MHD waves generated by high-frequency photospheric vortex motions
V. Fedun
2011-06-01
Full Text Available In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.
Generation of sheet currents by high frequency fast MHD waves
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.
Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.
2016-02-01
As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.
Sunspot seismic halos generated by fast MHD wave refraction
Khomenko, E
2009-01-01
We suggest an explanation for the high-frequency power excess surrounding active regions known as seismic halos. The idea is based on numerical simulations of magneto-acoustic waves propagation in sunspots. We propose that such an excess can be caused by the additional energy injected by fast mode waves refracted in the higher atmosphere due to the rapid increase of the Alfven speed. Our model qualitatively explains the magnitude of the halo and allows to make some predictions of its behavior that can be checked in future observations.
The generation and damping of propagating MHD kink waves in the solar atmosphere
Morton, R. J. [Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Hillier, A., E-mail: richard.morton@northumbria.ac.uk, E-mail: g.verth@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Kwasan and Hida Observatories, Kyoto University, 17 Ohmine-cho Kita Kazan, Yamashina-ku, Kyoto City, Kyoto 607-8471 (Japan)
2014-03-20
The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.
Frutos-Alfaro, Francisco
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.
Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...
Sych, Robert
2015-01-01
The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.
The energy associated with MHD waves generation in the solar wind plasma
delaTorre, A.
1995-01-01
Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.
Alfven Wave Tomography for Cold MHD Plasmas
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave
Dryer, M.; Wu, S. T.; Han, S. M.
1986-01-01
A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.
Simulation of wave interactions with MHD
Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)
2008-07-15
The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Simulation of wave interactions with MHD
Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2008-07-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Laser-powered MHD generators for space application
Jalufka, N. W.
1986-10-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Explosively-driven magnetohydrodynamic (MHD) generator studies
Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)
1995-08-01
Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
K. S. Al-Ghafri
2015-06-01
The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
MHD Shallow Water Waves: Linear Analysis
Heng, Kevin
2009-01-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
Principal characteristics of SFC type MHD generator
Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki
1988-02-01
This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator.
Are "EIT Waves" Fast-Mode MHD Waves?
Wills-Davey, M J; Stenflo, J O
2007-01-01
We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.
Design Study: Rocket Based MHD Generator
1997-01-01
This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
Nonlinear MHD waves in a Prominence Foot
Ofman, Leon; Kucera, Therese; Schmieder, Brigitte
2015-01-01
We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
MHD power generation with fully ionized seed
Yamasaki, H.; Shioda, S.
1977-01-01
Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.
Analysis of Linear MHD Power Generators
Witalis, E.A.
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
MHD Waves and Coronal Seismology: an overview of recent results
De Moortel, Ineke
2012-01-01
Recent observations have revealed that MHD waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology which have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves and (iv) the rapidly developing topic of quasi-periodic pulsations (QPP) in solar flares.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Shock-associated MHD waves - A model for interstellar density fluctuations
Spangler, Steven R.
1988-01-01
The possibility that the density fluctuations responsible for radio scintillations could be due to ion-beam-generated MHD waves near interstellar shock waves is discussed. This suggestion is inspired by spacecraft observations which reveal these phenomena near shocks in the solar system. The model quite naturally accounts for the scale on which these fluctuations occur; it is dictated by the wavelength of the unstable waves.
Wave damping by MHD turbulence and its effect upon cosmic ray propagation in the ISM
Farmer, A J; Farmer, Alison J.; Goldreich, Peter
2004-01-01
Cosmic rays scatter off magnetic irregularities (Alfven waves) with which they are resonant, that is waves of wavelength comparable to their gyroradii. These waves may be generated either by the cosmic rays themselves, if they stream faster than the Alfven speed, or by sources of MHD turbulence. Waves excited by streaming cosmic rays are ideally shaped for scattering, whereas the scattering efficiency of MHD turbulence is severely diminished by its anisotropy. We show that MHD turbulence has an indirect effect on cosmic ray propagation by acting as a damping mechanism for cosmic ray generated waves. The hot (``coronal'') phase of the interstellar medium is the best candidate location for cosmic ray confinement by scattering from self-generated waves. We relate the streaming velocity of cosmic rays to the rate of turbulent dissipation in this medium, for the case in which turbulent damping is the dominant damping mechanism. We conclude that cosmic rays with up to 10^2 GeV could not stream much faster than the ...
Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction
Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.
1998-07-01
Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
Al-Ghafri, Khalil Salim
2015-01-01
The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...
Review Article: MHD Wave Propagation Near Coronal Null Points of Magnetic Fields
McLaughlin, J. A.; Hood, A. W.; de Moortel, I.
2011-07-01
We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfvén speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfvén wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfvén-speed profile. In a β=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfvén wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfvén wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfvén wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.
Characterization of the three-dimensional supersonic flow for the MHD generator
LU HaoYu; LEE ChunHian; DONG HaiTao
2009-01-01
A numerical procedure based on a five-wave MHD model associated with non-ideal, low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy condi-tioned scheme for solving the non-homogeneous Navier-Stokes equations, in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode, where the local adverse pressure gradient is large, and the core of the flow field is characterized as a 2-D flow due to the Hartmann ef-fects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases, and even induce an eddy current. Induced eddy cur-rent was also found in the different cross-sections along the axial direction, all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section, which, in turn, induces the corner eddy current at the cor-ner. A numerical parametric study was also performed, and the computed performance parameters for the MHD generator suggest that, in order to enhance the performance of MHD generator, the magnetic interaction parameter should be elevated.
Characterization of the three-dimensional supersonic flow for the MHD generator
LEE; ChunHian
2009-01-01
A numerical procedure based on a five-wave MHD model associated with non-ideal,low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode,where the local adverse pressure gradient is large,and the core of the flow field is characterized as a 2-D flow due to the Hartmann effects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases,and even induce an eddy current. Induced eddy current was also found in the different cross-sections along the axial direction,all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section,which,in turn,induces the corner eddy current at the corner. A numerical parametric study was also performed,and the computed performance parameters for the MHD generator suggest that,in order to enhance the performance of MHD generator,the magnetic interaction parameter should be elevated.
Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes
R. Erdélyi
2002-01-01
Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
1993-01-01
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.
Review article: MHD wave propagation near coronal null points of magnetic fields
McLaughlin, J A; De Moortel, I; 10.1007/s11214-010-9654-y
2010-01-01
We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a $\\beta=0$ plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the di...
Striations in molecular clouds: Streamers or MHD waves?
Tritsis, A
2016-01-01
Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taur...
Two-fluid MHD Regime of Drift Wave Instability
Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong
2015-11-01
Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.
Numerical Calculation of the Output Power of a MHD Generator
Adrian CARABINEANU
2014-12-01
Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
Ionospheric conductance distribution and MHD wave structure: observation and model
F. Budnik
Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.
Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.
Three-dimensional characteristics of SFC type MHD generator
Oikawa, Shun' ichi; Kayukawa, Naoyuki
1988-03-20
Concerning a Faraday type MHD generator with power output 100 MWe, a parabolic three-dimensional analysis was made on the SFC type and the conventional UFC type of the applied magnetic field, comparing the electrical and fluid fields of both types. Results are as follows: (1) In Faraday type MHD generator, Hall current which is an ineffective current is suppressed by SFC magnetic field coordination. (2) In the case of UFC, a current concentration to the central anode which occurs in the large Faraday type MHD generator does not occur in the case of SFC type. (3) In SFC, a secondary flow in the electrode boundary, especially in the vicinity of the anode is weak. (4) In addition to the velocity overshoot in the dielectric wall boundary layer, in the case of SFC, it generates in the electric wall. As a result, concentrated arc columns are suppressed by the acceleration of heat transfer to the electrode wall. (13 figs, 1 tab, 13 refs)
Uranium droplet nuclear reactor core with MHD generator
Anghaie, Samim; Kumar, Ratan
An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.
Kang, L.; Matsuo, T. [Kyoto University (Japan). Dept. of Electrical Engineering; Inui, Y. [Toyohashi University of Technology (Japan). Dept. of Electrical and Electronic Engineering; Ishikawa, M. [University of Tsukuba (Japan). Inst. of Engineering Mechanics and Systems; Umoto, J. [Fukuyama University (Japan)
2000-09-01
Performance analyses of a commercial scale closed-cycle MHD disk generator are performed. A large scale MHD generator, superconducting magnet, inversion system and synchronous generator are designed. The MHD generator is operated with Ar-Cs plasma and connected to the ac power infinite bus through line-commutated inverters, while the synchronous generator is operated in parallel. The thermal input is 1000 MW, and the power output is 400 and 200 MW, from the MHD and synchronous generators. Fault analyses have found that rather large fluctuations within the MHD generator are induced by faults of the inverter and power transmission line, but control of the inverters can recover the MHD generation system to normal operation within 0.15 s. The feature of behavior of the MHD generator is the same with or without the parallel operation of the synchronous generator. The interaction between the MHD and the synchronous generators is small, and this feature is much different from the open-cycle MHD generation system, since the variation of output current of the closed-cycle disk MHD generator is much smaller compared with open-cycle MHD generators. (author)
Global 3D MHD Simulations of Waves in Accretion Discs
Romanova M.M.
2013-04-01
Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
Some questions of variable operational modes of an MHD generator
Belikov, V.V.; Breyev, V.V.; Gubarev, A.V.; Zotov, A.V.
1979-01-01
A Faraday MHD generator with solid electrodes is analyzed for the case of a variable load and three circuit configurations: series, parallel and independent excitation of the generator. The equivalent circuits are drawn along with the current-voltage and load characteristics (power and voltage at the load terminals as a function of generator current) for the series and parallel excitation cases. With independent excitation, the current-voltage characteristic is linear since the magnetic field induction in the generator channel at small magnetic Reynolds numbers does not depend on the generator current. The influence of the counterpressure at the channel outlet in a supersonic MHD generator is discussed in qualitative terms. Two modes are defined: when the pressure in the receiver following the channel is less than a certain value below the critical cross-section of the supersonic nozzle ahead of the channel (normal flow); and when the receiver pressure exceeds this specified value (anomalous flow), which leads to density jumps in the supersonic nozzle and subsonic flow in the interaction region. These concepts are employed in a discussion of the stability of steady-state flow and transient modes. Analytical expressions are derived for the excitation current and the load current in an MHD generator with a parallel configuration of the excitation winding, and these are plotted as a function of time. Transient operational modes of the generator with a series winding configuration of the magnet system are also shown, with the current plotted as a function of time. Expressions are derived for characteristic parameters which specify stable operational modes.
Interchange Reconnection Alfven Wave Generation
Lynch, B J; Li, Y
2014-01-01
Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly-open field lines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high frequency component associated with the current sheet/reconnection site and an extended low frequency component associ...
Louis, J.F.
1978-03-01
Research and development in open-cycle coal-fired MHD power generation is described. The scope and objectives of the MIT program are: (1) establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the listed tasks into a model of the MHD channel; (8) participate in the US/USSR Cooperative Program in MHD Power Generation; and (9) participate in technical support of the DOE MHD Project Office. Progress in each of these areas is reported. (WHK)
Equations of state for self-excited MHD generator studies
Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.
1980-02-26
We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.
Explosive Line Wave Generators
2013-12-01
curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave
Nonlinear Alfvén wave propagating in ideal MHD plasmas
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
Louis, J.F.
1977-08-01
Research progress in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology (MIT) is reported. The scope and objectives of the MIT program are to: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) establish basic mechanical properties to guide detail design and fabrication of high field strength superconducting magnets for MHD applications; (3) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (4) develop combustion data pertinent to the design of MHD combustors; (5) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (6) establish the operating characteristics of an MHD disk generator; (7) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (8) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (9) Participate in technical support of the ERDA MHD Project Office; (10) participate in the US/USSR Cooperative Program in MHD Power Generation. (11) During the summer of 1976, a short-term task in U-25 electrode screening was temporarily added to the scope of the contract. This effort involved screening tests, in the MIT MHD simulation facility of electrode modules and configurations intended for tests in the Soviet U-25 generator.
Louis, J.F.
1977-12-01
Research and development in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology (MIT) is summarized. Progress is reported on the following tasks: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; this work is intended to determine the combustion characteristics of selected coal feedstock in terms of devolatilization kinetics, char characteristics, and combustion gas chemistry; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (8) participate in technical support of the DOE MHD Project Office.
Spectral Line Non-thermal Broadening and MHD Waves in the Solar Corona
Zaqarashvili, T. V.
2009-04-01
The rapid temperature rise from the solar surface (6000 K) up to the corona (1 MK) and acceleration of solar wind particles still are unresolved problems in solar physics. The energy source for the coronal heating and the wind acceleration probably lies in the solar photosphere. MHD waves are believed to carry the photospheric energy into the corona. Recent observations from space based telescopes made significant progress in understanding the process of MHD wave propagation from the solar surface towards the corona. Some of MHD wave modes have been observed through intensity variations and Doppler shift oscillations in spectral lines. Another powerful mechanism is to detect the waves through the non-thermal broadening of spectral lines. The lecture gives the basic points of wave induced effects in solar coronal spectral lines and recent progress in wave observations through spectral line non-thermal broadening.
Finite Larmor radius influence on MHD solitary waves
E. Mjølhus
2009-04-01
Full Text Available MHD solitons are studied in a model where the usual Hall-MHD model is extended to include the finite Larmor radius (FLR corrections to the pressure tensor. The resulting 4-dimensional set of differential equations is treated numerically. In this extended model, the point at infinity can be of several types. Necessary for the existence of localized solutions is that it is either a saddle-saddle, a saddle-center, or, possibly, a focus-focus. In cases of saddle-center, numerical solutions for localized travelling structures have been obtained, and compared with corresponding results from the Hall-MHD model.
Louis, J.F.
1977-10-01
Current research and development in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology is presented. Progress is reported on the following tasks: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) Parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) Develop combustion data pertinent to the design of MHD combustors; this work is intended to determine the combustion characteristics of selected coal feed stock in terms of devolatilization kinetics, char characteristics, and combustion gas chemistry; (4) Establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) Establish the operating characteristics of an MHD disk generator; (6) Continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) Integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel.
Louis, J.F.
1976-10-01
Research progress on open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology is detailed. Work is reported in the following areas: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (8) U-25 electrode screening tests.
Observations of nonequilibrium electrical discharge in an MHD disk generator
Harada, N.; Yamasaki, H.; Shioda, S.
1986-04-01
Discharge phenomena (nonequilibrium) in an MHD disk generator with potassium-seeded argon as a working gas have been investigated experimentally using a shock tube facility. A detailed study of high-speed photographs shows that an unsteady motion of a strongly constricted discharge occurs, particularly in the disk entrance region, characterized by a negative Hall potential. Responding to a suitable external load resistance, the negative Hall potential is reduced due to the development of a stable region against the ionization instability under full seed ionization; thus, a substantial increase of power output can be achieved. Under this condition, a uniform discharge is observed downstream and the strongly inhomogeneous and unsteady discharge is confined to a narrow region at the entrance. For smaller load resistances, intense spiral arcs with enhanced fluctuations are observed. 18 references.
A mode filter for plasma waves in the Hall-MHD approximation
C. Vocks
Full Text Available A filter method is presented which allows a qualitative and quantitative identification of wave modes observed with plasma experiments on satellites. Hitherto existing mode filters are based on the MHD theory and thus they are restricted to low frequencies well below the ion cyclotron frequency. The present method is generalized to cover wave modes up to the characteristic ion frequencies. The spectral density matrix determined by the observations is decomposed using the eigenvectors of the linearized Hall-MHD equations. As the wave modes are dispersive in this formalism, a precise determination of the k->-vectors requires the use of multi-point measurements. Therefore the method is particularly relevant to multi-satellite missions. The method is tested using simulated plasma data. The Hall-MHD filter is able to identify the modes excited in the model plasma and to assign the correct energetic contributions. By comparison with the former method it is shown that the simple MHD filter leads to large errors if the frequency is not well below the ion cyclotron frequency. Further the range of validity of the linear theory is examined rising the simulated wave amplitudes.
Key words. Magnetospheric physics (MHD waves and instabilities; plasma waves and instabilities
Niwa, Naoyuki; Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo
The purpose of this study is to examine the influence of shape of cross-section of scramjet engine driven experimental DCW-MHD generator on generator performance by three-dimensional numerical analyses. We have designed the MHD generators with symmetric square and circular cross-section, based on the experimental MHD generator with asymmetric square cross-section. Under the optimum load condition, the electric power output becomes 26.6kW for the asymmetric square cross-section, 24.6kW for the symmetric square cross-section, and 22.4kW for the circular cross-section. The highest output is obtained for the experimental generator with asymmetric square cross-section. The difference of electric power output is induced by the difference of flow velocity and boundary layer thickness. For the generator with asymmetric square cross-section, the average flow velocity becomes the highest and the boundary layer becomes the thinnest. The compression wave is generated depending on the channel shape. The difference of flow velocity and boundary layer thickness is induced by the superposition of compression wave.
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
On The Role of MHD Waves in Heating Localised Magnetic Structures
Erdélyi, R.; Nelson, C. J.
2016-04-01
Satellite and ground-based observations from e.g. SOHO, TRACE, STEREO, Hinode, SDO and IRIS to DST/ROSA, IBIS, CoMP, STT/CRISP have provided a wealth of evidence of waves and oscillations present in a wide range of spatial scales of the magnetised solar atmosphere. Our understanding about localised solar structures has been considerably changed in light of these high spatial and time resolution observations. However, MHD waves not only enable us to perform sub-resolution magneto-seismology of magnetic waveguides but are also potential candidates to carry and damp the necessary non-thermal energy in these localised waveguides. First, we will briefly outline the basic recent developments in MHD wave theory focussing on linear waves. Next, we discuss the role of the most frequently studied wave classes, including the Alfven, and magneto-acoustic kink and sausage waves. The current theoretical (and often difficult) interpretations of the detected solar atmospheric wave and oscillatory phenomena within the framework of MHD will be shown. Last, the latest reported observational findings of potential MHD wave flux, in terms of localised plasma heating, in the solar atmosphere is discussed, bringing us closer to solve the coronal heating problem.
Analysis of Fluctuations in a Combustion-Driven Open-Cycle MHD Generator.
Skorska, Malgorzata Bozena
Fluctuations present in MHD generators may cause significant degradation in the generated power. The fluctuations may result from three sources. First, the mass flow rates of the components' input to the combustor vary. Second, the combustor initiates its own variations which are functions of the combustor geometry and injection techniques. Third, the generator action, i.e., flow of plasma in a magnetic field, introduces variations in the plasma variables. The purpose of the study is to investigate the fluctuations of MHD output signals, which may either arise from the combustor fluctuations propagating into a conducting channel, or are inherent in the generator dynamics. The analysis of fluctuations is based on the analytical and empirical models. Both models assume that stochastic processes take place within the MHD plasma, and both models yield results in the form of autocorrelation, crosscorrelation, and power spectral density functions of the system variables. The study showed that fluctuations, whose frequencies exceed 200 Hz, in the plasma density, velocity, pressure, current and voltage variables are acoustic in nature, and are caused by longitudinal standing waves present in the generator. The analysis proved that Hall generators develop fluctuations mainly in the range 700 Hz to 2000 Hz, whereas Faraday and DCW generators are favorable for the low frequency fluctuations. Parametric study of the plasma disclosed that stronger magnetic fields and larger Hall parameters increase the frequency range of fluctuations. Changes in plasma specific heat ratio or in inlet steady-state parameters may increase or decrease the intensities of some odd harmonics of the standing waves. The fluctuations that originate in the combustion chamber also affect the plasma variables. A white noise character of these fluctuations guarantees a fairly uniform distribution of energy in the fluctuations of the plasma variables in the frequency range up to 200 Hz. Future research in
Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [ORNL; Bernholdt, David E [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, Randall B [ORNL; Breslau, Joshua [ORNL; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Klasky, Scott A [ORNL; Kruger, Scott E [ORNL; Ku, Long-Poe [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, David P [ORNL; Schnack, Dalton D [ORNL
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
Batchelor, Donald B [ORNL; Abla, Gheni [ORNL; D' Azevedo, Ed F [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, Joshua [ORNL; Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in simulation of wave interactions with extended MHD phenomena
Batchelor, D; D' Azevedo, E; Bernholdt, D E; Berry, L; Elwasif, W; Jaeger, E [Oak Ridge National Laboratory (United States); Abla, G; Choi, M [General Atomics (United States); Bateman, G [Lehigh University (United States); Bonoli, P [Plasma Science and Fusion Center, Massachusetts Institute of Technology (United States); Bramley, R; Foley, S [Indiana University (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory (United States); Harvey, R [CompX International (United States); Jenkins, T [University of Wisconsin (United States); Keyes, D, E-mail: batchelordb@ornl.go [Columbia University (United States)
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
FLASH MHD simulations of experiments that study shock-generated magnetic fields
Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.
2015-12-01
We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.
Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Houlberg, Wayne A [ORNL; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Schissel, D. [General Atomics; Schnack, D. [University of Wisconsin; Wright, J. C. [Massachusetts Institute of Technology (MIT)
2007-06-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).
Integrated physics advances in simulation of wave interactions with extended MHD phenomena
Batchelor, D B [ORNL (United States); D' Azevedo, E [ORNL (United States); Bateman, G [Lehigh (United States)] (and others)
2007-07-15
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP)
Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-02-01
In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.
Observational signatures of numerically simulated MHD waves in small-scale fluxtubes
Khomenko, E; Felipe, T
2008-01-01
We present some results obtained from the synthesis of Stokes profiles in small-scale flux tubes with propagating MHD waves. To that aim, realistic flux tubes showing internal structure have been excited with 5 min period drivers, allowing non-linear waves to propagate inside the magnetic structure. The observational signatures of these waves in Stokes profiles of several spectral lines that are commonly used in spectropolarimetric measurements are discussed.
Dellinger, T. C.; Hnat, J. G.; Marston, C. H.
1979-01-01
A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.
Computer controlled MHD power consolidation and pulse-generation system
Johnson, R.
The major goal of this project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility will be established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a magnetohydrodynamic (MHD) Faraday connected generator which may be viewed as a multi-terminal d.c. source. This consolidation/inversion process is referred to subsequently as Pulse-Amplitude-Synthesis-and-Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible Phase 2 prototype system. This report covers the initial six months portion of the project and includes discussions on the following areas: (1) selection of a control computer with software tool kit for development of the PASC controller contract requirement; (2) problem formulation considerations for simulation of the PASC technique on digital computers; (3) initial simulation results for the PASC transformer, including simulation results obtained using SPICE and the INTEG program; (4) a survey of available gate-turn-off (GTO's), power semiconductors, power field effect transistors (PFET's), and fiber optics signal cabling and transducers.
Computer controlled MHD power consolidation and pulse generation system
Johnson, R.; Marcotte, K.; Donnelly, M.
1990-01-01
The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.
Das, Ipsita
2008-01-01
An analysis of MHD wave propagating in a gravitating and rotating medium permeated by non-uniform magnetic field has been done. It has been found that the Gradient of Magnetic Field when coupled with Rotation becomes capable to generate few instabilities (Temporal or Spatial) leading to the damping or amplification of MHD waves. The Jean's criterion is not sufficient for stability always. Rather, the waves will suffer instability unless their wave length (frequency) is less (greater) than certain critical values. Otherwise, those will smoothly propagate outward. Out of different scenarioes depending on the direction of the magnetic field, its gradient, rotation and wave propagation three important Special Cases have been discussed and different stability criteria have been derived. Finally, using the above theory we have obtained the stability/instability criteria for the waves moving parallel and perpendicular to the galactic plane in the Core and Periphery of the Central Region of Galaxy (C.R.G.) due to the...
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas
L.-N. Hau
2007-09-01
Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.
Realistic Modeling of Fast MHD Wave Trains in Coronal Active Regions
Ofman, Leon; Sun, Xudong
2017-08-01
Motivated by recent SDO/AIA observations we have developed realistic modeling of quasi-periodic, fast-mode propagating MHD wave trains (QFPs) using 3D MHD model initiated with potential magnetic field extrapolated from the solar coronal boundary. Localized quasi-periodic pulsations associated with C-class flares that drive the waves (as deduced from observations) are modeled with transverse periodic displacement of magnetic field at the lower coronal boundary. The modeled propagating speed and the form of the wave expansions matches the observed fast MHD waves speed >1000 km/s and topology. We study the parametric dependence of the amplitude, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, and the location of the flaring site within the active region. We investigate the interaction of multiple QFP wave trains excited by adjacent flaring sources. We use the model results to synthesize EUV intensities in multiple AIA channels and obtain the model parameters that best reproduce the properties of observed QFPs, such as the recent DEM analysis. We discuss the implications of our modeling results for the seismological application of QFPs for the diagnostic of the active region field, flare pulsations, end estimate the energy flux carried by the waves.
Determination of Transverse Density Structuring from Propagating MHD Waves in the Solar Atmosphere
Arregui, I; Pascoe, D J
2013-01-01
We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic (MHD) transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.
Theoretical Investigation of Operation Modes of MHD Generators for Energy-bypass Engines
Jingfeng Tang; Nan Li; Daren Yu
2014-01-01
A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes.A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes.For the MHD generator with a uniform constant magnetic field,a specific critical electric field Ecr is required to decelerate a supersonic entrance flow into a subsonic exit flow.Otherwise,the generator works in a steady mode with a larger electric field than Ecr in which a steady supersonic flow is provided at the exit,or the generator works in a choked mode with a smaller electric field than Ecr in which the supersonic entrance flow is choked in the channel.The detailed flow field characteristics in different operation modes are discussed,demonstrating the relationship of operation modes with electromagnetic fields.
MHD oscillations and waves near a magnetic null line
Bulanov, S.V.; Syrovatskii, S.I.
1980-11-01
An informative picture is drawn of the propagation of Alfven and magnetosonic waves in a two-dimensional magnetic field with a hyperbolic null point in the approximation of a cold plasma. The magnetosonic waves asymptotically transform into cylindrical waves. The wave amplitude increases toward the null point. A distortion of the plasma boundary produces excitation of noncylindrical magnetosonic waves. If the frequency of these waves is below the critical value, they will not penetrate into the plasma. Dissipation leads to a reflection of magnetosonic waves near the null line. Any arbitrarily slight dissipation leads to the appearance of a discrete spectrum of weakly damped Alfven oscillations. Oscillations of this type also occur in adiabatic confinement systems in which the magnetic field has null points. The nonlinear distortion of magnetosonic waves which leads to wave breaking and to the appearance of weak shock waves is studied. The amplitude of the magnetic field perturbations in a shock wave propagating toward the center asymptotically approaches a constant value.
Numerical simulation study of disk MHD generator for nonequilibrium plasma (NPG) system
Tsunoda, Kazumi [Shibaura Institute of Technology, Tokyo (Japan); Harada, Nob [Nagaoka Univ. of Technology (Japan)
1995-12-31
Design and performance prediction of a disk-shaped magnetohydrodynamic (MHD) generator, which is applied to the nonequilibrium plasma generator (NPG) system, have been carried out by means of a quasi-one-dimensional numerical simulation. The calculations have been performed for generator with constant height which is planned to be used for NPG-MHD disk generator pulse power demonstration. A maximum enthalpy extraction ratio obtained from the present calculation reached up to 20%, and, in this case, the electron temperature of working plasma fluctuated in the unstable regime against ionization instability. Taking into account this phenomenon, in order to obtain much higher generator performance, the MHD channel, in which electron temperature was kept at 5000 K, was designed. With this channel, enthalpy extraction ratio of 40% and output power of 7.2 MW were achieved without major modification of the supersonic nozzle, the inlet swirl vanes and the configuration of magnet system.
Sub-atmospheric disk generators for coal-fired MHD/steam combined cycle power plant
Messerle, H.K.; Fang, Y.; Simpson, S.W.; Marty, S.M. (Sydney Univ. (Australia). School of Electrical Engineering)
1989-01-01
A coal fired MHD disk generator in a combined cycle MHD/steam power generation system with a diffuser operating at sub-atmospheric pressure is proposed. The effects of pressure on the performance of a radial outflow MHD disk generator and other system components are analysed. Using a previous study as a reference case, preliminary calculations show that, in such a sub-atmospheric system, improved power station efficiency can be achieved. In addition, operation at reduced values of magnetic field strength would be feasible. Calculations have also been carried out for a 30 MW{sub th} experimental disk generator operating at reduced pressure with a magnetic field strength of 2 T. Flow conditions at sub-atmospheric pressure would provide an improved simulation of a full-scale generator operating at normal pressures. (author).
MHD generators as pulse power sources for arc-driven railguns
Esposito, N.; Raugi, M.; Tellini, A. [Univ. di Pisa (Italy). Dipt. di Sistemi Elettrici e Automazione
1995-01-01
In this paper the performances of an electromagnetic launch system constituted by an arc driven railgun powered by a MHD generator are investigated. A small bore plasma driven railgun for fusion fuel pellet injection is examined considering as pulse power source a MHD generator having characteristics taken from operating devices. The analysis of the railgun and generator has been carried out by means of a lumped parameter equivalent network model that takes into account drag force and ablation effects and allowing the evaluation of the main electrical and thermodynamic quantity distributions of the plasma arc.
Frozen waves: experimental generation.
Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel
2012-06-01
Frozen waves (FWs) are very interesting particular cases of nondiffracting beams whose envelopes are static and whose longitudinal intensity patterns can be chosen a priori. We present here for the first time (that we know of) the experimental generation of FWs. The experimental realization of these FWs was obtained using a holographic setup for the optical reconstruction of computer generated holograms (CGH), based on a 4-f Fourier filtering system and a nematic liquid crystal spatial light modulator (LC-SLM), where FW CGHs were first computationally implemented, and later electronically implemented, on the LC-SLM for optical reconstruction. The experimental results are in agreement with the corresponding theoretical analytical solutions and hold excellent prospects for implementation in scientific and technological applications.
The Foggy EUV Corona and Coronal Heating by MHD Waves From Explosive Reconnection Events
Moore, R. L.; Cirtain, J. W.; Falconer, D. A.
2008-05-01
In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, Cirtain et al (2006, Sol. Phys., 239, 295) found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete-loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e.g., the 0.1 arcsec/pixel resolution of the Hi-C sounding- rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and
The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events
Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.
2008-01-01
In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are
Travelling Waves in Hall-MHD and the Ion-Acoustic Shock Structure
Hagstrom, George I
2013-01-01
Hall-MHD is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar travelling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, an...
