning communications industry with solutions that are not easily available in the existing literature. The author, an expert in the field of RF module and system design, provides powerful techniques for analyzing real RF systems, with emphasis on some that are currently not well understood. Combining theoretical results and models with examples, he challenges readers to address such practical issues as: * How standing wave ratio affects system gain * How noise on a local oscillator will affec...

  2. Waveform digitizing at 500 MHz

    International Nuclear Information System (INIS)

    Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.

    1988-01-01

    Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10 -10 . To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the (π + → μ + ν, μ + → e + ν/bar /nu//) decay sequence in scintillator. We report on the design and construction of 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February-May 1988 run showing performance of the system for the observation of the above decay. 8 figs

  3. Waveform digitizing at 500 MHz

    International Nuclear Information System (INIS)

    Atiya, M.; Ito, M.; Haggerty, J.; Ng, C.; Sippach, F.W.

    1988-01-01

    Experiment E787 at Brookhaven National Laboratory is designed to study the decay K + → π + ν/bar /nu// to a sensitivity of 2 /times/ 10/sup /minus/10/. To achieve acceptable muon rejection it is necessary to couple traditional methods (range/energy/momentum correlation) with observation of the π + → μ + → e + ν/bar /nu// decay sequence in scintillator. We report on the design and construction of over 200 channels of relatively low cost solid state waveform digitizers. The distinguishing features are: 8 bits dynamic range, 500 MHz sampling, zero suppression on the fly, deep memory (up to .5 msec), and fast readout time (100 μsec for the entire system). We report on data obtained during the February--May 1988 run showing performance of the system for the observation of the above decay. 9 figs

  4. Window Selection Tool | Efficient Windows Collaborative

    Science.gov (United States)

    Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Window Selection Tool will take you through a series of design conditions pertaining to your design and

  5. Windows for Intel Macs

    CERN Document Server

    Ogasawara, Todd

    2008-01-01

    Even the most devoted Mac OS X user may need to use Windows XP, or may just be curious about XP and its applications. This Short Cut is a concise guide for OS X users who need to quickly get comfortable and become productive with Windows XP basics on their Macs. It covers: Security Networking ApplicationsMac users can easily install and use Windows thanks to Boot Camp and Parallels Desktop for Mac. Boot Camp lets an Intel-based Mac install and boot Windows XP on its own hard drive partition. Parallels Desktop for Mac uses virtualization technology to run Windows XP (or other operating systems

  6. Windows® Internals

    CERN Document Server

    Russinovich, Mark E; Ionescu, Alex

    2009-01-01

    See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

  7. RF upgrade program in LHC injectors and LHC machine

    International Nuclear Information System (INIS)

    Jensen, E.

    2012-01-01

    The main themes of the RF upgrade program are: the Linac4 project, the LLRF-upgrade and the study of a tuning-free wide-band system for PSB, the upgrade of the SPS 800 MHz amplifiers and beam controls and the upgrade of the transverse dampers of the LHC. Whilst LHC Splice Consolidation is certainly the top priority for LS1, some necessary RF consolidation and upgrade is necessary to assure the LHC performance for the next 3- year run period. This includes: 1) necessary maintenance and consolidation work that could not fit the shorter technical stops during the last years, 2) the upgrade of the SPS 200 MHz system from presently 4 to 6 cavities and possibly 3) the replacement of one LHC cavity module. On the longer term, the LHC luminosity upgrade requires crab cavities, for which some preparatory work in SPS Coldex must be scheduled during LS1. (author)

  8. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  9. New window design options for CEBAF energy upgrade

    International Nuclear Information System (INIS)

    Phillips, L.; Mammosser, J.; Nguyen, V.

    1997-01-01

    As the Jefferson Laboratory upgrades the existing CEBAF electron accelerator to operate at higher energies, the fundamental power coupler windows will be required to operate with lower RF dissipation and increased immunity to radiation from cavity field emission. New designs and modifications to existing designs which can achieve these goals are described

  10. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Science.gov (United States)

    2010-10-01

    ..., 2110-2150 MHz, and 2160-2200 MHz bands. 101.77 Section 101.77 Telecommunication FEDERAL COMMUNICATIONS...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify... a Police licensee, a Fire Licensee, or an Emergency Medical Licensee as defined in § 90.7 of this...

  11. Ultra - Wideband, zero visual signature RF vest antenna for man-portable radios

    OpenAIRE

    Lebaric, Jovan E.; Adler, Richard W.; Limbert, Matthew E.

    2001-01-01

    This paper presents the recent research of the COMbat Wear INtegration (COMWIN) RF Vest antenna presented at MILCOM2000. This version of the ultra-wideband VHF/UHF (30 MHz to 500 MHz) vest antenna, designated as MK-III, is integrated into the existing dismounted Marine/Soldier Kevlar flak vest and has no visual signature. This antenna is one of the three COMWIN antennas developed at the Naval Postgraduate School (NPS) for the Joint Tactical Radio System applications. ...

  12. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  13. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  14. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  15. General overview of the APS low-level rf control system

    International Nuclear Information System (INIS)

    Stepp, J.D.; Bridges, J.F.

    1993-01-01

    This paper describes the proposed low-level rf system of the positron accumulator ring (PAR), the injector synchrotron, and the storage ring of the 7-GeV Advanced Photon Source. Four rf systems are described since the PAR consists of a fundamental frequency system at 9.8 MHz and a harmonic system at 117 MHz. A block diagram of an accelerating unit is shown and descriptions of various control loops are made (including amplitude control, phase control, and cavity tuning control). Also, a brief overview of the computer interface is given

  16. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  17. Manufacture and analysis of exciter RF generator for proton cyclotron Decy-13

    International Nuclear Information System (INIS)

    Prajitno

    2011-01-01

    Exciter of the RF generator for 13 MeV proton cyclotron have been analyzed and manufactured. RF generator will be used as a source of alternating voltage accelerating of the Decy-13 cyclotron which designed by PTAPB-BATAN. Based on the basic design documents that have been made, the Decy-13 cyclotron will use 1.275 Tesla magnetic field so that the RF generator frequency when using the fourth harmonic is 77.667 MHz. One of the radio frequency signal generation technique where the output frequency is very stable and easy to set up and is currently being developed is the technique of Direct Digital Synthesizer (DDS). DDS technology is an innovative circuit architecture that allows fast and precise frequency manipulation of its output, under full digital control. Prototype of the RF generator exciter that was created using DDS type AD9851 manufactured by Analog Devices with a fundamental frequency of 30 MHz and controlled by the ATmega16 micro controller. To avoid unexpected frequency of its output, the output signal of the DDS is passed to the passive band pass filter circuit. The test results showed that the exciter output frequency range is 2 MHz with center frequency of 77.667 MHz. and stop band -3 dB. While RF power output 10 Watt require 12 V power supply with current 1,6 A. Although the exciter prototype still needs improvement but the results are as expected. (author)

  18. RF Beam Position Monitor for the SNS Ring

    International Nuclear Information System (INIS)

    Vetter, Kurt; Cameron, Peter; Dawson, Craig; Degen, Chris; Kesselman, Martin; Mead, Joseph

    2004-01-01

    The Spallation Neutron Source Ring accumulates 1060 pulses of 38-mA peak current 1-GeV H-minus particles from the Linac through the HEBT line, then delivers this accumulated beam in a single pulse to a mercury target via the RTBT line. The dynamic range over the course of the accumulation cycle is 60 dB. As a result of particle energy distribution the 402.5-MHz RF bunching frequency quickly de-coheres during the first few turns. In order to measure first-turn position a dual-mode BPM has been designed to process 402.5-MHz signal energy during the first few turns then switch to a Baseband mode to process de-cohered energy in the low MHz region. The design has been implemented as a dual mother/daughter board PCI architecture. Both Baseband and RF calibration are included on the RF BPM board. A prototype system has been installed in the SNS Linac

  19. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  1. RF cavity for the Novosibirsk race-track microtron-recuperator

    International Nuclear Information System (INIS)

    Gavrilov, N.; Kuptsov, I.; Kurkin, G.; Mironenko, L.; Petrov, V.; Sedlyarov, I.; Veshcherevich, V.

    1994-01-01

    Geometry, engineering design and characteristics of a 181 MHz RF cavity are described. The cavity has copper clad stainless steel walls and has a Q of 42,000 and a shunt impedance of 8.5 MOhm. The cavities of that type are parts of an RF system of a CW race-track microtron-recuperator (RTMR). 10 refs.; 16 figs.; 1 tab

  2. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  3. RF Breakdown Studies Using a 1.3 GHZ Test Cell

    International Nuclear Information System (INIS)

    Sah, R.; Johnson, R.P.; Neubauer, M.; Conde, M.; Gai, W.; Moretti, A.; Popovic, M.; Yonehara, K.; Byrd, J.; Li, D.; BastaniNejad, M.

    2009-01-01

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Recent studies have shown that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this project we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. A 1.3-GHz RF test cell with replaceable electrodes (e.g. Mo, Cu, Be, W, and Nb) and pressure barrier capable of operating both at high pressure and in vacuum has been designed and built, and preliminary testing has been completed. A series of detailed experiments is planned at the Argonne Wakefield Accelerator. At the same time, computer simulations of the RF Breakdown process will be carried out to help develop a consistent physics model of RF Breakdown. In order to study the effect of the radiofrequency on RF Breakdown, a second test cell will be designed, fabricated, and tested at a lower frequency, most likely 402.5 MHz.

  4. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  5. Rheumatoid factor (RF)

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003548.htm Rheumatoid factor (RF) To use the sharing features on this ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  6. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  7. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  8. Rf power sources

    International Nuclear Information System (INIS)

    Allen, M.A.

    1988-05-01

    This paper covers RF power sources for accelerator applications. The approach has been with particular customers in mind. These customers are high energy physicists who use accelerators as experimental tools in the study of the nucleus of the atom, and synchrotron light sources derived from electron or positron storage rings. This paper is confined to electron-positron linear accelerators since the RF sources have always defined what is possible to achieve with these accelerators. 11 refs., 13 figs

  9. Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.

    Science.gov (United States)

    Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür

    2014-09-01

    The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.

  10. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  11. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Lenci, S.J.; Eisen, E.L.; Dickey, D.L.; Sainz, J.E.; Utay, P.F.; Zaltsman, A.; Lambiase, R.

    2009-01-01

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system

  12. Windows 8 secrets

    CERN Document Server

    Thurrott, Paul

    2012-01-01

    Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

  13. Mastering Windows 7 Deployment

    CERN Document Server

    Finn, Aidan; van Surksum, Kenneth

    2011-01-01

    Get professional-level instruction on Windows 7 deployment tools Enterprise-level operating system deployment is challenging and requires knowledge of specific tools. It is expected that Windows 7 will be extensively deployed in businesses worldwide. This comprehensive Sybex guide provides thorough coverage of the Microsoft deployment tools that were specifically created for Windows 7, preparing system administrators, MIS professionals, and corporate programmers to tackle the task effectively.Companies worldwide are expected to deploy Windows 7 as their enterprise operating system; system admi

  14. Programming Windows Azure

    CERN Document Server

    Krishnan, Sriram

    2010-01-01

    Learn the nuts and bolts of cloud computing with Windows Azure, Microsoft's new Internet services platform. Written by a key member of the product development team, this book shows you how to build, deploy, host, and manage applications using Windows Azure's programming model and essential storage services. Chapters in Programming Windows Azure are organized to reflect the platform's buffet of services. The book's first half focuses on how to write and host application code on Windows Azure, while the second half explains all of the options you have for storing and accessing data on the plat

  15. Beginning Windows 8

    CERN Document Server

    Halsey, Mike

    2012-01-01

    Windows 8 has been described by Microsoft as its 'boldest' Windows release ever. Beginning Windows 8 takes you through the new features and helps you get more out of the familiar to reveal the possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes with it. From tips and tweaks to easy-to-follow guides and d

  16. Windows 8 tweaks

    CERN Document Server

    Sinchak, Steve

    2013-01-01

    Acres of Windows 8 tweaks from a Microsoft MVP and creator of Tweaks.com! From a Microsoft MVP, who is also the savvy creator of Tweaks.com, comes this ultimate collection of Windows 8 workarounds. Steve Sinchak takes you way beyond default system settings, deep under the hood of Windows 8, down to the hidden gems that let you customize your Windows 8 system like you wouldn't believe. From helping you customize the appearance to setting up home networking, sharing media, and squeezing every ounce of performance out of the OS, this book delivers. Get ready to rock and roll with Wind

  17. RF Energy Harvesting Peel-and-Stick Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher [PARC; Schwartz, David; Daniel, George; Lee, Joseph

    2017-08-29

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.

  18. Peel-and-Stick Sensors Powered by Directed RF Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph; Schwartz, David

    2017-08-30

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm

  19. HOM Coupler Optimisation for the Superconducting RF Cavities in ESS

    CERN Document Server

    Ainsworth, R; Calaga, R

    2012-01-01

    The European Spallation Source (ESS) will be the world’s most powerful next generation neutron source. It consists of a linear accelerator, target, and instruments for neutron experiments. The linac is designed to accelerate protons to a final energy of 2.5 GeV, with an average design beam power of 5 MW, for collision with a target used to produce a high neutron flux. A section of the linac will contain Superconducting RF (SCRF) cavities designed at 704 MHz. Beam induced HOMs in these cavities may drive the beam unstable and increase the cryogenic load, therefore HOM couplers are installed to provide sufficient damping. Previous studies have shown that these couplers are susceptible to multipacting, a resonant process which can absorb RF power and lead to heating effects. This paper will show how a coupler suffering from multipacting has been redesigned to limit this effect. Optimisation of the RF damping is also discussed.

