WorldWideScience

Sample records for mhd stability calculations

  1. Linear ideal MHD stability calculations for ITER

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1988-01-01

    A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs

  2. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    2001-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  3. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  4. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size

  5. MHD stability of JET high performance discharges. Comparison of MHD calculations with experimental observations

    International Nuclear Information System (INIS)

    Huysmans, G.

    1998-03-01

    One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption

  6. Recent Progress in MHD Stability Calculations of Compact Stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Cooper, W.A.; Nuehrenberg, C.; Sanchez, R.; Ware, A.; Hirshman, S.P.; Spong, D.A.

    2000-01-01

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length

  7. Resistive MHD Stability Analysis in Near Real-time

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  8. Ideal MHD stability analysis of KSTAR target AT mode

    International Nuclear Information System (INIS)

    Yi, S.M.; Kim, J.H.; You, K.I.; Kim, J.Y.

    2009-01-01

    Full text: A main research objective of KSTAR (Korea Superconducting Tokamak Advanced Research) device is to demonstrate the steady-state operation capability of high-performance AT (Advanced Tokamak) mode. To meet this goal, it is critical for KSTAR to have a good MHD stability boundary, particularly against the high-beta ideal instabilities such as the external kink and the ballooning modes. To support this MHD stability KSTAR has been designed to have a strong plasma shape and a close interval between plasma and passive- plate wall. During the conceptual design phase of KSTAR, a preliminary study was performed to estimate the high beta MHD stability limit of KSTAR target AT mode using PEST and VACUUM codes and it was shown that the target AT mode can be stable up to β N ∼ 5 with a well-defined plasma pressure and current profiles. Recently, a new calculation has been performed to estimate the ideal stability limit in various KSTAR operating conditions using DCON code, and it has been observed that there is some difference between the new and old calculation results, particularly in the dependence of the maximum β N value on the toroidal mode number. Here, we thus present a more detailed analysis of the ideal MHD stability limit of KSTAR target AT mode using various codes, which include GATO as well as PEST and DCON, in the comparison of calculation results among the three codes. (author)

  9. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  10. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  11. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    International Nuclear Information System (INIS)

    Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)

  12. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  13. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  14. MHD stability, operational limits and disruptions

    International Nuclear Information System (INIS)

    1999-01-01

    The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and

  15. Two-dimensional simulation of the MHD stability, (2)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.

    1977-09-01

    Growth rate and eigen-function of the MHD instability of a toroidal plasma were calculated numerically as an initial-boundary value problem. When a conducting shell is away from the plasma, toroidicity hardly influences growth rate of the external kink modes in a slender tokamak, but it stabilizes the modes in a fat tokamak. On the other hand, when the shell is near to the plasma, the unstable external modes are stabilized by both toroidicity and shell effect. (auth.)

  16. Stability of a two-volume MRxMHD model in slab geometry

    Science.gov (United States)

    Tuen, Li Huey

    Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for

  17. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  18. Study of MHD stability beta limit in LHD by hierarchy integrated simulation code

    International Nuclear Information System (INIS)

    Sato, M.; Watanabe, K.Y.; Nakamura, Y.

    2008-10-01

    The beta limit by the ideal MHD instabilities (so-called 'MHD stability beta limit') for helical plasmas is studied by a hierarchy integrated simulation code. A numerical model for the effect of the MHD instabilities is introduced such that the pressure profile is flattened around the rational surface due to the MHD instabilities. The width of the flattening of the pressure gradient is determined from the width of the eigenmode structure of the MHD instabilities. It is assumed that there is the upper limit of the mode number of the MHD instabilities which directly affect the pressure gradient. The upper limit of the mode number is determined using a recent high beta experiment in the Large Helical Device (LHD). The flattening of the pressure gradient is calculated by the transport module in a hierarchy integrated code. The achievable volume averaged beta value in the LHD is expected to be beyond 6%. (author)

  19. Stabilities of MHD rotational discontinuities

    International Nuclear Information System (INIS)

    Wang, S.

    1984-11-01

    In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)

  20. MHD stability of tandem mirrors

    International Nuclear Information System (INIS)

    Poulsen, P.; Molvik, A.; Shearer, J.

    1982-01-01

    The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration

  1. Stability analysis of resistive MHD modes via a new numerical matching technique

    International Nuclear Information System (INIS)

    Furukawa, M.; Tokuda, S.; Zheng, L.-J.

    2009-01-01

    Full text: Asymptotic matching technique is one of the principal methods for calculating linear stability of resistive magnetohydrodynamics (MHD) modes such as tearing modes. In applying the asymptotic method, the plasma region is divided into two regions: a thin inner layer around the mode-resonant surface and ideal MHD regions except for the layer. If we try to solve this asymptotic matching problem numerically, we meet practical difficulties. Firstly, the inertia-less ideal MHD equation or the Newcomb equation has a regular singular point at the mode-resonant surface, leading to the so-called big and small solutions. Since the big solution is not square-integrable, it needs sophisticated treatment. Even if such a treatment is applied, the matching data or the ratio of small solution to the big one, has been revealed to be sensitive to local MHD equilibrium accuracy and grid structure at the mode-resonant surface by numerical experiments. Secondly, one of the independent solutions in the inner layer, which should be matched onto the ideal MHD solution, is not square-integrable. The response formalism has been adopted to resolve this problem. In the present paper, we propose a new method for computing the linear stability of resistive MHD modes via matching technique, where the plasma region is divided into ideal MHD regions and an inner region with finite width. The matching technique using an inner region with finite width was recently developed for ideal MHD modes in cylindrical geometry, and good performance was shown. Our method extends this idea to resistive MHD modes. In the inner region, the low-beta reduced MHD equations are solved, and the solution is matched onto the solution of the Newcomb equation by using boundary conditions such that the parallel electric field vanishes properly as approaching the computational boundaries. If we use the inner region with finite width, the practical difficulties raised above can be avoided from the beginning. Figure

  2. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  3. Calculations of axisymmetric stability of tokamak plasmas with active and passive feedback

    International Nuclear Information System (INIS)

    Ward, D.J.; Jardin, S.C.; Cheng, C.Z.

    1991-07-01

    A new linear MHD stability code, NOVA-W, has been developed in order to study feedback stabilization of the axisymmetric mode in deformable tokamak plasmas. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The passive stability predictions of the code have been tested both against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. Active feedback calculations are performed for the CIT tokamak design demonstrating the effect of varying the position of the flux loops that provide the measurements of vertical displacement. The results compare well with those computed earlier using a less efficient nonlinear code. 37 refs., 13 figs

  4. Compact torus theory: MHD equilibrium and stability

    International Nuclear Information System (INIS)

    Barnes, D.C.; Seyler, C.E.; Anderson, D.V.

    1979-01-01

    Field reversed theta pinches have demonstrated the production and confinement of compact toroidal configurations with surprisingly good MHD stability. In these observations, the plasma is either lost by diffusion or by the loss of the applied field or is disrupted by an n = 2 (where n is the toroidal mode number) rotating instability only after 30 to 100 MHD times, when the configuration begins to rotate rigidly above a critical speed. These experiments have led one to investigate the equilibrium, stability, and rotation of a very elongated, toroidally axisymmetric configuration with no toroidal field. Many of the above observations are explained by recent results of these investigations which are summarized

  5. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  6. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    Science.gov (United States)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd

  7. On nonlinear MHD-stability of toroidal magnetized plasma

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.; Pastukhov, V.P.

    1994-01-01

    The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs

  8. On the stability of dissipative MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-04-01

    The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)

  9. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  10. Comparison of the calculations of the stability properties of a specific stellarator equilibrium with different MHD stability codes

    International Nuclear Information System (INIS)

    Nakamura, Y.; Matsumoto, T.; Wakatani, M.; Ichiguchi, K.; Garcia, L.; Carreras, B.A.

    1995-04-01

    A particular configuration of the LHD stellarator with an unusually flat pressure profile has been chosen to be a test case for comparison of the MHD stability property predictions of different three-dimensional and averaged codes for the purpose of code comparison and validation. In particular, two relatively localized instabilities, the fastest growing modes with toroidal mode number n = 2 and n = 3 were studied using several different codes, with the good agreement that has been found providing justification for the use of any of them for equilibria of the type considered

  11. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  12. Analyses of MHD instabilities

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    1985-01-01

    In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)

  13. Calculation code NIRVANA for free boundary MHD equilibrium

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Suzuki, Yasuo; Kameari, Akihisa

    1975-03-01

    The calculation method and code of solving the free boundary problem for MHD equilibrium has been developed. Usage of the code ''NIRVANA'' is described. The toroidal plasma current density determined as a function of the flux function PSI is substituted by a group of the ring currents, whereby the equation of MHD equilibrium is transformed into an integral equation. Either of the two iterative methods is chosen to solve the integral equation, depending on the assumptions made of the plasma surface points. Calculation of the magnetic field configurations is possible when the plasma surface coincides self-consistently with the magnetic flux including the separatrix points. The code is usable in calculation of the circular or non-circular shell-less Tokamak equilibrium. (auth.)

  14. Axisymmetric MHD stability of sharp-boundary Tokamaks

    International Nuclear Information System (INIS)

    Rebhan, E.; Salat, A.

    1976-09-01

    For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de

  15. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an initial-value problem. (author)

  16. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamaks is reported. A solution method for the two dimensional Newcomb equation, a dispersion relation for an unstable ideal MHD mode in tokamaks and a new scheme for solving resistive MHD inner layer equations as an initial value problem are reported. (author)

  17. Survey of linear MHD stability in tokamak configurations

    International Nuclear Information System (INIS)

    Wakatani, M.

    1977-01-01

    The results found by MHD stability studies for both low-beta and high-beta tokamaks are reviewed. The stability against kink-ballooning modes in equilibria surrounded by vacuum or a layer of force free currents is considered. Internal kink modes and the relation to interchange modes, which should be considered after external kink modes are suppressed, are surveyed

  18. Axisymmetric MHD stable sloshing ion distributions

    International Nuclear Information System (INIS)

    Berk, H.L.; Dominguez, N.; Roslyakov, G.V.

    1986-07-01

    The MHD stability of a sloshing ion distribution is investigated in a symmetric mirror cell. Fokker-Planck calculations show that stable configurations are possible for ion injection energies that are at least 150 times greater than the electron temperture. Special axial magnetic field profiles are suggested to optimize the favorable MHD properties

  19. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  20. Initial assessment of the MHD stability of TMX-U

    International Nuclear Information System (INIS)

    Nexsen, W.E.

    1983-01-01

    In its operation to date TMX-U has reached values of beta which, for all except the hot electron beta, are close to the proposal values and has not encountered MHD stability problems. The hot electron beta values are presently limited by gyrotron output power and pulse length as well as ion confinement time. Further exploration of stability awaits full thermal barrier operation

  1. MHD stability limits in the TCV Tokamak

    International Nuclear Information System (INIS)

    Reimerdes, H.

    2001-07-01

    of this limit with elongation is also in qualitative agreement with ideal MHD theory. Edge localised modes (ELMs), occurring in TCV Ohmic high-confinement mode discharges, were observed to be preceded by coherent magnetic oscillations. The detected poloidal and toroidal mode structures are consistent with a resonant flux surface close to the plasma edge. Unlike conventional MHD modes, these precursors start at a random toroidal location and then grow in amplitude and toroidal extent until they encompass the whole toroidal circumference. Thus, the asymmetry causing and maintaining the toroidal localisation of the ELM precursor must be intrinsic to the plasma. Soft X-ray measurements show that the localised precursor always coincides with a central m = 1 mode, which can usually be associated with the sawtooth pre- or postcursor mode. A comparison of the phases indicates a correlation with the maximum of the central mode preceding the toroidal location of the ELM precursor and, therefore, a hitherto unobserved coupling between central modes and ELMs. Highly elongated plasmas promise several advantages, among them higher current and beta limits. During TCV experiments dedicated to an increasing of the plasma elongation, a new disruptive current limit, at values well below the conventional current limit corresponding to q a > 2, was encountered for κ > 2.3. This limit, which is preceded by a kink-type mode, is found to be consistent with ideal MHD stability calculations. The TCV observations, therefore, provide the first experimental confirmation of a deviation of the linear Troyon-scaling of the ideal beta limit with normalised current at high elongation, which was predicted over 10 years ago. Neoclassical tearing modes (NTMs), which have been observed to limit the achievable beta in a number of tokamaks, arise from a helical perturbation of the bootstrap current caused by an existing seed island. Neoclassical m/n = 2/1 tearing modes have been identified in TCV

  2. Linear stability of resistive MHD modes: axisymmetric toroidal computation of the outer region matching data

    International Nuclear Information System (INIS)

    Pletzer, A.; Bondeson, A.; Dewar, R.L.

    1993-11-01

    The quest to determine accurately the stability of tearing and resistive interchange modes in two-dimensional toroidal geometry led to the development of the PEST-3 code, which is based on solving the singular, zero-frequency ideal MHD equation in the plasma bulk and determining the outer data Δ', Γ' and A' needed to match the outer region solutions to those arising in the inner layers. No assumption regarding the aspect ratio, the number of rational surfaces or the pressure are made a priori. This approach is numerically less demanding than solving the full set of resistive equations, and has the major advantage of non-MHD theories of the non-ideal layers. Good convergence is ensured by the variational Galerkin scheme used to compute the outer matching data. To validate the code, we focus on the growth rate calculations of resistive kink modes which are reproduced in good agreement with those obtained by the full resistive MHD code MARS. (author) 11 figs., 27 refs

  3. Calculation of magnetic field and electromagnetic forces in MHD superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.; Moisio, M.F.

    1992-01-01

    The realization of a superconducting prototype magnet for MHD energy conversion is under development in Italy. Electromechanical industries and University research groups are involved in the project. The paper deals with analytical methods developed at the Department of Electrical Engineering of Padova University for calculating magnetic field and electromagnetic forces in MHD superconducting magnets and utilized in the preliminary design of the prototype

  4. Simulation of the MHD stabilities of the experiment on HL-2A tokamak by GATO code

    International Nuclear Information System (INIS)

    Pan Wei; Chen Liaoyuan; Dong Jiaqi; Shen Yong; Zhang Jinhua

    2009-01-01

    The ideal two-dimensional MHD stabilities code, GATO, has been successfully immigrated to the high-performance computing system of HL-2A and used to the simulation study of the ideal MHD stabilities of the plasmas produced by one of the pellets injection experiments on HL-2A tokamak. The EFIT code was used to reconstruct the equilibrium configures firstly and the GATO was used to compute their MHD stabilities secondly whose source data were obtained by the NO.4050 discharge of the experiments on HL-2A, and finally by analyzing these results the preliminary conclusion was devised that the confinement performance of the plasma was improved because of the stabilization effect of the anti-sheared configures created by the pellets injection. (authors)

  5. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    observed decrease of this limit with elongation is also in qualitative agreement with ideal MHD theory. Edge localised modes (ELMs), occurring in TCV Ohmic high-confinement mode discharges, were observed to be preceded by coherent magnetic oscillations. The detected poloidal and toroidal mode structures are consistent with a resonant flux surface close to the plasma edge. Unlike conventional MHD modes, these precursors start at a random toroidal location and then grow in amplitude and toroidal extent until they encompass the whole toroidal circumference. Thus, the asymmetry causing and maintaining the toroidal localisation of the ELM precursor must be intrinsic to the plasma. Soft X-ray measurements show that the localised precursor always coincides with a central m = 1 mode, which can usually be associated with the sawtooth pre- or postcursor mode. A comparison of the phases indicates a correlation with the maximum of the central mode preceding the toroidal location of the ELM precursor and, therefore, a hitherto unobserved coupling between central modes and ELMs. Highly elongated plasmas promise several advantages, among them higher current and beta limits. During TCV experiments dedicated to an increasing of the plasma elongation, a new disruptive current limit, at values well below the conventional current limit corresponding to q{sub a} > 2, was encountered for {kappa} > 2.3. This limit, which is preceded by a kink-type mode, is found to be consistent with ideal MHD stability calculations. The TCV observations, therefore, provide the first experimental confirmation of a deviation of the linear Troyon-scaling of the ideal beta limit with normalised current at high elongation, which was predicted over 10 years ago. Neoclassical tearing modes (NTMs), which have been observed to limit the achievable beta in a number of tokamaks, arise from a helical perturbation of the bootstrap current caused by an existing seed island. Neoclassical m/n = 2/1 tearing modes have been

  6. MHD stability properties of bean-shaped tokamaks

    International Nuclear Information System (INIS)

    Grimm, R.C.; Chance, M.S.; Todd, A.M.M.

    1984-03-01

    A study of the MHD stability properties of bean-shaped tokamak plasmas is presented. For ballooning modes, while increased indentation gives larger β stable configurations, the existence and accessibility of the second stable region is sensitive to the pressure and safety factor profiles. The second stable region appears at lower β values for large aspect ratio and moderately high q-values. Finite-Larmor-radius (FLR) kinetic effects can significantly improve the stability properties. For low q (< 1) operation, long wavelength (n approx. 2,3) internal pressure driven modes occur at modest β/sub p/ values and accessibility to higher β operation is unlikely. Indentation modifies the nature of the usually vertical axisymmetric instability, but the mode can be passively stabilized by placing highly conducting plates near to the tips of the plasma bean. At constant q, indentation has a stabilizing effect on tearing modes

  7. Implementation of a 3-D nonlinear MHD [magnetohydrodynamics] calculation on the Intel hypercube

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Hicks, H.R.; Lawkins, W.F.

    1987-01-01

    The optimization of numerical schemes and increasing computer capabilities in the last ten years have improved the efficiency of 3-D nonlinear resistive MHD calculations by about two to three orders of magnitude. However, we are still very limited in performing these types of calculations. Hypercubes have a large number of processors with only local memory and bidirectional links among neighbors. The Intel Hypercube at Oak Ridge has 64 processors with 0.5 megabytes of memory per processor. The multiplicity of processors opens new possibilities for the treatment of such computations. The constraint on time and resources favored the approach of using the existing RSF code which solves as an initial value problem the reduced set of MHD equations for a periodic cylindrical geometry. This code includes minimal physics and geometry, but contains the basic three dimensionality and nonlinear structure of the equations. The code solves the reduced set of MHD equations by Fourier expansion in two angular coordinates and finite differences in the radial one. Due to the continuing interest in these calculations and the likelihood that future supercomputers will take greater advantage of parallelism, the present study was initiated by the ORNL Exploratory Studies Committee and funded entirely by Laboratory Discretionary Funds. The objectives of the study were: to ascertain the suitability of MHD calculation for parallel computation, to design and implement a parallel algorithm to perform the computations, and to evaluate the hypercube, and in particular, ORNL's Intel iPSC, for use in MHD computations

  8. Ideal MHD stability and characteristics of edge localized modes on CFETR

    Science.gov (United States)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  9. MHD stabilization of high β mirror plasma partially enclosed by conducting wall

    International Nuclear Information System (INIS)

    Li, X.Z.; Kesner, J.; Lane, B.