On the properties of slow mhd sausage waves within small-scale photospheric magnetic structures
Freij, N; Morton, R J; Ruderman, M S; Karlovsky, V; Erdekyi, R
2015-01-01
The presence of magneto-acoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magneto-acoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope (DOT) and Rapid Oscillations in the Solar Atmosphere (ROSA) instruments, we captured two series of high-resolution intensity images with short cadence of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to ...
Nature and dynamics of overreflection of Alfven waves in MHD shear flows
Gogichaishvili, D; Chanishvili, R; Lominadze, J
2014-01-01
Our goal is to gain new insights into the physics of wave overreflection phenomenon in MHD nonuniform/shear flows changing the existing trend/approach of the phenomenon study. The performed analysis allows to separate from each other different physical processes, grasp their interplay and, by this way, construct the basic physics of the overreflection in incompressible MHD flows with linear shear of mean velocity, ${\\bf U}_0=(Sy,0,0)$, that contain two different types of Alfv${\\rm \\acute{e}}$n waves. These waves are reduced to pseudo- and shear shear-Alfv${\\rm \\acute{e}}$n waves when wavenumber along $Z$-axis equals zero (i.e., when $k_z=0$). Therefore, for simplicity, we labelled these waves as: P-Alfv${\\rm \\acute{e}}$n and S-Alfv${\\rm \\acute{e}}$n waves (P-AWs and S-AWs). We show that: (1) the linear coupling of counter-propagating waves determines the overreflection, (2) counter-propagating P-AWs are coupled with each other, while counter-propagating S-AWs are not coupled with each other, but are asymmetri...
Damping of Linear Nonadiabatic MHD Waves in a Flowing Prominence Medium
Nagendra Kumar
2014-01-01
Full Text Available We study the effect of shear flow on the time damping of linear nonadiabatic magnetoacoustic waves in a solar prominence. We consider a homogeneous, isothermal, and unbounded medium permeated by a uniform magnetic field. The adiabaticity is removed by including the optically thin radiative losses, thermal conduction, and heating term in energy equation. We present a local theory of MHD waves to obtain a dispersion relation. The dispersion relation is solved numerically to study the time damping of these waves. It is found that flow influences the damping time and damping per period of both the slow and fast waves significantly. Damping time and damping per period of slow waves are very much higher than the damping time and damping per period of fast waves.
Cattell, Cynthia A.
2004-01-01
This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.
Thurgood, J. O.; McLaughlin, J. A.
2012-09-01
Context. Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfvén mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, β = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently decoupled from the Alfvén mode both linearly and nonlinearly for both proper and improper 3D null points. The pure fast mode also generates and sustains a nonlinear disturbance aligned along the equilibrium magnetic field. The resulting pure fast magnetoacoustic pulse has transient behaviour, which is found to be governed by the (equilibrium) Alfvén-speed profile, and a refraction effect focuses all the wave energy towards the null point. Conclusions: Thus, the main results from previous 2D work do indeed carry over to the fully 3D magnetic null points and so we conclude that 3D null points are locations for preferential heating in the corona by 3D fast magnetoacoustic waves.
Waves and Instabilities in Accretion Disks MHD Spectroscopic Analysis
Keppens, R; Goedbloed, J P
2002-01-01
A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Nonlinear mhd simulations of wave dissipation in flux tubes
Poedts, S.; Toth, G.; Belien, A. J. C.; Goedbloed, J. P.
1997-01-01
The phase mixing and resonant dissipation of Alfven waves is studied in both the 'closed' magnetic loops and the 'open' coronal holes observed in the hot solar corona. The resulting energy transfer from large to small length scales contributes to the heating of these magnetic str
Louis, J.F.
1980-09-01
A separate entry was made in the data base for reports on each of the four tasks: (1) arcing phenomena in MHD generators; (2) open cycle MHD disk generator program; (3) electrode module development and testing; and (4) coal combustion studies. (WHK)
Comment on "Dispersion relation for MHD waves in homogeneous plasma"
Chandra, Suresh; Kumthekar, B K; Sharma, Monika
2009-01-01
Pandey & Dwivedi (2007) again tried to claim that the dispersion relation for the given set of equations must be a sixth degree polynomial. Through a series of papers, they are unnecessarily creating confusion. In the present communication, we have shown how Pandey & Dwivedi (2007) are introducing an additional root, which is insignificant. Moreover, five roots of both the polynomials are common and they are sufficient for the discussion of propagation of slow-mode and fast-mode waves.
High-temperature coal-syngas plasma characteristics for advanced MHD power generation
Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)
2006-03-15
Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.
MHD waves on solar magnetic flux tubes - Tutorial review
Hollweg, Joseph V.
1990-01-01
Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.
Linear MHD Wave Propagation in Time-Dependent Flux Tube. III. Leaky Waves in Zero-Beta Plasma
Williamson, A.; Erdélyi, R.
2016-01-01
In this article, we evaluate the time-dependent wave properties and the damping rate of propagating fast magneto-hydrodynamic (MHD) waves when energy leakage into a magnetised atmosphere is considered. By considering a cold plasma, initial investigations into the evolution of MHD wave damping through this energy leakage will take place. The time-dependent governing equations have been derived previously in Williamson and Erdélyi (2014a, Solar Phys. 289, 899 - 909) and are now solved when the assumption of evanescent wave propagation in the outside of the waveguide is relaxed. The dispersion relation for leaky waves applicable to a straight magnetic field is determined in both an arbitrary tube and a thin-tube approximation. By analytically solving the dispersion relation in the thin-tube approximation, the explicit expressions for the temporal evolution of the dynamic frequency and wavenumber are determined. The damping rate is, then, obtained from the dispersion relation and is shown to decrease as the density ratio increases. By comparing the decrease in damping rate to the increase in damping for a stationary system, as shown, we aim to point out that energy leakage may not be as efficient a damping mechanism as previously thought.
Experimental studies on joule dissipation in a nonequilibrium MHD disk generator
Nakamura, H.; Okamura, T.; Shioda, S. [Tokyo Institute of Technology, Tokyo (Japan)
1996-12-20
Joule dissipation in a nonequilibrium MHD disk generator was successfully estimated from power generation experiments. Faraday current in the disk generator was measured. The reduction of the total pressure caused by the Joule dissipation was also estimated. Experimental results suggest that the isentropic efficiency of the generator is strongly affected by the value of the Joule dissipation. When the applied magnetic flux density increased, the extraction of electrical power increased remarkably, however the total pressure loss caused by the entropy production was suppressed. The high MHD interaction caused by the high magnetic flux density did not deteriorate the performance of the generator. It is considered from this fact that the application of higher magnetic flux density is essential to get higher isentropic efficiency. 10 refs., 8 figs., 1 tab.
Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves
Zhai, Xiang
This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and
Wave Generation in Physical Models
Andersen, Thomas Lykke; Frigaard, Peter
The present book describes the most important aspects of wave generation techniques in physical models. Moreover, the book serves as technical documentation for the wave generation software AwaSys 6, cf. Aalborg University (2012). In addition to the two main authors also Tue Hald and Michael...
Resonant absorption of kink MHD waves by magnetic twist in coronal loops
Ebrahimi, Z
2015-01-01
There is ample evidences of twisted magnetic structures in the corona. This motivates us to consider the magnetic twist as the cause of Alfven frequency continuum in coronal loops, which can support the resonant absorption as the rapid damping mechanism for the observed coronal kink MHD oscillations. For a straight cylindrical compressible zero-beta thin flux tube with a magnetic twist in a thin boundary and straight magnetic field in the interior and exterior regions as well as a step-like radial density profile, we derive the dispersion relation and solve it analytically. Consequently, we obtain the frequencies and damping rates of the fundamental (l=1) and first/second overtones (l=2,3) kink (m=1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can achieve deviations from P_1/P_2=2 and P_1/P_3=3 of the same order of magnitude as in the observations.
ON THE PROPERTIES OF SLOW MHD SAUSAGE WAVES WITHIN SMALL-SCALE PHOTOSPHERIC MAGNETIC STRUCTURES
Freij, N.; Ruderman, M. S.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Dorotovič, I. [Slovak Central Observatory, P.O. Box 42, SK-94701 Hurbanovo (Slovakia); Morton, R. J. [Mathematical Modelling Lab, Northumbria University, Pandon Building, Camden Street, Newcastle upon Tyne, NE1 8ST (United Kingdom); Karlovský, V., E-mail: n.freij@sheffield.ac.uk, E-mail: ivan.dorotovic@suh.sk, E-mail: richard.morton@northumbria.ac.uk, E-mail: m.s.ruderman@sheffield.ac.uk, E-mail: astrokar@hl.cora.sk, E-mail: robertus@sheffield.ac.uk [Hlohovec Observatory and Planetarium, Sládkovičova 41, SK-92001 Hlohovec (Slovakia)
2016-01-20
The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.
On the Properties of Slow MHD Sausage Waves within Small-scale Photospheric Magnetic Structures
Freij, N.; Dorotovič, I.; Morton, R. J.; Ruderman, M. S.; Karlovský, V.; Erdélyi, R.
2016-01-01
The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.
Dispersive MHD waves and alfvenons in charge non-neutral plasmas
K. Stasiewicz
2008-08-01
Full Text Available Dispersive properties of linear and nonlinear MHD waves, including shear, kinetic, electron inertial Alfvén, and slow and fast magnetosonic waves are analyzed using both analytical expansions and a novel technique of dispersion diagrams. The analysis is extended to explicitly include space charge effects in non-neutral plasmas. Nonlinear soliton solutions, here called alfvenons, are found to represent either convergent or divergent electric field structures with electric potentials and spatial dimensions similar to those observed by satellites in auroral regions. Similar solitary structures are postulated to be created in the solar corona, where fast alfvenons can provide acceleration of electrons to hundreds of keV during flares. Slow alfvenons driven by chromospheric convection produce positive potentials that can account for the acceleration of solar wind ions to 300–800 km/s. New results are discussed in the context of observations and other theoretical models for nonlinear Alfvén waves in space plasmas.
A global 3-D MHD model of the solar wind with Alfven waves
Usmanov, A. V.
1995-01-01
A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.
Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow
Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi
1992-01-01
The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.
Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models
Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.
1997-01-01
Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.
无
2000-01-01
This paper introduces the design and development of a new computerized data acquisition system for the coal-fired magnetohydrodynamical (MHD) electrical power generation experiments. Compared to the previous system, it has a higher sampling rate and an improved simultaneity performance. It also improves the data collection method and sensor design for the measurement of Faraday voltages and Faraday currents. The system has been successfully used in many regular MHD generator tests. It provides an excellent base for the future research and development of the Coal-fired MHD electrical power generation.
Three-Dimensional MHD Models of Waves and Flows in Coronal Active Region Loops
Ofman, L.; Wang, T.; Davila, J. M.
2011-12-01
Recent observations show that slow magnetosonic waves are present in active region loops, and are often associated with subsonic up-flows of coronal material. In order to study the relation between up-flows and waves we develop a 3D MHD model of an idealized bi-polar active region with flows in coronal loops. The model is initiated with a dipole magnetic field and gravitationally stratified isothermal atmosphere. To model the effects of flares, coronal material is injected in small-scale regions at the base of the model active region. The up-flows have sub-sonic speeds of ˜100 km/s and are steady or periodic, producing higher density loops by filling magnetic flux-tubes with injected material. We find that the up-flows produce fast and slow magnetosonic waves that propagate in the coronal loops. We perform a parametric study of up-flow magnitude and periodicity, and the relation with the resulting waves. As expected, we find that the up-flow speed decreases with loop height due to the diverge of the flux tubes, while the slow magnetosonic speed is independent of height. When the amplitude of the driving pulses is increased above the sound speed, we find that slow shocks are produced in the loops. Using the results of the 3D MHD model we show that observed slow magnetosonic waves in active region loops can be driven by impulsive flare-produced up-flows at the transition region/corona interface of active regions.
On Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves
Pelletier, Guy; Marcowith, Alexandre
2008-01-01
Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this paper then studies the amplification of a pre-existing magnetic field through the streaming of cosmic rays upstream of a relativistic shock wave. The magnetic field is assumed to be perpendicular in the shock front frame, as generally expected in the limit of large shock Lorentz factor. In the MHD regime, compressive instabilities seeded by the net cosmic-ray charge in the shock precursor (as seen in the shock front frame) develop on the shortest spatial scales but saturate at a moderate level $\\delta B/B \\sim 1$, which is not sufficient for Fermi acceleration. As we argue, it is possible that other instabilities outsid...
Parchevsky, K; Khomenko, E; Olshevsky, V; Collados, M
2010-01-01
We present comparison of numerical simulations of propagation of MHD waves,excited by subphotospheric perturbations, in two different ("deep" and "shallow") magnetostatic models of the sunspots. The "deep" sunspot model distorts both the shape of the wavefront and its amplitude stronger than the "shallow" model. For both sunspot models, the surface gravity waves (f-mode) are affected by the sunspots stronger than the acoustic p-modes. The wave amplitude inside the sunspot depends on the photospheric strength of the magnetic field and the distance of the source from the sunspot axis. For the source located at 9 Mm from the center of the sunspot, the wave amplitude increases when the wavefront passes through the central part of the sunspot. For the source distance of 12 Mm, the wave amplitude inside the sunspot is always smaller than outside. For the same source distance from the sunspot center but for the models with different strength of the magnetic field, the wave amplitude inside the sunspot increases with...
MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS
Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: igorsok@umich.edu [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2013-02-10
We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.
Superconducting magnet system for a space-based 100 MW MHD disk generator
Marston, P.G.
1988-03-01
The conceptual design of a 6 T superconducting magnet system for a space-based 100 MW single-coil MHD disk generator is described. Overall cold-mass dimensions are 2.325 m diameter by 0.15 m thickness. Average current density in the winding is 1.8 x 10/sup 8/ A/m/sup 2/. Stored energy is 45 MJ. Total system weight is 5000 kg.
Measurements of properties concerning isentropic efficiency in a nonequilibrium MHD disk generator
Nakamura, H.; Okamura, T.; Shioda, S. [Tokyo Inst. of Tech., Yokohama (Japan)
1996-06-01
The isentropic efficiency and the effective Hall parameter in a nonequilibrium disk MHD generator have been successfully evaluated on the basis of the experiments under high enthalpy extraction conditions. Special attention is devoted to measuring the exit total pressure and the Faraday current. The maximum isentropic efficiency achieved in the present experiments was 46% with the enthalpy extraction ratio of 31.6%. The experimentally obtained values of the effective Hall parameter covered a range of 2--3.
LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu
2011-01-01
This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.
Angular Momentum Transport by Acoustic Modes Generated in the Boundary Layer II: MHD Simulations
Belyaev, Mikhail A; Stone, James M
2013-01-01
We perform global unstratified 3D magnetohydrodynamic simulations of an astrophysical boundary layer (BL) -- an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf -- with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times...
Efficient Generation of Freak Waves in Laboratory
无
2007-01-01
In the present study, Kriebel's method is improved to generate freak waves in laboratory. The improved method superposes a random wave train with two transient wave trains to simulate freak wave events in a wave tank. The freak waves are more nonlinear than what generated with Kriebel's method of the same energy. It can also generate freak waves to satisfy all the qualifications of the adopted definition with less energy than Kriebel's and can hardly influence the significant wave height.
Characteristics of Linear MHD Generators with One or a Few Loads
Witalis, E.A.
1966-02-15
The theoretical performance of linear series segmented MHD generators with finite size electrodes and one or a few identical external loads is investigated. The analysis is an extension of our conformal mapping investigation previously reported. The electrical characteristics are evaluated as functions of the segmentation degree, the Hall parameter and the relative position of short-circuited electrodes. Special consideration is given to the influence of staggering the electrodes, i. e. shifting the relative positions of short-circuited electrodes. General electrical terminal characteristics, i. e. the full current-voltage relation, can not be obtained by the exact analytical method, which is applicable only to so-called design load conditions or infinitely long MHD channels. However, it is shown how the general properties can be explained qualitatively and calculated approximately by describing off-design modes of operation in terms of a fictitious 'effective' number of external loads.
Ring-shaped discharge structures in a closed cycle MHD disk generator
Fukuda, H.; Kabashima, S.
1987-06-01
Numerical simulations are carried out to study plasma properties in a nonequilibrium disk-type MHD generator. The analysis is based on a two-dimensional time-dependent MHD equation, and is performed in the r-z plane. From the r-z analysis, the current distributions in the boundary layer, electrode regions are obtained, as well as the channel main flow region. The two-state nature of plasma, i.e., the formation of streamers and their dynamical behavior in the channel is confirmed. The dependence of the streamer properties on the magnetic field strength and load resistance is examined. The calculations suggest the existence of an eddy current in the boundary layer for the high-loading parameter. Some enhanced eddy currents in the nozzle region and the intensive eddy current at the upper-stream edge of the cathode are obtained for some plasma parameters. 19 references.
Nonlinear generation of whistler waves by an ion beam
Akimoto, K.; Winske, D.
1989-01-01
An electromagnetic hybrid code is used to simulate a new mechanism for whistler wave generation by an ion beam. First, a field-aligned ion beam becomes unstable to the electromagnetic ion/ion right-hand resonant instability which generates large amplitude MHD-like waves. These waves then trap the ion beam and increase its effective temperature anisotropy. As a result, the growth rates of the electron/whistler instability are significantly enhanced, and whistlers start to grow above the noise level. At the same time, because of the reduced parallel drift speed of the ion beam, the frequencies of the whistlers are also downshifted. Full simulations were performed to isolate and separately investigate the electron/ion whistler instability. The results are in agreement with the assumption of fluid electrons in the hybrid simulations and with the linear theory of the instability.
Heat transfer with thermal radiation on MHD particle-fluid suspension induced by metachronal wave
Bhatti, M. M.; Zeeshan, A.; Ellahi, R.
2017-09-01
In this article, effects of heat transfer on particle-fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.
Heat transfer with thermal radiation on MHD particle–fluid suspension induced by metachronal wave
M M BHATTI; A ZEESHAN; R ELLAHI
2017-09-01
In this article, effects of heat transfer on particle–fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm’s law and Roseland’s approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.
Antolin, Patrick; Van Doorsselaere, Tom; Yokoyama, Takaaki
2016-01-01
In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfv\\'en waves. Due to its localised nature, a direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction, recent observations indicate that in the low amplitude regime such transverse MHD waves can also appear decay-less, a yet unsolved phenomenon. Recent numerical work has shown that Kelvin-Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modelling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant abs...
Key contributions in MHD power generation. Quarterly report, 1 June 1979-31 August 1979
Louis, J F
1979-11-01
Activities during the third quarter of the contract period are reported in detail. The tasks reported on include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage.
Fault analysis of mid-channel power takeoff in DCW MHD generators
Ishikawa, M.; Wu, Y. C. L.; Scott, M. H.
1982-06-01
Analysis is presented of the effect of loading faults on the mid-channel power takeoff of a diagonal-conducting-wall MHD generator in special loading schemes. Two-dimensional calculations indicate that an open-circuit condition in the upstream load circuit results in a large current density at the power takeoff anode and drives a shorting current over the interframe insulators at the cathode side. A short-circuit condition in the upstream load circuit results in a large current density at the power takeoff cathode and a shorting current over the interframe insulators at the anode side.
Louis, J F
1980-03-01
Separate entries were made in the data base for the four tasks which include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage. (WHK)
Design of helium-driven MHD disk generators with high performance
Matsubara, H.; Kabashima, S.; Yamasaki, H.; Shioda, S. (Tokyo Inst. of Tech. (JP). Dept. of Energy Sciences)
1990-01-01
A design method for helium-driven MHD disk generator channels including boundary-layer behavior is proposed. In this method, the main flow in the channels is one-dimensionally treated, taking account of the concept of effective cross-sectional area of the channels. This effective area is determined by solving two-dimensional boundary-layer equations. Using this method, the generator channels on various scales are numerically designed under the condition of fully ionized seed. Furthermore, the scale effects of the boundary layer on the area ratio, heat loss and adiabatic efficiency of the generators are examined. It is found from this study that a generator having a thermal input of more than 100 MW is required to achieve high enthalpy extraction with high adiabatic efficiency (more than 65%). (author).
Internal Wave Generation by Convection
Lecoanet, Daniel Michael
In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the
Ohno, Jun; Liberati, Alessandro; Murakami, Tomoyuki; Okuno, Yoshihiro
Time dependent r-z two-dimensional numerical simulations with LES technique have been carried out in order to clarify the plasma fluid behavior and power generation characteristics of the disk MHD generator under the rated operation conditions demonstrated in the closed loop experimental facility at Tokyo Tech. The generator currently installed could suffer from the non-uniform and low electrical conductivity, and the boundary layer separation even under the rated operation conditions. The large amount of generated electric power is consumed in the boundary layer separation region, which reduces a net output power. Reducing the back pressure and improving the inlet plasma conditions surely provide the higher generator performance. The influence of 90 degree bend downstream duct on the generator performance is found to be not marked.
Experimental and theoretical studies of the effects of nonuniformities in equilibrium MHD generators
Rosenbaum, M.; Shamma, S.E.; Louis, J.F.
1980-01-01
An experimental study of the effects of thermal and velocity nonuniformities is performed in an equilibrium plasma for a range of Hall parameters. An electrodeless MHD disk generator with radial flow is chosen as the ideal geometry for these experiments. By introducing equally spaced cold blades in the flow, it is possible to create well defined two-dimensional wake nonuniformities with strong variations of the plasma properties in the direction normal to the magnetic field and the flow. This type of nonuniformity is predicted to provide the strongest reduction of Hall coefficient and effective conductivity for high values of Hall parameter. This degradation is controlled by both the level of nonuniformities and the value of the ideal Hall parameter. The former is dependent upon the number of blades (root mean square deviation of the conductivity), and the latter is dependent upon the values of the magnetic field intensities. The results provide basic quantitative information about the effects of conductivity and velocity nonuniformities on the performance of equilibrium MHD generators over a wide range of Hall coefficients, between 2 and 7. Reduction formulae are established between the effective and ideal Hall parameters for different levels of nonuniformities intensities. Theoretical predictions are derived from a detailed two-dimensional electrodynamic analysis and a simplified engineering model based on a generalization of Rosa's layer model. These experiments validate the analytical studies and support the use of the theoretical layer models in describing the effect of boundary layers on the performance of linear generators.
Numerical study of shock waves in non-ideal magnetogasdynamics (MHD
Addepalli Ramu
2016-01-01
Full Text Available One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindrical or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transformations reduce the governing equations into ordinary differential equations of Poincare type. In the present work, McQueen and Royce equations of state (EOS have been considered with suitable material constants and the spherical and cylindrical cases are worked out in detail to investigate the behavior and the influence on the shock wave propagation by energy input and β(ρ/ρ0, the measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter pressure is neglected. The numerical technique applied in this paper provides a global solution to the implosion problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is shown that increasing β(ρ/ρ0 does not automatically decelerate the shock front but the velocity and pressure behind the shock front increases quickly in the presence of the magnetic field and decreases slowly and become constant. This becomes true whether the piston is accelerated, is moving at constant speed or is decelerated. These results are presented through the illustrative graphs and tables. The magnetic field effects on the flow variables through a medium and total energy under the influence of strong magnetic field are also presented.
Kobayashi, H.; Okuno, Y.; Kabashima, S. [Tokyo Institute of Technology, Tokyo (Japan)
1995-08-20
The performance of non-equilibrium MHD disk generator with segmented loads is examined with {gamma}-{theta} two dimensional numerical simulations. The use of segmented loads is found to improve the generator performance when a low electron temperature plasma is introduced to the channel. The simulation results reveal the desired values of load resistances connected in upstream and downstream regions, respectively. The concept of the segmented loads is considered to be superior to rearranging seed fractions and load resistances. 10 refs., 6 figs., 2 tabs.
Experimental studies on isentropic efficiency of a nonequilibrium MHD disk generator
Nakamura, Hajime [National Defense Academy, Yokosuka (Japan). Dept. of Mechanical Engineering; Okamura, Tetsuji [Tokyo Inst. of Tech., Yokohama (Japan). Dept. of Energy Sciences; Shioda, Susumu [Keio Univ., Fujisawa (Japan). Faculty of Environmental Information
1998-02-01
Isentropic efficiency of the nonequilibrium MHD power generator was studied by a shock tube driven disk generator. Cesium seeded helium was used as a working gas. From the measurements of Faraday current density distribution, it was possible to estimate the general tendency of Joule dissipation in the generator. The Joule dissipation did not decrease due to the occurrence of nonuniformity of the plasma when external load resistance was low, although it decreased with the decrease in the load resistance when the load resistance was high. The electrical efficiency increased with the increase in applied magnetic flux density. This fact is thought to be caused by high Hall parameter and the stabilization of the plasma due to high degree of seed ionization.
Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.
1991-01-01
The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.
Hiremath, K M
2009-01-01
It is conjectured that energy sources of the gamma ray bursts are similar to energy sources which trigger solar and stellar transient activity phenomena like flares, plasma accelerated flows in the flux tubes and, dissipation of energy and acceleration of particles by the MHD waves. Phenomenologically we examine in detail the following energy sources which may trigger gamma ray bursts : (i) cosmic primordial flares which could be solar flare like phenomena in the region of inter galactic or inter galactic cluster regions, (ii) primordial magnetic flux tubes that might have been formed from the convective collapse of the primordial magnetic flux (iii) nonlinear interaction and dissipation of MHD waves that are produced from the perturbations of large-scale inter galactic or inter cluster magnetic field of primordial origin. We examine in detail each of the afore mentioned phenomena keeping in mind that whether such processes are responsible for energy sources of the gamma ray bursts. By considering the similar...
Design of a vertical annulus with MHD flow using entropy generation analysis
Mahian Omid
2013-01-01
Full Text Available Optimal design of a heat exchanger is one of the concerns of energy conversion engineers. In the present work, the mixed convection flow between two vertical concentric pipes with constant heat flux at the boundaries and MHD flow effects is considered. To determine the optimal design for such a heat exchanger, at first, the momentum and energy equations are simplified and solved analytically. Next, using entropy generation analysis and cost analysis, the operational costs due to entropy generation are estimated. It is concluded that with an increase in the Hartmann number, the energy costs increase. In addition, for two small deviations from the base radius ratio 2(=P including 9.1=P and 1.2=P , the changes in the energy cost are calculated. It is found that for 9.1=P the energy cost increases by 17.5% while for P = 2.1 the energy cost is reduced by 13.6 %.
Integration of MHD load models with circuit representations the Z generator.
Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.
2013-03-01
MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.
A consistent thermodynamics of the MHD wave-heated two-fluid solar wind
I. V. Chashei
Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at
MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
Mehrez, Zouhaier, E-mail: zouhaier.mehrez@yahoo.fr [Laboratoire d’Energétique et des Transferts Thermique et Massique (LETTM), Département de Physique, Faculté des Sciences de Tunis, Université d’el Manar, El Manar 2092 (Tunisia); ISSAT Gabes, Rue Omar Ibn Khattab, Université de Gabes, 6072 Zrig, Gabes (Tunisia); El Cafsi, Afif; Belghith, Ali [Laboratoire d’Energétique et des Transferts Thermique et Massique (LETTM), Département de Physique, Faculté des Sciences de Tunis, Université d’el Manar, El Manar 2092 (Tunisia); Le Quéré, Patrick [LIMSI-CNRS Bat. 508, B.P. 133, 91403 Orsay Cedex (France)
2015-01-15
The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu–water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers. - Highlights: • MHD effects on Cu–water nanofluid flow into an open cavity are studied. • Entropy generation and heat transfer are strongly influenced by the magnetic field. • The effect of nanoparticles volume fraction depends on Hartmann number. • The influence of the magnetic field varies by varying Reynolds and Richardson numbers.
Muhammad Mubashir Bhatti
2016-05-01
Full Text Available In this article, entropy generation with radiation on non-Newtonian Carreau nanofluid towards a shrinking sheet is investigated numerically. The effects of magnetohydrodynamics (MHD are also taken into account. Firstly, the governing flow problem is simplified into ordinary differential equations from partial differential equations with the help of similarity variables. The solution of the resulting nonlinear differential equations is solved numerically with the help of the successive linearization method and Chebyshev spectral collocation method. The influence of all the emerging parameters is discussed with the help of graphs and tables. It is observed that the influence of magnetic field and fluid parameters oppose the flow. It is also analyzed that thermal radiation effects and the Prandtl number show opposite behavior on temperature profile. Furthermore, it is also observed that entropy profile increases for all the physical parameters.
Entropy Generation on MHD Casson Nanofluid Flow over a Porous Stretching/Shrinking Surface
Jia Qing
2016-04-01
Full Text Available In this article, entropy generation on MHD Casson nanofluid over a porous Stretching/Shrinking surface has been investigated. The influences of nonlinear thermal radiation and chemical reaction have also taken into account. The governing Casson nanofluid flow problem consists of momentum equation, energy equation and nanoparticle concentration. Similarity transformation variables have been used to transform the governing coupled partial differential equations into ordinary differential equations. The resulting highly nonlinear coupled ordinary differential equations have been solved numerically with the help of Successive linearization method (SLM and Chebyshev spectral collocation method. The impacts of various pertinent parameters of interest are discussed for velocity profile, temperature profile, concentration profile and entropy profile. The expression for local Nusselt number and local Sherwood number are also analyzed and discussed with the help of tables. Furthermore, comparison with the existing is also made as a special case of our study.
A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus
Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.
1994-01-01
Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.
An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator
Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.
Tempelmeyer, K E; Sokolov, Y N [eds.
1979-04-01
The third joint test with a Soviet U-25B MHD generator and a US superconducting magnet system (SCMS) was conducted in the Soviet U-25B Facility. The primary objectives of the 3rd test were: (1) to operate the facility and MHD channel over a wider range of test parameters, and (2) to study the performance of all components and systems of the flow train at increased mass flow rates of combustion products (up to 4 kg/s), at high magnetic-field induction (up to 5 T), and high values of the electrical field in the MHD generator. The third test has demonstrated that all components and systems of the U-25B facility performed reliably. The electric power generated by the MHD generaor reached a maximum of 575 kW during this test. The MHD generator was operated under electrical loading conditions for 9 hours, and the combustor for a total of approximately 14 hours. Very high Hall fields (2.1 kV/m) were produced in the MHD channel, with a total Hall voltage of 4.24 kV. A detailed description is given of (1) performance of all components and systems of the U-25B facility, (2) analysis of the thermal, gasdynamic, and electrical characteristics of the MHD generator, (3) results of plasma diagnostic studies, (4) studies of vibrational characteristics of the flow train, (5) fluctuation of electrodynamic and gasdynamic parameters, (6) interaction of the MHD generator with the superconducting magnet, and (7) an operational problem, which terminated the test.
