WorldWideScience

Sample records for mhz continuous wave

  1. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  2. The 938 MHz resonant damping loops for the 200 MHz SPS travelling wave cavities

    CERN Document Server

    Caspers, F

    2012-01-01

    Measurements of the beam stability in the SPS in 1982 - 1983 have shown a transversal instability for high intensity beams [1]. The fact that this related technical note is published nearly 30 years later, is related to the revival of interest in the frame of SPS impedance evaluation for LS1. Until now there was just a barely known paper folder available which could be consulted on request. The instability mentioned above was identified from beam measurements as raised by a deflecting mode at approximately 940 MHz in the 200 MHz travelling wave cavities of the SPS. Estimates showed that an attenuation of this particular mode by 20 dB would be desirable. In order to achieve this attenuation some vacuum ports on top of the cavities were available. For the damping devices three requirements had to be met: - sufficient damping at about 940 MHz - no serious change of cavity input VSWR at 200 MHz - no water cooling requirement for this higher order mode coupler.

  3. The Continuous Wave Deuterium Demonstrator (CWDD) design and status

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. (Grumman Space and Electronics Corp., Princeton, NJ (United States)); Nightingale, M.P.S. (AEA Industrial Technology, Culham (United Kingdom)); Yule, T.J. (Argonne National Lab., IL (United States))

    1992-01-01

    The design of the Continuous Wave Deuterium Demonstrator (CWDD) and the status of the fabricated hardware is presented. The CWDD is a high brightness, 352 MHz, CW linear accelerator designed to deliver a 7.54 MeV, 80 mA D[sup [minus

  4. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  5. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937

  6. MHz gravitational waves from short-term anisotropic inflation

    International Nuclear Information System (INIS)

    Ito, Asuka; Soda, Jiro

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10 −26 ∼10 −27 are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  7. Commissioning status of the Continuous Wave Deuterium Demonstrator

    International Nuclear Information System (INIS)

    Hartog, P.D.; Dooling, J.; Lorello, M.; Rathke, J.; Carwardine, J.; Godden, D.; Pile, G.; Yule, T.; Zinneman, T.

    1993-01-01

    Grumman Aerospace Corporation, Argonne National Laboratory, and Culham Laboratory are commissioning the Continuous Wave Deuterium Demonstrator (CWDD) in a facility at Argonne National Laboratory. CWDD is a high-brightness, high-current, 7.5-MeV negative deuterium accelerator. The 352-MHz rf accelerating cavities are cryogenically cooled with supercritical neon to reduce the rf power requirements. Installation of the accelerator into the Argonne facility began in May 1991, and first beam from the injector was extracted in February 1992. The accelerator and facility and described, and current status and future plans are discussed

  8. High-power circulator test results at 350 and 700 MHz

    International Nuclear Information System (INIS)

    Roybal, W.; Bradley, J.T.; Rees, D.E.

    2000-01-01

    The high-power RF systems for the Accelerator Production of Tritium (APT) program require high-power circulators at 350 MHz and 700 MHz to protect 1 MW Continuous Wave (CW) klystrons from reflected power. The 350 MHz circulator is based on the CERN, EXF, and APS designs and has performed very well. The 700 MHz circulator is a new design. Prototype 700 MHz circulators have been high-power tested at Los Alamos National Laboratory (LANL). The first of these circulators has satisfied performance requirements. The circulator requirements, results from the testing, and lessons learned from this development are presented and discussed

  9. Search for a stochastic background of 100-MHz gravitational waves with laser interferometers.

    Science.gov (United States)

    Akutsu, Tomotada; Kawamura, Seiji; Nishizawa, Atsushi; Arai, Koji; Yamamoto, Kazuhiro; Tatsumi, Daisuke; Nagano, Shigeo; Nishida, Erina; Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi; Fukushima, Mitsuhiro; Yamazaki, Toshitaka; Fujimoto, Masa-Katsu

    2008-09-05

    This Letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of approximately 10;{-16} Hz;{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h{100};{2}Omega_{gw}<6 x 10;{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.

  10. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.

  11. 532 nm continuous wave mode-locked Nd:GdVO4 laser with SESAM

    International Nuclear Information System (INIS)

    Li, L; Liu, J; Liu, M; Liu, S; Chen, F; Wang, W; Wang, Y

    2009-01-01

    We obtain continuous wave mode-locked Nd:GdVO 4 -KTP laser with a SESAM. This is the first report of CW mode-locked Nd:GdVO 4 -KTP laser with a SESAM to our knowledge. 396 mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM

  12. Measurements on the SPS 200 MHz Travelling Wave Cavity towards an Impedance Model

    CERN Document Server

    Roggen, Toon; Caspers, Fritz; Vollinger, Christine; CERN. Geneva. ATS Department

    2016-01-01

    This note discusses the contribution of the SPS 200 MHz TWC (Travelling Wave Cavity) to the SPS longitudinal impedance model. The measurement method and setup is briefly explained and a comparison with simulations is discussed for both the fundamental pass band (FPB) as well as the Higher Order Modes (HOMs). In addition a number of improvements to the measurement setup are discussed.

  13. Wave disturbances in the solar corona: radio observations at 24.5-25.5 MHz

    International Nuclear Information System (INIS)

    Kobrin, M.M.; Snegriev, S.D.

    1984-01-01

    We present an analysis of observations of fluctuations in the integrated flux of radio emission from the ''quiet'' sun. The observations were made on the UTR-2 radiotelescope, simultaneously at 11 frequencies in the range 24.5-25.5 MHz. Control observations of Taurus were made in order to allow for the effects of the earth's ionosphere. We measured the phase dependences between oscillations in the radio emission intensity which looked like wave trains. From these measurements we found that for periods of about 10 min we always observed disturbances propagating from the lower levels of the corona to the upper levels. The frequency drift in the trains is observed to be about 10 -3 MHz/sec, corresponding to a disturbance velocity of about 100 km/sec. This may be associated with the propagation of magnetosonic waves. Our estimates show that the observed effects cannot be explained by a bremsstrahlung mechanism: We need to rely on plasma mechanisms in order to explain how the radio emission is generated

  14. Advantages of traveling wave resonant antennas for fast wave heating systems

    International Nuclear Information System (INIS)

    Phelps, D.A.; Callis, R.W.; Grassie, J.S. de

    1997-04-01

    The resilience of a maximally flat externally coupled traveling wave antenna (TWA) is contrasted with the sensitivity of a simple directly driven resonant loop array to vacuum and plasma conditions in DIII-D. We find a unique synergy between standing and traveling wave resonant TWA components. This synergy extends TWA operation to several passbands between 60 and 120 MHZ, provides 60 degrees- 120 degrees tunability between elements within a 1-2 MHZ bandwidth and permits efficient and continuous operation during ELMing H-mode

  15. Computational dosimetry in embryos exposed to electromagnetic plane waves over the frequency range of 10 MHz-1.5 GHz

    International Nuclear Information System (INIS)

    Kawai, Hiroki; Nagaoka, Tomoaki; Watanabe, Soichi; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-01-01

    This paper presents calculated specific absorption rate (SAR) dosimetry in 4 and 8 week Japanese pregnant-woman models exposed to plane waves over the frequency range of 10 MHz-1.5 GHz. Two types of 2 mm spatial-resolution pregnant-woman models comprised a woman model, which is similar to the average-sized Japanese adult female in height and weight, with a cubic (4 week) embryo or spheroidal (8 week) one. The averaged SAR in the embryos exposed to vertically and horizontally polarized plane waves at four kinds of propagation directions are calculated from 10 MHz to 1.5 GHz. The results indicate that the maximum average SAR in the embryos exposed to plane waves is lower than 0.08 W kg -1 when the incident power density is at the reference level of ICNIRP guideline for general public environment. (note)

  16. Inversion of the OH 1720-MHz line

    International Nuclear Information System (INIS)

    Elitzur, M.

    1975-01-01

    It is shown that the OH 1720-MHz line can be strongly inverted by collisions which excite the rotation states. It is also argued that radiative pumps (of any wave length) can invert strongly only the 1612-MHz line. (author)

  17. Design of a New Water Load for S-band 750 kW Continuous Wave High Power Klystron Used in EAST Tokamak

    Science.gov (United States)

    Liu, Liang; Liu, Fukun; Shan, Jiafang; Kuang, Guangli

    2007-04-01

    In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 oC at the highest power level.

  18. Evaluation of cellular effects of pulsed and continuous wave radiofrequency radiation

    International Nuclear Information System (INIS)

    Pavicic, Ivan; Trosic, Ivancica

    2008-01-01

    Full text: In less than twenty years, the mobile telephone has gone from being rare, expensive equipment of the business elite to a pervasive, low-cost personal item. Since the introduction of mobile phones, concerns have been raised about the potential detrimental impacts on living beings from regular use. The first 'modern' network technology on second generation cellular technology was launched in 1991 in Finland on the Global System for Mobile Communications (GSM) standard. This study evaluates cellular effects of, both, continuous (CW) and pulsed GSM modulated waves (PW). Continuous cell culture of Chinese hamster lung cells, line V79, was used in this study. Cell growth and colony forming ability (CFA) was analyzed after 1, 2 and 3 hours of exposure to the both frequency fields, 935 MHz CW and 915 MHz PW. Selected frequency fields were generated inside gigahertz transversal electromagnetic mode cell (GTEM) equipped with the signal generators. Hewlett Packard HP8657A signal generator was used to generate CW 935 MHz frequency field. Anritzu MS2711B spectrum analyzer with tracking generator and Micro devices RF 3146 power amplifier module generated PW radiofrequency field of 915 MHz. Averaged specific absorption rate (SAR) belonging to the CW 935 MHz frequency field was calculated to be 0.12 W/kg, and for GSM modulated 915 MHz field was 0.23 W/kg. Cell samples were irradiated in triplicate. The sham exposed control cell samples were included in the study. The temperature inside the exposure set-up was recorded in ten-minute intervals through the irradiation treatment. Both, sham-exposed and exposed cell samples were kept in the same condition, except in the time of irradiation for experimental samples when signal generator was switched on. To determine cell growth, V79 samples were plated in concentration of 1x10 4 cells/mL. Cells were maintained in the standard laboratory conditions, which are humidified atmosphere, 37 C degrees, and 5% CO 2 . Cell

  19. Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavity for the LHC Update

    International Nuclear Information System (INIS)

    Li, Zenghai

    2010-01-01

    Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R and D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.

  20. Reduction of environmental MHz noise for SQUID application

    Energy Technology Data Exchange (ETDEWEB)

    Araya, T. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: araya@sup.ee.es.osaka-u.ac.jp; Kitamura, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Kamishiro, M. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sakuta, K. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Itozaki, H. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)]. E-mail: itozaki@ee.es.osaka-u.ac.jp

    2006-10-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise.

  1. Reduction of environmental MHz noise for SQUID application

    International Nuclear Information System (INIS)

    Araya, T.; Kitamura, Y.; Kamishiro, M.; Sakuta, K.; Itozaki, H.

    2006-01-01

    It is important to remove large environmental noise in measurement using SQUIDs without magnetic shielding. Active noise control (ANC) is an effective method to remove the environmental noise. The environmental noise has been reduced by the ANC system in the radio frequency region around MHz. The anti-phase waves of the environmental noise should be generated by this system. The ANC system including the phase and amplitude control circuit was developed to make the anti-phase waves in the MHz region. In this paper, sinusoidal waves with a MHz frequency were used as the environmental noise. When a coil antenna was used for a receiver antenna, this ANC system suppressed these sinusoidal waves to the white noise level about 40 dB. When we used a SQUID as a receiver antenna, we also cancelled sinusoidal waves to the white noise level by this system. This shows that the ANC system is useful to reduce an environmental noise when this ANC system is developed to cancel multi-frequency noise

  2. The Continuous Wave Deuterium Demonstrator (CWDD) design and status

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M. [Grumman Space and Electronics Corp., Princeton, NJ (United States); Nightingale, M.P.S. [AEA Industrial Technology, Culham (United Kingdom); Yule, T.J. [Argonne National Lab., IL (United States)

    1992-12-31

    The design of the Continuous Wave Deuterium Demonstrator (CWDD) and the status of the fabricated hardware is presented. The CWDD is a high brightness, 352 MHz, CW linear accelerator designed to deliver a 7.54 MeV, 80 mA D{sup {minus}} beam at a transverse normalized rms emittance of 0.11 {pi} mm-mrad and a longitudinal rms emittance of 0.20 {pi} mm-mrad. End-to-end beam dynamics analysis for nominal and off-design conditions is described. The tuning and predicted operational performance os the as-built device are also discussed. These results all indicate that the present design can meet the output performance specifications in the presence of combined errors at the limits of the specified engineering tolerances. Preliminary injector operations have been conducted at AEA Technologies, Culham Laboratory and at Argonne National Laboratory, where the CWDD is sited. Initial RGQ beam experiments at Argonne are projected for October 1993. DTL installation and commissioning will be completed in 1994.

  3. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  4. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    Science.gov (United States)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  5. High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet.

    Science.gov (United States)

    Aadhi, A; Apurv Chaitanya, N; Singh, R P; Samanta, G K

    2014-06-15

    We report the development of a compact, high-power, continuous-wave, single-frequency, ultraviolet (UV) source with extended wavelength tunability. The device is based on single-pass, intracavity, second-harmonic-generation (SHG) of the signal radiation of a singly resonant optical parametric oscillator (SRO) working in the visible and near-IR wavelength range. The SRO is pumped in the green with a 25-mm-long, multigrating, MgO doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) as nonlinear crystal. Using three grating periods, 8.5, 9.0, and 9.5 μm of the MgO:sPPLT crystal and a single set of cavity mirrors, the SRO can be tuned continuously across 710.7-836.3 nm in the signal and corresponding idler across 2115.8-1462.1 nm with maximum idler power of 1.9 W and maximum out-coupled signal power of 254 mW. By frequency-doubling the intracavity signal with a 5-mm-long bismuth borate (BIBO) crystal, we can further tune the SRO continuously over 62.8 nm across 355.4-418.2 nm in the UV with maximum single-frequency UV power, as much as 770 mW at 398.28 nm in a Gaussian beam profile. The UV radiation has an instantaneous line-width of ∼14.5  MHz and peak-peak frequency stability of 151 MHz over 100 s. More than 95% of the tuning range provides UV power >260  mW. Access to lower UV wavelengths can in principle be realized by operating the SRO in the visible using shorter grating periods.

  6. SiOx Ink-Repellent Layer Deposited by Radio Frequency (RF) Plasmas in Continuous Wave and Pulse Mode

    International Nuclear Information System (INIS)

    Chen Qiang; Fu Yabo; Pang Hua; Zhang Yuefei; Zhang Guangqiu

    2007-01-01

    Low surface energy layers, proposed application for non-water printing in computer to plate (CTP) technology, are deposited in both continuous wave and pulse radio frequency (13.56 MHz) plasma with hexamethyldisiloxane (HMDSO) as precursor. It is found that the plasma mode dominates the polymer growth rate and the surface composition. Derived from the spectra of X-ray photoelectron spectroscopy (XPS) and combined with printable test it is concluded that concentration of Si in coatings plays an important role for the ink printability and the ink does not adhere on the surface with high silicon concentration

  7. A 10 MHz Bandwidth Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2016-01-01

    comparator and a pull-down clocked latch. The feedback signal is generated with voltage DACs based on transmission gates. Using this implementation, a small and low-power solution required for portable ultrasound scanner applications is achieved. The modulator has a bandwidth of 10 MHz with an oversampling......A fourth-order 1-bit continuous-time delta-sigma modulator designed in a 65 nm process for portable ultrasound scanners is presented in this paper. The loop filter consists of RCintegrators, with programmable capacitor arrays and resistors, and the quantizer is implemented with a high-speed clocked...

  8. The continuous-wave passive mode-locking operation of a diode-pumped mixed Nd:Lu0.5Y0.5VO4 laser

    International Nuclear Information System (INIS)

    Huang, H-T; Xu, J-L; He, J-L; Zhang, S-Y; Xu, J-Q; Zhao, B

    2011-01-01

    We reported a continuous-wave (CW) passively mode-locked Nd:Lu 0.5 Y 0.5 VO 4 laser at 1064 nm. A partially reflective semiconductor saturable absorber mirror was exploited in the Z-typed resonator. The Nd:Lu 0.5 Y 0.5 VO 4 laser generated CW mode-locked pulses with an average output power of 860 mW, a repetition rate of 53.7 MHz, and a pulse duration of 8.7 ps

  9. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  10. Fast wave at 433 MHz on FTU by a folded waveguide launcher

    International Nuclear Information System (INIS)

    Barbato, E.; De Marco, F.

    1993-01-01

    The use of fast wave (FW) power to interact directly with electrons is a useful tool for central heating of high density, high temperature plasmas and for electron current drive (CD). Direct electron heating by FW has been observed on JET and TFTR and, although FW absorption is weak at low β, successful electron heating and CD have been achieved on DIII-D at Te=2--3keV. The folded waveguide (FWG) is a promising new concept for ICRF launchers having the advantage of compact, rigid structure and very low impedence (E y /H z ) at the plasma edge. The FWG is particularly attractive for FTU since loop antennas suffer efficiency degradation at high frequency due to poloidal current decrease, whereas the RF flux coupled by a FWG is more poloidally uniform. Here we consider the possibility of injecting ∼ 1 MW of FW at 433 MHz into the FTU-Tokamak using the FWG as a launcher. Besides testing the FWG, and studying the FW electron heating regime, an other interesting issue of this experiment would be the study of possible sinergy between FW and the lower hybrid wave (LHW) at 8 GHz which is also available on FTU. The main parameters of FTU are a=30 cm, R 0 =90 cm, B T =4--8 T, I p e =0.4--2.0 10 14 cm -3

  11. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Satoru [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan (Japan); Aguilar, Mario [Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile); Akiba, Yoshiki [SOKENDAI (The Graduate University for Advanced Studies), Hayama, Miura District, Kanagawa, 240-0115 Japan (Japan); Arnold, Kam; Elleflot, Tucker; Galitzki, Nicholas [Department of Physics, University of California, San Diego, CA, 92093-0424 (United States); Baccigalupi, Carlo [International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, I-34136 Italy (Italy); Barron, Darcy; Beckman, Shawn; Chinone, Yuji; Cukierman, Ari; Goeckner-Wald, Neil [Department of Physics, University of California, Berkeley, CA, 94720 (United States); Boettger, David [Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago (Chile); Borrill, Julian [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 (United States); Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2 Canada (Canada); Ducout, Anne [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba, 277-8583 Japan (Japan); Errard, Josquin [Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, Paris, 75014 France (France); Fabbian, Giulio [Institut d' Astrophysique Spatiale, CNRS (UMR 8617), Université Paris-Sud, Université Paris-Saclay, bât. 121, Orsay, 91405 France (France); Fujino, Takuro, E-mail: takakura@vega.ess.sci.osaka-u.ac.jp [Yokohama National University, Yokohama, Kanagawa, 240-8501 Japan (Japan); and others

    2017-05-01

    A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I , Q and U , thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ∼0.5 m), where the CRHWP can be placed between the primary mirror and focal plane. In this configuration, one needs to address the intensity to polarization ( I → P ) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the (\\scshape Polarbear) experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I → P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (ℓ ∼ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.

  12. The producing of an ECR plasma using 2450MHz Whistler Wave and the investigating of its parameters

    International Nuclear Information System (INIS)

    Fang Yude; Zhang Jiande; Fu Keming; Lu Xiangyu; Liu Dengcheng; Wang Xianyu; Xie Weidong; Bao Dinghua; Yin Xiejin

    1988-12-01

    A stable ECR plasma was produced and sustained in HER mirror using 2450MHz Whistler wave. The parameters of the ECR plasma and their chaining characters were studied in detail and were compared with those of the DC discharge plasmas. The conclusion is that the ECR plasma is a high ionizability, low temperature, middle density plasma, its peak density may much exceed the cutoff density of the pump wave (when ω = ω pe ) and arrive at the order of 10 12 cm -3 . The ECR plasma includes some high energy hot electrons (20Kev-200Kev) and middle energy warm electrons (< 20Kev). Those two kinds of electron created some strong X-ray emissions in a wide frequency range. The ECR plasma has higher edge density and can strongly interact with the wall. (author). 9 refs, 17 figs

  13. Gravitational waves in hybrid quintessential inflationary models

    International Nuclear Information System (INIS)

    Sa, Paulo M; Henriques, Alfredo B

    2011-01-01

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.

  14. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  15. Continuous-wave single-frequency laser with dual wavelength at 1064 and 532 nm.

    Science.gov (United States)

    Zhang, Chenwei; Lu, Huadong; Yin, Qiwei; Su, Jing

    2014-10-01

    A continuous-wave high-power single-frequency laser with dual-wavelength output at 1064 and 532 nm is presented. The dependencies of the output power on the transmission of the output coupler and the phase-matching temperature of the LiB(3)O(5) (LBO) crystal are studied. An output coupler with transmission of 19% is used, and the temperature of LBO is controlled to the optimal phase-matching temperature of 422 K; measured maximal output powers of 33.7 W at 1064 nm and of 1.13 W at 532 nm are obtained with optical-optical conversion efficiency of 45.6%. The laser can be single-frequency operated stably and mode-hop-free, and the measured frequency drift is less than 15 MHz in 1 min. The measured Mx2 and My2 for the 1064 nm laser are 1.06 and 1.09, respectively. The measured Mx2 and My2 for the 532 nm laser are 1.12 and 1.11, respectively.

  16. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  17. Gravitational waves in hybrid quintessential inflationary models

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-09-22

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.

  18. Collision of two shock waves as a hypothetical mechanism of producing drifting radio bursts in the 400-500 MHz range

    International Nuclear Information System (INIS)

    Karlicky, M.

    1978-01-01

    After the proton flare of July 3, 1974 a hitherto unclassified phenomenon with a diffusion ''banner'' and with a considerably decelerating drift within the type II and III burst drifts range was observed in the radio dynamic spectrum between 410 and 470 MHz. The hypothesis is presented that the phenomenon is due to the collision of two shock waves, propagating against one another, during which the flux of electromagnetic radiation is considerably enhanced relative to the sum of the fluxes of the electromagnetic radiation of the individual shock waves. The Newkirk 4-density model of the corona is used to describe the phenomenon, the mechanism of plasmon-plasmon conversion in electromagnetic radiation with a double plasma frequency is considered and, according to the parameters derived from the dynamic spectrum, the velocities, radii of curvature and direction of propagation of the anticipated shock waves are analysed in a simplifed symmetric case. (author)

  19. A 70 MHz pulsing beam system for protons

    International Nuclear Information System (INIS)

    An Shizhong; Zhang Tianjue; Wu Longcheng; Lv Yinlong; Song Guofang; Guan Fengping; Jia Xianlu

    2008-01-01

    A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction as China Institute of Atomic Energy (CIAE). A 70 MHz continuous H - beam with the energy of dozens of keV or a hundred keV will be pulsed to pulse length of less than 10 ns with the repetition rate of 1-8 MHz. A 70.487 MHz buncher will be used to compress the DC beam into the RF phase acceptance of ±30° of the CRM cyclotron. The 2.2 MHz sine waveform will be used for the chopper. A pulse with the repetition rate to 4.4 MHz and pulse length less than 10 ns is expected after CRM cyclotron. (authors)

  20. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    Science.gov (United States)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  1. Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification

    Science.gov (United States)

    Hindle, Francis; Cuisset, Arnaud; Bocquet, Robin; Mouret, Gaël

    2008-03-01

    Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H 2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength ≈200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles. To cite this article: F. Hindle et al., C. R. Physique 9 (2008).

  2. Cluster Observations of Non-Time Continuous Magnetosonic Waves

    Science.gov (United States)

    Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.

    2016-01-01

    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.

  3. Characterization of the SPS 800MHz travelling wave cavities.

    CERN Document Server

    Bazyl, Dmitry

    2015-01-01

    It is well known that HOMs in RF cavities are a potentially dangerous source of beam impedance. Therefore, HOMs (both longitudinal and transverse) can drive the beam unstable . The 800MHz cavities of the SPS were studied in the past. However, very little documentation was left behind. Currently, the performance of the SPS is limited by a longitudinal beam instability. In order to study this instability, an accurate impedance model of the whole SPS is needed.

  4. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Science.gov (United States)

    2010-10-01

    ..., 2110-2150 MHz, and 2160-2200 MHz bands. 101.77 Section 101.77 Telecommunication FEDERAL COMMUNICATIONS...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify... a Police licensee, a Fire Licensee, or an Emergency Medical Licensee as defined in § 90.7 of this...

  5. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  6. 47 CFR 80.303 - Watch on 156.800 MHz (Channel 16).

    Science.gov (United States)

    2010-10-01

    ... Section 80.303 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Coast Station Safety... maintain a safety watch on the frequency 156.800 MHz except when transmitting on 156.800 MHz. (b) A coast...

  7. EPILEPTIC ENCEPHALOPATHY WITH CONTINUOUS SPIKES-WAVES ACTIVITY DURING SLEEP

    Directory of Open Access Journals (Sweden)

    E. D. Belousova

    2012-01-01

    Full Text Available The author represents the review and discussion of current scientific literature devoted to epileptic encephalopathy with continuous spikes-waves activity during sleep — the special form of partly reversible age-dependent epileptic encephalopathy, characterized by triad of symptoms: continuous prolonged epileptiform (spike-wave activity on EEG in sleep, epileptic seizures and cognitive disorders. The author describes the aspects of classification, pathogenesis and etiology, prevalence, clinical picture and diagnostics of this disorder, including the peculiar anomalies on EEG. The especial attention is given to approaches to the treatment of epileptic encephalopathy with continuous spikeswaves activity during sleep. Efficacy of valproates, corticosteroid hormones and antiepileptic drugs of other groups is considered. The author represents own experience of treatment this disorder with corticosteroids, scheme of therapy and assessment of efficacy.

  8. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats.

    Science.gov (United States)

    Ragy, Merhan Mamdouh

    2015-01-01

    Increasing use of mobile phones in daily life with increasing adverse effects of electromagnetic radiation (EMR), emitted from mobile on some physiological processes, cause many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to mobile phone emits 900-MHz EMR on the brain, liver and kidney of male albino rats. Thirty male adult rats were randomly divided into four groups (10 each) as follows: control group (rats without exposure to EMR), exposure group (exposed to 900-MHz EMR for 1 h/d for 60 d) and withdrawal group (exposed to 900-MHz electromagnetic wave for 1 h/d for 60 d then left for 30 d without exposure). EMR emitted from mobile phone led to a significant increase in malondialdehyde (MDA) levels and significant decrease total antioxidant capacity (TAC) levels in brain, liver and kidneys tissues. The sera activity of alanine transaminase (ALT), aspartate aminotransferase (AST), urea, creatinine and corticosterone were significantly increased (p electromagnetic field emitting from mobile phone might produce impairments in some biochemicals changes and oxidative stress in brain, liver and renal tissue of albino rats. These alterations were corrected by withdrawal.

  9. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  10. Parametric resonance and cosmological gravitational waves

    International Nuclear Information System (INIS)

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-01-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  11. Parametric resonance and cosmological gravitational waves

    Science.gov (United States)

    Sá, Paulo M.; Henriques, Alfredo B.

    2008-03-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  12. Evaluation Of Electromagnetic Fields For Frequencies 900 MHz-1 800 MHz In Tirana

    Directory of Open Access Journals (Sweden)

    Kuqi Dhurata

    2015-07-01

    Full Text Available Abstract The massive use of mobile phone as a communication tool nowadays is accompanied the ever increasing interest of the public and researchers for the possibly impact on human health as a result of exposure to the electromagnetic fields that accompany these devices. Therefore knowing the level of exposure electromagnetic fields of this electronic equipment has been and will be in the future interest object to the public and the subject of study for the researchers. In this paper are presents the results of measurements of electromagnetic fields for the frequencies 900 MHz - 1800 MHz used in mobile telephone in Tirana. These frequencies are included in the area radio frequency RF and Microwave MW 300 Hz - 300 GHz in the spectrum of electromagnetic waves and belong to non-ionizing radiation. The measurements were performed in different areas of Tirana. The purpose is to assess the level of exposure electromagnetic fields especially near areas where mobile antennas are mounted construction of dynamic digital mapping and comparison with the permitted levels of the exposure defined by the International Commission of Non Ionizing Radiation Protection ICNIRP. Through this publication the aim of the authors is to provide real information and reliable for the population.

  13. Hough transform search for continuous gravitational waves

    International Nuclear Information System (INIS)

    Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano

    2004-01-01

    This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities

  14. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    Present day knowledge of the magnitude of the strain levels in the ground associated with geotechnical structures, together with an increasing number of projects requiring the best estimates of ground movements around excavations, has led to, inter alia, increased interest in measuring the very......-small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  15. Designing a fractal antenna of 2400 MHz

    International Nuclear Information System (INIS)

    Miranda Hamburger, Fabio

    2012-01-01

    The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es

  16. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    KAUST Repository

    Li, Ming; Li, Shunbo; Cao, Wenbin; Li, Weihua; Wen, Weijia; Alici, Gursel

    2012-01-01

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field

  17. 915-MHz Radar Wind Profiler (915RWP) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  18. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  19. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  20. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Mishra, Anurag [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeunggi-do 440-746 (Korea, Republic of); Ellingboe, Albert R. [Plasma Research Laboratory, School of Physical Sciences, Dublin City University, Dublin 9, Ireland and Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-09-15

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHz power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.

  1. Reliability and current-adaptability studies of a 352 MHz, 17 MeV, continuous-wave injector for an accelerator-driven system

    Directory of Open Access Journals (Sweden)

    Chuan Zhang

    2010-08-01

    Full Text Available EUROTRANS is a European research program for the transmutation of high level nuclear waste in an accelerator-driven system (ADS. As proposed, the driver linac needs to deliver a 2.5–4 mA, 600 MeV continuous-wave (CW proton beam and later a 20 mA, 800 MeV one to the spallation target in the prototype-scale and industrial-scale demonstration phases, respectively. This paper is focusing on the conceptual studies performed with respect to the 17 MeV injector. First, the special beam dynamics strategies and methods, which have been developed and applied to design a current-variable injector up to 30 mA for allowing an easy upgrade without additional R&D costs, will be introduced. Then the error study made for evaluating the tolerance limits of the designed injector will be presented as well.

  2. A continuous wave RF vacuum window

    International Nuclear Information System (INIS)

    Walton, R.

    1999-09-01

    An essential part of an ICRF system to be used in fusion reactor is the RF window. This is fitted in a coaxial transmission line. It forms a vacuum and tritium boundary between the antenna, situated inside the machine, and the transmission line, which feeds it. A double window is required with a vacuum inter-space. The dielectric, which forms the vacuum boundary, must be brazed into its housing. The window must be of a robust construction, and capable of withstanding both axial and radial loads. The vacuum boundaries should be thick walled in order act as a suitable tritium barrier. A further requirement is that the window is capable of continuous operation. The design of such a window is presented below. A half scale prototype has been manufactured, which has successfully completed RF, vacuum, and mechanical testing at JET, but has no water cooling, which is a requirement for continuous operation. The design presented here is for a window to match the existing 30 Ω main transmission lines at JET. It employs two opposed ceramic dielectric cones with a much increased angle of incidence compared with existing JET windows. The housing is machined from titanium. Small corona rings are used, and the tracking distance along the ceramic surface is large. The geometry minimizes the peak electric field strength. The design uses substantial pre-stressing during manufacture, to produce a compressive stress field throughout the dielectric material. Significant tensile stresses in the ceramic, and therefore the possibility of fracture due to applied thermal and mechanical loading, are eliminated in this way. A full-scale actively cooled RF window using this basic design should be capable of continuous use at 50 kV in the 20 - 90 MHz range. A half scale, inertially cooled prototype window has been designed, built and tested successfully at JET to 48 kV for up to 20 seconds. The prototype uses alumina for the dielectric, whereas beryllia is more appropriate for continuous

  3. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    KAUST Repository

    Li, Ming

    2012-07-26

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field gradient required for the dielectrophoretic effect. When particles move electrokinetically through the channel, the experienced negative dielectrophoretic forces alternate directions within two adjacent semicircular microchannels, leading to a focused continuous-flow stream along the channel centerline. Both the experimentally observed and numerically simulated results of the focusing performance are reported, which coincide acceptably in proportion to the specified dimensions (i.e. inlet and outlet of the waved channel). How the applied electric field, particle size and medium concentration affect the performance was studied by focusing polystyrene microparticles of varying sizes. As an application in the field of biology, the focusing of yeast cells in the waved mcirochannel was tested. This waved microchannel shows a great potential for microflow cytometry applications and is expected to be widely used before different processing steps in lab-on-A-chip devices with integrated functions. © 2012 IOP Publishing Ltd.

  4. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  5. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    Science.gov (United States)

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  6. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    Science.gov (United States)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

  7. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  8. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    Science.gov (United States)

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  9. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  10. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  11. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    Science.gov (United States)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  12. Coupler Development and Gap Field Analysis for the 352 MHz Superconducting CH-Cavity

    CERN Document Server

    Liebermann, H; Ratzinger, U; Sauer, A C

    2004-01-01

    The cross-bar H-type (CH) cavity is a multi-gap drift tube structure based on the H-210 mode currently under development at IAP Frankfurt and in collaboration with GSI. Numerical simulations and rf model measurements showed that the CH-type cavity is an excellent candidate to realize s.c. multi-cell structures ranging from the RFQ exit energy up to the injection energy into elliptical multi-cell cavities. The reasonable frequency range is from about 150 MHz up to 800 MHz. A 19-cell, β=0.1, 352 MHz, bulk niobium prototype cavity is under development at the ACCEL-Company, Bergisch-Gladbach. This paper will present detailed MicroWave Studio simulations and measurements for the coupler development of the 352 MHz superconducting CH cavity. It will describe possibilities for coupling into the superconducting CH-Cavity. The development of the coupler is supported by measurement on a room temperature CH-copper model. We will present the first results of the measurements of different couplers, e.g. capacitiv...

  13. OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS

    International Nuclear Information System (INIS)

    Ellis, J. A.; Siemens, X.; Creighton, J. D. E.