    1985-04-01

    An MHD formulation is used to study a wall stabilized high β mirror plasma with isotropic pressure. The stabilizing wall extends axially only a part of the distance between the mirror midplane and throat. We model this arrangement using a wall that approaches the plasma surface in the bad curvature region and is distant from the plasma in the good curvature region. A variational method is used to solve the equation in the distant wall region and an iterative method is used to solve the equation when the wall is close to the plasma. A jump condition is used to connect the regions of close and distant plasma-wall proximity. A simple trial function is used to perform the variational calculation (the choice of trial function is substantiated by an exact numerical solution). The results show that for a low mirror ratio case more conducting wall surface is needed for stability than in the high mirror ratio case. This agrees with the physical mechanism of the wall stabilization

  10. MHD stability studies in the Proto S-1 A/B device

    International Nuclear Information System (INIS)

    Munson, C.; Janos, A.; Newhouse, M.; Salberta, E.; Wysocki, F.; Yamada, M.

    1982-01-01

    An experimental study of the gross MHD stability properties of Spheromak plasmas in the Proto S-1 A/B device is presented. Utilizing the previously demonstrated S-1 slow formation technique, plasmas have been produced which exhibit the predicted tilting instability in a regime of slightly negative field index. A relatively simple passive coil system suggested by numerical stability studies has proven to be effective in stabilizing the observed tilting mode

  11. Numerical study of the axisymmetric ideal MHD stability of Extrap

    International Nuclear Information System (INIS)

    Benda, M.

    1993-04-01

    A numerical study of the free-boundary axisymmetric (n=0) ideal magnetohydrodynamical (MHD) motions of the Extrap device is presented. The dependence of stability on current profiles in the plasma and currents in the external conductors is investigated. Results are shown for linear growth-rates and nonlinear saturation amplitudes and their dependence on plasma radius as well as on the conducting shell radius. A method combined of two different algorithms has been developed and tested. The interior region of the plasma is simulated by means of a Lagrangian Finite Element Method (FEM) for ideal magnetohydrodynamics, The method is based on a nonlinear radiation principle for the Lagrangian description of ideal MHD. The Boundary Element Method (BEM) is used together with the Lagrangian FEM to simulate nonlinear motion of an ideal MHD plasma behaviour in a vacuum region under the influence of external magnetic fields. 31 refs

  12. Kinetic stability of field-reversed configurations

    International Nuclear Information System (INIS)

    Staudenmeier, J.L.; Hsiao, M.-Y.

    1991-01-01

    The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria

  13. Energy principles for linear dissipative systems with application to resistive MHD stability

    International Nuclear Information System (INIS)

    Pletzer, A.

    1997-04-01

    A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs

  14. Ideal and resistive MHD stability of internal kink modes in circular and shaped tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Luetjens, H.; Vlad, G.

    1992-01-01

    Recent results for the MHD stability of internal kink modes in tokamaks are reviewed. In general, ideal stability is more restrictive than the conventionally cited limit β p p is the poloidal beta at the q = 1 surface). This holds, in particular, for shaped equilibria, where low shear in combination with elliptic shaping can drastically reduce the pressure limit. Also in resistive MHD, interchange effects are frequently destabilizing, and resistive stability at β p ≥0.05 is achieved, for circular section, only with a very restricted class of current profiles, and not at all for JET-shaped cross section. (author) 9 figs., 24 refs

  15. Free-boundary perturbed MHD equilibria

    International Nuclear Information System (INIS)

    Nührenberg, C

    2012-01-01

    The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].

  16. Two-dimensional simulation of the MHD stability, (1)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.

    1976-03-01

    The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)

  17. ELMs and constraints on the H-mode pedestal: peeling-ballooning stability calculation and comparison with experiment

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2004-01-01

    We review and test the peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints, a model based upon theoretical analysis of magnetohydrodynamic (MHD) instabilities that can limit the pedestal height and drive ELMs. A highly efficient MHD stability code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including constraints on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependent on the density and temperature separately, rather than simply on the pressure. ELITE stability calculations are directly compared with experimental data for a series of plasmas in which the density is varied and ELM characteristics change. In addition, a technique is developed whereby peeling-ballooning pedestal constraints are calculated as a function of key equilibrium parameters via ELITE calculations using series of model equilibria. This technique is used to successfully compare the expected pedestal height as a function of density, triangularity and plasma current with experimental data. Furthermore, the technique can be applied for parameter ranges beyond the purview of present experiments, and we present a brief projection of peeling-ballooning pedestal constraints for burning plasma tokamak designs. (author)

  18. Modelling of diamagnetic stabilization of ideal MHD eigenmodes associated with the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.; Sharapov, S.; Mikhailovskii, A.; Kerner, W.

    2001-01-01

    A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal MHD code MISHKA-1 in order to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency, ω *i , on linear ideal MHD eigenmodes in tokamaks with shaped plasma cross-section. The MISHKA-D code gives a self-consistent computation of both stable and unstable eigenmodes with eigenvalues [γ] ≅ ω *i in plasmas with strong radial variation in the ion diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the analytically obtained ω *i -spectrum and stability limits of the internal kink mode, n/m=1/1, used as a benchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport barrier just inside the separatrix are studied for H-mode plasma with the ω *i -effect included. The ion diamagnetic stabilization of the ballooning modes is found to be most effective for narrow edge pedestals. For low enough plasma density the ω *i - stabilization can lead to a second zone of ballooning stability, in which all the ballooning modes are stable for any value of the pressure gradient. For internal transport barriers typical of JET optimised shear discharges, the stabilizing influence of ion diamagnetic frequency on the n=1 global pressure driven disruptive mode is studied. A strong radial variation of ω *i is found to significantly decrease the stabilizing ω *i - effect on the n=1 mode, in comparison with the case of constant ω *i estimated at the foot of the internal transport barrier. (author)

  19. Fast axisymmetric stability calculations using variational techniques

    International Nuclear Information System (INIS)

    Haney, S.W., Pearlstein, L.D.; Bulmer, R.H.

    1991-01-01

    A procedure for treating the axisymmetric (n = 0) stability of diverted plasmas in the presence of arbitrary, but toroidally symmetric, structures and active feedback circuits has been developed and implemented as a module in the TEQ free-boundary equilibrium code. This procedure is based on a variational solution of the ideal MHD normal mode equations. Inertia is ordered small but provides a constraint to allow the calculation of the poloidal and toroidal components of the plasma displacement. Feedback based on flux loop measurements is handled by introducing an adjoint system into the variational principle. Approximately 200 trial functions for the radial component of the plasma displacement and 200 magnetic surfaces are employed to obtain highly accurate estimates of the passive growth rate and the non-rigid eigenfunction. Nevertheless, the method is extremely fast: typically 10-20 sec of Cray 2 CPU time are required to analyze a realistic tokamak configuration. This speed, along with the direct coupling to the MHD equilibrium solver, allows interactive investigations of tokamak axisymmetric stability. Benchmarks with TSC and GATO are presented along with parameter scans for ITER and BPX. The results emphasize the importance of considering non-rigid mode effects which for ITER, yield higher nominal growth rates (non-rigid: 45 Hz, rigid: 25 Hz) and atypical internal inductance dependence (smaller l i more unstable)

  20. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  1. THEORETICAL MODELING OF THE FEEDBACK STABILIZATION OF EXTERNAL MHD MODES IN TOROIDAL GEOMETRY

    International Nuclear Information System (INIS)

    CHANCE, M.S.; CHU, M.S.; OKABAYASHI, M.; TURNBULL, A.D.

    2001-02-01

    OAK-B135 A theoretical framework for understanding the feedback mechanism against external MHD modes has been formulated. Efficient computational tools--the GATO stability code coupled with a substantially modified VACUUM code--have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modeled in θ, with only a single harmonic variation in φ. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model have been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved

  2. Conducting grids to stabilize MHD generator plasmas against ionization instabilities

    International Nuclear Information System (INIS)

    Veefkind, A.

    1972-09-01

    Ionization instabilities in MHD generators may be suppressed by the use of grids that short circuit the AC electric field component corresponding to the direction of maximum growth. An analysis of the influence of the corresponding boundary conditions has been performed in order to obtain more quantitative information about the stabilizing effect of this system

  3. Particle orbits and non-ideal MHD stability of Z-pinches

    International Nuclear Information System (INIS)

    Faghihi, M.

    1987-01-01

    Particle orbits in a linear EXTRAP vacuum magnetic field configuration are computed. The results indicate that, with an applied electric field along the axis, the particles starting near the magnetic stagnation line would gain substantial energy in the 'free fall', and are the most efficient ones to participate in the ionization process. The acquired energy depends on the electric field strength; the required value of the field is determined. The influence of the pressure anisotropy on the small wavelength internal kink (m=1) mode instability in a Z-pinch, using a generalization of Freidbergs perpendicular MHD model, is investigated. It is found that the stability criterion can not be fulfilled without violation of the fire hose stability condition. This investigation is also performed using the double-adiabatic theory. A finite Larmor radius treatment of the small wavelength kink instabilities for a Z-pinch geometry is presented. It is shown that, when the gyroviscosity is included in the perpendicular MHD model, exponentially growing Alfven waves are predicted even in a homogeneous static equilibrium with isotropic plasma pressure. The Hall effect in the incompressible Hall fluid model is considered. It is found that the Hall parameter reduces the growth rates of the kink modes, but it does not yield complete stabilization (author)

  4. Particle orbits and non-ideal MHD stability of Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, M.

    1987-01-01

    Particle orbits in a linear EXTRAP vacuum magnetic field configuration are computed. The results indicate that, with an applied electric field along the axis, the particles starting near the magnetic stagnation line would gain substantial energy in the 'free fall', and are the most efficient ones to participate in the ionization process. The acquired energy depends on the electric field strength; the required value of the field is determined. The influence of the pressure anisotropy on the small wavelength internal kink (m=1) mode instability in a Z-pinch, using a generalization of Freidbergs perpendicular MHD model, is investigated. It is found that the stability criterion can not be fulfilled without violation of the fire hose stability condition. This investigation is also performed using the double-adiabatic theory. A finite Larmor radius treatment of the small wavelength kink instabilities for a Z-pinch geometry is presented. It is shown that, when the gyroviscosity is included in the perpendicular MHD model, exponentially growing Alfven waves are predicted even in a homogeneous static equilibrium with isotropic plasma pressure. The Hall effect in the incompressible Hall fluid model is considered. It is found that the Hall parameter reduces the growth rates of the kink modes, but it does not yield complete stabilization

  5. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    Science.gov (United States)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  6. 3-D resistive MHD calculations for tokamak plasmas: beyond the simple reduced set of equations

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.; Masden, B.F.

    1983-01-01

    Numerical studies of the resistive stability of tokamak plasmas in cylindrical geometry have been performed using: (1) the full set of resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of the reduced set of resistive MHD equations including diamagnetic and electron temperature effects. In particular, the nonlinear interaction of tearing modes of many helicities has been investigated. The numerical results confirm many of the features uncovered previously using the simple reduced equations. (author)

  7. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  8. Characteristics of MHD stability of high beta plasmas in LHD

    International Nuclear Information System (INIS)

    Sato, M.; Nakajima, N.; Watanabe, K.Y.; Todo, Y.; Suzuki, Y.

    2012-11-01

    In order to understand characteristics of the MHD stability of high beta plasmas obtained in the LHD experiments, full MHD simulations have been performed for the first time. Since there is a magnetic hill in a plasma peripheral region, the ballooning modes extending into the plasma peripheral region with a chaotic magnetic field are destabilized. However, in the nonlinear phase, the core region comes under the in influence of the instabilities and the central pressure decreases. There is a tendency that modes are suppressed as the beta value and/or magnetic Reynolds number increase, which is consistent with a result that high beta plasmas enter the second stable region of the ideal ballooning modes as beta increases and remaining destabilized ballooning modes are considered to be resistive type. (author)

  9. MHD stability of the ITER pedestal and SOL plasma and its influence on the heat flux width

    NARCIS (Netherlands)

    Loarte, A.; Liu, F.; Huijsmans, G.T.A.; Kukushkin, A.S.; Pitts, R.A.

    2015-01-01

    Proceedings of the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices Kanazawa, Japan May 26-30, 2014 MHD stability of ITER plasmas has been analyzed for QDT = 10 edge and SOL plasma conditions, showing that the SOL plasma is MHD stable down to pressure

  10. Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations

    Science.gov (United States)

    Abbott, Stephen; Germaschewski, Kai

    2014-10-01

    Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.

  11. MHD stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-02-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed

  12. Ideal MHD stability of internal kinks in circular and shaped tokamaks

    International Nuclear Information System (INIS)

    Luetjens, H.; Bondeson, A.; Vlad, G.

    1992-04-01

    Stability limits for the internal kink mode in tokamaks are calculated for different current profiles and plasma cross sections using ideal magnetohydrodynamics (MHD). The maximum stable poloidal beta at the q = 1 surface (β p ) is sensitive to the current profile, but for circular cross sections, it is typically between 0.1 and 0.2. Large aspect ratio theory gives similar predictions when the appropriate boundary conditions are applied at the plasma-vacuum surface. The pressure driven internal kink is significantly destabilized by ellipticity. For JET geometry, the β p -limit is typically between 0.05 and 0.1, but arbitrarily low limits can result if the shear is reduced at the q=1 surface. A large aspect ratio expansion of the Mercier criterion retaining the effects of ellipticity and triangularity is given to illustrate the destabilizing influence of ellipticity. (author) 17 figs., 16 refs

  13. Stability calculations for MHD magnets

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Harrang, J.

    1978-01-01

    When a cryostable composite conductor carrying current experiences a heat input from a mechanical perturbation, a normal region develops which initially propagates and then either collapses or continues to propagate. A computer model has been devised to study this phenomenon. The model incorporates initial or continuing heat input from mechanical perturbations, heat conducted to the neighboring elements of the conductor and, if appropriate, heat conducted through insulation to neighboring turns. Heat is transferred to the helium coolant according to a specified heat transfer coefficient. If the element of conductor is in a normal or current-sharing state, resistive heating also occurs. The (unstable) equilibrium state of heat generation and conduction has been studied; results agree with those of a static calculation. The model has been validated against experimental measurements of response to heat pulses. The model suffers from uncertainties in transient heat transfer to the helium, but even more from uncertainties in the perturbing heat pulse which the magnet might be expected to suffer

  14. Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification

    International Nuclear Information System (INIS)

    Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.

    1981-01-01

    This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs

  15. MAIA, Eigenvalues for MHD Equation of Tokamak Plasma Stability Problems

    International Nuclear Information System (INIS)

    Tanaka, Y.; Azumi, M.; Kurita, G.; Tsunematsu, T.; Takeda, T.

    1986-01-01

    1 - Description of program or function: This program solves an eigenvalue problem zBx=Ax where A and B are real block tri-diagonal matrices. This eigenvalue problem is derived from a reduced set of linear resistive MHD equations which is often employed to study tokamak plasma stability problem. 2 - Method of solution: Both the determinant and inverse iteration methods are employed. 3 - Restrictions on the complexity of the problem: The eigenvalue z must be real

  16. Sensitivity of ITER MHD global stability to edge pressure gradients

    International Nuclear Information System (INIS)

    Hogan, J.T.; Martynov, A.

    1994-01-01

    In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution

  17. Reminimization of energy integral and stability limit for non-ideal MHD (magnetohydrodynamic) plasma

    International Nuclear Information System (INIS)

    Kondoh, Y.

    1988-03-01

    The stability condition of relaxed states is derived from the energy principle for the non-ideal MHD plasma. An Euler equation for the reminimization of energy integral is derived and shown to give the marginal stable, non-singular perturbations for the stability condition. An extended stability limit for the β = 0 relaxed states is derived from the stability condition, with use of the eigenvalue analysis for the Euler equation. By using the perturbation method, the extended stability limit is solved in the 1st order approximation to explain the deviation of the experimental stability limit from the idealized stability limit by Taylor. A procedure to get overall stability limit against both the non-singular and the singular perturbations is discussed. 25 refs

  18. MHD instabilities in heliotron/torsatron

    International Nuclear Information System (INIS)

    Wakatani, Masahiro; Nakamura, Yuji; Ichiguchi, Katsuji

    1992-01-01

    Recent theoretical results on MHD instabilities in heliotron/torsatron are reviewed. By comparing the results with experimental data in Heliotron E, Heliotron DR and ATF, it is pointed out that resistive interchange modes are the most crucial instabilities, since the magnetic hill occupies a substantial region of the plasma column. Development of three-dimensional MHD equilibrium codes has made significant progress. By applying the local stability criteria shown by D 1 (ideal MHD mode) and D R (resistive MHD mode) to the equilibria given by the three-dimensional codes such as BETA and VMEC, stability thresholds for the low n ideal modes or the low n resistive modes may be estimated with resonable accuracy, where n is a toroidal mode number. (orig.)

  19. MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.

    1982-01-01

    The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.

  20. Robustness and flexibility in compact quasiaxial stellarators: Global ideal MHD stability and energetic particle transport

    International Nuclear Information System (INIS)

    Redi, M.H.; Diallo, A.; Cooper, W.A.; Fu, G.Y.

    2000-01-01

    Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are addressed by studying the effects of varied pressure and rotational transform profiles on expected performance. For thirty, related, fully three-dimensional configurations the global, ideal magnetohydrodynamic stability is evaluated as well as energetic particle transport. It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic stability, with pressure gradient driving terms and shear stabilization controlling both the periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. Global kink modes are generated by steeply peaked pressure profiles near the half radius and edge localized kink modes are found for plasmas with steep pressure profiles at the edge as well as with edge rotational transform above 0.5. Energetic particle transport is not strongly dependent on these changes of pressure and current (or rotational transform) profiles, although a weak inverse dependence on pressure peaking through the corresponding Shafranov shift is found. While good transport and MHD stability are not anticorrelated in these equilibria, stability only results from a delicate balance of the pressure and shear stabilization forces. A range of interesting MHD behaviors is found for this large set of equilibria, exhibiting similar particle transport properties

  1. The stability of internal transport barriers to MHD ballooning modes and drift waves: A formalism for low magnetic shear and for velocity shear

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Webster, A.J.; Wilson, H.R.

    2005-01-01

    Tokamak discharges with internal transport barriers (ITBs) provide improved confinement, so it is important to understand their stability properties. The stability to an important class of modes with high wave-numbers perpendicular to the magnetic field, is usually studied with the standard ballooning transformation and eikonal approach. However, ITBs are often characterised by radial q profiles that have regions of negative or low magnetic shear and by radially sheared electric fields. Both these features affect the validity of the standard method. A new approach to calculating stability in these circumstances is developed and applied to ideal MHD ballooning modes and to micro-instabilities responsible for anomalous transport. (author)

  2. Generalized MHD for numerical stability analysis of high-performance plasmas in tokamaks

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.