Wind generated rogue waves in an annular wave flume
Toffoli, A; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2016-01-01
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves, where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an {\\it unlimited-fetch} condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
Wind Generated Rogue Waves in an Annular Wave Flume.
Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M
2017-04-07
We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
Water waves generated by underwater explosion
Mehaute, Bernard Le
1996-01-01
This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to
Thurgood, J O; 10.1051/0004-6361/201219850
2012-01-01
Context: Coronal magnetic null points have been implicated as possible locations for localised heating events in 2D models. We investigate this possibility about fully 3D null points. Aims: We investigate the nature of the fast magnetoacoustic wave about a fully 3D magnetic null point, with a specific interest in its propagation, and we look for evidence of MHD mode coupling and/or conversion to the Alfv\\'en mode. Methods: A special fieldline and flux-based coordinate system was constructed to permit the introduction of a pure fast magnetoacoustic wave in the vicinity of proper and improper 3D null points. We considered the ideal, {\\beta} = 0, MHD equations, which are solved using the LARE3D numerical code. The constituent modes of the resulting wave were isolated and identified using the special coordinate system. Numerical results were supported by analytical work derived from perturbation theory and a linear implementation of the WKB method. Results: An initially pure fast wave is found to be permanently d...
A.H.Srinivasa,
2016-02-01
Full Text Available This paper presents a study of MHD free convection flow of an electrically conducting incompressible fluid with variable viscosity about an isothermal truncated cone in the presence of heat generation or absorption. The fluid viscosity is assumed to vary as a inverse linear function of temperature. The non-linear coupled partial differential equations governing the flow and heat transfer have been solved numerically by using an implicit finite - difference scheme along with quasilinearization technique. The non-similar solutions have been obtained for the problem, overcoming numerical difficulties near the leading edge and in the downstream regime. Results indicate that skin friction and heat transfer are strongly affected by, both, viscosity-variation parameter and magnetic field. In fact, the transverse magnetic field influences the momentum and thermal fields, considerably. Further, skin friction is found to decrease and heat transfer increases near the leading edge. Also, it is found that the direction of heat transfer gets reversed during heat generation.
The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves
Airapetian, Vladimir; Leake, James; Carpenter, Kenneth
2015-08-01
Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.
Srivastava, A K; Ofman, Leon; Dwivedi, B N
2016-01-01
Using MHD seismology by observed kink waves, the magnetic field profile of a coronal streamer has been investigated. STEREO-B/EUVI temporal image data on 7 March 2012 shows an evolution of two consecutive EUV waves that interact with the footpoint of a coronal streamer evident in the co-spatial and co-temporal STEREO-B/COR-I observations. The evolution of EUV waves is clearly evident in STEREO-B/EUVI, and its energy exchange with coronal streamer generates kink oscillations. We estimate the phase velocities of the kink wave perturbations by tracking it at different heights of the coronal streamer. We also estimate the electron densities inside and outside the streamer using SSI of polarized brightness images in STEREO-B/COR-1 observations. Taking into account the MHD theory of kink waves in a cylindrical waveguide, their observed properties at various heights, and density contrast of the streamer, we estimate the radial profile of magnetic field within this magnetic structure. Both the kink waves diagnose the...
Indo-Soviet experiment on an MHD generator test section at the Soviet U-O/sub 2/ facility
Ananthapadmanabhan, P.V.; Bapat, A.V.; Das, A.K. (Bhabha Atomic Research Centre, Bombay (India))
1982-09-01
This paper summarizes the major results of the joint Indo-Soviet experiment for testing the Indian MHD generator channel section, designed and fabricated at the Bhabha Atomic Research Centre, Bombay, which was carried out at the U-02 facility in Moscow, USSR, in May 1980. The total test duration was 65 hours and included electrophysical tests and life tests under applied electric fields. The main purpose of the tests was to substantiate the physical concepts, computer codes, design features and special processing techniques involved in the development of MHD generators for the Indian pilot plant at Tiruchirapalli. The experimental observations on the phenomena of heat transfer to the walls, gas dynamics in the channel, electrical characteristics of the generator and near-electrode processes including the analysis of arc spots correlate with the theoretical estimates based on present uderstanding of the physical processes occuring in similar MHD generators. The post-operational inspection of the channel section and extensive investigation of materials through microscopic analysis, chemical analysis and x-ray analysis are also reported in this paper. The joint test programme has clearly demonstrated the definite operating capability of the test section and has given sufficient information and encouragement for building better and improved channels for the future.
The Transient MHD Flow Generated by a PeriodicWall Motion in a Porous Space
Mohammed Abdulhameed
2016-01-01
Full Text Available The problem of transient flow of incompressible third grade fluid on the two-dimensional magnetohydrodynamic (MHD flow in a porous space is analyzed. The flow is generated due to the motion of the plate in its plane with a periodic velocity. Under the flow assumptions, the governing nonlinear partial differential equation is transformed into steady-state and transient nonlinear equations. The reduced equation for the transient flow is solved analytically using symmetry approach while the nonlinear steady-state equation is solved using a modified version of He’s homotopy perturbation method. The effect of several operating parameters on the flow hydromagnetic is discussed. The results indicated that for the considered case, t = 1:5 is the moment after which the time-dependent transient motion of the fluid can be approximated with the steady-state motion, described by the steady-state solution. It is clear that, after this value of time t the time-dependent transient solution can be neglected.
MHD generator electrode development. Quarterly report, October-December 31, 1980
Sadler, J W; Cadoff, L H; Dietrick, D L
1981-01-01
This program is directed towards the engineering development of cold metallic electrodes which are alternatives to the use of platinum as an anode clad material for MHD generators. Results of continuing laboratory screening tests are presented. Improvements in the anode arc test methodology and test setup, which have resulted in improved reproducibility as well as test simplification, are discussed. Laboratory electrochemical corrosion testing has been initiated using aqueous and molten salts as the aggressive constituent in the electrolyte. Initial results from these tests are reported. On the basis of these test results, electrochemical corrosion tests using a molten salt are preferred. As a result of ongoing laboratory screening tests, acceptance criteria, which are interim in nature and are likely to change based on future test results have been defined for the anode arc and electrochemical corrosion tests. Reflecting the initial laboratory test results, a listing of candidate advanced alloys which should demonstrate improved corrosion resistance has been defined. Upon completion of WESTF modifications, facility checkout and activation operations have been initiated. Progress, as well as those difficulties which have been encountered, in completing WESTF activation is reported. Detailed engineering and test planning activities in support of WESTF tests are reported.
Performance experiments with a shock-tunnel-driven argon-cesium MHD disk generator
Veefkind, A.; Karavasilev, P.; Wang, D.
1988-08-01
An extensive amount of data has been collected concerning MHD disk generator performance under different operation conditions. The results are obtained from a large number of runs with the Eindhoven shock tunnel facility. The runs are carried out at different stagnation temperatures, stagnation pressures, external loads, and seed fractions. Two channels have been used, one with and one without inlet swirl. Voltage, pressure, and radiation measurements have been employed. Current to voltage characteristics have been measured for different seed ratios. The enthalpy extractions of the disk with inlet swirl are found to be comparable with similar experiments with linear channels. The enthalpy extractions of the radial disk are found to be lower. A high enthalpy extraction (18 percent at a stagnation temperature of 2100 K) is reported at a comparatively low stagnation pressure (4.2 bar). A one-dimensional-gasdynamical analysis using measured voltages as an input is discussed. The measured fluctuations of electron temperature and density indicate that the results are obtained in a nonuniform plasma. 10 references.
Generation of Nanometer Wavelength Acoustic Waves
O.Yu. Komina
2016-11-01
Full Text Available The possibility of acoustic wave generation of nanometer range in plates is shown. The experimental results that show the possible reconfiguring of the generator frequency in YFeO3 with a constant magnetic field are given.
Santamaria, Irantzu C; Collados, Manuel
2015-01-01
The aim of this work is to study the energy transport by means of MHD waves propagating in quiet Sun magnetic topology from layers below the surface to the corona. Upward propagating waves find obstacles, such as the equipartition layer with plasma b=1 and the transition region, and get converted, reflected and refracted. Understanding the mechanisms by which MHD waves can reach the corona can give us information about the solar atmosphere and the magnetic structures. We carry out two-dimensional numerical simulations of wave propagation in a magnetic field structure that consists of two vertical flux tubes separated by an arcade shaped magnetic field. This configuration contains a null point in the corona, that significantly modifies the behaviour of the waves. We describe in detail the wave propagation through the atmosphere under different driving conditions. We also present the spatial distribution of the mean acoustic and magnetic energy fluxes and the spatial distribution of the dominant frequencies in ...
Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares
Takasao, Shinsuke
2016-01-01
Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in the flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both of QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares, such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-...
Astrocytes generate Na+-mediated metabolic waves.
Bernardinelli, Yann; Magistretti, Pierre J; Chatton, Jean-Yves
2004-10-12
Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.
Generation of rogue waves in a wave tank
Lechuga, A.
2012-04-01
Rogue waves have been reported as causing damages and ship accidents all over the oceans of the world. For this reason in the past decades theoretical studies have been carried out with the double aim of improving the knowledge of their main characteristics and of attempting to predict its sudden appearance. As an effort on this line we are trying to generate them in a water tank. The description of the procedure to do that is the objective of this presentation. After Akhmediev et al. (2011) we use a symmetric spectrum as input on the wave maker to produce waves with a rate(Maximun wave height/ significant wave height) of 2.33 and a kurtosis of 4.77, clearly between the limits of rogue waves. As it was pointed out by Janssen (2003), Onorato et al. (2006) and Kharif, Pelinovsky and Slunyaev (2009) modulation instability is enhanced when waves depart from Gaussian statistics (i.e. big kurtosis) and therefore both numbers enforce the criterion that we are generating genuine rogue waves. The same is confirmed by Shemer (2010) and Dudley et al.(2009) from a different perspective. If besides being symmetrical the spectrum is triangular, following Akhmediev(2011),the generated waves are even more conspicuously rogue waves.
On the generation of internal wave modes by surface waves
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Faraday Pilot-Waves: Generation and Propagation
Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John
2015-11-01
We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.
Onset behavior of standing wave thermoacoustic pressure wave generator
Mehta, Shreya; Desai, Keyur; Naik, Hemant Bhimbhai; Atrey, Milind
2012-06-01
A standing wave type thermoacoustic pressure wave generator for 300 Hz operating frequency is designed and developed for helium as a working fluid. The device is designed as a half wave length resonator. A parallel plate type SS 304 stack is designed and fabricated. An electric heater is used for heat supply to the hot end heat exchanger while a water cooled heat exchanger is used to maintain the other end of the stack near ambient temperature. An acoustic amplifier is used to amplify the pressure ratio generated. Experiments are conducted to study the onset behavior of pressure wave generator in terms of temperature range. Observations are recorded using piezoelectric pressure transducer. The results are obtained with different charging pressure and heat inputs. A pressure ratio of around 1.1 to 1.15 has been obtained using Nitrogen as a working fluid. The onset of thermoacoustic oscillations are studied for different filling pressure and for a range of hot end temperature.
Zieger, B.; Opher, M.; Toth, G.
2016-12-01
Recently we demonstrated that our three-fluid MHD model of the solar wind plasma (where cold thermal solar wind ions, hot pickup ions, and electrons are treated as separate fluids) is able to reconstruct the microstructure of the termination shock observed by Voyager 2 [Zieger et al., 2015]. We constrained the unknown pickup ion abundance and temperature and confirmed the presence of a hot electron population at the termination shock, which has been predicted by a number of previous theoretical studies [e.g. Chasei and Fahr, 2014; Fahr et al., 2014]. We showed that a significant part of the upstream hydrodynamic energy is transferred to the heating of pickup ions and "massless" electrons. As shown in Zieger et al., [2015], three-fluid MHD theory predicts two fast magnetosonic modes, a low-frequency fast mode or solar wind ion (SW) mode and a high-frequency fast mode or pickup ion (PUI) mode. The coupling of the two ion populations results in a quasi-stationary nonlinear mode or oscilliton, which appears as a trailing wave train downstream of the termination shock. In single-fluid plasma, dispersive effects appear on the scale of the Debye length. However, in a non-equilibrium plasma like the solar wind, where solar wind ions and PUIs have different temperatures, dispersive effects become important on fluid scales [see Zieger et al., 2015]. Here we show that the dispersive effects of fast magnetosonic waves are expected on the scale of astronomical units (AU), and dispersion plays an important role producing compressional turbulence in the heliosheath. The trailing wave train of the termination shock (the SW-mode oscilliton) does not extend to infinity. Downstream propagating PUI-mode waves grow until they steepen into PUI shocklets and overturn starting to propagate backward. The upstream propagating PUI-mode waves result in fast magnetosonic turbulence and limit the downstream extension of the oscilliton. The overturning distance of the PUI-mode, where these waves
Protective, Modular Wave Power Generation System
Vvedensky, Jane M.; Park, Robert Y.
2012-11-27
The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.
Ticking terahertz wave generation in attoseconds
Zhang, Dongwen; Meng, Chao; Du, Xiyu; Zhou, Zhaoyan; Zhao, Zengxiu; Yuan, Jianmin
2012-01-01
We perform a joint measurement of terahertz waves and high-order harmonics generated from noble atoms driven by a fundamental laser pulse and its second harmonic. By correlating their dependence on the phase-delay of the two pulses, we determine the generation of THz waves in tens of attoseconds precision. Compared with simulations and models, we find that the laser-assisted soft-collision of the electron wave packet with the atomic core plays a key role. It is demonstrated that the rescattering process, being indispensable in HHG processes, dominant THz wave generation as well but in a more elaborate way. The new finding might be helpful for the full characterization of the rescattering dynamics.
Ovchinnikov, V.L.
1982-01-01
In a 3-dimensional statement, a study is made of the effect of finite sectioning, shapes of electrodes and heterogeneity of the plasma parameters on the characteristics of the diagonal MHD generator. It is indicated that increase in specific electrical conductance of the plasma at the insulator wall results in a monotonic decrease in the voltage idling. There is an optimal specific electrical conductance of plasma at the electrode wall in which the voltage idling is the maximum. The expediency is shown of making channels with external commutation. There is an optimal ratio between the lengths of the electrode and the insulator.
Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?
Heyer, M.; Goldsmith, P. F.; Yıldız, U. A.; Snell, R. L.; Falgarone, E.; Pineda, J. L.
2016-10-01
The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J = 2-1 emission obtained with the 10-m Submillimeter Telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J = 2-1 to J = 1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations are generated from the modulation of velocities and beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvénic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission.
Power Generation Using Mechanical Wave Energy Converter
Srinivasan Chandrasekaran
2012-03-01
Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.
Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission
Afanasyev, Andrey N.; Uralov, Arkadiy M.
2016-11-01
Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.
NHM. A. Azim
2013-01-01
Full Text Available The present work is devoted to the numerical study of laminar magnetohydrodynamic (MHD conjugate natural convection flow from a horizontal circular cylinder taking into account Joule heating and internal heat generation. The governing equations and the associated boundary conditions for this analysis are made nondimensional forms using a set of dimensionless variables. Thus, the nondimensional governing equations are solved numerically using finite difference method with Keller box scheme. Numerical outcomes are found for different values of the magnetic parameter, conjugate conduction parameter, Prandtl number, Joule heating parameter, and heat generation parameter for the velocity and the temperature within the boundary layer as well as the skin friction coefficients and the rate of heat transfer along the surface. It is found that the skin friction increases, and heat transfer rate decreases for escalating value of Joule heating parameter and heat generation parameter. Results are presented graphically with detailed discussion.
Mohammad H. Yazdi
2011-12-01
Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.
Oscillatory Flow in Thermoacoustic Sound Wave Generator
Masayasu HATAZAWA
2006-01-01
Oscillatory flow in a thermoacoustic sound wave generator is described. The thermoacoustic sound wave generator plays an important role in thermoacoustic equipment. The heat exchange between the working fluid and the stack, the acceleration and deceleration of the working fluid and viscous friction loss both in the stack and in the resonance tube influence the performance of the thermoacoustic sound wave generator. Particularly,oscillatory flow significantly influences the heat exchange mechanism between the working fluid and the stack.Temporal changes in pressure and velocity are sinusoidal inside the resonance tube. Flow forms an oscillatory jet just behind the tube outlet, and becomes intermittent far downstream outside the resonance tube. The open-end corrections of 0.63R, that is, the region where oscillatory flow characteristics are maintained downstream in spite of being outside the tube outlet, are confirmed by velocity measurements and flow visualization. Also, they are almost equal to acoustical theoretical results.
Proton beam generation of oblique whistler waves
Wong, H. K.; Goldstein, M. L.
1988-01-01
It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).
Finley, Charles J.
1994-07-01
This paper explores a method by which the energy of a high speed flowing gas can efficiently be converted into DC electric power by a magnetohydrodynamic (MHD) generator. A nonequilibrium state may be created in the working fluid during the ionization process using an arc discharge. This nonequilibrium state may possibly be sustained in the fluid using the waste heat byproduct of the natural operation of the generator, if certain characteristics of the fluid/MHD system are maintained. The improved efficiency of the resulting nonequilibrium MHD generator not only allows the system to deliver increased power to the load, but reduces the amount of energy to be expelled from the closed fluid cycle by a radiator.
On the Wind Generation of Water Waves
Bühler, Oliver; Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun
2016-11-01
In this work, we consider the mathematical theory of wind generated water waves. This entails determining the stability properties of the family of laminar flow solutions to the two-phase interface Euler equation. We present a rigorous derivation of the linearized evolution equations about an arbitrary steady solution, and, using this, we give a complete proof of the instability criterion of M iles [16]. Our analysis is valid even in the presence of surface tension and a vortex sheet (discontinuity in the tangential velocity across the air-sea interface). We are thus able to give a unified equation connecting the Kelvin-Helmholtz and quasi-laminar models of wave generation.
Inertial Current Generators of Poynting Flux in MHD Simulations of Black Hole Ergospheres
Punsly, B
2005-01-01
This Letter investigates the physics that is responsible for creating the current system that supports the outgoing Poynting flux emanating from the ergosphere of a rotating black hole in the limit that the magnetic energy density greatly exceeds the plasma rest mass density (magnetically dominated limit). The underlying physics is derived from published three-dimensional simulations that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). It is found that the majority of the Poynting flux emitted from the magnetically dominated regions of the ergosphere has a source associated with inertial effects outside of the event horizon.
Non-planar MHD model for solar flare-generated disturbances in the heliospheric equatorial plane
Wu, S. T.; Dryer, M.; Han, S. M.
1983-01-01
An analysis, with a representative (canonical) example of solar-flare-generated equatorial disturbances, is made for the temporal and spatial changes in the solar wind plasma and magnetic field environment between the sun and 1 AU. The goal is to search for first-order global consequences rather than to make a parametric study. The analysis treats all three plasma velocity and magnetic field components in any convenient heliospheric plane of symmetry. The representative disturbance is examined for the canonical case in which the temporal and spatial changes in a homogeneous solar wind caused by a solar-flare-generated shock wave are described. All plasma and field parameters at three radial locations are examined. These are the central meridian and 33 deg W and 90 deg W of the flare's central meridian. It is found that the incorporation of a small meridional magnetic field in the ambient magnetic spiral field has negligible effect on the results. The magnetic field exhibits strong kinking within the interplanetary shocked flow, even reversed polarity that, coupled with low temperature and low density, suggests a plausible explanation for magnetic clouds' with accompanying double-streaming of electrons observed at directions approximately 90 deg to the heliocentric radius.
Coexistence of weak and strong wave turbulence in incompressible Hall MHD
Meyrand, Romain; Kiyani, Khurom; Galtier, Sebastien
2016-04-01
We report a numerical investigation of 3D Hall Magnetohydrodynamic turbulence with a strong mean magnetic field. By using a helicity decomposition and a cross-bicoherence analysis, we observe that the nonlinear 3-wave coupling is substantial among ion cyclotron and whistler waves. By studying in detail the degree of nonlinearity of these two populations we show that ion cyclotron and whistler turbulent fluctuations belong respectively to strong and weak wave turbulence. The non trivial blending of these two regime give rise to anomalous anisotropy and scaling properties. The separation of the weak random wave and strong coherent turbulence component can however be effectively done using simultaneous space and time Fourier transforms. Using this techniques we show that it is possible to recover some statistical prediction of weak turbulent theory.
Simulated interaction of MHD shock waves with a complex network-like region
Santamaria, Irantzu C; Collados, Manuel; de Vicente, Angel
2016-01-01
We provide estimates of the wave energy reaching the solar chromosphere and corona in a network-like magnetic field topology, including a coronal null point. The waves are excited by an instantaneous strong subphotospheric source and propagate through the subphotosphere, photosphere, chromosphere, transition region, and corona with the plasma beta and other atmospheric parameters varying by several orders of magnitude. We compare two regimes of the wave propagation: a linear and nonlinear regime. While the amount of energy reaching the corona is similar in both regimes, this energy is transmitted at different frequencies. In both cases the dominant periods of waves at each height strongly depend on the local magnetic field topology, but this distribution is only in accordance with observations in the nonlinear case.
Manual for wave generation and analysis
Jakobsen, Morten Møller
This Manual is for the included wave generation and analysis software and graphical user interface. The package is made for Matlab and is meant for educational purposes. The code is free to use under the GNU Public License (GPL). It is still in development and should be considered as such. If you...
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
Jess, D B; Verth, G; Fedun, V; Grant, S D T; Giagkiozis, I
2015-01-01
The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.
'Generations' and 'waves' in Nordic Feminism
Stormhøj, Christel; Halsaa, Beatrice; Stoltz, Pauline
constructs in feminist theory (Evans 2015, Nielsen 1991, Walby 2011); their interrelations and their usefulness as frameworks for understanding changes and continuities, conflicts and consensus in Nordic feminist activism. We explore the contradictory claims that third wave feminism alludes to a generational...... shift; on the one hand to a conservative, highly individualized, post-feminist generation which takes feminism for granted, and on the other hand a radically new, inclusive, diverse and transnational generation of feminism (Dean, 2009; McRobbie, 2009; Widerberg, 2001). The empirical point of departure...
Berling, E.
1991-05-02
MHD-, ships-, jet engine-unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquifier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. Ships water jet engines with magneto hydrodynamic (MHD) low temperature superconductor drive are known. The invention of the ceramic high temperature superconductor MHD drive, which is cooled with liquid hydrogen. The hydrogen is obtained electro-chemically directly from seawater, and is liquified magneto-calorically. The high temperature superconductor elements of the engine, liquifier, generator, storage coil, permanent magnet hollow cylinder store are coupled by a common liquid hydrogen cooling circuit. The internal combustion engine driving the generator is fuelled by the same liquid hydrogen by which the high temperature superconductor elements are cooled.
Akbar, Noreen Sher; Tripathi, D.; Bég, O. Anwar; Khan, Z. H.
2016-11-01
A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length.
Internal Wave Generation by Turbulent Convection
Lecoanet, D.; Le Bars, M.; Burns, K. J.; Vasil, G. M.; Quataert, E.; Brown, B. P.; Oishi, J.
2015-12-01
Recent measurements suggest that a portion of the Earth's core may be stably stratified. If this is the case, then the Earth's core joins the many planetary and stellar objects which have a stably stratified region adjacent to a convective region. The stably stratified region admits internal gravity waves which can transport angular momentum, energy, and affect magnetic field generation. We describe experiments & simulations of convective excitation of internal waves in water, exploiting its density maximum at 4C. The simulations show that waves are excited within the bulk of the convection zone, opposed to at the interface between the convective and stably stratified regions. We will also present 3D simulations using a compressible fluid. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number.
Viscosity effects in wind wave generation
Paquier, Anna; Rabaud, Marc
2016-01-01
We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier, Moisy and Rabaud [Phys. Fluids {\\bf 27}, 122103 (2015)] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the Free-Surface Synthetic Schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkles regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as $\
Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.
1980-09-01
The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.
Dispersive waves generated by an underwater landslide
Dutykh, Denys; Beysel, Sonya; Shokina, Nina; Khakimzyanov, Gayaz
2011-01-01
In this work we study the generation of water waves by an underwater sliding mass. The wave dynamics are assumed to fell into the shallow water regime. However, the characteristic wavelength of the free surface motion is generally smaller than in geophysically generated tsunamis. Thus, dispersive effects need to be taken into account. In the present study the fluid layer is modeled by the Peregrine system modified appropriately and written in conservative variables. The landslide is assumed to be a quasi-deformable body of mass whose trajectory is completely determined by its barycenter motion. A differential equation modeling the landslide motion along a curvilinear bottom is obtained by projecting all the forces acting on the submerged body onto a local moving coordinate system. One of the main novelties of our approach consists in taking into account curvature effects of the sea bed.
Electromagnetic Generators and Detectors of Gravitational Waves
Grishchuk, L P
2003-01-01
The renewed serious interest to possible practical applications of gravitational waves is encouraging. Building on previous work, I am arguing that the strong variable electromagnetic fields are appropriate systems for the generation and detection of high-frequency gravitational waves (HFGW). The advantages of electromagnetic systems are clearly seen in the proposed complete laboratory experiment, where one has to ensure the efficiency of, both, the process of generation and the process of detection of HFGW. Within the family of electromagnetic systems, one still has a great variety of possible geometrical configurations, classical and quantum states of the electromagnetic field, detection strategies, etc. According to evaluations performed 30 years ago, the gap between the HFGW laboratory signal and its level of detectability is at least 4 orders of magnitude. Hopefully, new technologies of today can remove this gap and can make the laboratory experiment feasible. The laboratory experiment is bound to be exp...
X-ray Jet observations in coronal holes and evidence for MHD waves
Cirtain, J.; Davey, A.
2008-05-01
Hinode observations of polar coronal holes have revealed that X-ray jets have two distinct velocities, one near the Alfvén speed (~800 km s-1) and another near the sound speed (200 km s-1). This analysis has been reported in Cirtain et al. (2007). In addition to the evidence of Alfvén waves and evaporation flow, there are some subset of jets that appear to oscillate in the direction transverse to the jet axis. We will present studies of these oscillations using both XRT and EIS (Hinode) data, and NFI/SOT ( Hinode) data when available.
A method for generating highly nonlinear periodic waves in physical wave basins
Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.
2006-01-01
This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....
Efficient Focusing Models for Generation of Freak Waves
ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu
2009-01-01
Four focusing models for generation of freak waves are presented. An extreme wave focusing model is presented on the basis of the enhanced High-Order Spectral (HOS) method and the importance of the nonlinear wave-wave interaction is evaluated by comparison of the calculated results with experimental and theoretical data. Based on the modification of the Longuet-Higgins model, four wave models for generation of freak waves (a. Extreme wave model + random wave model; b. Extreme wave model + regular wave model; c. Phase interval modulation wave focusing model; d. Number modulation wave focusing model with the same phase) are proposed. By use of different energy distribution techniques in the four models, freak wave events are obtained with different H_(max)/H_s in finite space and time.
Radial Shock Wave Devices Generate Cavitation.
Nikolaus B M Császár
Full Text Available Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.We used laser fiber optic probe hydrophone (FOPH measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA. To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans worms.FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical
Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?
Heyer, M; Yildiz, U A; Snell, R L; Falgarone, E; Pineda, J
2016-01-01
The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10~m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations result from the modulation of velocities and the beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes ar...
Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares
Takasao, Shinsuke; Shibata, Kazunari
2016-06-01
Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.
Kinetic Alfvén Wave Generation by Large-scale Phase Mixing
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.
2015-12-01
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.
KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036, Rende (CS) (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States)
2015-12-10
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.
GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS
Mumford, S. J.; Fedun, V.; Erdélyi, R., E-mail: s.mumford@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH UK (United Kingdom)
2015-01-20
Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.
Huang, Chia-Lin; Spence, Harlan E.; Singer, Howard J.; Hughes, W. Jeffrey
2010-06-01
To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5-8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere.
On-Line Generation of 3D-Waves
Frigaard, Peter
1992-01-01
The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg.......The paper describes the technique of filtering white noise for on-line generation of 3D-waves on a small computer in the laboratory. The wave generation package is implemented and tested in the 3D-wave basin at the University of Aalborg....
Mohammed Almakki
2017-07-01
Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.
Wind-wave generation using interface tracking
Akervik, Espen
2016-11-01
The wind-wave generation process in a periodic open channel is studied by means of Large Eddy Simulation, using the Volume of Fluid method to track the interface. The coupled system is initiated by imposing a turbulent air flow at Reτ = 395 on top of water at rest. Surface tension effects are excluded and the Froude number is chosen so as to fit equilibrium slow moving waves inside the computational domain. In the initial stage, the surface deformation consists of streamwise elongated narrow structures. These may be seen as footprints of the near wall streaks in the turbulent air flow. This phase is associated with linear growth in amplitude, and the behavior of the air flow is largely unaffected by the surface deformations. In the second stage, localized slow moving (c /uτ exponential growth of the waves. In the third stage, non-linear interactions occur, resulting in redistribution of energy. The growth rates are compared to previous simulations and theoretical results.
Developing Serpent-Type Wave Generators to Create Solitary Wave Simulations with BEM
Wen-Kai WENG; Ruey-Syan SHIH; Chung-Ren CHOU
2013-01-01
Developing serpent-type wave generators to generate solitary waves in a 3D-basin was investigated in this study. Based on the Lagrangian description with time-marching procedures and finite differences of the time derivative, a 3D multiple directional wave basin with multidirectional piston wave generators was developed to simulate ocean waves by using BEM with quadrilateral elements, and to simulate wave-caused problems with fully nonlinear water surface conditions. The simulations of perpendicular solitary waves were conducted in the first instance to verify this scheme. Furthermore, the comparison of the waveform variations confirms that the estimation of 3D solitary waves is a feasible scheme.
Simulations of Magnetic Field Generation in Laser-Produced Blast Waves
Lamb, D.; Fatenejad, M.; Gregori, G.; Miniati, F.; Park, H.-S.; Remington, B.; Ravasio, A.; Koenig, M.; Murphy, C. D.
2011-10-01
Magnetic fields are ubiquitous in the Universe. The origin of these fields and process by which they are amplified are not fully understood, although amplification is thought to involve turbulence. Experiments being conducted at medium-scale laser facilities (such as the LULI laser the Janus laser) can investigate the self-generation of magnetic fields under conditions that resemble astrophysical shocks. In these experiments, two 527 nm, 1.5 ns long laser beams are focused onto a 500 μm diameter graphite rod producing an explosion and asymmetric blast wave into a Helium filled chamber. A variety of diagnostics measure the velocity, electron density, and show that a large scale magnetic field is produced. We report preliminary hydrodynamic and MHD simulations using FLASH of a simplified version of the experiment. The results provide insights into the origin and generation of the magnetic field. This work was partially supported by the US DOE, the European Research Council, and Laserlab Europe.