  20. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Hoffert, W.J.; Boyd, T.J.

    1979-01-01

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-1 0 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  1. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  2. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  3. Comparison of 864 and 935 MHz microwave radiation effects on cell culture

    International Nuclear Information System (INIS)

    Pavicic, I.; Trosic, I.; Sarolic, A.

    2005-01-01

    The aim of our study was to evaluate and compare the effect of 864 and 935 MHz microwave radiation on proliferation, colony forming and viability of Chinese hamster lung cells, cell line V79. Cell cultures were exposed both to the 864 MHz microwave field in transversal electromagnetic mode cell (TEM-cell) and to the 935 MHz field in Gigahertz transversal electromagnetic mode cell (GTEM-cell) for 1, 2 and 3 hours. Philips PM 5508 generator connected with a signal amplifier generated the frequency of 864 MHz, whereas Hewlett Packard HP8657A signal generator was used to generate the frequency of 935 MHz. The average specific absorption rate (SAR) was 0.08 W/kg for 864 MHz and 0.12 W/kg for 935 MHz. To determine the cell growth, V79 cells were plated in the concentration of 1x10 4 cells per milliliter of nutrient medium. Cells were cultured in a humidified atmosphere at 37 degrees of C in 5% CO 2 . Cell proliferation was determined by cell counts for each hour of exposure during the five post-exposure days. To identify colony-forming ability, cells were cultivated in the concentration of 40 cells/mL of medium and incubated as described above. Colony-forming ability was assessed for each exposure time by colony count on post-exposure day 7. Trypan blue exclusion test was used to determine cell viability. On post-exposure day 3, the growth curve of 864 MHz irradiated cells showed a significant decrease (p less than 0.05) after 2 and 3 hours of exposure in comparison with control cells. Cells exposed to 935 MHz radiation showed a significant decrease (p less than 0.05) after 3 hours of exposure on post-exposure day 3. Both the colony-forming ability and viability of 864 MHz and 935 MHz exposed cells did not significantly differ from matched control cells. In conclusion, both applied RF/MW fields have shown similar effects on cell culture growth, colony forming and cell viability of the V79 cell line.(author)

  4. Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors

    Directory of Open Access Journals (Sweden)

    Antwi Nimo

    2015-04-01

    Full Text Available In this paper, analytical modeling of passive rectifying circuits and the harvesting of electromagnetic (EM power from intentionally generated as well as from ubiquitous sources are presented. The presented model is based on the linearization of rectifying circuits. The model provides an accurate method of determining the output characteristics of rectifying circuits. The model was verified with Advance Design System (ADS Harmonic balance (HB simulations and measurements. The results from the presented model were in agreement with simulations and measurements. Consequently design considerations and trade-off of radio frequency (RF harvesters are discussed. To verify the exploitation of ambient RF power sources for operation of sensors, a dual-band antenna with a size of ~λ/4 at 900MHz and a passive dual-band rectifier that is able to power a commercial Thermo-Hygrometer requiring ~1.3V and 0.5MΩ from a global system for mobile communications (GSM base station is demonstrated. The RF power delivered by the receiving dual-band antenna at a distance of about 110 m from the GSM base station ranges from -27 dBm to -50 dBm from the various GSM frequency bands. Additionally, wireless range measurements of the RF harvesters in the industrial, scientific and medical (ISM band 868MHz is presented at indoor conditions.

  5. Development of 650 MHz (β=0.9) single-cell SCRF cavity

    International Nuclear Information System (INIS)

    Bagre, M.; Jain, V.; Yedle, A.; Maurya, T.; Yadav, A.; Puntambekar, A.; Goswami, S.G.; Choudhary, R.S.; Sandha, S.; Dwivedi, J.; Kane, G.V.; Mahawar, A.; Mohania, P.; Shrivastava, P.; Sharma, S.; Gupta, R.; Sharma, S.D.; Joshi, S.C.; Mistri, K.K.; Prakash, P.N.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology has initiated the work on development of Superconducting Radio Frequency (SCRF) cavities and associated technologies as part of R and D activities for upcoming Spallation Neutron Source (SNS) project involving superconducting Linear Accelerator (LINAC). It is planned to use 650 MHz SCRF cavities for the medium and high energy section of the proposed LINAC. Under Indian Institution Fermilab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology is also working on development of 650 MHz (β=0.9) SCRF cavities proposed to be used in the high energy section of Project-X at FNAL. The work has been initiated with design and development of 650 MHz single cell SCRF cavity. FE analysis was done to estimate change in frequency with temperature as well as to estimate the frequency of the cavity at different cavity manufacturing stages. The development cycle comprises of design and manufacturing of forming tooling, machining, welding and RF measurement fixtures as well as design for manufacturing. The half-cell and beam tubes forming and machining of all parts were done using in-house facilities. The Electron beam welding was carried out at Inter-University Accelerator Centre (IUAC), New Delhi under a MoU. One 650 MHz single cell SCRF cavity has been recently manufactured. In this paper we present the development efforts on manufacturing and pre-qualification of 650 MHz (β=0.9) single cell SCRF cavity. (author)

  6. Color Wheel Windows

    Science.gov (United States)

    Leonard, Stephanie

    2012-01-01

    In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

  7. Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  8. The 200 MHz accelerating structure for UNK

    International Nuclear Information System (INIS)

    Katalev, V.V.; Kovalev, S.S.; Kudryavtsev, V.G.; Sulygin, I.I.

    1992-01-01

    To accelerate a high-intensity proton beam, 7 MV and 12 MV RF voltage per turn is required for the first and second rings of the UNK, respectively. The accelerating structure is developed following the modular principle. Each unit consists of two cylinder-shaped single-cell cavities which are fed by their own 850 KW RF power amplifier via a 3 dB hybrid. The first ring of the UNK contains 8 RF units, the second one contains 16 RF units. All RF equipment with the exception of a power amplifiers designed and being manufactured at IHEP. The results of the unit tests made at the lab are described. (author) 7 refs.; 3 figs.; 1 tab

  9. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  10. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Jukka [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)], E-mail: Jukka.Luukkonen@uku.fi; Hakulinen, Pasi; Maeki-Paakkanen, Jorma [Department of Environmental Health, National Public Health Institute, P.O. Box 95, FI-70701 Kuopio (Finland); Juutilainen, Jukka; Naarala, Jonne [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2009-03-09

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR.

  11. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    International Nuclear Information System (INIS)

    Luukkonen, Jukka; Hakulinen, Pasi; Maeki-Paakkanen, Jorma; Juutilainen, Jukka; Naarala, Jonne

    2009-01-01

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR

  12. A wearable RF sensor on fabric substrate for pulmonary edema monitoring

    KAUST Repository

    Tayyab, Muhammad; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    We propose a radio frequency (RF) sensor built on a fabric textile substrate for pulmonary edema monitoring. The 37-port RF sensor is designed and optimized to operate at 60 MHz with a low input power of 1 mW. By applying the least squares (LS) method, an equation was obtained for dielectric constant estimation using the transmission coefficient of each RF sensor port. The simulated errors are estimated for normal lung, edema and emphysema infected lung cases using a human chest model with an average error of 0.57%. Inkjet printing of the proposed design is then discussed.

  13. A wearable RF sensor on fabric substrate for pulmonary edema monitoring

    KAUST Repository

    Tayyab, Muhammad

    2017-11-30

    We propose a radio frequency (RF) sensor built on a fabric textile substrate for pulmonary edema monitoring. The 37-port RF sensor is designed and optimized to operate at 60 MHz with a low input power of 1 mW. By applying the least squares (LS) method, an equation was obtained for dielectric constant estimation using the transmission coefficient of each RF sensor port. The simulated errors are estimated for normal lung, edema and emphysema infected lung cases using a human chest model with an average error of 0.57%. Inkjet printing of the proposed design is then discussed.

  14. Final Technical Report on STTR Project DE-FG02-02ER86145 Pressurized RF Cavities for Muon Ionization Cooling

    International Nuclear Information System (INIS)

    Rolland Johnson

    2006-01-01

    This project was to design and build an RF test cell (TC), which could be operated at 800 MHz, filled with high pressure gases including hydrogen, at temperatures down to that of liquid nitrogen, in strong magnetic fields, in a strong radiation environment, and with interchangeable electrodes, in order to examine the use of high-pressure RF cavities for muon beam cooling

  15. First Results of the IOT Based 300 kW 500 MHz Amplifier for the Diamond Light Source

    CERN Document Server

    Jensen, Morten; Maddock, Matt; Müller, Marc; Rains, Simon; Watkins, Alun V

    2005-01-01

    We present the first RF measurements of the IOT based 300 kW 500 MHz amplifier for the Diamond Light Source. Four 80 kW IOTs are combined using a waveguide combiner to achieve the RF requirement of up to 300 kW for each of three superconducting cavities for the main storage ring. The IOTs are protected by a full power circulator and a 300 kW ferrite RF load. This is the first time IOTs will be used for a synchrotron light source. This paper gives an overview of the design of the Thales amplifiers and IOTs with commissioning results including measurements of key components and overall RF performance following factory tests and the installation of the first unit

  16. High power tests of beryllium oxide windows to the lower hybrid current drive launcher in JET

    International Nuclear Information System (INIS)

    Ekedahl, A.; Brandon, M.; Finburg, P.

    1999-01-01

    The vacuum windows to the 3.70 GHz Lower Hybrid Current Drive (LHCD) system in JET were originally designed to withstand 350 kW for 20 s with VSWR ≤ 1.8. High power RF tests of the windows have been carried out in the LHCD test facility at JET. All windows that were tested could operate at 500 kW for 10 s in a matched load. Two windows passed an endurance test at 250 kW for 20 s with the windows terminated in a short circuit. One window also passed this endurance test without active cooling. The results show that this type of window can be used in a new advanced launcher, as proposed for ITER, in which the output power from each klystron (P ≤ 500 kW) will be transmitted through one waveguide and one vacuum window. (author)

  17. The FELIX RF system

    International Nuclear Information System (INIS)

    Manintveld, P.; Delmee, P.F.M.; Geer, C.A.J. van der; Meddens, B.J.H.; Meer, A.F.G. van der; Amersfoort, P.W. van

    1992-01-01

    The performance of the RF system for the Free Electron Laser for Infrared eXperiments (FELIX) is discussed. The RF system provides the input power for a triode gun (1 GHz, 100 W), a prebuncher (1 GHz, 10 kW), a buncher (3 GHz, 20 MW), and two linacs (3 GHz, 8 MW each). The pulse length in the system is 20 μs. The required electron beam stability imposes the following demands on the RF system: a phase stability better than 0.3 deg for the 1 GHz signals and better than 1 deg for the 3 GHz signals; the amplitude stability has to be better than 1% for the 1 GHz and better than 0.2% for the 3 GHz signals. (author) 3 refs.; 6 figs

  18. Experimental investigation of heating phenomena in linac mechanical interfaces due to RF field penetration

    International Nuclear Information System (INIS)

    Fazio, M.V.; Reid, D.W.; Potter, J.M.

    1981-01-01

    In a high duty-factor, high-current, drift-tube linear accelerator, a critical interface exists between the drift-tube stem and the tank wall. This interface must provide vacuum integrity and RF continuity, while simultaneously allowing alignment flexibility. Because of past difficulties with RF heating of vacuum bellows and RF joints encountered by others, a paucity of available information, and the high reliability requirement for the Fusion Materials Irradiation Test (FMIT) accelerator, a program was initiated to study the problem. Because RF heating is the common failure mode, an attempt was made to find a correlation between the drift-tube-stem/linac-tank interface geometry and RF field penetration from the tank into the interface region. Experiments were performed at 80 MHz on an RF structure designed to simulate the conditions to which a drift-tube stem and vacuum bellows are exposed in a drift-tube linac. Additional testing was performed on a 367-MHz model of the FMIT prototype drift-tube linac. Experimental results, and a method to predict excessive RF heating, is presented. An experimentally tested solution to the problem is discussed

  19. Effects of 1950 MHz radiofrequency electromagnetic fields on Aβ processing in human neuroblastoma and mouse hippocampal neuronal cells

    International Nuclear Information System (INIS)

    Park, Jeongyeon; Kwon, Jong Hwa; Kim, Nam; Song, Kiwon

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease leading to progressive loss of memory and other cognitive functions. One of the well-known pathological markers of AD is the accumulation of amyloid-beta protein (Aβ), and its plaques, in the brain. Recent studies using Tg-5XFAD mice as a model of AD have reported that exposure to radiofrequency electromagnetic fields (RF-EMF) from cellular phones reduced Aβ plaques in the brain and showed beneficial effects on AD. In this study, we examined whether exposure to 1950 MHz RF-EMF affects Aβ processing in neural cells. We exposed HT22 mouse hippocampal neuronal cells and SH-SY5Y human neuroblastoma cells to RF-EMF (SAR 6 W/kg) for 2 h per day for 3 days, and analyzed the mRNA and protein expression of the key genes related to Aβ processing. When exposed to RF-EMF, mRNA levels of APP, BACE1, ADAM10 and PSEN1 were decreased in HT22, but the mRNA level of APP was not changed in SH-SY5Y cells. The protein expression of APP and BACE1, as well as the secreted Aβ peptide, was not significantly different between RF-EMF–exposed 7w-PSML, HT22 and SH-SY5Y cells and the unexposed controls. These observations suggest that RF-EMF exposure may not have a significant physiological effect on Aβ processing of neural cells in the short term. However, considering that we only exposed HT22 and SH-SY5Y cells to RF-EMF for 2 h per day for 3 days, we cannot exclude the possibility that 1950 MHz RF-EMF induces physiological change in Aβ processing with long-term and continuous exposure.