    1998-01-01

    A set of generalized magnetohydrodynamic (MHD) equations is formulated to accommodate the effects associated with high ion and electron temperatures in high-performance plasmas in tokamaks. The effects of neoclassical bootstrap current, neoclassical ion viscosity, the ion finite Larmor radius effect and electron and ion drift effects are taken into account in two-fluid MHD equations together with gyroviscosity, parallel viscosity, electron parallel inertia and collisionless ion heat flux. The ion velocity is identified as the plasma velocity, while the electron velocity is expressed in terms of the plasma velocity and electric current. Ion and electron momentum equations are combined to give the plasma momentum equation. The perpendicular (with respect to the equilibrium magnetic field) ion momentum equation is used as perpendicular Ohm's law and the parallel electron momentum equation - as parallel Ohm's law. Perpendicular Ohm's law allows for the Hall and ion drift effects. Parallel Ohm's law includes the electron drift effect, collisionless skin effect and bootstrap current. In addition, both perpendicular and parallel Ohm's laws contain the resistivity. Due to the quasineutrality condition, the ions and electrons are characterized by the same number density which is described by the ion continuity equation. On the other hand, the ion and electron temperatures are allowed to be different. The ion temperature is described by the ion energy equation allowing for the oblique heat flux, in addition to the perpendicular ion heat flux. The electron temperature is determined by the condition of high parallel electron heat conductivity. The ion and electron parallel viscosities are represented in a form valid for all the collisionality regimes (Pfirsch-Schluter, plateau, and banana). An optimized form of the generalized MHD equations is then represented in terms of the toroidal coordinate system used in the JET equilibrium and stability codes. The derived equations

  3. Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Sudo, Shigeru; Zushi, Hideki; Kondo, Katsumi

    1993-01-01

    Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E are studied. The peaked density profile produced by pellet injection increases the stored energy by 20-30% compared to the gas puffed plasmas which obey the empirical stellarator/heliotron scaling in a moderate density range. In contrast to confinement, the peaked pressure profile tends to destabilize the plasma. By limiter insertion, MHD instability occurs (seems to locate near ι/2π=1) even in case of low β (β 0 ≤1%, where β 0 is the central β value) plasmas. On the other hand, the mode of m/n=3/2 at ι/2π=2/3, seems to be a key parameter to the major MHD instability in case of high β (β 0 ≥2%) plasmas. (author)

  4. Kinetic analysis of MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from β = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with β, these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-β-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties

  5. Preliminary results of MHD stability in HL-1 tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Ma Tengcai; Xiao Zhenggui Cai Renfang

    1987-01-01

    In this paper, MHD activities of HL-1 tokamak plasma are studied with Fourier transform and correlatio analysis. The poloidal modes m = 1, 2, 3,4 and toroidal modes n of MHD magnetic fluctuation signals are detected. Methods for suppressing MHD instabilities are suggested and tested, after MHD instabilities are studied in HL-1. The effects of MHD characteristics in the beginning stage of discharge on the whole process of discharge are analyzed. The disruption, in HL-1 device could be divided into three kinds: internal disruption, minor disruption and major disruption. The result shows that HL-1 will have a better operation condition if internal disruption appears. In is end, the stable operation region of HL-1 tokamak is also given

  6. Pedestal characteristics and MHD stability of H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pitzschke, A.

    2011-01-01

    current-driven instabilities (coupled kink-ballooning modes). Experimental studies were performed to trace the temporal evolution of pedestal parameters characterizing the ETB during an ELM cycle. The results of these experiments were analyzed using information from MHD stability calculations. It is concluded that these models are capable of predicting limits as necessary conditions for ELM activity, but are not sufficient to fully explain ELM triggering. (author)

  7. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    Science.gov (United States)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  8. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  9. Ideal MHD Stability Characteristics of Advanced Operating Regimes in Spherical Torus Plasmas and the Role of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    Kessel, C.E.; Manickam, J.; Menard, J.E.; Jardin, S.C.; Kaye, S.M.

    1999-01-01

    The ARIES reactor study group has found an economically attractive ST-based reactor configuration with: A = 1.6, κ = 3.4, delta = 0.65, β = 50%, β N = 7.3, f BS = 0.95, R 0 = 3.2 meters, B t0 = 2.08 Tesla, and I P = 28.5 MA which yields a cost of electricity of approximately 80mils/kWh. MHD stability analysis finds that a broad pressure profile is optimal for wall-stabilizing the pressure driven kink modes typical of such configurations, and that wall stabilization is crucial to achieving the high β needed for an economical power plant. The 6MW high-harmonic fast wave system presently being installed on NSTX should allow real-time control of the plasma β, and in combination with NBI may permit experimental investigations of the effect of pressure profile peaking on MHD stability in the near-term. In the longer term, ejection of ions through resonant interaction with HHFW might be used to induce a controllable edge radial electric field with potentially interesting effects on edge MHD and confinement

  10. 17th Workshop on MHD Stability Control: addressing the disruption challenge for ITER

    Science.gov (United States)

    Buttery, Richard

    2013-08-01

    This annual workshop on magnetohydrodynamic stability control was held on 5-7 November 2012 at Columbia University in the city of New York, in the aftermath of a violent hydrodynamic instability event termed 'Hurricane Sandy'. Despite these challenging circumstances, Columbia University managed an excellent meeting, enabling the full participation of the community. This Workshop has been held since 1996 to help in the development of understanding and control of magnetohydrodynamic (MHD) instabilities for future fusion reactors. It covers a wide range of stability topics—from disruptions, to tearing modes, error fields, edge-localized modes (ELMs), resistive wall modes (RWMs) and ideal MHD—spanning many device types (tokamaks, stellarators and reversed field pinches) to identify commonalities in the physics and a means of control. The theme for 2012 was 'addressing the disruption challenge for ITER', and thus the first day had a heavy focus on both the avoidance and mitigation of disruptions in ITER. Key elements included understanding how to apply 3D fields to maintain stability, as well as managing the disruption process itself through mitigating loads in the thermal quench and handling so called 'runaway electrons'. This culminated in a panel discussion on the disruption mitigation strategy for ITER, which noted that heat load asymmetries during the thermal quench appear to be an artifact of MHD processes, and that runaway electron generation may be inevitable, suggesting research should focus on control and dissipation of the runaway beam. The workshop was combined this year with the annual US-Japan MHD Workshop, with a special section looking more deeply at 'Fundamentals of 3D Perturbed Equilibrium Control', with interesting sessions on 3D equilibrium reconstruction, RWM physics, novel control concepts such as non-magnetic sensing, adaptive control, q operation, and the effects of flow. The final day turned to tearing mode interactions, exploring the state

  11. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  12. NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1986-04-01

    A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained

  13. Comments on the asymptotic treatment of tokamak MHD-stability at large aspect ratio

    International Nuclear Information System (INIS)

    Rebhan, E.

    1980-01-01

    In the asymptotic treatment of tokamak MHD stability at small inverse aspect ratio epsilon, the special case of poloidal wave number m=0 has been treated improperly in the literature for both axisymmetric and non-axisymmetric modes. In axisymmetric stability, a contribution to the perturbational vacuum field is either omitted or cancelled. In a variational stability analysis this field contribution provides σ 2 W with a correction term proportional to (1nepsilon) -1 , which may change the asymptotic range of stability and improve agreement with numerical finite-aspect-ratio results. In non-axisymmetric stability, for the perturbational vacuum field of the m=0 modes, usually the wrong of two possible solutions is chosen. It is shown why in many cases this wrong choice has no consequences on the correctness of the stability results, and circumstances are pointed out under which consequences may arise. (author)

  14. High beta and second stability region transport and stability analysis: Technical progress report

    International Nuclear Information System (INIS)

    Hughes, M.H.; Phillips, M.W.

    1995-03-01

    This report summarizes MHD equilibrium and stability studies carried out at Northrop Grumman's Advanced Technology and Development Center during the 12 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with results from this model

  15. High beta and second stability region transport and stability analysis. Technical progress report

    International Nuclear Information System (INIS)

    Hughes, M.H.; Phillips, M.W.

    1994-09-01

    This report summarizes MHD equilibrium and stability studies carried out at Grumman's Corporate Research Center during the 6 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with initial results from this model

  16. Identification of, and transition to, the second region of ideal MHD stability in tokamaks

    International Nuclear Information System (INIS)

    Sabbagh, S.A.

    1990-01-01

    The second region of ideal MHD stability in tokamaks is studied by considering the behavior of the second region boundary for self- consistently calculated, marginally stable, second region equilibria and the characteristics of numerically computed transport sequences that achieve second stability. Equilibria with pressure profiles, p(ψ), that are marginally stable to the second region on each flux surface are generated numerically. This constraint eliminates p(ψ) as an independent variable, and reduces the predictor variables to the tokamak parameters and the q profile. The primary response functions considered are the plasma figures of merit, β and var-epsilon β p , and the normalized pressure gradient, α. Variations of the radial wavenumber in the ballooning equation negligibly affect the second region boundary for these equilibria. The second region boundary is sensitive to variations in the q profile at small aspect ratio, A, and will stabilize or destabilize depending on the balance of higher order var-epsilon = A -1 modifications of the normal field line curvature, κ n . These effects are a competition between the stabilizing geometric magnetic well of the toroidal field component of κ n and the destabilizing poloidal field component of κ n . The latter term becomes competitive in high var-epsilon β p plasmas with large Shafranov shifts. Simple analytic models are presented that reproduce the scaling of the marginally stable second region values of α and var-epsilon β p , and stability diagrams illustrating the behavior of the high-n unstable region for various parameters are shown

  17. MHD stability analysis using higher order spline functions

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Akihiro [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi (Japan); Todoroki, Jiro; Sanuki, Heiji

    1999-04-01

    The eigenvalue problem of the linearized magnetohydrodynamic (MHD) equation is formulated by using higher order spline functions as the base functions of Ritz-Galerkin approximation. When the displacement vector normal to the magnetic surface (in the magnetic surface) is interpolated by B-spline functions of degree p{sub 1} (degree p{sub 2}), which is continuously c{sub 1}-th (c{sub 2}-th) differentiable on neighboring finite elements, the sufficient conditions for the good approximation is given by p{sub 1}{>=}p{sub 2}+1, c{sub 1}{<=}c{sub 2}+1, (c{sub 1}{>=}1, p{sub 2}{>=}c{sub 2}{>=}0). The influence of the numerical integration upon the convergence of calculated eigenvalues is discussed. (author)

  18. The MHD stability analysis of type I ELMS in ASDEX Upgrade Tokamak

    International Nuclear Information System (INIS)

    Saarelma, S.

    2000-01-01

    The ELMs or edge localized modes are plasma instabilities localized in the edge region of a tokamak plasma. They cause periodic expulsions of particles and energy. The ELMs play a significant role in the confinement of the plasma, helium exhaust and diverter erosion. These are crucial issues in tokamak operation and, thus, understanding the underlying physical mechanism behind the ELM phenomenon is very important. The ELMs are classified into three different types based on the plasma conditions, where they are observed, and, on the ELM frequency response to the heating power. In this thesis, type I ELMs which are the most intense and the most damaging to the diverters, are studied. A model for the ELMs presented by Connor et al. is tested in experimental ASDEX Upgrade plasmas. In the Connor model, the ELMs are explained as a result of two instabilities, ballooning and peeling modes. Also a phenomenon called the bootstrap current plays a significant role by being the destabilising trigger to the peeling modes. The method used to study the model is MHD or magnetohydrodynamics. The theory of the ideal MHD equilibrium and the linear stability analysis is described. Inclusion of the bootstrap current to the equilibrium construction is introduced. The equilibria are created using experimental data from plasma shots that display type I ELMs. The stability analysis indicates that the investigated ELM model is a feasible explanation for type I ELMs. The pressure gradient near the plasma edge was found to be close to the ballooning stability boundary as predicted by the model. The peeling mode stability analysis confirms the prediction of the model that as the bootstrap current increases, the plasma becomes unstable for peeling modes with low to intermediate toroidal mode numbers. The mode numbers agree with the experimental results. In the experiments with high triangularity, low ELM frequency and ELM-free periods were observed. This indicates better stability of the plasma

  19. Experimental study on dynamic stabilization of the MHD instability in pinch plasmas surrounded by a conducting shell

    International Nuclear Information System (INIS)

    Yamamoto, Shunji; Ishii, Shozo; Kawamoto, Shigeshi; Hayashi, Izumi

    1981-01-01

    Experimental study on the dynamic stabilization of MHD instability with a pinch plasma generator was done, and the results were compared with the theoretical works. The previous results of theoretical analysis showed that a conducting shell worked effectively for the dynamic stabilization of MHD instability. The present experiment was carried out with a linear plasma generator which consisted of a discharge tube, a coil and a conducting shell. The macroscopic behavior of plasma was observed with an image converter camera, and the phenomena due to the instability was measured by a magnetic probe. A sine-cosine coil was employed for the observation of the growth of instability. The following results were obtained. When the frequency of RF current for dynamic stabilization was larger than the growth rate of instability, the experimental results were in agreement with the theoretical ones. The effect of a conducting shell was clearly seen. For the helical instability of short wave length, the dynamic stabilization was easily obtained even without a conducting shell. The self-reversal phenomena due to the helical instability of short wave length was suppressed by the RF current along the axis of a discharge tube. (Kato, T.)

  20. Calculation of three-dimensional MHD equilibria with magnetic islands and chaotic field line trajectories

    International Nuclear Information System (INIS)

    Reiman, A.; Monticello, D.; Pomphrey, N.

    1993-01-01

    The three-dimensional MHD equilibrium equation is a mixed elliptic-hyperbolic partial differential equation. Unlike more familiar equations of this sort, the source term in the elliptic part of the equation is dependent on the time-asymptotic solution of the hyperbolic part, because the pressure and the force-free part of the current are constant along magnetic field lines. The equations for the field line trajectories can be put in the form of Hamilton's equations for a one-dimensional time-dependent system. The authors require an accurate solution for the KAM surfaces of this nonintegrable Hamiltonian. They describe a new algorithm they have developed for this purpose, and discuss its relationship to previously developed algorithms for computing KAM surfaces. They also discuss the numerical issues that arise in self-consistently coupling the output of this algorithm to the elliptic piece of the equation to calculate the magnetic field driven by the current. For nominally axisymmetric devices, they describe how the code is used to directly calculate the saturated state of nonaxisymmetric instabilities by following the equilibrium solution through a bifurcation. They argue that this should be the method of choice for evaluating stability to tearing modes in toroidal magnetic confinement devices

  1. MHD equilibrium and pressure driven instability in L=1 heliotron plasmas

    International Nuclear Information System (INIS)

    Nakamura, Y.; Suzuki, Y.; Yamagishi, O.; Kondo, K.; Nakajima, N.; Hayashi, T.; Monticello, D.A.; Reiman, A.H.

    2003-01-01

    Free boundary MHD equilibrium properties of Heliotron J are investigated by VMEC, HINT and PIES codes, and ideal MHD stability properties are studied by the Mercier criterion, the ballooning mode equation and the CAS3D global stability code. It is shown by the equilibrium calculations that the change of the plasma boundary shape is substantial in a low shear helical system even if the beta is relatively low. Preliminary comparison between PIES results and HINT results shows that the beta value at which the magnetic island begin to be perceptible is almost the same in both codes, but the island width seems to be different. From the stability analysis, good correlation is found between local and global analyses for the three dimensional(3D) or helical ballooning mode whose mode structure shows strong poloidal and toroidal mode (helical mode) coupling. In the helical ballooning mode, the Eigenmode is localized within a flux tube. It is also found that the positive shear of the rotational transform is favorable for the 3D ballooning mode stability in a low shear helical system. (author)

  2. Feedback stabilization of MHD instabilities. Report on the Workshop held at Princeton Plasma Physics Lab., Princeton Univ., Princeton, New Jersey, United States of America, 11-13 December 1996

    International Nuclear Information System (INIS)

    McGuire, K.M.; Kugel, H.W.; La Haye, R.J.; Mauel, M.E.; Nevins, W.M.; Prager, S.C.

    1997-01-01

    The transient operating performance of magnetic confinement devices is often limited by one or two unstable MHD modes. The feedback stabilization of MHD instabilities is an area of research that is critical for improving the steady state performance and economic attractiveness of magnetic confinement devices. This growing realization motivated a Workshop dedicated to feedback stabilization of MHD instabilities, which was held from 11 to 13 December 1996 at Princeton Plasma Physics Laboratory. The resulting presentations, conclusions and recommendations are summarized. (author)

  3. Elms: MHD Instabilities at the transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Huysmans, G.T.A

    2005-07-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER.

  4. Elms: MHD Instabilities at the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.

    2005-01-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER

  5. Ideal Magnetohydrodynamic Stability of the NCSX

    International Nuclear Information System (INIS)

    Fu, Guo Yong; Isaev, Maxim Yu; Ku, Long-Poe; Mikhailov, M.; Redi, M.H; Sanchez, Raul; Subbotin, A; Hirshman, Steven Paul; Cooper, W. Anthony; Monticello, D.; Reiman, A.H.; Zarnstorff, M.C.

    2007-01-01

    The ideal magnetohydrodynamic (MHD) stability of the National Compact Stellarator Experiment (NCSX) is extensively analyzed using the most advanced three-dimensional MHD codes. It is shown that the NCSX is stable to finite-n MHD modes, including the vertical mode, external kink modes and ballooning modes. However, high-n external kink modes that peak near the plasma edge are found to be weakly unstable. A global calculation shows that finite-n ballooning modes are significantly more stable than the local infinite-n modes

  6. Incompressible LFR MHD. A fluid model for stability analysis of a fusion plasma

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1986-10-01

    A fluid model including FLR effects, named Incompressible Finite Larmor Radius MagnetoHydroDynamics, is presented and derived in this paper. It is an extension of ordinary, incompressible MHD to include the Larmor radius effects due to ion gyroviscosity, Hall current and electron diamagnetism. It is intended to use the model for stability analysis, on the Alfven wave time scale, of a fusion plasma and it is consequently based on transport coefficients in the collisionless limit. It will be demonstrated that for a fairly dense and cool plasma, such as for the EXTRAP z-pinch, all three Larmor radius effects may become important, that for a JET-type plasma no FLR effect is pronounced, and that in a reactor plasma the Hall and electron diamagnetism term may play a role. For scaling lengths signigicantly smaller than the plasma radius the effect of the FLR terms becomes enhanced. To study the importance of the choice of equations of state for the model the m=1 and k 2 r 2 towards infinity instability in cylindrical geometry is given special attention for zero Larmor radius. The full stability criterion of the double adiabatic model, including pressure anisotropy, is presented for what we believe to be the first time. It is found that when perpendicular p > parallel p stability can be reached for very high plasma perpendicular β-values. We demonstrate that no less complicated energy conserving fluid model, which takes into account pressure anisotropy, other than the double adiabativ model can be obtained. Since pressure anisotropy generally only weakly affects stability, we can assume isotropy in the Incompressible FLR MHD model. Also, the energy equation is replaced by the incompressibility condition, making FLR terms appearing in the energy equation irrelevant. (authors)

  7. Studies of MHD stability using data mining technique in helical plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd

    2010-01-01

    Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)

  8. EDITORIAL: Selected papers from the 16th Workshop on MHD Stability Control: Optimizing and Understanding the Role of Coils for Mode Control Selected papers from the 16th Workshop on MHD Stability Control: Optimizing and Understanding the Role of Coils for Mode Control

    Science.gov (United States)

    La Haye, Rob

    2012-09-01

    The Magnetohydrodynamic (MHD) Control Workshop with the theme 'Optimizing and Understanding the Role of Coils for Mode Control' was held at General Atomics (20-22 November 2011) following the 2011 APS-DPP Annual Meeting in Salt Lake City, Utah (14-18 November). This was the 16th in the annual series and was organized jointly by Columbia University, General Atomics, Princeton Plasma Physics Laboratory, and the University of Wisconsin-Madison. Program committee participation included representatives from the EU and Japan along with other US laboratory and university institutions. This workshop highlighted the role of applied non-axisymmetric magnetic fields from both internal and external coils for control of MHD stability to achieve high performance fusion plasmas. The application of 3D magnetic field offers control of important elements of equilibrium, stability, and transport. The use of active 3D fields to stabilize global instabilities and to correct magnetic field errors is an established tool for achieving high beta configurations. 3D fields also affect transport and plasma momentum, and are shown to be important for the control of edge localized modes (ELMs), resistive wall modes, and optimized stellarator configurations. The format was similar to previous workshops, including 13 invited talks, 21 contributed talks, and this year there were 2 panel discussions ('Error Field Correction' led by Andrew Cole of Columbia University and 'Application of Coils in General' led by Richard Buttery of General Atomics). Ted Strait of General Atomics also gave a summary of the International Tokamak Physics Activity (ITPA) MHD meeting in Padua, a group for which he is now the leader. In this special section of Plasma Physics and Controlled Fusion (PPCF) is a sample of the presentations at the workshop, which have been subject to the normal refereeing procedures of the journal. They include a review (A Boozer) and an invited talk (R Fitzpatrick) on error fields, an invited

  9. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    International Nuclear Information System (INIS)

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  10. Calculation of three-dimensional MHD equilibria with islands and stochastic regions

    International Nuclear Information System (INIS)

    Reiman, A.; Greenside, H.