A numerical study of the breaking of modulated waves generated at a wave maker
Andonowati,; Kusumawinahyu, W.M; Groesen, van E.
2006-01-01
This paper is concerned with breaking criteria for generated waves. An input in the form of a time signal is prescribed to a wave maker located at one end of a wave tank as used in hydrodynamic laboratories. The motion of this wave maker produces waves propagating into initially still water in the t
Generative Modeling for Machine Learning on the D-Wave
Thulasidasan, Sunil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Sciences Group
2016-11-15
These are slides on Generative Modeling for Machine Learning on the D-Wave. The following topics are detailed: generative models; Boltzmann machines: a generative model; restricted Boltzmann machines; learning parameters: RBM training; practical ways to train RBM; D-Wave as a Boltzmann sampler; mapping RBM onto the D-Wave; Chimera restricted RBM; mapping binary RBM to Ising model; experiments; data; D-Wave effective temperature, parameters noise, etc.; experiments: contrastive divergence (CD) 1 step; after 50 steps of CD; after 100 steps of CD; D-Wave (experiments 1, 2, 3); D-Wave observations.
A. S. Eegunjobi
2013-01-01
Full Text Available This paper examines the effects of the thermodynamic second law on steady flow of an incompressible variable viscosity electrically conducting fluid in a channel with permeable walls and convective surface boundary conditions. The nonlinear model governing equations are solved numerically using shooting quadrature. Numerical results of the velocity and temperature profiles are utilised to compute the entropy generation number and the Bejan number. The results revealed that entropy generation minimization can be achieved by appropriate combination of the regulated values of thermophysical parameters controlling the flow systems.
Infra-Gravity Wave Generation by the Shoaling Wave Groups over Beaches
LIN Yu-Hsien; HWUNG Hwung-Hweng
2012-01-01
A physical parameter,μb,which was used to meet the forcing of primary short waves to be off-resonant before wave breaking,has been considered as an applicable parameter in the infra-gravity wave generation.Since a series of modulating wave groups for different wave conditions are performed to proceed with the resonant mechanism of infragravity waves prior to wave breaking,the amplitude growth of incident bound long wave is assumed to be simply controlled by the normalized bed slope,βb.The results appear a large dependence of the growth rate,α,of incident bound long wave,separated by the three-array method,on the normalized bed slope,βb.High spatial resolution of wave records enables identification of the cross-correlation between squared short-wave envelopes and infra-gravity waves.The crossshore structure of infra-gravity waves over beaches presents the mechanics of incident bound- and outgoing free long waves with the formation of free standing long waves in the nearshore region.The wave run-up and amplification of infra-gravity waves in the swash zone appear that the additional long waves generated by the breaking process would modify the cross-shore structure of free standing long waves.Finally,this paper would further discuss the contribution of long wave breaking and bottom friction to the energy dissipation of infra-gravity waves based on different slope conditions.
Design of Permanent Magnet Synchronous Generators for Wave Power Generation
方红伟; 王丹
2016-01-01
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embed-ded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coeffi-cient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
Generation of long subharmonic internal waves by surface waves
Tahvildari, Navid; Kaihatu, James M.; Saric, William S.
2016-10-01
A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.
Md. Sarwar Alam
2016-01-01
Full Text Available The present work inspects the entropy generation on radiative heat transfer in the flow of variable thermal conductivity optically thin viscous Cu–water nanofluid with an external magnetic field through a parallel isothermal plate channel. Our approach uses the power series from the governing non-linear differential equations for small values of thermal conductivity variation parameter which are then analysed by various generalizations of Hermite- Padé approximation method. The influences of the pertinent flow parameters on velocity, temperature, thermal conductivity criticality conditions and entropy generation are discussed quantitatively both numerically and graphically. A stability analysis has been performed for the rate of heat transfer which signifies that the lower solution branch is stable and physically acceptable, whereas the upper solution branch is unstable.
Chinyoka, T.; Makinde, O. D.
2013-01-01
The thermodynamic second law analysis is utilized to investigate the inherent irreversibility in an unsteady hydromagnetic generalized Couette flow with variable electrical conductivity in the presence of induced electric field. Based on some simplified assumption, the model nonlinear governing equations are obtained and solved numerically using semidiscretization finite difference techniques. Effects of various thermophysical parameters on the fluid velocity, temperature, current density, skin friction, the Nusselt number, entropy generation number, and the Bejan number are presented graphically and discussed quantitatively. PMID:23956691
Spiral density wave generation by vortices in Keplerian flows
Bodo, G; Murante, G; Tevzadze, A; Rossi, P; Ferrari, A
2005-01-01
We perform a detailed analytical and numerical study of the dynamics of perturbations (vortex/aperiodic mode, Rossby and spiral-density waves) in 2D compressible disks with a Keplerian law of rotation. We draw attention to the process of spiral-density wave generation from vortices, discussing, in particular, the initial, most peculiar stages of wave emission. We show that the linear phenomenon of wave generation by vortices in smooth (without inflection points) shear flows found by using the so-called non-modal approach, is directly applicable to the present case. After an analytical non-modal description of the physics and characteristics of the spiral-density wave generation/propagation in the local shearing-sheet model, we follow the process of wave generation by small amplitude coherent circular vortex structures, by direct global numerical simulation, describing the main features of the generated waves.
Characteristics of laminar MHD fluid hammer in pipe
Huang, Z.Y.; Liu, Y.J., E-mail: yajun@scut.edu.cn
2016-01-01
As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.
Visualization of the Flux Rope Generation Process Using Large Quantities of MHD Simulation Data
Y Kubota
2013-03-01
Full Text Available We present a new concept of analysis using visualization of large quantities of simulation data. The time development of 3D objects with high temporal resolution provides the opportunity for scientific discovery. We visualize large quantities of simulation data using the visualization application 'Virtual Aurora' based on AVS (Advanced Visual Systems and the parallel distributed processing at "Space Weather Cloud" in NICT based on Gfarm technology. We introduce two results of high temporal resolution visualization: the magnetic flux rope generation process and dayside reconnection using a system of magnetic field line tracing.
Machine modification for active MHD control in RFX
Sonato, P. E-mail: sonato@igi.pd.cnr.it; Chitarin, G.; Zaccaria, P.; Gnesotto, F.; Ortolani, S.; Buffa, A.; Bagatin, M.; Baker, W.R.; Dal Bello, S.; Fiorentin, P.; Grando, L.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Peruzzo, S.; Pomaro, N.; Serianni, G
2003-09-01
Recent studies on RFP and Tokamak devices call for an active control of the MHD and resistive wall modes to induce plasma mode rotation and to prevent mode phase locking. The results obtained on RFX, where slow rotation of phase locked modes has been induced, support the possibility of extending active MHD mode control through a substantial modification of the device. A new first wall with an integrated system of electric and magnetic transducers has been realised. A close fitting 3 mm thick Cu shell replaces the 65 mm Al shell. A toroidal support structure (TSS) made of stainless steel replaces the shell in supporting all the forces acting on the torus. A system of 192 saddle coils is provided to actively control the MHD modes. This system completely surrounds the toroidal surface and allows the generation of harmonic fields with m=0 and m=1 poloidal wave number and with a toroidal spectrum up to n=24.
Using Coronal Hole Maps to Constrain MHD Models
Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran
2017-08-01
In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.
Scholte waves generated by seafloor topography
Zheng, Yingcai; Liu, Jing; Fehler, Michael C
2013-01-01
Seafloor topography can excite strong interface waves called Scholte waves that are often dispersive and characterized by slow propagation but large amplitude. This type of wave can be used to invert for near seafloor shear wave velocity structure that is important information for multi-component P-S seismic imaging. Three different approaches are taken to understand excitation of Scholte waves and numerical aspects of modeling Scholte waves, including analytical Cagniard-de Hoop analysis, the boundary integral method and a staggered grid finite difference method. For simple media for which the Green's function can be easily computed, the boundary element method produces accurate results. The finite difference method shows strong numerical artifacts and stagnant artificial waves can be seen in the vicinity of topography at the fluid-solid interface even when using fine computational grids. However, the amplitude of these artificial waves decays away from the seafloor. It is sensible to place receivers away fr...
Rogue waves generated through quantum chaos
Liu, Changxu
2013-05-01
Rouge waves, or freak waves, are extreme events that manifest themselves with the formation of waves with giant amplitude. One of the distinctive features of their appearance is an anomalous amplitude probability distribution, which shows significant deviations from the classical Rayleigh statistics [1]. Initially observed in the context of oceanography, rogue waves have been extensively studied in Optics where their observation has been reported in nonlinear optical fibers [2] and laser systems [3]. © 2013 IEEE.
Stochastic generation of continuous wave spectra
Trulsen, J.; Dysthe, K. B.; Pécseli, Hans
1983-01-01
Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...
Generation and Analysis of Random Waves
Liu, Zhou; Frigaard, Peter
Sea waves are the most important phenomenon to be considered in the design of coastal and offshore structures. It should be stressed that, even though all contents in the book are related to sea waves, they have a broader application in practice. For example, the extreme theory has also been......-requirement for the book is the knowledge of linear wave theory....
A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver
Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.
1992-01-01
A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.
Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.
2015-12-01
We are developing a real-time numerical simulator for the solar-wind-magnetosphere-ionosphere coupling system using next generation magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. The feature of simulation has an advanced robustness to strong solar wind case because a triangular grid is used, which is able to calculate in the uniform accuracy over the whole region. Therefore we can simulate extreme event such as the Bastille day storm. The resolution is 7682 grids in the horizontal direction and 240 grids in the radial direction. The inner boundary of the simulation box is set at 2.6 Re. We investigate the reproduction of the magnetosphere-ionosphere coupling simulation in strong solar wind case. Therefore we compared the simulation results with the observation of the Bastille day storm event (2000/7/15), in which the solar wind velocity is above 1000 km/s and the value of Bz reached -60 nT. Especially, we focus the cross polar cap potential (CPCP) saturation and time variation because the CPCP represents the value of magnetospheric - ionospheric convection strength via region 1 current. The CPCP depends on solar wind electric field, dynamic pressure and ionospheric conductivity [Siscoe et al., 2002; Kivelson et al., 2008]. The model of Kivelson et al. [2008] shows a good reproduction to the CPCP variation. However their study assumes that the ionospheric conductivity is constant. The conductivity in our simulation of the Bastille day event is varied by the auroral activity. In this lecture, we discuss the effect of both the auroral conductance and solar EUV-driven conductance to CPCP saturation.
Kazantseva E.V.
2015-01-01
Full Text Available In a model which describes asymmetric oppositely directed nonlinear coupler it was observed in numerical simulations a phenomenon of solitary wave generation from the input constant continuous wave set at the entrance of a waveguide with negative refraction. The period of solitary wave formation decreases with increase of the continuum wave amplitude.
Proton beam generation of whistler waves in the earth's foreshock
Wong, H. K.; Goldstein, M. L.
1987-01-01
It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.
Samim Anghaie
2002-08-13
Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the
Generation and Properties of Freak Waves in A Numerical Wave Tank
韩涛; 张庆河; 庞红犁; 秦崇仁
2004-01-01
Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.
Seismic Halos Around Active Regions: An MHD Theory
Hanasoge, Shravan M
2007-01-01
Comprehending the manner in which magnetic fields affect propagating waves is a first step toward the helioseismic construction of accurate models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Results from a simulation of waves interacting with a flux tub...
Second harmonic generation of shear waves in crystals.
Jiang, Wenhua; Cao, Wenwu
2004-02-01
Nonlinear self-interaction of shear waves in electro-elastic crystals is investigated based on the rotationally invariant state function. Theoretical analyses are conducted for cubic, hexagonal, and trigonal crystals. The calculations show that nonlinear self-interaction of shear waves has some characteristics distinctly different from that of longitudinal waves. First, the process of self-interaction to generate its own second harmonic wave is permitted only in some special wave propagation directions for a shear wave. Second, the geometrical nonlinearity originated from finite strain does not contribute to the second harmonic generation (SHG) of shear waves. Therefore, unlike the case of longitudinal wave, the second-order elastic constants do not involve in the nonlinear parameter of the second harmonic generation of shear waves. Third, unlike the nonlinearity parameter of the longitudinal waves, the nonlinear parameter of the shear wave exhibits strong anisotropy, which is directly related to the symmetry of the crystal. In the calculations, the electromechanical coupling nonlinearity is considered for the 6 mm and 3 m symmetry crystals. Complement to the SHG of longitudinal waves already in use, the SHG of shear waves provides more measurements for the determination of third-order elastic constants of solids. The method is applied to a Z-cut lithium niobate (LiNbO3) crystal, and its third-order elastic constant c444 is determined.
Generation of Solitary Rossby Waves by Unstable Topography
YANG Hong-Wei; YIN Bao-Shu; DONG Huan-He
2012-01-01
The effect of topography on generation of the solitary Rossby waves is researched. Here, the topography, as a forcing for waves generation, is taken as a function of longitude variable x and time variable t, which is called unstable topography. With the help of a perturbation expansion method, a forced mKdv equation governing the evolution of amplitude of the solitary Rossby waves is derived from quasi-geostrophic vortieity equation and is solved by the pseudo-spectral method. Basing on the waterfall plots, the generational features of the solitary Rossby waves under the influence of unstable topography and stable topography are compared and some conclusions are obtained.
Generation and Evolution of Internal Waves in Luzon Strait
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon...inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of mixing for...ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of sources and
Dispersive waves in fs cascaded second-harmonic generation
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Kelvin-Helmholtz wave generation beneath hovercraft skirts
Sullivan, P. A.; Walsh, C.; Hinchey, M. J.
1993-05-01
When a hovercraft is hovering over water, the air flow beneath its skirts can interact with the water surface and generate waves. These, in turn, can cause the hovercraft to undergo violent self-excited heave motions. This note shows that the wave generation is due to the classical Kelvin-Helmholtz mechanism where, beyond a certain air flow rate, small waves at the air water interface extract energy from the air stream and grow.
Sea breeze generated waves and coastal morphology
Verhagen, H.J.; Savov, B.
1999-01-01
For the determination of the stability of coastlines, coastal erosion and the design of erosion protection studies, the “local” wave climate is the most important input parameter. For morphology, “local” means just outside the breaker line. On relatively calm days the local wave climate is strongly
Numerical Simulation of Waves Generated by Seafloor Movements
无
2008-01-01
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that the linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations ηmax0 are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on ηmax0 are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the ηmax0 near-linearly varies with the wave amplitudes of the surface waves, and the ηmax0 has significant depndences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, and these differences are significantly affected by the wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.
The Signal Generator of Triphase Sine Wave
RAOMin; MAOSaofu
2003-01-01
In the process of developing and adjusting the product in this project, we need some signal sources, which usually afford square or sine wave. Generally the square ware is used for digit logic, but for the analog signal wave is used to judge the linearity's qualities and other functions of the electric circuit. However the common ready-made signal sourceis all unidirectional sine wave, the signal sources whose phase shift can arbitrarily be regulatedand which have precise phase are still not available one the current market.
Acoustic power absorption and enhancement generated by slow and fast MHD waves
Simoniello, R; Garcia, R A; Salabert, D; Jimenez, A; Elsworth, Y; Schunker, H
2010-01-01
We used long duration, high quality, unresolved (Sun-as-a star) observations collected by the ground based network BiSON and by the instruments GOLF and VIRGO on board the ESA/NASA SOHO satellite to search for solar-cycle-related changes in mode characteristics in velocity and continuum intensity for the frequency range between 2.5mHz < nu < 6.8mHz. Over the ascending phase of solar cycle 23 we found a suppression in the p-mode amplitudes both in the velocity and intensity data between 2.5mHz
Sheikh, Mariam; Abbas, Zaheer
2015-12-01
The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.
EL-Dabe, N. T.; Attia, H. A.; Essawy, M. A. I.; Ramadan, A. A.; Abdel-Hamid, A. H.
2016-11-01
The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.
Generation of MAC waves by convection in Earth's core
Jaupart, Etienne; Buffett, Bruce
2017-05-01
Convection in Earth's core is a viable mechanism for generating MAC waves when the top of the core is stably stratified. We quantify the generation mechanism by extending the physical description of MAC waves to include a source term due to buoyancy forces in the convecting part of the core. Solutions for the forced motion are obtained using a Green's function, which is constructed from the eigenfunctions for the unforced motion. When the source term is evaluated using the output of a numerical geodynamo model, the largest excitation occurs at even spherical harmonic degrees, corresponding to waves with symmetric azimuthal flow about the equator. We also find that the magnitude of the source term decreases at periods shorter than about 60 yr. As a result most of the wave generation is confined to waves with periods of 60 yr or longer. Quantitative predictions for the wave amplitudes depend on the projection of the source term into the eigenfunction of the waves. Strong stratification limits the penetration of density anomalies into the stratified layer, which means that the source term is confined to the lowermost part of the layer. Overtones of MAC waves with large amplitudes in the lower part of the stratified layer are more effectively generated by convection, even though these waves are heavily damped by magnetic diffusion. Generation of MAC waves by convection establishes a physical link between observable wave motion and deeper convective processes. Detection of changes in the amplitude and phase of MAC waves would constrain the generation processes and offer insights into the nature of the convection.
Generation and Limiters of Rogue Waves
2014-06-01
chapter ( X ) Confetei’ICe P~tildlngs (not refereed) f l Multimedia report Journal article not rtfereed) Oral Presen ~n. not pub118hed It is...directional spectrum: , (4) i.e. higher values of A correspond to narrower directional distributions. Babanin et al. (2010) suggested a directional...Sell, W. and Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch
MHD Energy Bypass Scramjet Engine
Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)
2001-01-01
Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several
Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field
N. V. Erkaev
2002-01-01
Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.
1981-11-01
Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)
Surface characters of internal waves generated by Rankine ovoid
Zhaoting Xu; Xu Chen; Izolda V. Sturova
2006-01-01
A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.
Laboratory simulation of magnetospheric chorus wave generation
Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.
2017-01-01
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. A laboratory experiment (Van Compernolle et al 2015 Phys. Rev. Lett. 114 245002, An et al 2016 Geophys. Res. Lett.) in the large plasma device at UCLA was designed to closely mimic the scaled plasma parameters observed in the inner magnetosphere, and shed light on the excitation of discrete frequency whistler waves. It was observed that a rich variety of whistler wave emissions is excited by a gyrating electron beam. The properties of the whistler emissions depend strongly on plasma density, beam density and magnetic field profiles.
Waves spontaneously generated by heterogeneity in oscillatory media.
Cui, Xiaohua; Huang, Xiaodong; Hu, Gang
2016-05-04
Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.
Pc5 waves generated by substorm injection: a case study
N. A. Zolotukhina
2008-07-01
Full Text Available We analyzed the spectral-polarized characteristics of Pc5 ULF waves observed on 17 September 2000 after the 03:20:25 UT substorm onset with the satellites GOES 8 and 10 located east and west of the onset location. In the course of the event, the wave polarization changed from mixed (between toroidal and poloidal to poloidal, and then to mixed again. The hodogram of magnetic field oscillations rotated counterclockwise at GOES 8, and clockwise at GOES 10. It is suggested that the satellites detected the waves generated by the substorm injected clouds of the charged particles drifting in the magnetosphere in the opposite azimuthal directions: GOES 8 (located east of the substorm onset detected the wave generated by an electron cloud, and GOES 10 (west of the onset detected the wave generated by a positive ion cloud. This interpretation is confirmed by the energetic particles data recorded by LANL satellites.
Nonlinear propagation of planet-generated tidal waves
Rafikov, Roman
2001-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...
Exploring the Sensitivity of Next Generation Gravitational Wave Detectors
Evans, M; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Ackley, K; Adams, C; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arun, K G; Ashton, G; Ast, M; Aston, S M; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barr, B; Barsotti, L; Bartlett, J; Bartos, I; Bassiri, R; Batch, J C; Baune, C; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Biwer, C; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bock, O; Bogan, C; Bohe, A; Bond, C; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Buonanno, A; Byer, R L; Cabero, M; Cadonati, L; Cahillane, C; Bustillo, J Calder'on; Callister, T; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Caride, S; Caudill, S; Cavagli`a, M; Cepeda, C B; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chung, S; Ciani, G; Clara, F; Clark, J A; Collette, C G; Cominsky, L; Constancio, M; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S B; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Canton, T Dal; Danilishin, S L; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dave, I; Davies, G S; Daw, E J; De, S; DeBra, D; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Palma, I; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, T M; Everett, R; Factourovich, M; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferreira, E C; Fisher, R P; Fletcher, M; Frei, Z; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gaonkar, S G; Gaur, G; Gehrels, N; Geng, P; George, J; Gergely, L; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J A; Giardina, K D; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Graef, C; Graff, P B; Grant, A; Gras, S; Gray, C; Green, A C; Grote, H; Grunewald, S; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heintze, M C; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jang, H; Jani, K; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kozak, D B; Kringel, V; Krishnan, B; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leong, J R; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lormand, M; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Miao, H; Middleton, H; Mikhailov, E E; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Mohapatra, S R P; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nayak, R K; Nedkova, K; Nelson, T J N; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nitz, A; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Pierro, V; Pinto, I M; Pitkin, M; Poe, M; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prokhorov, L; Puncken, O; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Raymond, V; Read, J; Reed, C M; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Rollins, J G; Roma, V J; Romano, J D; Romanov, G; Romie, J H; Rowan, S; R"udiger, A; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sergeev, A; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Szczepa'nczyk, M J; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Traylor, G; Trifir`o, D; Tse, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vander-Hyde, D C; van Veggel, A A; Vass, S; Vaulin, R; Vecchio, A; Veitch, J; Veitch, P J; Venkateswara, K; Vinciguerra, S; Vine, D J; Vitale, S; Vo, T; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Weaver, B; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Zanolin, M; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-01-01
With the development of extremely sensitive ground-based gravitational wave detectors, and the recent detection of gravitational waves by LIGO, extensive theoretical work is going into understanding potential gravitational wave sources. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the universe.
柱等离子体中磁流体力学波之间的耦合%COUPLING OF MHD WAVES IN A CYLINDRICAL PLASMA
杨维宏
2001-01-01
采用柱螺旋坐标系，把广义磁流体力学方程组简化为四元一阶微分方程组。在ω／ωci→0时，该方程组化为Hain-Lüst方程；而当p→0时，即是K Appert理论。在这两种情况下,Alfvén波共振层都是奇异的。Alfvén波共振层的奇异性来源于极限的选取。在远离极限的区域，离子的惯性会使理想磁流体中Alfvén波共振层的奇异性消失，且使磁流体力学波之间相互耦合。%In cylindrical helical coordinates,generalized magnetohydrodynamic (MHD) equations are reduced to four first order differential equations.The K Appert theory and Hain-Lüst equation are two special cases resulting from p→0 and ω／ωci→0, respectively.In these two cases,the Alfvén resonant layers are singular.The singularities of the equations at the Alfvén resonant layers are caused by taking the limits.Far from the limit region, ion inertia results in the disappearance of singularity of the equations at the Alfvén resonant layer and coupling of the MHD waves.
Md. Jashim Uddin
2012-01-01
Full Text Available Steady viscous incompressible MHD laminar boundary layer slip flow of an electrically conducting nanofluid over a convectively heated permeable moving linearly stretching sheet has been investigated numerically. The effects of Brownian motion, thermophoresis, magnetic field, and heat generation/absorption are included in the nanofluid model. The similarity transformations for the governing equations are developed. The effects of the pertinent parameters, Lewis number, magnetic field, Brownian motion, heat generation, thermophoretic, momentum slip and Biot number on the flow field, temperature, skin friction factor, heat transfer rate, and nanoparticle, volume fraction rate are displayed in both graphical and tabular forms. Comparisons of analytical (for special cases and numerical solutions with the existing results in the literature are made and is found a close agreement, that supports the validity of the present analysis and the accuracy of our numerical computations. Results for the reduced Nusselt and Sherwood numbers are provided in tabular and graphical forms for various values of the flow controlling parameters which govern the momentum, energy, and the nanoparticle volume fraction transport in the MHD boundary layer.
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Interpretation of nonlinearity in wind generated ocean surface waves
Varkey, M.J.
This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...
Resonant dispersive waves generated with multi-input femtosecond pulses
Wang, Kai; Peng, Jiahui; Sokolov, Alex
2010-10-01
We investigated the resonant dispersive waves generated by high-order dispersion theoretically. We considered different femtosecond pulses propagating in the kagome-lattice hollow-core photonics crystal fibers. The two third order and fourth order resonant dispersive waves would be produced in the visible range to produce the ultrashort pulse.
Wave and tidal generation devices reliability and availability
Tavner, Peter John
2017-01-01
To some extent the wave and tidal generation industry is following in the wake of the wind industry, learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry.
Wave Generated by the NACA4412 Hydrofoil near Free Surface
Hassan Ghassemi
2013-01-01
Full Text Available The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude numbers and immersion depths.
Numerical simulation of landslide-generated impulse wave
赵兰浩; 毛佳; 刘晓青; 李同春
2014-01-01
A numerical model is proposed for the simulation of impulse waves generated by landslides. The fluid-like landslide is modeled as a generalized non-Newtonian visco-plastic fluid. The conservative level set method is extended to the n-phase flow and applied to capture the interfaces of air, water and landslide. Numerical results show an excellent performance of the current model to capture the whole process of the landslide and the impulse wave generation.
Exploring the Sensitivity of Next Generation Gravitational Wave Detectors
2016-01-01
The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.
Exploring the sensitivity of next generation gravitational wave detectors
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bock, O.; Bogan, C.; Bohe, A.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C. B.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dave, I.; Davies, G. S.; Daw, E. J.; De, S.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; Geng, P.; George, J.; Gergely, L.; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.
2017-02-01
The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.
Laboratory Modeling of Internal Wave Generation in Straits
2014-06-13
Peacock 2010). 3. The suitability of the double ridge configuration of the Luzon Strait to give rise to resonant forcing of the semi-diurnal...Figure 6. 6 Figure 6: PIV visualization of the magnitude of the in-plane velocity of the 3D conical internal wave field generated by a...Visualization of the conical 3D internal wave field generated by an oscillating sphere using stereo-PIV, Experiments in Fluids, 54, 1454. Mathur
Gravity Wave Generation by Largescale Bubbles
Brandenburg, A.
The response of an isothermal atmosphere to small disturbances in entropy is studied taking compressible effects fully into account. The method of Green's functions is applied to solve the linearized hydrodynamic equations by Fourier transformation. A bubble may be created by perturbing the entropy within a finite volume. At first Lamb waves will be then emitted radially and the bubble undergoes a series of Brunt-Väisälä oscillations.
Caldera collapse and the generation of waves
Gray, J. P.; Monaghan, J. J.
2003-02-01
The aim of this paper is to begin a study of the waves produced by the collapse of a caldera connected to the sea. An example is the bronze age collapse of the caldera of Santorini (Thera), which is thought to have involved an area of approximately 70 km2 subsiding to a depth close to the present 390 m. In this paper, we concentrate on the purely mechanical aspects of the flow and adopt a simple geometry that replicates some of the features of the pre-bronze age caldera of Santorini. By combining laboratory experiments with computer simulations, we have been able to determine the amplitude of the waves for a wide range of cavity parameters. For cavities with a width comparable to the depth of water entering the cavity, we have determined a scaling relation for the amplitude in terms of the geometry of the system. In the case of wider cavities, the flow begins like a breaking dam flow; it then becomes similar to a classical bore before breaking up into waves. The computer simulations agree well with experiment and will allow us to simulate more complicated geometries.
Energy dissipation through wind-generated breaking waves
ZHANG Shuwen; CAO Ruixue; XIE Lingling
2012-01-01
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.
Air-borne sound generated by sea waves.
Bolin, Karl; Åbom, Mats
2010-05-01
This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.
Analysis of circular wave packets generated by pulsed electric fields
Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)
2012-05-15
We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.
Harnessing and control of optical rogue waves in supercontinuum generation.
Dudley, John M; Genty, Goëry; Eggleton, Benjamin J
2008-03-17
We present a numerical study of the evolution dynamics of "optical rogue waves", statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli, et al. Nature 450, 1054-1058 (2007)]. Our specific aim is to use nonlinear Schrödinger equation simulations to identify ways in which the rogue wave dynamics can be actively controlled, and we demonstrate that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.
Isentropic compressive wave generator and method of making same
Barker, L.M.
An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Measurements of the interaction of wave groups with shorter wind-generated waves
Chu, Jacob S.; Long, Steven R.; Phillips, O. M.
1992-01-01
Fields of statistically steady wind-generated waves produced in a wind wave facility were perturbed by the injection of groups of longer, mechanically generated waves with various slopes. The time histories of the surface displacements were measured at four fetches in ensembles consisting of 100 realizations of each set of experimental conditions; the data were stored and analyzed digitally. Four distinct stages in the overall interaction are identified and characterized. The properties of the wave energy front are documented, and a preliminary discussion is given of the dynamic processes involved in its formation.
New Wave in the Perception of New Generations
Marija Ristivojević
2016-02-01
Full Text Available The paper represents an analysis of contemporary ideas about new wave music formed by generations born after 1980, in the "post-new wave" period. The ever more evident tendency to revitalize and re-actualize the new wave phenomenon at the local level, as well as the identities which stem from it, is indicative not only of the importance of this musical concept but its interdependence with the local community. The echoes of different contemporary narratives about this phenomenon influence the forming of a set of notions about, on the one hand, new wave itself, and on the other – notions about Belgrade of that time period, among generations which form their opinions and perceptions of it indirectly, and after the fact. The aim of the paper is to answer the question of the extent to which young people today are familiar with new wave and what the concept represents for them.
Coherent and Incoherent Rogue Waves in Seeded Supercontinuum Generation
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech
2013-01-01
The shot-to-shot stability of a supercontiuum (SC) can be controlled both in terms of coherence and intensity stability by modulating the input pulse with a weak seed [1-3]. In the long-pulse regime, the SC generation is initiated by noise-seeded modulation instability (MI), which breaks the pump......,2]. Seeding the pulse break-up has likewise been used to control the generation of otherwise statistically rare large-amplitude rogue solitons [2-4]. In this work, we numerically investigate the influence of the MI gain spectrum on the pulse break-up and rogue wave generation. We find that the results can...... be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process and demonstrate that seeding can be used to generate coherent and incoherent rogue waves. Figure 1 shows simulation results of seeded SC generation in a fiber with a zero-dispersion wavelength...