  20. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  1. Conventional RF system design

    International Nuclear Information System (INIS)

    Puglisi, M.

    1994-01-01

    The design of a conventional RF system is always complex and must fit the needs of the particular machine for which it is planned. It follows that many different design criteria should be considered and analyzed, thus exceeding the narrow limits of a lecture. For this reason only the fundamental components of an RF system, including the generators, are considered in this short seminar. The most common formulas are simply presented in the text, while their derivations are shown in the appendices to facilitate, if desired, a more advanced level of understanding. (orig.)

  2. GA microwave window development

    International Nuclear Information System (INIS)

    Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

    1994-10-01

    The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE 11 mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec

  3. Electromagnetic radiation-2450 MHz exposure causes cognition ...

    Indian Academy of Sciences (India)

    83

    Electromagnetic radiation-2450 MHz exposure causes cognition deficit with mitochondrial. 1 ... decrease in levels of acetylcholine, and increase in activity of acetyl ...... neuronal apoptosis and cognitive disturbances in sevoflurane or propofol ...

  4. Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module

    NARCIS (Netherlands)

    Baltus, P.G.M.; Bezooijen, van A.; Huijsing, J.H.; Steyaert, M.; Roermund, van A.H.M.

    2002-01-01

    This paper describes the design considerations for RF power amplifiers in general, including trends in systems, linearity and efficiency, the PA environment, implementation is sues and technology. As an example a triple-band (900/1800/1900MHz) dual mode (GSMIEdge) power amplifier module is described

  5. Meqalac Results - Multichannel Rf Acceleration of Nitrogen-Ions to 1 Mev

    NARCIS (Netherlands)

    Wojke, R. G. C.; Bannenberg, J. G.; Vijftigschild, A. J. M.; Giskes, F. G.; Ficke, H. G.; Klein, H.; Thomae, R. W.; Schempp, A.; Weis, T.; van Amersfoort, P. W.; Urbanus, W. H.

    1991-01-01

    In the MEQALAC (Multiple Electrostatic Quadrupole Linear Accelerator) multiple N+ ion beams are accelerated in 32 rf gaps, which are part of a modified interdigital-H-resonator operating at 25 MHz. The transverse focusing of the intense ion beams is achieved by means of sets of miniaturized

  6. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  7. RF cavities of CESAR (2 MeV electron storage ring).

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1968-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  8. CESAR, 2 MeV electron storage ring; construction period; RF cavity.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    RF cavity. There were 2 identical ones: one for stacking (accumulation) procedures; the other for scanning with "empty buckets" (measurement of beam density distribution). Both were operated at h=2 (2nd harmonic of the revolution frequency), i.e. at around 24.4 MHz. Voltage, frequency and phase were programmed with analogue circuits.

  9. Paschen like behavior in argon RF discharge

    International Nuclear Information System (INIS)

    Al-Jwaady, Y. I.

    2011-01-01

    A 13.56 MHz radio frequency inductively coupled discharge system is used in this work to study the relation between Argon gas pressure in the discharge chamber and the threshold breakdown RF power needed to create the discharge. Experimental results indicated that although the data involve some features related to the traditional Paschen relation used in Dc discharge, this relation cannot provide a quantitative description of experimental data. For such reason, a modified from Paschen relation is suggested. The modified relation provides good agreement with experimental data. Furthermore, it seems that the Paschen relation will have significant reflections on the behavior of the transit process from capacitive to inductive discharge. This is demonstrated by studying the transit region. (author)

  10. Tha AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.; Cameron, P.; Damn, R.

    1988-01-01

    A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier

  11. Windows 8 simplified

    CERN Document Server

    McFedries, Paul

    2012-01-01

    The easiest way for visual learners to get started with Windows 8 The popular Simplified series makes visual learning easier than ever, and with more than 360,000 copies sold, previous Windows editions are among the bestselling Visual books. This guide goes straight to the point with easy-to-follow, two-page tutorials for each task. With full-color screen shots and step-by-step directions, it gets beginners up and running on the newest version of Windows right away. Learn to work with the new interface and improved Internet Explorer, manage files, share your computer, and much more. Perfect fo

  12. Windows 95 Beslutningsguide

    DEFF Research Database (Denmark)

    Sørensen, Jens Otto

    1996-01-01

    Mange virksomheder der bruger pc'er står netop nu over for valget: Skal vi fortsætte med DOS/Windows 3.x som operativsystem, eller skal vi skifte til efterfølgeren Windows 95? Skal vi/kan vi skifte successivt, eller skal det være en "alt eller intet beslutning". Hvornår er det rigtige tidspunkt...... at skifte? Denne artikel vil forsøge at give en baggrundsviden om Windows 95, der kan hjælpe virksomhederne igennem denne beslutningsfase....

  13. Rails on Windows

    CERN Document Server

    Hibbs, Curt

    2007-01-01

    It's no secret that the entire Ruby onRails core team uses OS X as their preferreddevelopment environment. Becauseof this, it is very easy to findauthoritative information on the webabout using Rails on OS X. But the truthis that Windows developers using Railsprobably outnumber those using otherplatforms. A Windows development environmentcan be just as productive asany other platform. This is a guide to developing with Rubyon Rails under Windows. It won't teachyou how to write Ruby on Rails web applications,but it will show you what toolsto use and how to set them up to createa complete Rail

  14. The Efficient Windows Collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  15. Windows 7 resource kit

    CERN Document Server

    Northrup, Tony; Honeycutt, Jerry; Wilson, Ed

    2009-01-01

    In-depth and comprehensive, this RESOURCE KIT delivers the information you need to administer your Windows 7 system. You get authoritative technical guidance from those who know the technology best-Microsoft Most Valuable Professionals (MVPs) and the Windows 7 product team-along with essential scripts and resources. In addition, "Direct from the Source" sidebars offer deep insights and troubleshooting tips from the Windows 7 team. Get expert guidance on how to: Use Microsoft Deployment Toolkit best practices and tools. Plan user-state migration and test application compatibility.

  16. Providing primary standard calibrations beyond 20 MHz

    International Nuclear Information System (INIS)

    Bickley, C J; Zeqiri, B; Robinson, S P

    2004-01-01

    The number of applications of medical ultrasound utilising frequencies in excess of 20 MHz has shown a consistent increase over recent years. Coupled with the commercial availability of wide-bandwidth hydrophones whose response extends beyond 40 MHz, this has driven a growing need to develop hydrophone calibration techniques at elevated frequencies. The current National Physical Laboratory primary standard method of calibrating hydrophones is based on an optical interferometer. This has been in operation for around 20 years and provides traceability over the frequency range of 0.3 to 20 MHz. More recently, calibrations carried out using the interferometer have been extended to 60 MHz, although the uncertainties associated with these calibrations are poor, being in excess of ±20% at high frequencies. Major contributions to the degraded calibration uncertainties arise from poor signal-to-noise at higher frequencies, the frequency response of the photodiodes used and the noise floor of the instrument. To improve the uncertainty of hydrophone calibrations above 20 MHz, it has been necessary to build and commission a new interferometer. Important features of the new primary standard are its use of a higher power laser to improve the signal-to-noise ratio, along with photodiodes whose greater bandwidth to improve the overall frequency response. This paper describes the design of key aspects of the new interferometer. It also presents some initial results of the performance assessment, including a detailed comparison of calibrations of NPL reference membrane hydrophones, undertaken using old and new interferometers for calibration up to 40 MHz

  17. The TESLA RF System

    International Nuclear Information System (INIS)

    Choroba, S.

    2003-01-01

    The TESLA project proposed by the TESLA collaboration in 2001 is a 500 to 800GeV e+/e- linear collider with integrated free electron laser facility. The accelerator is based on superconducting cavity technology. Approximately 20000 superconducting cavities operated at 1.3GHz with a gradient of 23.4MV/m or 35MV/m will be required to achieve the energy of 500GeV or 800GeV respectively. For 500GeV ∼600 RF stations each generating 10MW of RF power at 1.3GHz at a pulse duration of 1.37ms and a repetition rate of 5 or 10Hz are required. The original TESLA design was modified in 2002 and now includes a dedicated 20GeV electron accelerator in a separate tunnel for free electron laser application. The TESLA XFEL will provide XFEL radiation of unprecedented peak brilliance and full transverse coherence in the wavelength range of 0.1 to 6.4nm at a pulse duration of 100fs. The technology of both accelerators, the TESLA linear collider and the XFEL, will be identical, however the number of superconducting cavities and RF stations for the XFEL will be reduced to 936 and 26 respectively. This paper describes the layout of the entire RF system of the TESLA linear collider and the TESLA XFEL and gives an overview of its various subsystems and components

  18. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  19. Beyond the RF photogun

    NARCIS (Netherlands)

    Luiten, O.J.; Rozenzweig, J.; Travish, G.

    2003-01-01

    Laser-triggered switching of MV DC voltages enables acceleration gradients an order of magnitude higher than in state-of-the-art RF photoguns. In this way ultra-short, high-brightness electron bunches may be generated without the use of magnetic compression. The evolution of the bunch during the

  20. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  1. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  2. SAF for Windows

    DEFF Research Database (Denmark)

    Hansen, Timme

    2001-01-01

    SAF for Windows er et computerprogram til parametrisk konstruktion af translationsskaller. Skaloverfladernes tredimensionelle, facetterede form fremkommer ved en kombination af to todimensionelle formbestemmende kurver, som kan vælges og redigeres af brugeren. Programmet kan udfolde de genererede...

  3. Investigating the effect of coil model losses on computational electromagnetic exposure of an ASTM phantom at 64 MHz MRI.

    Science.gov (United States)

    Kozlov, Mikhail; Horner, Marc; Kainz, Wolfgang; Angelone, Leonardo M

    2017-07-01

    The goal of this work is to investigate the effect of coil losses on the electromagnetic field generated in an ASTM phantom by a birdcage coil. The study was based on different numerical implementations of an RF body coil at 64 MHz, using the same 3D EM and RF circuit co-simulation procedure. The coil quality factor was evaluated with respect to losses due to power feed mismatch and to resistive losses of the coil components. The results of the study showed that the magnetic field at the coil iso-center, normalized to the square root of the whole body specific absorption rate, depends on the coil quality factor.

  4. RF tuning system for superconducting cyclotron at VECC

    International Nuclear Information System (INIS)

    Mandal, Aditya; Som, S.; Pal, Saikat; Seth, S.; Mukherjee, A.K.; Gangopadhyay, P.; Prasad, J.S.; Raj, P.R.; Manna, S.K.; Banerjee, M.; Krishnaiah, K.V.; Maskawade, S.; Saha, M.S.; Biswas, S.; Panda, Umashakar

    2009-01-01

    The RF system of Superconducting cyclotron at VECC has operational frequency 9-27 MHz. It has three numbers of tunable rf amplifier cavities as well as six numbers of tunable Main resonant cavities. RF tuning system takes care of movement of nine stepper motor based sliding short movement and hydraulic driven three coupling capacitors and three trimmer capacitors. The PC-based stepper motor controlled sliding short movement system has positional accuracy of around 20 micron and PC-based hydraulically driven couplers and trimmers system has 10 micron positional accuracy. The RF power is capacitively coupled to the dee (accelerating electrode) of the main resonant cavity through Coupler (Coupling capacitor). The coupling capacitor is used to match the impedance of the main resonant cavity to the 50 Ohm output impedance of final RF power amplifier. Trimmer capacitor operates in closed loop for the adjustment of cavity phase variation arising due to temperature variation and beam loading of the cavity. Coupler can travel 100 mm. and trimmer has 20 mm. travels. A PLC based PID control system has been developed for positional control of the coupler and trimmer. One position control mode of trimmer is same as coupling capacitor and another is velocity control mode. Velocity control mode operates in close-loop. The positional data of different frequencies of nine stepper motors and three coupling capacitors are stored in a database. (author)

  5. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  6. Windows Security patch required

    CERN Multimedia

    3004-01-01

    This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

  7. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  8. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  9. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  10. Voltage uniformity study in large-area reactors for RF plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sansonnens, L.; Pletzer, A.; Magni, D.; Howling, A.A.; Hollenstein, C. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Schmitt, J.P.M. [Balzers Process Systems, Palaiseau (France)

    1996-09-01

    Non-uniform voltage distribution across the electrode area results in inhomogeneous thin-film RF plasma deposition in large area reactors. In this work, a two-dimensional analytic model for the calculation of the voltage distribution across the electrode area is presented. The results of this model are in good agreement with measurements performed without plasma at 13.56 MHz and 70 MHz in a large area reactor. The principal voltage inhomogeneities are caused by logarithmic singularities in the vicinity of RF connections and not by standing waves. These singularities are only described by a two-dimensional model and cannot be intuitively predicted by analogy to a one-dimensional case. Plasma light emission measurements and thickness homogeneity studies of a-Si:H films show that the plasma reproduces these voltage inhomogeneities. Improvement of the voltage uniformity is investigated by changing the number and position of the RF connections. (author) 13 figs., 20 refs.

  11. The RF power system for the SNS linac

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Reass, W.A.