    1986-08-01

    A three-dimensional MHD equilibrium code is described that does not assume the existence of good surfaces. Given an initial guess for the magnetic field, the code proceeds by calculating the pressure-driven current and then by updating the field using Ampere's law. The numerical algorithm to solve the magnetic differential equation for the pressure-driven current is described, and demonstrated for model fields having islands and stochastic regions. The numerical algorithm which solves Ampere's law in three dimensions is also described. Finally, the convergence of the code is illustrated for a particular stellarator equilibrium with no large islands

  11. MHD stability analyses of a tokamak plasma by time-dependent codes

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi

    1982-07-01

    The MHD properties of a tokamak plasma are investigated by using time evolutional codes. As for the ideal MHD modes we have analyzed the external modes including the positional instability. Linear and nonlinear ideal MHD codes have been developed. Effects of the toroidicity and conducting shell on the external kink mode are studied minutely by the linear code. A new rezoning algorithm is devised and it is successfully applied to express numerically the axisymmetric plasma perturbation in a cylindrical geometry. As for the resistive MHD modes we have developed nonlinear codes on the basis of the reduced set of the resistive MHD equations. By using the codes we have studied the major disruption processes and properties of the low n resistive modes. We have found that the effects of toroidicity and finite poloidal beta are very important. Considering the above conclusion we propose a new scenario of the initiation of the major disruption. (author)

  12. Influence of hot beam ions on MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1984-01-01

    It has recently been proposed that the presence of high-energy ions from neutral-beam injection can have a strong stabilizing effect on kinetically modified ideal-MHD ballooning modes in tokamaks. To assess realistically the importance of such effects, a comprehensive kinetic stability analysis, which takes into account the integral equation nature of the basic problem, has been applied to this investigation. In the collisionless limit, the effect of adding small fractions of hot beam ions is indeed found to be strongly stabilizing. On the other hand, for somewhat larger fractions of hot ions, a different, beam-driven root of the mode equations is found to occur with a growth rate comparable in magnitude to the growth rate of the usual MHD ballooning mode in the absence of hot ions. This implies that there should be an optimal density of hot particles which minimizes the strength of the relevant instabilities. Employing non-Maxwellian equilibrium distribution functions to model the beam species makes a quantitative, but not qualitative, difference in the results. Adding collisions to the calculation tends to reduce considerably the stabilizing effect of the hot ions. (author)

  13. Influence of hot beam ions on MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1984-07-01

    It has recently been proposed that the presence of high energy ions from neutral beam injection can have a strong stabilizing effect on kinetically-modified ideal MHD ballooning modes in tokamaks. In order to assess realistically the importance of such effects, a comprehensive kinetic stability analysis, which takes into account the integral equation nature of the basic problem, has been applied to this investigation. In the collisionless limit, the effect of adding small fractions of hot beam ions is indeed found to be strongly stabilizing. On the other hand, for somewhat larger fractions of hot ions, a new beam-driven mode is found to occur with a growth rate comparable in magnitude to the growth rate of the MHD ballooning mode in the absence of hot ions. This implies that there should be an optimal density of hot particles which minimizes the strength of the relevant instabilities. Employing non-Maxwellian equilibrium distribution functions to model the beam species makes a quantitative, but not qualitative, difference in the results. Adding collisions to the calculation tends to reduce considerably the stabilizing effect of the hot ions

  14. Closed cycle MHD specialist meeting. Progress report, 1971--1972

    International Nuclear Information System (INIS)

    Rietjens, L.H.

    1972-04-01

    Abstracts of the conference papers on closed cycle MHD research are presented. The general areas of discussion are the following: results on closed cycle experiments; plasma properties, and instabilities and stabilization in nonequilibrium plasmas; loss mechanisms, current distributions, electrode effects, boundary layers, and gas dynamic effects; and design concepts of large MHD generators, and nuclear MHD power plants. (GRA)

  15. The CHEASE code for toroidal MHD equilibria

    International Nuclear Information System (INIS)

    Luetjens, H.

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs

  16. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  17. Effect of the X-point on the stability of the edge-current-driven MHD mode in Tokamaks

    International Nuclear Information System (INIS)

    Kwon, Ohjin

    2010-01-01

    Quasi-periodic bursts of edge magnetohydrodynamic (MHD) activities, called edge localized modes (ELMs), have been observed in many tokamaks during the H-mode. The high level of heat and particle transport associated with ELMs may cause serious damage to divertors or plasma facing components. It is therefore important to understand the underlying physics of ELMs. We have numerically investigated the effect of the X-point on the stability of the peeling mode, which is thought to be one of the MHD instabilities responsible for small ELMs. Equilibria with pressure and current profiles, which are unstable to the pure peeling mode for moderately elongated plasma, have been used. The X-point in a diverted plasma has been simulated by introducing of a hump in the plasma boundary. The position, depth and width of the X-point have been varied, and their effect on the stability of the peeling mode has been investigated. We have shown that the peeling mode growth rate decreases as the depth increases. This effect is greater for smaller widths for all positions of the X-point considered. Therefore, a sharper X-point is more efficient in stabilizing the peeling mode. Increasing the depth acts to increase the magnetic shear, the stabilizing effect of which has been shown to have very little dependence on the position or the width of the X-point.

  18. Electrode materials for an open-cycle MHD generator channel

    International Nuclear Information System (INIS)

    Telegin, G.P.; Romanov, A.I.; Akopov, F.A.; Gokhshtejn, Ya.P.; Rekov, A.I.

    1983-01-01

    The results of investigations, technological developments and tests of high temperature materials for MHD electrodes on the base of zirconium dioxide, stabilized with oxides of calcium, yttrium, neodymium, and dioxide of cerium, chromites, tamping masses from stabilized dioxide of zirconium, cermets are considered. It is established that binary and ternary solutions on the base of zirconium dioxide and alloyed chromites are the perspective materials for the MHD electrodes on pure fuel

  19. Ideal MHD stability properties of pressure-driven modes in low shear tokamaks

    International Nuclear Information System (INIS)

    Manickam, J.; Pomphrey, N.; Todd, A.M.M.

    1987-03-01

    The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs

  20. Energetic particle effects on global MHD modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  1. Linear MHD stability analysis of post-disruption plasmas in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany); Huijsmans, G. T. A. [ITER Organization (France); Aleynikov, P. [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany)

    2016-05-15

    Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.

  2. Helical-tokamak hybridization concepts for compact configuration exploration and MHD stabilization

    International Nuclear Information System (INIS)

    Oishi, T.; Yamazaki, K.; Arimoto, H.; Baba, K.; Hasegawa, M.; Ozeki, H.; Shoji, T.; Mikhailov, M.I.

    2010-11-01

    To search for low-aspect-ratio torus systems, a lot of exotic confinement concepts are proposed so far historically. One of the authors previously proposed the tokamak-helical hybrid called TOKASTAR (Tokamak-Stellarator Hybrid) to improve the magnetic local shear near the bad curvature region. This is characterized by simple and compact coil systems with enough divertor space relevant to reactor designs. Based on this TOKASTAR concept, a toroidal mode number N=2 C (compact) -TOKASTAR machine (R - 35 mm) was constructed. The rotational transform of this compact helical configuration is rather small to confine hot ions, but can be utilized as a compact electron plasma machine for multi-purposes. The C-TOKASTAR has a pair of spherically winding helical coils and a pair of poloidal coils. Existence of magnetic surface and electron confinement property in C-TOKASTAR device were investigated by an electron-emission impedance method. Calculation of the particle orbit also supports that closed magnetic surface is formed in the cases that the ratio between poloidal and helical coil current is appropriate. Another aspect of the research using TOKASTAR configuration includes the evaluation of the effect of the outboard helical field application to tokamak plasmas. It is considered that outboard helical field has roles to assist the initiation of plasma current, to improve MHD stability, and so on. To check these roles, we made TOKASTAR-2 machine (R - 0.12 m, B - 1 kG) with ohmic heating central coil, eight toroidal field coils, a pair of vertical field coils and two outboard helical field coil segments. The electron cyclotron heating plasma start-up and plasma current disruption control experiments might be expected in this machine. Calculation of magnetic field line tracing has revealed that magnetic surface can be formed using additional outer helical coils. (author)

  3. Ideal MHD stability of high poloidal beta equilibria in TFTR

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Budny, R.V.; Chance, M.S.; Fredrickson, E.D.; Jardin, S.C.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Wieland, R.M.; Zarnstorff, M.C.; Phillips, M.W.; Hughes, M.H.; Kesner, J.

    1991-01-01

    Recent experiments in TFTR have expanded the operating space of the device to include plasmas with values of var-epsilon β p dia ≡ 2μ 0 var-epsilon perpendicular >/ p >> 2 as large as 1.6, and Troyon normalized diamagnetic beta β N dia ≡ β t perpendicular aB t /10 -8 I p as large as 4.7. At values of var-epsilon β p dia ≥ 1.3, a separatrix was observed to enter the vacuum vessel, producing a naturally diverted discharge. Plasmas with large values of var-epsilon β p dia were created with both the plasma current, I p , held constant and with I p decreased, or ramped down, before the start of neutral beam injection. A convenient characterization of the change in I p using experimental parameters can be defined by the ratio of I p before the ramp down, to I p during the neutral beam heating phase, F I p . The ideal MHD stability of these equilibria is investigated to determine their location in stability space, and to study the role of plasma current and pressure profile modification in the creation of these high var-epsilon β p and β N plasmas. The evolution of these plasmas is modelled from experimental data using the TRANSP code. Two-dimensional equilibria are computed from the TRANSP results and used as input to both high and low-n stability codes including PEST. The high var-epsilon β p equilibria, which generally have an oblate cross-sectional shape, are in the first stability region to high-n ballooning modes. At constant I p , these equilibria generally have maximum pressure gradients near the magnetic axis and are stable to n=1 modes without a stabilizing conducting wall. The effect of the current profile shape on the stability of low-n kink/ballooning modes and the requirements for these plasmas to access the second stability region are examined. 6 refs

  4. Trapped particle stability for the kinetic stabilizer

    Science.gov (United States)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  5. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  6. MHD stability analysis of axisymmetric surface current model tokamaks close to the spheromak regime

    International Nuclear Information System (INIS)

    Honma, Toshihisa; Kaji, Ikuo; Fukai, Ichiro; Kito, Masafumi.

    1984-01-01

    In the toroidal coordinates, a stability analysis is presented for very low-aspect-ratio tokamaks with circular cross section which is described by a surface current model (SCM) of axisymmetric equilibria. The energy principle determining the stability of plasma is treated without any expansion of aspect ratio. Numerical results show that, owing to the occurrence of the non-axisymmetric (n=1) unstable modes, there exists no MHD-stable ideal SCM spheromak characterized by zero external toroidal vacuum field. Instead, a stable spheromak-type plasma which comes to the ideal SCM spheromak is provided by the configuration with a very weak external toroidal field. Close to the spheromak regime (1.0 1 aspect ratio< = 1.1), the minimum safety factor and the critical β-values increase mo notonically with aspect ratio decreasing from a large value, and curves of βsub(p) versus β in the marginal stability approach to an ideal SCM spheromak line βsub(p)=β. (author)

  7. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  8. Stability of ideal MHD configurations. I. Realizing the generality of the G operator

    Science.gov (United States)

    Keppens, R.; Demaerel, T.

    2016-12-01

    A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes

  9. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    1991-01-01

    This document describes ideal and resistive MHD studies of high-beta plasmas and of the second stability region. Significant progress is reported on the resistive stability properties of high beta poloidal ''supershot'' discharges. For these studies initial profiles were taken from the TRANSP code which is used extensively to analyze experimental data. When an ad hoc method of removing the finite pressure stabilization of tearing modes is implemented it is shown that there is substantial agreement between MHD stability computation and experiment. In particular, the mode structures observed experimentally are consistent with the predictions of the resistive MHD model. We also report on resistive stability near the transition to the second region in TFTR. Tearing modes associated with a nearby infernal mode may explain the increase in MHD activity seen in high beta supershots and which impede the realization of Q∼1. We also report on a collaborative study with PPPL involving sawtooth stabilization with ICRF

  10. A study on the fusion reactor - Development of MHD stability and transport code for KT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Koo; Shin, Kyo Jin [Pohang University of Science and Tecnology, Pohang (Korea, Republic of)

    1996-08-01

    MHD Stability analyses for KT-2 Tokamak were carried out by using CART (Resistive 3-D) Code. Linear Growth rates and linear perturbed eigen function of both N=0 axisymmetric mode and N=1 kink modes of highly elongated tokamak plasmas, in the presence of a conducting wall at various distances are computed and linear and nonlinear evolution of N=0 axisymmetric modes are simulated. 26 refs., 25 figs. (author)

  11. Dynamic stability of self-similar solutions for a plasma pinch

    International Nuclear Information System (INIS)

    Ma, Sifeng.

    1988-01-01

    Linear Magnetohydrodynamic (MHD) stability theory is applied to a class of self-similar solutions which describe implosion, expansion and oscillation of an infinitely conducting plasma column. The equations of perturbation are derived in the Lagrangian coordinate system. Numerical procedures via the finite-element method are formulated, and general aspects of dynamic stability are discussed, The dynamic stability of the column when it is oscillatory is studied in detail using the Floquet theory, and the characteristic exponent is calculated numerically. A-pinch configuration is examined. It is found that self-similar oscillations in general destabilize the continua in the MHD spectrum, and parametric instability results

  12. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  13. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  14. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  15. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    Science.gov (United States)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K

  16. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  17. Pseudo-MHD ballooning modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.

    1996-08-01

    The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant open-quotes pseudo-MHDclose quotes model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for α > s 2 (2 7/3 /9) (r p /R 0 ) or-d√Β/dr > (2 1/6 /3)(s/ R 0q ), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas

  18. Theoretical modeling of the feedback stabilization of external MHD modes of toroidal geometry

    International Nuclear Information System (INIS)

    Chance, M.S.; Chu, M.S.; Okabayashi, M.

    2001-01-01

    A theoretical framework for understanding the feedback mechanism against external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modeled in θ, with only a single harmonic variation in φ. An optimized configuration and placement of the feedback and sensor coils as well as the time constants and induced currents in the enclosing resistive shell have been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved. (author)

  19. GASCON and MHDGAS: FORTRAN IV computer codes for calculating gas and condensed-phase compositions in the coal-fired open-cycle MHD system

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, P E

    1977-12-01

    Fortran IV computer codes have been written to calculate the equilibrium partial pressures of the gaseous phase and the quantity and composition of the condensed phases in the open-cycle MHD system. The codes are based on temperature-dependent equilibrium constants, mass conservation, the mass action law, and assumed ideal solution of compounds in each of two condensed phases. It is assumed that the phases are an oxide-silicate phase and a sulfate-carbonate-hydroxide phase. Calculations are iterated for gas and condensate concentrations while increasing or decreasing the total moles of elements, but keeping mole ratios constant, to achieve the desired total pressure. During iteration the oxygen partial pressure is incrementally changed. The decision to increase or decrease the oxygen pressure in this process depends on comparison of the oxygen content calculated in the gas and condensate phases with the initial amount of oxygen in the ash, coal, seed, and air. This process, together with a normalization step, allows the elements to converge to their initial quantities. Two versions of the computer code have been written. GASCON calculates the equilibrium gas partial pressures and the quantity and composition of the condensed phases in steps of thirteen temperature and pressure combinations in which the condensate is removed after each step, simulating continuous slag removal from the MHD system. MHDGAS retains the condensate for each step, simulating flow of condensate (and gas) through the MHD system.

  20. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  1. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    International Nuclear Information System (INIS)

    White, R.B.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked

  2. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  3. Comparison of MHD-induced rotation damping with NTV predictions on MAST

    International Nuclear Information System (INIS)

    Hua, M-D; Chapman, I T; Field, A R; Hastie, R J; Pinches, S D

    2010-01-01

    Plasma rotation in tokamaks is of special interest for its potential stabilizing effect on micro- and macro-instabilities, leading to increased confinement. In MAST, the torque from neutral beam injection can spin the plasma to a core velocity ∼300 km s -1 (Alfven Mach number ∼0.3). Low density plasmas often exhibit a weakly non-monotonic safety factor profile just above unity. Theory predicts that such equilibria are prone to magneto-hydro-dynamic (MHD) instabilities, which was confirmed by recent observations. The appearance of the mode is accompanied by strong damping of core rotation on a timescale much faster than the momentum confinement time. The mode's saturated structure is estimated using the CASTOR code together with soft x-ray measurements, enabling the calculation of the plasma braking by the MHD mode according to neoclassical toroidal viscosity (NTV) theory. The latter exhibits strong similarities with the torque measured experimentally.

  4. Macroscopic plasma properties and stability theory

    International Nuclear Information System (INIS)

    Sakanaka, P.H.