    2012-01-01

    Supermassive black hole binaries (SMBHBs) are expected to emit a continuous gravitational wave signal in the pulsar timing array (PTA) frequency band (10 –9 to 10 –7 Hz). The development of data analysis techniques aimed at efficient detection and characterization of these signals is critical to the gravitational wave detection effort. In this paper, we leverage methods developed for LIGO continuous wave gravitational searches and explore the use of the F-statistic for such searches in pulsar timing data. Babak and Sesana have used this approach in the context of PTAs to show that one can resolve multiple SMBHB sources in the sky. Our work improves on several aspects of prior continuous wave search methods developed for PTA data analysis. The algorithm is implemented fully in the time domain, which naturally deals with the irregular sampling typical of PTA data and avoids spectral leakage problems associated with frequency domain methods. We take into account the fitting of the timing model and have generalized our approach to deal with both correlated and uncorrelated colored noise sources. We also develop an incoherent detection statistic that maximizes over all pulsar-dependent contributions to the likelihood. To test the effectiveness and sensitivity of our detection statistics, we perform a number of Monte Carlo simulations. We produce sensitivity curves for PTAs of various configurations and outline an implementation of a fully functional data analysis pipeline. Finally, we present a derivation of the likelihood maximized over the gravitational wave phases at the pulsar locations, which results in a vast reduction of the search parameter space.

  14. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    Science.gov (United States)

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  15. 47 CFR 80.1061 - Special requirements for 406.0-406.1 MHz EPIRB stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for 406.0-406.1 MHz EPIRB stations. 80.1061 Section 80.1061 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY... entitled RTCM Paper 77-02/SC110-STD, “RTCM Recommended Standards for 406 MHz Satellite Emergency Position...

  16. VLF wave generation by beating of two HF waves in the ionosphere

    Science.gov (United States)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  17. On the excitation of ULF waves by solar wind pressure enhancements

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson

    2006-11-01

    Full Text Available We study the onset and development of an ultra low frequency (ULF pulsation excited by a storm sudden commencement. On 30 August 2001, 14:10 UT, the Cluster spacecraft are located in the dayside magnetosphere and observe the excitation of a ULF pulsation by a threefold enhancement in the solar wind dynamic pressure. Two different harmonics are observed by Cluster, one at 6.8 mHz and another at 27 mHz. We observe a compressional wave and the development of a toroidal and poloidal standing wave mode. The toroidal mode is observed over a narrow range of L-shells whereas the poloidal mode is observed to have a much larger radial extent. By looking at the phase difference between the electric and magnetic fields we see that for the first two wave periods both the poloidal and toroidal mode are travelling waves and then suddenly change into standing waves. We estimate the azimuthal wave number for the 6.8 mHz to be m=10±3. For the 27 mHz wave, m seems to be several times larger and we discuss the implications of this. We conclude that the enhancement in solar wind pressure excites eigenmodes of the geomagnetic cavity/waveguide that propagate tailward and that these eigenmodes in turn couple to toroidal and poloidal mode waves. Thus our observations give firm support to the magnetospheric waveguide theory.

  18. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  19. Continuous waves probing in dynamic acoustoelastic testing

    Science.gov (United States)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  20. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    Science.gov (United States)

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  1. Frequency Arrangement For 700 MHz Band

    Directory of Open Access Journals (Sweden)

    Ancans G.

    2015-02-01

    Full Text Available The 694-790 MHz (700 MHz band was allocated by the 2012 World Radiocommunication Conference (WRC-12 in ITU Region 1 (Europe included, to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT. At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15. In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.

  2. Electromagnetic Waves Broadcast by a VCR.

    Science.gov (United States)

    Brown, Michael H.

    1996-01-01

    Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)

  3. Nonlinear wave propagation in discrete and continuous systems

    Science.gov (United States)

    Rothos, V. M.

    2016-09-01

    In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.

  4. 60 MHz fast wave current drive experiment for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, M.J.; Chiu, S.C.; Porkolab, M.; Chan, V.; Freeman, R.; Harvey, R.; Pinsker, R. (General Atomics, San Diego, CA (USA))

    1989-07-01

    The DIII-D facility provides an opportunity to test fast wave current drive appoach. Efficient FWCD is achieved by direct electron absorption due to Landa damping and transit time magnetic pumping. To avoid competing damping mechamisms we seek to maximize the single-pass asorption of the fast waves by electrons. (AIP)

  5. Continuity Conditions on Schrodinger Wave Functions at Discontinuities of the Potential.

    Science.gov (United States)

    Branson, David

    1979-01-01

    Several standard arguments which attempt to show that the wave function and its derivative must be continuous across jump discontinuities of the potential are reviewed and their defects discussed. (Author/HM)

  6. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    Science.gov (United States)

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  7. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  8. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    Science.gov (United States)

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  9. 47 CFR 15.242 - Operation in the bands 174-216 MHz and 470-668 MHz.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the bands 174-216 MHz and 470-668... bands 174-216 MHz and 470-668 MHz. (a) The marketing and operation of intentional radiators under the... services, facilities, and beds for use beyond 24 hours in rendering medical treatment and institutions and...

  10. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    Science.gov (United States)

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  11. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    Science.gov (United States)

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  12. Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Allan [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Grassellino, Anna [Fermilab; Melnychuk, Oleksandr [Fermilab; Merio, Margherita [Fermilab; Reid, Thomas [Argonne (main); Sergatskov, Dmitri [Fermilab

    2017-05-01

    The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, and LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.

  13. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity

  14. 47 CFR 101.69 - Transition of the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands from the fixed microwave...

    Science.gov (United States)

    2010-10-01

    ..., and 2160-2200 MHz bands from the fixed microwave services to personal communications services and...) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers... MHz bands from the fixed microwave services to personal communications services and emerging...

  15. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?

    OpenAIRE

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...

  16. Continuous-wave room-temperature diamond maser

    Science.gov (United States)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.

    2018-03-01

    The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  17. A prospective study of levetiracetam efficacy in epileptic syndromes with continuous spikes-waves during slow sleep

    DEFF Research Database (Denmark)

    Atkins, Mary; Nikanorova, Marina

    2011-01-01

    To evaluate the add-on effect of levetiracetam (LEV) treatment on the EEG and clinical status of children with continuous spikes-waves during slow sleep (CSWS).......To evaluate the add-on effect of levetiracetam (LEV) treatment on the EEG and clinical status of children with continuous spikes-waves during slow sleep (CSWS)....

  18. An analog memory integrated circuit for waveform sampling up to 900 MHz

    International Nuclear Information System (INIS)

    Haller, G.M.; Wooley, B.A.

    1994-01-01

    The potential of switched-capacitor technology for acquiring analog signals in high-energy physics (HEP) applications has been demonstrated in a number of analog memory designs. The design and implementation of a switched-capacitor memory suitable for capturing high-speed analog waveforms is described. Highlights of the presented circuit are a 900 MHz sampling frequency (generated on chip), input signal independent cell pedestal and sampling instances, and cell gains that are insensitive to component sizes. A two-channel version of the memory with 32 cells for each channel has been integrate in a 2-μm complementary metal oxide semiconductor (CMOS) process with polysilicon-to-polysilicon capacitors. The measured rms cell response variation in a channel after cell pedestal subtraction is less than 0.3 mV across the full input signal range. The cell-to-cell gain matching is better than 0.01% rms, and the nonlinearity is less than 0.03% for a 2.5-V input range. The dynamic range of the memory exceeds 13 bits, and the peak signal-to-(noise + distortion) ratio for a 21.4 MHz sine wave sampled at 900 MHz is 59 dB

  19. Second-order interference of two independent and tunable single-mode continuous-wave lasers

    International Nuclear Information System (INIS)

    Liu Jianbin; Chen Hui; Zheng Huaibin; Xu Zhuo; Wei Dong; Zhou Yu; Gao Hong; Li Fu-Li

    2016-01-01

    The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by employing two-photon interference in Feynman’s path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra. (paper)

  20. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  2. 47 CFR 22.603 - 488-494 MHz fixed service in Hawaii.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false 488-494 MHz fixed service in Hawaii. 22.603 Section 22.603 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... fixed service in Hawaii. Before filing applications for authorization of inter-island control and/or...

  3. Changes in clot lysis levels of reteplase and streptokinase following continuous wave ultrasound exposure, at ultrasound intensities following attenuation from the skull bone

    Directory of Open Access Journals (Sweden)

    Roijer Anders

    2008-08-01

    Full Text Available Abstract Background Ultrasound (US has been used to enhance thrombolytic therapy in the treatment of stroke. Considerable attenuation of US intensity is however noted if US is applied over the temporal bone. The aim of this study was therefore to explore possible changes in the effect of thrombolytic drugs during low-intensity, high-frequency continuous-wave ultrasound (CW-US exposure. Methods Clots were made from fresh venous blood drawn from healthy volunteers. Each clot was made from 1.4 ml blood and left to coagulate for 1 hour in a plastic test-tube. The thrombolytic drugs used were, 3600 IU streptokinase (SK or 0.25 U reteplase (r-PA, which were mixed in 160 ml 0.9% NaCl solution. Continuous-wave US exposure was applied at a frequency of 1 MHz and intensities ranging from 0.0125 to 1.2 W/cm2. For each thrombolytic drug (n = 2, SK and r-PA and each intensity (n = 9 interventional clots (US-exposed, n = 6 were submerged in thrombolytic solution and exposed to CW-US while control clots (also submerged in thrombolytic solution, n = 6 were left unexposed to US. To evaluate the effect on clot lysis, the haemoglobin (Hb released from each clot was measured every 20 min for 1 hour (20, 40 and 60 min. The Hb content (mg released was estimated by spectrophotometry at 540 nm. The difference in effect on clot lysis was expressed as the difference in the amount of Hb released between pairs of US-exposed clots and control clots. Statistical analysis was performed using Wilcoxon's signed rank test. Results Continuous-wave ultrasound significantly decreased the effects of SK at intensities of 0.9 and 1.2 W/cm2 at all times (P 2 and at 1.2 W/cm2, following 40 min exposure at 0.3, 0.6, 0.9 and at 1.2 W/cm2, and following 60 min of exposure at 0.05 0.3, 0.6, 0.9 and at 1.2 W/cm2 (all P Conclusion Increasing intensities of CW-US exposure resulted in increased clot lysis of r-PA-treated blood clots, but decreased clot lysis of SK-treated clots.

  4. Temporal evolution of electron density in a low pressure pulsed two-frequency (60 MHz/2 MHz) capacitively coupled plasma discharge

    International Nuclear Information System (INIS)

    Sirse, N; Ellingboe, A R; Jeon, M H; Yeom, G Y

    2014-01-01

    Time-resolved electron density, n e , is measured in a low pressure pulsed two-frequency capacitively coupled plasma discharge sustained in Ar and in Ar/CF 4 /O 2 (80 : 10 : 10) gas mixture using a floating resonance hairpin probe. The top electrode is powered by 60 MHz in pulse mode and the bottom electrode is powered by 2 MHz in continuous wave mode. The dependence of time-resolved n e on the low frequency (LF) and high frequency (HF) power levels, operating gas pressure, pulse repetition frequency (PRF) and duty cycle are investigated. It is found that the steady state n e in the long on-phase is greatly influenced by the HF power level and slightly affected by the LF power level in both Ar and Ar/CF 4 /O 2 plasma. The decay time of n e is slow (∼30–90 µs) in the case of Ar plasma and strongly depends on the LF power level, whereas in the case of Ar/CF 4 /O 2 gas mixture it is very fast (∼15 µs) and marginally dependent on LF power level. In Ar plasma the steady state n e is increasing with a rise in operating gas pressure, however, in Ar/CF 4 /O 2 plasma it first increases with gas pressure reaching to the maximum (at 20 mTorr) value and then decreases. The pressure dependence of decay time constant mimics the pressure variation of steady state n e . Furthermore, it is observed that the on-phase electron density is greatly affected by changing the PRF and duty cycle. This effect is more prominent in Ar/CF 4 /O 2 plasma when compared to Ar discharge. In addition, n e is observed to overshoot the steady state densities in the beginning of the on-phase in Ar/CF 4 /O 2 gas mixture, but this effect is either small or absent in the case of Ar plasma. (paper)

  5. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  6. 47 CFR 25.254 - Special requirements for ancillary terrestrial components operating in the 1610-1626.5 MHz/2483.5...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Special requirements for ancillary terrestrial components operating in the 1610-1626.5 MHz/2483.5-2500 MHz bands. 25.254 Section 25.254 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical...

  7. Optimized 425MHz passive wireless magnetic field sensor

    KAUST Repository

    Li, Bodong

    2014-06-01

    A passive, magnetic field sensor consisting of a 425 MHz surface acoustic wave device loaded with a giant magnetoimpedance element is developed. The GMI element with a multilayer structure composed of Ni80Fe 20/Cu/Ni80Fe20, is fabricated on a 128° Y-X cut LiNbO3 LiNbO3 substrate. The integrated sensor is characterized with a network analyzer through an S-parameter measurement. Upon the application of a magnetic field, a maximum magnitude change and phase shift of 7.8 dB and 27 degree, respectively, are observed. Within the linear region, the magnetic sensitivity is 1.6 dB/Oe and 5 deg/Oe. © 2014 IEEE.

  8. Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22-59.

    Science.gov (United States)

    Türedi, Sibel; Kerimoğlu, Gökçen; Mercantepe, Tolga; Odacı, Ersan

    2017-09-01

    To investigate the effect on male rat kidney and bladder tissues of exposure to 900-megahertz (MHz) electromagnetic field (EMF) applied on postnatal days 22-59, inclusive. Twenty-four male Sprague Dawley rats, aged 21 days, were used. These were divided equally into one of three groups, control (CG), sham (SG) or EMF (EMFG). CG was not exposed to any procedure. SG rats were kept inside a cage, without being exposed to the effect of EMF, for 1 h a day on postnatal days 22-59, inclusive. EMFG rats were exposed to continuous 900-MHz EMF for 1 h a day under the same conditions as those for the SG rats. Rats were sacrificed on postnatal day 60, and the kidney and bladder tissues were removed. Tissues were stained with hematoxylin and eosin (H&E) and Masson trichrome for histomorphological evaluation. The TUNEL method was used to assess apoptosis. Transmission electron microscopy (TEM) was also used for the kidney tissue. Oxidant/antioxidant parameters were studied in terms of biochemical values. The findings showed that tissue malondialdehyde increased in EMFG compared to CG and SG in both kidney (p = 0.004 and p = 0.004, respectively) and bladder tissue (p = 0.004, p = 0.006, respectively), while catalase and glutathione levels decreased compared to CG (p = 0.004; p = 0.004, respectively) and SG (p = 0.004; p = 0.004, respectively). In the EMF group, pathologies such as dilatation and vacuolization in the distal and proximal tubules, degeneration in glomeruli and an increase in cells tending to apoptosis were observed in kidney tissue. In bladder tissue, degeneration in the transitional epithelium and stromal irregularity and an increase in cells tending to apoptosis were observed in EMFG. Additionally, EMFG samples exhibited glomerular capillary degeneration with capillary basement membranes under TEM. We conclude that continuous exposure to the effect of 900-MHz EMF for 1 h a day on postnatal days 22-59, inclusive, causes an

  9. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    Science.gov (United States)

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  10. The effects of 1800 MHz radiofrequency waves on lipid peroxidation in pregnant rabbits

    International Nuclear Information System (INIS)

    Tomruk, Arin; Guler, Goknur; Seyhan, Nesrin

    2008-01-01

    Full text: The radiofrequency (RF) part of the Electromagnetic (EM) spectrum includes EM waves used mainly for telecommunications purposes (Radio and TV broadcasting, wireless phones, pagers, cordless phones, police and fire department radios, point-to-point links and satellite communications all rely on RF energy) and also used in some industrial technologies (industrial heaters and sealers), medical treatments (Diathermy units), microwave ovens and radar technologies. With rapid advances in these technologies, exposure to RF radiation of people has also increased. Some biological effects have been associated with exposure to RF and it is well established that RF exposures may lead to changes in cell membrane functions, cell metabolism. Changes in cell membrane functions include chemical reactions occurred between main membrane components (phospholipids, cholesterol, etc) and oxidative stress products such as Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). Oxidative attacks of ROS and RNS can cause degradation of these unsaturated lipids and this degradation can be referred as lipid peroxidation (LPO). Malondialdehyde (MDA) is the end product of the major chain reactions leading to oxidation of polyunsaturated fatty acids and serves as a reliable marker of oxidative stress mediated LPO. Membrane LPO may initialize many forms of oxygen toxicity at molecular level including structural derangement of the bilayer and altered fluidity, increased permeability of cytosolic constituents, inactivation of intrinsic enzymes and transporters, covalent cross-linking of lipids and proteins, polypeptide strand scission and DNA damage and mutagenesis. In the present study, the investigation of the possible RF radiation's effects on LPO was aimed particularly. A total forty New Zeland White rabbits (weighted 3-5 kg, 16 months) were randomly divided into four groups which are composed of 10 rabbits each for groups. 1) Group I (sham, non-pregnant group); 2) Group

  11. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  12. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  13. VLA observations of NGC 1265 at 4886 MHz

    International Nuclear Information System (INIS)

    Owen, F.N.; Burns, J.O.; Rudnick, L.

    1978-01-01

    Observations are presented of the head-tail radio galaxy NGC 1265, made with the VLA at 4886 MHz. The total intensity brightness distribution has a resolution of 1' x 1'.5 and an rms noise of approx.150 μJy/beam area. These observations, combined with data at 2695 and 8085 MHz on a 35 km baseline in Green Bank, show that the nuclear component is less than 0'.1 and has a slightly inverted spectrum.The VLA map reveals a narrow continuous stream of emission leading away from the nucleus and out into the lower-surface brightness tail. Several small knots are superposed on the stream. This brightness distribution is compared with the independent-blob model of Jaffe and Perola. We find that the brightness distribution predicted by this model does not agree well with the observed brightness distribution. We suggest that a hot interstellar medium in the galaxy may be necessary to explain the complex structure

  14. All-optoelectronic continuous wave THz imaging for biomedical applications

    International Nuclear Information System (INIS)

    Siebert, Karsten J; Loeffler, Torsten; Quast, Holger; Thomson, Mark; Bauer, Tobias; Leonhardt, Rainer; Czasch, Stephanie; Roskos, Hartmut G

    2002-01-01

    We present an all-optoelectronic THz imaging system for ex vivo biomedical applications based on photomixing of two continuous-wave laser beams using photoconductive antennas. The application of hyperboloidal lenses is discussed. They allow for f-numbers less than 1/2 permitting better focusing and higher spatial resolution compared to off-axis paraboloidal mirrors whose f-numbers for practical reasons must be larger than 1/2. For a specific histological sample, an analysis of image noise is discussed

  15. Imaging melanin cancer growth in-vivo using raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz and 100 MHz

    Science.gov (United States)

    Omar, Murad; Schwarz, Mathias; Soliman, Dominik; Symvoulidis, Panagiotis; Ntziachristos, Vasilis

    2016-03-01

    We used raster-scan optoacoustic mesoscopy (RSOM) at 50 MHz, and at 100 MHz, to monitor tumor growth, and tumor angiogenesis, which is a central hallmark of cancer, in-vivo. In this study we compared the performance, and the effect of the 50 MHz, and the 100 MHz frequencies on the quality of the final image. The system is based on a reflection-mode implementation of RSOM. The detectors used are custom made, ultrawideband, and spherically focused. The use of such detectors enables light coupling from the same side as the detector, thus reflection-mode. Light is in turn coupled using a fiber bundle, and the detector is raster scanned in the xy-plane. Subsequently, to retrieve small features, the raw data are reconstructed using a multi-bandwidth, beamforming reconstruction algorithm. Comparison of the system performance at the different frequencies shows as expected a higher resolution in case of the 100 MHz detector compared to the 50 MHz. On the other hand the 50 MHz has a better SNR, can detect features from deeper layers, and has higher angular acceptance. Based on these characteristics the 50 MHz detector was mostly used. After comparing the performance we monitored the growth of B16F10 cells, melanin tumor, over the course of 9 days. We see correspondence between the optoacoustic measurements and the cryoslice validations. Additionally, in areas close to the tumor we see sprouting of new vessels, starting at day 4-5, which corresponds to tumor angiogenesis.

  16. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  17. Terminal load response law of coaxial cable to continuous wave electromagnetic irradiation

    International Nuclear Information System (INIS)

    Pan Xiaodong; Wei Guanghui; Li Xinfeng; Lu Xinfu

    2012-01-01

    In order to study the coupling response law of continuous wave electromagnetic irradiation to coaxial cable, the typical RF coaxial cable is selected as the object under test. The equipment or subsystem connected by coaxial cable is equivalent to a lumped load. Continuous wave irradiation effect experiments under different conditions are carried out to analyze the terminal load response law of coaxial cable. The results indicate that the coaxial cable has a frequency selecting characteristic under electromagnetic irradiation, and the terminal load response voltage peak appears at a series of discrete frequency points where the test cable's relative lengths equal to semi-integers. When the coaxial cable is irradiated by continuous wave, the induced sheath current converts to the differential-mode induced voltage between inner conductor and shielding layer through transfer impedance, and the internal resistance of induced voltage source is the characteristic impedance of the coaxial cable. The change in terminal load value has no influence on the response curve. The voltages on the terminal load and the internal resistance of equivalent induced voltage source obey the principle of voltage division. Moreover, when the sheath current on the coaxial cable is in resonance, the distributed induced voltage between adjacent current nodes is in the same polarity, which can be equivalent to a single induced voltage source. The induced voltage source which is adjacent to the terminal load plays the leading role in the irradiation response process. (authors)

  18. The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B

    Science.gov (United States)

    Taylor, R. E.; Fee, J. J.; Chin, M.

    1972-01-01

    A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.

  19. Stochastic generation of continuous wave spectra

    DEFF Research Database (Denmark)

    Trulsen, J.; Dysthe, K. B.; Pécseli, Hans

    1983-01-01

    Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...

  20. Study of fast wave current drive in a KT-2 tokamak plasma

    International Nuclear Information System (INIS)

    Hong, B.G.; Hamamatsu, Kiyotaka

    1996-02-01

    Global analysis of fast wave current drive in a KT-2 tokamak plasma is performed by using the code, TASKW1, developed by JAERI and Okayama University (Dr. Fukuyama), which solves the kinetic wave equation in a one dimensional slab geometry. A phase-shifted antenna array is used to inject toroidal momentum to electrons. To find guidelines of optimum antenna design for efficient current drive, accessibility conditions are derived. The dependence of the current drive efficiency on launching conditions such as the total number of antennas, phase and spacing is investigated for two cases of wave frequency; f=30 MHz ( cH ) and f=225 MHz (=5f cH ). (author)

  1. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    Science.gov (United States)

    2017-04-18

    cally authorized by the U.S. Government may violate any copyrights that exist in this work. Watt-level continuous- wave emission from a bi- functional ... wave bi- functional devices, opens the perspective of on-chip dual comb spectroscopy. Also for discrete sens- ing setups, one can switch to lasers...seas.harvard.edu Abstract Bi- functional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of

  2. Hypersonic evanescent waves generated with a planar spiral coil.

    Science.gov (United States)

    Stevenson, A C; Araya-Kleinsteuber, B; Sethi, R S; Mehta, H M; Lowe, C R

    2003-09-01

    A planar spiral coil has been used to induce hypersonic evanescent waves in a quartz substrate with the unique ability to focus the acoustic wave down onto the chemical recognition layer. These special sensing conditions were achieved by investigating the application of a radio frequency current to a coaxial waveguide and spiral coil, so that wideband repeating electrical resonance conditions could be established over the MHz to GHz frequency range. At a selected operating frequency of 1.09 GHz, the evanescent wave depth of a quartz crystal hypersonic resonance is reduced to 17 nm, minimising unwanted coupling to the bulk fluid. Verification of the validity of the hypersonic resonance was carried out by characterising the system electrically and acoustically: Impedance calculations of the combined coil and coaxial waveguide demonstrated an excellent fit to the measured data, although above 400 MHz a transition zone was identified where unwanted impedance is parasitic of the coil influence efficiency, so the signal-to-noise ratio is reduced from 3000 to 300. Acoustic quartz crystal resonances at intervals of precisely 13.2138 MHz spacing, from the 6.6 MHz ultrasonic range and onto the desired hypersonic range above 1 GHz, were incrementally detected. Q factor measurements demonstrated that reductions in energy lost from the resonator to the fluid interface were consistent with the anticipated shrinkage of the evanescent wave with increasing operating frequency. Amplitude and frequency reduction in contact with a glucose solution was demonstrated at 1.09 GHz. The complex physical conditions arising at the solid-liquid interface under hypersonic entrainment are discussed with respect to acceleration induced slippage, rupture, longitudinal and shear radiation and multiphase relaxation affects.

  3. 47 CFR 90.672 - Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the... Procedures and Process-Unacceptable Interference § 90.672 Unacceptable interference to non-cellular 800 MHz...

  4. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).

    Science.gov (United States)

    Cheng, Y; Liu, X J; Wu, D J

    2011-03-01

    This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. © 2011 Acoustical Society of America

  5. One step linear reconstruction method for continuous wave diffuse optical tomography

    Science.gov (United States)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  6. Continuous terahertz-wave generation using a monolithically integrated horn antenna

    Science.gov (United States)

    Peytavit, E.; Beck, A.; Akalin, T.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2008-09-01

    A transverse electromagnetic horn antenna is monolithically integrated with a standard ultrafast interdigitated electrode photodetector on low-temperature-grown GaAs. Continuous-wave terahertz radiation is generated at frequencies up to 2 THz with a maximum power of approximately 1 μW at 780 GHz. Experimental variations in the terahertz power as function of the frequency are explained by means of electromagnetic simulations of the antenna and the photomixer vicinity.

  7. A continuous wave fan beam tomography system having a best estimating filter

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1982-01-01

    A continuous wave fan beam tomographic system is described which continuously samples X-ray absorption values and a means of providing a best-estimate of the X-ray absorption values at discrete points in time determined by sampling signal s(t). The means to provide the best-estimate include a continuous filter having a frequency range defined by the geometry of the mechanical system. Errors due to the statistical variation in photon emissions of the X-ray source are thereby minimized and the effective signal-to-noise ratio of signals is enhanced, which in turn allows a significant reduction in radiation dosage. (author)

  8. The 136 MHz/400 MHz earth station antenna-noise temperature prediction program documentation for RAE-B

    Science.gov (United States)

    Chin, M.

    1972-01-01

    A simulation study to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods is described. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio (SNR) of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low-noise periods. Antenna-noise temperatures at 136 MHz and 400 MHz will be predicted for selected earth-based ground stations which will support RAE-B. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973. The RAE-B mission will be expecially susceptible to SNR degradation during the two eclipses of the Sun occurring in this period.

  9. A matched Bow-tie antenna at 433MHz for use in underwater wireless sensor networks

    International Nuclear Information System (INIS)

    Abdou, A A; Shaw, A; Mason, A; Al-Shamma'a, A; Cullen, J; Wylie, S; Diallo, M

    2013-01-01

    Electromagnetic (EM) wave propagation underwater is been disregarded because of attenuation at high frequencies, however the theory predicts that propagation is possible at some useful distance in the lower Industrial, Scientific and Medical (ISM) band. Common transceivers rely on narrowband antennas and matching circuit. The aim of this paper is to design a broadband 433MHz bow-tie antenna and experiment it in air and water without a matching circuit. This antenna could be attached to wireless transceivers and form a Wireless Sensor Network for deployment in various underwater applications. The bow-tie antennas were designed, simulated and constructed in laboratory. Experiments were setup carefully by using a completely isolated transmitter from electronics to avoid airborne transmission. The 433MHz. bow-tie proved its suitability for use in Underwater.

  10. Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators

    Science.gov (United States)

    Glyzin, S. D.; Kolesov, A. Yu; Rozov, N. Kh

    2017-12-01

    Proposed is a mathematical model of a continuous annular chain of unidirectionally coupled generators given by certain nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. It is shown that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.

  11. Cinematic Characterization of Convected Coherent Structures Within an Continuous Flow Z-Pinch

    Science.gov (United States)

    Underwood, Thomas; Rodriguez, Jesse; Loebner, Keith; Cappelli, Mark

    2017-10-01

    In this study, two separate diagnostics are applied to a plasma jet produced from a coaxial accelerator with characteristic velocities exceeding 105 m/s and timescales of 10 μs. In the first of these, an ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse. The unique advantage of this diagnostic is its ability to simultaneously resolve both structural and temporal evolution of instabilities and density gradients within the flow. To allow for a more meaningful statistical analysis of the resulting wave motion, a multiple B-dot probe array was constructed and calibrated to operate over a broadband frequency range up to 100 MHz. The resulting probe measurements are incorporated into a wavelet analysis to uncover the dispersion relation of recorded wave motion and furthermore uncover instability growth rates. Finally these results are compared with theoretical growth rate estimates to identify underlying physics. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  12. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.

    1995-01-01

    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  13. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  14. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  15. Radar observations of ion cyclotron waves associated with two barium shaped-charge releases

    International Nuclear Information System (INIS)

    Providakes, J.; Swartz, W.E.; Kelley, M.C.; Djuth, F.T.; Noble, S.; Jost, R.J.

    1990-01-01

    A 50-MHz Doppler radar interferometer and a 138-MHz Doppler radar were operated from Kennedy Space Center to study 3-m and 1-m plasma waves associated with two shaped-charged barium releases from Wallops Island, Virginia, on May 13, 1986. During the first release, interferometer and Doppler power spectral studies showed the existence of short-lived ( + EIC waves were unstable for field-aligned electron drifts greater than 0.7υ the at the altitude of 510 km in a multispecies (O + , NO + , or similarly O 2 + ) ionospheric plasma. The authors interpret the 30-Hz waves seen by the two radars far above the release as strong electrostatic ion cyclotron waves generated by intense field-aligned currents associated with the barium stream acting like an MHD generator coupled to the ionospheres

  16. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    International Nuclear Information System (INIS)

    Olsen, M.K.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal

  17. 270 nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 mW Continuous Wave Output Power

    Science.gov (United States)

    Grandusky, James R.; Chen, Jianfeng; Gibb, Shawn R.; Mendrick, Mark C.; Moe, Craig G.; Rodak, Lee; Garrett, Gregory A.; Wraback, Michael; Schowalter, Leo J.

    2013-03-01

    In this letter, the achievement of over 60 mW output power from pseudomorphic ultraviolet light-emitting diodes in continuous wave operation is reported. Die thinning and encapsulation improved the photon extraction efficiency to over 15%. Improved thermal management and a high characteristic temperature resulted in a low thermal rolloff up to 300 mA injection current with an output power of 67 mW, an external quantum efficiency (EQE) of 4.9%, and a wall plug efficiency (WPE) of 2.5% for a single-chip device emitting at 271 nm in continuous wave operation.

  18. Mechanical analysis of a $\\beta=0.09 $ 162.5MHz taper HWR cavity

    OpenAIRE

    Fan, Peiliang; Zhu, Feng; Zhong, Hutianxiang; Quan, Shengwen; Liu, Kexin

    2015-01-01

    One superconducting taper-type half-wave resonator (HWR) with frequency of 162.5MHz, \\b{eta} of 0.09 has been developed at Peking University, which is used to accelerate high current proton ($\\sim$ 100mA) and $D^{+}$($\\sim$ 50mA). The radio frequency (RF) design of the cavity has been accomplished. Herein, we present the mechanical analysis of the cavity which is also an important aspect in superconducting cavity design. The frequency shift caused by bath helium pressure and Lorenz force, and...

  19. CdS thin films prepared by continuous wave Nd:YAG laser

    Science.gov (United States)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  20. Limitations On The Creation of Continuously Surfable Waves Generated By A Pressure Source Moving In A Circular Path

    NARCIS (Netherlands)

    Schmied, S.A.

    2014-01-01

    The aim of the research presented in this work was to investigate the novel idea to produce continuous breaking waves, whereby a pressure source was rotated within an annular wave pool. The concept was that the pressure source generates non-breaking waves that propagate inward to the inner ring of

  1. The Japanese space gravitational wave antenna-DECIGO

    International Nuclear Information System (INIS)

    Kawamura, Seiji; Nakamura, Takashi; Ando, Masaki

    2006-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. It aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy. The pre-conceptual design of DECIGO consists of three drag-free satellites, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO in 2024 after a long and intense development phase, including two pathfinder missions for verification of required technologies

  2. Gas loading of graphene-quartz surface acoustic wave devices

    Science.gov (United States)

    Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-08-01

    Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.

  3. Effects of Metamaterial Slabs Applied to Wireless Power Transfer at 13.56 MHz

    OpenAIRE

    Kim, Gunyoung; Oh, Taek-Kyu; Lee, Bomson

    2015-01-01

    This paper analyzes the effects of a metamaterial slab (or a practical “perfect lens”) with negative permeability applied to a two loop magnetically coupled wireless power transfer (WPT) system at 13.56 MHz, based on theory, full-wave electromagnetic- (EM-) simulations, and measurements. When using lossless slabs with ideal negative permeability in EM-simulations, the WPT efficiencies have been found to be enhanced close to 100% due to the magnetic field focusing. For the case of using a real...

  4. Spectral intensity dependence an isotropy of sources stronger than 0.1 Jy at 2700 MHz

    International Nuclear Information System (INIS)

    Balonek, T.J.; Broderick, J.J.; Condon, J.J.; Crawford, D.F.; Jauncey, D.L.

    1975-01-01

    The 1000-foot (305 m) telescope of the National Astronomy and Ionosphere Center was used to measure 430 MHz flux densities of sources stronger than 0.1 Jy at 2700 MHz. Distributions of the resulting two-point spectral indices α (430, 2700) of sources in the intensity range 0.1less than or equal toS<0.35 Jy were compared with α (318, 2700) distributions of sources stronger than 0.35 Jy at 2700 MHz. The median normal-component spectral index and fraction of flat-spectrum sources in the faintest sample do not continue the previously discovered trend toward increased spectral steepening of faint sources. This result differs from the prediction of simple evolutionary cosmological models and therefore favors the alternative explanation that local source-density inhomogeneities are responsible for the observed intensity dependence of spectral indices

  5. Pulsar discoveries by volunteer distributed computing and the strongest continuous gravitational wave signal

    Science.gov (United States)

    Knispel, Benjamin

    2011-07-01

    Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from

  6. Searching for continuous gravitational wave signals. The hierarchical Hough transform algorithm

    International Nuclear Information System (INIS)

    Papa, M.; Schutz, B.F.; Sintes, A.M.

    2001-01-01

    It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk I will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere [8]. In this talk I will focus on some of the implementational aspects we are currently concerned with. (author)

  7. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  8. Resonance control for a cw [continuous wave] accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    A resonance-control technique is described that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  9. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.