    1998-01-01

    The initial goal of the SNS project is to produce a 1 MW average beam of protons with short pulse lengths onto a neutron-producing target. The objective of the SNS RF system is to generate 117 MW peak of pulsed 805 MHz microwave power with an accelerated beam pulse length of 1.04 ms at a 60 Hz repetition rate. The power system must be upgradeable in peak power to deliver 2 MW average power to the neutron target. The RF system also requires about 3 MW peak of RF power at 402.5 MHz, but that system is not discussed here. The design challenge is to produce an RF system at minimum cost, that is very reliable and economical to operate. The combination of long pulses and high repetition rates make conventional solutions, such as the pulse transformer and transmission line method, very expensive. The klystron, with a modulating anode, and 1.5 MW of peak output power is the baseline RF amplifier, an 56 are required in the baseline design. The authors discuss four power system configurations that are the candidates for the design. The baseline design is a floating-deck modulating anode system. A second power system being investigated is the fast-pulsed power supply, that can be turned on and off with a rise time of under 0.1 ms. This could eliminate the need for a modulator, and drastically reduce the energy storage requirements. A third idea is to use a pulse transformer with a series IGBT switch and a bouncer circuit on the primary side, as was done for the TESLA modulator. A fourth method is to use a series IGBT switch at high voltage, and not use a pulse transformer. The authors discuss the advantages and problems of these four types of power systems, but they emphasize the first two

  12. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  13. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  14. APS Storage Ring Monopulse RF BPM Upgrade

    Science.gov (United States)

    Lill, R.; Pietryla, A.; Norum, E.; Lenkszus, F.

    2004-11-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source in its ninth year of operation. The storage ring monopulse radio frequency (rf) beam position monitor (BPM) was designed to measure single-turn and multi-turn beam positions for operations and machine physics studies. Many of the components used in the original design are obsolete and costly to replace. In this paper we present a proposal to upgrade the monopulse rf BPMs in which the existing system hardware is repartitioned and the aging data acquisition system is replaced. By replacing only the data acquisition system, we will demonstrate a cost-effective approach to improved beam stability, reliability, and enhanced postmortem capabilities. An eight-channel ADC/digitizer VXI board with sampling rate of up to 105 MHz (per channel) and 14-bit resolution coupled with a field-programmable gate array and embedded central processing will provide the flexibility to revitalize this system for another decade of operation. We will discuss the upgrade system specifications, design, and prototype test results.

  15. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    International Nuclear Information System (INIS)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-01-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10 18 /m 3 , at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  16. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    Science.gov (United States)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  17. Stereotactic technique of RF antenna implantation for brain hyperthermia

    International Nuclear Information System (INIS)

    Takahashi, H.; Uzuka, T.; Grinev, I.; Tanaka, R.

    2005-01-01

    Full text: We have tried 13.56 MHz RF interstitial hyperthermia for the patients with malignant brain tumor. The purpose of this report is to assess the complication risk rate and the achievement yield of stereotactic procedure for RF antenna implantation into the deep-seated brain tumor. One hundred and twenty-five patients underwent 144 stereotactic RF antenna implantation procedures for interstitial hyperthermia for malignant brain tumors at Niigata University, Japan. One hundred and eight patients had malignant gliomas (54 primary, 54 recurrent), 24 had metastatic tumors, 5 had malignant lymphomas, 5 had meningiomas and 2 had miscellaneous tumors. Indication of this trial was the tumor with inoperative deep-seated tumor or elderly patients. RF antennas and catheters for thermistor probes were set into the tumor with stereotactic apparatus under local anesthesia. Postoperative CT scan underwent in order to assess the accuracy of antenna setting and to check the complications. The hyperthermic treatment underwent with a single antenna in 85 patients, 2 antennas in 43 patients, 3 in 2, 4 in 12, 5 in 1 and 6 antennas in 1 patient. Appropriate RF antenna positioning was obtained in 138 of 144 procedures (95.8 %). Six patients incurred complications (4.2 %). Three patients suffered intratumoral hemorrhage. RF antennas were set into the inappropriate position in 2 cases, hyperthermia was not achieved. One patient occurred with liquorrhea. However, six patients (4.2 %) incurred complications, stereotactic RF antenna setting was a safe and reliable technique of the hyperthermic treatment for the patients with malignant brain tumors. (author)

  18. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  19. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  20. Simulation of the High-Pass Filter for 56MHz Cavity for RHIC

    International Nuclear Information System (INIS)

    Wu, Q.; Ben-Zvi, I.

    2010-01-01

    The 56MHz Superconducting RF (SRF) cavity for RHIC places high demands High Order Mode (HOM) damping, as well as requiring a high field at gap with fundamental mode frequency. The damper of 56MHz cavity is designed to extract all modes to the resistance load outside, including the fundamental mode. Therefore, the circuit must incorporate a high-pass filter to reflect back the fundamental mode into the cavity. In this paper, we show the good frequency response map obtained from our filter's design. We extract a circuit diagram from the microwave elements that simulate well the frequency spectrum of the finalized filter. We also demonstrate that the power dissipation on the filter over its frequency range is small enough for cryogenic cooling.

  1. Coupler Development and Gap Field Analysis for the 352 MHz Superconducting CH-Cavity

    CERN Document Server

    Liebermann, H; Ratzinger, U; Sauer, A C

    2004-01-01

    The cross-bar H-type (CH) cavity is a multi-gap drift tube structure based on the H-210 mode currently under development at IAP Frankfurt and in collaboration with GSI. Numerical simulations and rf model measurements showed that the CH-type cavity is an excellent candidate to realize s.c. multi-cell structures ranging from the RFQ exit energy up to the injection energy into elliptical multi-cell cavities. The reasonable frequency range is from about 150 MHz up to 800 MHz. A 19-cell, β=0.1, 352 MHz, bulk niobium prototype cavity is under development at the ACCEL-Company, Bergisch-Gladbach. This paper will present detailed MicroWave Studio simulations and measurements for the coupler development of the 352 MHz superconducting CH cavity. It will describe possibilities for coupling into the superconducting CH-Cavity. The development of the coupler is supported by measurement on a room temperature CH-copper model. We will present the first results of the measurements of different couplers, e.g. capacitiv...

  2. High performance sapphire windows

    Science.gov (United States)

    Bates, Stephen C.; Liou, Larry

    1993-02-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  3. RF Gun Optimization Study

    International Nuclear Information System (INIS)

    Alicia Hofler; Pavel Evtushenko

    2007-01-01

    Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. A genetic algorithm (GA) has been successfully used to optimize DC photo injector designs at Cornell University [1] and Jefferson Lab [2]. We propose to apply GA techniques to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize a system that has been benchmarked with beam measurements and simulation

  4. Pulsed rf operation analysis

    International Nuclear Information System (INIS)

    Puglisi, M.; Cornacchia, M.

    1981-01-01

    The need for a very low final amplifier output impedance, always associated with class A operation, requires a very large power waste in the final tube. The recently suggested pulsed rf operation, while saving a large amount of power, increases the inherent final amplifier non linearity. A method is presented for avoiding the large signal non linear analysis and it is shown how each component of the beam induced voltage depends upon all the beam harmonics via some coupling coefficients which are evaluated

  5. RF pulse compression development

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Weaver, J.N.

    1987-10-01

    The body of this paper discusses the theory and some rules for designing a multistage Binary Energy Compressor (BEC) including its response to nonstandard phase coding, describes some proof-of-principle experiments with a couple of low power BECs, presents the design parameters for some sample linear collider rf systems that could possibly use a BEC to advantage and outlines in the conclusion some planned R and D efforts. 8 refs., 26 figs., 4 tabs

  6. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  7. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  8. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    Science.gov (United States)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  9. 53 MHZ Feedforward beam loading compensation in the Fermilab main injector

    International Nuclear Information System (INIS)

    Joseph E Dey et al.

    2003-01-01

    53 MHz feedforward beam loading compensation is crucial to all operations of the Main Injector. Recently a system using a fundamental frequency down converter mixer, a digital bucket delay module and a fundamental frequency up converter mixer were used to produce a one-turn-delay feedforward signal. This signal was then combined with the low level RF signal to the cavities to cancel the transient beam induced voltage. During operation they have shown consistently over 20 dB reduction in side-band voltage around the fundamental frequency during Proton coalescing and over 14 dB in multi-batch antiproton coalescing

  10. Mechanical analysis of a $\\beta=0.09 $ 162.5MHz taper HWR cavity

    OpenAIRE

    Fan, Peiliang; Zhu, Feng; Zhong, Hutianxiang; Quan, Shengwen; Liu, Kexin

    2015-01-01

    One superconducting taper-type half-wave resonator (HWR) with frequency of 162.5MHz, \\b{eta} of 0.09 has been developed at Peking University, which is used to accelerate high current proton ($\\sim$ 100mA) and $D^{+}$($\\sim$ 50mA). The radio frequency (RF) design of the cavity has been accomplished. Herein, we present the mechanical analysis of the cavity which is also an important aspect in superconducting cavity design. The frequency shift caused by bath helium pressure and Lorenz force, and...

  11. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  12. Windows 8.1 bible

    CERN Document Server

    Boyce, Jim; Tidrow, Rob

    2014-01-01

    Windows 8.1 coverage that goes above and beyond all competitors? Serving as an evolutionary update to Windows 8, Windows 8.1 provides critical changes to parts of Windows 8, such as greater customization of the interface and boot operations, return of a 'start button' that reveals apps, greater integration between the two interfaces, and updates to apps. Weighing in at nearly 1000 pages, Windows 8.1 Bible provides deeper Windows insight than any other book on the market. It's valuable for both professionals needing a guide to the nooks and crannies of Windows and regular users wanting a wide

  13. RF properties of 700 MHz, β = 0.42 elliptical cavity for high current ...

    Indian Academy of Sciences (India)

    Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, ... has been taken up as a part of the accelerator-driven subcritical system project. ... cavity's peak electric and magnetic fields, power dissipation Pc, quality factor Q and.

  14. RF properties of 700 MHz, β= 0.42 elliptical cavity for high current ...

    Indian Academy of Sciences (India)

    ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator-driven subcritical system ...

  15. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2010-01-01

    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

  16. Microsoft Windows Security Essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    Windows security concepts and technologies for IT beginners IT security can be a complex topic, especially for those new to the field of IT. This full-color book, with a focus on the Microsoft Technology Associate (MTA) program, offers a clear and easy-to-understand approach to Windows security risks and attacks for newcomers to the world of IT. By paring down to just the essentials, beginners gain a solid foundation of security concepts upon which more advanced topics and technologies can be built. This straightforward guide begins each chapter by laying out a list of topics to be discussed,

  17. Microsoft Windows networking essentials

    CERN Document Server

    Gibson, Darril

    2011-01-01

    The core concepts and technologies of Windows networking Networking can be a complex topic, especially for those new to the field of IT. This focused, full-color book takes a unique approach to teaching Windows networking to beginners by stripping down a network to its bare basics, thereby making each topic clear and easy to understand. Focusing on the new Microsoft Technology Associate (MTA) program, this book pares down to just the essentials, showing beginners how to gain a solid foundation for understanding networking concepts upon which more advanced topics and technologies can be built.

  18. 1950MHz Radio Frequency Electromagnetic Radiation Inhibits Testosterone Secretion of Mouse Leydig Cells.

    Science.gov (United States)

    Lin, Yan-Yun; Wu, Tao; Liu, Jun-Ye; Gao, Peng; Li, Kang-Chu; Guo, Qi-Yan; Yuan, Meng; Lang, Hai-Yang; Zeng, Li-Hua; Guo, Guo-Zhen

    2017-12-23

    More studies that are focused on the bioeffects of radio-frequency (RF) electromagnetic radiation that is generated from the communication devices, but there were few reports with confirmed results about the bioeffects of RF radiation on reproductive cells. To explore the effects of 1950 MHz RF electromagnetic radiation (EMR) on mouse Leydig (TM3) cells. TM3 cells were irradiated or sham-irradiated continuously for 24 h by the specific absorption rate (SAR) 3 W/kg radiation. At 0, 1, 2, 3, 4, and 5 days after irradiation, cell proliferation was detected by cell counting kit-8 (CCK-8) method, cell cycle distribution, percentage of apoptosis, and cellular reactive oxygen species (ROS) were examined by flow cytometry, Testosterone level was measured using enzyme-linked immunosorbent assay (ELISA) assay, messenger ribonucleic acid (mRNA) expression level of steroidogenic acute regulatory protein (StAR) and P450scc in TM3 cells was detected by real-time polymerase chain reaction (PCR). After being irradiated for 24 h, cell proliferation obviously decreased and cell cycle distribution, secretion capacity of Testosterone, and P450scc mRNA level were reduced. While cell apoptosis, ROS, and StAR mRNA level did not change significantly. The current results indicated that 24 h of exposure at 1950 MHz 3 W/kg radiation could cause some adverse effects on TM3 cells proliferation and Testosterone secretion, further studies about the biological effects in the reproductive system that are induced by RF radiation are also needed.

  19. Development of a 352 MHz Cell-Coupled Drift Tube Linac Prototype

    CERN Document Server

    Cuvet, Y; Völlinger, C; Vretenar, M; Gerigk, F

    2004-01-01

    At linac energies above 40 MeV, alternative structures to the conventional Drift Tube Linac can be used to increase efficiency and to simplify construction and alignment. In the frame of the R&D activities for the CERN SPL and Linac4, a prototype of Cell-Coupled Drift Tube Linac (CCDTL) at 352 MHz has been designed and built. This particular CCDTL concept is intended to cover the energy range from 40 to 90 MeV and consists of modules of ~5 m length made of 3-gap DTL tanks linked by coupling cells. The focusing quadrupoles are placed between tanks, and are aligned independently from the RF structure. The CCDTL prototype consists of two half tanks connected by a coupling cell and requires an RF power of 120 kW to achieve the design gradient. RF tests will be made at low and high power, the latter up to a 20% duty cycle. This paper introduces the main features of this CCDTL design and describes the RF and mechanical design of the prototype.