    1981-01-01

    1. Two-fluid equations: (a) Boltzmann equation: complete set of equations; collision models - Vlasov, BGK, Fokker-Planck-Landau, Boltzmann. (b) Moments of the Boltzmann equation: problem of closure. (c) Two-fluid equations. 2. One-fluid equation: (a) One-fluid variables. (b) One-fluid equations: quasi-neutrality. (c) Resistive MHD equations. (d) Ideal MHD equations: one-adiabatic approximation; double-adiabatic approximation - CGL. 3. MHD stability problem - energy principle: (a) Linearized ideal MHD equations: force-operator equation. (b) Boundary conditions. (c) Self-adjointness of force operator. (d) The energy principle. 4. Stability problems: application of the energy principle; stability of sharp-boundary plasmas. 5. Thermodynamic approach for stability of plasmas: Newcomb and Rosenbluth's stability criteria. (author)

  5. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  6. Stability analysis by ERATO code

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Matsuura, Toshihiko; Azumi, Masafumi; Kurita, Gen-ichi

    1979-12-01

    Problems in MHD stability calculations by ERATO code are described; which concern convergence property of results, equilibrium codes, and machine optimization of ERATO code. It is concluded that irregularity on a convergence curve is not due to a fault of the ERATO code itself but due to inappropriate choice of the equilibrium calculation meshes. Also described are a code to calculate an equilibrium as a quasi-inverse problem and a code to calculate an equilibrium as a result of a transport process. Optimization of the code with respect to I/O operations reduced both CPU time and I/O time considerably. With the FACOM230-75 APU/CPU multiprocessor system, the performance is about 6 times as high as with the FACOM230-75 CPU, showing the effectiveness of a vector processing computer for the kind of MHD computations. This report is a summary of the material presented at the ERATO workshop 1979(ORNL), supplemented with some details. (author)

  7. A hybrid LLR-MHD model of kink perturbations in EXTRAP

    International Nuclear Information System (INIS)

    Lehnert, B.

    1987-07-01

    In high-beta systems, such as Extrap and other Z-pinch configurations, kinetic large Larmor radius (LLR) phenomena introduce strong phase-mixing and dispersive effects and a corresponding 'kinetic damping' which cannot be treated in terms of MHD theory. In this paper a first attempt is made to include these effects by proposing a hybrid LLR-MHD model in which the kinetic phenomena enter as constraints on the possible forms of the plasma perturbations. The latter then become restricted to a limited class which can be treated in terms of MHD theory. The present model does not claim to produce stability conditions which are exact in all details, but should merely provide a picture of the general relationship between the basic plasma parameters in a state of marginal stability. For kink perturbations in Extrap stability relations have thus been obtained between the pinch and conductor currents, the pinch radius and the axial conductor distance, and the number of contained ion Larmor radii. These relations appear to be consistent with so far obtained experimental data. A short discussion on the effects of a superimposed axial magnetic field has been included. At this stage only experiments can verify whether or not the present simple model becomes relevant to Extrap stability. (author)

  8. Bifurcation theory for toroidal MHD instabilities

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1992-01-01

    Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found

  9. Resistive MHD studies of TFTR discharges

    International Nuclear Information System (INIS)

    Hughes, M.H.; Phillips, M.W.; Sabbagh, S.A.; Budny, R.V.

    1991-01-01

    MHD instabilities, thought to be resistive in character, are frequently observed in the supershot operating regime of TFTR (var-epsilon β p ≤ 0.7). These instabilities are always accompanied by substantial degradation of the confinement. Similarly of interest are recent experiments at much larger β p (var-epsilon β p ≤ 1.6), achieved through ramping the current during the beam heating phase of the discharge. In this latter regime the confinement can exceed three times the corresponding L-mode value and the β value normalized to I/aB can be as large as 4.7. Representative discharges from each of these operating regimes have been analyzed using a linear resistive MHD stability code with equilibrium pressure and q profiles obtained initially from the TRANSP analysis code. The main difference between the two types of discharge, as far as stability is concerned is shown to be the shape of the current density profile. The sensitivity to the assumed parameters is discussed. 1 ref

  10. Studies of feedback stabilization of axisymmetric modes in deformable tokamak plasmas

    International Nuclear Information System (INIS)

    Ward, D.J.

    1991-01-01

    A new linear MHD stability code, NOVA-W, is described and applied to the study of the feedback stabilization of the axisymmetric mode in deformable tokamak plasma. The NOVA-W code is a modification of the non-variational MHD stability code NOVA that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The code has been tested for the case of passive stabilization against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. The NOVA-W code is used to examine the effects of plasma deformability on feedback stabilization. It is seen that plasmas with shaped cross sections have unstable motion different from a rigid shift. Plasma equilibria with large triangularity show particularly significant deviations from a uniform rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the motion in a way that reduces the stabilizing effects of these conductors. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the position of the flux loops. These non-rigid components of the eigenfunction always serve to reduce the stabilizing effect of the active feedback system by reducing the measurable poloidal flux at the flux-loop locations

  11. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  12. Anderson localization of ballooning modes, quantum chaos and the stability of compact quasiaxially symmetric stellarators

    International Nuclear Information System (INIS)

    Redi, M.H.; Johnson, J.L.; Klasky, S.; Canik, J.; Dewar, R.L.; Cooper, W.A.

    2002-01-01

    The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,α,θ k ); s is the edge normalized toroidal flux, α is the field line variable, and θ k is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong 'quantum chaos'. The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit

  13. Spectrum of resistive MHD modes in cylindrical plasmas

    International Nuclear Information System (INIS)

    Ryu, C.M.; Grimm, R.C.

    1983-07-01

    A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfven and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfven spectrum. The stabilizing effect of favorable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed

  14. Route analysis for MHD equilibria

    International Nuclear Information System (INIS)

    Kikuchi, Fumio; Aizawa, Tatsuhiko

    1982-01-01

    In Tokamak facilities which are promising in nuclear fusion reactor development, the plasma in the core is often described by MHD approximation. Specifically, since an axisymmetric torus is approximately assumed as the first wall (shell) shape in actual Tokamak facilities, the Grad-Shafranov equation to be satisfied by an axisymmetric equilibrium solution for ideal MHD fluid must be solved, and the characteristics of its solution must be clarified. This paper shows the outline of the numerical calculation which employs both the incremental method taking the particular incremental nodal point values as the control parameters and the interaction method in accordance with Newton method at the same time, the analysis objective being a non-linear eigenvalue problem dealing the boundary of plasma region with surrounding vacuum region as the free boundary. Next, the detailed route analysis of the equilibrium solution is performed, utilizing the above numerical calculation technique, to clarify the effect of shell shape on the behaviour of the equilibrium solution. As the shape of the shell, a rectangular section torus, which have a notch depression at a part of the shell inner boundary, is considered. In the paper, the fundamental MHD equation and its approximate solution by the finite element method, the behaviour of plasma equilibrium solution in a shell having a notch, and the effect of notch shapes on plasma behaviour are described. This analysis verifies the effectiveness of the calculation method. (Wakatsuki, Y.)

  15. H-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; LaBombard, B.; Snipes, J.A.; Wolfe, S.; Snyder, P.; Wilson, H.; Xu, X.; Nevins, W.

    2003-01-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. C-Mod sees two such mechanisms - EDA and grassy ELMs, but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasi coherent electromagnetic mode that exists at moderate pedestal temperature T 3.5 and does not limit the build up of the edge pressure gradient. The mode is not observed in the ideal MHD stability analysis, but is recorded in the nonlinear real geometry fluctuations modeling based on fluid equations and is thus tentatively identified as a resistive ballooning mode. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations (f< 50 kHz) and small irregular ELMs are observed. Based on ideal MHD calculations that include the effects of edge bootstrap current, these ELMs are identified as medium n (10 < n < 50) coupled peeling/ballooning modes. The stability thresholds, its dependence on the plasma shape and the modes structure are studied experimentally and with the linear MHD stability code ELITE. (author)

  16. Direct measurements of damping rates and stability limits for low frequency MHD modes and Alfven Eigenmodes in the JET tokamak

    International Nuclear Information System (INIS)

    Fasoli, A.F.; Testa, D.; Jaun, A.; Sharapov, S.; Gormezano, C.

    2001-01-01

    The linear stability properties of global modes that can be driven by resonant energetic particles or by the bulk plasma are studied using an external excitation method based on the JET saddle coil antennas. Low toroidal mode number, stable plasma modes are driven by the saddle coils and detected by magnetic probes to measure their structure, frequency and damping rate, both in the Alfven Eigenmode (AE) frequency range and in the low frequency Magneto-Hydro-Dynamic (MHD) range. For AEs, the dominant damping mechanisms are identified for different plasma conditions of relevance for reactors. Spectra and damping rates of low frequency MHD modes that are localized at the foot of the internal transport barrier and can affect the plasma performance in advanced tokamak scenarios have been directly measured for the first time. This gives the possibility of monitoring in real time the approach to the instability boundary. (author)

  17. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  18. MHD Calculation of halo currents and vessel forces in NSTX VDEs

    Science.gov (United States)

    Breslau, J. A.; Strauss, H. R.; Paccagnella, R.

    2012-10-01

    Research tokamaks such as ITER must be designed to tolerate a limited number of disruptions without sustaining significant damage. It is therefore vital to have numerical tools that can accurately predict the effects of these events. The 3D nonlinear extended MHD code M3D [1] can be used to simulate disruptions and calculate the associated wall currents and forces. It has now been validated against halo current data from NSTX experiments in which vertical displacement events (VDEs) were deliberately induced by turning off vertical feedback control. The results of high-resolution numerical simulations at realistic Lundquist numbers show reasonable agreement with the data, supporting a model in which the most dangerously asymmetric currents and heat loads, and the largest horizontal forces, arise in situations where a fast-growing ideal 2,1 external kink mode is destabilized by the scraping-off of flux surfaces with safety factor q>2 during the course of the VDE. [4pt] [1] W. Park, et al., Phys. Plasmas 6 (1999) 1796.

  19. Proceedings of the workshop on nonlinear MHD and extended MHD

    International Nuclear Information System (INIS)

    1998-01-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  20. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Investigations of MHD activity in ASDEX discharges

    International Nuclear Information System (INIS)

    Stambaugh, R.; Gernhardt, J.; Klueber, O.; Wagner, F.

    1984-06-01

    This report makes a strong attempt to relate some specific observations of MHD activity in ADEX discharges to observations made on the Doublet III and PDX tokamaks and to theoretical work on high β MHD modes at GA and PPPL. Three topics are discussed. The first topic is the detailed analysis of the time history of MHD activity in a β discharge. The β limit discharge in ASDEX is identified as a discharge in which, during constant neutral beam power, β reaches a maximum and then decreases, often to a lower steady level if the heating pulse is long enough. During the L phase of this discharge, the MHD activity observed in the B coils is both a continuous and bursting coupled m >= 1 mode of the 'fishbone' type. When β is rising in the H phase, this mode disappears; only ELMs are present. At βsub(max), a different mode appears, the m=2, n=1 tearing mode, which grows rapidly as β decreases. The second topic is the very new observation of the fishbone-like mode in a discharge heated by combined neutral beam and ion cyclotron heating power. The mode characteristics are modulated by sawtooth oscillations in a manner consistent with the importance of q(0) in the stability of this mode. The third topic is the search for ELM precursors in discharges designed to have no other competing and complicating MHD activity. In these cases nonaxisymmetric precursors to the Hsub(α) spike were observed. Hence, it appears that an MHD mode, rather than an energy balance problem, must be the origin of the ELM. (orig./GG)

  2. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  3. Ideal MHD beta-limits of poloidally asymmetric equilibria

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%

  4. Stability analysis of sharp-boundary Vlasov-fluid screw-pinch equilibria

    International Nuclear Information System (INIS)

    Lewis, H.R.; Turner, L.

    1975-01-01

    The Vlasov-fluid model is being used to study the linear stability of sharp-boundary screw pinches numerically. The numerical method appears to work well, and some preliminary results are reported. The sharp-boundary calculation is useful for gaining insight and for comparing with known MHD results. (auth)

  5. Observation of SOL Current Correlated with MHD Activity in NBI-heated DIII-D Tokamak Discharges

    International Nuclear Information System (INIS)

    Takahashi, H.; Fredrickson, E.D.; Schaffer, M.J.; Austin, M.E.; Evans, T.E.; Lao, L.L.; Watkins, J.G.

    2004-01-01

    This work investigates the potential roles played by the scrape-off-layer current (SOLC) in MHD activity of tokamak plasmas, including effects on stability. SOLCs are found during MHD activity that are: (1) slowly growing after a mode-locking-like event, (2) oscillating in the several kHz range and phase-locked with magnetic and electron temperature oscillations, (3) rapidly growing with a sub-ms time scale during a thermal collapse and a current quench, and (4) spiky in temporal behavior and correlated with spiky features in Da signals commonly identified with the edge localized mode (ELM). These SOLCs are found to be an integral part of the MHD activity, with a propensity to flow in a toroidally non-axisymmetric pattern and with magnitude potentially large enough to play a role in the MHD stability. Candidate mechanisms that can drive these SOLCs are identified: (a) toroidally non-axisymmetric thermoelectric potential, (b) electromotive force (EMF) from MHD activity, and (c) flux swing, both toroidal and poloidal, of the plasma column. An effect is found, stemming from the shear in the field line pitch angle, that mitigates the efficacy of a toroidally non-axisymmetric SOLC to generate a toroidally non-axisymmetric error field. Other potential magnetic consequences of the SOLC are identified: (i) its error field can introduce complications in feedback control schemes for stabilizing MHD activity and (ii) its toroidally non-axisymmetric field can be falsely identified as an axisymmetric field by the tokamak control logic and in equilibrium reconstruction. The radial profile of a SOLC observed during a quiescent discharge period is determined, and found to possess polarity reversals as a function of radial distance

  6. Discharge optimization and the control of edge stability

    International Nuclear Information System (INIS)

    Nave, M.F.F.; Lomas, P.J.; Huysmans, G.T.A.

    1999-01-01

    Discharge optimization for improving MHD stability of both core and edge was essential for the achievement of record fusion power discharges, in the ELM-free hot ion H mode regime, in the recent JET DT operation. The techniques used to increase edge stability are described. In particular the successful technique of current rampdown used to suppress the outer mode is reported. The increased stability of the outer mode by decreasing the edge current density confirms its identification as an n = 1 external kink. Decreasing the plasma current, however, decreases the ELM-free period, which is consistent with stability calculations that show an earlier onset of the ballooning limit. In order to increase external kink stability without causing a deterioration in the ELM-free period, a compromise was achieved by using plasma current rampdown, while working at the highest plasma current values possible. Results from a plasma current scan show that at the time of occurrence of the first giant ELM, the plasma stored energy, as well as the pressure measured at the top of the edge pedestal increase linearly with plasma current, for a given plasma configuration and power. This is consistent with models of the edge transport barrier, where the transport barrier width is proportional to the ion (or fast ion) poloidal Larmor radius. The MHD observations in DT and deuterium only discharges were found to be similar. Thus the experience gained on the control of MHD modes in deuterium plasmas could be fully exploited in the DT campaign. (author)

  7. Interim report on research and development of magnetohydrodynamic (MHD) power generation. General remarks; Denji ryutai (MHD) hatsuden kenkyu kaihatsu chukan hokokusho. Soron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-08-01

    This report covers the MHD power generation research and development project which has been under way for 7 years since fiscal 1966, and contains guidelines to follow in the next 3 years during which studies will continue toward the consummation of the project. Subjected to research and development under this project are the development of superconductive magnets and helium refrigeration/liquefaction equipment, clarification of the power generation characteristics of the 1,000kW-class MHD (magnetohydrodynamic) power generator and of a test machine designed for a long-term operation, etc. Since they contain many basic studies, the efforts are being exerted primarily by the Electrotechnical Laboratory. In the research and development of MHD power generation characteristics, a power generation experiment is conducted through oxygen combustion in a hot wall channel, with the combustor and insulation against the Hall voltage improved. In this test, a maximum output of 1,182kW is achieved under the conditions of a flow rate of 2.9kg/s, a thermal input of 24.6MW, and a flux density of 3.2T. Since there are some problems to solve in connection with the stability of MHD power generation characteristics, durability of the MHD power generation channel, characteristics of heat exchanger system, measures for NOx reduction, etc., some more deliberation is necessary before taking the next research and development step. (NEDO)

  8. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  9. Summary of results of research on magneto hydrodynamic (MHD) generation in fiscal 1977; 1977 nendo denji ryutai (MHD) hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-08-01

    This is the summary of results of the research on MHD generation in fiscal 1977. In the experimental studies on MHD generators using a copper/iron magnet, the combustor of the Mark 7 generator was manufactured and installed, as were the supply systems of fuel, oxygen, air, seed, sulfur dioxide, cooling water, etc., respectively of the Mark 7 generator based on the design implemented in the previous year. In the studies on element technologies, various tests were performed, namely, immersion tests by K{sub 2}SO{sub 4} solution for electrode materials; tests of corrosion resistance, thermal shock resistance, and compatibility with electrode materials, for insulation wall materials; and material selection tests, based on a dynamic state, for consumption quantity and distribution, surface temperature and heat flow, measurement of arc spot generating critical current and electrode lowering voltage, etc.. In the research on the MHD generation system, examinations were carried out on the position of MHD generation as a total system, as well as on a system of a practical plant, MHD generation for peak load, superconducting magnet, etc. In addition, examinations were also conducted on the Mark 7 calculation, Mark 8 plan, surveys on overseas trend, etc. (NEDO)

  10. Resistive Wall Mode Stability and Control in the Reversed Field Pinch

    International Nuclear Information System (INIS)

    Yadikin, Dmitriy

    2006-03-01

    Control of MHD instabilities using a conducting wall together with external magnetic fields is an important route to improved performance and reliability in fusion devices. Active control of MHD modes is of interest for both the Advanced Tokamak and the Reversed Field Pinch (RFP) configurations. A wide range of unstable, current driven MHD modes is present in the RFP. An ideally conducting wall facing the plasma can in principle provide stabilization to these modes. However, a real, resistive wall characterized by a wall field diffusion time, cannot stabilize the ideal MHD modes unless they rotate with Alfvenic velocity, which is usually not the case. With a resistive wall, the ideal modes are converted into resistive wall modes (RWM) with growth rates comparable to the inverse wall time. Resistive wall modes have been studied in the EXTRAP T2R thin shell RFP device. Growth rates have been measured and found in agreement with linear MHD stability calculations. An advanced system for active control has been developed and installed on the EXTRAP T2R device. The system includes an array of 128 active saddle coils, fully covering the torus surface. Experiments on EXTRAP T2R have for the first time demonstrated simultaneous active suppression of multiple independent RWMs. In experiments with a partial array, coupling of different modes due to the limited number of feedback coils has been observed, in agreement with theory. Different feedback strategies, such as the intelligent shell, the rotating shell, and mode control have been studied. Further, feedback operation with different types of magnetic field sensors, measuring either the radial or the toroidal field components have been compared

  11. Stabilization of magnetohydrodynamic instabilities in a current-carrying stellarator

    International Nuclear Information System (INIS)

    Matsuoka, K.; Miyamoto, K.