    Science.gov (United States)

    Marsac, L; Chauvet, D; La Greca, R; Boch, A-L; Chaumoitre, K; Tanter, M; Aubry, J-F

    2017-09-01

    Transcranial brain therapy has recently emerged as a non-invasive strategy for the treatment of various neurological diseases, such as essential tremor or neurogenic pain. However, treatments require millimetre-scale accuracy. The use of high frequencies (typically ≥1 MHz) decreases the ultrasonic wavelength to the millimetre scale, thereby increasing the clinical accuracy and lowering the probability of cavitation, which improves the safety of the technique compared with the use of low-frequency devices that operate at 220 kHz. Nevertheless, the skull produces greater distortions of high-frequency waves relative to low-frequency waves. High-frequency waves require high-performance adaptive focusing techniques, based on modelling the wave propagation through the skull. This study sought to optimise the acoustical modelling of the skull based on computed tomography (CT) for a 1 MHz clinical brain therapy system. The best model tested in this article corresponded to a maximum speed of sound of 4000 m.s -1 in the skull bone, and it restored 86% of the optimal pressure amplitude on average in a collection of six human skulls. Compared with uncorrected focusing, the optimised non-invasive correction led to an average increase of 99% in the maximum pressure amplitude around the target and an average decrease of 48% in the distance between the peak pressure and the selected target. The attenuation through the skulls was also assessed within the bandwidth of the transducers, and it was found to vary in the range of 10 ± 3 dB at 800 kHz and 16 ± 3 dB at 1.3 MHz.

  10. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    DEFF Research Database (Denmark)

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave...... or the gate voltage V-g of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added......, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously...

  11. The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite

    Science.gov (United States)

    Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ozaki, Mitsunori; Matsuda, Shoya; Imachi, Tomohiko; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Katoh, Yuto; Ota, Mamoru; Shoji, Masafumi; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    The Exploration of energization and Radiation in Geospace (ERG) project aims to study acceleration and loss mechanisms of relativistic electrons around the Earth. The Arase (ERG) satellite was launched on December 20, 2016, to explore in the heart of the Earth's radiation belt. In the present paper, we introduce the specifications of the Plasma Wave Experiment (PWE) on board the Arase satellite. In the inner magnetosphere, plasma waves, such as the whistler-mode chorus, electromagnetic ion cyclotron wave, and magnetosonic wave, are expected to interact with particles over a wide energy range and contribute to high-energy particle loss and/or acceleration processes. Thermal plasma density is another key parameter because it controls the dispersion relation of plasma waves, which affects wave-particle interaction conditions and wave propagation characteristics. The DC electric field also plays an important role in controlling the global dynamics of the inner magnetosphere. The PWE, which consists of an orthogonal electric field sensor (WPT; wire probe antenna), a triaxial magnetic sensor (MSC; magnetic search coil), and receivers named electric field detector (EFD), waveform capture and onboard frequency analyzer (WFC/OFA), and high-frequency analyzer (HFA), was developed to measure the DC electric field and plasma waves in the inner magnetosphere. Using these sensors and receivers, the PWE covers a wide frequency range from DC to 10 MHz for electric fields and from a few Hz to 100 kHz for magnetic fields. We produce continuous ELF/VLF/HF range wave spectra and ELF range waveforms for 24 h each day. We also produce spectral matrices as continuous data for wave direction finding. In addition, we intermittently produce two types of waveform burst data, "chorus burst" and "EMIC burst." We also input raw waveform data into the software-type wave-particle interaction analyzer (S-WPIA), which derives direct correlation between waves and particles. Finally, we introduce our

  12. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  13. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Paggi, A.; D' Abrusco, R. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected at 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.

  14. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna

    Directory of Open Access Journals (Sweden)

    Adolfo Di Serio

    2017-12-01

    Full Text Available Internet of Things (IoT technology is rapidly emerging in medical applications as it offers the possibility of lower-cost personalized healthcare monitoring. At the present time, the 2.45 GHz band is in widespread use for these applications but in this paper, the authors investigate the potential of the 915 MHz ISM band in implementing future, wearable IoT devices. The target sensor is a wrist-worn wireless heart rate and arterial oxygen saturation (SpO2 monitor with the goal of providing efficient wireless functionality and long battery lifetime using a commercial Sub-GHz low-power radio transceiver. A detailed analysis of current consumption for various wireless protocols is also presented and analyzed. A novel 915 MHz antenna design of compact size is reported that has good resilience to detuning by the human body. The antenna also incorporates a matching network to meet the challenging bandwidth requirements and is fabricated using standard, low-cost FR-4 material. Full-Wave EM simulations are presented for the antenna placed in both free-space and on-body cases. A prototype antenna is demonstrated and has dimensions of 44 mm × 28 mm × 1.6 mm. The measured results at 915 MHz show a 10 dB return loss bandwidth of 55 MHz, a peak realized gain of − 2.37 dBi in free-space and − 6.1 dBi on-body. The paper concludes by highlighting the potential benefits of 915 MHz operation for future IoT devices.

  15. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna.

    Science.gov (United States)

    Di Serio, Adolfo; Buckley, John; Barton, John; Newberry, Robert; Rodencal, Matthew; Dunlop, Gary; O'Flynn, Brendan

    2017-12-22

    Internet of Things (IoT) technology is rapidly emerging in medical applications as it offers the possibility of lower-cost personalized healthcare monitoring. At the present time, the 2.45 GHz band is in widespread use for these applications but in this paper, the authors investigate the potential of the 915 MHz ISM band in implementing future, wearable IoT devices. The target sensor is a wrist-worn wireless heart rate and arterial oxygen saturation (SpO2) monitor with the goal of providing efficient wireless functionality and long battery lifetime using a commercial Sub-GHz low-power radio transceiver. A detailed analysis of current consumption for various wireless protocols is also presented and analyzed. A novel 915 MHz antenna design of compact size is reported that has good resilience to detuning by the human body. The antenna also incorporates a matching network to meet the challenging bandwidth requirements and is fabricated using standard, low-cost FR-4 material. Full-Wave EM simulations are presented for the antenna placed in both free-space and on-body cases. A prototype antenna is demonstrated and has dimensions of 44 mm × 28 mm × 1.6 mm. The measured results at 915 MHz show a 10 dB return loss bandwidth of 55 MHz, a peak realized gain of - 2.37 dBi in free-space and - 6.1 dBi on-body. The paper concludes by highlighting the potential benefits of 915 MHz operation for future IoT devices.

  16. Development of disposable membrane hydrophones for a frequency range from 1MHz to 10MHz.

    Science.gov (United States)

    Lee, Jae-Wan; Ohm, Won-Suk; Kim, Yong-Tae

    2017-11-01

    A method for fabricating disposable membrane hydrophones is presented. The disposable hydrophones are intended for onetime use in such damaging environments as chemically contaminating fluids and high-amplitude (peak amplitude ∼100MPa) shock wave fields, where the use of commercial membrane hydrophones is not recommended. Fabrication of a hydrophone is done using only off-the-shelf components and hand tools, which translates into ease of fabrication and orders-of-magnitude reduction in unit cost. In particular, poling and sputtering, the two processes that are chiefly responsible for the cost and difficulty associated with the conventional fabrication method, are replaced with the use of pre-poled polyvinylidene fluoride (PVDF) films and polyethylene terephthalate (PET)-coated aluminum foils, respectively. Despite the seemingly crude construction, these disposable hydrophones can exhibit voltage sensitivity response that compares favorably with that of commercial hydrophones. For example, one prototype having a 2mm×2mm active element shows the end-of-cable voltage sensitivity of -270 (±1.9) dB re 1V/μPa over the frequency range of 1-10MHz. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Exploiting large-scale correlations to detect continuous gravitational waves.

    Science.gov (United States)

    Pletsch, Holger J; Allen, Bruce

    2009-10-30

    Fully coherent searches (over realistic ranges of parameter space and year-long observation times) for unknown sources of continuous gravitational waves are computationally prohibitive. Less expensive hierarchical searches divide the data into shorter segments which are analyzed coherently, then detection statistics from different segments are combined incoherently. The novel method presented here solves the long-standing problem of how best to do the incoherent combination. The optimal solution exploits large-scale parameter-space correlations in the coherent detection statistic. Application to simulated data shows dramatic sensitivity improvements compared with previously available (ad hoc) methods, increasing the spatial volume probed by more than 2 orders of magnitude at lower computational cost.

  18. Continuous-wave ceramic Nd:YAG laser at 1123 nm

    International Nuclear Information System (INIS)

    Zhang, S S; Wang, Q P; Zhang, X Y; Cong, Z H; Fan, S Z; Liu, Z J; Sun, W J

    2009-01-01

    Ceramic Nd:YAG (cNd:YAG) materials are employed to generate 1123-nm laser. A fiber-coupled continuous-wave (CW) 808-nm diode laser is used as the pumping source. With an incident diode power of 26.1 W, a CW output power of up to 10.8 W is obtained with a 10-mm-long ceramic Nd:YAG rod (1.0 at.%-Nd-doped). The conversion efficiency from diode power to 1123-nm laser power is 41.4%. The laser performance of another 10-mm-long cNd:YAG rod with a Nd-doping concentration of 0.6 at.% is studied as a comparison

  19. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  20. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  1. A diode-end-pumped Nd:GYSGG continuous wave laser at 1104 nm

    International Nuclear Information System (INIS)

    Shen, B J; Kang, H X; Zhang, C G; Chen, P; Gao, R L; Liang, J; Gao, H J; Zhang, Q L; Sun, D L; Yin, S T; Luo, J Q

    2013-01-01

    The continuous wave (CW) laser performance of Nd:GYSGG at 1104 nm is investigated for the first time, to our knowledge. A CW laser output power of 4.7 W is obtained when the pump power of the 808 nm fiber coupled laser diode is 19.1 W, corresponding to a conversion efficiency of 24.6% and slope efficiency of 37%. (paper)

  2. 47 CFR 101.82 - Reimbursement and relocation expenses in the 2110-2150 MHz and 2160-2200 MHz bands.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Reimbursement and relocation expenses in the... License Transfers, Modifications, Conditions and Forfeitures § 101.82 Reimbursement and relocation expenses in the 2110-2150 MHz and 2160-2200 MHz bands. (a) Reimbursement and relocation expenses for the...

  3. Grain size measurements by ultrasonic Rayleigh surface waves

    International Nuclear Information System (INIS)

    Palanichamy, P.; Jayakumar, T.

    1996-01-01

    The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)

  4. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  5. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen

    International Nuclear Information System (INIS)

    Bourzeix, S.

    1995-01-01

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  6. Effect of Early Diagnosis and Treatment on the Prognosis of Children with Epilepsy Accompanied by Continuous Spikes and Waves during Slow Wave Sleep

    Directory of Open Access Journals (Sweden)

    Jiahua Ju

    2014-03-01

    Full Text Available Objective: To emphasize the importance of early diagnosis and treatment on the prognosis of children with epilepsy accompanied by continuous spikes and waves during slow wave sleep (CSCW. Methods: The clinical characteristics, electroencephalogram (ECG features, treatment and prognosis of 12 children with CSCW in our hospital were retrospectively analyzed, and the followup of 6 months to 4 years was given. Results: Imaging showed that 8 children suffered from brain lesions, while other 4 were normal. The initial onset of 10 children was at night, whereas 2 began with absence seizure in lucid interval, and they gradually appeared comprehensive brain function decline, meanwhile, ECG was characterized by continuous discharge during slow wave sleep. After 3 months of treatment with valproic acid, clonazepam, lamotrigine and hormones, the clinical symptoms and ECG of 10 children improved significantly, in which 3 ones recurred after 6 months of comprehensive treatment. Conclusion: The early manifestation of CSWS is untypical, and hence, early diagnosis and treatment can ameliorate the epileptic seizures of children, effectively inhibit epileptic electrical activity and has favorable prognosis.

  7. Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. S. Y.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoebeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Sigurdsson, S.

    2017-01-01

    We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of approximate to 2.7 kpc. The search covered a broad band of frequencies along with first and second frequency

  8. Distinguishing transient signals and instrumental disturbances in semi-coherent searches for continuous gravitational waves with line-robust statistics

    International Nuclear Information System (INIS)

    Keitel, David

    2016-01-01

    Non-axisymmetries in rotating neutron stars emit quasi-monochromatic gravitational waves. These long-duration ‘continuous wave’ signals are among the main search targets of ground-based interferometric detectors. However, standard detection methods are susceptible to false alarms from instrumental artefacts that resemble a continuous-wave signal. Past work [Keitel, Prix, Papa, Leaci and Siddiqi 2014, Phys. Rev. D 89 064023] showed that a Bayesian approach, based on an explicit model of persistent single-detector disturbances, improves robustness against such artefacts. Since many strong outliers in semi-coherent searches of LIGO data are caused by transient disturbances that last only a few hours or days, I describe in a recent paper [Keitel D 2015, LIGO-P1500159] how to extend this approach to cover transient disturbances, and demonstrate increased sensitivity in realistic simulated data. Additionally, neutron stars could emit transient signals which, for a limited time, also follow the continuous-wave signal model. As a pragmatic alternative to specialized transient searches, I demonstrate how to make standard semi-coherent continuous-wave searches more sensitive to transient signals. Focusing on the time-scale of a single segment in the semi-coherent search, Bayesian model selection yields a simple detection statistic without a significant increase in computational cost. This proceedings contribution gives a brief overview of both works. (paper)

  9. VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)

    Science.gov (United States)

    Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir

    2018-01-01

    The VLA Low Band Ionosphere and Transient Experiment (VLITE; ) is a commensal observing system on the Karl G. Janksy Very Large Array (VLA) which was developed by the Naval Research Laboratory and NRAO. A 64 MHz sub-band from the prime focus 240-470 MHz dipoles is correlated during nearly all regular VLA observations. VLITE uses dedicated samplers and fibers, as well as a custom designed, real-time DiFX software correlator, and requires no additional resources from the VLA system running the primary science program. The experiment has been operating since November 2014 with 10 antennas; a recent expansion in summer 2017 increased that number to 16 and more than doubled the number of baselines.The VLA Sky Survey (VLASS; ), is an ongoing survey of the entire sky visible to the VLA at a frequency of 2-4 GHz. The observations are made using an "on-the-fly" (OTF) continuous RA scanning technique which fills in the sky by observing along rows of constant declination. VLITE breaks the data into 2-second integrations and correlates these at a central position every 1.5 degrees. All data for each correlator position is imaged separately, corrected and weighted by an appropriately elongated primary beam model, and then combined in the image plane to create a mosaic of the sky. A catalog of the sources is extracted to provide a 340 MHz sky model.We present preliminary images and catalogs from the 2017 VLASS observations which began in early September, 2017, and continued on a nearly daily basis throughout the fall. In addition to providing a unique sky model at 340 MHz, these data complement VLASS by providing spectral indices for all cataloged sources.

  10. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    Science.gov (United States)

    Livas, Jeffrey C.

    2015-08-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970’s and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  11. Possible Space-Based Gravitational-Wave Observatory Mission Concept

    Science.gov (United States)

    Livas, Jeffrey C.

    2015-01-01

    The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970's and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb groundbased observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

  12. Providing primary standard calibrations beyond 20 MHz

    International Nuclear Information System (INIS)

    Bickley, C J; Zeqiri, B; Robinson, S P

    2004-01-01

    The number of applications of medical ultrasound utilising frequencies in excess of 20 MHz has shown a consistent increase over recent years. Coupled with the commercial availability of wide-bandwidth hydrophones whose response extends beyond 40 MHz, this has driven a growing need to develop hydrophone calibration techniques at elevated frequencies. The current National Physical Laboratory primary standard method of calibrating hydrophones is based on an optical interferometer. This has been in operation for around 20 years and provides traceability over the frequency range of 0.3 to 20 MHz. More recently, calibrations carried out using the interferometer have been extended to 60 MHz, although the uncertainties associated with these calibrations are poor, being in excess of ±20% at high frequencies. Major contributions to the degraded calibration uncertainties arise from poor signal-to-noise at higher frequencies, the frequency response of the photodiodes used and the noise floor of the instrument. To improve the uncertainty of hydrophone calibrations above 20 MHz, it has been necessary to build and commission a new interferometer. Important features of the new primary standard are its use of a higher power laser to improve the signal-to-noise ratio, along with photodiodes whose greater bandwidth to improve the overall frequency response. This paper describes the design of key aspects of the new interferometer. It also presents some initial results of the performance assessment, including a detailed comparison of calibrations of NPL reference membrane hydrophones, undertaken using old and new interferometers for calibration up to 40 MHz

  13. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  14. Experimental Study of an 805 MHz Cryomodule for the Rare Isotope Accelerator

    CERN Document Server

    Grimm, T L; Compton, C; Hartung, W; Johnson, M; Marti, F; Popielarski, J; York, R C

    2004-01-01

    The Rare Isotope Accelerator (RIA) driver linac will use superconducting, 805 MHz, 6-cell elliptical cavities with geometric β values of 0.47, 0.61 and 0.81. Each elliptical cavity cryomodule will have four cavities [1]. Room temperature sections between each cryomodule will consist of quadrupole doublets, beam instrumentation, and vacuum systems. Michigan State University (MSU) has designed a compact cryostat that reduces the tunnel cross-section and improves the linac real estate gradient. The cold mass alignment is accomplished with a titanium rail system supported by adjustable nitronic links from the top vacuum plate, and is similar to that used for existing MSU magnet designs. The same concept has also been designed to accommodate the quarter-wave and half-wave resonators with superconducting solenoids used at lower velocity in RIA. Construction of a prototype β=0.47 cryomodule was completed in February 2004 and is presently under test in realistic operating conditions. Experimental ...

  15. 77 FR 22720 - Service Rules for Advanced Wireless Services in the 2000-2020 MHz and 2180-2200 MHz Bands, etc.

    Science.gov (United States)

    2012-04-17

    ... operations in 1930-1995 MHz and uplink operations in 2000-2020 MHz. To address this apparent tension, we seek... includes broadcast auxiliary service (BAS) and cable television service (CARS) operations, as well as...

  16. Fast wave current drive on DIII-D

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.; Forest, C.B.; Ikezi, H.; Prater, R.; Baity, F.W.; Callis, R.W.; Cary, W.P.; Chiu, S.C.; Doyle, E.J.; Ferguson, S.W.; Hoffman, D.J.; Jaeger, E.F.; Kim, K.W.; Lee, J.H.; Lin-Liu, Y.R.; Murakami, M.; ONeill, R.C.; Porkolab, M.; Rhodes, T.L.; Swain, D.W.

    1996-01-01

    The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as γ=0.4x10 18 T e0 (keV) [A/m 2 W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with clear evidence for a toroidally directed wave with antenna phasing set for current drive. copyright 1996 American Institute of Physics

  17. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.

    Science.gov (United States)

    Findlay, R P; Dimbylow, P J

    2009-04-21

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  18. Fast wave current drive on DIII-D

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.

    1995-01-01

    The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as γ = 0.4 x 10 18 T eo (keV) [A/m 2 W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with dear evidence for a toroidally directed wave with antenna phasing set for current drive. There is some experimental evidence for fast wave absorption by energetic beam ions at high cyclotron harmonic resonances

  19. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Schurink, F

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.). 11 refs.; 10 figs.

  20. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    International Nuclear Information System (INIS)

    Hulshof, H.J.M.; Schurink, F.

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.)

  1. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Laurat, Julien; Ourjoumtsev, Alexei

    2007-01-01

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors a...... as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate....

  2. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.

    Science.gov (United States)

    Bleeker, H J; Lewin, P A

    2000-01-01

    A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.

  3. 47 CFR 90.355 - LMS operations below 512 MHz.

    Science.gov (United States)

    2010-10-01

    ... PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.355 LMS... LMS station and the nearest co-channel base station of another licensee operating a voice system is 75... MHz, 150-170 MHz, and 450-512 MHz bands may use either base-mobile frequencies currently assigned the...

  4. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  5. Welding uranium with a multikilowatt, continuous-wave, carbon dioxide laser welder

    International Nuclear Information System (INIS)

    Turner, P.W.; Townsend, A.B.

    1977-01-01

    A 15-kilowatt, continuous-wave carbon dioxide laser was contracted to make partial-penetration welds in 6.35-and 12.7-mm-thick wrought depleted uranium plates. Welding power and speed ranged from 2.3 to 12.9 kilowatts and from 21 to 127 millimeters per second, respectively. Results show that depth-to-width ratios of at least unity are feasible. The overall characteristics of the process indicate it can produce welds resembling those made by the electron-beam welding process

  6. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    Science.gov (United States)

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  7. Exposure to low level GSM 935 MHz radiofrequency fields does not induce apoptosis in proliferating or differentiated murine neuroblastoma cells

    International Nuclear Information System (INIS)

    Moquet, J.; Ainsbury, E.; Bouffler, S.; Lloyd, D.

    2008-01-01

    The aim of this study was to investigate whether radiofrequency (RF) fields characteristic of mobile phones at non-thermal levels can induce apoptosis in murine neuroblastoma (N2a) cells in both proliferating and differentiated states. Cells were exposed continuously for 24 h to one of the three 935-MHz RF signals: global system for mobile communication (GSM) basic, GSM talk and a continuous wave, unmodulated signal; all at a specific energy absorption rate of 2 W kg -1 . The measured increase in temperature of the cells due to the RF fields was around 0.06 deg. C. At a number of time points between 0 and 48 h post-exposure, the cells were assessed for apoptosis under a fluorescence microscope using three independent assays: Annexin V, caspase activation and in situ end-labelling. No statistically significant differences in apoptosis levels were observed between the exposed and sham-exposed cells using the three assays at any time point post-exposure. These data suggest that RF exposures, characteristic of GSM mobile phones, do not significantly affect the apoptosis levels in proliferating and differentiated murine neuroblastoma cell line N2a. (authors)

  8. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    DEFF Research Database (Denmark)

    Kyriienko, Oleksandr; Sørensen, Anders Søndberg

    2016-01-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities...... and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark...

  9. First tests of a traveling-wave chopper for the ATLAS positive ion linac

    International Nuclear Information System (INIS)

    Pardo, R. C.

    1998-01-01

    A ten segment traveling-wave chopper has been constructed and successfully tested at 5% of the design 12 MHz repetition rate. The chopper must remove unbunched tails from a partially bunched heavy-ion beam in order to avoid undue emittance growth in the linac and the production of undesirable satellite beam bunches. When poorly bunched beams traverse the traditional sine-wave chopper, it produces unacceptable transverse emittance growth and unnecessary beam loss. These effects are expected to be much reduced in the traveling wave chopper. First tests have confirmed the validity of these claims, clearly showing much reduced transverse emittance growth as compared to the original sine wave chopper and excellent selectivity for the desired beam. Details of these tests will be presented and compared to calculations. Operation of the new chopper at the full 12 MHz rate is the next goal. Development of a driver power supply capable of full CW operation will also be described

  10. The cause of high-intensity long-duration continuous AE activity (HILDCAAS): interplanetary Alfven wave trains

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Gonzalez, W.D.

    1987-01-01

    It is shown that high intensity (AE > 1,000 nT), long duration (T > 2 d) continuous auroral activity (HILDCAA) events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere. If the stringent requirements for HILDCAA events are relaxed, there are many more AE events of this type. A brief inspection indicates that these are also related to interplanetary Alfvenic fluctuations. We therefore suggest that most auroral activity may be caused by reconnection associated with Alfven waves in the interplanetary medium. (author)

  11. Effects of 2450 MHz microwave radiation on meiosis and reproduction in male mice

    International Nuclear Information System (INIS)

    Manikowska-Czerska, E.; Czerski, P.; Leach, W.M.

    1988-01-01

    A series of studies to examine effects od continuous wave 2450 MHz radiation on meiosis and on chromosomes of germ cells in male CBA/CAY or ICR mice, by means of the spermatocyte (SCT), heritable translocation (HTT) and dominant lethal (DLT) tests is presented. Animals were exposed in an environmentally controlled waveguide system during two consecutive weeks, 30 minutes daily, six days a week. Specific absorption rates (SAR) were used in the range from 0.05 to 20 W/kg. With the SCT, it was demonstrated that chromosomal translocations can be induced by exposure during the first meiotic prophase, particularly during initial and early pachytene stages. The HTT results demonstrated that balanced translocations may be recovered among offspring of exposed males. The DLT provided confirmatory data on effects during prophase and indicated that chromosomal damage may be also induced by exposure of spermatids, during the maturation stage, and of spermatozoa. No changes were observed in spermatogonia. Thus, the effects of exposure were limited to one spermatogenic cycle. Genetically significant effects were induced at an SAR of 2 W/kg in the testes. For comparison, an SAR of 0.4 W/kg is used commonly as a basis for occupational exposure limits

  12. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    Science.gov (United States)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m

  13. Temperature-specific inhibition of human red cell Na+/K+ ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.

  14. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes; Revised September 3, 2003

    International Nuclear Information System (INIS)

    Rochau, Gary E.; Caffey, Thurlow W.H.; Bahram Nassersharif; Garcia, Gabe V.; Jedlicka, Russell P.

    2003-01-01

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis

  15. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gary E. Rochau and Thurlow W.H. Caffey, Sandia National Laboratories, Albuquerque, NM 87185-0740; Bahram Nassersharif and Gabe V. Garcia, Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003-8001; Russell P. Jedlicka, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001

    2003-05-01

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis.

  16. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    Science.gov (United States)

    Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom

    2017-04-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.

  17. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    International Nuclear Information System (INIS)

    Kim, Chihoon; Ahn, Jae Sung; Eom, Joo Beom; Ji, Taeksoo

    2017-01-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz–800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis. (paper)

  18. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.

    Science.gov (United States)

    Johansen, Kristoffer; Song, Jae Hee; Prentice, Paul

    2018-05-01

    We describe the design, construction and characterisation of a broadband passive cavitation detector, with the specific aim of detecting low frequency components of periodic shock waves, with high sensitivity. A finite element model is used to guide selection of matching and backing layers for the shock wave passive cavitation detector (swPCD), and the performance is evaluated against a commercially available device. Validation of the model, and characterisation of the swPCD is achieved through experimental detection of laser-plasma bubble collapse shock waves. The final swPCD design is 20 dB more sensitive to the subharmonic component, from acoustic cavitation driven at 220 kHz, than the comparable commercial device. This work may be significant for monitoring cavitation in medical applications, where sensitive detection is critical, and higher frequencies are more readily absorbed by tissue. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    Science.gov (United States)

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  20. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  1. A 1 MHz BW 34.2 fJ/step Continuous Time Delta Sigma Modulator With an Integrated Mixer for Cardiac Ultrasound.

    Science.gov (United States)

    Kaald, Rune; Eggen, Trym; Ytterdal, Trond

    2017-02-01

    Fully digitized 2D ultrasound transducer arrays require one ADC per channel with a beamforming architecture consuming low power. We give design considerations for per-channel digitization and beamforming, and present the design and measurements of a continuous time delta-sigma modulator (CTDSM) for cardiac ultrasound applications. By integrating a mixer into the modulator frontend, the phase and frequency of the input signal can be shifted, thereby enabling both improved conversion efficiency and narrowband beamforming. To minimize the power consumption, we propose an optimization methodology using a simulated annealing framework combined with a C++ simulator solving linear electrical networks. The 3rd order single-bit feedback type modulator, implemented in a 65 nm CMOS process, achieves an SNR/SNDR of 67.8/67.4 dB across 1 MHz bandwidth consuming 131 [Formula: see text] of power. The achieved figure of merit of 34.2 fJ/step is comparable with state-of-the-art feedforward type multi-bit designs. We further demonstrate the influence to the dynamic range when performing dynamic receive beamforming on recorded delta-sigma modulated bit-stream sequences.

  2. 47 CFR 90.259 - Assignment and use of frequencies in the bands 216-220 MHz and 1427-1432 MHz.

    Science.gov (United States)

    2010-10-01

    ... MHz band are secondary to the Wireless Medical Telemetry Service except in the locations specified in... operations are secondary to the Wireless Medical Telemetry Service in the 1429-1431.5 MHz band. (3) All... 47 Telecommunication 5 2010-10-01 2010-10-01 false Assignment and use of frequencies in the bands...

  3. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway.

    Science.gov (United States)

    Gökçek-Saraç, Çiğdem; Er, Hakan; Kencebay Manas, Ceren; Kantar Gok, Deniz; Özen, Şükrü; Derin, Narin

    2017-09-01

    To demonstrate the molecular effects of acute and chronic exposure to both 900 and 2100 MHz radiofrequency electromagnetic radiation (RF-EMR) on the hippocampal level/activity of some of the enzymes - including PKA, CaMKIIα, CREB, and p44/42 MAPK - from N-methyl-D-aspartate receptor (NMDAR)-related signaling pathways. Rats were divided into the following groups: sham rats, and rats exposed to 900 and 2100 MHz RF-EMR for 2 h/day for acute (1 week) or chronic (10 weeks), respectively. Western blotting and activity measurement assays were used to assess the level/activity of the selected enzymes. The obtained results revealed that the hippocampal level/activity of selected enzymes was significantly higher in the chronic groups as compared to the acute groups at both 900 and 2100 MHz RF-EMR exposure. In addition, hippocampal level/activity of selected enzymes was significantly higher at 2100 MHz RF-EMR than 900 MHz RF-EMR in both acute and chronic groups. The present study provides experimental evidence that both exposure duration (1 week versus 10 weeks) and different carrier frequencies (900 vs. 2100 MHz) had different effects on the protein expression of hippocampus in Wistar rats, which might encourage further research on protection against RF-EMR exposure.

  4. Probing the Universe with Gravitational Waves: the Laser Interferometer Space Antenna (LISA)

    NARCIS (Netherlands)

    Prince, T.A.; Binetruy, P.; Centrella, J.; Finn, L.; Hogan, C.; Nelemans, G.A.; Phinney, S.

    2007-01-01

    - For the LISA International Science Team: LISA is a joint NASA/ESA space mission designed to measure gravitational waves in the band from 0.1 mHz to 0.1 Hz, a band that is richly populated by strong sources of gravitational waves. Signals will come from a wider range of sources: massive black holes

  5. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  6. Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals

    OpenAIRE

    Iwanaga, Masanobu

    2005-01-01

    Photoacoustic (PA) wave has been examined in a superconductor of the first kind, Pb single crystal. The PA wave is induced by optical excitation of electronic state and propagates from normal into superconductive phases below T$_{\\rm C}$. It is clearly shown by wavelet analysis that the measured PA wave includes two different components. The high-frequency component is MHz-ultrasonic and the relative low-frequency one is induced by thermal wave. The latter is observed in a similar manner irre...

  7. Cambridge observations at 38-115 MHz and their implications for space astronomy

    International Nuclear Information System (INIS)

    Saunders, R.

    1987-01-01

    The design and performance of the Cambridge LF telescopes are reviewed. Consideration is given to the 151-MHz 6C telescope, the 38-MHz and 151-MHz LF synthesis telescopes, 81.5-MHz interplanetary scintillation observations with the 3.6-hectare array, long-baseline interferometry at 81.5 MHz, and the use of the Jodrell Bank MERLIN for 151-MHz closure-phase observations of bright sources. The strict limitation on the field mappable at a given resolution in ground-based observations at these frequencies is pointed out, and some outstanding astronomical problems requiring 0.3-30-MHz space observations are listed. 7 references

  8. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  9. Modeling of Synergy Between 4th and 6th Harmonic Absorptions of Fast Waves on Injected Beams in DIII-D Tokamak

    International Nuclear Information System (INIS)

    Choi, M.; Pinsker, R. I.; Chan, V. S.; Muscatello, C. M.; Jaeger, E. F.

    2011-01-01

    In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6 th harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4 th harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4 th harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6 th harmonic FW on beam ion tails to produce synergy.

  10. Preliminary design of high-power wave-guide/transmission system for multimegawatt CW requirements of 100 MeV proton Linac

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.

    2002-01-01

    Development of a 100 MeV CW proton Linac has been planned at CAT. This Linac will be needing CW rf power in the frequency ranges of 350 MHz and 700 MHz for its RFQ and DTL/CCDTL/SFDTL structures respectively. The power to the accelerating structures will be produced by either 1 MW CW or 250 kW CW klystron/inductive output tubes (HOM IOTs). The power needed by respective feed points in the structure is max. 250 kW which will be powered by splitting the power from 1 MW klystron/klystrode into four channels by using a wave-guide system. In case of using 250 kW tubes the power to the structures will be provided directly from each tube. Two types of wave-guide transmission system have been considered, viz WR 2300 for 350 MHz rf needs and WR 1500 for 700 MHz rf needs. The typical wave-guide system has been designed using the 1 MW CW klystron followed by wave-guide filter, dual directional coupler, high-power circulator, three 3 dB magic TEE power dividers to split the main channel into four equal channels of 250 kW each. Each individual channel has dual directional couplers, flexible wave-guide sections and high power ceramic vacuum window. The circulator and each power divider is terminated into the isolated ports by high power CW loads. Out of the four channels three channels have phase shifters. Present paper describes the technological aspects and design specifications-considerations for these stringent requirements. (author)

  11. A thin film passive magnetic field sensor operated at 425 MHz

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2013-01-01

    A passive, magnetic field sensor consisting of a 425 MHz surface acoustic wave (SAW) transponder loaded with a giant magnetoimpedance (GMI) element is developed. The transponder, consisting of two interdigital transducers (IDTs) and the GMI element, a multilayer structure composed of Ni80Fe 20/Cu/Ni80Fe20, are fabricated on a 128° Y-X cut LiNbO3 substrate. The integrated sensor is characterized with a network analyzer through an S-parameter measurement. Upon the application of a magnetic field, a maximum amplitude change and phase shift of 2.7 dB and 20 degree, respectively, are observed. Within the linear region, the magnetic sensitivity is 3870 dB/T and the resolution is 1.3 μT. © 2013 IEEE.

  12. A thin film passive magnetic field sensor operated at 425 MHz

    KAUST Repository

    Li, Bodong

    2013-06-01

    A passive, magnetic field sensor consisting of a 425 MHz surface acoustic wave (SAW) transponder loaded with a giant magnetoimpedance (GMI) element is developed. The transponder, consisting of two interdigital transducers (IDTs) and the GMI element, a multilayer structure composed of Ni80Fe 20/Cu/Ni80Fe20, are fabricated on a 128° Y-X cut LiNbO3 substrate. The integrated sensor is characterized with a network analyzer through an S-parameter measurement. Upon the application of a magnetic field, a maximum amplitude change and phase shift of 2.7 dB and 20 degree, respectively, are observed. Within the linear region, the magnetic sensitivity is 3870 dB/T and the resolution is 1.3 μT. © 2013 IEEE.

  13. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  14. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  15. Association of time structures of solar bursts at millimetric waves and at metric waves

    International Nuclear Information System (INIS)

    Sawant, H.S.; Kaufmann, P.; Correia, E.; Costa, J.E.R.; Zlobec, P.; Messerotti, M.; Fornasari, L.