Elastic-wave generation in the evolution of displacement peaks
Zhukov, V.P.; Boldin, A.A.
1988-06-01
This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered.
The nonlinear evolution of rogue waves generated by means of wave focusing technique
Hu, HanHong; Ma, Ning
2011-01-01
Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.
Kolb, C.E.; Yousefian, V.; Wormhoudt, J.; Haimes, R.; Martinez-Sanchez, M.; Kerrebrock, J.L.
1978-01-30
Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGE code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented
Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study
Grisouard, N.; Staquet, C.; Gerkema, T.
2011-01-01
Oceanic observations from western Europe and the south-western Indian ocean have provided evidence of the generation of internal solitary waves due to an internal tidal beam impinging on the pycnocline from below - a process referred to as 'local generation' (as opposed to the more direct generation
Generation of realistic tsunami waves using a bottom-tilting wave maker
Park, Yong Sung; Hwang, Jin Hwan
2016-11-01
Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.
3D MHD Models of Active Region Loops
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
Sharma, Kalpna; Gupta, Sumit
2017-06-01
This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.
Leifer, I.; Caulliez, G.; Leeuw, G.de
2006-01-01
Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically
Radiation-driven MHD systems for space applications
Lee, J. H.; Jalufka, N. W.
High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.
Magnetic flux tubes as sources of wave generation
Musielak, Z. E.; Rosner, R.; Ulmschneider, P.
1987-01-01
The structure of solar, and very likely stellar, surface magnetic fields is highly inhomogeneous: at the photospheric level, the fields are locally strong, and show concentration into a flux tube structure. In this case, the wave energy generated in stellar convection zones may be largely carried away by flux tube waves, which can then become important sources for the heating of the outer atmospheric layers. Such flux tube wave generation may help to explain the UV and X-ray fluxes observed by the IUE and Einstein observatories. The generation of longitudinal tube waves in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and stratified medium was considered. It is shown that compressible tube waves are generated by dipole emission and that the generation efficiency is a strong function of the magnetic field strength. Energy flux calculations are presented for different magnetic flux tubes, and show how the results depend on the magnetic field strength and the characteristics of the convective turbulence.
Generation of internal gravity waves by penetrative convection
Pinçon, C; Goupil, M J
2015-01-01
The rich harvest of seismic observations over the past decade provides evidence of angular momentum redistribution in stellar interiors that is not reproduced by current evolution codes. In this context, transport by internal gravity waves can play a role and could explain discrepancies between theory and observations. The efficiency of the transport of angular momentum by waves depends on their driving mechanism. While excitation by turbulence throughout the convective zone has already been investigated, we know that penetrative convection into the stably stratified radiative zone can also generate internal gravity waves. Therefore, we aim at developing a semianalytical model to estimate the generation of IGW by penetrative plumes below an upper convective envelope. We derive the wave amplitude considering the pressure exerted by an ensemble of plumes on the interface between the radiative and convective zones as source term in the equation of momentum. We consider the effect of a thermal transition from a c...
Sensitivity Studies for Third-Generation Gravitational Wave Observatories
Hild, S; Acernese, F; Amaro-Seoane, P; Andersson, N; Arun, K; Barone, F; Barr, B; Barsuglia, M; Beker, M; Beveridge, N; Birindelli, S; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Bulik, T; Calloni, E; Cella, G; Mottin, E Chassande; Chelkowski, S; Chincarini, A; Clark, J; Coccia, E; Colacino, C; Colas, J; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S; Danzmann, K; De Salvo, R; Dent, T; De Rosa, R; Di Fiore, L; Di Virgilio, A; Doets, M; Fafone, V; Falferi, P; Flaminio, R; Franc, J; Frasconi, F; Freise, A; Friedrich, D; Fulda, P; Gair, J; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Glampedakis, K; Gräf, C; Granata, M; Grote, H; Guidi, G; Gurkovsky, A; Hammond, G; Hannam, M; Harms, J; Heinert, D; Hendry, M; Heng, I; Hennes, E; Hough, J; Husa, S; Huttner, S; Jones, G; Khalili, F; Kokeyama, K; Kokkotas, K; Krishnan, B; Li, T G F; Lorenzini, M; Lück, H; Majorana, E; Mandel, I; Mandic, V; Mantovani, M; Martin, I; Michel, C; Minenkov, Y; Morgado, N; Mosca, S; Mours, B; Müller-Ebhardt, H; Murray, P; Nawrodt, R; Nelson, J; Oshaughnessy, R; Ott, C D; Palomba, C; Paoli, A; Parguez, G; Pasqualetti, A; Passaquieti, R; Passuello, D; Pinard, L; Plastino, W; Poggiani1, R; Popolizio, P; Prato, M; Punturo, M; Puppo, P; Rabeling, D; Rapagnani, P; Read, J; Regimbau, T; Rehbein, H; Reid, S; Ricci, F; Richard, F; Rocchi, A; Rowan, S; Rüdiger, A; Santamaría, L; Sassolas, B; Sathyaprakash, B; Schnabel, R; Schwarz, C; Seidel, P; Sintes, A; Somiya, K; Speirits, F; Strain, K; Strigin, S; Sutton, P; Tarabrin, S; Thüring, A; Brand, J van den; van Veggel, M; Broeck, C van den; Vecchio, A; Veitch, J; Vetrano, F; Vicere, A; Vyatchanin, S; Willke, B; Woan, G; Yamamoto, K
2010-01-01
Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.
Sensitivity studies for third-generation gravitational wave observatories
Hild, S; Abernathy, M; Barr, B; Beveridge, N [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Amaro-Seoane, P [Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Muehlenberg 1, D-14476 Potsdam (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris, Universite Denis Diderot, Paris VII (France); Beker, M [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: stefan.hild@glasgow.ac.uk [Astronomical Observatory, University of warsaw, Al Ujazdowskie 4, 00-478 Warsaw (Poland)
2011-05-07
Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.
The Einstein Telescope: a third-generation gravitational wave observatory
Punturo, M; Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Abernathy, M; Barr, B; Beveridge, N [Department of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Allen, B [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris-Universite Denis Diderot-Paris VII (France); Beker, M [VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: michele.punturo@pg.infn.i [Astro. Obs. Warsaw Univ. 00-478, CAMK-PAM 00-716 Warsaw, Bialystok Univ. 15-424, IPJ 05-400 Swierk-Otwock, Inst. of Astronomy 65-265 Zielona Gora (Poland)
2010-10-07
Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.
Adhesion-Dependent Wave Generation in Crawling Cells.
Barnhart, Erin L; Allard, Jun; Lou, Sunny S; Theriot, Julie A; Mogilner, Alex
2017-01-09
Dynamic actin networks are excitable. In migrating cells, feedback loops can amplify stochastic fluctuations in actin dynamics, often resulting in traveling waves of protrusion. The precise contributions of various molecular and mechanical interactions to wave generation have been difficult to disentangle, in part due to complex cellular morphodynamics. Here we used a relatively simple cell type-the fish epithelial keratocyte-to define a set of mechanochemical feedback loops underlying actin network excitability and wave generation. Although keratocytes are normally characterized by the persistent protrusion of a broad leading edge, increasing cell-substrate adhesion strength results in waving protrusion of a short leading edge. We show that protrusion waves are due to fluctuations in actin polymerization rates and that overexpression of VASP, an actin anti-capping protein that promotes actin polymerization, switches highly adherent keratocytes from waving to persistent protrusion. Moreover, VASP localizes both to adhesion complexes and to the leading edge. Based on these results, we developed a mathematical model for protrusion waves in which local depletion of VASP from the leading edge by adhesions-along with lateral propagation of protrusion due to the branched architecture of the actin network and negative mechanical feedback from the cell membrane-results in regular protrusion waves. Consistent with our model simulations, we show that VASP localization at the leading edge oscillates, with VASP leading-edge enrichment greatest just prior to protrusion initiation. We propose that the mechanochemical feedbacks underlying wave generation in keratocytes may constitute a general module for establishing excitable actin dynamics in other cellular contexts.
A.G Vijaya Kumar,
2011-04-01
Full Text Available The objective of the present study is to investigate Radiation effects on unsteady MHD flow of an electrically conducting radiating, viscous, incompressible fluid past an impulsively started movingexponentially accelerated vertical plate with variable temperature in the presence of heat generation and applied transverse magnetic field. The fluid is considered is gray, absorbing/emitting radiation but a nonscattering medium. At time t > 0, the temperature of the plate raised linearly with time t. The dimensionless governing equations involved in the present analysis are solved using the Laplace transform technique. The velocity, temperature, skin friction and the rate of heat transfer are shown graphically and with some numerical computations in terms of the parameters M(the magnetic fieldparameter, R(the radiation parameter, H(the heat source parameter, Pr(the prendtl number, a(exponential index and t(time.
Generation of High Pressure and Temperature by Converging Detonation Waves
V. P. Singh
1987-07-01
Full Text Available Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.
Generation of High Pressure and Temperature by Converging Detonation Waves
Singh, V. P.; Shukla, S K
1987-01-01
Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.
Generation of high pressure and temperature by converging detonation waves
Singh, V. P.; Shukla, S. K.
1987-07-01
Generation of high pressure and temperature has various applications in defense. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In this paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, are studied by using Whitham's characteristics rule. Results are compared with those reported elsewhere.
Piezoelectric Generation and Damping of Extensional Waves in Bars
Jansson, Anders
2007-01-01
This thesis focuses on the electromechanical processes of generation and damping of transient waves in bars with attached piezoelectric members. In particular, the influence of amplifier and electrical circuitry on the mechanical waves is of interest. A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two mechanical ports where it interacts with external electrical and mechanical devices through voltage, current, forces and velocities....
Lateral Flooding Associated to Wave Flood Generation on River Surface
Ramírez-Núñez, C.; Parrot, J.-F.
2016-06-01
This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.
Investigation of beat-waves generation with high efficiency
Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.
2013-10-01
A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.
Investigation of beat-waves generation with high efficiency
Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G. [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shanxi 710024 (China)
2013-10-21
A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.
Generation of magnetosonic waves over a continuous spectrum
Chen, Lunjin; Sun, Jicheng; Lu, Quanming; Gao, Xinliang; Xia, Zhiyang; Zhima, Zeren
2016-02-01
Magnetosonic waves, also known as equatorial noise emission, were found to have discrete frequency structures, which is consistent with instability caused by proton ring distribution. Nonetheless, nondiscrete structure, i.e., a broadband spectrum over a continuous frequency range, has been reported. We investigate the question whether proton ring distribution can generate nondiscrete spectra for perpendicularly propagating magnetosonic waves. We propose discrete and nondiscrete characteristics of the local instability for explaining the observation of discrete, continuous, and mixed spectra. The criterion for transition from discrete and continuous instability is given, γ >˜ Ωh/2, where γ is wave growth rate and Ωh is proton cyclotron frequency. The condition is verified by particle-in-cell simulation using more realistic electron-to-proton mass ratio and speed of light than in previous studies. Such criterion of generating a continuous spectrum can be tested against simultaneous in situ measurement of wave and particle. We also find that the modes at low Ωh harmonics, including the fundamental Ωh, can be still excited through nonlinear wave-wave coupling, even when they are neutral modes (γ = 0) according to the linear kinetic theory. Comparison with magnetosonic waves in cold plasma limit and electromagnetic ion Bernstein mode is also discussed.
Generation of Focused Shock Waves in Water for Biomedical Applications
Lukeš, Petr; Šunka, Pavel; Hoffer, Petr; Stelmashuk, Vitaliy; Beneš, Jiří; Poučková, Pavla; Zadinová, Marie; Zeman, Jan
The physical characteristics of focused two-successive (tandem) shock waves (FTSW) in water and their biological effects are presented. FTSW were generated by underwater multichannel electrical discharges in a highly conductive saline solution using two porous ceramic-coated cylindrical electrodes of different diameter and surface area. The primary cylindrical pressure wave generated at each composite electrode was focused by a metallic parabolic reflector to a common focal point to form two strong shock waves with a variable time delay between the waves. The pressure field and interaction between the first and the second shock waves at the focus were investigated using schlieren photography and polyvinylidene fluoride (PVDF) shock gauge sensors. The largest interaction was obtained for a time delay of 8-15 μs between the waves, producing an amplitude of the negative pressure phase of the second shock wave down to -80 MPa and a large number of cavitations at the focus. The biological effects of FTSW were demonstrated in vitro on damage to B16 melanoma cells, in vivo on targeted lesions in the thigh muscles of rabbits and on the growth delay of sarcoma tumors in Lewis rats treated in vivo by FTSW, compared to untreated controls.
Terahertz generation by beating two Langmuir waves in a warm and collisional plasma
Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn [Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-09-15
Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.
Photonic generation of high quality frequency-tunable millimeter wave and terahertz wave
Yu Ji; Yah Li; Fangzheng Zhang; Jian Wu; Xiaobing Hong; Kun Xu; Wei Li; Jintong Lin
2012-01-01
A scheme for the photonic generation of frequency-tunable millimeter wave and terahertz wave signals based on a highly flat optical frequency comb is proposed and demonstrated experimentally.The frequency comb is generated using two cascaded phase modulators (PMs) and an electro-absorption modulator (EAM).The frequency comb covers a 440-GHz frequency range,with 40-GHz comb spacing and less than 2-dB amplitude variation. By filtering out two of the comb lines with 50 dB out of the band suppression ratio,high frequency-purity and low phase noise millimeter wave or terahertz wave signals are successfully generated,with frequencies ranging from 40 to 440 GHz.
Analysis of Circular Wave Packets Generated by Pulsed Electric Fields
Yoshida, S. [Vienna University of Technology, Austria; Reinhold, Carlos O [ORNL; Burgdorfer, J. [Vienna University of Technology, Austria; Wyker, B. [Rice University; Ye, S. [Rice University; Dunning, F. B. [Rice University
2011-01-01
We demonstrate that circular wave packets in high Rydberg states generated using a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wavepackets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficient.
Evolutionary Conditions in the Dissipative MHD System Revisited
Inoue, Tsuyoshi
2007-01-01
The evolutionary conditions for the dissipative continuous magnetohydrodynamic (MHD) shocks are studied. We modify Hada's approach in the stability analysis of the MHD shock waves. The matching conditions between perturbed shock structure and asymptotic wave modes shows that all types of the MHD shocks, including the intermediate shocks, are evolutionary and perturbed solutions are uniquely defined. We also adopt our formalism to the MHD shocks in the system with resistivity without viscosity, which is often used in numerical simulation, and show that all types of shocks that are found in the system satisfy the evolutionary condition and perturbed solutions are uniquely defined. These results suggest that the intermediate shocks may appear in reality.
Generation and Propagation of Finite-Amplitude Waves in Flexible Tubes (A)
Jensen, Leif Bjørnø
1972-01-01
Highly reproducible finite-amplitude waves, generated by a modified electromagnetic plane-wave generator, characterized by a rise time......Highly reproducible finite-amplitude waves, generated by a modified electromagnetic plane-wave generator, characterized by a rise time...
Bernstein wave aided laser third harmonic generation in a plasma
Tyagi, Yachna; Tripathi, Deepak; Kumar, Ashok
2016-09-01
The process of Bernstein wave aided resonant third harmonic generation of laser in a magnetized plasma is investigated. The extra-ordinary mode (X-mode) laser of frequency ω 0 and wave number k → 0 , travelling across the magnetic field in a plasma, exerts a second harmonic ponderomotive force on the electrons imparting them an oscillatory velocity v → 2 ω0 , 2 k → 0 . This velocity beats with the density perturbation due to the Bernstein wave to produce a density perturbation at cyclotron frequency shifted second harmonic. The density perturbation couples with the oscillatory velocity v → ω0 , k → 0 of X-mode of the laser to produce the cyclotron frequency shifted third harmonic current density leading to harmonic radiation. The phase matching condition for the up shifted frequency is satisfied when the Bernstein wave is nearly counter-propagating to the laser. As the transverse wave number of the Bernstein wave is large, it is effective in the phase matched third harmonic generation, when the laser frequency is not too far from the upper hybrid frequency.
Characteristics of gravity waves generated in a baroclinic instability simulation
Y.-H. Kim
2015-11-01
Full Text Available An idealized baroclinic instability case is simulated using a ~ 10 km resolution global model to investigate the characteristics of gravity waves (GWs generated in the baroclinic life cycle. Three groups of GWs (W1–W3 appear around the high-latitude surface trough at the mature stage of the baroclinic wave. They have horizontal and vertical wavelengths of 40–400 and 2.9–9.8 km, respectively, in the upper troposphere. The two-dimensional phase-velocity spectrum of the waves is arc-shaped with a peak at 17 m s−1 eastward, which is difficult for the waves to propagate upward through the tropospheric westerly jet. At the breaking stage of the baroclinic wave, a midlatitude surface low is isolated from the higher-latitude trough, and two groups of quasi-stationary GWs (W4 and W5 appear near the surface low. These waves have horizontal and vertical wavelengths of 60–400 and 4.9–14 km, respectively, and are able to propagate vertically for long distances. The generation mechanism of the simulated GWs is discussed.
Calculating wave-generated bottom orbital velocities from surface-wave parameters
Wiberg, P.L.; Sherwood, C.R.
2008-01-01
Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics
Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian
2016-12-01
In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).
Turco, F., E-mail: turcof@fusion.gat.com; Hanson, J. M.; Navratil, G. A. [Columbia University, 116th and Broadway, New York, New York 10027 (United States); Turnbull, A. D. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)
2015-02-15
Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, Marina
2014-01-01
Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri (2011), Schmitz & Tsiklauri (2013) and Pechhacker & Tsiklauri (2012), in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study the backwards propagating wave component evident in the perpendicular components of the elecromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are...
Solar Wind Strahl Broadening by Self-Generated Plasma Waves
Pavan, J.; Vinas, A. F.; Yoon, P. H.; Ziebell, L. F.; Gaelzer, R.
2013-01-01
This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.
Generation of limited-diffraction wave by approximating theoretical X-wave with simple driving
Li, Yaqin; Ding, MingYue; Hua, Shaoyan; Ming, Yuchi
2012-03-01
X-wave is a particular case of limited diffracting waves which has great potential applications in the enlargement of the field depth in acoustic imaging systems. In practice, the generation of real time X-wave ultrasonic fields is a complex technology which involves precise and specific voltage for the excitations for each distinct array element. In order to simplify the X-wave generating process, L. Castellanos proposed an approach to approximate the X-wave excitations with rectangular pulses. The results suggested the possibility of achieving limited-diffraction waves with relatively simple driving waveforms, which could be implemented with a moderate cost in analogical electronics. In this work, we attempt to improve L. Castellanos's method by calculating the approximation driving pulse not only from rectangular but also triangular driving pulse. The differences between theoretical X-wave signals and driving pulses, related to their excitation effects, are minimized by L2 curve criterion. The driving pulses with the minimal optimization result we chosen. A tradeoff is obtained between the cost of implementation of classical 0-order X-wave and the precision of approximation with the simple pulsed electrical driving. The good agreement of the driving pulse and the result resulting field distributions, with those obtained from the classical X-wave excitations can be justified by the filtering effects induced by the transducer elements in frequency domain. From the simulation results, we can see that the new approach improve the precise of the approximation, the difference between theoretical X-wave and the new approach is lower 10 percent than the difference between theoretical X-wave and rectangular as the driving pulse in simulation.
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
B-Pol: Detecting Primordial Gravitational Waves Generated During Inflation
de Bernardis, Paolo; Burigana, Carlo; Piccirillo, Lucio
2008-01-01
B-Pol is a medium-class space mission aimed at detecting the primordial gravitational waves generated during inflation through high accuracy measurements of the Cosmic Microwave Background (CMB) polarization. We discuss the scientific background, feasibility of the experiment, and implementation developed in response to the ESA Cosmic Vision 2015-2025 Call for Proposals.
Experimental Study for the Different Methods of Generating Millimeter Waves
Aamer Jamal Albaghdadi
2014-08-01
Full Text Available In this paper a analytical comparison and experimental implementation of different methods used in generating a low phase noise millimeter wave signals is presented. Four techniques were experimented and compared, Multiplication, phase lock loop (PLL, Injection locking (IL, and Injection locking with phase lock loop (ILPLL. The comparison and experimental results of a laboratory discussed.
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, Marina; Tsiklauri, David
2014-05-01
Super-thermal electron beams travelling away from the Sun on the open magnetic field lines are widely accepted to be the source of the Type-III bursts. The earliest idea of the generation of the Type-III bursts was based on the plasma emission mechanism. A fast moving electron beam excites Langmuir waves at the local plasma frequency, ωp. The Langmuir waves are partially transformed via scattering at ωp and 2ωp, with ion sound and oppositely propagating Langmuir waves, respectively, into electromagnetic waves. As the electron beam propagates away from the Sun, through less dense coronal and interplanetary environment, the frequency of the emitted electromagnetic radiation decreases, because plasma frequency is a function of the square root of the plasma density. Type-III bursts have been subject of theoretical, observational and numerical studies. The first detailed theory of the Type-III emission invoked coherent plasma waves, generated by a stream of fast particles, which are due to Rayleigh and combination scattering at ωp and 2ωp subsequently transformed into radio waves. Stochastic growth of the density irregularities was invoked in order to produce stochastically generated clumpy Langmuir waves, where the ambient density perturbations cause the beam to fluctuate around marginal stability. Other theories on the mechanism which generates the Type-III emission include: linear mode conversion of Langmuir waves, Langmuir waves producing electromagnetic radiation as antennas and non-gyroptropic electron beam emission [1] of commensurable properties to the Type-III bursts. In Refs. [2,3] it was found that the non-gyrotropic beam excites electromagnetic radiation by the current transverse to the magnetic field, which results in (ω,k)-space drift while propagating along the 1-dimensional spatial domain throughout the decreasing plasma density profile. The role of the electron beam pitch angle and the background density gradient profile was investigated in [4
Search for Na+ Pickup Ion Generated Waves at Mercury
Boardsen, S. A.; Slavin, J. A.
2007-05-01
Telescopic observations by Potter et al. [2002] have discovered that Mercury's Sodium exosphere has a tail extending 10's of Mercury radii. Theory predicts that the shape of and the amount of Sodium [Smyth, 1986, 1995; Ip 1986, 1990] in this exospheric tail is highly dependent upon the true anomaly of Mercury. The exospheric Na that is not reabsorbed on Mercury's surface will be photo-ionized. Computations by Ip [1986] indicated that ionized exospheric Na could significantly mass load the plasma population in Mercury's magnetosphere. These freshly created ions will be rapidly energized by the convection electric field in Mercury's magnetosphere and sheath and should be highly unstable to the generation of plasma waves. These waves could play an important role in the thermalization and retention of the Na+. Because the gyro radii of Na+ can be comparable to the scale sizes in Mercury's geospace there is an open question whether Mercury's geospace can sustain such waves. After a brief review of what was observed in the Mariner 10 magnetometer data, we will present analytic calculations of the expected pickup ion distributions, the expected unstable waves, their frequencies, wavelengths and Doppler shifts, their variation with location in Mercury's geospace and Mercury's true anomaly for both high and low solar wind convection electric fields. We will assess if and when such waves can be generated and sustained.
Cylindrical sound wave generated by shock-vortex interaction
Ribner, H. S.
1985-01-01
The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.
Effect of externally generated turbulence on wave boundary layer
Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.
2003-01-01
This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... with a smooth bottom. Turbulence was generated ´externally´ as the flow in the oscillator was passed through a series of grids, that extended from the cover of the water tunnel to about mid-depth. Two different types of grid porosities were used. Direct measurements of the bed shear stress and velocity...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...
Stochastic generation of currents by lower-hybrid waves
Gell, Y.; Nakach, R.
1984-03-01
A scheme for current generation based on a stochastic driving mechanism is proposed. The current in this approach is generated by launching into the plasma two lower-hybrid waves having appropriate different frequencies, wave numbers, and amplitudes. The phase-space analysis of the electron motion in such a configuration reveals the existence of a relatively broad stochastic layer far away from the separatrix, allowing for diffusion in velocity space of high-velocity electrons. The diffusion coefficient of this process is evaluated and the solution of the Fokker-Planck equation for the electron velocity distribution function is used to calculate the current J and the power dissipated P/sub d/ in generating it. A favorable J-to-P/sub d/ ratio for steady-current drive is found.
Laser-generated acoustic wave studies on tattoo pigment
Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.
1996-01-01
A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.
Generation and validation of the Chilean Wave Atlas database
Beyá, José; Álvarez, Marco; Gallardo, Ariel; Hidalgo, Héctor; Winckler, Patricio
2017-08-01
This paper summarizes the calibration and validation of a 35-year wave hindcast database used to create the Chilean Wave Atlas. The hindcast was generated with the Wavewatch III wave model and consists of: i) time series of wave statistical parameters in a 1° × 1° grid throughout the Pacific Ocean; ii) spectral data at points latitudinally spaced every 2° off the Chilean coast. A comprehensive calibration process was undertaken in order to assess the performance of statistical parameters at different locations under normal and extreme conditions. A multi-criteria performance score was defined to select the optimal Wavewatch III model configuration. Few buoy records available and a broad set of satellite data were used in this process. A correction method was then applied to the statistical parameters in order to reduce systematic errors of the model. The Atlas showed better performance when compared to existing databases under normal wave conditions. However, the accuracy was shown to be lesser for the highest wave heights, consistently following the behaviour of other databases. This deficiency in the estimate of extreme values has important consequences in the design of coastal structures, and its improvement remains to be solved.
Waves in Periodic Dissipative Laminate Metamaterial Generated by Plate Impact
Franco Navarro, Pedro; Benson, David; Nesterenko, Vitali
2015-06-01
Waves generated by plate impact loading of Al/W laminates with different size of cell were investigated numerically depending on the impactor/cell mass ratio. The materials model took into account viscoplastic behavior of materials. It was observed that this mass ratio has a direct impact on the structure of stress pulses traveling through the composite. At the small impactor/cell mass ratio travelling waves closely resembling solitary waves were quickly formed near the impacted surface. They propagate as quasistationary weakly attenuating localized pulses. The properties of these pulses were satisfactory described based on a theoretical model using dispersive and nonlinear parameters of the materials similar to solitary solutions for the Korteweg-de Vries equation (KdV). The temperature at given pressure at the maximum is dramatically different then the temperature corresponding to the shock wave at the same pressure reflecting a different paths of loading. Increase of impactor/cell mass ratio results in the train of solitary like pulses which number increased with the increase of the impactor/cell mass ratio. At large impactor/cell mass ratio oscillatory stationary shock waves were formed. The leading front of these stationary shock waves was closely described by a solitary like pulse observed at small impactor/cell mass ratio. One of the authors (PFN) was supported by UCMexus Fellowship
Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath
Kato, Yoshiaki; Steiner, Oskar; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats
2016-08-01
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.
The generation of gravitational waves. II - The postlinear formalism revisited
Crowley, R. J.; Thorne, K. S.
1977-01-01
Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. Then the DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs postlinear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the postlinear formalism allow one to treat the interacting bodies as point masses, while others do not.
Abla, G
2012-11-09
The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project is dedicated to conduct research on integrated multi-physics simulations. The Integrated Plasma Simulator (IPS) is a framework that was created by the SWIM team. It provides an integration infrastructure for loosely coupled component-based simulations by facilitating services for code execution coordination, computational resource management, data management, and inter-component communication. The IPS framework features improving resource utilization, implementing application-level fault tolerance, and support of the concurrent multi-tasking execution model. The General Atomics (GA) team worked closely with other team members on this contract, and conducted research in the areas of computational code monitoring, meta-data management, interactive visualization, and user interfaces. The original website to monitor SWIM activity was developed in the beginning of the project. Due to the amended requirements, the software was redesigned and a revision of the website was deployed into production in April of 2010. Throughout the duration of this project, the SWIM Monitoring Portal (http://swim.gat.com:8080/) has been a critical production tool for supporting the project's physics goals.
Louis, Hélène; Odent, Vincent; Louvergneaux, Eric
2016-04-01
Shock waves are well-known nonlinear waves, displaying an abrupt discontinuity. Observation can be made in a lot of physical fields, as in water wave, plasma and nonlinear optics. Shock waves can either break or relax through either catastrophic or regularization phenomena. In this work, we restrain our study to dispersive shock waves. This regularization phenomenon implies the emission of dispersive waves. We demonstrate experimentally and numerically the generation of spatial dispersive shock waves in a nonlocal focusing media. The generation of dispersive shock wave in a focusing media is more problematic than in a defocusing one. Indeed, the modulational instability has to be frustrated to observe this phenomenon. In 2010, the dispersive shock wave was demonstrated experimentally in a focusing media with a partially coherent beam [1]. Another way is to use a nonlocal media [2]. The impact of nonlocality is more important than the modulational instability frustration. Here, we use nematic liquid crystals (NLC) as Kerr-like nonlocal medium. To achieve shock formation, we use the Riemann condition as initial spatial condition (edge at the beam entrance of the NLC cell). In these experimental conditions, we generate, experimentally and numerically, shock waves that relax through the emission of dispersive waves. Associated with this phenomenon, we evidence the emergence of a localized wave that travels through the transverse beam profile. The beam steepness, which is a good indicator of the shock formation, is maximal at the shock point position. This latter follows a power law versus the injected power as in [3]. Increasing the injected power, we found multiple shock points. We have good agreements between the numerical simulations and the experimental results. [1] W. Wan, D. V Dylov, C. Barsi, and J. W. Fleischer, Opt. Lett. 35, 2819 (2010). [2] G. Assanto, T. R. Marchant, and N. F. Smyth, Phys. Rev. A - At. Mol. Opt. Phys. 78, 1 (2008). [3] N. Ghofraniha, L. S
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Nonlinear Propagation of Planet-Generated Tidal Waves
Rafikov, R. R.
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.
Nonlinear propagation of planet-generated tidal waves
Rafikov, R R
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.
Detection of Laser Generated Ultrasonic Wave Using Michelson Interferometer
Kim, Kyung Cho; Yamawaki, Hisashi [Japan National Research Institute, Ibaraki (Japan); Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2000-02-15
In this paper, ultrasonic wave in the thermoelastic regime was generated in a steel disk by illuminating a pulse laser (Q-switched Nd:YAG) on the surface of the sample and was detected on the other side by Michelson interferometer which was stabilized by feed back control. The experimentally detected displacement waveform of the ultrasonic wave showed good agreement with the theoretically expected one. Also it was shown that sound speeds of longitudinal and shear wave were similar to ones measured by pulse-echo method using a contact transducer. As an application of the noncontact ultrasonic measurement by using laser based ultrasonics, the sound speed in the sample was monitored while the sample was heated in a furnace, and the result showed that it decreased according to the increase of sample temperature
Hansen, Shelley C
2012-01-01
Alfv\\'en waves may be difficult to excite at the photosphere due to low ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfv\\'enic transition region reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation, with implications for the practical seismic probing of active regions.