    1979-02-01

    Stable profiles against MHD instabilities are given in a cylindrical current-carrying stellarator. The comparison theorem, i.e., guiding principle for stabilization, is obtained in the same way as in a tokamak. As the external rotational transform due to an l = 2 helical field increases, MHD properties in a stellarator are improved than in a tokamak and the minimum value of q(a) which provides simultaneous stabilization of MHD modes can be lowered less than 2 even without a conducting shell. In an l = 3 stellarator, however, as shown from the Euler equation, the configuration becomes more unstable than in a tokamak and strong tailoring of the current profile is necessary in order to stabilize MHD modes. (author)

  12. Convective heat transfer in MHD channels and its influence on channel performance

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Doss, E.D.

    1980-01-01

    The limitations of the integral boundary layer methods and the potential of the differential boundary layer method in analyzing MHD channel flows are assessed. The sensitivity of results from the integral method to the parametrization of boundary layer profiles and calculation of wall heat transfer is established. A mixing-length type turbulence model for flow on rough walls is developed and validated by comparison with experimental data. The turbulence model is used in a quasi-three-dimensional boundary layer model to evaluate the influence of wall roughness and pressure gradients on the flow characteristics and performance of MHD channels. The behaviors of skin friction and Stanton number calculated from the analytical model are found to differ considerably from the empirical correlations valid for non-MHD flows without pressure gradients

  13. Stability of axisymmetric plasmas in closed line magnetic fields

    International Nuclear Information System (INIS)

    Simakov, A.N.; Vernon Wong, H.; Berk, H.L.

    2003-01-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study the stability of pressure driven shear Alfven modes. A point dipole is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is examined. (author)

  14. End Effects on the Linear Induction MHD Generator Calculated by Two-Sided Laplace Transform

    Energy Technology Data Exchange (ETDEWEB)

    Engeln, F.; Peschka, W. [Deutsche Versuchsanstalt fuer Luft- und Raumfahrt e.V., Institut fuer Energiewandlung und Elektrische Antriebe, Stuttgart, Federal Republic of Germany (Germany)

    1966-11-15

    In induction MHD systems special problems occur where the flow enters or leaves the magnetic field. These problems are generally described as end effects. Large gradients of the magnetic field are present at the inlet and also at the outlet of an MHD induction engine, these generating electric current systems in the fluid which may spoil the performance characteristics of the generator due to the interaction with the primary field of the engine. The two-dimensional induction MHD generator of finite length, using a polyphase winding system to obtain a travelling magnetic field, is treated as a boundary value problem by two-sided Laplace transform. For simplicity incompressibility is assumed. The two- dimensional boundary value problem of the induction engine is solved for - {infinity} Less-Than-Over-Equal-To x Less-Than-Over-Equal-To {infinity}. x is parallel to the flow direction of the linear MHD generator. In the region 0 Less-Than-Over-Equal-To x Less-Than-Over-Equal-To L the magnetic travelling wave is sinusoidal with a cyclical frequency {omega} and a phase-velocity v{sub s}. At x = 0 the conducting incompressible working fluid enters the field region and leaves it at the point-x = L. Two mathematical methods can be used to solve the boundary value problem, the Fourier transform or the two-sided Laplace transform. The latter offers the advantage of representing a complex analytical function in the image space. Moreover, it is possible to obtain the characteristics of the generator in the image space (e. g. field configuration, power flow function, etc.). That implies a large simplification of mathematical treatment. The solution in the original space then is given by asymptotic expansion of the known image function. (author)

  15. MHD Program Plan, FY 1992

    International Nuclear Information System (INIS)

    1991-10-01

    The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector

  16. Marginal Stability Boundaries for Infinite-n Ballooning Modes in a Quasi-axisymmetric Stellarator

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2003-01-01

    A method for computing the ideal-MHD stability boundaries in three-dimensional equilibria is employed. Following Hegna and Nakajima [Phys. Plasmas 5 (May 1998) 1336], a two-dimensional family of equilibria are constructed by perturbing the pressure and rotational-transform profiles in the vicinity of a flux surface for a given stellarator equilibrium. The perturbations are constrained to preserve the magnetohydrodynamic equilibrium condition. For each perturbed equilibrium, the infinite-n ballooning stability is calculated. Marginal stability diagrams are thus constructed that are analogous to (s; a) diagrams for axisymmetric configurations. A quasi-axisymmetric stellarator is considered. Calculations of stability boundaries generally show regions of instability can occur for either sign of the average magnetic shear. Additionally, regions of second-stability are present

  17. Passive stabilization of MHD instabilities at high βn in the HBT-EP Tokamak

    International Nuclear Information System (INIS)

    Gates, D.A.

    1993-01-01

    The HBT-EP Tokamak has been designed, built, and is now fully operational in the Columbia University Plasma Physics Laboratory. One of the primary purposes of this facility is to study the effects of a conducting wall on the MHD modes that lead up to plasma disruptions. Of particular interest are the types of instabilities that are driven by the kinetic pressure of the plasma, because these instabilities are believed to be responsible for the present limit to plasma β with β ∝ /B 2 , where the is the volume averaged pressure and B is the magnetic field. To this end, a movable conducting wall has been installed inside the HBT-EP vacuum chamber. The primary result of this thesis are the initial results from experiments that study the effect of this wall on plasma instabilities. The experiment shows that the conducting wall significantly reduces the growth rate of instabilities that precede a plasma disruption that occurs when the value of β is near the Troyon limit. The location of the wall required for significant stabilization is b/a ∼1.2 where a is the minor radius of the plasma and b is the minor radial location of the wall. Moving the wall closer than b/a = 1.2 slightly degrades the stabilizing effect, which is consistent with recent theories

  18. Passive stabilization of MHD instabilities at high βn in the HBT-EP Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gates, David A. [Columbia Univ., New York, NY (United States)

    1993-01-01

    The HBT-EP Tokamak has been designed, built, and is now fully operational in the Columbia University Plasma Physics Laboratory. One of the primary purposes of this facility is to study the effects of a conducting wall on the MHD modes that lead up to plasma disruptions. Of particular interest are the types of instabilities that are driven by the kinetic pressure of the plasma, because these instabilities are believed to be responsible for the present limit to plasma β with β ∝/B2, where the is the volume averaged pressure and B is the magnetic field. To this end, a movable conducting wall has been installed inside the HBT-EP vacuum chamber. The primary result of this thesis are the initial results from experiments that study the effect of this wall on plasma instabilities. The experiment shows that the conducting wall significantly reduces the growth rate of instabilities that precede a plasma disruption that occurs when the value of β is near the Troyon limit. The location of the wall required for significant stabilization is b/a ~1.2 where a is the minor radius of the plasma and b is the minor radial location of the wall. Moving the wall closer than b/a = 1.2 slightly degrades the stabilizing effect, which is consistent with recent theories.

  19. Stability and disturbance of large dc superconducting magnets

    International Nuclear Information System (INIS)

    Wang, S.T.

    1981-01-01

    This paper addresses the stability aspects of several successful dc superconducting magnets such as large bubble chamber magnets, and magnets for the Mirror Fusion Test Facility and MHD Research Facility. Specifically, it will cover Argonne National Laboratory 12-Foot Bubble Chamber magnets, the 15-foot Bubble Chamber magnets at Fermi National Laboratory, the MFTF-B Magnet System at Lawrence Livermore National Laboratory, the U-25B Bypass MHD Magnet, and the CFFF Superconducting MHD magnet built by Argonne National Laboratory. All of these magnets are cooled in pool-boiling mode. Magnet design is briefly reviewed. Discussed in detail are the adopted stability critera, analyses of stability and disturbance, stability simulation, and the final results of magnet performance and the observed coil disturbances

  20. MHD stability limits to the operation parameters of the FT tokamak

    International Nuclear Information System (INIS)

    Alladio, F.; Bardotti, G.; Bartiromo, R.

    1986-01-01

    A systematic study of the macroscopic instabilities limiting the accessible operation parameters has been performed on the Ohmic discharges of the FT tokamak at Bsub(T)=40 and 60 kG. The MHD fluctuation behaviour and the modifications of the profiles associated with the precursor of the disruption are discussed in detail for the cases of breaking through qsub(L)=3, low-qsub(L) operation, disruptions at the high-density limit and disruptions following the disappearance of the sawtooth activity. In all these cases the power balance terms that appear associated with the development of the MHD instabilities are dominant either in the centre or at the edge of the discharge and so transport in the intermediate confinement zone does not seem to be affected during the precursor of the disruption. The loop voltage negative spike of the disruption itself is found to be associated with the appearance of a burst of m=3, n=2 modes in the presence of m=2, n=1 precursor activity. (author)

  1. Observation of voltage fluctuations in a superconducting magnet during MHD power generation

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the ANL 5.0 T MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25B Facility at the High Temperature Institute (IVTAN) Moscow, USSR. Various other thermodynamic and electrical parameters of the U-25B flow train have been recorded, and statistical analysis concerning correlations between the phenomena with a view of discerning causal interdependence is in progress. Voltage fluctuations observed at the magnet terminals are analyzed with special emphasis on magnet stability

  2. Kinetic Stability of the Field Reversed Configuration

    International Nuclear Information System (INIS)

    E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada

    2002-01-01

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments

  3. MHD stability of an almost circular tokamak

    International Nuclear Information System (INIS)

    Roy, A.

    1990-10-01

    In a tokamak, the ratio β between the plasma pressure and that of the magnetic field is limited by the appearance of instabilities. The magnetic field in a tokamak reactor will always be limited by technological constraints. It is therefore crucial to know what factors have an effect on the β limit, since a zero resistivity plasma fluid model allows for theoretical reproduction of the β limits observed experimentally. Theoretical studies have shown that the distributions of pressure and current density may have a substantial effect on the β limit. The effect of the current density and pressure distributions on the β limit has been studied for tokamak with a circular core section. The best results are obtained when the current density is concentrated in the centre of the section and is nil at the periphery. But the second region of stability against ballooning modes cannot be obtained in a circular tokamak owing to the destabilisation of the universal modes. This study was then extended to the stability of plasmas the section of which is almost circular and has a point of reflection. Such configurations are vital for fusion since they allow systems in which the confinement time does not deteriorate with an increase in the additional heating power. The β limit was calculated for different positions of the reflection point. The results show that when it is displaced from the interior towards the exterior of the torus, the stability of the overall modes is progressively improved until it is vertical. But if the point of reflection is further displaced from this vertical position towards the exterior of the torus, localised modes close to the edge of the plasma are destabilised and bring about a drop in the β limit. (author) figs., tabs., 80 refs

  4. Localized MHD activity near transport barriers in JT-60U and TFTR

    International Nuclear Information System (INIS)

    Manickam, J.

    2001-01-01

    Localized MHD activity observed in JT-60U and TFTR near transport barriers with their associated large pressure gradients is investigated. Stability analysis of equilibria modeling the experiments supports an identification of this MHD as being due to an ideal MHD n=1 instability. The appearance of the instability depends on the local pressure gradient, local shear in the q profile and the proximity of rational surfaces where q∼m/n and m and n are the poloidal and toroidal mode numbers respectively. The mode width is shown to depend on the local value of q, and is larger when q is smaller. In addition the role of the edge current density in coupling the internal mode to the plasma edge and of the energetic particles which can drive fishbone like modes is investigated. (author)

  5. 3D nonlinear MHD simulations of ultra-low q plasmas

    International Nuclear Information System (INIS)

    Bonfiglio, D.; Cappello, S.; Piovan, R.; Zanotto, L.; Zuin, M.

    2008-01-01

    Magnetohydrodynamic (MHD) phenomena occurring in the ultra-low safety factor (ULq) configuration are investigated by means of 3D nonlinear MHD simulations. The ULq configuration, a screw pinch characterized by the edge safety factor q edge in the interval 0 edge edge values which are about the major rational numbers, suggesting plasma self-organization. Similar behaviour is observed in experimental ULq discharges, like those recently obtained exploiting the flexibility of the RFX-mod device. The transition of q edge from a major rational number to the next one occurs together with the development of a kink deformation of the plasma column, whose stabilization yields a nearly axisymmetric state with a rather flat q profile. Numerical simulations also show that it is possible to sustain either of the two conditions, namely, the saturated kink helical configuration and the axisymmetric one, by forcing q edge at a suitable value. Finally, the effects of this MHD phenomenology on the confinement properties of ULq plasmas are discussed.

  6. United States Superconducting MHD Magnet Technology Development Program

    International Nuclear Information System (INIS)

    Dawson, A.M.; Marston, P.G.; Thome, R.J.; Iwasa, Y.; Tarrh, J.M.

    1981-01-01

    A three-faceted program supported by the U.S. Dep of Energy is described. These facets include basic technology development, technology transfer and construction by industry of magnets for the national MHD program. The program includes the maintenance of a large component test facility; investigation of superconductor stability and structural behavior; measurements of materials' properties at low temperatures; structural design optimization; analytical code development; cryogenic systems and power supply design. The technology transfer program is designed to bring results of technology development and design and construction effort to the entire superconducting magnet community. The magnet procurement program is responsible for developing conceptual designs of magnets needed for the national MHD program, for issuing requests for quotation, selecting vendors and supervising design, construction, installation and test of these systems. 9 refs

  7. Multimegawatt space nuclear power open-cycle MHD-facility

    International Nuclear Information System (INIS)

    Pavshuk, V.A.; Panchenko, V.P.

    2008-01-01

    Paper presents the results of the efforts to calculate the characteristics, the layout and the engineering design of the open cycle space power propulsion on the basis of the high-temperature nuclear reactor for a nuclear rocket engine and the Faraday 20 MW capacity MHD-generator. The IVG-1 heterogeneous channel-vessel reactor ensuring in the course of the experiments hydrogen heating up to 3100 K, up to 5 MPa pressure at the reactor core outlet, up to 5 kg/s flowsheet, up to 220 MW thermal power served as a reactor is considered. One determined the MHD-generator basic parameters, namely: the portion of Cs dope was equal to 20%, the outlet stagnation pressure - 2 MPa, the electric conductivity - ≅30 S/m, the Mach number - ≅0.7, the magnetic field induction - 6 T, the capacity - 20 MW, the specific power removal - ∼4 MJ/kg. Paper describes the design of the MHD-facility with the working fluid momentless discharge and its basic characteristics [ru

  8. Development of a potential based code for MHD analysis of LLCB TBM

    International Nuclear Information System (INIS)

    Bhuyan, P.J.; Goswami, K.S.

    2010-01-01

    A two dimensional solver is developed for MHD flows with low magnetic Reynolds' number based on the electrostatic potential formulation for the Lorentz forces and current densities which will be used to calculate the MHD pressure drop inside the channels of liquid breeder based Test Blanket Modules (TBMs). The flow geometry is assumed to be rectangular and perpendicular to the flow direction, with flow and electrostatic potential variations along the flow direction neglected. A structured, non-uniform, collocated grid is used in the calculation, where the velocity (u), pressure (p) and electrostatic potential (φ) are calculated at the cell centers, whereas the current densities are calculated at the cell faces. Special relaxation techniques are employed in calculating the electrostatic potential for ensuring the divergence-free condition for current density. The code is benchmarked over a square channel for various Hartmann numbers up to 25,000 with and without insulation coatings by (i) comparing the pressure drop with the approximate analytical results found in literature and (ii) comparing the pressure drop with the ones obtained in our previous calculations based on the induction formulation for the electromagnetic part. Finally the code is used to determine the MHD pressure drop in case of LLCB TBM. The code gives similar results as obtained by us in our previous calculations based on the induction formulation. However, the convergence is much faster in case of potential based code.

  9. MHD channel performance for potential early commercial MHD power plants

    International Nuclear Information System (INIS)

    Swallom, D.W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation

  10. Achievement report on contract research. Large-scale project - Results of 1st-phase research and development of MHD power generation system; Plant system no hyoka. Ogata project dai 1 ki MHD hatsuden system kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    Described in detail involving the results of component development, assessment, and the indication of problems are the power generation channel, superconductive magnets and a helium refrigeration and liquefaction unit, seeds collector, heat exchanger, combustor, etc. Described involving the result and effect of power generation system research and development and the indication of problems is the research on Mark V and Mark VI operation tests. Described in relation to thermal performance calculation, economic effectiveness calculation, and environmental conservation involving an MHD (magnetohydrodynamic) power plant are the combustion of heavy oil, combustion of natural gas, plant having a 1,000MW power generator as its base load, control of NOx and sulfur in MHD power generation, etc. As for planning for the next stage, the configuration of a 10MW MHD power generation plant, its equipment, construction cost, and preliminary element research, etc., are described. Furthermore, propositions are presented concerning future plans and the prospect of commercial MHD power generators, technological ripple effects due to MHD power generation research and development, and research and development in the future. (NEDO)

  11. Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling

    International Nuclear Information System (INIS)

    Shigueoka, H.; Sakanaka, P.H.

    1987-01-01

    The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt

  12. Sawtooth oscillations as MHD relaxation process in a plasma

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Inoue, Nobuyuki; Ogawa, Yuichi

    1992-01-01

    The sawtooth oscillation in a tokamak plasma is a spontaneous relaxation process accompanying global instabilities which behave to reduce the internal magnetic energy. This phenomenon has a similarity to the MHD relaxation processes in Reversed Field Pinch (RFP) and Ultra Low Q (ULQ) plasmas. The self-stabilizing effect of instabilities with m (poloidal mode number) = 1 results in an increase in the central safety factor q(0). Nonlinear dynamics of m = 1 instabilities has been discussed both for global and local modes. The latter appears when a pitch minimum exists in the plasma, and is relevant to the compound sawtooth oscillation. The MHD relaxation is a restructuring process of the plasma current profile that is competitive with the resistive diffusion. (author)

  13. MHD pilot industrial applications

    International Nuclear Information System (INIS)

    Freeman, M.; Riviere-Wekstein, G.

    1994-01-01

    MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun

  14. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    Science.gov (United States)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not

  15. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    Science.gov (United States)

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  16. Effects of centrifugal modification of magnetohydrodynamic equilibrium on resistive wall mode stability

    International Nuclear Information System (INIS)

    Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.

    2014-01-01

    Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman–Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M 2  = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects. (paper)

  17. Three-dimensional equilibria and Mercier stability calculations

    International Nuclear Information System (INIS)

    Lynch, V.E.; Dominguez, N.; Carreras, B.A.; Varias, A.; Alejaldre, C.; Fraguas, A.L.

    1989-01-01

    It is well known that an equilibrium to be used for stability calculations must be extremely accurate. These high accuracy requirements, in a fixed boundary calculation, are translated into high accuracy in the representation of the boundary. These requirements are even stricter for stellarator configurations, for which all the information about the magnetic configuration is given externally through the boundary. Many Fourier components are required to accurately represent the boundary input from a realistic coil system. For torsatron-type configurations, as many as 50 components can be needed to describe the last closed magnetic surface for the vacuum field. For a heliac configuration, the number of components can go up to 200. For 3-D calculations, there is another question of accuracy that does not apply to stability calculations for axisymmetric systems. This is the role of resonant components in the calculation of the geodesic curvature or the Pfirsch-Schlueter current. As Boozer argues, local flattening of the pressure profile eliminates the singularities generated by the resonant components. However, to implement it in a numerical calculation and to eliminate the resonant components, it is necessary to work in a coordinate system with straight magnetic field lines. This creates another problem, since the equilibrium representation in a straight magnetic field lines coordinate system requires many more components than the optimal equilibrium representation developed by Hirshman and co-workers over the last decade and implemented in the VMEC equilibrium code. In this paper, we use the VMEC equilibrium code and tranform the results to the straight magnetic field line coordinate system to calculate the input for the stability analysis. The accuracy of the transformation and the convergence of the equilibrium in the new coordinate system are the major points discussed in this paper. 6 refs., 1 fig

  18. High beta and second stability region transport and stability analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, M.H.; Phillips, M.W.