  20. Development of a Solid State RF Amplifier in the kW Regime for Application with Low Beta Superconducting RF Cavities

    CERN Document Server

    Piel, Christian; Borisov, A; Kolesov, Sergej; Piel, Helmut

    2005-01-01

    Projects based on the use of low beta superconducting cavities for ions are under operation or development at several labs worldwide. Often these cavities are individually driven by RF power sources in the kW regime. For an ongoing project a modular 2 kW, 176 MHz unconditionally stable RF amplifier for CW and pulsed operation was designed, built, and tested. Extended thermal analysis was used to develop a water cooling system in order to optimize the performance of the power transistors and other thermally loaded components. The paper will outline the design concept of the amplifier and present first results on the test of the amplifier with a superconducting cavity.

  1. Electron diode oscillators for high-power RF generation

    International Nuclear Information System (INIS)

    Humphries, S.

    1989-01-01

    Feedback oscillators have been used since the invention of the vacuum tube. This paper describes the extension of these familiar circuits to the regime of relativistic electron beam diodes. Such devices have potential application for the generation of high power RF radiation in the range 50-250 MHz, 1-10 GW with 20-60% conversion efficiency. This paper reviews the theory of the oscillator and the results of a design study. Calculations for the four-electrode diode with EGUN and EBQ show that good modulations of 30 kA electron beam at 600 kV can be achieved with moderate field stress on the electrodes. Conditions for oscillation have been studied with an in-house transmission line code. A design for a 7.5 GW oscillator at 200 MHz with 25% conversion efficiency is presented

  2. The RF inlet of the RFQ of IPHI

    International Nuclear Information System (INIS)

    Piquet, O.; Desmons, M.; France, A.

    2005-02-01

    The power supply of the radio frequency quadrupole (RFQ) requires a new type of transition between the WR2300 waveguide and the RFQ cavity. This transition is an impedance transformer with a bottleneck shape that allows the transmission of the power along a 3.7 MHz broad pass-band centered on an operating frequency of 352.2 MHz. This design has allowed us to separate the adjustment of the transition from the setting of the coupling holes in the cavity wall. This whole transition has been tested on the RFQ mockup in order to optimize the diameter of the coupling holes. It appears that an important point for a good coupling is to be sure of good RF contacts between the different components of the transition device. (A.C.)

  3. RF source for proton linear accelerator in Kyoto University

    International Nuclear Information System (INIS)

    Iwashita, Yoshihisa

    1987-01-01

    Construction of a 433 MHz, 7 MeV proton linear accelerator is currently underway in Kyoto University under a three-year plan starting in 1986. The ion source, power source for it, RFQ main unit, WR2100 waveguide and a set of klystrons for RFQ were installed last year, or the first year of the plan, and the power source for the klystrons for RFQ, a set of klystrons for STL, DTL main unit, etc., are planned to be installed this year. Operation has not started yet because of the absence of the power source for the klystrons. Thus this report is focused on the considerations made in selecting the acceleration frequency of 433 MHz, specifications of the klystrons and the structure of the power sources for them. Based on considerations of the efficiency and cost of the accelerating tubes and RF sources to be used, the acceleration frequencies of 433.33 MHz and 1,300 MHz were adopted. The klystron selected is Litton L5773, which has a peak power output of 1.25 Mw, average power output of 75 kW, maximum pulse width of 2,000 μS and duty of 6 percent, and it consists of four cavities. The structure and characteristics of a klystron are also described. (Nogami, K.)

  4. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    International Nuclear Information System (INIS)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-01-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H − ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested

  5. Development of the RF cavity for the SKKUCY-9 compact cyclotron

    Science.gov (United States)

    Shin, Seungwook; Lee, Jongchul; LEE, Byeong-No; Ha, Donghyup; Namgoong, Ho; Chai, Jongseo

    2015-09-01

    A 9 MeV compact cyclotron, named SKKUCY-9, for a radiopharmaceutical compound especially fludeoxyglucose (FDG) production for a positron emission tomography (PET) machine was developed at Sungkyunkwan University. H- ions which are produced from a Penning Ionization Gauge(PIG) ion source, travel through a normal conducting radio frequency (RF) cavity which operates at 83.2 MHz for an acceleration and electro-magnet for a beam focusing until the ions acquire energy of about 9 MeV. For installation at a small local hospital, our SKKUCY-9 cyclotron is developed to be compact and light-weight, comparable to conventional medical purpose cyclotrons. For compactness, we adapted a deep valley and large angle hill type for the electro-magnet design. Normally a RF cavity is installed inside of the empty space of the magnet valley region, which is extremely small in our case. We faced problems such as difficulties of installing the RF cavity, low Q-value. Despite of those difficulties, a compact RF cavity and its system including a RF power coupler to feed amplified RF power to the RF cavity and a fine tuner to compensate RF frequency variations was successfully developed and tested.

  6. Design of large aperture 500 MHz 5-cell superconducting cavity

    International Nuclear Information System (INIS)

    Wei Yelong; Feng Ziqiang; Lu Changwang; Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Mao Dongqing

    2012-01-01

    With the potential application of Energy Recovery Linac (ERL), the superconducting (SC) cavities were developed to deliver much higher current than before. Nowadays, the current of the international SC accelerator designed has already exceeded 100 mA. This paper presents the design of a new 500 MHz 5-cell SC cavity (SINAP 5-cell cavity), in which the parameters r/Q= 515.5 Ω of the fundamental mode and the geometry factor G=275.8 are under an acceptable Radio Frequency (RF) field level. (B peak /E acc =4.31 mT/MV/m and E peak /E acc =2.48). This design employs a larger beam pipe to propagate the Higher Order Modes (HOMs) out of the cavity and increases the damping efficiently for the dangerous HOMs. By simulation technique, it has been found that almost all the dangerous HOMs (including TE 111 , TM 110 , and TM 011 ) can be propagated into the beam pipe and are absorbed by ferrite absorbers, when the beam pile is enlarged. Finally, the loss factor for the new 5-cell cavity is also calculated. (authors)

  7. Connect Global Positioning System RF Module

    Science.gov (United States)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  8. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Paggi, A.; D' Abrusco, R. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected at 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.

  9. Exploring Shop Window Displays

    Science.gov (United States)

    Christopoulou, Martha

    2011-01-01

    Using visual resources from everyday life in art lessons can enrich students' knowledge about the creation of visual images, artifacts, and sites, and develop their critical understanding about the cultural impact of these images and their effects on people's lives. Through examining an exhibition in the windows of Selfridges department store in…

  10. Windows and lighting program

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  11. DEMONSTRATION OF AN ATCA BASED RF CONTROL SYSTEM AT FLASH

    CERN Document Server

    Simrock, S N; Jezynski, T; Koprek, W; Butkowski, L; Jablonski, G W; Jalmuzna, W; Makowski, D R; Piotrowski, A; Czuba, K

    2009-01-01

    Future rf control systems will require simultaneous data acquisition of up to 100 fast ADC channels at sampling rates of around 100 MHz and real time signal processing within a few hundred nanoseconds. At the same time the standardization of Low-Level RF systems are common objectives for all laboratories for cost reduction, performance optimization and machine reliability. Also desirable are modularity and scalability of the design as well as compatibility with accelerator instrumentation needs including the control system. All these requirements can be fulfilled with the new telecommunication standard ATCA when adopted to the domain of instrumentation. We describe the architecture and design of an ATCA based LLRF system for the European XFEL. The operation of a prototype capable of controlling the vectorsum of 24-cavities and providing measurements of forward and reflected power are presented.

  12. A compact rf driven H- ion source for linac injection

    International Nuclear Information System (INIS)

    Rymer, J.P.; Engeman, G.A.; Hamm, R.W.; Potter, J.M.

    1991-01-01

    A compact rf driven H - ion source has been developed for use as an injector for the AccSys radio frequency quadrupole (RFQ) linacs. A multicusp magnetic bucket geometry developed at Lawrence Berkeley Laboratory confines the plasma created by an antenna driven by 35 kW (peak) of pulsed rf power at 1.8 MHz. A three electrode system is used to extract and accelerate the H - beam, which is then focused into the RFQ by an einzel lens. Permanent magnets in the extraction region sweep electrons onto the second electrode at energies up to half of the full acceleration voltage. A fast pulsed valve allows the hydrogen gas supply to be pulsed, thus minimizing the average gas flow rate into the system. The design features and performance data from the prototype are discussed

  13. RF sensor for multiphase flow measurement through an oil pipeline

    Science.gov (United States)

    Wylie, S. R.; Shaw, A.; Al-Shamma'a, A. I.

    2006-08-01

    We have developed, in conjunction with Solartron ISA, an electromagnetic cavity resonator based sensor for multiphase flow measurement through an oil pipeline. This sensor is non-intrusive and transmits low power (10 mW) radio frequencies (RF) in the range of 100-350 MHz and detects the pipeline contents using resonant peaks captured instantaneously. The multiple resonances from each captured RF spectrum are analysed to determine the phase fractions in the pipeline. An industrial version of the sensor for a 102 mm (4 inch) diameter pipe has been constructed and results from this sensor are compared to those given by simulations performed using the electromagnetic high frequency structure simulator software package HFSS. This paper was presented at the 13th International Conference on Sensors and held in Chatham, Kent, on 6-7 September 2005.

  14. Optimization of RF Compressor in the SPARX Injector

    CERN Document Server

    Ronsivalle, Concetta; Ferrario, Massimo; Serafini, Luca; Spataro, Bruno

    2005-01-01

    The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.

  15. An rf separator for cloud muons at TRIUMF

    International Nuclear Information System (INIS)

    Macdonald, J.A.; Blackmore, E.W.; Bryman, D.A.; Doornbos, J.; Erdman, K.L.; Pearce, R.M.; Poirier, R.L.; Poutissou, J-M.; Spuller, J.

    1983-03-01

    A particle separator utilizing a magnetic field crossed with an rf electric field has been built and incorporated into the M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5 %. The separator is driven at the main cyclotron frequency (23 MHz) and is phase locked to the primary proton beam. Separation is achieved by using the temporal and velocity differences between the muons produced near the production target (cloud muons), and the pion and electron contaminants in the beam

  16. RF Characterization of Niobium Films for Superconducting Cavities

    CERN Document Server

    Aull† , S; Doebert, S; Junginger, T; Ehiasarian, AP; Knobloch, J; Terenziani, G

    2013-01-01

    The surface resistance RS of superconductors shows a complex dependence on the external parameters such as temperature, frequency or radio-frequency (RF) field. The Quadrupole Resonator modes of 400, 800 and 1200 MHz allow measurements at actual operating frequencies of superconducting cavities. Niobium films on copper substrates have several advantages over bulk niobium cavities. HIPIMS (High-power impulse magnetron sputtering) is a promising technique to increase the quality and therefore the performance of niobium films. This contribution will introduce CERNs recently developed HIPIMS coating apparatus. Moreover, first results of niobium coated copper samples will be presented, revealing the dominant loss mechanisms.

  17. Phase synchronization of multiple klystrons in RF system

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of the Acceleration Production of Tritium (APT) accelerator. The first LEDA RF system includes three, 1.2 MW, 350 MHz, continuous wave, klystrons driving a radio frequency quadrupole (RFQ). A phase control loop is necessary for each individual klystron in order to guarantee the phase matching of these klystrons. To meet this objective, they propose adaptive PI controllers which are based on simple adaptive control. These controllers guarantee not only phase matching but also amplitude matching

  18. Practical test of the LINAC4 RF power system

    CERN Document Server

    Schwerg, N

    2011-01-01

    The high RF power for the Linac4 accelerating structures will be generated by thirteen 1.3 MW klystrons, previously used for the CERN LEP accelerator, and six new klystrons of 2.8 MW all operating at a frequency of 352.2 MHz. The power distribution scheme features a folded magic tee feeding the power from one 2.8 MW klystron to two LEP circulators. We present first results from the Linac4 test place, validating the approach and the used components as well as reporting on the klystron re-tuning activities.

  19. RF-cavity for the X-ray generator NESTOR

    International Nuclear Information System (INIS)

    Androsov, V.P.; Gvozd, A.M.; Karnaukhov, I.M.; Telegin, Yu.N.; Chernov, K.N.; Ostreyko, G.N.; Sedlyarov, I.K.

    2007-01-01

    In the Kharkov Institute of Physics and Technology 225 MeV electron storage ring NESTOR is under development. The paper describes the design and parameters of a 700 MHz cavity that has been fabricated at BINP for the NESTOR RF-system. Now the low-power and vacuum tests of the cavity are under way at BINP. We present here the results of 3D simulations of the cavity with ANSYS code. The problem of multibunch instabilities in NESTOR is also discussed

  20. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation.