Tailored ramp wave generation in gas gun experiments
Cotton Matthew
2015-01-01
Full Text Available Gas guns are traditionally used as platforms to introduce a planar shock wave to a material using plate impact methods, generating states on the Hugoniot. The ability to deliver a ramp wave to a target during a gas gun experiment enables access to different regions of the equation-of-state surface, making it a valuable technique for characterising material behaviour. Previous techniques have relied on the use of multi-material impactors to generate a density gradient, which can be complex to manufacture. In this paper we describe the use of an additively manufactured steel component consisting of an array of tapered spikes which can deliver a ramp wave over ∼ 2 μs. The ability to tailor the input wave by varying the component design is discussed, an approach which makes use of the design freedom offered by additive manufacturing techniques to rapidly iterate the spike profile. Results from gas gun experiments are presented to evaluate the technique, and compared with 3D hydrodynamic simulations.
Mean flow generation mechanism by inertial waves and normal modes
Will, Andreas; Ghasemi, Abouzar
2016-04-01
The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2
Electron MHD: dynamics and turbulence
Lyutikov, Maxim
2013-01-01
(Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...
Detection of laser generated ultrasonic wave using Michelson interferometer
Kim, Kyung Cho; Nakano, Hidetoshi [Japan National Research Laboratory of Metrology, Tokyo (Korea, Republic of); Jhang, Kyung Young [School of Mechanical Engineering, Seoul (Korea, Republic of)
1999-05-15
A stabilized Michelson Interferometer is proposed in order to detect the laser-generated ultrasonic waves in fee from the external noise such as low frequency mechanical vibration. In order to confirm the performance, theoretically expected waveforms were compared with experimentally detected ones in thermo-elastic region, where we generated ultrasonic wave in steel disk by using a Q-switched Nd:YAG laser. Also sound velocities of longitudinal and shear components were measured and they showed good agreement with the typical values in steel. Finally, the change of sound velocity according to the temperature change was measured to show that the proposed technique could be applied to the characterization of high temperature materials.
Nonlinear mixing of laser generated narrowband Rayleigh surface waves
Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-02-01
This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.
Microwave and Millimeter-Wave Signal Power Generation
Hadziabdic, Dzenan
Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...... concentrate on single-tone performance, this study also encompasses two-tone intermodulation distortion measurements. An 8GHz two-stage power amplifier (PA) MMIC was developed. Harmonic tuning was performed to enhance the power-added efficiency (PAE). The transistors were biased in deep class-AB where low...
Generation of finite wave trains in excitable media
Yochelis, A.; Knobloch, E.; Xie, Y.; Qu, Z.; Garfinkel, A.
2011-01-01
Spatiotemporal control of excitable media is of paramount importance in the development of new applications, ranging from biology to physics. To this end, we identify and describe a qualitative property of excitable media that enables us to generate a sequence of traveling pulses of any desired length, using a one-time initial stimulus. The wave trains are produced by a transient pacemaker generated by a one-time suitably tailored spatially localized finite amplitude stimulus, and belong to a family of fast pulse trains. A second family, of slow pulse trains, is also present. The latter are created through a clumping instability of a traveling wave state (in an excitable regime) and are inaccessible to single localized stimuli of the type we use. The results indicate that the presence of a large multiplicity of stable, accessible, multi-pulse states is a general property of simple models of excitable media. PMID:21572974
Impact of boat-generated waves on intertidal estuarine sediments
Blanpain, O.; Deloffre, J.; Lafite, R.; Gomit, G.; Calluaud, D.; David, L.
2010-12-01
Hydrodynamics in the macrotidal Seine estuary (France) are controlled by the semi-diurnal tidal regime modulated seasonally by the fluvial discharge. Wind effect on sediment transport (through wind waves and swell) is observed at the mouth of the estuary. Over the last century, authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity. These developments led to allow and secure sea vessel traffic in the Seine estuary (from its mouth to the port of Rouen, 125 km upstream) but they also resulted in a change of estuarine hydrodynamics and sediment transport features. A riversides restoration policy has been recently started by port authorities. In this context, the objective of the field-based study presented is to connect vessel characteristics (i.e. speed, draft...), boat-generated waves and their sedimentary impacts. Such information will be used by stakeholders to manage riverside. The natural intertidal site of interest is located in the fluvial freshwater part of the Seine estuary characterized by a 4.5 m maximum tidal range. The foreshore slope is gently decreasing and surface sediments are composed of fine to coarse sand with occasional mud drapes. In order to decipher boat-generated events, the sampling strategy is based on continuous ADV measurements coupled with a turbidimeter and an altimeter to study sediment dynamics. These instruments are settled in the lower part of the foreshore (i) to obtain a significant dataset (i.e. oceanic instruments are not measuring in air) on a zone statically affected by boat waves and (ii) because most of boat traffic occurs during early flood or late ebb period. Spatial variations are assessed along a cross-section through grain-size analysis of surface sediments and topography measurements using pole technique. Results enhance hydrodynamic and sedimentary impacts of boat-generated waves compared respectively to tidal and wind effects. Long
D. Yu. Klimushkin
2004-03-01
Full Text Available It is assumed to date that the energy source of azimuthal small-scale ULF waves in the magnetosphere (azimuthal wave numbers m≧1 is provided by the energetic particles interacting with the waves through the bounce-drift resonance. In this paper we have solved the problem of the bounce-drift instability influence on the spatio-temporal structure of Alfvén waves excited by a source of the type of sudden impulse in a dipole-like magnetosphere. It is shown that the impulse-generated Alfvén oscillation within a time τ~m∕Ω_{TN} (where Ω_{TN} is the toroidal eigenfrequency is a poloidal one, and each field line oscillates with its own eigenfrequency that coincides with the poloidal frequency of a given L-shell. As time elapses, the wave becomes toroidally polarized because of the phase difference of the disturbance, and the oscillation frequency of field lines tends to the toroidal frequency. The drift-bounce instability growth rate becomes smaller during the wave temporal evolution, and the instability undergoes stabilization when the wave frequency coincides with the toroidal eigenfrequency. The total amplification of the wave can be estimated as , where is the wave growth rate at the beginning of the process, when it has its maximum value. The wave amplitude can increase only within a time ~τ, when it is poloidally polarized. After this time, when the wave becomes to be toroidally polarized, it goes damped because of the finite ionospheric conductivity. This is in qualitative agreement with the recent radar experimental data.
Key words. Magnetospheric physics (MHD waves and instabilities. Space
Coherent and Incoherent Rogue Waves in Seeded Supercontinuum Generation
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech
2013-01-01
into solitons and dispersive waves. To control the spectral evolution and reduce the noise, it has been proposed to provide a seed, i.e. a weak pulse with a frequency offset relative to the pump, within the MI gain spectrum in order to ensure a deterministic rather than noise-seeded pulse break-up [1...... be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process and demonstrate that seeding can be used to generate coherent and incoherent rogue waves. Figure 1 shows simulation results of seeded SC generation in a fiber with a zero-dispersion wavelength......The shot-to-shot stability of a supercontiuum (SC) can be controlled both in terms of coherence and intensity stability by modulating the input pulse with a weak seed [1-3]. In the long-pulse regime, the SC generation is initiated by noise-seeded modulation instability (MI), which breaks the pump...
Stanford Shateyi
2015-01-01
Full Text Available The present study investigates entropy generation on a magnetohydrodynamic flow and heat transfer of a Maxwell fluid using a spectral relaxation method. The method is based on simple iteration schemes formed by reduction of the order of the momentum equation followed by a rearrangement of the resulting governing nonlinear equation systems which are then solved using spectral methods. The velocity and temperature profiles are obtained numerically and used to generate the entropy generation number. Entropy generation increased with the Reynolds number, the magnetic parameter and the dimensionless group parameter while decreased for higher Prandtl numbers. The effect of the flow parameters on the velocity and temperature of the flow were also investigated. The results were validated using the bvp4c where the spectral relaxation method was found to be accurate and rapidly convergent to the numerical results.
Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair
Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.
Numerical study of surface water waves generated by mass movement
Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)
2013-10-01
In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity
Kinetic Alfv\\'en waves generation by large-scale phase-mixing
Vasconez, C L; Valentini, F; Servidio, S; Matthaeus, W H; Malara, F
2015-01-01
One view of the solar-wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length $d_p$ may be considered as Kinetic Alfv\\'en waves (KAWs). In the present paper, we show how phase-mixing of large-scale parallel propagating Alfv\\'en waves is an efficient mechanism for the production of KAWs at wavelengths close to $d_p$ and at large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall-Magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfv\\'en waves in inhomogeneous plasmas are performed. In linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase-mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave group velocity with analytical linear predictions. In the nonlinear regime, comparison of HMHD and HVM simulations allows to point out the role of kinetic effe...
Evaluation of polarized terahertz waves generated by Cherenkov phase matching.
Akiba, Takuya; Akimoto, Yasuhiro; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2014-03-10
We report terahertz (THz) wave generation by satisfying Cherenkov phase-matching condition in both s and p polarizations. A dual-wavelength optical parametric oscillator is constructed from two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. By rotating the orientation of both a lithium niobate crystal (LiNbO3) and the polarization of the pump waves, the polarization of the THz wave changes. Due to the difference in the refractive index and absorption, the output power for p polarization is one tenth that for s polarization. A tuning range from 0.2 to 6.5 THz is obtained for s polarization, and from 0.2 to 4.2 and 5.4 to 6.9 THz for p polarization. The extraction efficiency is improved by changing the angle of prism for p polarization, and a large phase change occurs at total internal reflection. Consequently, p-polarized THz waves are optimal for spectroscopic applications.
2006-09-01
Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman
Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments
Boldyrev, Stanislav; Perez, Jean Carlos
2013-11-29
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the
Vieira, Tárcio A; Gesualdi, Marcos R R
2013-01-01
In this paper we implement experimentally the spatial shape modelling of nondiffracting optical beams via computer generated holograms. The results reported here are the experimental confirmation of the so called Frozen Wave method, developed few years ago. Optical beams of this type can possess potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc..
Ruey-syan SHIH; Chung-ren CHOU; John Z. YIM
2004-01-01
The modeling of generation and subsequent propagation of irregular waves in a numerical wave flume is performed by mean of the boundary element method. Random waves are generated by a piston-type wave generator at one end of the flume with the Mitsuyasu-Bretschneider spectrum used as the target spectrum for the generation. An artificial absorbing beach is placed at the other end of the flume to minimize wave reflection. Surface fluctuations are described by use of the Lagrangian description, and finite difference is adopted for the approximation of time derivative. To monitor the developments of the waves, a number of pseudo wave gauges are installed along the tank. Through comparison of the spectra from those gauges with the target spectrum, satisfactory results can be obtained from the present numerical scheme.
Modeling whistler wave generation regimes in magnetospheric cyclotron maser
D. L. Pasmanik
2004-11-01
Full Text Available Numerical analysis of the model for cyclotron instability in the Earth's magnetosphere is performed. This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. A parametric study of the model is performed. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch angle distributions and its intensity. Two mechanisms of removal of energetic electrons from a generation region are considered, one is due to the particle precipitation through the loss cone and another one is related to the magnetic drift of energetic particles.
It was confirmed that two main regimes occur in this system in the presence of a constant particle source, in the case of precipitation losses. At small source intensity relaxation oscillations were found, whose parameters are in good agreement with simplified analytical theory developed earlier. At a larger source intensity, transition to a periodic generation occurs. In the case of drift losses the regime of self-sustained periodic generation regime is realized for source intensity higher than some threshold. The dependencies of repetition period and dynamic spectrum shape on the source parameters were studied in detail. In addition to simple periodic regimes, those with more complex spectral forms were found. In particular, alteration of spikes with different spectral shape can take place. It was also shown that quasi-stationary generation at the low-frequency band can coexist with periodic modulation at higher frequencies.
On the basis of the results obtained, the model for explanation of
Margheritini, Lucia
a fruitful decade. Improvement of technologies together with financial support at different levels gave space to new ideas, bringing the research to gamble on different concepts. While innumerable projects went through an initial testing phase that lasts 5-10 years, only few of them reached the sea prototype...... between ventures and private investors, and to promote an accelerated shift from a technology to a market focus. This Thesis is presented as a collection of works published by the author on her research on the Sea wave Slot cone Generator wave energy converter. These include 1 accepted and 2 submitted...... journal papers; 7 peer-reviewed conference papers. The results are based on laboratory tests, numerical simulations and feasibility studies. Research presented in this Thesis contributes to reduce the technical and non-technical risks associated to the wave energy sector and promotes accelerated shift...
Numerical study of surface water waves generated by mass movement
Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa
2013-10-01
In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\
Freak wave: prediction and its generation from phase coherence
Latifah, Arnida Laitalul
2016-01-01
The processes that lead to the appearance of an extreme wave are not unique: one extreme wave may occur due to different mechanisms than another extreme wave. This gives challenges in the study of extreme waves, which are also called ’freak’ waves, or ’rogue’ waves when they satisfy certain conditio
The 'CETO' wave power generation devices
Profitt, Michael
2007-07-01
Renewable Energy Holdings plc (REH) is an international company established to be an operator of, and undertake active investments in both proven and innovative renewable energy technologies. The CETO devices have been developed in Western Australia by Seapower Pacific PTY Ltd (SPPL), a subsidiary of Renewable Energy Holdings Plc (REH). This paper reports on the technology and also includes the findings from an independent technical appraisal undertaken by PB Power. The CETO device consists primarily of a novel pump anchored to the seabed and driven by a spherical buoyant actuator that collects wave energy and transmits it to the pump. High pressure seawater is delivered ashore where it can be used to drive a turbine to generate electricity or passed through a reverse osmosis desalination unit to produce fresh water. The competitive edge of CETO against other current wave and tidal generation devices: Electricity generated onshore (using well-proven hydro-power technology); Low cost mass produced device; Simplified infrastructure from pumping pressurised sea water ashore rather than electricity; Allows shore-based desalination; Modular design and self deployment; and, Transport in standard containers.
Penem Mohan KRISNA
2014-03-01
Full Text Available In this study, we analyze the effects of thermal radiation and chemical reaction on the steady 2 dimensional stagnation point flow of a viscous incompressible electrically conducting fluid over a stretching surface, with suction and heat generation. The partial differential equations governing the flow are solved numerically by using the shooting technique. The effects of various parameters on velocity, temperature, and concentration profiles, as well as Nusselt number, Skin friction coefficient, and Sherwood number, are examined, and presented graphically and through tables. It is found that velocity, temperature, and rate of heat transfer of the fluid are influenced more by radiation and chemical reaction parameters, along with applied magnetic field.
WEI Gang
2004-01-01
This dissertation deals with the internal waves generated by a submerged moving body in stratified fluids by combining theoretical and experimental methods. Our purpose is to provide some scientific evidences for non-acoustic detection of underwater moving bodies based on the principles of dynamics of the internal waves. An approach to velocity potentials obtained by superposing Green's functions of sources and sinks was proposed for Kelvin waves at the free surface or interface in a two-layer fluid. The effects of interacting surface- and internal-wave modes induced by a dipole on the surface divergence field were investigated. A new theoretical model formulating the interaction of a two-dimensional submerged moving body with the conjugate flow in a three-layer fluid was established. An exact solution satisfying the two-dimensional Benjamin-Ono equation was obtained and the vertically propagating properties of the weakly nonlinear long waves were studied by means of the ray theory and WKB method. The above theoretical results are qualitatively consistent with those obtained in the experiments conducted by the author.
Photonic-integrated circuit for continuous-wave THz generation.
Theurer, Michael; Göbel, Thorsten; Stanze, Dennis; Troppenz, Ute; Soares, Francisco; Grote, Norbert; Schell, Martin
2013-10-01
We demonstrate a photonic-integrated circuit for continuous-wave (cw) terahertz (THz) generation. By comprising two lasers and an optical phase modulator on a single chip, the full control of the THz signal is enabled via a unique bidirectional operation technique. Integrated heaters allow for continuous tuning of the THz frequency over 570 GHz. Applied to a coherent cw THz photomixing system operated at 1.5 μm optical wavelength, we reach a signal-to-noise ratio of 44 dB at 1.25 THz, which is identical to the performance of a standard system based on discrete components.
Proposal for generating Fock states in traveling wave fields
Benmoussa, Adil [Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, NY 10468-1589 (United States)]. E-mail: adil.benmoussa@lehman.cuny.edu; Gerry, Christopher C. [Department of Physics and Astronomy, Lehman College, The City University of New York, Bronx, NY 10468-1589 (United States)
2007-05-28
We describe a proposal for the generation of a single-mode photonic number state, |N>, in a traveling wave optical field. The state is obtained by state reduction from an input coherent state using Kerr media. Our method is based on a previous scheme used for hole burning in the Fock space by minimizing the Mandel Q parameter. The same method was used by Maia et al., but ours is different, it requires only one single photon injected in the entire setup and one photon detection at the end.
Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad
2017-05-01
The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.
Jing Zhu; Lian-Cun Zheng; Xin-Xin Zhang
2011-01-01
This letter is concerned with the plane and axisymmetric stagnation-point flows and heat transfer of an electrically-conducting fluid past a stretching sheet in the presence of the thermal radiation and heat generation or absorption. The analytical solutions for the velocity distribution and dimensionless temperature profiles are obtained for the various values of the ratio of free stream velocity and stretching velocity,heat source parameter,Prandtl number,thermal radiation parameter,the suction and injection velocity parameter and magnetic parameter and dimensionality index in the series form with the help of homotopy analysis method(HAM). Convergence of the series is explicitly discussed. In addition,shear stress and heat flux at the surface are calculated.
Parvin, Salma; Siddiqua, Ayesha
2016-07-01
Mixed convective flow and heat transfer characteristics of nanofluid inside a double lid driven cavity with a square heat generating block is analyzed numerically based on heat line approach. The water- alumina nanofluid is chosen as the operational fluid through the enclosure. The governing partial differential equations with proper boundary conditions are solved by Finite Element Method using Galerkin's weighted residual scheme. Calculations are performed for different solid volume fraction (χ) of nanoparticles 0 ≤ χ ≤ 0.15. Results are shown in terms of stream lines, isothermal lines, heat lines, average Nusselt number, average velocity and average temperature. An enhancement in heat transfer rate is observed with the increase of nanoparticles volume fraction.
Mostafa A.A. Mahmoud
2012-04-01
Full Text Available In this work, the effects of slip velocity on the flow and heat transfer for an electrically conducting micropolar fluid over a permeable stretching surface with variable heat flux in the presence of heat generation (absorption and a transverse magnetic field are investigated. The governing partial differential equations describing the problem are converted to a system of non-linear ordinary differential equations by using the similarity transformation, which is solved numerically using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and the local Nusselt number are presented graphically. The numerical results of the local skin-friction coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and discussed.
Simulations of resonant Alfvén waves generated by artificial HF heating of the auroral ionosphere
D. Pokhotelov
2004-09-01
Full Text Available Numerical two-dimensional two-fluid MHD simulations of dynamic magnetosphere-ionosphere (MI coupling have been performed to model the effects imposed on the auroral ionosphere by a powerful HF radio wave transmitter. The simulations demonstrate that modifications of the ionospheric plasma temperature and recombination due to artificial heating may trigger the ionospheric feedback instability when the coupled MI system is close to the state of marginal stability. The linear dispersion analysis of MI coupling has been performed to find the favorable conditions for marginal stability of the system. The development of the ionospheric feedback instability leads to the generation of shear waves which resonate in the magnetosphere between the heated ionospheric E-region and the strong gradient in the speed at altitudes of 1-2 R_{E}. The application of the numerical results for the explanation of observations performed by low-orbiting satellites above the high-latitude ionosphere heated with a high power ground-based HF transmitter is discussed.
Low-frequency sea waves generated by atmospheric convection cells
de Jong, M. P. C.; Battjes, J. A.
2004-01-01
The atmospheric origin of low-frequency sea waves that cause seiches in the Port of Rotterdam is investigated using hydrological and meteorological observations. These observations, combined with weather charts, show that all significant seiche events coincide with the passage of a low-pressure area and a cold front. Following these front passages, increased wind speed fluctuations occur with periods on the order of 1 hour. The records show that enhanced low-frequency wave energy at sea and the seiche events in the harbor occur more or less simultaneously with these strong wind speed fluctuations. These oscillatory wind speed changes are due to convection cells that arise in an unstable lower atmosphere in the area behind a cold front, where cold air moves over the relatively warm sea surface. It is shown that the moving system of a cold front and trailing convection cells generates forced low-frequency waves at sea that can cause seiche events inside the harbor. The occurrence of such events may be predictable operationally on the basis of a criterion for the difference in temperature between the air in the upper atmosphere and the water at the sea surface.
Impact-driven shock waves and thermonuclear neutron generation
Gus' kov, S Yu; Demchenko, N N; Doskoch, I Ya; Rozanov, V B [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); Azechi, H; Murakami, M; Sakaiya, T; Watari, T [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Zmitrenko, N V, E-mail: guskov@sci.lebedev.r [Institute for Mathematical Modeling of Russian Academy of Sciences, Moscow (Russian Federation)
2009-09-15
Impact-driven shock waves, thermonuclear plasma and neutron yield were investigated. The results of 2D numerical simulations and Gekko/HIPER laser experiments on the collision of a laser-accelerated disk-projectile with a massive target, both containing (CD){sub n}-material, are discussed. A two-temperature model of the non-equilibrium plasma created by impact-driven shock waves due to the collision of a laser-accelerated planar projectile with a massive target was developed and used for analysis of the numerical and experimental results. The model defines the characteristics of shock waves and plasmas (including their lifetime) as well as neutron yields in both the colliding objects as functions of velocity, density and mass of the projectile-impactor just before collision. The neutron yield generated during the period of laser-driven acceleration of the impactor was also determined. Two effects were discovered that exert a substantial influence on the plasma parameters and neutron yield. The first of them relates to the formation of the pre-impact state of the impactor. It decreases the projectile density due to thermal expansion of its matter through a free boundary during the period of laser-driven acceleration. The other relates to the formation of impact-produced plasma. Predominant heating of the ion component of plasma leads to the existence of a non-equilibrium two-temperature plasma during the period of electron-ion relaxation.
Tsunami wave generation by the eruption of underwater volcano
Y. Egorov
2007-01-01
Full Text Available Eruption of volcanoes represents one of important origins of tsunami waves and is responsible for most catastrophic tsunami (Krakatau, 1883; Thira, BC. The products of volcano eruption include solids, liquids (lava and gases. The present article presents hydrodynamic model of relatively slow process of eruption, with domination of liquids. The process of underwater eruption of lava causes the disturbance of ocean free surface. The standard formulation of hydrodynamic problem for incompressible fluid in cylindrically symmetric layer of with rigid bottom and free surface with local hydrodynamic source (volcano is used. This problem is solved by constructing Green function using methodology of Sretenskij. The solution is obtained in the form of an integral and depends on the dynamics of eruption. Real data show that some volcanoes can erupt several millions of tons of lava during several dozens of seconds (Bezimjannij, Kamchatka. The long waves are more efficiently generated by larger T: these tsunamis can have smaller initial perturbations of free surface, but the waves are long and can transmit their energy over longer distances.
Analogue Kerr-like geometries in a MHD inflow
Noda, Sousuke; Takahashi, Masaaki
2016-01-01
We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.
A Xylophone Configuration for a third Generation Gravitational Wave Detector
Hild, Stefan; Freise, Andreas; Franc, Janyce; Morgado, Nazario; Flaminio, Raffaele; DeSalvo, Riccardo
2009-01-01
Achieving the demanding sensitivity and bandwidth, envisaged for third generation gravitational wave (GW) observatories, is extremely challenging with a single broadband interferometer. Very high optical powers (Megawatts) are required to reduce the quantum noise contribution at high frequencies, while the interferometer mirrors have to be cooled to cryogenic temperatures in order to reduce thermal noise sources at low frequencies. To resolve this potential conflict of cryogenic test masses with high thermal load, we present a conceptual design for a 2-band xylophone configuration for a third generation GW observatory, composed of a high-power, high-frequency interferometer and a cryogenic low-power, low-frequency instrument. Featuring inspiral ranges of 3200Mpc and 38000Mpc for binary neutron stars and binary black holes coalesences, respectively, we find that the potential sensitivity of xylophone configurations can be significantly wider and better than what is possible in a single broadband interferometer...
MHD control in burning plasmas MHD control in burning plasmas
Donné, Tony; Liang, Yunfeng
2012-07-01
Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge
Sediment gravity flows triggered by remotely generated earthquake waves
Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie
2017-01-01
Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.
Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu
2016-09-01
We clarify the relation between second harmonic wave (SH wave) and plasma generation in various experimental conditions by detecting properties of propagating electromagnetic waves (EM waves). Plasma has a nonlinear reaction against EM wave, generating harmonic waves which depends on electron density ne. In the case with increased ne, EM wave comes to be prevented from going into plasma with negative permittivity ɛp. Double-split-ring resonators (DSRRs), one of metamaterials, make permeability μD negative. We have shown that EM wave being volume wave can propagate into the combination of overdense plasma and DSRRs because of real negative value refractive index N. In our previous paper, we have confirmed enhanced SH wave (4.9 GHz) generation in the composite with 2.45-GHz input. In this report, we show the dependence of the SH wave emission with plasma generation on plasma parameters and gas conditions of plasma. Furthermore, we show the phase change with N variation of the composite space in the case with various input power as the proof of the negative index state.
Imbert-Gérard Lise-Marie
2011-11-01
Full Text Available We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas semi-implicit diffusion operators have been developed for the thermal and resistive conduction equations. Source terms are treated explictly. Numerical results on the deceleration phase of an ICF implosion test problem are proposed, a benchmark which was initially proposed in [2]. Nous proposons dans cet article des méthodes numériques pour les équations de la magnétohydrodynamique résistive à deux températures avec champ magnétique auto-généré et relations de fermeture de Braginskii [1] en géométrie 2-D axisymétrique sur maillage cartésien. Celles-ci sont basées sur une décomposition du système complet selon la nature des opérateurs mathématiques sous-jacents. La partie hyperbolique est résolue par des schémas conservatifs Lagrange-projection d’ordre élevé en directions alternées tandis que des opérateurs de diffusion semi-implicites ont été développés pour les équations de conduction thermique et résistive. Les termes sources sont traités de manière explicite. Des résultats numériques sur un cas-test simulant la phase de décélération d’une implosion de capsule FCI sont proposés, ce benchmark ayant été initialement présenté dans [2].
Technical Background Material for the Wave Generation Software AwaSys 5
Frigaard, Peter; Andersen, Thomas Lykke
"Les Appareils Generateurs de Houle en Laboratorie" presented by Bi¶esel and Suquet in 1951 discussed and solved the analytical problems concerning a number of di®erent wave generator types. For each wave maker type the paper presented the transfer function between wave maker displacement and wave...
Waves and runup generated by a three dimensional sliding mass
Raichlen, F.; Synolakis, C. E.
2003-04-01
This investigation is directed to a better understanding of the water waves generated by partially aerial and submarine landslides. Such landslides may generate sizeable onshore and offshore propagating waves; the former leading to significant danger of coastal inundation with little warning time. We have conducted “small-scale” three-dimensional experiments in a wave tank 38 cm wide with a slope (1:2.08) constructed at one end to represent the near-shore region. A triangular shaped lead block with a horizontal length of 18 cm, a 9 cm high front-face and a width of 5 cm was used to represent a landslide. The block was released from rest abruptly moving down-slope by gravity. Water surface-time histories were obtained in front of and to the side of the at-rest position of the wedge. The data obtained, along with high speed videos, were useful, but it is only with an investigation conducted at a large enough size to reduce scale effects that reliable data can be obtained to confirm numerical models which are used to establish coastal inundation limits and to define the run-up relative to a range of important parameters of the problem. Large scale experiments were conducted in a wave tank with a length 104 m, width 3.7 m, and depth 4.6 m and with a plane slope (1:2) located at one end. A freely sliding wedge with a horizontal length of 91 cm, a vertical face 46 cm high and a width of 61 cm was used to represent the landslide. The wedge was instrumented with an accelerometer and a position indicator, and its initial position (with varied mass and two different orientations) ranged from totally aerial to fully submerged. The surrounding water surface variation and the run-up time histories were measured electronically. The results provide a carefully obtained set of data conducted at a scale which minimizes viscous and capillary effects. These experimental data are compared to numerical models which define the run-up based on: (1) a given initial instantaneous
Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models
Christensen, Morten
Methods for mechanical generation of 2-dimensional (2-D) and 3-dimensional (3-D) linear water waves in physical models are presented. The results of a series of laboratory 3-D wave generation tests are presented and discussed. The tests preformed involve reproduction of wave fields characterised...
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
Design and Analysis of Tubular Permanent Magnet Linear Wave Generator
Jikai Si
2014-01-01
Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Design and analysis of tubular permanent magnet linear wave generator.
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
Harmonic Generation in a Traveling-Wave Tube
Wong, Patrick; Zhang, Peng; Lau, Y. Y.; Greening, Geoffrey; Gilgenbach, Ronald; Chernin, David; Simon, David; Hoff, Brad
2016-10-01
Crowding of electron orbits in a traveling-wave tube (TWT) may lead to significant harmonic contents in the beam current, even in the linear regime. Here, we consider a wideband TWT that exhibits gain at the second harmonic. We analytically formulate equations governing the evolution of the generation of second harmonic, including axial variations of the Pierce parameters. The second harmonic output is phase-controlled by the input signal which consists only of a fundamental frequency. Several test cases are performed and compared with simulation using the CHRISTINE code. Reasonable agreement between theory and simulation is found. Work supported by AFOSR FA9550-15-1-0097, ONR N00014-16-1-2353, and L-3 Communications Electron Device Division.
The fourth-generation Water Vapor Millimeter-Wave Spectrometer
Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart
2012-02-01
For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.
Semiclassical-wave-function perspective on high-harmonic generation
Mauger, François; Abanador, Paul M.; Lopata, Kenneth; Schafer, Kenneth J.; Gaarde, Mette B.