    Due to the lack of simultaneous high sensitivity/time resolution observations at mm-lambda, cm-lambda and m-lambda a program on such investigations has been carried out with data obtained by INPE at Itapetinga and by the Astronomical Observatory of Trieste. Preliminary results obtained by comparing mm-wave burst structures with 408, 327 and 237 MHz indicate that i) for majority of major time structures (time scales of the order of 1 sec) observed at 22 GHz bursts, corresponding type III bursts have been observed at 237 Mhz, however ii) start times at mm-lambda and m-lambda are not often coincident at two wavelengths. These observations favour the hypothesis of (a) time dependent acceleration of energetic electrons and (b) burst emission is the response to a multiple injection of energetic electrons. (Author) [pt

  16. A Novel Experimental Set-Up for Improving the Sensitivity of SV Waves to Shallow Surface-Breaking Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Pecorari, Claudio [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Aeronautical and Vehicle Engineering

    2006-03-15

    Conventional inspection procedures to detect surface-breaking defects in train axels and thick pipes often employ 45-degree incidence shear vertical (SV) waves as probing tool. Recently obtained theoretical and experimental results indicate that this method is considerably less sensitivity to shallow surface-breaking defects, than the one in which the angle of incidence is selected to be close to the critical angle of the longitudinal wave. This project has confirmed this thesis by experimentally investigating the backscattering of SV waves by surface-breaking cracks as a function o t the angle of incidence. To this end, three cracks of depth approximately equal to 0.3 mm, 0.5 mm and 0.7 were introduced on the surface of steel samples with a thickness of 47 mm. These cracks were insonified with transducers operating at 2.25 MHz, 3.5 MHz, and 5 MHz, which correspond to wavelengths in steel of 1.38 mm, 0.88 mm, and 0.62 mm, respectively. The increase in sensitivity has been assessed in the order of 15 dB.

  17. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-07-25

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  18. MHz-level self-sustained pulsation in polymer microspheres on a chip

    Directory of Open Access Journals (Sweden)

    Zhou-Chen Luo

    2014-12-01

    Full Text Available We observe MHz-level periodic self-sustained pulsation (SSP in the transmission spectrum of a polydimethylsiloxane (PDMS spherical microcavity on a silicon chip, under a fixed-frequency continuous laser excitation. The SSP results from the strong competition between the thermo-optic and thermal expansion effects of PDMS within the cavity mode volume. The experimental results show good agreement with the theoretical prediction by considering the modification of the thermal expansion coefficient and the temperature distribution within the mode volume.

  19. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun

    2011-07-21

    Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.

  20. LISA: Probing the Universe with Gravitational Waves

    NARCIS (Netherlands)

    Prince, T.A.; Binetruy, P.; Centrella, J.; Finn, L.S.; Hogan, C.; Nelemans, G.A.; Phinney, E.S.; Schutz, B.; Team, L.I.S.

    2006-01-01

    LISA is a joint NASA/ESA space mission for detection and study of low-frequency gravitational waves in the band from 0.1 mHz to 0.1 Hz. The mission consists of three satellites separated by a nominal distance of 5 million kilometers, with precision metrology provided by laser ranging. LISA will

  1. Elastic wave excitation in centrosymmetric strontium titanate crystals

    International Nuclear Information System (INIS)

    Yushin, N.K.; Sotnikov, A.V.

    1980-01-01

    The main experimental dependencies are measured and the excitation mechanism of elastic waves in centrosymmetric crystals is established. The surface generation of three-dimensional elastic waves of the 30 MHz frequency in strontium titanate crystals is observed and studied. Elastic wave excitation is observed in the 4 350 K temperature range. The efficiency of hysteresis excitation depends on the external electric field. The effect of light irradiation on the amplitude of excited elastic waves is observed. It is shown that escitation is connected with linearization of electrostriction by the constant electric field appearing in a near-surface crystal layer due to phenomena in the Schottky barrier and appearance of electretic near-electrode layers

  2. 47 CFR 25.147 - Licensing provision for NGSO MSS feeder downlinks in the band 6700-6875 MHz.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provision for NGSO MSS feeder downlinks in the band 6700-6875 MHz. 25.147 Section 25.147 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space...

  3. Soliton generation via continuous stokes acoustic self-scattering of hypersonic waves in a paramagnetic crystal

    International Nuclear Information System (INIS)

    Bugay, A. N.; Sazonov, S. V.

    2008-01-01

    A new mechanism is proposed for continuous frequency down-conversion of acoustic waves propagating in a paramagnetic crystal at a low temperature in an applied magnetic field. A transverse hypersonic pulse generating a carrier-free longitudinal strain pulse via nonlinear effects is scattered by the generated pulse. This leads to a Stokes shift in the transverse hypersonic wave proportional to its intensity, and both pulses continue to propagate in the form of a mode-locked soliton. As the transverse-pulse frequency is Stokes shifted, its spectrum becomes narrower. This process can be effectively implemented only if the linear group velocity of the transverse hypersonic pulse equals the phase velocity of the longitudinal strain wave. These velocities are renormalized by spin-phonon coupling and can be made equal by adjusting the magnitude of the applied magnetic field. The transverse structure of the soliton depends on the sign of the group velocity dispersion of the transverse component. When the dispersion is positive, planar solitons can develop whose transverse component has a topological defect of dark vortex type and longitudinal component has a hole. In the opposite case, the formation of two-component acoustic 'bullets' or vortices localized in all directions is possible

  4. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  5. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  6. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Verth, G. [School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Morton, R. J. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST (United Kingdom); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Christian, D. J., E-mail: krishna.prasad@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)

    2017-09-20

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.

  7. Control of synchrotron x-ray diffraction by means of standing acoustic waves

    International Nuclear Information System (INIS)

    Zolotoyabko, E.; Quintana, J.P.

    2004-01-01

    Synchrotron x-ray diffraction measurements in quartz crystals of different thickness excited by standing acoustic waves were carried out at the Advanced Photon Source of Argonne National Laboratory. We demonstrated the ability to significantly modify the quartz rocking curves for 20-25 keV x rays by changing the shear wave parameters in the frequency range between 15 and 105 MHz. Dynamic deformation introduced into the crystal lattice by acoustic waves resulted in a remarkable broadening of the rocking curves. The broadening effect strongly depends on the strength of the ultrasound, which can be easily regulated by changing the acoustic amplitude or frequency near the resonance. The maximum rocking curve broadening reached 17 times, which corresponds to the wavelength band, Δλ/λ=4x10 -3 , when used as a monochromator or analyzer for 20-25 keV x rays. The initial rocking curve shape is restored by sweeping the acoustic frequency within a 50-100 kHz range near the resonance. The tunable broadening effect allows effective manipulation of x-ray intensities in time domain. Time-resolved x-ray diffraction measurements under a 19.6 MHz acoustic wave excitation were performed by synchronizing the acoustic wave and x-ray burst periodicity. We used the fact that twice per period the standing wave produces a zero net deformation across the crystal thickness. By introducing an oscillating delay to the acoustic excitation, we were able to effectively change the phase of the acoustic wave relative to the x-ray burst periodicity. The x-ray diffraction intensity was strongly affected by tuning the timing of the x-ray arrivals to the minimum or maximum acoustic deformation. A deep modulation of x rays was observed in a wide frequency range between 0.1 Hz and 1 MHz, which certifies that acoustically excited quartz crystals can potentially be used as slow and fast x-ray modulators with high duty cycle

  8. JUNO E/J/SS WAVES CALIBRATED SURVEY FULL RESOLUTION V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Juno Waves calibrated full resolution survey data set includes all low rate science electric spectral densities from 50Hz to 41MHz and magnetic spectral...

  9. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  10. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.

    Science.gov (United States)

    Kretschmann, H M; Heine, F; Huber, G; Halldórsson, T

    1997-10-01

    A new resonator design for doubly resonant continuous-wave intracavity sum-frequency mixing is presented. We generated 212 mW of coherent radiation at 618 nm by mixing the radiation of a 1080-nm Nd(3+):YAlO(3) laser and a 1444-nm Nd(3+):YAG laser. Two different mixing resonator setups and several nonlinear-optical crystals were investigated. So far output is limited by unequal performance of the two fundamental lasers and coating problems of the nonlinear crystals.

  11. Maximizing power output from continuous-wave single-frequency fiber amplifiers.

    Science.gov (United States)

    Ward, Benjamin G

    2015-02-15

    This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.

  12. Effects of 415 MHz frequency on human lymphocyte genome

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Fucic, A.; Kubelka, D.; Vojvodic, S.

    1996-01-01

    The continuously increasing use of artificial sources of electromagnetic radiation in industry and medicine has been accompanied in everyday life with telecommunication systems which is followed with great interest in possible hazardous effects of this type of radiation. The interesting applications of mobile telecommunications and the use of cellular phones are of topic interest. Numerous cytogenetic investigations are focused on the effects of microwave radiation from mobile communications frequency of 450 and 950 MHz on isolated cells in vitro. The aim of this work was to investigate the effects of microwaves from mobile telephone frequencies on human peripheral blood lymphocytes cultured in vitro. (author)

  13. [Decimeter-wave physiotherapy in viral hepatitis].

    Science.gov (United States)

    Kents, V V; Mavrodiĭ, V M

    1995-01-01

    Effectiveness was evaluated of magnetotherapy, inductothermy, UNF electric field and electromagnetic waves of decimetric wave band (460 MHz) on the projection of the liver, adrenals and thyroid gland in controlled trials enrolling a total of 835 patients with viral hepatitis (type A, B, associated forms). A conclusion is reached that optimum effectiveness of decimetric field on the projection of the adrenals and thyroid gland can be achieved through the application of minimum power and everyday alternation of exposures. It has been estimated that as many as 69 percent of the patients derive benefit from the above treatment.

  14. Wide-band continuous-wave terahertz source with a vertically integrated photomixer

    Science.gov (United States)

    Peytavit, E.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2009-10-01

    A transverse electromagnetic horn antenna is monolithically integrated with a low temperature grown GaAs vertical photodetector on a silicon substrate forming a vertically integrated photomixer. Continuous-wave terahertz radiation is generated at frequencies up to 3.5 THz with a power level reaching 20 nW around 3 THz. Microwave and material concepts allow both qualitative and quantitative explanations of the experimental results. The thin film microstrip line topology has been adapted for active devices by an Au-Au thermocompression layer transfer technique and seems to be a promising generic tool for a new generation of efficient terahertz devices.

  15. 78 FR 42701 - Improving Public Safety Communications in the 800 MHz Band

    Science.gov (United States)

    2013-07-17

    ...] Improving Public Safety Communications in the 800 MHz Band AGENCY: Federal Communications Commission. ACTION...-901 MHz/935- 940 MHz band (900 MHz B/ILT Band) to allow a qualified entity to file an application for..., manufacturing, energy) to non-commercial (e.g., clerical, educational, philanthropic, medical). In 2004, the...

  16. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  17. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  18. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  19. Alfven wave experiments in the Phaedrus-T tokamak

    International Nuclear Information System (INIS)

    Majeski, R.; Probert, P.; Moroz, P.; Intrator, T.; Breun, R.; Brouchous, D.; Che, H.Y.; DeKock, J.R.; Diebold, D.; Doczy, M.; Fonck, R.; Hershkowitz, N.; Johnson, R.D.; Kishinevsky, M.; McKee, G.; Meyer, J.; Nonn, P.; Oliva, S.P.; Pew, J.; Sorensen, J.; Tanaka, T.; Vukovic, M.; Winz, G.

    1993-01-01

    Heating in the Alfven resonant regime has been demonstrated in the Phaedrus-T tokamak [Fusion Technol. 19, 1327 (1991)]. Electron heating during injection of radio-frequency (rf) power is indicated by a 30%--40% drop in loop voltage and modifications in sawtooth activity. Heating was observed at a frequency ω rf ∼0.7Ω i on axis, using a two-strap fast wave antenna operated at 7 and 9.2 MHz with 180 degree phasing (N parallel ∼100). Numerical modeling with the fast wave code FASTWA [Plasma Phys. Controlled Fusion 33, 417 (1991)] indicates that for Phaedrus-T parameters the kinetic Alfven wave is excited via mode conversion from a surface fast wave at the Alfven resonance and is subsequently damped on electrons

  20. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study

    DEFF Research Database (Denmark)

    Varga, Edina T; Terney, Daniella; Atkins, Mary D

    2011-01-01

    Cathodal transcranial direct current stimulation (tDCS) decreases cortical excitability. The purpose of the study was to investigate whether cathodal tDCS could interrupt the continuous epileptiform activity. Five patients with focal, refractory continuous spikes and waves during slow sleep were...... recruited. Cathodal tDCS and sham stimulation were applied to the epileptic focus, before sleep (1 mA; 20 min). Cathodal tDCS did not reduce the spike-index in any of the patients....

  1. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    Science.gov (United States)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  2. 47 CFR 90.353 - LMS operations in the 902-928 MHz band.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false LMS operations in the 902-928 MHz band. 90.353... operations in the 902-928 MHz band. LMS systems may be authorized within the 902-928 MHz band, subject to the..., scientific, and medical (ISM) devices and radiolocation Government stations that operate in the 902-928 MHz...

  3. An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman exposure to electromagnetic plane waves from 10 MHz to 2 GHz

    International Nuclear Information System (INIS)

    Nagaoka, Tomoaki; Togashi, Toshihiro; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Watanabe, Soichi

    2007-01-01

    The numerical dosimetry of pregnant women is an important issue in electromagnetic-field safety. However, an anatomically realistic whole-body pregnant-woman model for electromagnetic dosimetry has not been developed. Therefore, we have developed a high-resolution whole-body model of pregnant women. A new fetus model including inherent tissues of pregnant women was constructed on the basis of abdominal magnetic resonance imaging data of a 26-week-pregnant woman. The whole-body pregnant-woman model was developed by combining the fetus model and a nonpregnant-woman model that was developed previously. The developed model consists of about 7 million cubical voxels of 2 mm size and is segmented into 56 tissues and organs. This pregnant-woman model is the first completely anatomically realistic voxel model that includes a realistic fetus model and enables a numerical simulation of electromagnetic dosimetry up to the gigahertz band. In this paper, we also present the basic specific absorption rate characteristics of the pregnant-woman model exposed to vertically and horizontally polarized electromagnetic waves from 10 MHz to 2 GHz

  4. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  5. POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2017-01-01

    Full Text Available Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone. 

  6. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  7. B-mode for thyroid nodule characterization at 7.5 MHz versus 13 MHz; Attualita' dell'ecografia nel modo B nella caratterizzazione delle malattie nodulari tiroidee: studio ecografiaco di confronto con sonde da 7.5 e da 13 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Amodio, F.; Carbone, M.; Rossi, E.; Brunese, L.; Vallone, G. [Neaples Univ., Neaples (Italy). Dipt. di Scienze Biomorfologiche, Ist. di Scienze Radiologiche; Pisano, G.; Iorio, S. [Neaples Univ., Neaples (Italy). Dipt. di Scienze Biomorfologiche, Sez. di Anatomia Patologica e Citopatologica; Benincasa, G. [Neaples Univ., Neaples (Italy). Dipt. di Scienze Biomorfologiche, Ist. di Endocrinologia, Medicina Interna e Malattie della Nutrizione

    1999-09-01

    The paper investigates B-mode ultrasonography capabilities in diagnosis and characterizing thyroid nodules and compared the personal experience findings with those of few analytical studies in the literature. It is also compared the diagnostic accuracy of conventional 7.5 MHz versus more recent 13 MHz transducers. [Italian] Lo studio presenta i dati sull'accuratezza diagnostica dell'ecografia nel modo B con trasduttore da 7.5 MHz con quella di un trasduttore di piu' recente commercializzazione da 13 MHz. E' una tappa fondamentale nell'iter diagnostico del nodulo tiroideo, se integrata con lo studio qualitativo (color e power Doppler) e semiquantitativo (Doppler pulsato) della vascolarizzazione nodulare.

  8. New conceptual antenna with spiral structure and back Faraday shield for FWCD (fast wave current drive)

    International Nuclear Information System (INIS)

    Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.

    1994-01-01

    A new conceptual antenna, which we call as a spiral antenna, is proposed as a traveling wave antenna for fast wave current drive in tokamaks. The features of the spiral antenna are a sharp N z spectrum, easy impedance matching, N z controllable and good coupling. A back Faraday shield is proposed for improving the cooling design of Faraday shield and better antenna-plasma coupling. A helical support which is a compact and wide band support is proposed as a kind of quarter wave length stub supports. The RF properties of the spiral antenna and the back Faraday shield have been investigated by using mock-up antennas. The VSWR of spiral antenna is low at the wide frequency band from 15 MHz to 201 MHz. The back Faraday shield is effective for suppressing the RF toroidal electric field between adjacent currents straps. (author)

  9. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  10. Comparison of photosensitivity in germanium doped silica fibers using 244 nm and 266 nm continuous wave lasers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo; Varming, Poul; Liu, B.

    2001-01-01

    Diode pumped continuous-wave UV lasers offer an interesting alternative to frequency doubled argon-ion lasers. We report the first photosensitivity comparison using these lasers on deuterium loaded standard telecommunication fibers and unloaded experimental fibers....

  11. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Jeonghun Nam

    2017-01-01

    Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.

  12. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439 (United States); Illinois Institute of Technology, Chicago, IL 60616 (United States); Dickerson, C.; Ostroumov, P.N.; Zinkann, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-01-21

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied.

  13. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  14. Acceleration performance of a 50-MHz split coaxial RFQ and the design of a 25.5-MHz prototype

    International Nuclear Information System (INIS)

    Tokuda, N.; Arai, S.; Fukushima, T.; Morimoto, T.; Tojyo, E.

    1989-03-01

    Acceleration tests on a 50-MHz split coaxial RFQ have been conducted at INS. The 2-m long RFQ has accelerated protons from 2 to 60 keV. The experimental results concerning beam emittance and transmission efficiency agree with predictions of a computer simulation. Following this success, we are fabricating a 25.5-MHz prototype of 2-m long. The issues of the study are to establish a structure standing a high-power operation and to accelerate heavy ions with a charge-to-mass ratio larger than 1/30. (author)

  15. Optical phase locking of two infrared continuous wave lasers separated by 100 THz

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du-Burck, F.; Hrabina, Jan; Lours, M.; Chea, E.; Acef, O.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 2936-2939 ISSN 0146-9592 R&D Projects: GA ČR GPP102/11/P820; GA MŠk ED0017/01/01; GA MŠk EE2.4.31.0016; GA MŠk(CZ) LO1212; GA MŠk(CZ) 7AMB14FR040 Institutional support: RVO:68081731 Keywords : Continuous wave lasers * Frequency allocation * Harmonic generation * Laser optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.292, year: 2014

  16. Methods to filter out spurious disturbances in continuous-wave searches from gravitational-wave detectors

    International Nuclear Information System (INIS)

    Leaci, Paola

    2015-01-01

    Semicoherent all-sky searches over year-long observation times for continuous gravitational wave signals produce various thousands of potential periodic source candidates. Efficient methods able to discard false candidate events are crucial in order to put all the efforts into a computationally intensive follow-up analysis for the remaining most promising candidates (Shaltev et al 2014 Phys. Rev. D 89 124030). In this paper we present a set of techniques able to fulfill such requirements, identifying and eliminating false candidate events, reducing thus the bulk of candidate sets that need to be further investigated. Some of these techniques were also used to streamline the candidate sets returned by the Einstein@Home hierarchical searches presented in (Aasi J et al (The LIGO Scientific Collaboration and the Virgo Collaboration) 2013 Phys. Rev. D 87 042001). These powerful methods and the benefits originating from their application to both simulated and on detector data from the fifth LIGO science run are illustrated and discussed. (paper)

  17. The lower ionosphere response to its disturbances by powerful radio waves

    Science.gov (United States)

    Bakhmetieva, N. V.; Frolov, V. L.; Vyakhirev, V. D.; Kalinina, E. E.; Akchurin, A. D.; Zykov, E. Yu.

    2018-04-01

    The paper presents data from some campaigns at Sura heating facility in 2011-1016. The experiments on probing of the artificial disturbed region of the lower ionosphere were carried out at two observation sites. One of them was located near Vasil'sursk 1 km from Sura facility (56.1°N; 46.1°E) and the other site was located at the Observatory (55.85°N; 48.8°E) of Kazan State University, 170 km to the East. Investigation of the features of the disturbed region of the lower ionosphere based on its diagnostics by the methods of the vertical sounding and oblique backscattering is the main goal of this paper. Ionosphere disturbance was fulfilled by the effect of the powerful radio wave of the ordinary or extraordinary polarization emitted by transmitters of the Sura facility with effective radiated power ERP = 50-120 MW at the frequency of 4.3, 4.7 and 5.6 MHz. Pumping waves were emitted with period from 30 s to 15 min. The disturbed region of the ionosphere in Vasil'sursk was probed by the vertical sounding technique using the partial reflexion radar at the frequency of 2.95 and 4.7 MHz. For the oblique sounding of the disturbed region the modified ionosonde Cyclon-M, operating at ten frequencies from 2.01 to 6.51 MHz was used at the Observatory site. On many heating sessions simultaneous variations of the probing partial reflection signals in Vasil'sursk and backscattered signals in Observatory were observed at the height at 40-100 km below the reflection height of the pumping wave. These observations were correlated with the pumping periods of the Sura facility. Possible mechanisms of the appearance of the disturbance in the lower ionosphere and its effect on the probing radio waves are discussed.

  18. Current generation by unidirectional lower hybrid waves in the ACT-1 toroidal device

    International Nuclear Information System (INIS)

    Wong, K.L.; Horton, R.; Ono, M.

    1980-05-01

    An unambiguious experimental observation of current generation by unidirectional lower hybrid waves in a toroidal plasma is reported. Up to 10 amperes of current was driven by 500 watts of rf power at 160 MHz

  19. Observations of magnetohydrodynamic waves on the ground and on a satellite

    International Nuclear Information System (INIS)

    Lanzerotti, L.J.; Fukunishi, H.; Maclennan, C.G.; Cahill, L.J. Jr.

    1976-01-01

    A comparison is made of magnetohydrodynamic waves observed near the equator on Explorer 45 and at an array of ground stations in the northern hemisphere and at their conjugate station at Siple, Antartica. The data comparisons strongly support the notion that the observed waves can be considered odd mode standing waves in the magnetosphere. This conclusion has important implications for the interpretation of single-point satellite and/or ground measurements of ULF plasma wave phenomena in the magnetosphere. Further, the data comparisons strongly suggest that the overall ULF (approx.5-30 mHz) power levels are quite similar in the magnetosphere and on the ground, at least during the intervals studied

  20. Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal

    Science.gov (United States)

    Cheng, Y.; Zhang, H. J.; Yu, Y. G.; Wang, J. Y.; Tao, X. T.; Liu, J. H.; Petrov, V.; Ling, Z. C.; Xia, H. R.; Jiang, M. H.

    2007-03-01

    A laser crystal of Yb:LuVO4 with high optical quality was grown by the Czochralski technique. Its thermal properties including specific heat, thermal expansion coefficients, and thermal conductivities along the a- and c-axis have been measured for the first time. Continuous-wave laser output up to 3.5 W at 1031 nm was obtained at room temperature through end-pumping by a high-power diode laser. The corresponding optical conversion efficiency was 43% and the slope efficiency was 72%.

  1. Damping of elastic waves in crystals with impurities

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  2. Comparison of 864 and 935 MHz microwave radiation effects on cell culture

    International Nuclear Information System (INIS)

    Pavicic, I.; Trosic, I.; Sarolic, A.

    2005-01-01

    The aim of our study was to evaluate and compare the effect of 864 and 935 MHz microwave radiation on proliferation, colony forming and viability of Chinese hamster lung cells, cell line V79. Cell cultures were exposed both to the 864 MHz microwave field in transversal electromagnetic mode cell (TEM-cell) and to the 935 MHz field in Gigahertz transversal electromagnetic mode cell (GTEM-cell) for 1, 2 and 3 hours. Philips PM 5508 generator connected with a signal amplifier generated the frequency of 864 MHz, whereas Hewlett Packard HP8657A signal generator was used to generate the frequency of 935 MHz. The average specific absorption rate (SAR) was 0.08 W/kg for 864 MHz and 0.12 W/kg for 935 MHz. To determine the cell growth, V79 cells were plated in the concentration of 1x10 4 cells per milliliter of nutrient medium. Cells were cultured in a humidified atmosphere at 37 degrees of C in 5% CO 2 . Cell proliferation was determined by cell counts for each hour of exposure during the five post-exposure days. To identify colony-forming ability, cells were cultivated in the concentration of 40 cells/mL of medium and incubated as described above. Colony-forming ability was assessed for each exposure time by colony count on post-exposure day 7. Trypan blue exclusion test was used to determine cell viability. On post-exposure day 3, the growth curve of 864 MHz irradiated cells showed a significant decrease (p less than 0.05) after 2 and 3 hours of exposure in comparison with control cells. Cells exposed to 935 MHz radiation showed a significant decrease (p less than 0.05) after 3 hours of exposure on post-exposure day 3. Both the colony-forming ability and viability of 864 MHz and 935 MHz exposed cells did not significantly differ from matched control cells. In conclusion, both applied RF/MW fields have shown similar effects on cell culture growth, colony forming and cell viability of the V79 cell line.(author)

  3. 75 FR 3622 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Science.gov (United States)

    2010-01-22

    ... translators, and Class A stations are continuing to operate in the 700 MHz Band after the transition. The..., marketing, and packaging materials, including online materials, related to such devices. The labeling must... display (including online display) any low power auxiliary stations, including wireless microphones, that...

  4. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers

    Science.gov (United States)

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2012-11-01

    We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.

  5. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  6. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge

    2017-01-01

    We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber......-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of g(H)((2)) (0) = 0.12, demonstrating that our source operates in the single- photon regime with low noise. (C) 2017 The Japan Society of Applied Physics...

  7. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz

    Directory of Open Access Journals (Sweden)

    Ruben M. Sandoval

    2016-12-01

    Full Text Available IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN and Mobile Ad-hoc Networks (MANET, from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a “default” communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.

  8. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz.

    Science.gov (United States)

    Sandoval, Ruben M; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-12-31

    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a "default" communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.

  9. Rapid and sensitive trace gas detection with continuous wave Optical Parametric Oscillator-based Wavelength Modulation Spectroscopy

    NARCIS (Netherlands)

    Arslanov, D.D.; Spunei, M.; Ngai, A.K.Y.; Cristescu, S.M.; Lindsay, I.D.; Lindsay, I.D.; Boller, Klaus J.; Persijn, S.T.; Harren, F.J.M.

    2011-01-01

    A fiber-amplified Distributed Bragg Reflector diode laser is used to pump a continuous wave, singly resonant Optical Parametric Oscillator (OPO). The output radiation covers the 3–4 μm with ability of rapid (100 THz/s) and broad mode-hop-free tuning (5 cm−1). Wavelength Modulation Spectroscopy is

  10. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  11. Production of narrowband tunable extreme-ultraviolet radiation by noncollinear resonance-enhanced four-wave mixing

    NARCIS (Netherlands)

    Hannemann, S.; Hollenstein, U.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    Fourier-transform-limited extreme-ultraviolet (XUV) radiation (bandwidth ≲300 MHz) tunable around 91 nm is produced by use of two-photon resonance-enhanced four-wave mixing on the Kr resonance at 94 093 cm

  12. Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mailis, S.; Riziotis, C.; Smith, P.G.R.; Scott, J.G.; Eason, R.W

    2003-02-15

    Illumination of the -z face of congruent lithium niobate single crystals with continuous wave (c.w.) ultraviolet (UV) laser radiation modifies the response of the surface to subsequent acid etching. A frequency doubled Ar{sup +} laser ({lambda}=244 nm) was used to illuminate the -z crystal face making it resistive to HF etching and thus transforming the illuminated tracks into ridge structures. This process enables the fabrication of relief patterns in a photolithographic manner. Spatially resolved Raman spectroscopy indicates preservation of the good crystal quality after irradiation.

  13. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mean flow generated by an internal wave packet impinging on the interface between two layers of fluid with continuous density

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, John P. [The University of New Hampshire, Department of Mechanical Engineering, Kingsbury Hall, Durham, NH (United States)

    2008-04-15

    Internal waves propagating in an idealized two-layer atmosphere are studied numerically. The governing equations are the inviscid anelastic equations for a perfect gas atmosphere. The numerical formulation eliminates all variables in the linear terms except vertical velocity, which are then treated implicitly. Nonlinear terms are treated explicitly. The basic state is a two-layer flow with continuous density at the interface. Each layer has a unique constant for the Brunt-Vaeisaelae frequency. Waves are forced at the bottom of the domain, are periodic in the horizontal direction, and form a finite wave packet in the vertical. The results show that the wave packet forms a mean flow that is confined to the interface region that persists long after the wave packet has moved away. Large-amplitude waves are forced to break beneath the interface. (orig.)

  15. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles

    DEFF Research Database (Denmark)

    El-Ella, Haitham; Ahmadi, Sepehr; Wojciechowski, Adam

    2017-01-01

    transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≥ 1=4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate......Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional...... to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin...

  16. High speed video shooting with continuous-wave laser illumination in laboratory modeling of wind - wave interaction

    Science.gov (United States)

    Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim

    2014-05-01

    Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from

  17. Fault Classification and Location in Transmission Lines Using Traveling Waves Modal Components and Continuous Wavelet Transform (CWT

    Directory of Open Access Journals (Sweden)

    Farhad Namdari

    2016-06-01

    Full Text Available Accurate fault classification and localization are the bases of protection for transmission systems. This paper presents a new method for classifying and showing location of faults by travelling waves and modal analysis. In the proposed method, characteristics of different faults are investigated using Clarke transformation and initial current traveling wave; then, appropriate indices are introduced to identify different types of faults. Continuous wavelet transform (CWT is employed to extract information of current and voltage travelling waves. Fault location and classification algorithm is being designed according to wavelet transform coefficients relating to current and voltage modal components. The performance of the proposed method is tested for different fault conditions (different fault distance, different fault resistances, and different fault inception angles by using PSCAD and MATLAB with satisfactory results

  18. Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data

    Science.gov (United States)

    Ming, Jing; Papa, Maria Alessandra; Krishnan, Badri; Prix, Reinhard; Beer, Christian; Zhu, Sylvia J.; Eggenstein, Heinz-Bernd; Bock, Oliver; Machenschalk, Bernd

    2018-02-01

    In this paper we design a search for continuous gravitational waves from three supernova remnants: Vela Jr., Cassiopeia A (Cas A) and G347.3. These systems might harbor rapidly rotating neutron stars emitting quasiperiodic gravitational radiation detectable by the advanced LIGO detectors. Our search is designed to use the volunteer computing project Einstein@Home for a few months and assumes the sensitivity and duty cycles of the advanced LIGO detectors during their first science run. For all three supernova remnants, the sky positions of their central compact objects are well known but the frequency and spin-down rates of the neutron stars are unknown which makes the searches computationally limited. In a previous paper we have proposed a general framework for deciding on what target we should spend computational resources and in what proportion, what frequency and spin-down ranges we should search for every target, and with what search setup. Here we further expand this framework and apply it to design a search directed at detecting continuous gravitational wave signals from the most promising three supernova remnants identified as such in the previous work. Our optimization procedure yields broad frequency and spin-down searches for all three objects, at an unprecedented level of sensitivity: The smallest detectable gravitational wave strain h0 for Cas A is expected to be 2 times smaller than the most sensitive upper limits published to date, and our proposed search, which was set up and ran on the volunteer computing project Einstein@Home, covers a much larger frequency range.

  19. Development of 650 MHz solid state RF amplifier for proton accelerator

    International Nuclear Information System (INIS)

    Jain, Akhilesh; Sharma, Deepak; Gupta, Alok; Tiwari, Ashish; Rao, Nageswar; Sekar, Vasanthi; Lad, M.; Hannurkar, P.R.; Gupta, P.D.

    2011-01-01

    Design and development of 30 kW high powers RF source at 650 MHz, using solid RF state technology, has been initiated at RRCAT. The indigenous technology development efforts will be useful for the proposed high power proton accelerators for SNS/ADS applications. In this 650 MHz amplifier scheme, 30 kW CW RF power will be generated using modular combination of 8 kW amplifier units. Necessary studies were carried out for device selection, choice of amplifier architecture and design of high power combiners and dividers. Presently RF amplifier delivering 250 W at 650 MHz has been fabricated and tested. Towards development of high power RF components, design and engineering prototyping of 16-port power combiner, directional coupler and RF dummy loads has been completed. The basic 8 kW amplifier unit is designed to provide power gain of 50 dB, bandwidth of 20 MHz and spurious response below 30 dB from fundamental signal. Based on the results of circuit simulation studies and engineering prototyping of amplifier module, two RF transistor viz. MRF3450 and MRF 61K were selected as solid state active devices. Impedance matching network in amplifier module is designed using balanced push pull configuration with transmission line BALUN. Due to high circulating current near drain side, metal clad RF capacitors were selected which helps in avoiding hot spot from output transmission path, ensuring continuous operation at rated RF power without damage to RF board. 350 W circulator is used to protect the RF devices from reflected power. Based on the prototype design and measured performance, one of these RF transistors will be selected to be used as workhorse for all amplifier modules. Two amplifier modules are mounted on water cooled copper heat-sink ensuring proper operating temperature for reliable and safe operation of amplifier. Also real time control system and data logger has been developed to provide DAQ and controls in each rack. For power combining and power measurement

  20. Dispersion of acoustic surface waves by velocity gradients

    Science.gov (United States)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  1. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study

    International Nuclear Information System (INIS)

    Suo, Dingjie; Guo, Sijia; Jiang, Xiaoning; Jing, Yun; Lin, Weili

    2015-01-01

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2–4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency. (paper)

  2. Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2 crystal

    Science.gov (United States)

    Liu, Jingjing; Zhang, Cheng; Zu, Yuqian; Fan, Xiuwei; Liu, Jie; Guo, Xinsheng; Qian, Xiaobo; Su, Liangbi

    2018-04-01

    Laser operations in the continuous-wave as well as in the pulsed regime of a 4 at.% Tm3+:CaF2 crystal are reported. For the continuous-wave operation, a maximum average output power of 1.15 W was achieved, and the corresponding slope efficiency was more than 64%. A continuous tuning range of about 160 nm from 1877-2036 nm was achieved using a birefringent filter. Using Argentum nanorods as a saturable absorber, the significant pulsed operation of a passively Q-switched Tm3+:CaF2 laser was observed at 1935.4 nm for the first time, to the best of our knowledge. A maximum output power of 385 mW with 41.4 µJ pulse energy was obtained under an absorbed pump power of 2.04 W. The present results indicate that the Tm3+:CaF2 lasers could be promising laser sources to operate in the eye-safe spectral region.

  3. Gravitational-wave detector realized by a superconductor

    International Nuclear Information System (INIS)

    Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.

    2010-01-01

    In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.