    Science.gov (United States)

    Liu, Kaijun; Zhang, Guowei; Wang, Zhi; Liu, Yong; Dong, Jianyun; Dong, Xiaomei; Liu, Jinyi; Cao, Jia; Ao, Lin; Zhang, Shaoxiang

    2014-08-04

    The increasing exposure to radiofrequency (RF) radiation emitted from mobile phone use has raised public concern regarding the biological effects of RF exposure on the male reproductive system. Autophagy contributes to maintaining intracellular homeostasis under environmental stress. To clarify whether RF exposure could induce autophagy in the spermatocyte, mouse spermatocyte-derived cells (GC-2) were exposed to 1800MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rate (SAR) values of 1w/kg, 2w/kg or 4w/kg for 24h, respectively. The results indicated that the expression of LC3-II increased in a dose- and time-dependent manner with RF exposure, and showed a significant change at the SAR value of 4w/kg. The autophagosome formation and the occurrence of autophagy were further confirmed by GFP-LC3 transient transfection assay and transmission electron microscopy (TEM) analysis. Furthermore, the conversion of LC3-I to LC3-II was enhanced by co-treatment with Chloroquine (CQ), indicating autophagic flux could be enhanced by RF exposure. Intracellular ROS levels significantly increased in a dose- and time-dependent manner after cells were exposed to RF. Pretreatment with anti-oxidative NAC obviously decreased the conversion of LC3-I to LC3-II and attenuated the degradation of p62 induced by RF exposure. Meanwhile, phosphorylated extracellular-signal-regulated kinase (ERK) significantly increased after RF exposure at the SAR value of 2w/kg and 4w/kg. Moreover, we observed that RF exposure did not increase the percentage of apoptotic cells, but inhibition of autophagy could increase the percentage of apoptotic cells. These findings suggested that autophagy flux could be enhanced by 1800MHz GSM exposure (4w/kg), which is mediated by ROS generation. Autophagy may play an important role in preventing cells from apoptotic cell death under RF exposure stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yao, Tingting, E-mail: yaott0815@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China)

    2016-12-15

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10{sup −4} Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  2. Lower HVAC Costs | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  3. Increased Light & View | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  4. Condensation Resistance (CR) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  5. Fact Sheets & Publications | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  6. State Fact Sheets | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  7. State Code Guides | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  8. Low Conductance Spacers | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  9. National Fenestration Rating Council (NFRC) | Efficient Windows

    Science.gov (United States)

    Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring

  10. Energy & Cost Savings | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  11. Provide Natural Light | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  12. Provide Fresh Air | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  13. Air Leakage (AL) | Efficient Windows Collaborative

    Science.gov (United States)

    Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards

  14. Multi-step capacitor discharges as an RF generator

    International Nuclear Information System (INIS)

    Hotta, Eiki; Yamamoto, Shunji; Ishii, Shozo; Hayashi, Izumi

    1979-01-01

    A variety of methods have been developed for large output radio frequency (RF) generators to heat and stabilize high temperature plasma. As the generators for this purpose, capacitor discharge, cable discharge, and oscillation with electronic tubes are considered. Here, a new RF generator is reported, which utilizes capacitor discharge to extract heavy current, and solves the difficulty of short duration by employing multistep discharges. The authors solved the problem of frequency decrease in capacitor discharge by cutting off the unnecessary capacitors reasonably from the load circuit, using the additional circuit for shunting current and vacuum gap switches. The vacuum gap switches and the trigger system are described together with the RF generator manufactured. The generator was fabricated to be rather compact for its large output and simple in circuitry as compared with conventional oscillator systems. The shortcomings are frequency variation and the improper phase of switching the next step in to cause instability, when the load change occurs. It would be difficult to operate the generator in a RF range of more than about 10 MHz due to jitter of the vacuum gap switches and others. (Wakatsuki, Y.)

  15. Environmental influences contributing to window failure of the SLAC 50 MW klystron

    International Nuclear Information System (INIS)

    Krienen, F.

    1984-03-01

    The additional heating of the klystron window is due to the intense x-ray level, produced inside the klystron, illuminating the entrance of the output wave guide. Photo-electric effect, although of low efficiency, produces enough electrons at the right location and right phase to start multipactor, which progresses with increasing intensity towards the window. The intercepted charge and the concomitant x-radiation heat the window, but the heating is not the cause of the breakdown per se. The accumulated charge on the window creates electric stress, which comes in addition to the RF stress. It could therefore be a major cause of electrical breakdown. The coating, which is intended to carry this charge off, should have a relaxation time constant small compared to the pulse duration. Unfortunately the coating can not be made conducting enough because it conflicts with the Joule heating in the RF field

  16. rf power dependence of subharmonic voltage spectra of two-dimensional Josephson-junction arrays

    International Nuclear Information System (INIS)

    Hebboul, S.E.; Garland, J.C.

    1993-01-01

    We have measured the rf-bias-current dependence of the ν/2 subharmonic spectral response of planar 300x300 Nb-Au-Nb proximity-coupled Josephson-junction arrays. The ν/2 subharmonic voltage spectrum was examined at two rf-bias frequencies, ν/ν c ∼1.4, 2.0 (ν c ∼120 MHz), and in applied magnetic fields corresponding to f=0,1/2 flux quantum per plaquette. The measurements were compared to analytical predictions for an rf-biased asymmetric superconducting quantum interference device with non-negligble loop inductance and large rf-bias-current amplitudes, based on the resistively shunted Josephson-junction model. Reasonable agreement was found between experiment and theory, suggesting that a possible origin for the observed subharmonic behavior in arrays involves an interplay between array plaquette inductances and junction critical-current variations

  17. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  18. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  19. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  20. Low frequency rf current drive

    International Nuclear Information System (INIS)

    Hershkowitz, N.

    1992-01-01

    An unshielded antenna for rf heating has been developed and tested during this report period. In addition to design specifications being given, some experimental results are presented utilizing: (1) an unprotected Faraday shield, (2) insulating guard limiters, (3) unshielded antenna experiments, (4) method for detecting small rf driven currents, (5) rf fast wave current drive experiments, (6) alfven wave interactions with electrons, and (7) machine conditioning, impurity generation and density control

  1. A pilot study of the efficacy of the POLARGEN® ultrahigh-frequency electric field (40.68 MHz) radiofrequency device in the treatment of facial contouring.

    Science.gov (United States)

    Kim, Miri; Lim, Jihong; Bae, Jung Min; Park, Hyun Jeong

    2017-11-01

    Various radiofrequency (RF) devices are used to treat skin laxity and face contouring, but few studies have examined ultrahigh-frequency (UHF) electric field (40.68 MHz) RF devices. To evaluate the efficacy and safety of a UHF electric field (40.68 MHz) RF device for skin tightening and face contouring. Ten patients each underwent four sessions of UHF electric field RF device treatment at 2-week intervals. Clinical improvement was evaluated with the patient satisfaction score using a six-point scale, and clinical photographs taken at every visit and 2 months after the RF treatment were assessed. Skin biopsies were obtained from one patient before the first treatment and immediately after the last treatment. Adverse reactions were recorded at every follow-up visit. All patients were women with a mean age of 51.7 ± 7.2 years. The mean satisfaction score was 4.5 ± 0.9 immediately after the last treatment session. Cheek, jawline, and neck enhancement and tightening were apparent in all patients. Side effects were minimal, and there were no burns or major complications. The UHF electric field RF device was effective for skin tightening and facial contouring, without significant adverse reactions.

  2. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

    2013-01-01

    if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... been an important driver for the development of new window solutions in Denmark, increasing the inner-surface temperature at the sealing of window panes. However, it will not stop complaints fromconsumers, as this temperature is calculated under standardized conditions. Increasing requirements...

  3. rf experiments on PLT

    International Nuclear Information System (INIS)

    Hosea, J.; Wilson, J.R.; Hooke, W.

    1986-01-01

    A variety of rf experiments are being conducted on PLT in order to explore rf techniques which could improve tokamak performance parameters. Of special importance are the studies of ion Bernstein wave (IBW) heating, lower hybrid MHD stabilization and electron heating, down-shifted electron cyclotron heating, and fast wave current drive. Ion Bernstein wave heating results at modest power indicate that the particle confinement time could be enhanced relative to that for fast wave heating in the ion cyclotron range of frequencies (ICRF) and neutral beam heating. At these power levels a conclusive determination of energy confinement scaling with power cannot yet be given. Central sawtooth and m = 1 MHD stabilization is being obtained with centrally peaked lower hybrid (LH) current drive and the central electron temperature is peaking to values (approx.5 keV) well outside the bounds of ''profile consistency.'' In this case the electron energy confinement is apparently increased relative to the ohmic value. The production of relativistic electrons via heating at the down-shifted electron cyclotron (EC) frequency is found to be consistent with theoretical predictions and lends support to the use of this method for heating in relatively high magnetic field devices

  4. Accurate modeling of complete functional RF blocks: CHAMELEON RF

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Niehof, J.; Schilders, W.H.A.; Ciuprina, G.; Ioan, D.

    2007-01-01

    Next-generation nano-scale RF-IC designs have an unprecedented complexity and performance that will inevitably lead to costly re-spins and loss of market opportunities. In order to cope with this, the aim of the European Framework 6 CHAMELEON RF project is to develop methodologies and prototype

  5. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  6. Occupants' window opening behaviour

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

    2012-01-01

    Energy consumption in buildings is influenced by several factors related to the building properties and the building controls, some of them highly connected to the behaviour of their occupants.In this paper, a definition of items referring to occupant behaviour related to the building control...... systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls......, aimed at improving or maintaining the preferred indoor environmental conditions, is elaborated. This approach is used to look into the drivers for the actions taken by the occupants (windows opening and closing) and to investigate the existing models in literature of these actions for both residential...

  7. Thermal Flow and Structure Stability Analyses of High Power Waterload for 2450 MHz microwave applications

    International Nuclear Information System (INIS)

    Seon, S. W.; Kim, H. J.; Wang, S. J.; Kim, J. N.

    2016-01-01

    This study is focused on analyzing the internal flow dynamics in the waterload by changing the inlet and outlet locations and adding guide pipeline to the inlet. The internal flow field simulation is done with CFX tool to compare the water flow velocity and temperature distributions in the waterload. The waterload absorbs RF power, converts it to thermal power, and increases the water temperature so that heat could be quickly removed by the water injection. And it is installed on the end of transmission line and is used to absorb reflected RF power. High power waterload with cone-shaped quartz is designed for 10-30 kW power handling at 2450 MHz microwave system. The thermal flow and structural stability analysis for the 2450 MHz waterload is done using ANSYS and the results are presented in this work. Relocation of the inlet and addition of the guide pipeline in the simulation shows a decrease in the localized maximum water temperature and increased water velocity around the heat source. It is also shown that the modified waterload is structurally more stable

  8. Thermal Flow and Structure Stability Analyses of High Power Waterload for 2450 MHz microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Seon, S. W.; Kim, H. J.; Wang, S. J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, J. N. [KRF, Anyang (Korea, Republic of)

    2016-05-15

    This study is focused on analyzing the internal flow dynamics in the waterload by changing the inlet and outlet locations and adding guide pipeline to the inlet. The internal flow field simulation is done with CFX tool to compare the water flow velocity and temperature distributions in the waterload. The waterload absorbs RF power, converts it to thermal power, and increases the water temperature so that heat could be quickly removed by the water injection. And it is installed on the end of transmission line and is used to absorb reflected RF power. High power waterload with cone-shaped quartz is designed for 10-30 kW power handling at 2450 MHz microwave system. The thermal flow and structural stability analysis for the 2450 MHz waterload is done using ANSYS and the results are presented in this work. Relocation of the inlet and addition of the guide pipeline in the simulation shows a decrease in the localized maximum water temperature and increased water velocity around the heat source. It is also shown that the modified waterload is structurally more stable.

  9. Investigation on the performance of an optically generated RF local oscillator signal in Ku-band DVB-S systems

    NARCIS (Netherlands)

    Khan, M.R.H.; Marpaung, D.A.I.; Burla, M.; Roeloffzen, C.G.H.; Bernhardi, Edward; de Ridder, R.M.

    2011-01-01

    We investigate a way to externally generate the local oscillator (LO) signal used for downconversion of the Ku-band (10.7 − 12.75 GHz) RF signal received from a phased array antenna (PAA). The signal is then translated to an intermediate frequency (950 − 2150 MHz) at the output of the mixer of

  10. An all metal array of antennae for RF heating of TOKAMAKS in the ion cyclotron range of frequency

    International Nuclear Information System (INIS)

    Jacquinot, J.; Lebot, H.; Adam, J.; Kuus, H.

    1980-09-01

    500 KW, the maximum available RF power, at a frequency of 60 MHz and in 50 to 100 ms pulses, has been launched in TFR plasmas using an array of 4 half turn antennae. The array has a potential power capability of 1 MW through a single port. The electrical coupling efficiency is about 90%

  11. Stabilizing effect of a double-harmonic RF system in the CERN PS

    International Nuclear Information System (INIS)

    Bhat, C.; Caspers, F.; Damerau, H.; Hancock, S.; Mahner, E.; Zimmermann, F.

    2009-01-01

    Motivated by the discussions on scenarios for LHC upgrades, beam studies on the stability of flat bunches in a double-harmonic RF system have been conducted in the CERN Proton Synchrotron (PS). Injecting nearly nominal LHC beam intensity per cycle, 18 bunches are accelerated on harmonic h = 21 to 26GeV with the 10MHz RF system. On the flat-top, all bunches are then transformed to flat bunches by adiabatically adding RF voltage at h = 42 from a 20 MHz cavity in anti-phase to the h = 21 system. The voltage ratio V (h42)/V (h21) of about 0.5 was set according to simulations. For the next 140 ms, longitudinal profiles show stable bunches in the double-harmonic RF bucket until extraction. Without the second harmonic component, coupled-bunch oscillations are observed. The flatness of the bunches along the batch is analyzed as a measure of the relative phase error between the RF systems due to beam loading. The results of beam dynamics simulations and their comparison with the measured data are presented

  12. A calibrated, broadband antenna for plasma RF emission measurements below 1 GHz

    International Nuclear Information System (INIS)

    Spence, P.D.; Rosenberg, D.; Roth, J.R.