2016-04-01
We introduce a semiclassical-wave-function (SCWF) model for strong-field physics and attosecond science. When applied to high-harmonic generation (HHG), this formalism allows one to show that the natural time-domain separation of the contribution of ionization, propagation, and recollisions to the HHG process leads to a frequency-domain factorization of the harmonic yield into these same contributions, for any choice of atomic or molecular potential. We first derive the factorization from the natural expression of the dipole signal in the temporal domain by using a reference system, as in the quantitative rescattering (QRS) formalism [J. Phys. B 43, 122001 (2010), 10.1088/0953-4075/43/12/122001]. Alternatively, we show how the trajectory component of the SCWF can be used to express the factorization, which also allows one to attribute individual contributions to the spectrum to the underlying trajectories.
Broadband detuned Sagnac interferometer for future generation gravitational wave astronomy
Voronchev, N V; Danilishin, S L
2015-01-01
Broadband suppression of quantum noise below the Standard Quantum Limit (SQL) becomes a top-priority problem for the future generation of large-scale terrestrial detectors of gravitational waves, as the interferometers of the Advanced LIGO project, predesigned to be quantum-noise-limited in the almost entire detection band, are phased in. To this end, among various proposed methods of quantum noise suppression or signal amplification, the most elaborate approach implies a so-called *xylophone* configuration of two Michelson interferometers, each optimised for its own frequency band, with a combined broadband sensitivity well below the SQL. Albeit ingenious, it is a rather costly solution. We demonstrate that changing the optical scheme to a Sagnac interferometer with weak detuned signal recycling and frequency dependent input squeezing can do almost as good a job, as the xylophone for significantly lower spend. We also show that the Sagnac interferometer is more robust to optical loss in filter cavity, used f...
Superconducting magnet system for an experimental disk MHD facility
Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.
1991-01-01
A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.
Modeling Extreme Solar Energetic Particle Acceleration with Self-Consistent Wave Generation
Arthur, A. D.; le Roux, J. A.
2015-12-01
Observations of extreme solar energetic particle (SEP) events associated with coronal mass ejection driven shocks have detected particle energies up to a few GeV at 1 AU within the first ~10 minutes to 1 hour of shock acceleration. Whether or not acceleration by a single shock is sufficient in these events or if some combination of multiple shocks or solar flares is required is currently not well understood. Furthermore, the observed onset times of the extreme SEP events place the shock in the corona when the particles escape upstream. We have updated our focused transport theory model that has successfully been applied to the termination shock and traveling interplanetary shocks in the past to investigate extreme SEP acceleration in the solar corona. This model solves the time-dependent Focused Transport Equation including particle preheating due to the cross shock electric field and the divergence, adiabatic compression, and acceleration of the solar wind flow. Diffusive shock acceleration of SEPs is included via the first-order Fermi mechanism for parallel shocks. To investigate the effects of the solar corona on the acceleration of SEPs, we have included an empirical model for the plasma number density, temperature, and velocity. The shock acceleration process becomes highly time-dependent due to the rapid variation of these coronal properties with heliocentric distance. Additionally, particle interaction with MHD wave turbulence is modeled in terms of gyroresonant interactions with parallel propagating Alfven waves. However, previous modeling efforts suggest that the background amplitude of the solar wind turbulence is not sufficient to accelerate SEPs to extreme energies over the short time scales observed. To account for this, we have included the transport and self-consistent amplification of MHD waves by the SEPs through wave-particle gyroresonance. We will present the results of this extended model for a single fast quasi-parallel CME driven shock in the
Schnack, Dalton D.
In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.
Long, S. R.; Huang, N. E.
1976-01-01
Laboratory measurements utilizing a laser probe are made for the slopes of wind waves generated on both positive and negative currents at different values of fetch. The data are then processed electronically to yield an average wave-slope spectrum in frequency space with 128 degrees of freedom. These spectra are used to obtain the growth of the spectral components at various frequency bands for increasing wind and different values of fetch and current. The results indicate that the growth of these components is not monotonic with the frictional wind speed, but rather exhibits an 'overshoot' phenomena at lower values of frictional wind speed, and in addition, displays a significant effect due to current. The peak location and spectral intensity of the spectra also show strong influence by the current condition. This results in the rms surface slope value increasing with negative current and decreasing with positive current. The results agree qualitatively with some theoretical predictions. The potential use of the current-induced effects as a means for remote sensing of ocean current is also briefly discussed.
Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari
2001-01-01
We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent
Generation of ramp waves using variable areal density flyers
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2016-07-01
Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
Nguyen, Vu A.; Palo, Scott E.; Lieberman, Ruth S.; Forbes, Jeffrey M.; Ortland, David A.; Siskind, David E.
2016-07-01
Theory and past observations have provided evidence that atmospheric tides and other global-scale waves interact nonlinearly to produce additional secondary waves throughout the space-atmosphere interaction region. However, few studies have investigated the generation region of nonlinearly generated secondary waves, and as a result, the manifestation and impacts of these waves are still poorly understood. This study focuses on the nonlinear interaction between the quasi 2 day wave (2dayW3) and the migrating diurnal tide (DW1), two of the largest global-scale waves in the atmosphere. The fundamental goals of this effort are to characterize the forcing region of the secondary waves and to understand how it relates to their manifestation on a global scale. First, the Fast Fourier Synoptic Mapping method is applied to Thermosphere Ionosphere Mesosphere Energetics and Dynamics-Sounding of the Atmosphere using Broadband Emission Radiometry satellite observations to provide new evidence of secondary waves. These results show that secondary waves are only significant above 80 km. The nonlinear forcing for each secondary wave is then computed by extracting short-term primary wave information from a reanalysis model. The estimated nonlinear forcing quantities are used to force a linearized tidal model in order to calculate numerical secondary wave responses. Model results show that the secondary waves are significant from the upper mesosphere to the middle thermosphere, highlighting the implications for the atmosphere-space weather coupling. The study also concludes that the secondary wave response is most sensitive to the nonlinear forcing occurring in the lower and middle mesosphere and not coincident with the regions of strongest nonlinear forcing.
Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)
1981-05-01
An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.
Comparison between wave generation methods for numerical simulation of bimodal seas
Daniel A. Thompson
2016-01-01
Full Text Available This paper describes an investigation of the generation of desired sea states in a numerical wave model. Bimodal sea states containing energetic swell components can be coastal hazards along coastlines exposed to large oceanic fetches. Investigating the effects of long-period bimodal seas requires large computational domains and increased running time to ensure the development of the desired sea state. Long computational runs can cause mass stability issues due to the Stokes drift and wave reflection, which in turn affect results through the variation of the water level. A numerical wave flume, NEWRANS, was used to investigate two wave generation methods: the wave paddle method, allowing for a smaller domain; and the internal mass source function method, providing an open boundary allowing reflected waves to leave the domain. The two wave generation methods were validated against experimental data by comparing the wave generation accuracy and the variance of mass in the model during simulations. Results show that the wave paddle method not only accurately generates the desired sea state but also provides a more stable simulation, in which mass fluctuation has less of an effect on the water depth during the long-duration simulations. As a result, it is suggested that the wave paddle method with active wave absorption is preferable to the internal wave maker option when investigating intermediate-depth long-period bimodal seas for long-duration simulations.
Davies, Jonathan; Barnak, Daniel; Betti, Riccardo; Carreon, Adam; Chang, Po-Yu; Fiksel, Gennady
2014-10-01
The observation of coherent helical structures in liner implosions on Z when an axial magnetic field more than 100 times smaller than the azimuthal field is added has yet to be adequately explained. The results have been reproduced in a 3D MHD code by initializing helices on the outer surface, but this produces helices independently of the axial magnetic field. We present the hypothesis that helices are seeded by self-generated magnetic field, which adds a driving term to the dispersion relation for magneto-acoustic waves when there is a temperature gradient perpendicular to the fluid motion. The key feature of this instability is that it is stable when magnetic pressure exceeds a fraction of the thermal pressure, therefore, instability driven by the helical field resulting from the combination of the initial axial field and the growing azimuthal field will stabilize before the net field has a small pitch angle and before the implosion starts, seeding helices on the surface. This work was supported by the Department of Energy National Nuclear Security Administration, Award Number DE-NA0001944, and the Fusion Science Center supported by the Office of Fusion Energy Sciences, Number DE-FG02-04ER54786.
Musielak, Z. E.; Rosner, R.; Ulmschneider, P.
1989-01-01
The source functions and the energy fluxes for wave generation in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and compressible fluid are derived. The calculations presented here assume that the tube interior is not itself turbulent, e.g., that motions within the flux tube are due simply to external excitation. Specific results for the generation of longitudinal tube waves are presented.
Mechanisms of sharp wave initiation and ripple generation.
Schlingloff, Dániel; Káli, Szabolcs; Freund, Tamás F; Hájos, Norbert; Gulyás, Attila I
2014-08-20
Replay of neuronal activity during hippocampal sharp wave-ripples (SWRs) is essential in memory formation. To understand the mechanisms underlying the initiation of irregularly occurring SWRs and the generation of periodic ripples, we selectively manipulated different components of the CA3 network in mouse hippocampal slices. We recorded EPSCs and IPSCs to examine the buildup of neuronal activity preceding SWRs and analyzed the distribution of time intervals between subsequent SWR events. Our results suggest that SWRs are initiated through a combined refractory and stochastic mechanism. SWRs initiate when firing in a set of spontaneously active pyramidal cells triggers a gradual, exponential buildup of activity in the recurrent CA3 network. We showed that this tonic excitatory envelope drives reciprocally connected parvalbumin-positive basket cells, which start ripple-frequency spiking that is phase-locked through reciprocal inhibition. The synchronized GABA(A) receptor-mediated currents give rise to a major component of the ripple-frequency oscillation in the local field potential and organize the phase-locked spiking of pyramidal cells. Optogenetic stimulation of parvalbumin-positive cells evoked full SWRs and EPSC sequences in pyramidal cells. Even with excitation blocked, tonic driving of parvalbumin-positive cells evoked ripple oscillations. Conversely, optogenetic silencing of parvalbumin-positive cells interrupted the SWRs or inhibited their occurrence. Local drug applications and modeling experiments confirmed that the activity of parvalbumin-positive perisomatic inhibitory neurons is both necessary and sufficient for ripple-frequency current and rhythm generation. These interneurons are thus essential in organizing pyramidal cell activity not only during gamma oscillation, but, in a different configuration, during SWRs.
Afanasyev, A. N.; Uralov, A. M.
2012-10-01
We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.
Afanasyev, Andrey N
2012-01-01
We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.
Generation of whistler-wave heated discharges with planar resonant RF networks.
Guittienne, Ph; Howling, A A; Hollenstein, Ch
2013-09-20
Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.
Finite volume methods for submarine debris flows and generated waves
Kim, Jihwan; Løvholt, Finn; Issler, Dieter
2016-04-01
Submarine landslides can impose great danger to the underwater structures and generate destructive tsunamis. Submarine debris flows often behave like visco-plastic materials, and the Herschel-Bulkley rheological model is known to be appropriate for describing the motion. In this work, we develop numerical schemes for the visco-plastic debris flows using finite volume methods in Eulerian coordinates with two horizontal dimensions. We provide parameter sensitivity analysis and demonstrate how common ad-hoc assumptions such as including a minimum shear layer depth influence the modeling of the landslide dynamics. Hydrodynamic resistance forces, hydroplaning, and remolding are all crucial terms for underwater landslides, and are hence added into the numerical formulation. The landslide deformation is coupled to the water column and simulated in the Clawpack framework. For the propagation of the tsunamis, the shallow water equations and the Boussinesq-type equations are employed to observe how important the wave dispersion is. Finally, two cases in central Norway, i.e. the subaerial quick clay landslide at Byneset in 2012, and the submerged tsunamigenic Statland landslide in 2014, are both presented for validation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).
a Low Cost Pressure Wave Generator Using Diaphragms
Caughley, A. J.; Haywood, D. J.; Wang, C.
2008-03-01
The high cost of Pressure Wave Generators (PWGs) is a major barrier to the more widespread use of high-efficiency pulse tube and Stirling cryocoolers. This paper describes the development and testing of a low-cost industrial-style PWG which employs metal diaphragms. The use of diaphragms removes the need for rubbing or clearance seals, and eliminates contamination problems by hermetically separating the gas circuit and the lubricated driving mechanism. A conventional low-cost electric motor is used for power input, via a novel high-efficiency kinematic linkage. A first prototype of the diaphragm PWG produced 3.2 kW of PV power with a measured electro-acoustic efficiency of 72%. Accelerated testing predicts a diaphragm life time in excess of 40,000 hours. An additional advantage of the use of diaphragms is the ability to directly cool the gas in the compression space. This eliminates or significantly reduces the requirement for an after cooler, and further decreases the cost of the whole cryocooler system. A pulse tube cryocooler has been successfully run at Industrial Research Ltd to 59K with the diaphragm PWG and no aftercooler. Another pulse tube cryocooler with the diaphragm PWG is undergoing development at Cryomech, the results of which will be given in another presentation.
Ramamoorthy MUTHURAJ
2013-07-01
Full Text Available This paper investigates the magnetohydrodynamic (MHD mixed convective heat and mass transfer flow in a vertical wavy porous space in the presence of a heat source with the combined effects of chemical reaction and wall slip condition. The dimensionless governing equations are perturbed into: mean (zeroth-order part and a perturbed part, using amplitude as a small parameter. The perturbed quantities are obtained by perturbation series expansion for small wavelength in which terms of exponential order arise. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, magnetic field, porous medium, heat source/sink parameter and wall slip condition. Further, the results of the skin friction and rate of heat and mass transfer at the wall are presented for various values of parameters entering into the problem and discussed with the help of graphs.
Generation and detection of whistler wave induced space plasma turbulence at Gakona, Alaska
Rooker, L. A.; Lee, M. C.; Pradipta, R.; Watkins, B. J.
2013-07-01
We report on high-frequency wave injection experiments using the beat wave technique to study the generation of very-low-frequency (VLF) whistler waves in the ionosphere above Gakona, Alaska. This work is aimed at investigating whistler wave interactions with ionospheric plasmas and radiation belts. The beat wave technique involves injecting two X-mode waves at a difference frequency in the VLF range using the High-frequency Active Auroral Research Program (HAARP) heating facility. A sequence of beat wave-generated whistler waves at 2, 6.5, 7.5, 8.5, 9.5, 11.5, 15.5, 22.5, 28.5 and 40.5 kHz were detected in our 2011 experiments. We present Modular Ultra-high-frequency Ionospheric Radar (MUIR) (446 MHz) measurements of ion lines as the primary diagnosis of ionospheric plasma effects caused by beat wave-generated whistler waves. A magnetometer and digisonde were used to monitor the background ionospheric plasma conditions throughout the experiments. Our theoretical and data analyses show that VLF whistler waves can effectively interact with ionospheric plasmas via two different four-wave interaction processes leading to energization of electrons and ions. These preliminary results support our Arecibo experiments to study NAU-launched 40.75 kHz whistler wave interactions with space plasmas.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.
2015-12-01
We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
Gonzalez-Aviles, J J; Lora-Clavijo, F D; Guzman, F S
2015-01-01
We present a new code designed to solve the equations of classical ideal magneto-hydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvenic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Cienfuegos, R.; Duarte, L.; Hernandez, E.
2008-12-01
Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are
Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow
Dimitrov, Z D; Hristov, T S; Mishonov, T M
2011-01-01
We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation
2002-01-01
The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the......The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase......-modulation of the present invention is performed by generating an amplitude modulation in the wave front, Fourier or Fresnel transforming the amplitude modulated wave front, filtering Fourier or Fresnel components of the Fourier or Fresnel distribution with a spatial filter such as a phase contrast filter, and regenerating...... the wave front whereby the initial amplitude modulation has transformed into a phase-modulation....
Active Ionospheric Generation of ELF/VLF Waves.
1985-08-15
extensions. 2. NONLINEAR INTERACTION OF TWO HF WAVE PACKETS WITH AN ELF WAVE IN THE LOWER IONOSPHERE We assume first that the two interactins hish... matter , besides its intrinsic scientific merit, has a broad spectrum of applications, ransins from ionospheric and magnetospheric probing to low...initial wave envelopes are rectansular and the decay waves have small amplitudes; specifically, we let 1a 2 1/1aL=O.O1, la 3 l=O.0. Because we have in mind
The third generation of gravitational wave observatories and their science reach
Punturo, M; Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Abernathy, M; Barr, B; Beveridge, N [Department of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Allen, B [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Andersson, N [University of Southampton, Southampton s0171BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Chassande Mottin, E [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris-Universite Denis Diderot-Paris VII (France); Beker, M [VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (Netherlands); Birindelli, S [Universite Nice-Sophia-Antipolis, CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: michele.punturo@pg.infn.i [Astro. Obs. Warsaw Univ. 00-478, CAMK-PAM 00-716 Warsaw (Poland) and Bialystok Univ. 15-424, IPJ 05-400 Swierk-Otwock (PL); Inst. of Astronomy 65-265 Zielona Gora (Poland)
2010-04-21
Large gravitational wave interferometric detectors, like Virgo and LIGO, demonstrated the capability to reach their design sensitivity, but to transform these machines into an effective observational instrument for gravitational wave astronomy a large improvement in sensitivity is required. Advanced detectors in the near future and third-generation observatories in more than one decade will open the possibility to perform gravitational wave astronomical observations from the Earth. An overview of the possible science reaches and the technological progress needed to realize a third-generation observatory are discussed in this paper. The status of the project Einstein Telescope (ET), a design study of a third-generation gravitational wave observatory, will be reported.
Chang, C. L.; Lipatov, A. S.; Drobot, A. T.; Papadopoulos, K.; Satya-Narayana, P.
1994-01-01
The dynamic response of a magnetized collisionless plasma to an externally driven, finite size, sudden switch-on current source across the magnetic field has been studied using a two dimensional hybrid code. It was found that the predominant plasma response was the excitation of whistler waves and the formation of current closure by induced currents in the plasma. The results show that the current closure path consists of: (a) two antiparallel field-aligned current channels at the end of the imposed current sheet; and (b) a cross-field current region connecting these channels. The formation of the current closure path occured in the whistler timescale much shorter than that of MHD and the closure region expanded continuously in time. The current closure process was accompanied by significant energy loss due to whistler radiation.
An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves
2006-11-02
AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska
Muthuraj R.
2012-01-01
Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.
An irregular wave generating approach based on naoe-FOAM-SJTU solver
Shen, Zhi-rong; Wan, De-cheng
2016-04-01
In this paper, a wave generating approach for long-crest irregular waves in a numerical tank by our in-house solver naoe-FOAM-SJTU is presented. The naoe-FOAM-SJTU solver is developed using an open source tool kit, OpenFOAM. Reynolds-averaged Navier-Stokes (RANS) equations are chosen as governing equations and the volume of fluid (VOF) is employed to capture the two phases interface. Incoming wave group is generated by imposing the boundary conditions of the tank inlet. A spectrum based correction procedure is developed to make the measured spectrum approaching to the target spectrum. This procedure can automatically adjust the wave generation signal based on the measured wave elevation by wave height probe in numerical wave tank. After 3 to 4 iterations, the measured spectrum agrees well with the target one. In order to validate this method, several wave spectra are chosen and validated in the numerical wave tank, with comparison between the final measured and target spectra. In order to investigate a practical situation, a modified Wigley hull is placed in the wave tank with incoming irregular waves. The wave-induced heave and pitch motions are treated by Fourier analysis to obtain motion responses, showing good agreements with the measurements.
Sea breeze generated waves on the coast of Varna
Verhagen, H.J.
2000-01-01
For the determination of the stability of coastlines, coastal erosion and the design of erosion protection studies, the “local” wave climate is the most important input parameter. For morphology, “local” means just outside the breaker line. On relatively calm days the local wave climate is strongly
Laboratory Modeling of Internal Wave Generation in Straits
2013-09-30
nonlinearity we assume the waves to be governed by a weakly nonlinear, KdV -like equation. The nonlinearity of the wave field is assessed by the ratio ζ/H...the rotationally- modified KdV equation. Figure 1: (a) Colormap of the east-west velocity in the isopycnal plane at z = -0.04m at an instant of
Sea breeze generated waves on the coast of Varna
Verhagen, H.J.
2000-01-01
For the determination of the stability of coastlines, coastal erosion and the design of erosion protection studies, the “local” wave climate is the most important input parameter. For morphology, “local” means just outside the breaker line. On relatively calm days the local wave climate is strongly
Unsteady MHD free convective flow past a vertical porous plate ...
user
2000 Mathematics subject classification: 76 W 05. Keywords: Free ... the design of MHD generators and accelerators, underground water energy storage system etc. ... In many works on plasma physics, the Hall effect is disregarded. But if the.
Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath
Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats
2016-01-01
Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab "pump" the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in ...
Inner Magnetosphere Simulations: Exploring Magnetosonic Wave Generation Conditions
Zaharia, S. G.; Jordanova, V. K.; MacDonald, E.; Thomsen, M. F.
2012-12-01
We investigate the conditions for magnetosonic wave generation in the near-Earth magnetosphere by performing numerical simulations with our newly improved self-consistent model, RAM-SCB. The magnetosonic (ion Bernstein) instability, a potential electron acceleration mechanism in the outer radiation belt, is driven by a positive slope in the ion distribution function perpendicular to the magnetic field, a so-called "velocity ring" distribution at energies above 1 keV. The formation of such distributions is dependent on the interplay of magnetic and electric drifts, as well as ring current losses, and therefore its study requires a realistic treatment of both plasma and field dynamics. The RAM-SCB model represents a 2-way coupling of the kinetic ring current-atmosphere interactions model (RAM) with a 3D plasma equilibrium code. In RAM-SCB the magnetic field is computed in force balance with the RAM anisotropic pressures and then returned to RAM to guide the particle dynamics. RAM-SCB thus properly treats both the kinetic drift physics crucial in the inner magnetosphere and the self-consistent interaction between plasma and magnetic field (required due to the strong field depressions during storms, depressions that strongly affect particle drifts). In order to provide output at geosynchronous locations, recently the RAM-SCB boundary has been expanded to 9 RE from Earth, with plasma pressure and magnetic field boundary conditions prescribed there from empirical models. This presentation will analyze, using event simulations with the improved model and comparisons with LANL MPA geosynchronous observations, the occurrence and location of magnetosonic unstable regions in the inner magnetosphere and their dependence on the following factors: 1). geomagnetic activity level (including quiet time, storm main phase and recovery); 2). magnetic field self-consistency (stretched vs. dipole fields). We will also discuss the physical mechanism for the occurrence of the velocity
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Probing Saturn's ion cyclotron waves on high-inclination orbits: Lessons for wave generation
Leisner, J. S.; Russell, C. T.; Wei, H. Y.; Dougherty, M. K.
2011-09-01
Ion cyclotron waves have been observed at Saturn by all spacecraft that passed through the inner magnetosphere near the equatorial plane, typically from slightly inside Enceladus' orbit to outside of Dione's. In 2005 and 2006, the Cassini spacecraft made high-inclination crossings of the equatorial plane in this region. The magnetometer observed that the waves were characteristically not uniform with distance from the equatorial plane. Instead, waves with weak and constant amplitude were observed in a small region around the magnetic equator where they propagated bidirectionally. Above and below that plane, the wave amplitude varied strongly, and the wave propagated away from the equator. We draw comparisons between these waves and those at the Earth and ion cyclotron waves associated with neutral sources in the Jovian magnetosphere. These behaviors may be common and should be considered when using the wave amplitude to infer the neutral ionization rates at Saturn, in other planetary magnetospheres, and at bodies in the solar wind.
Matsumoto, Takuma
2011-01-01
We report the results of the first two-dimensional self-consistent simulations directly covering from the photosphere to the interplanetary space. We carefully set up grid points with spherical coordinate to treat Alfv\\'enic waves in the atmosphere with the huge density contrast, and successfully simulate hot coronal wind streaming out as a result of surface convective motion. Footpoint motion excites upwardly propagating Alfv\\'enic waves along an open magnetic flux tube. These waves, traveling in non-uniform medium, suffer reflection, nonlinear mode conversion to compressive modes, and turbulent cascade. Combination of these mechanisms, the Alfv\\'enic waves eventually dissipate to accelerate the solar wind. While the shock heating by the dissipation of the compressive wave plays a primary role in the coronal heating, both turbulent cascade and shock heating contribute to drive the solar wind.
Clauss, Günther; Klein, Marco
2010-05-01
In the past years the existence of freak waves has been affirmed by observations, registrations, and severe accidents. One of the famous real world registrations is the so called 'New Year wave,' recorded in the North Sea at the Draupner jacket platform on January 1st, 1995. Since there is only a single point registration available, it is not possible to draw conclusions on the spatial development in front of and behind the point of registration, which is indispensable for a complete understanding of this phenomenon. This paper presents the temporal and spatial development of the New Year Wave generated in a model basin. To simulate the recorded New Year wave in the wave tank, an optimization approach for the experimental generation of wave sequences with predefined characteristics is used. The method is applied to generate scenarios with a single high wave superimposed to irregular seas. During the experimental optimization special emphasis is laid on the exact reproduction of the wave height, crest height, wave period, as well as the vertical and horizontal asymmetries of the New Year Wave. The fully automated optimization process is carried out in a small wave tank. At the beginning of the optimization process, the scaled real-sea measured sea state is transformed back to the position of the piston type wave generator by means of linear wave theory and by multiplication with the electrical and hydrodynamic transfer functions in the frequency domain. As a result a preliminary control signal for the wave generator is obtained. Due to nonlinear effects in the wave tank, the registration of the freak wave at the target position generated by this preliminary control signal deviates from the predefined target parameters. To improve the target wave in the tank only a short section of the control signal in time domain has to be adapted. For these temporally limited local changes in the control signal, the discrete wavelet transformation is introduced into the
1986-11-01
Linear MHD Generator ......... . 15 5. Liquid Fuel Linear MHD Generator ....... . 15 6. MHD Disk Generator Experiment .......... .. 20 7. Swirl Ratio (K...Swirl Vanes ...... ............. . 46 17. Current Loop Estimation of MHD Magnet ..... . 46 v %J List of Tables Table Page I. Summary of MHD Disk Generator Design...linear generators, 10 -q tqople I JI . Catbde Anode ,. outlet Inlet Fig. 3. MHD Disk Generator Adapted from (26:1506) ~ r 1V ~w :%*.:%V
Capillary-Gravity Waves Generated by a Sudden Object Motion
Closa, Fabien; Raphael, Elie
2010-01-01
We study theoretically the capillary-gravity waves created at the water-air interface by a small object during a sudden accelerated or decelerated rectilinear motion. We analyze the wave resistance corresponding to the transient wave pattern and show that it is nonzero even if the involved velocity (the final one in the accelerated case, the initial one in the decelerated case) is smaller than the minimum phase velocity $c_{min}=23 \\mathrm{cm s^{-1}}$. These results might be important for a better understanding of the propulsion of water-walking insects where accelerated and decelerated motions frequently occur.
Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate
Xiang Yan-Xun; Deng Ming-Xi
2008-01-01
The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface.In general,the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur.However,the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied.Through boundary condition and initial condition of excitation,the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined.Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.
Zhang, Zhenggang; Liu, Dan; Deng, Mingxi; Ta, Dean; Wang, Weiqi
2014-07-01
The experimental observation of cumulative second-harmonic generation of fundamental Lamb waves in long bones is reported. Based on the modal expansion approach to waveguide excitation and the dispersion characteristics of Lamb waves in long bones, the mechanism underlying the generation and accumulation of second harmonics by propagation of the fundamental Lamb waves was investigated. An experimental setup was established to detect the second-harmonic signals of Lamb wave propagation in long bones in vitro. Through analysis of the group velocities of the received signals, the appropriate fundamental Lamb wave modes and the duration of the second-harmonic signals could be identified. The integrated amplitude of the time-domain second-harmonic signal was introduced and used to characterize the efficiency of second-harmonic generation by fundamental Lamb wave propagation. The results indicate that the second-harmonic signal generated by fundamental Lamb waves propagating in long bones can be observed clearly, and the effect was cumulative with propagation distance when the fundamental Lamb wave mode and the double-frequency Lamb wave mode had the same phase velocities. The present results may be important in the development of a new method to evaluate the status of long bones using the cumulative second harmonic of ultrasonic Lamb waves.
The Generation of Coronal Loop Waves below the Photosphere by p-Mode Forcing
Hindman, Bradley W
2008-01-01
Recent observations of coronal-loop waves by TRACE and within the corona as a whole by CoMP clearly indicate that the dominant oscillation period is 5 minutes, thus implicating the solar p modes as a possible source. We investigate the generation of tube waves within the solar convection zone by the buffeting of p modes. The tube waves--in the form of longitudinal sausage waves and transverse kink waves--are generated on the many magnetic fibrils that lace the convection zone and pierce the solar photosphere. Once generated by p-mode forcing, the tube waves freely propagate up and down the tubes, since the tubes act like light fibers and form a waveguide for these magnetosonic waves. Those waves that propagate upward pass through the photosphere and enter the upper atmosphere where they can be measured as loop oscillations and other forms of propagating coronal waves. We treat the magnetic fibrils as vertically aligned, thin flux tubes and compute the energy flux of tube waves that can generated and driven in...
Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges
刘科伟; 李萧翰; 李夕兵; 姚志华; 舒宗宪; 袁明华
2016-01-01
A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation (V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.
A demo device for new approach of wave power generation
无
2009-01-01
@@ In cooperation with Chuanshiyu Machinery Co., Ltd., researchers with the CAS Institute of Electrical Engineering (IEE) have worked out a demonstration device that employs a novel approach to converting the energy harbored by sea waves into electricity.
Soler, Roberto; Terradas, Jaume, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)
2015-04-10
Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.
Active fiber composites for the generation of Lamb waves.
Birchmeier, M; Gsell, D; Juon, M; Brunner, A J; Paradies, R; Dual, J
2009-01-01
Active fiber composites (AFC) are thin and conformable transducer elements with orthotropic material properties, since they are made of one layer of piezoelectric ceramic fibers. They are suitable for applications in structural health monitoring systems (SHM) with acoustic non-destructive testing methods (NDT). In the presented work the transfer behavior of an AFC as an emitter of transient elastic waves in plate-like structures is investigated. The wave field emitted by an AFC surface bonded on an isotropic plate was simulated with the finite-difference method. The model includes the piezoelectric element and the plate and allows the simulation of the elastic wave propagation. For comparison with the model experiments using a laser interferometer for non-contact measurements of particle velocities at different points around the AFC on the surface of the plate were performed. Transfer functions defined as the ratio of the electric voltage excitation signal and the resulting surface velocity at a specific point are separately determined for the two fundamental Lamb wave modes. In order to take the orthotropic behavior of the AFC into account the transfer functions are determined for several points around the AFC. Results show that the AFC is capable to excite the fundamental symmetric and antisymmetric Lamb wave mode. The antisymmetric mode is mainly radiated in the direction of the piezoelectric fibers, while the symmetric mode is spread over a larger angle. The amplitudes of the emitted waves depend on the frequency of the excitation as well as on the geometric dimensions of the transducer.