  4. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    Science.gov (United States)

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  5. 500 MHz transient digitizers based on GaAs CCDs

    International Nuclear Information System (INIS)

    Bryman, D.A.; Constable, M.; Cresswell, J.V.; Daviel, A.; LeNoble, M.; Mildenberger, J.; Poutissou, R.

    1996-11-01

    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment studying rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCD's are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz. (authors)

  6. Research activities and plan of electron cyclotron wave startup and Alfven wave current drive at SUNIST

    International Nuclear Information System (INIS)

    Gao Zhe; He Yexi; Tan Yi

    2009-01-01

    Using electromagnetic waves to startup and sustain plasma current takes a important role in the research program of the SUNIST spherical tokamak. Electron cyclotron ware (ECW) current startup have been investigated and revealed two totally different regimes. In the regime of very low working pressure, a plasma current of about 2 kA is obtained with a steadily applied vertical field of 12 Gauss and 40 kW/2.45 GHz microwave injection. In addition, the physics of the transient process during ECW startup in the relatively high working pressure regime is analyzed. The hardware preparation for the experimental research of Alfven wave current drive is being performed. The Alfven wave antenna system consists of four models in toroidal direction and two antenna straps in poloidal direction for each module and the rf generator has been designed as a four-phase oscillator (4x100 kW, 0.5 - 1 Mhz).The impedance spectrum of the antenna system is roughly evaluated by 1-D cylindrical magneto-hydrodynamic calculation. To investigate the wave-plasma interaction in ECW startup and Alfven wave current drive, upgrade of the device, especially in equilibrium control and diagnostics, is ongoing. (author)

  7. Continuing studies of the plasma beat wave accelerator

    International Nuclear Information System (INIS)

    Joshi, C.

    1990-01-01

    This is a proposal for the release of third year funds for the ''Plasma Beat Wave Accelerator'' program (PBWA) at UCLA under the direction of Professor C. Joshi. This report is also a summary of progress on this project since March 1990; i.e., the date of the last report to the DOE. Once again we note that although the program is for historical reasons called the Plasma Beat Wave Accelerator Program, our group is active in all areas of applications of lasers and plasmas in future high energy accelerators. These are as follows: heat gradient plasma structures; excited by plasma beat wave technique; laser wake field technique; and plasma wake field technique. Development of a photoinjector-driven, 20 MeV linac; and theoretical studies of the plasma lens and use of plasmas at the final focus

  8. Continuous wave terahertz reflection imaging of human colorectal tissue

    Science.gov (United States)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2013-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, non-ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue were obtained from surgeries performed at the University of Massachusetts Medical School, Worcester. Reflection measurements of thick sections of colorectal tissues, mounted in an aluminum sample holder, were obtained for both fresh and formalin fixed tissues. The two-dimensional reflection images were acquired by using an optically pumped far-infrared molecular gas laser operating at 584 GHz with liquid Helium cooled silicon bolometer detector. Using polarizers in the experiment both co-polarized and cross-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co- and cross-polarized images of both normal and formalin fixed tissues showed uniform terahertz response over the entire sample area. Initial measurements indicated a co-polarized reflectance of 16%, and a cross-polarized reflectance of 0.55% from fresh excisions of normal colonic tissues.

  9. Imitation-tumor targeting based on continuous-wave near-infrared tomography.

    Science.gov (United States)

    Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang; Sun, Jinwei

    2017-12-01

    Continuous-wave Near-Infrared (NIR) optical spectroscopy has shown great diagnostic capability in the early tumor detection with advantages of low-cost, portable, non-invasive, and non-radiative. In this paper, Modified Lambert-Beer Theory is deployed to address the low-resolution issues of the NIR technique and to design the tumor detecting and imaging system. Considering that tumor tissues have features such as high blood flow and hypoxia, the proposed technique can detect the location, size, and other information of the tumor tissues by comparing the absorbance between pathological and normal tissues. Finally, the tumor tissues can be imaged through tomographic method. The simulation experiments prove that the proposed technique and designed system can efficiently detect the tumor tissues, achieving imaging precision within 1 mm. The work of the paper has shown great potential in the diagnosis of tumor close to body surface.

  10. Measurement of spatial and temporal evolution of electromagnetic fields in a 100 MHz plasma source using B dot and double dipole probes

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Barton, E-mail: barton.lane@tel.com; Campbell, Colin; Sawada, Ikuo; Ventzek, Peter L. G., E-mail: peter.ventzek@tel.com [Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741 (United States)

    2016-05-15

    Very high frequency plasma sources are often accompanied by plasma density nonuniformities associated with a standing-wave effect. Electron density measurements using a plasma absorption probe show density nonuniformities that can be larger than predicted by a standing wave model. These structures have been associated with harmonics of the electric fields in the plasma. The authors present the first time and phase-resolved measurements of the spatial structure of the electromagnetic waves in a 100 MHz plasma source using argon at 40 mTorr employing a B dot probe. The authors show that the harmonic structure is related to a current reversal and subsequent circulation that appears when the sheath collapses during the radio frequency cycle. The circulation is driven by inward traveling waves that are electromagnetic in nature, not plasma waves traveling at the electron thermal velocity. Double dipole probe measurements were used to validate the B dot probe electric field measurements derived from the time derivative of Β{sub θ} which is derived from the B dot probe signal.

  11. Intersubband Rabi oscillations in asymmetric nanoheterostructures: implications for a tunable continuous-wave source of a far-infrared and THz radiation.

    Science.gov (United States)

    Kukushkin, V A

    2012-06-01

    A tunable continuous-wave source of a far-infrared and THz radiation based on a semiconductor nanoheterostructure with asymmetric quantum wells is suggested. It utilizes Rabi oscillations at a transition between quantum well subbands excited by external femtosecond pulses of a mid-infrared electromagnetic field. Due to quantum well broken inversion symmetry the subbands possess different average dipole moments, which enables the creation of polarization at the Rabi frequency as the subband populations change. It is shown that if this polarization is excited so that it is periodic in space, then, though being pulsed, it can produce continuous-wave output radiation. Changing the polarization space period and the time intervals between the exciting pulses, one can tune the frequency of this radiation throughout the far-infrared and THz range. In the present work a concrete multiple quantum well heterostructure design and a scheme of its space-periodic polarization are suggested. It is shown that for existing sources of mid-infrared femtosecond pulses the proposed scheme can provide a continuous-wave output power of order the power of far-infrared and THz quantum cascade lasers. Being added to the possibility of its output frequency tuning, this can make the suggested device attractive for fundamental research and various applications.

  12. Examination of High Frequency MHz Rheology of Filled Polymer Composites and Photopolymers

    Science.gov (United States)

    Yeh, Chyi-Huey Joshua

    The quartz crystal microbalance (QCM) is a versatile characterization tool capable of tracking changes in areal mass and high frequency MHz rheology of micron thick films. The QCM primarily consists of a single quartz disc with electrodes deposited on both sides of the disc. Due to the piezoelectric nature of quartz, introduction of an oscillating voltage near the resonance condition of the quartz disc produces a traveling shear wave that can be measured with electrical admittance analysis. This technique behaves like an acoustic reflectometer, where an induced mechanical shear wave propagates and reflects at the interfaces between material layers with differing acoustic impedances. Based on how the shear wave interacts with the interfaces, information on the material properties can be quantitatively modeled. In this dissertation, a quantitative approach of determining the magnitude and sources of error is presented, so that interpretation of viscoelastic information and areal mass changes can be performed with confidence. Specifically, the role of anharmonic coupling with harmonic modes are explored and simulated with COMSOL Multiphysics. Several case studies motivating and highlighting the utility of the QCM is presented. The fracture and thermal aging behavior of several nanofilled silicone elastomers are examined using traditional mechanical tests, such as pure shear geometry and dynamic mechanical analysis (DMA). Results can be qualitatively explained by the concept of dynamic mechanical heterogeneity, where a high mechanical contrast is desired for high fracture toughness. However, DMA results can be difficult to interpret (especially at shifted high frequencies) due to thermal rheological complexity, a characteristic commonly found in many polymer composites. This motivates the application of the QCM, where MHz viscoelastic behavior can be directly probed, providing insight on the dissipative behavior at local length scales. Investigation of polysilicate

  13. Alfven wave experiments on the TORTUS tokamak

    International Nuclear Information System (INIS)

    Ballico, M.J.; Bowden, M.; Brand, G.F.; Brennan, M.H.; Cross, R.C.; Fekete, P.; James, B.W.

    1989-01-01

    Results are presented on the first observations of the Discrete Alfven Wave (DAW) and the first measurements of laser scattering off the kinetic Alfven wave in the TORTUS tokamak. TORTUS is a relatively small device, with major radius R=0.44m, minor radius 0.1m and has previously been operated routinely with B Φ =0.7T, I p =20 kA and n e ∼ 1x10 19 m -3 . Under these conditions, and over a wide frequency range (1-14 MHz), there has been no evidence of the DAW modes observed on TCA. Recently, a minor upgrade of TORTUS has permitted routine operation at B Φ =1.0 T, I p =39 kA, q(a)∼5 and n e ∼1-4 x 10 19 m -3 . At the operating frequency, 3.2 MHz, chosen for this study, DAW modes are observed clearly at both low and high densities. The appearance of DAW modes appears to be due to a steeper current profile at the higher plasma currents now generated in TORTUS. The general behaviour of DAW modes is in fact quite sensitive to the density and current profiles, indicating that DAW modes should provide a useful current profile diagnostic. (author) 6 refs., 2 figs

  14. Adaptive clustering procedure for continuous gravitational wave searches

    Science.gov (United States)

    Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad

    2017-10-01

    In hierarchical searches for continuous gravitational waves, clustering of candidates is an important post-processing step because it reduces the number of noise candidates that are followed up at successive stages [J. Aasi et al., Phys. Rev. Lett. 88, 102002 (2013), 10.1103/PhysRevD.88.102002; B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91, 064007 (2015), 10.1103/PhysRevD.91.064007; M. A. Papa et al., Phys. Rev. D 94, 122006 (2016), 10.1103/PhysRevD.94.122006]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1707.02669 [Phys. Rev. D (to be published)

  15. Efeitos agudos do ultrassom terapêutico de 1-MHz na desobstrução nasal de indivíduos com rinossinusite crônica Acute effects of therapeutic 1-MHz ultrasound on nasal unblocking of subjects with chronic rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Wanize Almeida Rocha

    2011-02-01

    Full Text Available Recentemente, a terapia ultrassônica de baixa intensidade (TUSBI foi descrita como um tratamento plausível para rinossinusite crônica (RNC. OBJETIVOS: Avaliar os efeitos agudos da TUSBI de 1MHz contínua sobre a obstrução nasal de indivíduos com RNC. MATERIAIS E MÉTODOS: Participaram de um estudo tipo placebo-controlado 26 indivíduos adultos com RNC (10 homens, 16 mulheres, alocados sequencialmente em dois grupos: controle-placebo (CP, n=12 e tratados com TUSBI (US, n=14. Para o tratamento determinou-se: ISATA= 1MHz, 1W.cm-2, contínuo, por quatro minutos nos seios maxilares e septo nasal. No grupo CP o equipamento permaneceu desligado. Para avaliação do nível de obstrução nasal, foi mesurado o volume total de secreção expelida (VSEx, avaliado pela instilação nasal de 5 mL de solução salina (NaCl-0,9% e coleta do lavado nasal. O volume de ar expirado (VAEx foi avaliado pelo teste do espelho de Glatzel. RESULTADOS: Os dados mostraram um aumento (pLow-intensity ultrasound therapy (LIUST has been described as a plausible treatment for chronic rhinosinusitis (CRS. AIMS: To evaluate the short-term effects of continuous 1MHz LIUST on nasal obstruction in subjects with CRS. MATERIAL AND METHOD: A cohort placebo-controlled study comprising 26 CRS adults (10 men, 16 women, sequentially allocated into two groups: control-placebo (CP, n= 12 and treated with LIUST (US, n= 14. The treatment consisted of: ISATA = continuous 1MHz, 1W.cm-2 for four minutes in the maxillary sinuses and nasal septum. The equipment was switched off in the CP group. The degree of obstruction was assessed by the total volume of secretion expelled (VSEx after nasal instillation of 5 mL saline solution (NaCl-0.9% followed by nasal lavage. The volume of expired air (VEA was assessed with a Glatzel mirror. RESULTS: The data showed an increase (p<0.01 in VSEx and VEA after ultrasound therapy, suggesting a 64% improvement of nasal obstruction compared with the CP group

  16. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band.

    Science.gov (United States)

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-08-07

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.

  17. Quasi-continuous wave and continuous wave laser operation of Eu:KGd(WO4)2 crystal on a 5D0 → 7F4 transition

    International Nuclear Information System (INIS)

    Dashkevich, V I; Orlovich, V A; Bui, A A; Bagayev, S N; Vatnik, S M; Loiko, P A; Yumashev, K V; Kuleshov, N V; Pavlyuk, A A

    2015-01-01

    We report on the first demonstration of quasi-continuous wave (quasi-CW) and real CW room-temperature lasing on the 5 D 0  →  7 F 4 transition of Eu 3+ -doped material using a 25 at.%Eu 3+  : KGd(WO 4 ) 2 crystal pumped into the 7 F 1  →  5 D 1 transition by a diode-end-pumped Nd 3+  : KGd(WO 4 ) 2 /KTP green laser at 533.6 nm. The maximum CW output power of this laser at 702.3 nm is 5.3 mW with 1.4% green-to-red conversion efficiency. In quasi-CW operation mode with a 10% duty cycle, the peak power of ms long pulses reaches ∼54 mW, which corresponds to the optical conversion efficiency of 3.5%. (letter)

  18. A contactless approach for respiratory gating in PET using continuous-wave radar.

    Science.gov (United States)

    Ersepke, Thomas; Büther, Florian; Heß, Mirco; Schäfers, Klaus P

    2015-08-01

    Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient's torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient's torso. A 24 GHz carrier frequency was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [(18)F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69-0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53-0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin. Accurate respiratory signals were

  19. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    Science.gov (United States)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  20. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    Science.gov (United States)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  1. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Jukka [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)], E-mail: Jukka.Luukkonen@uku.fi; Hakulinen, Pasi; Maeki-Paakkanen, Jorma [Department of Environmental Health, National Public Health Institute, P.O. Box 95, FI-70701 Kuopio (Finland); Juutilainen, Jukka; Naarala, Jonne [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2009-03-09

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR.

  2. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    International Nuclear Information System (INIS)

    Luukkonen, Jukka; Hakulinen, Pasi; Maeki-Paakkanen, Jorma; Juutilainen, Jukka; Naarala, Jonne

    2009-01-01

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR

  3. 27.12 MHz Radiofrequency Ablation for Benign Cutaneous Lesions

    Directory of Open Access Journals (Sweden)

    Dong Hyun Kim

    2016-01-01

    Full Text Available As surgical and/or ablative modalities, radiofrequency (RF has been known to produce good clinical outcomes in dermatology. Recently, 27.12 MHz RF has been introduced and has several advantages over conventional 4 or 6 MHz in terms of the precise ablation and lesser pain perception. We aimed to evaluate the clinical efficacy and safety of 27.12 MHz RF for the treatment of benign cutaneous lesions. Twenty female patient subjects were enrolled. Digital photography and a USB microscope camera were used to monitor the clinical results before one session of treatment with 27.12 MHz RF and after 1 and 3 weeks. Treated lesions included telangiectasias, cherry and spider angiomas, skin tags, seborrheic keratoses, lentigo, milium, dilated pore, acne, piercing hole, and one case of neurofibroma. For vascular lesions, clinical results were excellent for 33.3%, good for 44.4%, moderate for 11.1%, and poor for 11.1%. For nonvascular lesions (epidermal lesions and other benign cutaneous lesions, clinical results were excellent for 48.3%, good for 45.2%, moderate for 3.2%, and poor for 3.2%. No serious adverse events were observed. Mild adverse events reported were slight erythema, scale, and crust. The 27.12 MHz RF treatment of benign vascular and nonvascular lesions appears safe and effective after 3 weeks of follow-up.

  4. Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics

    International Nuclear Information System (INIS)

    Prix, Reinhard; Krishnan, Badri

    2009-01-01

    We investigate the Bayesian framework for detection of continuous gravitational waves (GWs) in the context of targeted searches, where the phase evolution of the GW signal is assumed to be known, while the four amplitude parameters are unknown. We show that the orthodox maximum-likelihood statistic (known as F-statistic) can be rediscovered as a Bayes factor with an unphysical prior in amplitude parameter space. We introduce an alternative detection statistic ('B-statistic') using the Bayes factor with a more natural amplitude prior, namely an isotropic probability distribution for the orientation of GW sources. Monte Carlo simulations of targeted searches show that the resulting Bayesian B-statistic is more powerful in the Neyman-Pearson sense (i.e., has a higher expected detection probability at equal false-alarm probability) than the frequentist F-statistic.

  5. Epileptic encephalopathy with continuous spike-waves during sleep: the need for transition from childhood to adulthood medical care appears to be related to etiology.

    Science.gov (United States)

    de Saint-Martin, Anne; Rudolf, Gabrielle; Seegmuller, Caroline; Valenti-Hirsch, Maria Paola; Hirsch, Edouard

    2014-08-01

    Epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) presents clinically with infrequent nocturnal focal seizures, atypical absences related to secondary bilateral synchrony, negative myoclonia, and atonic and rare generalized tonic-clonic seizures. The unique electroencephalography (EEG) pattern found in ECSWS consists of continuous, diffuse, bilateral spike-waves during slow-wave sleep. Despite the eventual disappearance of clinical seizures and EEG abnormalities by adolescence, the prognosis is guarded in most cases because of neuropsychological and behavioral deficits. ECSWS has a heterogeneous etiology (genetic, structural, and unknown). Because epilepsy and electroencephalography (EEG) abnormalities in epileptic encephalopathy with continuous diffuse spike-waves during slow-wave sleep (ECSWS) are self-limited and age related, the need for ongoing medical care and transition to adult care might be questioned. For adolescents in whom etiology remains unknown (possibly genetic) and who experience the disappearance of seizures and EEG abnormalities, there is rarely need for long-term neurologic follow-up, because often a relatively normal cognitive and social evolution follows. However, the majority of patients with structural and possibly "genetic syndromic" etiologies will have persistent cognitive deficits and will need suitable socioeducative care. Therefore, the transition process in ECSWS will depend mainly on etiology and its related features (epileptic active phase duration, and cognitive and behavioral evolution) and revolve around neuropsychological and social support rather than medical and pharmacologic follow-up. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  6. A multispacecraft event study of Pc5 ultralow-frequency waves in the magnetosphere and their external drivers

    International Nuclear Information System (INIS)

    Wang, Chih-Ping; Thorne, Richard; Liu, Terry Z.; Hartinger, Michael D.; Nagai, Tsugunobu

    2017-01-01

    We investigate a quiet time event of magnetospheric Pc5 ultralow-frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5–2 mHz and 3.5–4 mHz, were observed over a large radial distance range from r ~ 5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5–4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to interplanetary magnetic field (IMF) discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, K-H-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment

  7. 500 MHz transient digitizers based on GaAs CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D A; Constable, M; Cresswell, J V; Daviel, A; LeNoble, M; Mildenberger, J; Poutissou, R

    1996-11-01

    A system of 500 MHz transient digitizers based on gallium arsenide resistive gate charged coupled devices has been developed for an experiment studying rare K decays. CCDs with dynamic range of 8-bits and 128 or 320 pixels are used as analog pipelines. The CCD`s are driven by a single phase transport system. Data readout and manipulation occurs at 15.6 MHz. (authors). 12 refs., 15 figs.

  8. Turbulent Structure Under Short Fetch Wind Waves

    Science.gov (United States)

    2015-12-01

    maximum 200 words ) Momentum transfer from wind forcing into the ocean is complicated by the presence of surface waves. Wind momentum and energy are...1,520 m from the mouth of the river to the deployment site ). Map created in Google Earth, October 12, 2015, http://www.google.com/earth/. 33...Doppler processing electronics for each transducer uses 14 bit analog to digital converter to digitize the 1.2 MHz acoustic frequency from the four

  9. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen; Laser continu a 205 nm: application a la mesure du deplacement de lamb dans l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Bourzeix, S

    1995-01-15

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  10. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    International Nuclear Information System (INIS)

    López, M; Vázquez, F; Solís-Nájera, S; Rodriguez, A O

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions

  11. Artificial excitation of ELF waves with frequency of Schumann resonance

    Science.gov (United States)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  12. Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering

    International Nuclear Information System (INIS)

    Lee, Dae-Geon; Kim, Dong Keun; Moon, Yoon-Jae; Moon, Seung-Jae

    2013-01-01

    To determine the effect of temperature on the specific electrical conductance of inkjet-printed ink during continuous wave laser sintering, the temperature of the sintered ink was estimated. The ink, which contained 34 wt.% silver nanoparticles with an average size of approximately 50 nm, was inkjet-printed onto a liquid crystal display glass substrate. The printed ink was irradiated with a 532 nm continuous wave laser for 60 s with various laser intensities. During laser irradiation, the in-situ electrical conductance of the sintered ink was measured to estimate the transient thermal conductivity of the ink. The electrical conductance and thermal conductivity of the ink was coupled to obtain the transient temperature by applying the Wiedemann–Franz law to a two-dimensional transient heat conduction equation. The electrical conductance of laser-sintered ink was highly dependent on the sintering temperature of the ink. - Highlights: • The in-situ electrical conductance was measured during the laser sintering process. • Wiedemann–Franz law coupled the electrical conductance with transient temperature. • The transient temperature of the laser-sintered Ag nanoparticle ink was estimated

  13. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave

    Science.gov (United States)

    Anbazhagan, P.; Lijun, Su; Buddhima, Indraratna; Cholachat, Rujikiatkamjorn

    2011-08-01

    Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling.

  14. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent ra...

  15. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    Science.gov (United States)

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  16. Direct measurement of density oscillation induced by a radio-frequency wave

    International Nuclear Information System (INIS)

    Yamada, T.; Ejiri, A.; Shimada, Y.; Oosako, T.; Tsujimura, J.; Takase, Y.; Kasahara, H.

    2007-01-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected

  17. Fundamental damper power calculation of the 56 MHz SRF cavity for RHIC

    International Nuclear Information System (INIS)

    Wu, Q.; Bellavia, S.; Ben-Zvi, I.; Grau, M.; Miglionico, G.; Pai, C.

    2011-01-01

    At each injection period during RHIC's operation, the beam's frequency sweeps across a wide range, and some of its harmonics will cross the frequency of the 56MHz SRF cavity. To avoid excitation of the cavity at these times, we designed a fundamental damper for the quarter-wave resonator to damp the cavity heavily. The power extracted by the fundamental damper should correspond to the power handling ability of the system at all stages. In this paper, we discuss the power output from the fundamental damper when it is fully extracted, inserted, and any intermediate point. A Fundamental Damper (FD) will greatly reduce the cavity's Q factor to ∼300 during the acceleration phase of the beam. However, when the beam is at store and the FD is removed, the cavity is excited by both the yellow and the blue beams at 2 x 0.3A to attain the required 2MV voltage across its gap. The cavity then is operated to increase the luminosity of the RHIC experiments. Table 1 lists the parameters of the FD. Figure 1 shows the configuration of the FD fully inserted into the 56MHz SRF cavity; this complete insertion is defined as the start location (0cm) of FD simulation, an assumption we make throughout this paper. The power consumed by the cavity while maintaining the beam's energy and its orbit is compensated by the 28MHz accelerating cavities in the storage ring. The power dissipation of the external load is dynamic with respect to the position of the FD during its extraction. As a function of the external Q and the EM field in the cavity, the power should peak with the FD at a certain vertical location. Our calculation of the power extracted is detailed in the following sections. Figure 2 plots the frequency change in the cavity, and the external Q against the changes in position of the FD. The location of the FD is selected carefully such that the frequency will approach the designed working point from the lower side only. The loaded Q of the cavity is 223 when the FD is fully

  18. Niobium quarter-wave cavity for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1997-01-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time

  19. Niobium quarter-wave cavity for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1997-09-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time.

  20. ULF wave activity during the 2003 Halloween superstorm: multipoint observations from CHAMP, Cluster and Geotail missions

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2012-12-01

    Full Text Available We examine data from a topside ionosphere and two magnetospheric missions (CHAMP, Cluster and Geotail for signatures of ultra low frequency (ULF waves during the exceptional 2003 Halloween geospace magnetic storm, when Dst reached ~−380 nT. We use a suite of wavelet-based algorithms, which are a subset of a tool that is being developed for the analysis of multi-instrument multi-satellite and ground-based observations to identify ULF waves and investigate their properties. Starting from the region of topside ionosphere, we first present three clear and strong signatures of Pc3 ULF wave activity (frequency 15–100 mHz in CHAMP tracks. We then expand these three time intervals for purposes of comparison between CHAMP, Cluster and Geotail Pc3 observations but also to be able to search for Pc4–5 wave signatures (frequency 1–10 mHz into Cluster and Geotail measurements in order to have a more complete picture of the ULF wave occurrence during the storm. Due to the fast motion through field lines in a low Earth orbit (LEO we are able to reliably detect Pc3 (but not Pc4–5 waves from CHAMP. This is the first time, to our knowledge, that ULF wave observations from a topside ionosphere mission are compared to ULF wave observations from magnetospheric missions. Our study provides evidence for the occurrence of a number of prominent ULF wave events in the Pc3 and Pc4–5 bands during the storm and offers a platform to study the wave evolution from high altitudes to LEO. The ULF wave analysis methods presented here can be applied to observations from the upcoming Swarm multi-satellite mission of ESA, which is anticipated to enable joint studies with the Cluster mission.

  1. Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA).

    Science.gov (United States)

    Vijayalaxmi; Leal, B Z; Meltz, M L; Pickard, W F; Bisht, K S; Roti Roti JL; Straube, W L; Moros, E G

    2001-01-01

    Freshly collected peripheral blood samples from four healthy human volunteers were diluted with RPMI 1640 tissue culture medium and exposed in sterile T-75 tissue culture flasks in vitro for 24 h to 835.62 MHz radiofrequency (RF) radiation, a frequency employed for customer-to-base station transmission of cellular telephone communications. An analog signal was used, and the access technology was frequency division multiple access (FDMA, continuous wave). A nominal net forward power of 68 W was used, and the nominal power density at the center of the exposure flask was 860 W/m(2). The mean specific absorption rate in the exposure flask was 4.4 or 5.0 W/kg. Aliquots of diluted blood that were sham-exposed or exposed in vitro to an acute dose of 1.50 Gy of gamma radiation were used as negative or positive controls. Immediately after the exposures, the lymphocytes were stimulated with a mitogen, phytohemagglutinin, and cultured for 48 or 72 h to determine the extent of genetic damage, as assessed from the frequencies of chromosomal aberrations and micronuclei. The extent of alteration in the kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to mitotic indices, incidence of exchange aberrations, excess fragments, binucleate cells, and micronuclei. In contrast, the response of the lymphocytes exposed to gamma radiation was significantly different from both RF-radiation- and sham-exposed cells for all of these indices. Thus, under the experimental conditions tested, there is no evidence for the induction of chromosomal aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 835.62 MHz RF radiation at SARs of 4.4 or 5.0 W/kg.

  2. A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz

    Directory of Open Access Journals (Sweden)

    Dinh Khanh Ho

    2017-06-01

    Full Text Available This paper presents a novel dual-band rectenna for RF energy harvesting system. This rectenna is created from a dual-band antenna and a dual-band rectifier which operates at GSM bands (900 MHz and 1800 MHz. The printed monopole antenna is miniaturized by two meander-lines. The received signal from the receiving antenna is rectified by a voltage double using Schottky diode SMS-7630. The rectifier is optimized for low input power level of -20dBm using harmonic balance. Prototype is designed and fabricated. The simulation is validated by measurement with power conversion efficiency of 20% and 40.8% (in measurement at the input power level of -20dBm. The proposed rectenna has output voltage from 183-415 mV. From the measured results, this rectenna provides the possibility to harvest the ambient electromagnetic energy for powering low-power electronic devices.

  3. The detection of prostatic carcinoma. 4- or 7-MHz transrectal ultrasonography?

    NARCIS (Netherlands)

    Vleeming, R.; Noordzij, J. W.; de Reijke, T. M.; Kurth, K. H.

    1993-01-01

    In this prospective study a comparison of 4-versus 7-MHz transrectal ultrasonography for the detection of prostatic carcinoma is reported. A total of 150 prostates were biopsied due to suspicion of malignancy arising at either digital rectal examination, 4- and/or 7-MHz transrectal ultrasonography,

  4. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    Science.gov (United States)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  5. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (current and temperature ranges.

  6. Continuous time sigma delta ADC design and non-idealities analysis

    International Nuclear Information System (INIS)

    Yuan Jun; Chen Zhenhai; Yang Yintang; Zhang Zhaofeng; Wu Jun; Wang Chao; Qian Wenrong

    2011-01-01

    A wide bandwidth continuous time sigma delta ADC is implemented in 130 nm CMOS. A detailed non-idealities analysis (excess loop delay, clock jitter, finite gain and GBW, comparator offset and DAC mismatch) is performed developed in Matlab/Simulink. This design is targeted for wide bandwidth applications such as video or wireless base-stations. Athird-order continuous time sigma delta modulator comprises a third-order RC operational-amplifier-based loop filter and 3-bit internal quantizer operated at 512 MHz clock frequency. The sigma delta ADC achieves 60 dB SNR and 59.3 dB SNDR over a 16-MHz signal band at an OSR of 16. The power consumption of the CT sigma delta modulator is 22 mW from the 1.2-V supply. (semiconductor integrated circuits)

  7. Developments and directions in 200 MHz very high power RF at LAMPF

    International Nuclear Information System (INIS)

    Cliff, R.; Bush, E.D.; DeHaven, R.A.; Harris, H.W.; Parsons, M.

    1991-01-01

    The Los Alamos Meson Physics Facility (LAMPF), is a linear particle accelerator a half-mile long. It produces an 800 million electron- volt hydrogen-ion beam at an average current of more than one milliamp. The first RF section of the accelerator consists of four Alvarez drift-tube structures. Each of these structures is excited by an amplifier module at a frequency of 201.25 MHz. These amplifiers operate at a duty of 13 percent or more and at peak pulsed power levels of about 2.5 million watts. The second RF accelerator section consists of forty-four side-coupled-cavity structures. Each of these is excited by an amplifier module at a frequency of 805 MHz. These amplifiers operate at a duty of up to 12 percent and at peak pulsed power levels of about 1.2 million watts. The relatively high average beam current in the accelerator places a heavy demand upon components in the RF systems. The 201-MHz modules have always required a large share of maintenance efforts. In recent years, the four 201.25 MHz modules have been responsible for more than twice as much accelerator down-time as have the forty-four 805 MHz modules. This paper reviews recent, ongoing, and planned improvements in the 201-MHz systems. The Burle Industries 7835 super power triode is used in the final power amplifiers of each of the 201-MHz modules. This tube has been modified for operation at LAMPF by the addition of Penning ion vacuum''pumps.'' This has enabled more effective tube conditioning and restarting. A calorimetry system of high accuracy is in development to monitor tube plate-power dissipation

  8. ECG changes in factory workers exposed to 27.2  MHz radiofrequency radiation.

    Science.gov (United States)

    Chen, Qingsong; Xu, Guoyong; Lang, Li; Yang, Aichu; Li, Shilin; Yang, Liwen; Li, Chaolin; Huang, Hanlin; Li, Tao

    2013-05-01

    To research the effect of 27.2 MHz radiofrequency radiation on electrocardiograms (ECG), 225 female workers operating radiofrequency machines at a shoe factory were chosen as the exposure group and 100 female workers without exposure from the same factory were selected as the control group. The 6 min electric field strength that the female workers were exposed to was 64.0 ± 25.2 V/m (mean ± SD), which exceeded 61 V/m, the International Commission on Non-Ionizing Radiation Protection reference root mean square levels for occupational exposure. A statistical difference was observed between the exposed group and the control group in terms of the rate of sinus bradycardia (χ(2)  = 11.48, P = 0.003). When several known risk factors for cardiovascular disease were considered, including smoking, age, alcohol ingestion habit, and so on, the exposure duration was not an effective factor for ECG changes, sinus arrhythmia, or sinus bradycardia according to α = 0.05, while P = 0.052 for sinus arrhythmia was very close to 0.05. We did not find any statistical difference in heart rate, duration of the QRS wave (ventricular depolarization), or corrected QT intervals (between the start of the Q wave and end of the T wave) between the exposed and control groups. Occupational exposure to radiofrequency radiation was not found to be a cause of ECG changes after consideration of the confounding factors. Copyright © 2012 Wiley Periodicals, Inc.

  9. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-01-01

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder–coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg −1 was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest. (paper)

  10. Electromagnetic radiation-2450 MHz exposure causes cognition ...

    Indian Academy of Sciences (India)

    83

    Electromagnetic radiation-2450 MHz exposure causes cognition deficit with mitochondrial. 1 ... decrease in levels of acetylcholine, and increase in activity of acetyl ...... neuronal apoptosis and cognitive disturbances in sevoflurane or propofol ...

  11. A contactless approach for respiratory gating in PET using continuous-wave radar

    Energy Technology Data Exchange (ETDEWEB)

    Ersepke, Thomas, E-mail: Thomas.Ersepke@rub.de; Büther, Florian; Heß, Mirco [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and DFG EXC 1003, Cluster of Excellence ‘Cells in Motion,’ Münster 48149 (Germany)

    2015-08-15

    Purpose: Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient’s torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. Methods: The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient’s torso. A 24 GHz carrier frequency was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [{sup 18}F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. Results: The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69–0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53–0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin

  12. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    Science.gov (United States)

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  13. A non-intrusive and continuous-in-space technique to investigate the wave transformation and breaking over a breakwater

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2016-01-01

    Full Text Available To design longshore breakwaters, the evaluation of the wave motion transformations over the structures and of the energy they are able to absorb, dissipate and reflect is necessary. To characterize features and transformations of monochromatic wave trains above a breakwater, both submerged and emerged, we have designed and developed a non-intrusive and continuous-in-space technique, based on Image Analysis, and carried out an experimental campaign, in a laboratory flume equipped with a wave-maker, in order to test it. The investigation area was lighted with a light sheet and images were recorded by a video-camera. The working fluid was seeded with non buoyant particles to make it bright and clearly distinct from dark background and breakwater. The technique, that is based on a robust algorithm to identify the free surface, has showed to properly work also in prohibitive situations for traditional resistive probes (e.g., very shallow waters and/or breaking waves and to be able to measure the free surface all over the investigation field in a non-intrusive way. Two kind of analysis were mainly performed, a statistical and a spectral one. The peculiarities of the measurement technique allowed to describe the whole wave transformation and to supply useful information for design purposes.