    1984-01-01

    A constant impedance, constant aperture antenna can make possible broadband plasma RF emission measurements which yield relative and absolute power levels. However, good technique must be followed for the immersion of such an RF probe into plasma radiation. The authors have used a complementary conical spiral antenna to observe plasma RF emission over the frequency range 100 ≤ν≤ 1200 MHz. The RF emission was emitted by a modified Penning discharge. The RF emission from the discharge typically exhibits harmonic structure over a broad frequency range, necessitating a broadband antenna with a flat frequency response curve to allow detailed spectral analysis. The antenna consists of two metal strips of approximately uniform width wound helically on a cone made of Lexan plastic. Since the antenna is a balanced network, a balun is employed to make the transition to a 50-ohm coaxial line. The antenna feed method is critical in maintaining a uniform impedance network. Neglecting stray transmission line effects, the probe circuit for the frequency range 100 ≤ν≤ 500 MHz is 50 ohms due to the spectrum analyzer, paralleled by 291 ohms due to balun magnetization; the combination is fed by a 144 ohm probe aperture

  13. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  14. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    Science.gov (United States)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  16. Circuit design for RF transceivers

    CERN Document Server

    Leenaerts, Domine; Vaucher, Cicero S

    2007-01-01

    Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.

  17. RF-Station control crate

    International Nuclear Information System (INIS)

    Beuzekom, M.G. van; Es, J.T. van.

    1992-01-01

    This report gives a description of the electronic control-system for the RF-station of AmPS. The electronics form the connection between the computer-system and the hardware of the RF-station. Only the elements of the systems which are not described in the other NIKHEF-reports are here discussed in detail. (author). 7 figs

  18. RF-field generation in wide frequency range by electron beam

    International Nuclear Information System (INIS)

    Bogdanovich, B.; Nesterovich, A.; Minaev, S.

    1996-01-01

    A simple device for generating powerful RF oscillations in the frequency range of 100-250 MHz is considered. The two-gaps cavity is based on the quarter-wavelength coaxial line loaded by drift tubes. Frequency tuning is accomplished by using the movable shorting plunger. A permanent electron beam being modulated at the first gap return the energy at the second one. The additional tube with the permanent decelerating potential, introduced into the main drift tube, allows to decrease the drift tube length and keep the excitation conditions in frequency tuning. Both autogeneration and amplification modes are under consideration. RF-parameters of the cavity and experimental results are described. (author)

  19. Room temperature RF characterization of niobium SCRF cavities and their prototypes

    International Nuclear Information System (INIS)

    Mahawar, Ashish; Mohania, Praveen; Shrivastava, P.; Yadav, Anand; Puntambekar, A.M.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology is working on development of 1.3 GHz and 650 MHz multi-cell SCRF cavities. The multi-cell cavities require RF characterization at various stages of fabrication to ensure that the final welded cavity has the right resonant frequency. The prototype cavities as well as the final cavities were extensively characterized at each stage of half cell, dumb bell and end group development and assembly stages. The paper will provide details of the RF characterizations done and the final results achieved. (author)

  20. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  1. RF power source for the compact linear collider test facility (CTF3)

    CERN Document Server

    McMonagle, G; Brown, Peter; Carron, G; Hanni, R; Mourier, J; Rossat, G; Syratchev, I V; Tanner, L; Thorndahl, L

    2004-01-01

    The CERN CTF3 facility will test and demonstrate many vital components of CLIC (Compact Linear Collider). This paper describes the pulsed RF power source at 2998.55 MHz for the drive-beam accelerator (DBA), which produces a beam with an energy of 150 MeV and a current of 3.5 Amps. Where possible, existing equipment from the LEP preinjector, especially the modulators and klystrons, is being used and upgraded to achieve this goal. A high power RF pulse compression system is used at the output of each klystron, which requires sophisticated RF phase programming on the low level side to achieve the required RF pulse. In addition to the 3 GHz system two pulsed RF sources operating at 1.5 GHz are being built. The first is a wide-band, low power, travelling wave tube (TWT) for the subharmonic buncher (SHB) system that produces a train of "phase coded" subpulses as part of the injector scheme. The second is a high power narrow band system to produce 20 MW RF power to the 1.5 GHz RF deflectors in the delay loop situate...

  2. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-01-01

    zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF

  3. Refurbishments of RF systems

    International Nuclear Information System (INIS)

    Baelde, J.L.

    1998-01-01

    This document describes the activities of the R.F. System group during the years 1995-1996 in the frame of the refurbishment of the control system at GANIL accelerator. Modifications concerning the following sub-assemblies are mentioned: 1. voltage standards; 2. link card between the step by step motor control and the local control systems; 3. polarization system; 4. computer software for different operations. Also reported is the installation of ECR 4 source for the CO2. In this period the R2 Regrouping system has been installed, tested and put into operation. Several problems concerning the mechanical installation of the coupling loop and other problems related to the electronics operation were solved. The results obtained with the THI machine are presented

  4. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  5. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  6. Windows Home Server users guide

    CERN Document Server

    Edney, Andrew

    2008-01-01

    Windows Home Server brings the idea of centralized storage, backup and computer management out of the enterprise and into the home. Windows Home Server is built for people with multiple computers at home and helps to synchronize them, keep them updated, stream media between them, and back them up centrally. Built on a similar foundation as the Microsoft server operating products, it's essentially Small Business Server for the home.This book details how to install, configure, and use Windows Home Server and explains how to connect to and manage different clients such as Windows XP, Windows Vist

  7. Teach yourself visually Windows 10

    CERN Document Server

    McFedries, Paul

    2015-01-01

    Learn Windows 10 visually with step-by-step instructions Teach Yourself VISUALLY Windows 10 is the visual learner's guide to the latest Windows upgrade. Completely updated to cover all the latest features, this book walks you step-by-step through over 150 essential Windows tasks. Using full color screen shots and clear instruction, you'll learn your way around the interface, set up user accounts, play media files, download photos from your camera, go online, set up email, and much more. You'll even learn how to customize Windows 10 to suit the way you work best, troubleshoot and repair common

  8. 47 CFR 90.355 - LMS operations below 512 MHz.

    Science.gov (United States)

    2010-10-01

    ... PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.355 LMS... LMS station and the nearest co-channel base station of another licensee operating a voice system is 75... MHz, 150-170 MHz, and 450-512 MHz bands may use either base-mobile frequencies currently assigned the...

  9. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  10. Windows Terminal Servers Orchestration

    Science.gov (United States)

    Bukowiec, Sebastian; Gaspar, Ricardo; Smith, Tim

    2017-10-01

    Windows Terminal Servers provide application gateways for various parts of the CERN accelerator complex, used by hundreds of CERN users every day. The combination of new tools such as Puppet, HAProxy and Microsoft System Center suite enable automation of provisioning workflows to provide a terminal server infrastructure that can scale up and down in an automated manner. The orchestration does not only reduce the time and effort necessary to deploy new instances, but also facilitates operations such as patching, analysis and recreation of compromised nodes as well as catering for workload peaks.

  11. Invariant sets for Windows

    CERN Document Server

    Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V

    1999-01-01

    This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical

  12. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi

    2011-01-01

    The Windows Azure Platform has rapidly established itself as one of the most sophisticated cloud computing platforms available. With Microsoft working to continually update their product and keep it at the cutting edge, the future looks bright - if you have the skills to harness it. In particular, new features such as remote desktop access, dynamic content caching and secure content delivery using SSL make the latest version of Azure a more powerful solution than ever before. It's widely agreed that cloud computing has produced a paradigm shift in traditional architectural concepts by providin

  13. Windows Azure web sites

    CERN Document Server

    Chambers, James

    2013-01-01

    A no-nonsense guide to maintaining websites in Windows Azure If you're looking for a straightforward, practical guide to get Azure websites up and running, then this is the book for you. This to-the-point guide provides you with the tools you need to move and maintain a website in the cloud. You'll discover the features that most affect developers and learn how they can be leveraged to work to your advantage. Accompanying projects enhance your learning experience and help you to walk away with a thorough understanding of Azure's supported technologies, site deployment, and manageme

  14. Compact rf polarizer and its application to pulse compression systems

    Directory of Open Access Journals (Sweden)

    Matthew Franzi

    2016-06-01

    Full Text Available We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE_{114} modes. The overcoupled spherical cavity has a Q_{0} of 9.4×10^{4} and coupling factor (β of 7.69 thus providing a loaded quality factor Q_{L} of 1.06×10^{4} with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05  dB and reflection back to the input rectangular WR 90 waveguide less than -40  dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.

  15. Quantum decay of metastable current states in rf squids

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Khlus, V.A.; Tsoj, C.M.; Shnyrkov, V.I.

    1985-01-01

    Quantum decay of metastable current states in a rf SQUID superconducting ring of a hysteresis mode are considered. Point contacts are used as a Josephson weak link. The first derivative of rf IVC, dVsub(T)/dIsub(RF), is measured which gives the dependence of the density of decay probability on the amplitude of magnetic flux oscillations in the ring. The temperature dependence of probability distribution width between 4.2 and 0.5 K suggests that for most of high-ohmic contacts Nb-Nb, Nb-Ag-Nb the quantum mechanisms of decay become dominant beginning with the temperature of about 2 K. The experimental parameters of distribution of decay probability in the quantum limit are compared to those calculated by the theory of macroscopic quantum tunneling in the limit of high and low dissipation. The experimental values of probability density distribution width and characteristic quantum temperature are higher than the theoretical ones, the fact can be attributed to the deviation of current-phase relation of contact from a sinusoidal one. Besides, some contacts seem to correspond to the case of an intermediate value of dissipation. As the frequency of rf oscillations varies from 30 to 6 MHz, the distribution width remains unchanged in accordance with the theory of quantum tunneling decay of metastable current state in the ring in the limit of high damping. At low temperatures (T approximately 0.5 K), and rather small damping coefficient, the density of probability displays anomalous peaks when the amplitude of rf oscillations is lower considerably than the critical vaiue of magnetic flux in the ring

  16. Incidence of micronuclei in human peripheral blood lymphocytes exposed to modulated and unmodulated 2450 MHz radiofrequency fields.

    Science.gov (United States)

    Vijayalaxmi; Reddy, Abhishek B; McKenzie, Raymond J; McIntosh, Robert L; Prihoda, Thomas J; Wood, Andrew W

    2013-10-01

    Peripheral blood samples from four healthy volunteers were collected and aliquots were exposed in vitro for 2 h to either (i) modulated (wideband code division multiple access, WCDMA) or unmodulated continuous wave (CW) 2450 MHz radiofrequency (RF) fields at an average specific absorption rate of 10.9 W/kg or (ii) sham-exposed. Aliquots of the same samples that were exposed in vitro to an acute dose of 1.5 Gy ionizing gamma-radiation (GR) were used as positive controls. Half of the aliquots were treated with melatonin (Mel) to investigate if such treatment offers protection to the cells from the genetic damage, if any, induced by RF and GR. The cells in all samples were cultured for 72 h and the lymphocytes were examined to determine the extent of genetic damage assessed from the incidence of micronuclei (MN). The results indicated the following: (i) the incidence of MN was similar in incubator controls, and those exposed to RF/sham and Mel alone; (ii) there were no significant differences between WCDMA and CW RF exposures; (iii) positive control cells exposed to GR alone exhibited significantly increased MN; and (iv) Mel treatment had no effect on cells exposed to RF and sham, while such treatment significantly reduced the frequency of MN in GR-exposed cells. Copyright © 2013 Wiley Periodicals, Inc.

  17. Handbook on Windows and Energy

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

    The handbook on windows and energy is a general description of windows with the main focus put on the energy performance. Common window products are described by commonly used nomenclature, description of frame and sash conctructions and description of commonly used glazing types.The energy...... transmission through windows is described in detail including radiation, convection and conduction as well as solar transmittance of window glazing. The most used terms related to characterization of window energy performance are defined and calculation methods according to international standards...... flow and detailed calculation of light and solar transmittance is given.Different measurement techniques for characterization of window heat loss coefficient and total solar energy transmittance is described and references to interantional standards are given.Finally, the handbook includes...

  18. Windows with improved energy performances

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2003-01-01

    Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... resulted in a window with a positive net energy gain (in short the Net Gain Window), which means that it contributes to the space heating of the building. All improvements are based on existing technology and manufacturing methods. The results from this work show that the energy performances of windows can...

  19. Design and development progress of a LLRF control system for a 500 MHz superconducting cavity

    Science.gov (United States)

    Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.

    2012-07-01

    The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.

  20. Development of a 325 MHz ladder-RFQ of the 4-rod-type

    Energy Technology Data Exchange (ETDEWEB)

    Schuett, Maximilian; Ratzinger, Ulrich [Institut fuer Angewandte Physik, Goethe-Universitaet, Frankfurt a. M. (Germany); Brodhage, Robert [GSI, Darmstadt (Germany)

    2015-07-01

    For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. In the low energy section, between the Ion Source and the main linac an RFQ will be used. The 325 MHz RFQ will accelerate protons from 95 keV to 3.0 MeV. This particular high frequency for an RFQ creates difficulties, which are challenging in developing this cavity. In order to define a satisfactory geometrical configuration for this resonator, both from the RF and the mechanical point of view, different designs have been examined and compared. Very promising results have been reached with a ladder type RFQ, which has been investigated since 2013. We present recent 3D simulations of the general layout and of a complete cavity demonstrating the power of a ladder type RFQ as well as measurements of a 0.8 m prototype RFQ, which was manufactured in late 2014 and designed for RF power and vacuum tests. We outline a possible RF layout for the RFQ within the new FAIR proton injector and highlight the mechanical advantages.