    1996-01-01

    This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.

  19. Lyapunov stability analysis of magnetohydrodynamic plasma equilibria with axisymmetric toroidal flow

    International Nuclear Information System (INIS)

    Almaguer, J.A.; Hameiri, E.; Herrera, J.; Holm, D.D.

    1988-01-01

    Lyapunov stability conditions for ideal magnetohydrodynamic (MHD) plasmas with mass flow in axisymmetric toroidal geometry are determined in the Eulerian representation. Axisymmetric equilibrium solutions of ideal MHD are associated to critical points of a nonlinearly conserved Lyapunov functional consisting of the sum of the total energy and the following flux-weighted quantities: the circulation along field lines, the angular momentum, the toroidal flux, and the mass content within each flux tube. Conditions sufficient for Lyapunov stability of these equilibria against axisymmetric perturbations are found by taking advantage of the Hamiltonian formalism for ideal MHD. In particular [see Eq. (60)], it is sufficient for Lyapunov stability under linearized dynamics that an axisymmetric equilibrium be subsonic in the appropriate rotating frame, lie in the first elliptic regime of the Bernoulli--Grad--Shafranov (BGS) system of equations, and satisfy one additional, more complicated, condition. Effects of boundary conditions, nonlinearity, and three-dimensionality on MHD stability are also discussed

  20. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  1. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    International Nuclear Information System (INIS)

    Toi, K.

    2002-01-01

    MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)

  2. Inclusion of pressure and flow in the KITES MHD equilibrium code

    International Nuclear Information System (INIS)

    Raburn, Daniel; Fukuyama, Atsushi

    2013-01-01

    One of the simplest self-consistent models of a plasma is single-fluid magnetohydrodynamic (MHD) equilibrium with no bulk fluid flow under axisymmetry. However, both fluid flow and non-axisymmetric effects can significantly impact plasma equilibrium and confinement properties: in particular, fluid flow can produce profile pedestals, and non-axisymmetric effects can produce islands and stochastic regions. There exist a number of computational codes which are capable of calculating equilibria with arbitrary flow or with non-axisymmetric effects. Previously, a concept for a code to calculate MHD equilibria with flow in non-axisymmetric systems was presented, called the KITES (Kyoto ITerative Equilibrium Solver) code. Since then, many of the computational modules for the KITES code have been completed, and the work-in-progress KITES code has been used to calculate non-axisymmetric force-free equilibria. Additional computational modules are required to allow the KITES code to calculate equilibria with pressure and flow. Here, the authors report on the approaches used in developing these modules and provide a sample calculation with pressure. (author)

  3. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  4. MHD Generating system

    Science.gov (United States)

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  5. Effects of global MHD instability on operational high beta-regime in LHD

    International Nuclear Information System (INIS)

    Watanabe, K.Y.; Sakakibara, S.; Narushima, Y.; Funaba, H.; Narihara, K.; Tanaka, K.; Toi, K.; Ohdachi, S.; Kaneko, O.; Yamada, H.; Nakajima, N.; Yamada, I.; Kawahata, K.; Tokuzawa, T.; Komori, A.; Yamaguchi, T.; Suzuki, Y.; Cooper, W.A.; Murakami, S.

    2005-01-01

    In the Large Helical device (LHD), the operational highest averaged beta value has been expanded from 3.2% to 4% in last two years by increasing the heating capability and exploring a new magnetic configuration with a high aspect ratio. Although the MHD stability properties are considered to be unfavourable in the new high aspect configuration, the heating efficiency due to neutral beams and the transport properties are expected to be favourable in a high beta range. In order to make clear the effect of the global ideal MHD unstable mode on the operational regimes in helical systems, specially the beta gradients in the peripheral region and the beta value, the MHD analysis and the transport analysis are done in a high beta range up to 4% in LHD. In a high beta range of more than 3%, the maxima of the observed thermal pressure gradients in the peripheral region are marginally stable to a global ideal MHD instability. Though a gradual degradation of the local transport in the region has been observed as beta increases, a disruptive degradation of the local transport does not appear in the beta range up to 4%. (author)

  6. Characteristics of laminar MHD fluid hammer in pipe

    International Nuclear Information System (INIS)

    Huang, Z.Y.; Liu, Y.J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  7. Equilibrium calculations and mode analysis

    International Nuclear Information System (INIS)

    Herrnegger, F.

    1987-01-01

    The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device

  8. The structure of ideal MHD Alfven modes

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Chu, M.S.; Lao, L.L.; Greene, J.M.; Strait, E.J.; Chance, M.S.

    1991-01-01

    Continuum Alfven modes have undergone a resurgence in interest with the recent realization that so-called Toroidicity-Induced Alfven Eigenmodes (TAE modes) can be destabilized either by energetic beam ions in a strongly heated plasma or by alpha particles in a burning plasma. The GATO Ideal MHD Stability code, which minimizes the potential energy according to a variational formulation, has now been modified to isolate and calculate stable continuum eigenmodes. The existence of the TAE mode and its associated gap has been verified, using this code, for a circular cross-section, finite aspect ratio equilibrium. Moreover, the eigenfrequencies and eigenmodes obtained from this variational calculation are found to be in extremely good quantitative agreement with those obtained from the non-variational NOVA code. A systematic survey of the stable continuum has further revealed a surprising diversity in the structure of the continuum Alfven modes; the logarithmic singularity can be so broad, in some cases, as to occupy the whole cross-section. This has important implications for heating experiments which aim to locally excite the plasma by rf waves in the Alfven frequency range. The structure of several representative examples is discussed. The Alfven continuum, in general, and the TAE mode and its associated gap, in particular, are also found to be strongly modified by cross-sectional shaping. The dependence of the spectrum on various shaping factors is explored

  9. Outline of fiscal 1970 achievements in research on MHD power generation; 1970 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    Compiled are the results of studies conducted in fiscal 1970 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1000kW-class MHD power generator, modification is carried out involving the combustion system, seed collecting method, and power generation channel, and reviews through experiments are conducted about the analysis and control of the boundary layer structure. In the operation test of the MHD power generator designed for prolonged operation, a test operation for resistance to heat and seeds continues more than 100 hours using a cold wall type power generation channel constituted of water cooled ceramics, and the ceramics are analyzed for failure and loss. Studies are also conducted involving MHD power generator heat exchangers, seed collecting methods, electrode materials for MHD power generators, heat-resistant materials for MHD power generators, thermal performance rating for MHD power plants, etc. In the research and development of superconductive electromagnets, superconductive electromagnets are developed and tested for 1000kW-class MHD power generators, and studies are conducted on turbine type helium liquefiers, superinsulated superconductive electromagnetic field generators, etc. (NEDO)

  10. Neoclassical MHD equilibria with ohmic current

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.

    1989-01-01

    MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)

  11. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    International Nuclear Information System (INIS)

    He, Qingyun; Chen, Hongli; Feng, Jingchao

    2015-01-01

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  12. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao

    2015-12-15

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  13. Preliminary Study of Ideal Operational MHD Beta Limit in HL-2A Tokamak Plasmas

    International Nuclear Information System (INIS)

    Shen Yong; Dong Jiaqi; He Hongda; Turnbull, A. D.

    2009-01-01

    Magnetohydrodynamic (MHD) n = 1 kink mode with n the toroidal mode number is studied and the operational beta limit, constrained by the mode, is calculated for the equilibrium of HL-2A by using the GATO code. Approximately the same beta limit is obtained for configurations with a value of the axial safety factor q 0 both larger and less than 1. Without the stabilization of the conducting wall, the beta limit is found to be 0.821% corresponding to a normalized beta value of β c N = 2.56 for a typical HL-2A discharge with a plasma current I p = 0.245 MA, and the scaling of β c N ∼constant is confirmed. (magnetically confined plasma)

  14. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2017-05-01

    Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.

  15. HPC parallel programming model for gyrokinetic MHD simulation

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Yamada, Yusuke; Tokuda, Shinji; Ishii, Yasutomo; Yagi, Masatoshi

    2011-01-01

    The 3-dimensional gyrokinetic PIC (particle-in-cell) code for MHD simulation, Gpic-MHD, was installed on SR16000 (“Plasma Simulator”), which is a scalar cluster system consisting of 8,192 logical cores. The Gpic-MHD code advances particle and field quantities in time. In order to distribute calculations over large number of logical cores, the total simulation domain in cylindrical geometry was broken up into N DD-r × N DD-z (number of radial decomposition times number of axial decomposition) small domains including approximately the same number of particles. The axial direction was uniformly decomposed, while the radial direction was non-uniformly decomposed. N RP replicas (copies) of each decomposed domain were used (“particle decomposition”). The hybrid parallelization model of multi-threads and multi-processes was employed: threads were parallelized by the auto-parallelization and N DD-r × N DD-z × N RP processes were parallelized by MPI (message-passing interface). The parallelization performance of Gpic-MHD was investigated for the medium size system of N r × N θ × N z = 1025 × 128 × 128 mesh with 4.196 or 8.192 billion particles. The highest speed for the fixed number of logical cores was obtained for two threads, the maximum number of N DD-z , and optimum combination of N DD-r and N RP . The observed optimum speeds demonstrated good scaling up to 8,192 logical cores. (author)

  16. Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Dylan [Princeton Univ., NJ (United States); Miller, G. P. [Univ. of Tulsa, Tulsa, AZ (United States)

    2016-10-03

    This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physics determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.

  17. Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks

    International Nuclear Information System (INIS)

    Brennan, Dylan; Miller, G. P.

    2016-01-01

    This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physics determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.

  18. Boundary modulation effects on MHD instabilities in Heliotrons

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.; Nakamura, Y.

    2005-01-01

    In three-dimensional configurations, the confinement region is surrounded by the stochastic magnetic field lines related to magnetic islands or separatrix, leading to the fact that the plasma-vacuum boundary is not so definite compared with tokamaks that the various modulations of the plasma-vacuum boundary will be induced around the stochastic region by a large Shafranov shift of the whole plasma, in especially high-β operations. To examine such the modulation effects of the plasma boundary on MHD instabilities, high-β plasmas allowing a large Shafranov shift are considered in the inward-shifted LHD configurations with the vacuum magnetic axis R ax of 3.6m, for which previous theoretical analyses indicate that pressure-driven modes are significantly more unstable compared with experimental observations. It is shown that the boundary modulation due to a free motion of the equilibrium plasma has not only significant stabilizing effects on ideal MHD instabilities, but also characteristics consistent to experimental observations. (author)

  19. MHD program plan, FY 1991

    Science.gov (United States)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  20. Gasdynamic performance in relation to the power extraction of an MHD generator

    International Nuclear Information System (INIS)

    Massee, P.

    1983-01-01

    A study of the gasdynamical processes in MHD generators has been made both theoretically and experimentally. A core flow and boundary layer model has been developed. In order to obtain a fast computer code which can be used for engineering purposes the quasi-one-dimensional approximation is used. It is shown in this thesis that the boundary layers have to be calculated from integral equations describing momentum, kinetic energy and stagnation enthalpy respectively, when the MHD effects in the boundary layers are properly taken into account. Calculations with the developed core flow and boundary layer model have shown that the electrical power output is limited by the design of the existing facility and have indicated possibilities to circumvent this limitation. (Auth.)

  1. Magnetic stresses in ideal MHD plasmas

    DEFF Research Database (Denmark)

    Jensen, V.O.

    1995-01-01

    The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...... and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem...... and the Shafranov shift. The method had pedagogical merits as it simplifies the calculations, improves the physical understanding and facilitates an assessment of the approximations made in the calculations....

  2. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  3. Second region of stability

    International Nuclear Information System (INIS)

    Greene, J.M.; Chance, M.S.

    1980-10-01

    A new type of axisymmetric magnetohydrodynamic equilibrium is presented. It is characterized by a region of pressure and safety factor variation with a short scale length imposed as a perturbation. The equilibrium consistent with these profile variations can be calculated by means of an asymptotic expansion. The flexibility obtained by generating such equilibria allows for a close examination of the mechanisms that are relevant to ballooning instabilities - ideal MHD modes with large toroidal mode number. The so-called first and second regions of stability against these modes are seen well within the limits of validity of the asymptotic expansion. It appears that the modes must be localized in regions with small values of the local shear of the magnetic field. The second region of stability occurs where the local shear is large throughout the range where the magnetic field line curvature is destabilizing

  4. Available transfer capability calculation considering voltage stability margin

    International Nuclear Information System (INIS)

    Pan, Xiong; Xu, Guoyu

    2005-01-01

    To make the electricity trades carry out successfully, the calculation of available transfer capability (ATC) must coordinate the relationship between the security and economic benefits. In this paper, a model for ATC calculations accorded with trade-off mechanism in electricity market was set up. The impact of branch outage contingency on the static voltage stability margin was analyzed, and contingency ranking was performed through sensitivity indices of branch flows with respect to the loading margin. Optimal power flow based on primal-dual interior point method was applied to obtain ATC when the N-1 security constraints were included. The calculation results of IEEE 30-bus and IEEE 118-bus systems show that the proposed model and method are valid. (author) (N-1 security constraints; Electricity market; Available transfer capability; Optimal power flow; Voltage stability)

  5. Ceramics and M.H.D

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr

  6. Stability Limits of High-Beta Plasmas in DIII-D

    International Nuclear Information System (INIS)

    Strait, E.J.

    2005-01-01

    Stability at high beta is an important requirement for a compact, economically attractive fusion reactor. DIII-D experiments have shown that ideal magnetohydrodynamic (MHD) theory is an accurate predictor of the ultimate stability limits for tokamaks, and the Troyon scaling law has provided a useful approximation of ideal stability limits for discharges with 'conventional' profiles. However, variation of the discharge shape, pressure profile, and current density profile can lead to ideal MHD beta limits that differ significantly from simple Troyon scaling. The need for profiles consistent with steady-state operation places an important additional constraint on plasma stability. Nonideal effects can also be important and must be taken into account. For example, neoclassical tearing modes (NTMs), resulting from plasma resistivity and the nonlinear effects of the bootstrap current, can become unstable at beta values well below the ideal MHD limit. DIII-D experiments are now entering a new era of unprecedented control over plasma stability, including suppression of NTMs by localized current drive at the island location, and direct feedback stabilization of kink modes with a resistive wall. The continuing development of physics understanding and control tools holds the potential for stable, steady-state fusion plasmas at high beta

  7. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  8. Electromagnetic interactions between the U-25 superconducting magnet and the U-25 B MHD flow train

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the Argonne National Laboratory (ANL) 5.0 Tesla MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25 B Facility at the High Temperature Institute (IVAN), Moscow, U.S.S.R. The voltage fluctuations are analyzed with special emphasis on magnet stability. Various other thermodynamic and electrical parameters of the U-25 B flow train have been recorded and statistical correlations between these signals and the signals observed at the magnet terminals are described

  9. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Science.gov (United States)

    Reiman, Allan H.

    2016-07-01

    ∇p are important in this region, and small non-MHD contributions to the parallel force balance equation cannot be neglected there. Two approaches are pursued to solve our equations for the pressure driven currents. First, the equilibrium equations are applied to an analytically tractable magnetic field with an island, obtaining explicit expressions for the rotational transform and magnetic coordinates, and for the pressure-driven current and its limiting behavior near the X-line. The second approach utilizes an expansion about the X-line to provide a more general calculation of the pressure-driven current near an X-line and of the rotational transform near a separatrix. The study presented in this paper is motivated, in part, by tokamak experiments with nonaxisymmetric magnetic perturbations, where significant differences are observed between the behavior of stellarator-symmetric and non-stellarator-symmetric configurations with regard to stabilization of edge localized modes by resonant magnetic perturbations. Implications for the coupling between neoclassical tearing modes, and for magnetic island stability calculations, are also discussed.

  10. Semi-implicit method for three-dimensional compressible MHD simulation

    International Nuclear Information System (INIS)

    Harned, D.S.; Kerner, W.

    1984-03-01

    A semi-implicit method for solving the full compressible MHD equations in three dimensions is presented. The method is unconditionally stable with respect to the fast compressional modes. The time step is instead limited by the slower shear Alfven motion. The computing time required for one time step is essentially the same as for explicit methods. Linear stability limits are derived and verified by three-dimensional tests on linear waves in slab geometry. (orig.)

  11. FLIP-MHD: A particle-in-cell mehtod for magnetohydrodynamics

    International Nuclear Information System (INIS)

    Brackbill, J.U.

    1990-01-01

    A particle-in-cell (PIC) method, FLIP is extended to magnetohydrodynamic (MHD) flow in two dimensions. Particles are used to reduce computational diffusion of the magnetic field. FLIP is an extension of ''classical'' PIC, where particles have mass, but every other property of the fluid is stored on a grid. In FLIP, particles have every property of the fluid, so that they provide a complete Lagrangian description not only to resolve contact discontinuities but also to reduce computational diffusion of linear and angular momentum. The interactions among the particles are calculated on a grid, for convenience and economy. The present study extends FLIP to MHD, by including information about the magnetic field among the attributes of the particles. 6 refs

  12. Outline of fiscal 1969 achievements in research on MHD power generation; 1969 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    Compiled are the results of studies conducted in fiscal 1969 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1,000kW-class MHD power generator, the operation test continues from the preceding fiscal year using high-temperature air as oxidant, and the growth of boundary layer in the channel is determined. In the operation test of the MHD power generator designed for prolonged operation, insulation walls, electrode materials, and structures capable of prolonged operation are developed and tested. In the research of MHD power generator heat exchangers, studies are made about the bulkhead type and heat accumulator types (stationary type, rotary type, and falling-grain type). In addition, studies are conducted about seed collecting methods, MHD power generator electrode materials, heat-resisting insulators, and thermal performance rating. In the research and development of superconductive electromagnets, studies are conducted about superconductive electromagnets for 1kW MHD power generators, ferromagnetic superconductive electromagnets for 1,000kW-class MHD power generators, 45-kilogauss col type superconductive electromagnets, turbine type helium liquefier, high current density col type superconductive electromagnets, superinsulated magnetic field generators, etc. (NEDO)

  13. Predesign of an experimental (5 to 10 MWt) disk MHD facility and prospects of commercial (1,000 MWt) MHD/steam systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    Experimental disk MHD facilities are predesigned, and commercial-scale (1,000 MWt) MHD/steam systems are investigated. The predesigns of the disk MHD facilities indicate that enthalpy extraction is 8.7% for a 10 MWt open cycle MHD generator, and increases to 37% for a 5 MWt closed cycle MHD generator. Commercial (1,000 MWt) MHD/steam systems are studied for 4 types. Of these types, the open cycle disk MHD generator shows the lowest efficiency of 42.8%, while the closed cycle disk MHD generator the highest efficiency of 50.0%. The open cycle linear generator, although showing an efficiency of 49.4%, may be the lowest-cost type, when the necessary heat source, heat exchangers and the like are taken into consideration. For the design of superconducting magnet, it is necessary to further investigate whether the one for the test facility is applicable to the commercial systems. (NEDO)

  14. Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry

    Science.gov (United States)

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.