  14. A coherent method for the detection and parameter estimation of continuous gravitational wave signals using a pulsar timing array

    International Nuclear Information System (INIS)

    Wang, Yan; Mohanty, Soumya D.; Jenet, Fredrick A.

    2014-01-01

    The use of a high precision pulsar timing array is a promising approach to detecting gravitational waves in the very low frequency regime (10 –6 -10 –9 Hz) that is complementary to ground-based efforts (e.g., LIGO, Virgo) at high frequencies (∼10-10 3 Hz) and space-based ones (e.g., LISA) at low frequencies (10 –4 -10 –1 Hz). One of the target sources for pulsar timing arrays is individual supermassive black hole binaries which are expected to form in galactic mergers. In this paper, a likelihood-based method for detection and parameter estimation is presented for a monochromatic continuous gravitational wave signal emitted by such a source. The so-called pulsar terms in the signal that arise due to the breakdown of the long-wavelength approximation are explicitly taken into account in this method. In addition, the method accounts for equality and inequality constraints involved in the semi-analytical maximization of the likelihood over a subset of the parameters. The remaining parameters are maximized over numerically using Particle Swarm Optimization. Thus, the method presented here solves the monochromatic continuous wave detection and parameter estimation problem without invoking some of the approximations that have been used in earlier studies.

  15. A coherent method for the detection and parameter estimation of continuous gravitational wave signals using a pulsar timing array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Mohanty, Soumya D.; Jenet, Fredrick A. [Department of Physics and Astronomy, University of Texas at Brownsville, 1 West University Boulevard, Brownsville, TX 78520 (United States)

    2014-11-01

    The use of a high precision pulsar timing array is a promising approach to detecting gravitational waves in the very low frequency regime (10{sup –6}-10{sup –9} Hz) that is complementary to ground-based efforts (e.g., LIGO, Virgo) at high frequencies (∼10-10{sup 3} Hz) and space-based ones (e.g., LISA) at low frequencies (10{sup –4}-10{sup –1} Hz). One of the target sources for pulsar timing arrays is individual supermassive black hole binaries which are expected to form in galactic mergers. In this paper, a likelihood-based method for detection and parameter estimation is presented for a monochromatic continuous gravitational wave signal emitted by such a source. The so-called pulsar terms in the signal that arise due to the breakdown of the long-wavelength approximation are explicitly taken into account in this method. In addition, the method accounts for equality and inequality constraints involved in the semi-analytical maximization of the likelihood over a subset of the parameters. The remaining parameters are maximized over numerically using Particle Swarm Optimization. Thus, the method presented here solves the monochromatic continuous wave detection and parameter estimation problem without invoking some of the approximations that have been used in earlier studies.

  16. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  17. An extraordinary ULF wave episode during the 2003 Halloween superstorm revealed by wavelet transforms of multipoint observations

    Science.gov (United States)

    Balasis, G.; Daglis, I. A.; Georgiou, M.; Papadimitriou, C.; Zesta, E.; Mann, I.

    2013-09-01

    We investigate a rare concurrent observation of an ultra low frequency (ULF) wave event in the Earth's magnetosphere, topside ionosphere and surface employing a time-frequency analysis technique. We have examined the ULF wave activity in the Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) frequency bands within a short time interval during the Halloween 2003 magnetic storm, when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction near the dayside noon-midnight meridian. A key finding of the wavelet spectral analysis of data collected from the Geotail, Cluster and CHAMP spacecraft, and the CARISMA and GIMA magnetometer networks was a remarkably clear transition of the waves' frequency into a higher regime within the Pc3 range. Our study offers insights into the energy transfer traced all the way from the solar wind through the magnetosphere and ionosphere to the ground. This work has received support from the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  18. Ex situ themo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor

    Science.gov (United States)

    Microwave heating offers a number of advantages over conventional heating methods, such as, rapid and volumetric heating, precise temperature control, energy efficiency and lower temperature gradient. In this article we demonstrate the use of 2450 MHz microwave traveling wave reactor to heat the cat...

  19. Continuous-wave generation and tunability of eye-safe resonantly diode-pumped Er:YAG laser

    Science.gov (United States)

    Němec, Michal; Indra, Lukás.; Šulc, Jan; Jelínková, Helena

    2016-03-01

    Laser sources generating radiation in the spectral range from 1.5 to 1.7 μm are very attractive for many applications such as satellite communication, range finding, spectroscopy, and atmospheric sensing. The goal of our research was an investigation of continuous-wave generation and wavelength tuning possibility of diode pumped eye-safe Er:YAG laser emitting radiation around 1645 nm. We used two 0.5 at. % doped Er:YAG active media with lengths of 10 mm and 25 mm (diameter 5 mm). As a pumping source, a fibre-coupled 1452 nm laser-diode was utilized, which giving possibility of the in-band pumping with a small quantum defect and low thermal stress of the active bulk laser material. The 150 mm long resonator was formed by a pump mirror (HT @ 1450 nm, HR @ 1610 - 1660 nm) and output coupler with 96 % reflectivity at 1610 - 1660 nm. For continuous-wave generation, the maximal output powers were 0.7 W and 1 W for 10 mm and 25 mm long laser crystals, respectively. The corresponding slope efficiencies with respect to absorbed pump power for these Er:YAG lasers were 26.5 % and 37.8 %, respectively. The beam spatial structure was close to the fundamental Gaussian mode. A wavelength tunability was realized by a birefringent plate and four local spectral maxima at 1616, 1633, 1645, and 1657 nm were reached. The output characteristics of the designed and realized resonantly diode-pumped eye-safe Er:YAG laser show that this compact system has a potential for usage mainly in spectroscopic fields.

  20. Generation of Rayleigh waves into mortar and concrete samples.

    Science.gov (United States)

    Piwakowski, B; Fnine, Abdelilah; Goueygou, M; Buyle-Bodin, F

    2004-04-01

    The paper deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound. In a preliminary study, the authors emphasized on the interest of using higher frequency Rayleigh waves (within the 0.2-1 MHz frequency band) for on-site inspection of concrete structures with subsurface damage. The present study represents a continuation of the previous work and aims at optimizing the generation and reception of Rayleigh waves into mortar and concrete be means of wedge transducers. This is performed experimentally by checking the influence of the wedge material and coupling agent on the surface wave parameters. The selection of the best combination wedge/coupling is performed by searching separately for the best wedge material and the best coupling material. Three wedge materials and five coupling agents were tested. For each setup the five parameters obtained from the surface wave measurement i.e. the frequency band, the maximal available central frequency, the group velocity error and its standard deviation and finally the error in velocity dispersion characteristic were investigated and classed as a function of the wedge material and the coupling agent. The selection criteria were chosen so as to minimize the absorption of both materials, the randomness of measurements and the systematic error of the group velocity and of dispersion characteristic. Among the three tested wedge materials, Teflon was found to be the best. The investigation on the coupling agent shows that the gel type materials are the best solutions. The "thick" materials displaying higher viscosity were found as the worst. The results show also that the use of a thin plastic film combined with the coupling agent even increases the bandwidth and decreases the uncertainty of measurements.

  1. 78 FR 28749 - Private Land Mobile Radio Stations Below 800 MHz

    Science.gov (United States)

    2013-05-16

    ... these proposals, with the exception of those issues relating to Wireless Medical Telemetry Services... accomplished in the PLMR bands below 800 MHz. A trunked radio system employs technology that can search two or... prohibited by Sec. 1.935). We also take this opportunity to correct the 800 MHz band trunking rules to set...

  2. Parameter-space metric of semicoherent searches for continuous gravitational waves

    International Nuclear Information System (INIS)

    Pletsch, Holger J.

    2010-01-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical ''semicoherent'' search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  3. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  4. Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process

    International Nuclear Information System (INIS)

    Yu, Y. B.; Sheng, J. T.; Xiao, M.

    2011-01-01

    We propose an experimentally feasible scheme to produce bright quadricolor continuous-variable (CV) entanglement by a four-wave mixing process (FWM) with four-level atoms inside the optical ring cavities operating above threshold. The Stokes and anti-Stokes beams are generated via the pump beam (tuned close to one atomic transition) and the coupling beam (tuned to the resonance of another atomic transition), respectively. The quadruply resonant and narrowed linewidth of the cavity fields with different frequencies are achieved and quadricolor CV entanglement among the four cavity fields is demonstrated according to the criterion proposed by van Loock and Furusawa [Phys. Rev. A 67, 052315 (2003)]. This scheme provides a way to generate bright quadricolor CV entanglement and will be significant for applications in quantum information processing and quantum networks.

  5. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    Science.gov (United States)

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  6. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  7. Toward jet injection by continuous-wave laser cavitation

    Science.gov (United States)

    Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben

    2017-10-01

    This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ˜1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general.

  8. Continuity relations and quantum wave equations

    International Nuclear Information System (INIS)

    Goedecke, G.H.; Davis, B.T.

    2010-01-01

    We investigate the mathematical synthesis of the Schroedinger, Klein-Gordon, Pauli-Schroedinger, and Dirac equations starting from probability continuity relations. We utilize methods similar to those employed by R. E. Collins (Lett. Nuovo Cimento, 18 (1977) 581) in his construction of the Schroedinger equation from the position probability continuity relation for a single particle. Our new results include the mathematical construction of the Pauli-Schroedinger and Dirac equations from the position probability continuity relations for a particle that can transition between two states or among four states, respectively.

  9. Alfven wave heating in ASDEX

    International Nuclear Information System (INIS)

    Besson, G.; Borg, G.G.; Lister, J.B.; Marmillod, Ph.; Braun, F.; Murphy, A.B.; Noterdaeme, J.M.; Ryter, F.; Wesner, F.

    1990-01-01

    An experiment has been completed on ASDEX to study the response of the plasma to Alfven wave heating (AWH). Antenna excitation was provided by the old TCA rf generator with an output power capability of 500 kW. Two poloidal loop antennas were installed at the east and west ends of the tokamak allowing either N=1 or N=2 phasings. Since the largest antenna coupling to the Alfven resonance is provided by the m=1 surface wave, the antenna consisted only of a single element on the low field side, whereas in TCA the antennas are located on the top and the bottom of the torus. The antenna elements consisted of 2 parallel bars of inductance 730 nH and, as in TCA, were left unshielded. A typical antenna circulating current of 2 kA peak at 1.80 MHz was provided for the experiments. (author) 3 refs., 4 figs

  10. The Effects of Cell Phone Waves (900 MHz-GSM Band) on Sperm Parameters and Total Antioxidant Capacity in Rats.

    Science.gov (United States)

    Ghanbari, Masoud; Mortazavi, Seyed Bagher; Khavanin, Ali; Khazaei, Mozafar

    2013-04-01

    There is tremendous concern regarding the possible adverse effects of cell phone microwaves. Contradictory results, however, have been reported for the effects of these waves on the body. In the present study, the effect of cell phone microwaves on sperm parameters and total antioxidant capacity was investigated with regard to the duration of exposure and the frequency of these waves. This experimental study was performed on 28 adult male Wistar rats (200-250 g). The animals were randomly assigned to four groups (n=7): i. control; ii. two-week exposure to cell phone-simulated waves; iii. three-week exposure to cell phonesimulated waves; and iv. two-week exposure to cell phone antenna waves. In all groups, sperm analysis was performed based on standard methods and we determined the mean sperm total antioxidant capacity according to the ferric reducing ability of plasma (FRAP) method. Data were analyzed by one-way ANOVA followed by Tukey's test using SPSS version 16 software. The results indicated that sperm viability, motility, and total antioxidant capacity in all exposure groups decreased significantly compared to the control group (pcell phone waves can decrease sperm viability and motility in rats. These waves can also decrease sperm total antioxidant capacity in rats and result in oxidative stress.

  11. Plasma loading and wave generation for ICRH in the ST Tokamak

    International Nuclear Information System (INIS)

    Adam, J.; Getty, W.D.; Hooke, W.M.; Hosea, J.C.; Sinclair, R.M.

    1974-01-01

    Plasma loading and wave generation for two half-turn loops operating at 25 MHz are being investigated on the ST Tokamak at power levels up to 1 MW. The equivalent series resistance R/sub s/ = P/sub rf//I 2 /sub rf/, measured as a function of Ω = ω/ω/sub ci/(r = 0) and plasma density, is found to be in good agreement with the predictions of the cylindrical theory. R/sub s/ values as high as several ohms are obtained at high densities giving wave generation efficiencies well above 90 percent. Loading near Ω = 1 and 2 is apparently independent of power level. Measurements of B/sub zrf/ at 20 locations about the torus reveal the predicted wave generation; m = 0, +1 slow waves in the vicinity of Ω = 1, m = -1 fast waves after the expected onset (usually Ω greater than or equal to 1), and m = 0, +1 fast waves for higher Ω. Toroidal eigenmodes accompanied by large loading are detected for the fast waves when the damping lengths are long

  12. 120 MW, 800 MHz Magnicon for a Future Muon Collider

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    Development of a pulsed magnicon at 800 MHz was carried out for the muon collider application, based on experience with similar amplifiers in the frequency range between 915 MHz and 34.3 GHz. Numerical simulations using proven computer codes were employed for the conceptual design, while established design technologies were incorporated into the engineering design. A cohesive design for the 800 MHz magnicon amplifier was carried out, including design of a 200 MW diode electron gun, design of the magnet system, optimization of beam dynamics including space charge effects in the transient and steady-state regimes, design of the drive, gain, and output cavities including an rf choke in the beam exit aperture, analysis of parasitic oscillations and design means to eliminate them, and design of the beam collector capable of 20 kW average power operation

  13. Mechanical design of 56 MHz superconducting RF cavity for RHIC collider

    Energy Technology Data Exchange (ETDEWEB)

    Pai, C.; Ben-Zvi, I.; Burrill, A.; Chang, X.; McIntyre, G.; Than, Y.; Tuozzolo, J.; Wu, Q.

    2011-03-28

    A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centerline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet equivalent safety with the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.

  14. Investigation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars

    Directory of Open Access Journals (Sweden)

    A. Serafimovich

    2005-01-01

    Full Text Available A case study to investigate the properties of inertia-gravity waves in the upper troposphere/lower stratosphere has been carried out over Northern Germany during the occurrence of an upper tropospheric jet in connection with a poleward Rossby wave breaking event from 17-19 December 1999. The investigations are based on the evaluation of continuous radar measurements with the OSWIN VHF radar at Kühlungsborn (54.1 N, 11.8 E and the 482 MHz UHF wind profiler at Lindenberg (52.2 N, 14.1 E. Both radars are separated by about 265 km. Based on wavelet transformations of both data sets, the dominant vertical wavelengths of about 2-4 km for fixed times as well as the dominant observed periods of about 11 h and weaker oscillations with periods of  6 h for the altitude range between 5 and 8 km are comparable. Gravity wave parameters have been estimated at both locations separately and by a complex cross-spectral analysis of the data of both radars. The results show the appearance of dominating inertia-gravity waves with characteristic horizontal wavelengths of  300 km moving in the opposite direction than the mean background wind and a secondary less pronounced wave with a horizontal wavelength in the order of about 200 km moving with the wind. Temporal and spatial differences of the observed waves are discussed.

  15. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  16. Development of 650 MHz (β=0.9) single-cell SCRF cavity

    International Nuclear Information System (INIS)

    Bagre, M.; Jain, V.; Yedle, A.; Maurya, T.; Yadav, A.; Puntambekar, A.; Goswami, S.G.; Choudhary, R.S.; Sandha, S.; Dwivedi, J.; Kane, G.V.; Mahawar, A.; Mohania, P.; Shrivastava, P.; Sharma, S.; Gupta, R.; Sharma, S.D.; Joshi, S.C.; Mistri, K.K.; Prakash, P.N.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology has initiated the work on development of Superconducting Radio Frequency (SCRF) cavities and associated technologies as part of R and D activities for upcoming Spallation Neutron Source (SNS) project involving superconducting Linear Accelerator (LINAC). It is planned to use 650 MHz SCRF cavities for the medium and high energy section of the proposed LINAC. Under Indian Institution Fermilab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology is also working on development of 650 MHz (β=0.9) SCRF cavities proposed to be used in the high energy section of Project-X at FNAL. The work has been initiated with design and development of 650 MHz single cell SCRF cavity. FE analysis was done to estimate change in frequency with temperature as well as to estimate the frequency of the cavity at different cavity manufacturing stages. The development cycle comprises of design and manufacturing of forming tooling, machining, welding and RF measurement fixtures as well as design for manufacturing. The half-cell and beam tubes forming and machining of all parts were done using in-house facilities. The Electron beam welding was carried out at Inter-University Accelerator Centre (IUAC), New Delhi under a MoU. One 650 MHz single cell SCRF cavity has been recently manufactured. In this paper we present the development efforts on manufacturing and pre-qualification of 650 MHz (β=0.9) single cell SCRF cavity. (author)

  17. High-Temperature Monitoring of Refractory Wall Recession Using Frequency-Modulated Continuous-wave (FM-CW) Radar Techniques

    International Nuclear Information System (INIS)

    Varghese, B.; DeConick, C.; Cartee, G.; Zoughi, R.; Velez, M.; Moore, R.

    2005-01-01

    Furnaces are among the most crucial components in the glass and metallurgical industry. Nowadays, furnaces are being operated at higher temperatures and for longer periods of time thus increasing the rate of wear on the furnace refractory lining. Consequently, there is a great need for a nondestructive tool that can accurately measure refractory wall thickness at high temperatures. In this paper the utility of a frequency-modulated continuous-wave (FM-CW) radar is investigated for this purpose

  18. Impact of foliage on LoRa 433MHz propagation in tropical environment

    Science.gov (United States)

    Ahmad, Khairol Amali; Salleh, Mohd Sharil; Segaran, Jivitraa Devi; Hashim, Fakroul Ridzuan

    2018-02-01

    LoRa is being considered as one of the promising system for Low-Power-Wide-Area-Network (LPWAN) to support the growth of Internet of Things (IoT) applications. Designed to operate in the industrial, scientific and medical (ISM) bands, LoRa had been tested and evaluated mainly in Europe and US in the 868 MHz and 915 MHz modulation bands. Using chirp spread spectrum technology, LoRa is expected to be robust against degredation. This paper provides some early results in the performance of LoRa signal propagation of 433 MHz modulation in tropical foliage environments.

  19. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures

    Science.gov (United States)

    Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  20. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    Science.gov (United States)

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Incidence of micronuclei in human peripheral blood lymphocytes exposed to modulated and unmodulated 2450 MHz radiofrequency fields.

    Science.gov (United States)

    Vijayalaxmi; Reddy, Abhishek B; McKenzie, Raymond J; McIntosh, Robert L; Prihoda, Thomas J; Wood, Andrew W

    2013-10-01

    Peripheral blood samples from four healthy volunteers were collected and aliquots were exposed in vitro for 2 h to either (i) modulated (wideband code division multiple access, WCDMA) or unmodulated continuous wave (CW) 2450 MHz radiofrequency (RF) fields at an average specific absorption rate of 10.9 W/kg or (ii) sham-exposed. Aliquots of the same samples that were exposed in vitro to an acute dose of 1.5 Gy ionizing gamma-radiation (GR) were used as positive controls. Half of the aliquots were treated with melatonin (Mel) to investigate if such treatment offers protection to the cells from the genetic damage, if any, induced by RF and GR. The cells in all samples were cultured for 72 h and the lymphocytes were examined to determine the extent of genetic damage assessed from the incidence of micronuclei (MN). The results indicated the following: (i) the incidence of MN was similar in incubator controls, and those exposed to RF/sham and Mel alone; (ii) there were no significant differences between WCDMA and CW RF exposures; (iii) positive control cells exposed to GR alone exhibited significantly increased MN; and (iv) Mel treatment had no effect on cells exposed to RF and sham, while such treatment significantly reduced the frequency of MN in GR-exposed cells. Copyright © 2013 Wiley Periodicals, Inc.

  2. High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal

    International Nuclear Information System (INIS)

    Qin, L J; Tang, D Y; Xie, G Q; Dong, C M; Jia, Z T; Tao, X T

    2008-01-01

    We report on the continuous wave (CW) and passive Q-switching performance of a high-power diode-pumped Nd:GGG laser. A CW output power of 7.20 W was obtained under an absorbed pump power of 14.97 W, which gives a slop efficiency of 52.7%. With a Cr 4+ doped yttrium aluminum garnet crystal as the saturable absorber, the shortest passively Q-switched pulse width, largest pulse energy, and highest peak power achieved were 7.7 ns, 126.25 μJ, and 15.5 kW, respectively

  3. On the shape of continuous wave infrared stimulated luminescence signals from feldspars: A case study

    DEFF Research Database (Denmark)

    Pagonis, V.; Jain, Mayank; Thomsen, Kristina Jørkov

    2014-01-01

    The continuous-wave IRSL (CW-IRSL) signals from feldspars are known to decay in a non-exponential manner, and their exact mathematical description is of great importance in dosimetric and dating studies. This paper investigates the possibility of fitting experimental CW-IRSL curves from a variety...... to guide future modeling work on luminescence processes in feldspars. Small statistical differences were found between K-rich and Na-rich fractions of the same sample. However, the experimental data shows that the parameters depend on the irradiation dose, but do not depend on the time elapsed after...

  4. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  5. 47 CFR 22.970 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone...

    Science.gov (United States)

    2010-10-01

    ...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...

  6. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.

    Science.gov (United States)

    Cheng, I-Fang; Froude, Victoria E; Zhu, Yingxi; Chang, Hsueh-Chia; Chang, Hsien-Chang

    2009-11-21

    We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.

  7. Research on backward traveling wave electron linac

    International Nuclear Information System (INIS)

    Chen Huaibi; Zheng Shuxin; Ding Xiaodong; Lin Yuzheng

    1999-01-01

    Future electron linacs require high gradient acceleration. The studies on the high shunt impedance backward traveling wave electron linac accelerating structure (BTW) are presented. At first, the characteristics of BTW are researched. The option of mode and optimal design methods of accelerating cavity for BTW are studied. A physical design method for BTW accelerators, including longitudinal and transversal particle dynamics, is given. Based on above studies, a 9 MeV BTW accelerating tube at 3π/4 mode with frequency 2856 MHz for inspecting large container as radiation source at customs is designed, and a comparison with disk-loaded waveguide accelerating tube is made. The result of research leads to the conclusion that backward traveling wave accelerating structure is preferable. Because BTW has higher effective shunt impedance, shorter filling time and more stable operation

  8. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing

  9. SU-8 Guiding Layer for Love Wave Devices

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2007-11-01

    Full Text Available SU-8 is a technologically important photoresist used extensively for thefabrication of microfluidics and MEMS, allowing high aspect ratio structures to beproduced. In this work we report the use of SU-8 as a Love wave sensor guiding layerwhich allows the possibility of integrating a guiding layer with flow cell during fabrication.Devices were fabricated on ST-cut quartz substrates with a single-single finger design suchthat a surface skimming bulk wave (SSBW at 97.4 MHz was excited. SU-8 polymer layerswere successively built up by spin coating and spectra recorded at each stage; showing afrequency decrease with increasing guiding layer thickness. The insertion loss andfrequency dependence as a function of guiding layer thickness was investigated over thefirst Love wave mode. Mass loading sensitivity of the resultant Love wave devices wasinvestigated by deposition of multiple gold layers. Liquid sensing using these devices wasalso demonstrated; water-glycerol mixtures were used to demonstrate sensing of density-viscosity and the physical adsorption and removal of protein was also assessed usingalbumin and fibrinogen as model proteins.

  10. 318-MHz variability of complete samples of extragalactic radio sources. II

    International Nuclear Information System (INIS)

    Dennison, B.; Broderick, J.J.; Ledden, J.E.; O'Dell, S.L.; Condon, J.J.

    1981-01-01

    We report the remainder of two- and three-epoch 318-MHz observations of extragalactic sources in samples complete to 3 Jy at 1400 MHz and 1 Jy at 5000 MHz. From analysis of this low-frequency variability survey, we find that steep-spectrum (α> or =0.5) sources do not appear to vary, but about 40% of all flat-spectrum (α<0.5) sources exhibit low-frequency variability exceeding 8% over approx.5 yr. Among the flat-spectrum sources, those with inverted spectra show the largest fractional variations. We also find that the incidence of low-frequency variability is strongly correlated with the determination that a source is an optically violent variable. These statistical properties are consistent with models invoking relativistic beaming of radio and optical emission

  11. Crosstalk Models for Short VDSL2 Lines from Measured 30 MHz Data

    Directory of Open Access Journals (Sweden)

    Leshem A

    2006-01-01

    Full Text Available In recent years, there has been a growing interest in hybrid fiber-copper access solutions, as in fiber to the basement (FTTB and fiber to the curb/cabinet (FTTC. The twisted pair segment in these architectures is in the range of a few hundred meters, thus supporting transmission over tens of MHz. This paper provides crosstalk models derived from measured data for quad cable, lengths between 75 and 590 meters, and frequencies up to MHz. The results indicate that the log-normal statistical model (with a simple parametric law for the frequency-dependent mean fits well up to MHz for both FEXT and NEXT. This extends earlier log-normal statistical modeling and validation results for NEXT over bandwidths in the order of a few MHz. The fitted crosstalk power spectra are useful for modem design and simulation. Insertion loss, phase, and impulse response duration characteristics of the direct channels are also provided.

  12. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    Science.gov (United States)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  13. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  14. Physics design of a 10 MeV, 6 kW travelling wave electron linac

    Indian Academy of Sciences (India)

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a 2 π / 3 mode constant impedance travelling wave structure, which ...

  15. Perturbation theory for Alfven wave

    International Nuclear Information System (INIS)

    Yoshida, Z.; Mahajan, S.M.

    1995-01-01

    The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena

  16. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  17. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects

    International Nuclear Information System (INIS)

    Yu-Zhu, Zhu; Xiang-Ming, Hu; Fei, Wang; Jing-Yan, Li

    2010-01-01

    We explore the effects of atomic memory on quantum correlations of two-mode light fields from four-wave mixing. A three-level atomic system in Λ configuration is considered, in which the atomic relaxation times are comparable to or longer than the cavity relaxation times and thus there exists the atomic memory. The quantum correlation spectrum in the output is calculated without the adiabatic elimination of atomic variables. It is shown that the continuous variable entanglement is enhanced over a wide range of the normalized detuning in the intermediate and bad cavity cases compared with the good cavity case. In some situations more significant enhancement occurs at sidebands

  18. Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code

    International Nuclear Information System (INIS)

    Becoulet, A.; Moreau, D.

    1992-04-01

    Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, κ perpendicular, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the κ perpendicular upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 x 10 19 A m -2 W -1 if one considers only the effective power going to the electrons

  19. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    Science.gov (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-05-16

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  20. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    International Nuclear Information System (INIS)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-01-01

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation

  1. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    Science.gov (United States)

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  2. Electronic defect levels in continuous wave laser annealed silicon metal oxide semiconductor devices

    Science.gov (United States)

    Cervera, M.; Garcia, B. J.; Martinez, J.; Garrido, J.; Piqueras, J.

    1988-09-01

    The effect of laser treatment on the bulk and interface states of the Si-SiO2 structure has been investigated. The annealing was performed prior to the gate metallization using a continuous wave Ar+ laser. For low laser powers the interface state density seems to decrease slightly in comparison with untreated samples. However, for the highest irradiating laser powers a new bulk level at 0.41 eV above the valence band with concentrations up to 1015 cm-3 arises probably due to the electrical activation of the oxygen diluted in the Czochralski silicon. Later postmetallization annealings reduce the interface state density to values in the 1010 cm-2 eV-1 range but leave the concentration of the 0.41-eV center nearly unchanged.

  3. Fiber fuse behavior in kW-level continuous-wave double-clad field laser

    International Nuclear Information System (INIS)

    Sun Jun-Yi; Xiao Qi-Rong; Li Dan; Wang Xue-Jiao; Zhang Hai-Tao; Gong Ma-Li; Yan Ping

    2016-01-01

    In this study, original experimental data for fiber fuse in kW-level continuous-wave (CW) high power double-clad fiber (DCF) laser are reported. The propagating velocity of the fuse is 9.68 m/s in a 3.1-kW Yb-doped DCF laser. Three other cases in Yb-doped DCF are also observed. We think that the ignition of fiber fuse is caused by thermal mechanism, and the formation of bullet-shaped tracks is attributed to the optical discharge and temperature gradient. The inducements of initial fuse and formation of bullet-shaped voids are analyzed. This investigation of fiber fuse helps better understand the fiber fuse behavior, in order to avoid the catastrophic destruction caused by fiber fuse in high power fiber laser. (paper)

  4. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Science.gov (United States)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  5. Early 500 MHz prototype LEP RF Cavity with superposed storage cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The principle of transferring the RF power back and forth between the accelerating cavity and a side-coupled storage cavity was demonstrated with this 500 MHz prototype. In LEP, the accelerating frequency was 352.2 MHz, and accelerating and storage cavities were consequently larger. See also 8002294, 8006061, 8407619X, and Annual Reports 1980, p.115; 1981, p.95; 1985, vol.I, p.13.

  6. Electron detector with a traVelling wave

    International Nuclear Information System (INIS)

    Goncharov, A.S.; Kazakov, V.M.; Kozlov, O.V.

    1979-01-01

    Basic principles of operation of a travelling-wave detector designed to measure the shapes of nanosecond electron pulses are discussed. Propagation of electrons through the input window into the detector results in spreading of TEM waves to both sides. The energy of the wave propagating towards resistor R is absorbed by the latter, while the wave propagating in the opposite direction hits a register. Thus good matching of all the detector elements results in the absence of reflection and standing waves which provides extremely high time resolution and minimum distortion of the electron pulse shape. The detector constitutes a piece of a cylindrical coaxial line whose impedance is equal to the impedance of a transmission line. On one side the detector is loaded onto resistor R equal to the wave resistance of the detector. On the other side the detector is loaded onto the transmission line which connects the detector with a wide-range register. The design and calculation of a detector having a time resolution of about 0.1 ns are presented. The results of testing the coaxial detector When measuring electron pulses with a duration of 60 ns and frequency of 1818 MHz have shown that the developed detector (external diameter being 63 mm, internal diameter 18 mm, length 400 mm) provides the 0.2 ns time resolution

  7. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; Lawrence, Keith St.

    2010-09-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF), resulting in further injury. Since current noninvasive methods used in the clinic can only assess blood flow indirectly, the goal of this research is to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (TR-NIR) apparatus is built and CBF is determined by a bolus-tracking method using indocyanine green as an intravascular flow tracer. As a first step in the validation of this technique, CBF is measured in newborn piglets to avoid signal contamination from extracerebral tissue. Measurements are acquired under three conditions: normocapnia, hypercapnia, and following carotid occlusion. For comparison, CBF is concurrently measured by a previously developed continuous-wave NIR method. A strong correlation between CBF measurements from the two techniques is revealed with a slope of 0.79+/-0.06, an intercept of -2.2+/-2.5 ml/100 g/min, and an R2 of 0.810+/-0.088. Results demonstrate that TR-NIR can measure CBF with reasonable accuracy and is sensitive to flow changes. The discrepancy between the two methods at higher CBF could be caused by differences in depth sensitivities between continuous-wave and time-resolved measurements.

  8. On the time-stepping stability of continuous mass-lumped and discontinuous Galerkin finite elements for the 3D acoustic wave equation

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Mulder, W.A.

    2012-01-01

    We solve the three-dimensional acoustic wave equation, discretized on tetrahedral meshes. Two methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial discretization with the leap-frog

  9. Environmental assessment of the proposed Continuous Wave Deuterium Demonstrator (CWDD)

    International Nuclear Information System (INIS)

    1992-03-01

    An assessment was made of the potential environmental impacts of construction and operation of the Continuous Wave Deuterium Demonstrator (CWDD) at Argonne National Laboratory (ANL), including an evaluation of alternative actions. Key elements considered were on- and off-site radiological effects and potential impacts to cultural resources. The radiological consequences of routine operations of the CWDD are readily reduced to insignificant levels by bulk shielding, confinement, and containment. The radiation dose to the maximally exposed off-site individual would be 0.52 mrem/yr from direct radiation and 1.2 x 10 -3 mrem/yr from airborne radionuclides, based on maximum planned facility operation. The maximum credible postulated accident would result in a dose to the maximally exposed individual of less than 20 mrem. A cultural resource survey has determined that the location for the CWDD has, no cultural resource sites or materials and construction is permitted by the Illinois Historic Preservation Agency. Demands for utility services would require only about two percent of excess capacity already installed at Argonne. Other environmental impact categories were considered, including socioeconomic effects, aquatic and terrestrial flora and fauna, wetlands, and water and air quality

  10. Blandford's argument: The strongest continuous gravitational wave signal

    International Nuclear Information System (INIS)

    Knispel, Benjamin; Allen, Bruce

    2008-01-01

    For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.

  11. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    Science.gov (United States)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  12. The LANSCE 805 MHZ RF System History and Status

    CERN Document Server

    Lynch, Michael; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) linear accelerator runs at 201.25 MHz for acceleration to 100 MeV. The remainder of the acceleration to 800 MeV is at 805 MHz. This is done with 44 accelerator cavity stages driven by 805 MHz klystrons. Each klystron has a peak power capability of 1.25 MeV. Originally, 97 klystrons were purchased, which was 70 from Varian/CPI and 27 from Litton. The 44 RF systems are laid out in sectors with either 6 or 7 klystrons per sector. The klystrons in each sector are powered from a common HV sytem. The current arrangement uses the Varian/CPI klystrons in 6 of the 7 sectors and Litton klystrons in the remaining sector. With that arrangement there are 38 CPI klystrons installed and 1 spare klystron per sector and 6 Litton klystrons installed in the final sector with 2 spares. The current average life of all of the operating and spare klystrons (52 total) is >112,000 filament hours and >93,000 HV hours. That is three times the typical klystron lifetime today f...

  13. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  14. Separation of traveling and standing waves in a finite dispersive string with partial or continuous viscoelastic foundation

    Science.gov (United States)

    Cheng, Xiangle; Blanchard, Antoine; Tan, Chin An; Lu, Huancai; Bergman, Lawrence A.; McFarland, D. Michael; Vakakis, Alexander F.

    2017-12-01

    The free and forced vibrations of a linear string with a local spring-damper on a partial elastic foundation, as well as a linear string on a viscoelastic foundation conceptualized as a continuous distribution of springs and dampers, are studied in this paper. Exact, analytical results are obtained for the free and forced response to a harmonic excitation applied at one end of the string. Relations between mode complexity and energy confinement with the dispersion in the string system are examined for the steady-state forced vibration, and numerical methods are applied to simulate the transient evolution of energy propagation. Eigenvalue loci veering and normal mode localization are observed for weakly coupled subsystems, when the foundation stiffness is sufficiently large, for both the spatially symmetric and asymmetric systems. The forced vibration results show that nonproportional damping-induced mode complexity, for which there are co-existing regions of purely traveling waves and standing waves, is attainable for the dispersive string system. However, this wave transition phenomenon depends strongly on the location of the attached discrete spring-damper relative to the foundation and whether the excitation frequency Ω is above or below the cutoff frequency ωc. When Ωcontrol strategies.