1981-09-01
AD-AI13 460 ROCKWELL INTERNATIONJAL DOWNEY CA SATEL ITE SYSTEMS DIV F/6 9/ SOLID-STATE MILLIMETER-WAVE SOURCE STUDY : A STUDY OF TWO NOVEL -- ETC(U...NA[ B11RIA ~ H ,A DR’ ’. 7.4 C79-606.12/501 SOLID-STATE MILLIMETER-WAVE SOURCE STUDY : A STUDY OF TWO NOVEL CONCEPTS FOR GENERATION OF CW MILLIMETER...ACCESSION NO, IENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Solid State Millimeter-Wave Source Study : A Study Final
Numerical investigation of wake-collapse internal waves generated by a submerged moving body
Liang, Jianjun; Du, Tao; Huang, Weigen; He, Mingxia
2016-09-01
The state-of-the-art OpenFOAM technology is used to develop a numerical model that can be devoted to numerically investigating wake-collapse internal waves generated by a submerged moving body. The model incorporates body geometry, propeller forcing, and stratification magnitude of seawater. The generation mechanism and wave properties are discussed based on model results. It was found that the generation of the wave and its properties depend greatly on the body speed. Only when that speed exceeds some critical value, between 1.5 and 4.5 m/s, can the moving body generate wake-collapse internal waves, and with increases of this speed, the time of generation advances and wave amplitude increases. The generated wake-collapse internal waves are confirmed to have characteristics of the second baroclinic mode. As the body speed increases, wave amplitude and length increase and its waveform tends to take on a regular sinusoidal shape. For three linearly temperature-stratified profiles examined, the weaker the stratification, the stronger the wake-collapse internal wave.
3D MHD Coronal Oscillations About a Magnetic Null Point: Application of WKB Theory
McLaughlin, J A; Hood, A W
2007-01-01
This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit's Method and a Runge-Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, ${\\bf{B}}=(x,\\epsilon y -(\\epsilon +1)z)$. Under our cold plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfv\\'en waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point, and that the effect of this refraction depends upon the Alfv\\'en speed profile. The wave, and thus the wave energy, accumulates at the null point. We have found that current build up is exponential and the exponent is dependent upon $\\epsilon$. Thus, for the fast wave there is preferential heating at the null point. For the Alfv\\'en wave, we find that the wave propagates along the fieldlines. For an Alfv\\'en wave generated along the fan-plane, the wave accumulates along the spine. For an Alfv\\'en wa...
Moon, C.; Fan, X.; Ha, K.; Kim, D.
2017-01-01
We have generated planar blast waves over the large area using carbon nanotubes(CNT)-poly-dimethylsiloxane(PDMS) optoacoustic transducer. Pulse laser is absorbed by CNT and converted to heat, and the heat is transferred to PDMS inducing its thermal expansion and blast wave generation. To theoretically describe the planar blast wave generation, we build one-dimensional simulation model and find analytical solutions for temperature and pressure distributions. The analytical solution validated by the experimental data sheds light on how to improve the performance of the new transducer. Resonance of acoustic waves inside the transducer is also discussed. The new optoacoustic transducer optimized based on the fundamental understandings will be useful in generating high quality blast waves for research and industrial applications.
H.SAGHI; M.J.KETABDARI; S.BOOSHI
2012-01-01
A two-dimensional (2D) numerical model is developed for the wave simulation and propagation in a wave flume.The fluid flow is assumed to be viscous and incompressible,and the Navier-Stokes and continuity equations are used as the governing equations.The standard κ-ε model is used to model the turbulent flow.The NavierStokes equations are discretized using the staggered grid finite difference method and solved by the simplified marker and cell (SMAC) method. Waves are generated and propagated using a piston type wave maker. An open boundary condition is used at the end of the numerical flume.Some standard tests,such as the lid-driven cavity,the constant unidirectional velocity field,the shearing flow,and the dam-break on the dry bed,are performed to valid the model.To demonstrate the capability and accuracy of the present method,the results of generated waves are compared with available wave theories.Finally,the clustering technique (CT) is used for the mesh generation,and the best condition is suggested.
Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini
2014-01-01
Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite...... difference time domain simulations. In a structure with only one groove, constructive interference of the generated SP waves will enhance transmitted light by a factor of 5.4 compared with that of a single hole. Increasing the groove number to 3 in the design, which supports constructive interference of SP...... waves, will enhance the transmission coefficient to 10.5 times that for the single-hole transmission coefficient....
Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves
Armstrong, M; Reed, E; Kim, K; Glownia, J; Howard, W M; Piner, E; Roberts, J
2008-08-14
The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches.
Local conservative regularizations of compressible MHD and neutral flows
Krishnaswami, Govind S; Thyagaraja, Anantanarayanan
2016-01-01
Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...
High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing.
Wu, Huihui; Liu, Hongjun; Huang, Nan; Sun, Qibing; Wen, Jin
2011-09-20
We demonstrate picosecond terahertz (THz)-wave generation via four-wave mixing in an octagonal photonic crystal fiber (O-PCF). Perfect phase-matching is obtained at the pump wavelength of 1.55 μm and a generation scheme is proposed. Using this method, THz waves can be generated in the frequency range of 7.07-7.74 THz. Moreover, peak power of 2.55 W, average power of 1.53 mW, and peak conversion efficiency of more than -66.65 dB at 7.42 THz in a 6.25 cm long fiber are realized with a pump peak power of 2 kW.
Coronal Waves and Oscillations
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Terahertz-wave generation by surface-emitted four-wave mixing in optical fiber
Ping Zhou; Dianyuan Fan
2011-01-01
We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahert-wave source.%@@ We propose a novel terahertz-wave source through the four-wave mixing effect in a conventional singlemode optical fiber pumped by a dual-wavelength laser whose difference frequency lies in the terahertz range.Surface-emitted geometry is employed to decrease absorption loss.A detailed derivation of the terahertz-wave power expression is presented using the coupled-wave theory.This is a promising way for realizing a reasonable narrow-band terahertz-wave source.
Study of Wave Conditions at Kvitsøy Prototype Location of Seawave Slot-Cone Generator
Kofoed, Jens Peter; Guinot, Florent
This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs.......This report presents the results of a study of the wave conditions at the planned location of the prototype of the wave energy converter (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs....
The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock
Tokar, R. L.; Gurnett, D. A.
1985-01-01
In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
Generation of whistler waves by continuous HF heating of the upper ionosphere
Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.
2016-07-01
Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.
Collisionless magnetic reconnection under anisotropic MHD approximation
Hirabayashi, Kota; Hoshino, Masahiro
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
Photonic methods of millimeter-wave generation based on Brillouin fiber laser
Al-Dabbagh, R. K.; Al-Raweshidy, H. S.
2016-05-01
In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.
Maget, P.; Huysmans, G. T. A.; Lütjens, H.; Ottaviani, M.; Moreau, Ph; Ségui, J.-L.
2009-06-01
Attempts to run non-inductive plasma discharges on Tore Supra sometimes fail due to the triggering of magneto-hydro-dynamic (MHD) instabilities that saturate at a large amplitude, producing degraded confinement and loss of wave driven fast electrons (the so-called MHD regime (Maget et al 2005 Nucl. Fusion 45 69-80)). In this paper we investigate the transition to this soft (in the sense of non-disruptive) MHD limit from experimental observations, and compare it with non-linear code predictions. Such a comparison suggests that different non-linear regimes, with periodic relaxations or saturation, are correctly understood. However, successful non-inductive discharges without detectable magnetic island at q = 2 cannot be reproduced if realistic transport coefficients are used in the computation. Additional physics seems mandatory for explaining these discharges, such as diamagnetic effects, that could also justify cases of abrupt transition to the MHD regime.
Interfacial waves generated by electrowetting-driven contact line motion
Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young
2016-10-01
The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.
The CHEASE code for toroidal MHD equilibria
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo
2003-01-01
When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.
GENERATION OF NONLINEAR INTERNAL WAVES ON CONTINENTAL SHELF
无
2001-01-01
A 2-D KdV equation is derived under condition of arbitrary continuous density profiles. A non-fission version of initial internal solitary waves propagating onto the continental shelf is studied by means of the 2-D KdV equation. Under non-Bohr and Sommerfeld’s condition, numerical calculations are carried out based on the KdV equation. The results shows that the initial internal solitary waves in deep ocean break down into internal undular bores on the continental shelf. And the bores have a like-soliton leading fronts and undular trails.
Generation of 1D interference patterns of Bloch surface waves
Kadomina, E. A.; Bezus, E. A.; Doskolovich, L. L.
2016-09-01
Interference patterns of Bloch surface waves with a period that is significantly less than the wavelength of incident radiation are formed using dielectric diffraction gratings located on the surface of photonic crystal. The simulation based on electromagnetic diffraction theory is used to demonstrate the possibility of high-quality interference patterns due to resonant enhancement of higher evanescent diffraction orders related to the excitation of the Bloch surface waves. The contrast of the interference patterns is close to unity, and the period is less than the period of the diffraction structure by an order of magnitude.
Some results of the study of the application of the MHD method to power engineering
Shelkov, Ye.M.; Pishchikov, S.I.; Pinkhasik, M.S.; Zakharko, Yu.A.
1977-10-01
Several stages in the development of experimental MHD units in the USSR are described and the characteristics of the units listed. The U-25 unit has been in operation since 1971, producing 20 to 25 MW burning natural gas in oxygen-enriched air with 1 mol. % potassium ionizing additive. Photographs are presented of the combustion chamber, MHD generator and MHD generator with top cover removed. The measurement and recording system is outlined.
64-GHz millimeter-wave photonic generation with a feasible radio over fiber system
Al-Dabbagh, Rasha K.; Al-Raweshidy, Hamed S.
2017-02-01
A full-duplex radio over fiber (RoF) link with the generation of a 64-GHz millimeter wave (mm-wave) is investigated. This system is proposed as a solution to cope with the demands of a multi-Gb/s data transmission in the fifth generation (5G) and beyond for small cell networks. Cost reduction and performance improvement are achieved by simplifying the mm-wave generation method with an RoF technique. High-frequency radio signals are considered challenging in the electrical generation domain; therefore, our photonic generation method is introduced and examined. RoF design is proposed for mm-wave generation using both phase modulation and the effect of stimulated Brillouin scattering in the optical fiber for the first time. RoF system with transmission rates of 5 Gb/s is successfully achieved. In our scheme, one laser source is utilized and a fiber Bragg grating is used for wavelength reuse for the uplink connection. Stable mm-wave RoF link is successfully achieved in up to a 100-km fiber link length with high quality carrier. Simulation results show a reduction in fiber nonlinearity effects and the mm-wave signal has low noise equal to -75 dBm. This study ensures a practical mm-wave RoF link, and it could be appropriate for small cell 5G networks by reducing the installation cost.
Analysis of Energy Characteristics in the Process of Freak Wave Generation
胡金鹏; 张运秋
2014-01-01
The energy characteristics in the evolution of the wave train are investigated to understand the inherent cause of the freak wave generation. The Morlet wavelet spectrum method is employed to analyze the numerical, laboratory and field evolution data of this generation process. Their energy distributions and variations are discussed with consideration of corresponding surface elevations. Through comparing the energy characteristics of three cases, it is shown that the freak wave generation depends not only on the continuous transfer of wave train energy to a certain region where finally the maximum energy occurs, but also on the distinct shift of the converged energy to high-frequency components in a very short time. And the typical energy characteristics of freak waves are also given.
Proceedings of the workshop on nonlinear MHD and extended MHD
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Phase spectral composition of wind generated ocean surface waves
Varkey, M.J.
into 2 wave systems with a dominating local sea. For this type of sea states, a directional tuning in the directional phase spectra could be expected. A new spectra width parameter which is equally applicable to spectra of narrow band, wide band...
Spiral Wave Generation in a Vortex Electric Field
YUAN Xiao-Ping; CHEN Jiang-Xing; ZHAO Ye-Hua; LOU Qin; WANG Lu-Lu; SIIEN Qian
2011-01-01
The effect of a vortical electric field on nonlinear patterns in excitable media is studied. When an appropriate vortex electric field is applied, the system exhibits pattern transition from chemical turbulence to spiral waves, which possess the same chtality as the vortex electric field. The underlying mechanism of this is discussed. We also show the meandering behavior of a spiral under the taming of a vortex electric field. The results obtained here may contribute to control strategies of patterns on surface reaction.%The effect of a vortical electric field on nonlinear patterns in excitable media is studied.When an appropriate vortex electric field is applied,the system exhibits pattern transition from chemical turbulence to spiral waves,which possess the same chirality as the vortex electric field.The underlying mechanism of this is discussed.We also show the meandering behavior of a spiral under the taming of a vortex electric field.The results obtained here may contribute to control strategies of patterns on surface reaction.Spiral waves are one of the most common and widely studied patterns in nature.They appear in hydrodynamic systems,chemical reactions and a large variety of biological,chemical and physical systems.[1-5] Much attention has been paid to their rich nonlinear dynamics,as well as potential applications in various biological or physiological systems,since the emergence and instability of spirals usually lead to abnormal states,for example in cardiac arrythmia[6,7] and epilepsy[8].Much research has been carried out in studying pattern formations in catalytic CO oxidation on Pt(110),[9-11] because they provide practical utilization in industry.A rich variety of spatiotemporal patterns,including travelling pulses,standing waves,target patterns,spiral waves and chemical turbulence have been observed in this system.[12-16
Simultaneous observations of storm-generated sprite and gravity wave over Bangladesh
Chou, Chien-Chung; Dai, Jeff; Kuo, Cheng-Ling; Huang, Tai-Yin
2016-09-01
We report simultaneous observations of sprite and gravity wave generated by a storm over Bangladesh. The origin of a concentric gravity wave can be traced to the storm region on 27 April 2014 over Bangladesh with a low cloud top surface temperature (175 K). After data analysis, the time period of the concentric gravity wave is found to be 8.8-8.9 min. The horizontal wavelength is found to be 50 km for red emissions ( 55 km for green emissions), and the horizontal phase velocity is 94.4 ± 31.7 m s-1 for red emissions (102.6 ± 29.4 m s-1 for green emissions). Using the dispersion relation of gravity wave, the elevation angle of wave propagation direction is found to be 53.3°. The sprite associated with the gravity wave was also recorded at 1534 UT on 27 April 2014. The initiation time of storm-generated gravity wave is estimated to be 1454 UT at which lightning activity was relatively low using lightning data. At time 1534 UT of the recorded sprite, the lightning rate was close to its maximum value. The storm-generated gravity wave could be thought as a precursor phenomenon for lightning and sprites since one of the necessary conditions for gravity wave, lightning, and sprites is strong convection inside storms.
Experimental Hydraulic Optimization of the Wave Energy Converter Seawave Slot-Cone Generator
Kofoed, Jens Peter
This report presents the results of a experimental hydraulic optimization of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed...
Simulation of mm-wave signal generation using phase modulation in ROF system
ZHANG da-peng; YU Chong-xiu; XIN Xiang-jun; MA Jian-xin; ZHANG Jin-long
2009-01-01
The generation of optical millimeter waves via the improved phase modulator in a RoF system and the transmission char-acter of the signal are thenretically investigated. A new phase modulating scheme is proposed, in which the sidebands are separated by wave length demultiplexer and one of them doesn't feed digital signals, thereby the phase wake-off is restrained.
Generation of fast electrons by breaking of a laser-induced plasma wave
Trines, Rmgm; Goloviznin, V. V.; Kamp, L. P. J.; Schep, T. J.
2001-01-01
A one-dimensional model for fast electron generation by an intense, nonevolving laser pulse propagating through an underdense plasma has been developed. Plasma wave breaking is considered to be the dominant mechanism behind this process, and wave breaking both in front of and behind the laser pulse
Optical Generation of mm-Wave Signal Through Optoelectronic Phase-Locked Loop
Madhumita; Bhattacharya; Anuj; Kumar; Saw; Taraprasad; Chattopadhyay
2003-01-01
In this paper, we propose a scheme for the generation of low phase noise tunable mm-wave signal by bearing two lightwaves in a photodiode. These two lightwaves are made phase coherent by an optoelectronic phase locked loop. Calculated mm-wave power at a frequency of 60 GHz is found to be -4 dBm.
Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia
Wolanski, E.; Colin, P.; Naithani, J.; Deleersnijder, E.; Golbuu, Y.
2004-08-01
Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50-100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.
Generation and effects of EMIC waves observed by the Van Allen Probes on 18 March 2013
Zhang, J.; Saikin, A.; Gamayunov, K. V.; Spence, H. E.; Larsen, B.; Geoffrey, R.; Smith, C. W.; Torbert, R. B.; Kurth, W. S.; Kletzing, C.
2015-12-01
Electromagnetic ion cyclotron (EMIC) waves play a crucial role in particle dynamics in the Earth's magnetosphere. The free energy for EMIC wave generation is usually provided by the temperature anisotropy of the energetic ring current ions. EMIC waves can in turn cause particle energization and losses through resonant wave-particle interactions. Using measurements from the Van Allen Probes, we perform a case study of EMIC waves and associated plasma conditions observed on 18 March 2013. From 0204 to 0211 UT, the Van Allen Probe-B detected He+-band EMIC wave activity in the post-midnight sector (MLT=4.6-4.9) at very low L-shells (L=2.6-2.9). The event occurred right outside the inward-pushed plasmapause in the early recovery phase of an intense geomagnetic storm - min. Dst = -132 nT at 2100 UT on 17 March 2013. During this event, the fluxes of energetic (> 1 keV), anisotropic O+ dominate both the H+ and He+ fluxes in this energy range. Meanwhile, O+ fluxes at low energies (coefficient (Dαα) of the EMIC wave packets by using nominal ion composition, derived total ion density from the frequencies of upper hybrid resonance, and measured ambient and wave magnetic field. EMIC wave growth rates are also calculated to evaluate the role of loss-cone distributed ring current ions in the EMIC wave generation.
P-wave dynamical generated state and LHCb hidden-charmed pentaquarks
He, Jun
2016-01-01
The P-wave dynamical generated state, as well as S-wave state, from hadron-hadron interactions through exchanging light hadron is investigated explicitly to understand the properties, especially spin-parities, of the hidden-charmed exotic hadrons observed recently at LHCb. In a toy model of two-channel scattering of scalar mesons, it is shown that P-wave state is closer to threshold than S-wave state, and has a relatively small width. An important observation is that the peak of a P-wave state has a height similar to a S-wave state. It suggests P-wave state is even easer to observe in experiment than S-wave state if the width is not very small. The two LHCb hidden-charmed pentaquarks are studied in this scheme. The $P_c(4380)$ and the $P_c(4450)$ can be assigned as $3/2^-$-wave and $5/2^+$-wave states dynamically generated from the $\\bar{D}^*\\Sigma_c$ interaction, respectively. The peak for the $P_c(4380)$ in the $J/\\psi p$ invariant mass spectrum is broader but lower than the peak of the $P_c(4450)$, which i...
Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber.
Zhao, Saili; Yang, Hua; Zhao, Chujun; Xiao, Yuzhe
2017-04-03
Based on induced modulation instability, we present a numerical study on harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fibers. By selecting optimum modulation frequency, we achieve supercontinuum with a great improvement on spectrum stability when long-pulse is used as the pump. In this case, rogue wave can be obtained in the first segmented photonic crystal fiber with one zero dispersion wavelength in a controllable manner. Numerical simulations show that spectral range and flatness can be regulated in an extensive range by cascading a photonic crystal fiber with two zero dispersion wavelengths. Some novel phenomena are observed in the second segmented photonic crystal fiber. When the second zero dispersion wavelength is close to the first one, rogue wave is directly translated into dispersion waves, which is conducive to the generation of smoother supercontinuum. When the second zero dispersion wavelength is far away from the first one, rogue wave is translated into the form of fundamental soliton steadily propagating in the vicinity of the second zero dispersion wavelength. Meanwhile, the corresponding red-shifted dispersion wave is generated when the phase matching condition is met, which is beneficial to the generation of wider supercontinuum. The results presented in this work provide a better application of optical rogue wave to generate flat and broadband supercontinuum in cascaded photonic crystal fibers.
Stochastic Background of Gravitational Waves Generated by Compact Binary Systems
Evangelista, E F D
2015-01-01
Binary Systems are the most studied sources of gravitational waves. The mechanisms of emission and the behavior of the orbital parameters are well known and can be written in analytic form in several cases. Besides, the strongest indication of the existence of gravitational waves has arisen from the observation of binary systems. On the other hand, when the detection of gravitational radiation becomes a reality, one of the observed pattern of the signals will be probably of stochastic background nature, which are characterized by a superposition of signals emitted by many sources around the universe. Our aim here is to develop an alternative method of calculating such backgrounds emitted by cosmological compact binary systems during their periodic or quasiperiodic phases. We use an analogy with a problem of Statistical Mechanics in order to perform this sum as well as taking into account the temporal variation of the orbital parameters of the systems. Such a kind of background is of particular importance sinc...
Advanced Virgo: a 2nd generation interferometric gravitational wave detector
,
2014-01-01
Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network with the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detections of gravitational waves and to opening a new observation window on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction.
Nonlinear helical MHD instability
Zueva, N.M.; Solov' ev, L.S.
1977-07-01
An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.
Higher-Order Moment Characterisation of Rogue Wave Statistics in Supercontinuum Generation
Sørensen, Simon Toft; Bang, Ole; Wetzel, Benjamin
2012-01-01
The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour.......The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour....
Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere
2015-10-08
Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...for public release; distribution is unlimited. Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere Sharon...viscosity), and reconstruct the GW field. We would then apply our models to several observed tsunamis, and calculate the GW field in the
Phase matching in frequency mixing with internally generated waves
Rustagi, K. C.; Mehendale, S. C.; Gupta, P. K.
1983-11-01
The theory of frequency mixing is extended to situations where the growth rate of input waves is less than exponential as a consequence of saturation effects. It is shown that whereas Maker fringes may be washed out, the effect of phase matching on the conversion efficiency is important. Its manifestations in experimental data are analyzed. It is also found that with significant growth in the nonlinear source term over the interaction region. Maker fringes would be difficult to observe.
Generation of Broadband Electrostatic Waves in Earth's Magnetotail
Grabbe, Crockett
2000-04-01
The theory that broad-band electrostatic waves (BEN) in Earth's magnetotail are trapped-electron (``BGK'') modes is reexamined. Electron/ion beams analyzed for a realistic magnetized-plasma source model with κ distributions are found to drive an unstable spectrum of broad angular range over several orders of magnitude in f, up to \\(0.1-0.2\\)fpe. Analysis indicates that trapping essential for the BGK paradigm is good only at the highest f, whereas most of the spectrum has minimal trapping and can be driven by electron/ion beam instabilities. A new model is proposed in which trapped-electron modes exist only at the highest f band, whereas electron/ion beam instabilities drive the bulk of the broad-band spectrum below that. BEN wave data from ISEE-1 and ISEE-3 show large angles of propagation with respect to the magnetic field for ffce is observed only in a narrow angular range around the magnetic field and may be BGK modes. This predicts that the BEN solitary waves in the source region are not in BEN well into the lobe.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
Typhoon generated surface gravity waves measured by NOMAD-type buoys
Collins, Clarence O., III
This study examines wind-generated ocean surface waves as measured by NOMAD-type buoys during the ONR-sponsored Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment in 2010. 1-D measurements from two new Extreme Air-Sea Interaction (EASI) NOMAD-type buoys were validated against measurements from established Air-Sea Interaction Spar (ASIS) buoys. Also, during ITOP, 3 drifting Miniature Wave Buoys, a wave measuring marine radar on the R/V Roger Revelle, and several overpasses of JASON-1 (C- and Ku-band) and -2 (Ku-band) satellite altimeters were within 100 km of either EASI buoy. These additional measurements were compared against both EASI buoys. Findings are in line with previous wave parameter inter-comparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information which has been successfully gathered from a buoy with a 6 m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. In addition, details for giving a consistent estimate of sea surface elevation from buoys using strapped down accelerometers are given. This was found to be particularly important for accurate measurement of extreme waves. These technical studies established a high level of confidence in the ITOP wave measurements. Detailed frequency-direction spectra were analyzed. Structures in the wave field were described during the close passages of 4 major tropical cyclones (TC) including: severe tropical storm Dianmu, Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. In addition, significant swell was measured from a distant 5th TC, Typhoon Malakas. Changes in storm direction and intensity are found to have a profound impact on the wave field. Measurements of extreme waves were explored. More extreme waves were measured during TCs which coincided with times of increased wave
Fine strand-like structure in the solar corona from MHD transverse oscillations
Antolin, P; Van Doorsselaere, T
2014-01-01
Current analytical and numerical modelling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organise itself in fine strand-like structures of few hundred kilometres widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modelling of 3D MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that defor...
A Resistive MHD Simulation of the Shear Flow Effects on the Structure of Reconnection Layer
SUN Xiaoxia; WANG Chunhua; LIN Yu; WANG Xiaogang
2007-01-01
By using a one-dimensional resistive magnetohydrodynamic (MHD) model, the Rie-mann problem is solved numerically for the structure of the reconnection layer under a sheared flow along the anti-parallel magnetic field components. The simulation is carried out for general cases with symmetric or asymmetric plasma densities and magnetic fields on the two sides of the initial current sheet, and cases with or without a guide magnetic field, as in various space and fusion plasmas. The generation of MHD discontinuities in the reconnection layer is discussed, including time-dependent intermediate shocks, intermediate shocks, slow shocks, slow expansion waves, and the contact discontinuity. It is shown that the structure of the reconnection layer is significantly affected by the presence of the shear flow. For an initial symmetric current sheet, the symmetry condition is altered due to the shear flow. For cases with an asymmetric initial current sheet, as at the Earth's magnetopause, the strengths of MHD discontinuities change significantly with the shear flow speed. Moreover, the general results for the reconnection layers in the outflow regions on either side of the X line are discussed systematically for the first time.
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
Model Testing of the Wave Energy Converter Seawave Slot-Cone Generator
Kofoed, Jens Peter
This report presents the results of a preliminary experimental study of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed using...... a scale model (length scale 1:15) of a SSG device to be installed on the west coast of the island Kvitsøy near Stavanger, Norway. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The model has been subjected to regular and irregular waves...
Goldstein, M. E.
1984-01-01
Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.
Characteristics of Plasma Shock Waves Generated in the Pulsed Laser Ablation Process
李智华; 张端明; 郁伯铭; 关丽
2002-01-01
We modify the Sedov theory to describe plasma shock waves generated in a pulsed laser ablating process. We also study the propagation characteristics of plasma shock waves during the preparation process of functional thin films deposited by a pulsed laser. In particular, we discuss in detail the temporal behaviour of energy causing the difference of the propagation characteristics between the plasma shock wave and the ideal shock wave in the point explosion model. Under the same experimental conditions, the theoretical results calculated with our modified Sedov theory are in good agreement with the existing experimental data.
P. Sudarsana Reddy
2016-01-01
Full Text Available This paper is focused on the study of heat and mass transfer characteristics of an unsteady MHD boundary layer flow through porous medium over a stretching sheet in the presence of thermo-diffusion and diffusion-thermo effects with thermophoresis, thermal radiation and non-uniform heat source/sink. The transformed conservation equations are solved numerically subject to the boundary conditions using an optimized, extensively validated, variational finite element analysis. The numerical code is validated with previous studies on special cases of the problem. The influence of important non-dimensional parameters, namely suction parameter (f_w, magnetic parameter (M, unsteadiness parameter (α, Soret parameter (Sr, Dufour parameter (Du thermophoretic parameter (τ, space dependent (A1 and temperature dependent parameters (B1 and radiation parameter(An on the velocity, temperature and concentration fields as well as the skin-friction coefficient, Nusselt number and Sherwood number are examined in detail and the results are shown graphically and in tabular form to know the physical importance of the problem. It is found that the imposition of wall fluid suction (f_w>0 in the flow problem has the effect of depreciating the velocity, temperature and concentration boundary layer thicknesses at every finite value of η. This deceleration in momentum, thermal and concentration profiles is because of the fact that suction is taken away the warm fluid from the surface of the stretching sheet.
Analytical solution of Boussinesq equations as a model of wave generation
Wiryanto, L. H.; Mungkasi, S.
2016-02-01
When a uniform stream on an open channel is disturbed by existing of a bump at the bottom of the channel, the surface boundary forms waves growing splitting and propagating. The model of the wave generation can be a forced Korteweg de Vries (fKdV) equation or Boussinesq-type equations. In case the governing equations are approximated from steady problem, the fKdV equation is obtained. The model gives two solutions representing solitary-like wave, with different amplitude. However, phyically there is only one profile generated from that process. Which solution is occured, we confirm from unsteady model. The Boussinesq equations are proposed to determine the stabil solution of the fKdV equation. From the linear and steady model, its solution is developed to determine the analytical solution of the unsteady equations, so that it can explain the physical phenomena, i.e. the process of the wave generation, wave splitting and wave propagation. The solution can also determine the amplitude and wave speed of the waves.
Ground motions on rocky, cliffed, and sandy shorelines generated by ocean waves
Young, Adam P.; Guza, Robert T.; Dickson, Mark E.; O'Reilly, William C.; Flick, Reinhard E.
2013-12-01
We compare ground motions observed within about 100 m of the waterline on eight sites located on shorelines with different morphologies (rock slope, cliff, and sand beaches). At all sites, local ocean waves generated ground motions in the frequency band 0.01-40 Hz. Between about 0.01 and 0.1 Hz, foreshore loading and gravitational attraction from ocean swell and infragravity waves drive coherent, in-phase ground flexing motions mostly oriented cross-shore that decay inland. At higher frequencies between 0.5 and 40 Hz, breaking ocean waves and wave-rock impacts cause ground shaking. Overall, seismic spectral shapes were generally consistent across shoreline sites and usually within a few orders of magnitude despite the diverse range of settings. However, specific site response varied and was influenced by a combination of tide level, incident wave energy, site morphology, ground composition, and signal decay. Flexing and shaking increased with incident wave energy and was often tidally modulated, consistent with a local generation source. Flexing magnitudes were usually larger than shaking, and flexing displacements of several mm were observed during relatively large incident wave conditions (Hs 4-5 m). Comparison with traffic noise and earthquakes illustrate the relative significance of local ocean-generated signals in coastal seismic data. Seismic observations are not a simple proxy for wave-cliff interaction.