  1. A novel injection-locked amplitude-modulated magnetron at 1497 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons Inc., Batavia, IL (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-15

    Thomas Jefferson National Accelerator Facility (JLab) uses low efficiency klystrons in the CEBAF machine. In the older portion they operate at 30% efficiency with a tube mean time between failure (MTBF) of five to six years. A highly efficient source (>55-60%) must provide a high degree of backwards compatibility, both in size and voltage requirements, to replace the klystron presently used at JLab, while providing energy savings. Muons, Inc. is developing a highly reliable, highly efficient RF source based upon a novel injection-locked amplitude modulated (AM) magnetron with a lower total cost of ownership, >80% efficiency, and MTBF of six to seven years. The design of the RF source is based upon a single injection-locked magnetron system at 8 kW capable of operating up to 13 kW, using the magnetron magnetic field to achieve the AM required for backwards compatibility to compensate for microphonics and beam loads. A novel injection-locked 1497 MHz 8 kW AM magnetron with a trim magnetic coil was designed and its operation numerically simulated during the Phase I project. The low-level RF system to control the trim field and magnetron anode voltage was designed and modeled for operation at the modulation frequencies of the microphonics. A plan for constructing a prototype magnetron and control system was developed.

  2. Windows on the axion

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the Θ vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10 6 eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab

  3. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  4. 47 CFR 15.242 - Operation in the bands 174-216 MHz and 470-668 MHz.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the bands 174-216 MHz and 470-668... bands 174-216 MHz and 470-668 MHz. (a) The marketing and operation of intentional radiators under the... services, facilities, and beds for use beyond 24 hours in rendering medical treatment and institutions and...

  5. New results on RF and DC field emission

    International Nuclear Information System (INIS)

    Padamsee, H.; Kirchgessner, J.; Moffat, D.; Noer, R.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper reviews progress in RF and DC field emission since the last workshop held two years ago at Argonne National Laboratory. Through better characterization, progress has been made towards improved understanding of FE in cavities. Through development of new cures, gains have made towards higher fields. Through better rinsing procedures low-frequency (500 and 350 MHz) cavities regularly reach surface electric fields of 20 MV/m. Processing times are substantially reduced. Through heat treatment at 1350degC high frequency (1500 MHz) cavities have reached 53 MV/m, and 3000 MHz cavities have reached 70 MV/m. The state of the art in Epk is described first. Then, benefits of high temperature treatment are discussed, focusing on highest temperature (1300-1350degC) treatment, intermediate heat treatments, and heat treatment without final methanol rinsing. He processing, heat treatment of 3-GHz cavitie, general inferences concerning emitter properties, influence of condensed gases, and sources of emitters are also addressed. Finally, lessons to be learned from copper cavities and high power processing is pointed out and discussed. (N.K.)

  6. The Digital Feedback RF Control System of the RFQ and DTL1 for 100 MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Cho, Yong-Sub; Han, Yeung-Jin; Kang Heung Sik; Kim, Sung-Chul; Kwon, Hyeok-Jung; Park, In-Soo; Tae Kim, Do; Tae Seol, Kyung

    2005-01-01

    The 100 MeV Proton linear accelerator (Linac) for the PEFP (Proton Engineering Frontier Project) will include 1 RFQ and 1 DTL1 at 350 MHz as well as 7 DTL2 cavities at 700 MHz. The low level RF system with the digital feedback RF control provides the field control to accelerate a 20mA proton beam from 50 keV to 20 MeV with a RFQ and a DTL1 at 350M Hz. The FPGA-based digital feedback RF control system has been built and is used to control cavity field amplitude within ± 1% and relative phase within ± 1°. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the digital feedback RF control system will be described with the performance test results.

  7. SPEAR 2 RF SYSTEM LOADS

    International Nuclear Information System (INIS)

    2002-01-01

    The design and performance of higher order mode (HOM) dampers for the SPEAR 2 RF system is presented. The SPEAR beam had experienced occasional periods of instability due to transverse oscillations which were driven by HOMs in the RF cavities. A substantial fraction of this RF energy was coupled out of the cavity into the waveguide connecting the cavity to the klystron. This waveguide was modified by adding a stub of smaller cross section, terminated by a ferrite tile load, to the system. Design considerations of the load, and its effect on HOMs and beam stability will be discussed

  8. Pc based RF control system for the Vincy cyclotron

    International Nuclear Information System (INIS)

    Samardzic, B.J.; Drndarevic, V.R.

    1999-01-01

    The concept and design procedure for the RF control system of the VINCY cyclotron are described. Special attention has been paid to the choice of computer support of this system. The merits and limitations of the chosen solution have been analyzed. A PC type computer has been selected as the platform for performing the functions of initiation, control, and supervision of the RF system. The integration of the hardware is carried out by direct connection to the PC bus via standard communication interfaces. The system software operates under a graphic oriented Windows operating system applying the modern concept of virtual instrumentation. The application of this concept allowed considerable simplification of the operator-RF system interaction and resulted in additional flexibility of the software to further extensions or modifications of the system. The selected open architecture of the computer platform allows a simple and economic upgrading of the realized system in accordance with future requirements. Tests of the realized RF control system prototype are in progress. (authors)

  9. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  10. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  11. R&D activities on RF contacts for the ITER ion cyclotron resonance heating launcher

    Energy Technology Data Exchange (ETDEWEB)

    Hillairet, Julien, E-mail: julien.hillairet@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Argouarch, Arnaud [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bamber, Rob [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Beaumont, Bertrand [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Bernard, Jean-Michel; Delaplanche, Jean-Marc [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Durodié, Frédéric [Laboratory for Plasmas Physics, 1000 Brussels (Belgium); Lamalle, Philippe [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Lombard, Gilles [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Nicholls, Keith; Shannon, Mark [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Vulliez, Karl [Maestral Laboratory, Technetics Group, Pierrelatte (France); Cantone, Vincent; Hatchressian, Jean-Claude; Larroque, Sébastien; Lebourg, Philippe; Martinez, André; Mollard, Patrick; Mouyon, David; Pagano, Marco [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

    2015-10-15

    Highlights: • CEA have developed a dedicated test-bed for testing RF contact in ITER relevant conditions (vacuum, temperature, RF current). • A prototype of RF contacts have been designed and manufactured, with copper lamellas brazed on a titanium holder. • This RF contact prototype failed at RF current larger than 1.8 kA. • Extensive R&D is foreseen with new RF contact designs. - Abstract: Embedded RF contacts are integrated within the ITER ICRH launcher to allow assembling, sliding and to lower the thermo-mechanical stress. They have to withstand a peak RF current up to 2.5 kA at 55 MHz in steady-state conditions, in the vacuum environment of the machine. The contacts have to sustain a temperature up to 250 °C during several days in baking operations and have to be reliable during the whole life of the launcher without degradation. The RF contacts are critical components for the launcher performance and intensive R&D is therefore required, since no RF contacts have so far been qualified at these specifications. In order to test and validate the anticipated RF contacts in operational conditions, CEA has prepared a test platform consisting of a steady-state vacuum pumped RF resonator. In collaboration with ITER Organization and the CYCLE consortium (CYclotron CLuster for Europe), an R&D program has been conducted to develop RF contacts that meet the ITER ICRH launcher specifications. A design proposed by CYCLE consortium, using brazed lamellas supported by a spring to improve thermal exchange efficiency while guaranteeing high contact force, was tested successfully in the T-resonator up to 1.7 kA during 1200 s, but failed for larger current values due to a degradation of the contacts. Details concerning the manufacturing of the brazed contacts on its titanium holder, the RF tests results performed on the resonator and the non-destructive tests analysis of the contacts are given in this paper.

  12. Cryogenic system for TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Y.; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Matsumoto, K.

    1993-01-01

    A large cryogenic system has been designed, constructed and operated in the TRISTAN electron-positron collider at KEK for 508 MHz, 32x5-cell superconducting RF cavities. A 6.5 kW, 4.4 K helium refrigerator with 5 turbo-expanders on the ground level supplies liquid helium in parallel to the 16 cryostats in the TRISTAN tunnel through about 250 m long multichannel transfer line. Two 5-cell cavities are coupled together, enclosed in a cryostat and cooled by about 830 L pool boiling liquid helium. A liquid nitrogen circulation system with a turbo-expander has been adopted for 80 K radiation shields in the multichannel transfer line and the cryostats to reduce liquid nitrogen consumption and to increase the operation stability of the system. The cryogenic system has a total of about 18 000 hours of operating time from the first cool down test in August 1988 to November 1991. The design principle and outline of the cryogenic system and the operational experience are presented. (orig.)

  13. The AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.T.; Cameron, P.; Eng, W.; Goldman, M.A.; Jablonski, E.; Kasha, D.; Keane, J.; McNerney, A.; Meth, M.; Plotkin, M.; Puglisi, M.; Ratti, A.; Spitz, R.

    1991-01-01

    A high level rf system, including a power amplifier and cavity, has been designed and built for the AGS Booster. It covers a frequency range of 2.4 to 4.2 MHz and will be used to accelerate high intensity protons. Low intensity polarized protons and heavy ions, to the 1.5 GeV level. A total accelerating voltage of up to 90 kV will be provided by two cavities, each having two gaps. The internally cross coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate beam intensities up to 0.75 x 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two parallel cells. The amplifier is a grounded cathode configuration driven by a remotely located solid-state amplifier. It has been tested in the laboratory at full gap voltage with satisfactory results. 5 refs., 2 figs., 1 tab

  14. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  15. Performance of photocathode rf gun electron accelerators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area

  16. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  17. Development of reliable diamond window for EC launcher on fusion reactors

    International Nuclear Information System (INIS)

    Takahashi, K.; Illy, S.; Heidinger, R.; Kasugai, A.; Minami, R.; Sakamoto, K.; Thumm, M.; Imai, T.

    2005-01-01

    In order to avoid a possible accidental event of a diamond window, i.e. a leakage of cooling water into vacuum, a new diamond window with a copper (Cu)-coated edge was developed. The 0.5 mm thick Cu-coating completely covers the window disk edge and aluminum braze, between the diamond disk edge and the inconel cuffs cooled by water. Corrosion of the aluminum braze can also be prevented by the Cu-coating. A 170 GHz high power RF transmission experiment, which was indicative for a MW-level transmission, was carried out to investigate the cooling capability of the Cu-coated window. RF power/pulse length 55 kW/3.5 s and 120 kW/3 s, were transmitted through the window without any problem. Temperature increase of 50 and 100 o C were obtained, respectively. The results agree with thermal calculations with loss tangent 8.5 x 10 -4 and thermal conductivity 1.9 kW/(m K) of the diamond. Thermal and stress analysis show that no serious stress between the diamond disk and the Cu-coating is established. It concludes that a diamond window with Cu-coated edge water-cooling is capable of MW-level transmission and that the Cu-coating improves the reliability of the diamond window

  18. Working with Windows 7 at CERN (EN)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Overview of new concepts and user interface changes in Windows 7 as compared with older versions of Windows: XP or Vista. Availability of Windows 7 at CERN and its integration with CERN Windows infrastructure will be discussed.

  19. RF superconductivity at CEBAF

    International Nuclear Information System (INIS)

    1990-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a 4 GeV continuous beam electron accelerator being constructed to perform nuclear physics research. Construction began in February 1987 and initial operation is scheduled for February 1994. The present report describes its prototyping, problems/solutions, further development, facilities, design status, production and upgrade potential. The accelerator is 1.4 km in circumference, and has a race-track shape. It is of the recirculated linear accelerator type, and employs a total of five passes. Two linacs on opposite sides of the race-track each provide 400 MeV per pass. Beams of various energies are transported by separated arcs at each end of the straight sections to provide the recirculation. There are 4 recirculation arcs at the injector end, and 5 arcs at the other end. The full energy beam is routed by an RF separator to between one and three end stations, as desired, on a bucket-by-bucket basis. The average output beam current is 200 microamperes. Acceleration is provided by 338 superconducting cavities, which are arranged in pairs, each of which is enclosed in a helium vessel and suspended inside a vacuum jacket without ends. (N.K.)

  20. Design for the National RF Test Facility at ORNL

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; Becraft, W.R.

    1983-01-01

    Conceptual and preliminary engineering design for the National RF Test Facility at Oak Ridge National Laboratory (ORNL) has been completed. The facility will comprise a single mirror configuration embodying two superconducting development coils from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program on either side of a cavity designed for full-scale antenna testing. The coils are capable of generating a 1.2-T field at the axial midpoint between the coils separated by 1.0 m. The vacuum vessel will be a stainless steel, water-cooled structure having an 85-cm-radius central cavity. The facility will have the use of a number of continuous wave (cw), radio-frequency (rf) sources at levels including 600 kW at 80 MHz and 100 kW at 28 GHz. Several plasma sources will provide a wide range of plasma environments, including densities as high as approx. 5 x 10 13 cm -3 and temperatures on the order of approx. 10 eV. Furthermore, a wide range of diagnostics will be available to the experimenter for accurate appraisal of rf testing