  15. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation

    International Nuclear Information System (INIS)

    Panagopoulos, D. J; Chavdoula, E. D.; Nezis, I. P.; Margaritis, L. H.

    2007-01-01

    In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay '' a well known technique widely used for detecting fragmented DNA in various types of cells'' was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29''43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within ''safety levels'' alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17''20, 2000, pp. 169''175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545''578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of

  16. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [Health Protection Agency, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at {approx}130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at {approx}120 MHz and {approx}160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at {approx}180 and {approx}600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the

  17. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2006-01-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ∼130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ∼120 MHz and ∼160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ∼180 and ∼600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the

  18. Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems--In situ gentle cavitation threshold determination and free radical related oxidation.

    Science.gov (United States)

    Johansson, Linda; Singh, Tanoj; Leong, Thomas; Mawson, Raymond; McArthur, Sally; Manasseh, Richard; Juliano, Pablo

    2016-01-01

    We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  20. Launching fast waves in large devices

    International Nuclear Information System (INIS)

    Jacquinot, J.; Bhatnagar, V.P.; Kaye, A.; Brown, T.

    1994-01-01

    Design features of JET A2-antennae including that of remote location of ceramic are outlined. These antennae are being installed in preparation for the new divertor phase of JET that will commence in 1994. The experience of antenna design gained at JET is carried forward to present an outline in blanket/shield design of an antenna for launching fast waves in ITER for heating and current drive. Further, a new wide band antenna the so called 'violin antenna' is presented that features high plasma coupling resistance in selected bands in the 20-85 MHz frequency range. (author)

  1. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    period October 14 - November 6, 2009 almost continuously. Antenna of 6 resistance wave gauges (a pentagon with one center gauge) is used to gain information on wave directions. Wave conditions vary from perfect still to storms with significant wave heights up to Hs = 1.7 meters and wind speeds 15m/s. Measurements with frequency 10Hz for dominant frequencies 0.1 - 0.2Hz fixed 40 freak wave events (criterium H/Hs > 2) and showed no dependence on Hs definitely. Data processing within frequency quasi-spectra approach and directional spectra reconstructions found pronounced features of essentially three-dimensional anomalous waves. All the events are associated with dramatic widening of instant frequency spectra in the range fp - f5w and stronger directional spreading. On the contrary, the classic Benjamin-Feir modulations show no definite links with the events and can be likely treated as dynamically neutral part of wave field. The apparent contradiction with the recent study (Saprykina, Dulov, Kuznetsov, Smolov, 2010) based on the same data collection can be explained partially by features of data processing. Physical roots of the inconsistency should be detailed in further studies. The work was supported by the Russian government contract 11.G34.31.0035 (signed 25 November 2010), Russian Foundation for Basic Research grant 11-05-01114-a, Ukrainian State Agency of Science, Innovations and Information under Contract M/412-2011 and ONR grant N000141010991. Authors gratefully acknowledge continuing support of these foundations.

  2. Low-frequency (0.7-7.4 mHz geomagnetic field fluctuations at high latitude: frequency dependence of the polarization pattern

    Directory of Open Access Journals (Sweden)

    L. Cafarella

    2001-06-01

    Full Text Available A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 mHz covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0°S geomagnetic latitude throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  3. SIMULTANEOUS OBSERVATIONS OF GIANT PULSES FROM PULSAR PSR B0031-07 AT 38 AND 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Jr-Wei; Simonetti, John H.; Bear, Brandon [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Gough, Jonathan D. [Department of Chemistry, Lehman College, CUNY, Bronx, NY 10468 (United States); Newton, Joseph R. [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Kavic, Michael [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States)

    2016-03-15

    The first station of the Long Wavelength Array was used to study PSR B0031-07 with simultaneous observations at 38 and 74 MHz. We found that 158 (0.35%) of the observed pulses at 38 MHz and 221 (0.49%) of the observed pulses at 74 MHz qualified as giant pulses (GPs) in a total of 12 hr of observations. GPs are defined as having flux densities of a factor of ≥90 times that of an average pulse (AP) at 38 MHz and ≥80 times that of an AP at 74 MHz. The cumulative distribution of pulse strength follows a power law, with an index of −4.2 at 38 MHz and −4.9 at 74 MHz. This distribution has a much more gradual slope than would be expected if observing the tail of a Gaussian distribution of normal pulses. The dispersion measure (DM) value which resulted in the largest signal to noise for dedispersed pulses was DM = 10.9 pc cm{sup −3}. No other transient pulses were detected in the data in the wide DM range from 1 to 5000 pc cm{sup −3}. There were 12 GPs detected within the same period from both 38 and 74 MHz, meaning that the majority of them are not generated in a wide band.

  4. Two efficient methods for measuring hydrophone frequency response in the 100 kHz to 2 MHz range

    International Nuclear Information System (INIS)

    Harris, G R; Maruvada, S; Gammell, P M

    2004-01-01

    As new medical applications of ultrasound emerge with operating frequencies in the hundreds of kilohertz to low megahertz region, it becomes more important to have convenient calibration methods for hydrophones in this frequency range. Furthermore, short diagnostic ultrasound pulses affected by finite amplitude distortion require that the hydrophone frequency response be known well below the center frequency. National standards laboratories can provide accurate calibration data at these frequencies, but the two methods now employed, laser interferometry and three-transducer reciprocity, are both single-frequency techniques, and they can be time-consuming procedures. Therefore, two efficient methods for generating a wideband acoustic pressure spectrum have been implemented to cover this frequency range. In one method a high-voltage pulse generator was used to excite a thick piezoelectric ceramic disk, producing a plane-wave acoustic pressure transient <1 μs in duration with peak amplitude of about 40 kPa. In the other technique, time delay spectrometry (TDS), a purpose-built 1-3 piezoelectric composite source transducer weakly focused at 20 cm was swept over the 0-2 MHz range. Its transmitting voltage response at 1 MHz was 11 kPa/V. The broadband pulse technique has the advantage of being simpler to implement, but TDS has a much greater signal-to-noise ratio because of the frequency-swept narrowband filter employed

  5. Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures

    International Nuclear Information System (INIS)

    Canedy, C. L.; Kim, C. S.; Merritt, C. D.; Bewley, W. W.; Vurgaftman, I.; Meyer, J. R.; Kim, M.

    2015-01-01

    Broad-area 10-stage interband cascade lasers (ICLs) emitting at λ = 3.0–3.2 μm are shown to maintain continuous-wave (cw) wallplug efficiencies exceeding 40% at temperatures up to 125 K, despite having a design optimized for operation at ambient and above. The cw threshold current density at 80 K is only 11 A/cm 2 for a 2 mm cavity with anti-reflection/high-reflection coatings on the two facets. The external differential quantum efficiency for a 1-mm-long cavity with the same coatings is 70% per stage at 80 K, and still above 65% at 150 K. The results demonstrate that at cryogenic temperatures, where free carrier absorption losses are minimized, ICLs can convert electrical to optical energy nearly as efficiently as the best specially designed intersubband-based quantum cascade lasers

  6. Modeling of the response of the POLARBEAR bolometers with a continuously rotating half-wave plate

    Science.gov (United States)

    Takakura, Satoru; POLARBEAR Collaboration

    2018-01-01

    The curly pattern, the so-called B-mode, in the polarization anisotropy of the cosmic microwave background (CMB) is a powerful probe to measure primordial gravitational waves from the cosmic inflation, as well as the weak lensing due to the large scale structure of the Universe. At present, ground-based CMB experiments with a few arcminutes resolution such as POLARBEAR, SPTpol, and ACTPol have successfully measured the angular power spectrum of the B-mode only in sub-degree scales, though these experiments also have potential to measure the inflationary B-modes in degree scales in absence of the low-frequency noise (1/f noise). Thus, techniques of polarization signal modulation such as a continuously rotating half-wave plate (CRHWP) are widely investigated to suppress the 1/f noise and also to reduce instrumental systematic errors. In this study, we have implemented a CRHWP placed around the prime focus of the POLARBEAR telescope and operated at ambient temperatures. We construct a comprehensive model including half-wave plate synchronous signals, detector non-linearities, beam imperfections, and all noise sources. Using this model, we show that, in practice, the 1/f noise and instrumental systematics could remain even with the CRHWP. However, we also evaluate those effects from test observations using a prototype CRHWP on the POLARBEAR telescope and find that the residual 1/f noise is sufficiently small for POLARBEAR to probe the multipoles about 40. We will also discuss prospects for future CMB experiments with better sensitivities.

  7. Cellular responses to 836 MHz and 1,765 GHz CDMA radiations

    International Nuclear Information System (INIS)

    Park, Woong Yang; Seo, Jeong Sun; Paik, Jung Ki; Lim, Kye Jae; Yoon, Hyun Bo

    2002-01-01

    The effect of radiofrequency (RF) radiation in the cellular phone communication range (836.5 MHz and 1.765 GHz code division multiple access, CDMA) on tumorigenesis and other health effect was measured using the in vitro cell culture system. To determine whether 836.5 MHz or 1.765 GHz CDMA radiations have any genotoxic effects to induce neoplastic transformation, C3H 10T1/2 cells were exposed to either of the above radiations at a specific absorption rate (SAR) of 35.6W/Kg (836.5 MHz) and 38.2 W/kg(1.765 GHz) or sham- exposed at the same time for 7 days. Cells were maintained in incubators and refed with fresh growth medium every 3 days. At this SAR, radiofrequency radiation did not induce neoplastic transformation in vitro. The extent of alteration in the kinetics of cell proliferation indicated no significant differences between RF-radiation- and sham-exposed cells with respect to MTS assay and 8-OHdG. Under this experimental conditions tested, there is no evidence for the induction of genotoxic indices in human and mouse cells exposed in vitro for 7 days to 836.5 MHz or 1.765 GHz RF radiation at SARs of up to 35.6 or 38.2 W/kg

  8. Guided waves and ultrasonic characterization of three-dimensional composites

    Science.gov (United States)

    Leymarie, Nicolas; Baste, Stéphane

    2000-05-01

    Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.

  9. Effects of exposure to 2100 MHz GSM-like radiofrequency electromagnetic field on auditory system of rats

    Directory of Open Access Journals (Sweden)

    Metin Çeliker

    Full Text Available Abstract Introduction: The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. Objective: In this study, we aimed to evaluate the effects of 2100 MHz Global System for Mobile communication (GSM-like electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. Methods: Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30 days to a 2100 MHz electromagnetic fields with a signal level (power of 5.4 dBm (3.47 mW to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30 days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. Results: The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p = 0.007. In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p = 0.002. Conclusion: The results support that long-term exposure to a GSM-like 2100 MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system.

  10. Chronic exposure of a honey bee colony to 2.45 GHz continuous wave microwaves

    Science.gov (United States)

    Westerdahl, B. B.; Gary, N. E.

    1981-01-01

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6) adult populations. Additional experiments are necessary before firm conclusions can be made.

  11. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.

    1993-01-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)

  12. Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Foroughi Abari, Farzad; Mann, Jakob

    2012-01-01

    are presented. A method for determining the background noise spectrum without interrupting the transmission of the laser beam is described. Moreover, the dependency between the determination of the threshold of a Doppler spectrum with low signal-to-noise ratios and the characteristics of the wind flow......This paper is focused on the required post processing of Doppler spectra, acquired from a continuous-wave coherent lidar at high sampling rates (400 Hz) and under rapid scanning of the laser beam. In particular, the necessary steps followed for extracting the wind speed from such Doppler spectra...... are investigated and a systematic approach for removing the noise is outlined. The suggested post processing procedures are applied to two sample time series acquired by a short-range WindScanner during one second each....

  13. Wave propagation in the magnetosphere of Jupiter

    Science.gov (United States)

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  14. SPECTROSCOPIC OBSERVATIONS OF CONTINUOUS OUTFLOWS AND PROPAGATING WAVES FROM NOAA 10942 WITH EXTREME ULTRAVIOLET IMAGING SPECTROMETER/HINODE

    International Nuclear Information System (INIS)

    Nishizuka, N.; Hara, H.

    2011-01-01

    We focused on 'sit-and-stare' observations of an outflow region at the edge of active region NOAA 10942 on 2007 February 20 obtained by the Extreme ultraviolet Imaging Spectrometer on board Hinode. We analyzed the data above the base of the outflow and found both continuous outflows and waves, which propagate from the base of the outflow. The spectra at the base of the outflow and at higher locations show different properties. The line profiles show blue-side asymmetry at the base of the outflow where nonthermal broadening becomes large because of fast upflows generated by heating events. On the other hand, at higher locations line profiles are symmetric and the intensity disturbances vary in phase with the velocity disturbances. The correlations between the intensity and velocity disturbances become noticeable at higher locations, so this indicates evidence of (at least locally) upward propagating slow-mode waves along the outflow. We also found a transient oscillation of different period in the wavelet spectrum. This indicates that a different wave is additionally observed during a limited period. High cadence spectroscopic observations revealed intermittent signatures of nonthermal velocities. Each of them seems to correspond to the base of the propagating disturbances. Furthermore, a jet was captured by the sit-and-stare observations across the slit. The similarity of line profiles of the outflow and the jet may indicate that the flows and waves originate in unresolved explosive events in the lower atmosphere of the corona.

  15. Preliminary tests on a new near-infrared continuous-wave tissue oximeter

    Science.gov (United States)

    Casavola, Claudia; Cicco, Giuseppe; Pirrelli, Anna; Lugara, Pietro M.

    2000-11-01

    We present a preliminary study, in vitro and in vivo, with a novel device for near-infrared tissue oximetry. The light sources used are two quasi-continuous-wave LEDs, emitting at 656 and 851 nm, and the detector is a photodiode. The data are acquired in back-scattering configuration, thus allowing the non-invasive characterization of thick tissues. Stability tests were performed by placing the optical probe on a tissue- like phantom and acquiring data for periods of time ranging from 5 to 40 minutes. No significant drifts in the DC signal were observed after a warm-up period of no more than 10 minutes. We performed reproducibility tests by repositioning the optical probe on the phantom for a number of times. We found a reproducibility better than 5% in the DC signal. We also present the results of a preliminary study conducted in vivo, on the calf muscle of human subjects. We report a comparison of the results obtained with the near-infrared oximeter with the values of blood oxygenation ctO2 measured with conventional chemical tests.

  16. The Effects of Cell Phone Waves (900 MHz-GSM Band on Sperm Parameters and Total Antioxidant Capacity in Rats

    Directory of Open Access Journals (Sweden)

    Masoud Ghanbari

    2013-01-01

    Full Text Available Background: There is tremendous concern regarding the possible adverse effects of cellphone microwaves. Contradictory results, however, have been reported for the effectsof these waves on the body. In the present study, the effect of cell phone microwaves onsperm parameters and total antioxidant capacity was investigated with regard to the durationof exposure and the frequency of these waves.Materials and Methods: This experimental study was performed on 28 adult male Wistarrats (200-250 g. The animals were randomly assigned to four groups (n=7: i. control; ii.two-week exposure to cell phone-simulated waves; iii. three-week exposure to cell phonesimulatedwaves; and iv. two-week exposure to cell phone antenna waves. In all groups,sperm analysis was performed based on standard methods and we determined the meansperm total antioxidant capacity according to the ferric reducing ability of plasma (FRAPmethod. Data were analyzed by one-way ANOVA followed by Tukey’s test using SPSSversion 16 software.Results: The results indicated that sperm viability, motility, and total antioxidant capacityin all exposure groups decreased significantly compared to the control group (p<0.05.Increasing the duration of exposure from 2 to 3 weeks caused a statistically significantdecrease in sperm viability and motility (p<0.05.Conclusion: Exposure to cell phone waves can decrease sperm viability and motility inrats. These waves can also decrease sperm total antioxidant capacity in rats and result inoxidative stress.

  17. Comparison of 250 MHz R10K Origin 2000 and 400 MHz Origin 2000 Using NAS Parallel Benchmarks

    Science.gov (United States)

    Turney, Raymond D.; Thigpen, William W. (Technical Monitor)

    2001-01-01

    This report describes results of benchmark tests on Steger, a 250 MHz Origin 2000 system with R10K processors, currently installed at the NASA Ames National Advanced Supercomputing (NAS) facility. For comparison purposes, the tests were also run on Lomax, a 400 MHz Origin 2000 with R12K processors. The BT, LU, and SP application benchmarks in the NAS Parallel Benchmark Suite and the kernel benchmark FT were chosen to measure system performance. Having been written to measure performance on Computational Fluid Dynamics applications, these benchmarks are assumed appropriate to represent the NAS workload. Since the NAS runs both message passing (MPI) and shared-memory, compiler directive type codes, both MPI and OpenMP versions of the benchmarks were used. The MPI versions used were the latest official release of the NAS Parallel Benchmarks, version 2.3. The OpenMP versions used were PBN3b2, a beta version that is in the process of being released. NPB 2.3 and PBN3b2 are technically different benchmarks, and NPB results are not directly comparable to PBN results.

  18. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology

    International Nuclear Information System (INIS)

    Yan Dong; Mao Luhong; Su Qiujie; Xie Sheng; Zhang Shilin

    2014-01-01

    This paper presents a millimeter wave (mm-wave) oscillator that generates signal at 36.56 GHz. The mm-wave oscillator is realized in a UMC 0.18 μm CMOS process. The linear superposition (LS) technique breaks through the limit of cut-off frequency (f T ), and realizes a much higher oscillation than f T . Measurement results show that the LS oscillator produces a calibrated −37.17 dBm output power when biased at 1.8 V; the output power of fundamental signal is −10.85 dBm after calibration. The measured phase noise at 1 MHz frequency offset is −112.54 dBc/Hz at the frequency of 9.14 GHz. This circuit can be properly applied to mm-wave communication systems with advantages of low cost and high integration density. (semiconductor integrated circuits)

  19. A continuous-wave optical parametric oscillator around 5-μm wavelength for high-resolution spectroscopy.

    Science.gov (United States)

    Krieg, J; Klemann, A; Gottbehüt, I; Thorwirth, S; Giesen, T F; Schlemmer, S

    2011-06-01

    We present a continuous-wave optical parametric oscillator (OPO) capable of high resolution spectroscopy at wavelengths between 4.8 μm and 5.4 μm. It is based on periodically poled lithium niobate (PPLN) and is singly resonant for the signal radiation around 1.35 μm. Because of the strong absorption of PPLN at wavelengths longer than 4.5 μm, the OPO threshold rises to the scale of several watts, while it produces idler powers of more than 1 mW and offers continuous tuning over 15 GHz. A supersonic jet spectrometer is used in combination with the OPO to perform measurements of the transient linear molecule Si(2)C(3) at 1968.2 cm(-1). Fifty rovibrational transition frequencies of the ν(3) antisymmetric stretching mode have been determined with an accuracy on the order of 10(-4) cm(-1), and molecular parameters for the ground and the v(3) = 1 state have been determined most precisely. © 2011 American Institute of Physics

  20. Converter of a continuous code into the Grey code

    International Nuclear Information System (INIS)

    Gonchar, A.I.; TrUbnikov, V.R.

    1979-01-01

    Described is a converter of a continuous code into the Grey code used in a 12-charged precision amplitude-to-digital converter to decrease the digital component of spectrometer differential nonlinearity to +0.7% in the 98% range of the measured band. To construct the converter of a continuous code corresponding to the input signal amplitude into the Grey code used is the regularity in recycling of units and zeroes in each discharge of the Grey code in the case of a continuous change of the number of pulses of a continuous code. The converter is constructed on the elements of 155 series, the frequency of continuous code pulse passing at the converter input is 25 MHz

  1. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  2. An Automated 476 MHz RF Cavity Processing Facility at SLAC

    CERN Document Server

    McIntosh, P; Schwarz, H

    2003-01-01

    The 476 MHz accelerating cavities currently used at SLAC are those installed on the PEP-II B-Factory collider accelerator. They are designed to operate at a maximum accelerating voltage of 1 MV and are routinely utilized on PEP-II at voltages up to 750 kV. During the summer of 2003, SPEAR3 will undergo a substantial upgrade, part of which will be to replace the existing 358.54 MHz RF system with essentially a PEP-II high energy ring (HER) RF station operating at 476.3 MHz and 3.2 MV (or 800 kV/cavity). Prior to installation, cavity RF processing is required to prepare them for use. A dedicated high power test facility is employed at SLAC to provide the capability of conditioning each cavity up to the required accelerating voltage. An automated LabVIEW based interface controls and monitors various cavity and test stand parameters, increasing the RF fields accordingly such that stable operation is finally achieved. This paper describes the high power RF cavity processing facility, highlighting the features of t...

  3. Multiwatt-level continuous-wave midwave infrared generation using difference frequency mixing in periodically poled MgO-doped lithium niobate.

    Science.gov (United States)

    Guha, Shekhar; Barnes, Jacob O; Gonzalez, Leonel P

    2014-09-01

    Over 3.5 W of continuous-wave power at 3.4 μm was obtained by single-pass difference frequency mixing of 1.064 and 1.55 μm fiber lasers in a 5 cm long periodically poled lithium niobate crystal. Good agreement was obtained between the observed temperature dependence of the generated power and the prediction from focused Gaussian beam theory.

  4. Investigations of Low and Moderate Harmonic Fast Wave Physics on CDX-U

    International Nuclear Information System (INIS)

    Spaleta, J.; Majeski, R.; Phillips, C.K.; Dumont, R.J.; Kaita, R.; Soukhanovskii, V.; Zakharov, L.

    2003-01-01

    Third harmonic hydrogen cyclotron fast wave heating studies are planned in the near term on CDX-U to investigate the potential for bulk ion heating. In preparation for these studies, the available radio-frequency power in CDX-U has been increased to 0.5 MW. The operating frequency of the CDX-U radio-frequency transmitter was lowered to operate in the range of 8-10 MHz, providing access to the ion harmonic range 2* ∼ 4* in hydrogen. A similar regime is accessible for the 30 MHz radio-frequency system on the National Spherical Torus Experiment (NSTX), at 0.6 Tesla in hydrogen. Preliminary computational studies over the plasma regimes of interest for NSTX and CDX-U indicate the possibility of strong localized absorption on bulk ion species

  5. Parametric excitation of electron Bernstein waves by radio waves in the ionosphere and its possible consequence for airglow

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Tripathi, V K [Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2007-06-07

    A high power radio wave, launched into the polar ionosphere at angle {theta} with the earth's magnetic field from a ground-based transmitter in the vicinity of twice the electron cyclotron frequency (2.75 MHz), is reported to create an airglow at an effective radiated power (ERP) = 10 MW. We interpret this result as a consequence of parametric decay of the radio wave into an electron Bernstein wave (EBW) and an ion acoustic wave (IAW). The oscillatory velocity of electrons due to the pump couples with the density perturbation due to the IAW to produce a current, driving the Bernstein mode. The latter, in connection with the pump, exerts a ponderomotive force on electrons, driving the IAW. The growth rate of the parametric instability is maximum for {theta} = 0. At the same time, for any given value of {theta}, the growth rate increases with b(=k{sub 1}{sup 2}v{sub th}{sup 2}/2{omega}{sub c}{sup 2}) and attains a maximum around b {approx} 2, then falls gradually. The EBW produces energetic electrons via cyclotron damping. These electrons collide with the neutral atoms of the plasma to excite them to higher energy states. As the excited atoms return to lower energy states, they radiate in the visible.

  6. Parametric excitation of electron Bernstein waves by radio waves in the ionosphere and its possible consequence for airglow

    International Nuclear Information System (INIS)

    Kumar, Ashok; Tripathi, V K

    2007-01-01

    A high power radio wave, launched into the polar ionosphere at angle θ with the earth's magnetic field from a ground-based transmitter in the vicinity of twice the electron cyclotron frequency (2.75 MHz), is reported to create an airglow at an effective radiated power (ERP) = 10 MW. We interpret this result as a consequence of parametric decay of the radio wave into an electron Bernstein wave (EBW) and an ion acoustic wave (IAW). The oscillatory velocity of electrons due to the pump couples with the density perturbation due to the IAW to produce a current, driving the Bernstein mode. The latter, in connection with the pump, exerts a ponderomotive force on electrons, driving the IAW. The growth rate of the parametric instability is maximum for θ = 0. At the same time, for any given value of θ, the growth rate increases with b(=k 1 2 v th 2 /2ω c 2 ) and attains a maximum around b ∼ 2, then falls gradually. The EBW produces energetic electrons via cyclotron damping. These electrons collide with the neutral atoms of the plasma to excite them to higher energy states. As the excited atoms return to lower energy states, they radiate in the visible

  7. Assessment of cutaneous radiation fibrosis by 20 MHz-sonography

    International Nuclear Information System (INIS)

    Gottloeber, P.; Braun-Falco, B.; Plewig, G.; Kerscher, M.; Peter, R.U.; Nadeshina, N.

    1996-01-01

    Radiation fibrosis is the cardinal symptom of the chronicle stage of the cutaneous radiation syndrome. The degree of cutaneous fibrosis can clinically be estimated by palpation. High-frequency 20 MHz-sonography is an established, noninvasive procedure, which renders an exact determination of skin thickness and additionally densitometry is possible. We investigated 15 survivors of the Chernobyl accident in 1986, who developed symptoms of the chronic stage of the cutaneous radiation syndrome. We determined skin thickness and echogenicity of skin areas clinically suggestive of radiation fibrosis before, during and after treatment. 20 MHz-sonography showed a distinct enlargement of the echorich corium and a reduction of the subcutaneous fatty tissue in comparison with the unaffected, contralateral skin, here demonstrating typical features of radiation fibrosis, namely dermal fibrosis and reactive pseudoatrophy and fatty tissue. The histology presented an increase and swelling of the collagen fibers and atypical fibroblastic cells. The patients received treatment with low-dose interferon y (Polyfcron R , 3 x 50μg s.C., three times per week) up to 30 months. A marked reduction of skin thickness and echogenicity reaching nearly normal values could be observed. We conclude that 20 MHz-sonography is an easy to apply, noninvasive, well established procedure to quantify cutaneous radiation fibrosis and to assess therapeutic outcome

  8. Effect of surface modes on coupling to fast waves in the LHRF

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Colestock, P.L.

    1990-01-01

    The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported 'up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs

  9. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    Parmar, Darshan Kumar; Singh, N.P.; Gajjar, Sandip

    2015-01-01

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  10. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  11. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  12. Design for a FET based 1 MHz, 10 kV pulse generator

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    1995-08-01

    A pulse generator consisting of a coaxial cable and a high voltage modulator, incorporating two stacks of Field-Effect Transistor (FET) switches operating in ''push-pull'' mode, has been designed and built. The modulator generates a continuous, unipolar, pulse train at a fundamental frequency of 1 MHz and a magnitude of 10 kV. The rise and fall times of the pulses are less than 39 ns. The two stacks each utilize 14 FETS, which are individually rated at 1 kV. The design incorporates a low-loss coaxial cable on which pulses are stored. Extensive PSpice simulations have been carried out to evaluate various design options. Subsequent measurements on the prototype pulse generator confirm the PSpice predictions. This system is applicable for the kicker system at TRIUMF

  13. MIMOSA. A 32 channel 40 MHz Camac scaler

    International Nuclear Information System (INIS)

    Beer, A.; Bourgeois, F.; Critin, G.

    1981-01-01

    This report describes a 32 channel, 24 bit, 40 MHz single width Camac scaler based on the memory increment technique. The characteristics of the module are given and its logic is briefly described. Circuit diagrams and component lists are given. (orig.)

  14. Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...

    Indian Academy of Sciences (India)

    2016-10-11

    Oct 11, 2016 ... We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear ... linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three- ... structures are preferred for relatively higher energy ... klystron in a TW linac, which results in cost reduction.

  15. Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Petty, C.C.; Prater, R.; Choi, M.; Schaffner, D.A.; Baity, F.W.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Murakami, M.; Zeeland, M.A. Van

    2006-01-01

    The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed

  16. Applications of continuity and discontinuity of a fractional derivative of the wave functions to fractional quantum mechanics

    International Nuclear Information System (INIS)

    Dong Jianping; Xu Mingyu

    2008-01-01

    The space fractional Schroedinger equation with a finite square potential, periodic potential, and delta-function potential is studied in this paper. We find that the continuity or discontinuity condition of a fractional derivative of the wave functions should be considered to solve the fractional Schroedinger equation in fractional quantum mechanics. More parity states than those given by standard quantum mechanics for the finite square potential well are obtained. The corresponding energy equations are derived and then solved by graphical methods. We show the validity of Bloch's theorem and reveal the energy band structure for the periodic potential. The jump (discontinuity) condition for the fractional derivative of the wave function of the delta-function potential is given. With the help of the jump condition, we study some delta-function potential fields. For the delta-function potential well, an alternate expression of the wave function (the H function form of it was given by Dong and Xu [J. Math. Phys. 48, 072105 (2007)]) is obtained. The problems of a particle penetrating through a delta-function potential barrier and the fractional probability current density of the particle are also discussed. We study the Dirac comb and show the energy band structure at the end of the paper

  17. NICER Discovers mHz Oscillations and Marginally Stable Burning in GS 1826-24

    Science.gov (United States)

    Strohmayer, Tod E.; Gendreau, Keith C.; Keek, Laurens; Bult, Peter; Mahmoodifar, Simin; Chakrabarty, Deepto; Arzoumanian, Zaven; NICER Science Team

    2018-01-01

    To date, marginally stable thermonuclear burning, evidenced as mHz X-ray flux oscillations, has been observed in only five accreting neutron star binaries, 4U 1636-536, 4U 1608-52, Aql X-1, 4U 1323-619 and Terzan 5 X-2. Here we report the discovery with NASA's Neutron Star Interior Composition Explorer (NICER) of such oscillations from the well-known X-ray burster GS 1826-24. NICER observed GS 1826-24 on 9 September, 2017 for a total exposure of about 4 ksec. Timing analysis revealed highly significant oscillations at a frequency of 8.2 mHz in two successive pointings. The oscillations have a fractional modulation amplitude of approximately 3% for photon energies less than 6 keV. The observed frequency is consistent with the range observed in the other mHz QPO systems, and indeed is slightly higher than the frequency measured in 4U 1636-536 below which mHz oscillations ceased and unstable burning (X-ray bursts) resumed. We discuss the mass accretion rate dependence of the oscillations as well as the X-ray spectrum as a function of pulsation phase. We place the observations in the context of the current theory of marginally stable burning and briefly discuss the potential for constraining neutron star properties using mHz oscillations.

  18. Characteristics of coronal shock waves and solar type 2 radio bursts

    Science.gov (United States)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  19. Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems

    Science.gov (United States)

    Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao

    2018-02-01

    Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.

  20. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    Science.gov (United States)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  1. Fast wave current drive in DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R.

    1995-02-01

    The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping

  2. Corona magnetic field over sunspots estimated by m-wave observation

    International Nuclear Information System (INIS)

    Kurihara, Masahiro

    1974-01-01

    The shape of the magnetic field in corona was estimated from the observation of the type I storm occurred in the last decade of August, 1971. It was found from the observation with a 160 MHz interferometer at Mt. Nobeyama that at most three storm sources, which are called radio wave source, were produced. The radio wave sources were fixed above sunspots. The height of the radio wave sources was estimated to be 0.45 R from the photosphere. The sunspots under the radio wave sources can be classified to four sub-groups. Weakening of the magnetic field on the photosphere was found from the reduction of the area of some sub-group. The relation between the activity of type I storm and the intensity of the magnetic field of sunspots is qualitatively suggested. It is considered that the radio wave sources and the sunspots were connected by common magnetic force lines. The probable magnetic field in corona was presumed and is shown in a figure. An interesting point is that the direction of magnetic force lines inclined by about 30 0 outward to the vertical line to the photosphere surface. (Kato, T.)

  3. LDRD final report on continuous wave intersubband terahertz sources.

    Energy Technology Data Exchange (ETDEWEB)

    Samora, Sally; Mangan, Michael A.; Foltynowicz, Robert J.; Young, Erik W.; Fuller, Charles T.; Stephenson, Larry L.; Reno, John Louis; Wanke, Michael Clement; Hudgens, James J.

    2005-02-01

    There is a general lack of compact electromagnetic radiation sources between 1 and 10 terahertz (THz). This a challenging spectral region lying between optical devices at high frequencies and electronic devices at low frequencies. While technologically very underdeveloped the THz region has the promise to be of significant technological importance, yet demonstrating its relevance has proven difficult due to the immaturity of the area. While the last decade has seen much experimental work in ultra-short pulsed terahertz sources, many applications will require continuous wave (cw) sources, which are just beginning to demonstrate adequate performance for application use. In this project, we proposed examination of two potential THz sources based on intersubband semiconductor transitions, which were as yet unproven. In particular we wished to explore quantum cascade lasers based sources and electronic based harmonic generators. Shortly after the beginning of the project, we shifted our emphasis to the quantum cascade lasers due to two events; the publication of the first THz quantum cascade laser by another group thereby proving feasibility, and the temporary shut down of the UC Santa Barbara free-electron lasers which were to be used as the pump source for the harmonic generation. The development efforts focused on two separate cascade laser thrusts. The ultimate goal of the first thrust was for a quantum cascade laser to simultaneously emit two mid-infrared frequencies differing by a few THz and to use these to pump a non-linear optical material to generate THz radiation via parametric interactions in a specifically engineered intersubband transition. While the final goal was not realized by the end of the project, many of the completed steps leading to the goal will be described in the report. The second thrust was to develop direct THz QC lasers operating at terahertz frequencies. This is simpler than a mixing approach, and has now been demonstrated by a few groups

  4. Prediction and near-field observation of skull-guided acoustic waves.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  5. Prediction and near-field observation of skull-guided acoustic waves

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  6. Imaging of active faults with the step continuous wave radar system. In case of Senzan faults in Awaji-island; Step shiki renzokuha chichu radar tansaho ni yoru katsudanso no imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Koga, K; Hara, H; Kasai, H; Ito, M [Kawasaki Geological Engineering Co. Ltd., Tokyo (Japan); Yoshioka, T [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    Validity of continuous wave radar exploration was verified when the said technique and some other probing methods were investigated at the Senzan Faults in Awaji Island. The signal transmitted by a continuous wave exploration system is a collection of sinusoidal waves different in frequency, and the frequencies are so controlled that they form steps relative to the sweep time. Exploration into great depths is carried out by prolonging the transmission signal sweep time, where high resolution is maintained by use of widened transmission frequency bandwidths. On-site measurements were made using a triplicated multichannel method, and electromagnetic wave propagation velocities required for depth conversion of the reflected cross section were determined in compliance with the wide angle method. On the basis of the analytical cross section using the profiles obtained by continuous radar reflection exploration conducted from the ground surface, interpretation was made of the geological structure. The presence and position and the geological development of the Senzan Faults were identified by the study of discontinuities in reflective structures such as the strata. 4 refs., 5 figs., 2 tabs.

  7. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

    Science.gov (United States)

    Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2015-10-05

    We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

  8. THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR

    Science.gov (United States)

    Macor, A.; de Rijk, E.; Annino, G.; Alberti, S.; Ansermet, J.-Ph.

    2011-10-01

    A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids.

  9. Design of 325 MHz spoke cavity

    International Nuclear Information System (INIS)

    Sha Peng; Huang Hong; Dai Jianping; Zu Guoquan; Li Han

    2012-01-01

    Spoke cavity can be used in the low-energy section of the proton accelerator. It has many significant advantages: compact structure, high value of R/Q, etc. The ADS (Accelerator Driven System) project will adopt many spoke cavities with different β values. Therefore, IHEP has began the research of β=0.14, 325 MHz spoke cavity. In this pa per, the dimensions, RF performances and mechanical properties of it are studied. (authors)

  10. The study of 80 MHz self starting passively mode-locked Erbium-Doped Fiber Laser via nonlinear polarization rotation with SESAM

    International Nuclear Information System (INIS)

    Qamar, F.

    2013-01-01

    Erbium-Doped Fiber Laser, EDF L, passively mode-locked via only Nonlinear Polarization Rotation, NPR, and via NPR with Semiconductor Saturable Absorber Mirror, SESAM, is studied. Self start single pulse train with pulse width of 114 fs and repetition rate (PRR) of 80 MHz has been obtained when 55 cm EDFL, passively mode-locked via NPR only. Inserting SESAM in EDFL cavity leads to shorten the pulse width up to 88 fs, increases the amplitude stability up to 96% and lower the phase noise jittering to around 26 fsec. Stable second harmonic self starting passively mode-locked EDFL with pulse width of 284 fs has also been observed only when SESAM was used in the cavity. Multi-pulsed system passively mode-locked via NPR for EDFL length of 80 cm with time difference between the successive multi-pulses ranged from few picoseconds to nanoseconds, has been observed. The time difference can be controlled by the polarizer controller and the half wave plate. Further controlling of the cavity polarization leads to developing the multiple mode locking pulses train to second harmonic mode-locking pulse train with PRR of 160MHz and pulse width of 156 fs. Three harmonic superposed trains of mode locked pulse have been achieved only when SESAM added to the cavity. (author)

  11. Field test of an all-semiconductor laser-based coherent continuous-wave Doppler lidar for wind energy applications

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Dellwik, Ebba; Hu, Qi

    -produced all-semiconductor laser. The instrument is a coherent continuous-wave lidar with two fixed-focus telescopes for launching laser beams in two different directions. The alternation between the telescopes is achieved by a novel switching technique without any moving parts. Here, we report results from...... signal strength from external atmospheric parameters such as relative humidity and concentrations of atmospheric particles is discussed. This novel lidar instrument design seems to offer a promising low-cost alternative for prevision remote sensing of wind turbine inflow....

  12. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, S.; Kobayashi, K.; Tojyo, E.; Yoshida, K.

    1979-01-01

    A 15-MeV traveling wave type electron linac is used as the injector for the 1.3-GeV electron synchrotron at the Institute for Nuclear Study, University of Tokyo. The resonant frequency of this accelerator waveguide is 2758.00 MHz at 30 0 C. The performance of the linac,however, is improved when it is operated with a frequency which is higher than the design value by 200 to 400 KHz. It is shown that the detuning due to the beam loading is serious in such an accelerator waveguide in which the buncher and regular sections are combined, and the detuning effect can approximately be compensated by changing the operating frequency. The detuning effect in the traveling wave-type accelerator waveguide was studied both from experimental and theoretical aspects by using a short test waveguide

  13. Development of small C-band standing-wave accelerator structure

    International Nuclear Information System (INIS)

    Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.

    2000-01-01

    We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)

  14. Submillimeter-wave measurements of the pressure broadening of BrO

    International Nuclear Information System (INIS)

    Yamada, M.M.; Kobayashi, M.; Habara, H.; Amano, T.; Drouin, B.J.

    2003-01-01

    The N 2 and O 2 pressure broadening coefficients of the J=23.5 ↔ 22.5 and J=25.5 ↔ 24.5 rotational transitions in the ground vibronic state X 2 Π 3/2 of 81 BrO at 624.768 and 650.178 GHz have been independently measured at Ibaraki University and Jet Propulsion Laboratory. These lines are expected to be monitored by the superconducting submillimeter-wave limb emission sounder in the Japanese Experiment Module on the International Space Station (JEM/SMILES) as well as the earth observing system microwave limb sounder (EOS-MLS). This work provides temperature-dependent pressure broadening parameters of BrO needed by the space station and satellite based observations. The BrO pressure broadening coefficients and their 1σ uncertainties are: γ 0 (N 2 )=3.24±0.05 MHz/Torr and γ 0 (O 2 )=2.33±0.06 MHz/Torr for the 624.768 GHz transition at room temperature (296 K). For the 650.178 GHz line, the results are: γ 0 (N 2 )=3.20±0.07 MHz/Torr and γ 0 (O 2 )=2.41±0.06 MHz/Torr. The temperature dependence exponents and their 1σ error are determined to be: n(N 2 )=-0.76±0.05 and n(O 2 )=-0.93±0.07 for the 624.768 GHz transition, and n(N 2 )=-0.84±0.07 and n(O 2 )=-0.70±0.07 for the 650.178 GHz transition

  15. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2

  16. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    International Nuclear Information System (INIS)

    Liu, J. Chien-Chih

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li 2 BeF 4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel

  17. A 2 MHz 3-port analog isolation and fanout module

    International Nuclear Information System (INIS)

    Beadle, E.R.

    1995-01-01

    In many accelerator based data acquisition systems, signal isolation is a necessary feature so ground loops are avoided. Here, a 3-port isolated circuit providing 1:3 fanout, buffering and amplification over a multi-megahertz bandwidth is presented. The circuit accepts a single input and drives 3 independently isolated output channels, up to ± 10 V into 50 ohms. The input and output isolation is supplied via a dual optocoupler, and the power isolation is achieved with DC/DC converters. In each channel, a voltage feedback amplifier is used in combination with the optocoupler to form a transimpedance configuration with the gain-bandwidth product (GBP) set by a pair of resistors. The feedback amplifier linearizes the optocoupler transfer characteristics using a servo technique and also controls the circuit drift, nonlinearity, and bandwidth. The circuit has demonstrated long-term drift of 4 MHz, and a SNR of >55 db in a 1 MHz bandwidth with < 1% THD for a 10 V amplitude sinusoidal input. With few modifications, this design is capable of providing input/output gain and bandwidth in the range of 10--50 MHz

  18. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men.

    Science.gov (United States)

    Hanssen, Henner; Nussbaumer, Monique; Moor, Christoph; Cordes, Mareike; Schindler, Christian; Schmidt-Trucksäss, Arno

    2015-02-01

    Our aim was to investigate the acute and 24-hour (h) effects of high-intensity interval training (HIIT) and moderate continuous training (MCT) on arterial pulse wave reflection, an established marker of arterial stiffness and cardiovascular risk. In a randomized cross-over design, 21 young healthy male participants performed a HIIT or a MCT on separate visits. Before and 5 (t5), 20 (t20), 35 (t35), and 50 (t50) minutes after the acute exercise bouts, the crude augmentation index (AIx) and the AIx at a set heart rate (AIx@75) were analysed by applanation tonometry. Starting 1 h post-exercise, both indices were captured over 24-h with an oscillometric monitoring device. AIx did not change significantly after MCT but declined progressively after HIIT, reaching significantly lower values compared to MCT at t35 (P = 0.045) and t50 (P = 0.008). AIx@75 increased after both acute exercise types but was higher after HIIT at t5 (P HIIT (P = 0.007) but not after MCT (P = 0.813). Exercise intensity affects pulse wave reflection, with different time courses for AIx and AIx@75 post-exercise. Although initially higher after HIIT, AIx@75 declines in the 24-h recovery period indicating more favourable effects on pulse wave reflection compared to MCT. This may result in substantial positive chronic training effects on arterial stiffness in health and cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Routing of high data rate signals using degenerate four wave mixing in BSO

    Science.gov (United States)

    West, C. L.; Hazell, M. S.

    Non-linear optical phase conjugation can be directly applied to real time spatial and/or temporal information processing of electromagnetic waves. In photorefractive materials the process may be described in terms of dynamic holography. The speed at which grating formation takes place is limited by the physical properties of the crystal and the intensities of the optical beams used to write the grating. The speed at which diffraction may occur from this grating does not, however, suffer such limitations and in this memorandum we demonstrate the use of degenerate four wave mixing in BSO to direct the flow of data whose information bandwidth exceeds 1MHz.

  20. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  1. Pulse propagation dynamics in the presence of a continuous-wave field

    International Nuclear Information System (INIS)

    Dimitrijević, Jelena; Arsenović, Dušan; Jelenković, Branislav M

    2013-01-01

    We present theoretical results for the propagation dynamics of an electromagnetic field pulse through rubidium vapor, while another field, a continuous-wave electromagnetic field, is present. The frequencies of both electromagnetic fields are resonant with the transition between the ground and excited state hyperfine levels of Rb, F g  → F e  = F g  ± 1. Detuning from resonance is done by the magnetic field oriented along the light propagation direction (Hanle configuration). When both the electromagnetic fields are simultaneously interacting with Rb atoms, either electromagnetically induced transparency or absorption is induced. Propagation dynamics was obtained solving the set of Maxwell–Bloch equations for the interacting atoms with two electromagnetic fields. Motivated by recent results (Brazhnikov et al 2011 Eur. Phys. J. D 63 315–25; Brazhnikov et al 2010 JETP Lett. 91 625–9; Kou et al 2011 Phys. Rev. A 84 063807), we have analyzed the influence of experimental parameters, laser polarization, and mutual phases between lasers, which can lead to optical switching, i.e. the transformation from electromagnetically induced absorption to transparency and vice versa. (paper)

  2. Spiral Slotted Microstrip Antenna Design for 700 MHz Band Application

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses González

    2016-01-01

    Full Text Available This work describes the design and implementation of spiral slotted microstrip antenna. Recently, just like other countries, in Mexico, terrestrial digital television has been implemented (analogic shutdown; as a consequence, the 700 MHz UFH Band (698–806 MHz has been opened to new telecommunications services, particularly wireless mobile communication. This technological advance represents a radio mobile antenna design challenge because it is necessary to design an antenna whose dimensions must be small enough, which satisfies gain, resonance frequency, and bandwidth requirements and is of low cost.

  3. 47 CFR 90.1408 - Organization and structure of the 700 MHz public/private partnership.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Organization and structure of the 700 MHz public/private partnership. 90.1408 Section 90.1408 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Partnership § 90.1408 Organization and structure of the 700 MHz public/private partnership. (a) The Upper 700...

  4. 47 CFR 27.1308 - Organization and structure of the 700 MHz public/private partnership.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Organization and structure of the 700 MHz public/private partnership. 27.1308 Section 27.1308 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Partnership § 27.1308 Organization and structure of the 700 MHz public/private partnership. (a) The Upper 700...

  5. Analog Fiber Optic Link with DC-100 MHz Bandwidth

    National Research Council Canada - National Science Library

    Sullivan, C. A; Girardi, P. G; Lohrmann, Dieter R

    2008-01-01

    An analog fiber optic link covering the frequency range from DC to 100 MHz was designed, constructed, and tested, in order to connect a 10 kA pulse current probe to oscilloscopes for oscillographing...

  6. A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser

    International Nuclear Information System (INIS)

    Carroll, David L; Verdeyen, Joseph T

    2013-01-01

    The exciplex pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, with and without ethane, by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). The blue satellites of the alkali D 2 lines provide an advantageous pathway for optically pumping atomic alkali lasers on the principal series (resonance) transitions with broad linewidth (>2 nm) semiconductor diode lasers. The development of a simple theoretical analysis of continuous-wave XPAL systems is presented along with predictions as a function of temperature and pump intensity. The model predicts that an optical-to-optical efficiency in the range of 40-50% can be achieved for XPAL.

  7. Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm

    Science.gov (United States)

    Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang

    2017-12-01

    We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.

  8. Marble Ageing Characterization by Acoustic Waves

    Science.gov (United States)

    Boudani, Mohamed El; Wilkie-Chancellier, Nicolas; Martinez, Loïc; Hébert, Ronan; Rolland, Olivier; Forst, Sébastien; Vergès-Belmin, Véronique; Serfaty, Stéphane

    In cultural heritage, statue marble characterization by acoustic waves is a well-known non-destructive method. Such investigations through the statues by time of flight method (TOF) point out sound speeds decrease with ageing. However for outdoor stored statues as the ones in the gardens of Chateau de Versailles, ageing affects mainly the surface of the Carrara marble. The present paper proposes an experimental study of the marble acoustic properties variations during accelerated laboratory ageing. The surface degradation of the marble is reproduced in laboratory for 29 mm thick marble samples by using heating/cooling thermal cycles on one face of a marble plate. Acoustic waves are generated by 1 MHz central frequency contact transducers excited by a voltage pulse placed on both sides of the plate. During the ageing and by using ad hoc transducers, the marble samples are characterized in transmission, along their volume by shear, compressional TOF measurements and along their surface by Rayleigh waves measurements. For Rayleigh waves, both TOF by transducers and laser vibrometry methods are used to detect the Rayleigh wave. The transmission measurements point out a deep decrease of the waves speeds in conjunction with a dramatic decrease of the maximum frequency transmitted. The marble acts as a low pass filter whose characteristic frequency cut decreases with ageing. This pattern occurs also for the Rayleigh wave surface measurements. The speed change in conjunction with the bandwidth translation is shown to be correlated to the material de-structuration during ageing. With a similar behavior but reversed in time, the same king of phenomena have been observed trough sol-gel materials during their structuration from liquid to solid state (Martinez, L. et all (2004). "Chirp-Z analysis for sol-gel transition monitoring". Ultrasonics, 42(1), 507-510.). A model is proposed to interpret the acoustical measurements

  9. Effect of electromagnetic waves and higher harmonics in capacitively coupled plasma phenomena

    International Nuclear Information System (INIS)

    Upadhyay, R R; Sawada, I; Ventzek, P L G; Raja, L L

    2013-01-01

    High-resolution self-consistent numerical simulation of electromagnetic wave phenomena in an axisymmetric capacitively coupled plasma reactor is reported. A prominent centre-peaked plasma density profile is observed for driving frequencies of 60 MHz and is consistent with observations in the literature and accompanying experimental studies. A power spectrum of the simulated wave electric field reveals the presence of well-resolved high frequency harmonic content up to the 20th harmonic of the excitation frequency; an observation that has also been reported in experiments. Importantly, the simulation results reveal that the occurrence of higher harmonics is strongly correlated with the occurrence of a centre-peaked plasma density profile. (fast track communication)

  10. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    Science.gov (United States)

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  11. Periodic waves in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo

    2012-01-01

    Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.

  12. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  13. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.

    Science.gov (United States)

    Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry

    2015-10-15

    This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Tunable continuous wave and passively Q-switched Nd:LuLiF4 laser with monolayer graphene as saturable absorber

    International Nuclear Information System (INIS)

    Wang, Feng; Luo, Jianjun; Li, Shixia; Li, Tao; Li, Ming

    2015-01-01

    Tunable continuous wave and passively Q-switched Nd:LuLiF 4 laser performances were demonstrated. Employing a 2 mm thick quartz plate as the birefringence filter, three continuous tuning ranges from 1045.2 to 1049.9 nm, 1051 to 1055.1 nm and 1072.1 to 1074.3 nm could be obtained. Q-switched laser operation was realized by using a monolayer graphene as a saturable absorber. At an incident pump power of 5.94 W, the maximum average output power was 669 mW with the pulse duration of 210 ns and the pulse repetition rate of 145 kHz at T = 10%. (paper)

  15. Multi scale modeling of 2450MHz electric field effects on microtubule mechanical properties.

    Science.gov (United States)

    Setayandeh, S S; Lohrasebi, A

    2016-11-01

    Microtubule (MT) rigidity and response to 2450MHz electric fields were investigated, via multi scale modeling approach. For this purpose, six systems were designed and simulated to consider all types of feasible interactions between α and β monomers in MT, by using all atom molecular dynamics method. Subsequently, coarse grain modeling was used to design different lengths of MT. Investigation of effects of external 2450MHz electric field on MT showed MT less rigidity in the presence of such field, which may perturb its functions. Moreover, an additional computational setup was designed to study effects of 2450MHz field on MT response to AFM tip. It was found, more tip velocity led to MT faster transformation and less time was required to change MT elastic response to plastic one, applying constant radius. Moreover it was observed smaller tip caused to increase required time to change MT elastic response to plastic one, considering constant velocity. Furthermore, exposing MT to 2450MHz field led to no significant changes in MT response to AFM tip, but quick change in MT elastic response to plastic one. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Ethiop. J. Sci. & Technol. 7(2) 67- 84, 2014 67 Effect of ultrasound ...

    African Journals Online (AJOL)

    The parameters of protein metabolism, such as the levels of soluble, ... Bombyx mori, following exposure of the silkworm eggs to 1 MHz continuous wave of ultrasound at an intensity of .... sound on these parameters in the 5th instar larvae of.

  17. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field.

    Science.gov (United States)

    Virtanen, H; Keshvari, J; Lappalainen, R

    2007-03-07

    As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg(-1)) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.

  18. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    Science.gov (United States)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  19. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    Science.gov (United States)

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  20. Combined treatment of radiotherapy and local hyperthermia using 8 MHz RF-wave for advanced carcinoma of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Fuwa, Nobukazu

    1988-01-01

    During the period from January 1983 through September 1986, 13 patients with carcinoma of the breast were treated with local hyperthermia combined with radiotherapy. Six patients were inoperable advanced cases and the other 7 were recurrent cases. Local heat was applied with an 8-MHz RF-capacitive heating equipment, once or twice a week after radiotherapy, for 40 approx. 60 minutes per session. Of the 6 cases with inoperable advanced lesions, 4 achieved CR and the other 2 achieved PRa (80 approx. 100 % regression), and of the 7 cases with local recurrent tumors, 3 achieved CR and the other 4 achieved PRa. As complications of the thermoradiotherapy, grade I-II skin burns were observed in 9 cases, pain around the ribs in 8 cases, mild lassitude in 2 cases, persistent tachycardia in 1 case and acute erosive gastritis in 1 case. It is worth noting that CR was achieved in these huge tumors, which can not be controlled by radiotherapy alone.

  1. Combined treatment of radiotherapy and local hyperthermia using 8 MHz RF-wave for advanced carcinoma of the breast

    International Nuclear Information System (INIS)

    Fuwa, Nobukazu

    1988-01-01

    During the period from January 1983 through September 1986, 13 patients with carcinoma of the breast were treated with local hyperthermia combined with radiotherapy. Six patients were inoperable advanced cases and the other 7 were recurrent cases. Local heat was applied with an 8-MHz RF-capacitive heating equipment, once or twice a week after radiotherapy, for 40 ∼ 60 minutes per session. Of the 6 cases with inoperable advanced lesions, 4 achieved CR and the other 2 achieved PRa (80 ∼ 100 % regression), and of the 7 cases with local recurrent tumors, 3 achieved CR and the other 4 achieved PRa. As complications of the thermoradiotherapy, grade I-II skin burns were observed in 9 cases, pain around the ribs in 8 cases, mild lassitude in 2 cases, persistent tachycardia in 1 case and acute erosive gastritis in 1 case. It is worth noting that CR was achieved in these huge tumors, which can not be controlled by radiotherapy alone. (author)

  2. ULF wave effects on high frequency signal propagation through the ionosphere

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2009-07-01

    Full Text Available Variations in the total electron content (TEC of the ionosphere alter the propagation characteristics of EM radiation for frequencies above a few megahertz (MHz. Spatial and temporal variations of the ionosphere TEC influence highly sensitive, ground based spatial measurements such as those used in radio astronomy and Global Positioning System (GPS applications. In this paper we estimate the magnitudes of the changes in TEC and the time delays of high frequency signals introduced by variations in the ionosphere electron density caused by the natural spectrum of ultra-low frequency (ULF wave activity that originates in near-Earth space. The time delays and associated phase shifts depend on the frequency, spatial structure and amplitude of the ULF waves.

  3. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  4. Electromagnetic wave absorption in high-Tc superconductors and its application

    International Nuclear Information System (INIS)

    Porjesz, T.; Khatiashvili, N.; Kovacs, Gy.; Leppavuori, S.; Uusimaki, A.; Kokkomaki, T.; Hagberg, J.

    1995-08-01

    The experimental study of the electromagnetic wave absorption of high-Tc superconductors subjected to small magnetic fields has been extended to a wide frequency range. The results obtained show an almost frequency independent behaviour in the 4 MHz - 20 GHz region. The measurement technique for the high frequency regime was developed in such a way that the sensitivity increased so much that the sample under investigation could be used as a very sensitive magnetic field detector, too. (author). 4 refs, 8 figs, 1 tab

  5. Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James Chien-Chih [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li2BeF4 (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel.

  6. System Level Design of a Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Færch, Kjartan; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper the system level design of a continuous-time ∆Σ modulator for portable ultrasound scanners is presented. The overall required signal-to-noise ratio (SNR) is derived to be 42 dB and the sampling frequency used is 320 MHz for an oversampling ratio of 16. In order to match these requir......, based on high-level VerilogA simulations, the performance of the ∆Σ modulator versus various block performance parameters is presented as trade-off curves. Based on these results, the block specifications are derived.......In this paper the system level design of a continuous-time ∆Σ modulator for portable ultrasound scanners is presented. The overall required signal-to-noise ratio (SNR) is derived to be 42 dB and the sampling frequency used is 320 MHz for an oversampling ratio of 16. In order to match...

  7. Ion Bernstein wave antenna design for DIII-D

    International Nuclear Information System (INIS)

    Phelps, R.D.; Mayberry, M.J.; Pinsker, R.J.

    1989-01-01

    An array of two toroidal loop antennas has been designd and installed on the DIII-D tokamak to carry out Ion Bernstein Wave (IBW) heating experiments. The antenna will operate at the 2 MW level and provide direct excitation of the IBW over the frequency range of 30-60 MHz. This device will permit the study of coupling th IBW to divertor plasmas and will provide a menas for improving the confinement and stability of high beta plasmas through localized off-axis heating. This paper describes both the mechanical and electromagnetic design of the IBW antenna. (author). 2 refs.; 4 figs.; 1 tab

  8. Analysis of ULF Waves During Substorms Observed in the Ionosphere from the Dayside Ground Magnetometer and in the Solar Wind from the Satellite

    Science.gov (United States)

    Streltsov, A. V.; Alimaganbetov, M.

    2017-12-01

    Magnetospheric substorm is one of the most interesting and complicated phenomena of solar-terrestrial interactions. Despite numerous theoretical and experimental studies conducted during last 50 years, its several important phenomena are not completely understood yet. One of them are intense, ultra-low-frequency (from 0.5 mHz to 100 mHz), electromagnetic pulsations which are always observed during the substorms with the ground-based magnetometers and radars at high latitudes. These waves have the largest amplitudes in the power spectral densities during substorms. Hence, they are the most effective drivers of such mechanisms as high-latitude ionosphere energization, ion outflow production, formation of plasma density cavities, etc. In our study, we focus on the waves with frequencies 0.5-1.0 mHz, which is the lowest part of the frequency spectra observed during the substorm. The questions of what phenomena cause these oscillations and what are their spatiotemporal properties are among the most important ones about the physics of the substorm. To answer these questions, we analyzed disturbances of the magnetic field obtained from the two sources for the period from October 2015 to November 2016 during several substorms. One source is the fluxgate magnetometer in Poker Flat, Alaska. Another is the NASA Advanced Composite Explorer satellite in the Lagrangian L1 point that detects most of the solar wind from the Sun. The goal of our project is to find correlations between the disturbances observed from these sources, which will be a strong argument that the solar wind has a strong influence on the electromagnetic coupling between the ionosphere and magnetosphere of the Earth during the substorms. We observed 48 substorms during the abovementioned period. Our findings show that 1) the dominant frequency of the large-amplitude ULF waves observed during the substorms is 1 mHz or less; and 2) the same frequencies are frequently observed in the waves detected from the both

  9. Reasons for Trying E-cigarettes and Risk of Continued Use.

    Science.gov (United States)

    Bold, Krysten W; Kong, Grace; Cavallo, Dana A; Camenga, Deepa R; Krishnan-Sarin, Suchitra

    2016-09-01

    Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. Copyright © 2016 by the American Academy of Pediatrics.

  10. Reasons for Trying E-cigarettes and Risk of Continued Use

    Science.gov (United States)

    Kong, Grace; Cavallo, Dana A.; Camenga, Deepa R.; Krishnan-Sarin, Suchitra

    2016-01-01

    BACKGROUND: Longitudinal research is needed to identify predictors of continued electronic cigarette (e-cigarette) use among youth. We expected that certain reasons for first trying e-cigarettes would predict continued use over time (eg, good flavors, friends use), whereas other reasons would not predict continued use (eg, curiosity). METHODS: Longitudinal surveys from middle and high school students from fall 2013 (wave 1) and spring 2014 (wave 2) were used to examine reasons for trying e-cigarettes as predictors of continued e-cigarette use over time. Ever e-cigarette users (n = 340) at wave 1 were categorized into those using or not using e-cigarettes at wave 2. Among those who continued using e-cigarettes, reasons for trying e-cigarettes were examined as predictors of use frequency, measured as the number of days using e-cigarettes in the past 30 days at wave 2. Covariates included age, sex, race, and smoking of traditional cigarettes. RESULTS: Several reasons for first trying e-cigarettes predicted continued use, including low cost, the ability to use e-cigarettes anywhere, and to quit smoking regular cigarettes. Trying e-cigarettes because of low cost also predicted more days of e-cigarette use at wave 2. Being younger or a current smoker of traditional cigarettes also predicted continued use and more frequent use over time. CONCLUSIONS: Regulatory strategies such as increasing cost or prohibiting e-cigarette use in certain places may be important for preventing continued use in youth. In addition, interventions targeting current cigarette smokers and younger students may also be needed. PMID:27503349

  11. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    Science.gov (United States)

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  12. The prophylactic effect of vitamin C on induced oxidative stress in rat testis following exposure to 900 MHz radio frequency wave generated by a BTS antenna model.

    Science.gov (United States)

    Jelodar, Gholamali; Nazifi, Saeed; Akbari, Abolfazl

    2013-09-01

    Radio frequency wave (RFW) generated by base transceiver station (BTS) has been reported to make deleterious effects on reproduction, possibly through oxidative stress. This study was conducted to evaluate the effect of RFW generated by BTS on oxidative stress in testis and the prophylactic effect of vitamin C by measuring the antioxidant enzymes activity, including glutathione peroxidase, superoxide dismutase (SOD) and catalase, and malondialdehyde (MDA). Thirty-two adult male Sprague-Dawley rats were randomly divided into four experimental groups and treated daily for 45 days as follows: sham, sham+vitamin C (l-ascorbic acid 200 mg/kg of body weight/day by gavage), RFW (exposed to 900 MHz RFW) 'sham' and 'RFW' animals were given the vehicle, i.e., distilled water and the RFW+vitamin C group (received vitamin C in addition to exposure to RFW). At the end of the experiment, all the rats were sacrificed and their testes were removed and used for measurement of antioxidant enzymes and MDA activity. The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (p < 0.05). In the treated group, vitamin C improved antioxidant enzymes activity and reduced MDA compared with the test group (p < 0.05). It can be concluded that RFW causes oxidative stress in testis and vitamin C improves the antioxidant enzymes activity and decreases MDA.

  13. Influence of 1800 MHz GSM-like electromagnetic radiation exposure on fracture healing.

    Science.gov (United States)

    Aslan, Ahmet; Kırdemır, Vecihi; Kocak, Ahmet; Atay, Tolga; Baydar, Metin Lütfi; Özerdemoglu, Remzi Arif; Aydogan, Nevres Hürriyet

    2014-02-01

    In this study, we aimed to investigate whether 1800 MHz frequency electromagnetic radiation (EMR) has an effect on bone healing. A total of 30 Wistar albino rats were divided into two equal groups. Fractures were created in the right tibias of all rats; next, intramedullary fixations with K-wire were performed. A control group (Group I) was kept under the same experimental conditions except without EMR exposure. Rats in Group II were exposed to an 1800 MHz frequency EMR for 30 min a day for 5 days a week. Next, radiological, mechanical, and histological examinations were performed to evaluate tibial fracture healing. Radiological, histological and mechanical scores were not significantly different between groups (respectively, p = 0.114, p = 0.184 and p = 0.083), and all of these scores were lower than those of the controls. EMR at 1800 MHz frequency emitted from cellular phones has no effect on bone fracture healing. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  14. Verification of Electromagnetic Field Measurements via Inter-laboratory Comparison Measurements

    Directory of Open Access Journals (Sweden)

    M. Mann

    2005-01-01

    Full Text Available An inter-laboratory comparison of field strength measurements was conducted in order to verify the comparability of high-frequency electromagnetic field measurements. For this purpose, 17 participating teams hosted by the working group "procedures of exposure determination" of the LAI (Länderausschuss für Immissionsschutz, state committee on immission control determined the field strength at given stations around a hospital situation. At those stations very different signals were generated, such as sine wave signals at 27MHz and 433MHz, signals from a diathermy device in Continuous-Wave (CW and Pulse-Width-Modulation (PWM mode, from a GSM base station at 900MHz and 1800MHz, from a UMTS base station, from a babyphone device and from a DECT cordless phone. This contribution describes the evaluation of the measured values and the approach to the computation of a reference value. Considering various sources of electromagnetic fields in the areas of personal safety at work and of immission control, the most important results are presented and the conclusions drawn are discussed.

  15. Nouvelle application de control des cavités 200 MHz RF du PS (CERN)

    CERN Document Server

    Cotte, D

    2011-01-01

    Le système Radio Fréquence (RF) 200MHz du PS est un outil essentiel pour la préparation des faisceaux haute intensité du PS. Dans l’anneau PS on trouve 6 cavités 200 MHz utilisées pour contrôler : • l’émittance longitudinale des « bunches » • le processus de « Rebunching » du faisceau avant de l’envoyer au SPS. Chaque cavité est pilotée par des événements appelés « timing » et suit une fonction de tension programmée. Cependant, l’électronique utilisée pour piloter les cavités 200 MHz du PS est obsolète et sa fiabilité non garantie pour cause du manque de pièces de rechange. Ce document décrit le fonctionnement du nouveau programme d’application qui fait abstraction de l’ancienne matrice hardware. Elle suit les recommandations décrites dans l’étude d’une nouvelle structure pour le système RF 200MHz du PS. [1

  16. STATISTICAL ANALYSIS OF ACOUSTIC WAVE PARAMETERS NEAR SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  17. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of Metamaterial Slabs Applied to Wireless Power Transfer at 13.56 MHz

    Directory of Open Access Journals (Sweden)

    Gunyoung Kim

    2015-01-01

    Full Text Available This paper analyzes the effects of a metamaterial slab (or a practical “perfect lens” with negative permeability applied to a two loop magnetically coupled wireless power transfer (WPT system at 13.56 MHz, based on theory, full-wave electromagnetic- (EM- simulations, and measurements. When using lossless slabs with ideal negative permeability in EM-simulations, the WPT efficiencies have been found to be enhanced close to 100% due to the magnetic field focusing. For the case of using a realistic slab made of ring resonators (RR μr=-1-j0.23 with s/d=0.5 (s: slab width, d: distance between the transmitting and receiving loops, the WPT efficiency has been found to significantly decrease to about 20%, even lower than that of a free space case (32% due to the heavy power absorption in the slab. However, some efficiency enhancement can be achieved when s/d is optimized between 0.1 and 0.3. Overall, the significant enhancement of efficiencies when using a lossless slab becomes moderate or only marginal when employing a realistic slab.

  19. A differential optical interferometer for measuring short pulses of surface acoustic waves.

    Science.gov (United States)

    Shaw, Anurupa; Teyssieux, Damien; Laude, Vincent

    2017-09-01

    The measurement of the displacements caused by the propagation of a short pulse of surface acoustic waves on a solid substrate is investigated. A stabilized time-domain differential interferometer is proposed, with the surface acoustic wave (SAW) sample placed outside the interferometer. Experiments are conducted with surface acoustic waves excited by a chirped interdigital transducer on a piezoelectric lithium niobate substrate having an operational bandwidth covering the 200-400MHz frequency range and producing 10-ns pulses with 36nm maximum out-of-plane displacement. The interferometric response is compared with a direct electrical measurement obtained with a receiving wide bandwidth interdigital transducer and good correspondence is observed. The effects of varying the path difference of the interferometer and the measurement position on the surface are discussed. Pulse compression along the chirped interdigital transducer is observed experimentally. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Can continuous scans in orthogonal planes improve diagnostic performance of shear wave elastography for breast lesions?

    Science.gov (United States)

    Yang, Pan; Peng, Yulan; Zhao, Haina; Luo, Honghao; Jin, Ya; He, Yushuang

    2015-01-01

    Static shear wave elastography (SWE) is used to detect breast lesions, but slice and plane selections result in discrepancies. To evaluate the intraobserver reproducibility of continuous SWE, and whether quantitative elasticities in orthogonal planes perform better in the differential diagnosis of breast lesions. One hundred and twenty-two breast lesions scheduled for ultrasound-guided biopsy were recruited. Continuous SWE scans were conducted in orthogonal planes separately. Quantitative elasticities and histopathology results were collected. Reproducibility in the same plane and diagnostic performance in different planes were evaluated. The maximum and mean elasticities of the hardest portion, and standard deviation of whole lesion, had high inter-class correlation coefficients (0.87 to 0.95) and large areas under receiver operation characteristic curve (0.887 to 0.899). Without loss of accuracy, sensitivities had increased in orthogonal planes compared with single plane (from 73.17% up to 82.93% at most). Mean elasticity of whole lesion and lesion-to-parenchyma ratio were significantly less reproducible and less accurate. Continuous SWE is highly reproducible for the same observer. The maximum and mean elasticities of the hardest portion and standard deviation of whole lesion are most reliable. Furthermore, the sensitivities of the three parameters are improved in orthogonal planes without loss of accuracies.