    2001-01-01

    In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.

  15. MHD-stability of the Scyllac configuration

    International Nuclear Information System (INIS)

    Berge, G.; Freidberg, J.P.

    1975-01-01

    The results of a stability analysis for a diffuse high-β, l=1 helical configuration are presented. It is shown that there exists a gross m=1 mode whose properties are quite similar to those predicted by the sharp-boundary model. In addition, two new classes of m=1 modes are found, one localized on the inside of the plasma, the other one outside. For any monotonic pressure profile, these modes are unstable although their growth rates are very small. A further study suggests that small changes in the profile may stabilize these modes. (author)

  16. Two dimensional analysis of MHD generator by means of equivalent circuit

    International Nuclear Information System (INIS)

    Yoshida, Masaharu; Umoto, Juro

    1975-01-01

    The authors report on the method analyzing generally the MHD generator by means of the equivalent circuit including the negative resistance. At first, they divide the duct space into many space elements, and for each space element they derive the fundamental equivalent four-terminal circuit which satisfies the two-dimensional Ohm's law. Next, they make an attempt to apply the equivalent circuits to the typical MHD generators such as diagonal, Faraday and Hall generators considering the boundary layer in the duct and the wall leakage current. Using their analysis, the current density, Joul's heat, generated and output electrical powers, electrical efficiency etc. in the generator can be fairly easily calculated. (auth.)

  17. The SOL width and the MHD interchange instability in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O [Kurchatov institute, Moscow (Russian Federation)

    1994-07-01

    Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.

  18. Wall stabilization of high beta plasmas in DIII-D

    International Nuclear Information System (INIS)

    Taylor, T.S.; Strait, E.J.; Lao, L.L.; Turnbull, A.D.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Groebner, R.J.; La Haye, R.J.; Mauel, M.

    1995-02-01

    Detailed analysis of recent high beta discharges in the DIII-D tokamak demonstrates that the resistive vacuum vessel can provide stabilization of low n magnetohydrodynamic (MHD) modes. The experimental beta values reaching up to β T = 12.6% are more than 30% larger than the maximum stable beta calculated with no wall stabilization. Plasma rotation is essential for stabilization. When the plasma rotation slows sufficiently, unstable modes with the characteristics of the predicted open-quotes resistive wallclose quotes mode are observed. Through slowing of the plasma rotation between the q = 2 and q = 3 surfaces with the application of a non-axisymmetric field, the authors have determined that the rotation at the outer rational surfaces is most important, and that the critical rotation frequency is of the order of Ω/2π = 1 kHz

  19. Measurement of Resistive Wall Mode stability in rotating high beta plasmas

    International Nuclear Information System (INIS)

    Reimerdes, H.; Bialek, J.; Garofalo, A.M.; Navratil, G.A.; Chance, M.S.; Menard, J.E.; Okabayashi, M.; Takahashi, H.; Chu, M.S.; Gohil, P.; Jackson, G.L.; Jensen, T.H.; La Haye, R.J.; Scoville, J.T.; Strait, E.J.; Jayakumar, R.J.; Liu, Y.Q.

    2005-01-01

    Toroidal plasma rotation in the order of a few percent of the Alfven velocity can stabilize the resistive wall mode and extend the operating regime of tokamaks from the conventional, ideal MHD no-wall limit up to the ideal MHD ideal wall limit. The stabilizing effect has been measured passively by measuring the critical plasma rotation required for stability and actively by probing the plasma with externally applied resonant magnetic fields. These measurements are compared to predictions of rotational stabilization of the sound wave damping and of the kinetic damping model using the MARS code. (author)

  20. MHD saga in the gases

    International Nuclear Information System (INIS)

    Petit, J.P.

    1995-01-01

    Jean-Pierre PETIT, one of the best MHD specialists, is telling this technology story and he is insisting on its military consequences. Civil MHD is only one iceberg emerged part, including a lot of leader technologies, interesting he defense. 3 notes

  1. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  2. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  3. Overview of transport and MHD stability study and impact of magnetic field topology in the Large Helical Device

    International Nuclear Information System (INIS)

    Ida, K.; Nagaoka, K.; Kasahara, H.; Yoshinuma, M.; Ohdachi, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K.Y.; Kaneko, O.; Komori, A.; Inagaki, S.; Evans, T.; Kamiya, Kensaku

    2014-10-01

    The progress of physics understanding and concurrent parameter extension since the last IAEA-FEC 2012 in the Large Helical Device is overviewed. High ion and electron temperature plasma (T i (0) ∼ T e (0) ∼ 6 keV) with simultaneous ion and electron internal transport barrier (ITB) is obtained by controlling recycling and heating deposition. Associated with the formation of a transport barrier, a sign flip of the non-diffusive term of impurity/momentum transport (residual stress and convection flow) is observed. The impact of the topology of 3-D magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum and particle/impurity transport and MHD stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1x10 19 m -3 and with high electron and ion temperatures (T i (0) ∼ T e (0) ∼ 2 keV) resulting in 3.36 GJ of input energy is achieved. (author)

  4. Using frequency equivalency in stability calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, I.A.; Temirbulatov, R.A.; Tereshko, L.A.

    1981-01-01

    A methodology for calculating oscillatory instability that involves using frequency equivalency is employed in carrying out the following proceedures: dividing an electric power system into subgroups; determining the adjustments to the automatic excitation control in each subsystem; simplifying the mathematical definition of the separate subsystems by using frequency equivalency; gradually re-tuning the automatic excitation control in the separate subsystems to account for neighboring subsystems by using their equivalent frequency characteristics. The methodology is to be used with a computer program to determine the gain in the stabilization channels of the automatic excitation control unit in which static stability of the entire aggregate of normal and post-breakdown conditions acceptable damping of transient processes are provided. The possibility of reducing the equation series to apply to chosen regions of the existing range of frequencies is demonstrated. The use of the methodology is illustrated in a sample study on stability in a Siberian unified power system.

  5. Generation of compressible modes in MHD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)

    2005-05-01

    Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)

  6. Resonant MHD modes with toroidal coupling

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  7. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  8. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  9. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  10. Calculation of NPP pipeline seismic stability

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Yu.K.; Kaliberda, I.V.

    1982-01-01

    A simplified design procedure of seismic pipeline stability of NPP at WWER reactor is described. The simplified design procedure envisages during the selection and arrangement of pipeline saddle and hydraulic shock absorbers use of method of introduction of resilient mountings of very high rigidity into the calculated scheme of the pipeline and performance of calculations with step-by-step method. It is concluded that the application of the design procedure considered permits to determine strains due to seismic loads, to analyze stressed state in pipeline elements and supporting power of pipe-line saddle with provision for seismic loads to plan measures on seismic protection

  11. Impulsive relaxation process in MHD driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, H.; Hayashi, T.; Sato, T.

    1997-01-01

    Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)

  12. MHD stability of (2,1) tearing mode: an issue for the preforming phase of Tore Supra non-inductive discharges

    International Nuclear Information System (INIS)

    Maget, P.; Luetjens, H.; Huysmans, G.; Moreau, Ph.; Schunke, B.; Segui, J.-L.; Garbet, X.; Joffrin, E.; Luciani, J.F.

    2007-01-01

    The early phase of a tokamak plasma discharge can have a dramatic impact on the main heating phase. This has been a persistent problem for the development of the steady state, fully non-inductive scenario using lower hybrid current drive (LHCD) on Tore Supra. The present paper reports on recent experimental and numerical investigations showing that a tearing mode coupled to the internal kink grows on q = 2 in the ohmic phase when the total current is too low, due to the weakening of field line curvature stabilization. Then, the application of LHCD drives the island to a larger size and undermines the development of the non-inductive phase. Decreasing the edge safety factor or increasing the Lundquist number S is found to be beneficial in both the linear and non-linear MHD analyses. The experimental database, which allows covering the edge safety factor dependence, supports this interpretation

  13. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  14. Tests and studies of USSR materials at the US coal burning MHD facility UTSI-2

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, G P; Romanov, A I; Rekov, A I; Spiridonov, E G; Barodina, T I; Vysotsky, D A

    1978-10-01

    In accordance with the overall program of the US--USSR cooperation in the field of MHD power generation tests of Soviet electrode materials were conducted at the coal burning MHD facility UTSI-2 of the University of Tennessee Space Institute. The main purposes of the tests are evaluation of electrode materials behavior in the channel of the MHD generator operating with combustion products of coal containing ionizing alkali seed, study of thermal and physical stability of materials in the presence of corrosive slag, study of electrophysical characteristics of electrode materials when they are subjected to the passage of current through the plasma-slag-electrode system. Tests were conducted on electrodes made of silicon carbide doped with titanium and LaCrO/sub 3/--Cr cermet. Results are reported on the phase and chemical composition and structure of these two materials, their thermophysical and electrophysical properties, and the electrode fabrication methods. The MHD facility UTSI-2, where the tests were conducted is one of few utilizing actual coal as the fuel. A description of this facility is given, and its main operating parameters and the methods used to conduct electrode tests with and without an applied current are described.

  15. Summary report for ITER task - T68: MHD facility preparation for Li/V blanket option

    International Nuclear Information System (INIS)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1995-08-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To enable experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, the room-temperature ALEX (Argonne's Liquid Metal EXperiment) NaK facility was upgraded to a 300 degrees C lithium system. The objective of this upgrade was to modify the existing facility to the minimum extent necessary, consistent with providing a safe, flexible, and easy to operate MHD test facility which uses lithium at ITER-relevant temperatures, Hartmann numbers, and interaction parameters. The facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups. The system design description for this lithium upgrade of the ALEX facility is given in this document

  16. Theoretical aspects of effects of high-energy particles on MHD modes

    International Nuclear Information System (INIS)

    Villard, L.; Brunner, S.; Vaclavik, J.

    1994-01-01

    In this paper we adopt a global approach. The TAEs are computed globally in true toroidal geometry consistent with an ideal MHD equilibrium. Kinetic effects (damping and driving mechanisms) and fast particles are treated perturbatively. More precisely, we first obtain the global eigenmodes an then use these given eigenmode fields to evaluate the global overall wave-particle power transfer assuming given fast particle density profiles. The marginal stability point is obtained by scaling the number of fast particles so that the overall power transfer is zero. The wave-particle power transfers are evaluated using the drift-kinetic equations. The paper is structured as follows: In section two, the plasma model in toroidal geometry is briefly presented. The expressions for the DKE powers are derived for the various species in the companion paper in these proceedings. In section 3 we show the results of our model applied to a wide variety of plasma parameters. In particular, the critical volume-averaged fast particle beta corresponding to marginal stability, f > cr , is calculated for a wide range of bulk plasma parameters and fast particle profile widths. We discuss the results in section 4 and draw some conclusions in section 5.(author) 13 figs., 21 refs

  17. On the stochastic stability of MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-07-01

    The stochastic stability in the large of stationary equilibria of ideal and dissipative magnetohydrodynamics under the influence of stationary random fluctuations is studied using the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian systems are given. The destabilizing effect of stochastic fluctuations is demonstrated. (orig.)

  18. Conditions for the Use of Ducts of Disc Geometry in MHD Conversion; Conditions d'Emploi des Tuyeres Disques en Conversion MHD

    Energy Technology Data Exchange (ETDEWEB)

    Azalbert, J. P.; Zettwoog, P. [Centre d' Etudes Nucleaires de Saclay, Gif-Sur-Yvette (France)

    1966-11-15

    Laplace forces acting on the radial component of the current, fluid rotation was found to occur. It is shown that there is an initial velocity of rotation which optimizes the inlet conditions. . The above calculations presuppose that the electron density at the inlet corresponds to a regime in which the electric field is that of the inlet. This means assuming either that the ionization time is very short vis-a-vis the transit time, or that there is a suitably adapted pre-ionization device. Since the stability of MHD flows cannot be guaranteed beyond a certain critical value of the Hall parameter, the values of this parameter are given for each duct. (author) [French] Le memoire examine les conditions d'emploi des tuyeres disques pour la conversion par voie MHD de l'energie thermique contenue dans un gaz rare ensemence en cesium. On envisage des temperatures de sources.chaudes comprises entre 1600 Degree-Sign K et 2000 Degree-Sign K et des pressions d'helium ou d'argon allant de 1 a 50 bars. La temperature totale du gaz a la sortie de la MHD est fixee a 1250 Degree-Sign K, temperatures partir de laquelle le gaz peut etre pris en charge par des ensembles plus classiques. Pour chaque niveau de pression, on determine la puissance thermique a partir de laquelle les pertes entropiques visqueuses par unite de longueur de parois sont negligeables devant les pertes joules volumiques correspondant a la marche normale de la tuyere. Les champs magnetiques sont obtenus a partir de bonines supraconductrices; on traite les cas 5 et 6 teslas. Pour la gamme des temperatures considerees, seule l'ionisation hors d'equilibre permet une conversion efficace. On suppose donc que l'ionisation est hors d'equilibre sous l'action du champ electrique induit, et on calcule la conductivite a partir d'un modele du plasma a 2 fluides qui donne o connaissant la densite de courant. En tuyere de Hall, les conditions d'echauffement electronique en une section donnee dependent de ce qui se passe dans l

  19. A civil engineering approach to ideal MHD

    International Nuclear Information System (INIS)

    Jensen, V.O.

    1992-01-01

    It is well known that a magnetic field can be conceived as a medium where an isotropic compressive stress, B 2 /2μ 0 , is superimposed on a tensile stress, B 2 /μ 0 , parallel to the lines of force. When a stationary ideal MHD plasma is present in the magnetic field, the particle pressure adds to the magnetic stresses to form a combined stress tensor. Calculations of plasma equilibria based on this concept are very similar to calculations in civil engineering of static structures based on compressive, tensile, and shear stresses. Therefore the very simple physical pictures known from civil engineering when used in plasma physics provide simple physical understanding and facilitate the physical interpretation of the results. In an earlier paper the concept was used to derive and discuss the equilibrium equations for θ-, Z-, and screw pinches and the Grad-Shafranov shift in a tokamak plasma with circular cross sections of the flux surfaces. Here the concept is used to discuss the virial theorem and to obtain a simple physical interpretation of this theorem. We also reconsider the Grad-Shafranov shift in a tokamak plasma and show that a situation where all flux surfaces have circular cross sections cannot be an exact solution to the ideal MHD equations. (author) 3 refs., 3 figs

  20. Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels

    International Nuclear Information System (INIS)

    Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.

    1995-01-01

    The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant

  1. Extrap interchange stability

    International Nuclear Information System (INIS)

    Scheffel, J.

    1989-05-01

    This is a non-linear MHD study of Extrap interchange stability. The closed-line stability criterion d(pgγ)/dψ ≥ 0 is used for fully 2-D numerical calculations of marginally stable equilibria. It is found that Extrap has a stabilzing effect on these modes. The reason for this is that q = Ιdl/B diverges towards the separatrix, which forms a boundary for the pinch. Consequently, in comparison with the 1-D Z-pinch, the Extrap octupole field allows steeper pressure profile in the boundary region. This stabilizing effect is shown to diminish in equilibria with an externally imposed axial magnetic field. It is also shown how the shape of the plasma cross-section depends on the relative direction of plasma current and external rod currents, when the current density j is finite on the boundary. Unfavourable curvature and higher values of j at the boundary are obtained in the case of parallel currents. Only when j vanishes at the separatrix, the cross-section can be truly square-shaped. The type of singularity of q at the separatrix is derived, as well as criteria for j to become singular

  2. Limits of possible operation of the R-tokamak due to ideal MHD instabilities

    International Nuclear Information System (INIS)

    Naitou, H.; Yamazaki, K.; Takemoto, Y.; Abe, Y.; Gruber, R.; Saurenmann, H.; Troyon, F.

    1984-09-01

    A series of MHD stability calculations has been made with the ERATO code to know the maximum β which can be expected for the R-Tokamak using the parameters of the second phase design (an aspect ratio of 2.75, ellipticity of 1.8 and triangularity of 0.3). The highest β obtained under the condition that both the n=1 free boundary mode (with no wall stabilization) and the n=infinity ballooning modes are stable is about 6% at qsub(s)--2.0 and qsub(o) at the Mercier limit on axis. This result has been found by performing some optimization of the current and pressure profiles. If only the ballooning modes are concerned, the limiting β becomes 8.6%. The sensitivity of the result to elongation has been studied. It has been found that the maximum β increases and then decreases with elongation. The optimum β is obtained for an elongation of 1.8 if both the n=1 kink and n=infinity ballooning limits are considered and of 2.0 if only ballooning modes are considered. These results are compared with proposed scaling laws. (author)

  3. MHD power generation for the synthetic-fuels industry

    International Nuclear Information System (INIS)

    Jones, M.S. Jr.

    1982-01-01

    The integration of open cycle MHD with various processes for the recovery of hydrocarbons for heavy oil deposits, oil sands, and oil shales are examined along with its use in producing medium Btu gas, synthetic natural gas and solvent refined coal. The major features of the MHD cycle which are of interest are: (a) the ability to produce hydrogen through the shift reaction by introducing H 2 O into the substoichiometric combustion product flow exiting the MHD diffuser, (b) the use of high temperature waste heat in the MHD exhaust, and (c) the ability of the seed in the MHD flow to remove sulfur from the combustion products. Therefore the use of the MHD cycle allows coal to be used in an environmentally acceptable manner in place of hydrocarbons which are now used to produce process heat and hydrogen. The appropriate plant sizes are in the range of 25 to 50 MWe and the required MHD generator enthalpy extraction efficiencies are low. Sale of electricity produced, over and above that used in the process, can provide a revenue stream which can improve the economics of the hydrocarbon processing. This, coupled with the replacement of coal for hydrocarbons in certain phases of the process, should improve the overall economics, while not requiring a high level of performance by the MHD components. Therefore, this area should be an early target of opportunity for the commercialization of MHD

  4. PC-based package for interactive assessment of MHD equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Kelleher, W.P.

    1987-01-01

    In the assessment of Magnetohydrodynamic (MHD) equilibrium and Poloidal Field Coil (PFC) arrangement for toroidal axisymmetric geometry, the Grad-Shafranov equation must be solved, either analytically or numerically. Existing numerical tools have been developed primarily for mainframe usage and can prove cumbersome for screening assessments and parametric evaluations. The objective of this thesis was to develop a personal computer (PC)-based calculational tool for assessing MHD/PFC problems in a highly interactive mode, well suited for scoping studies. The approach adopted involves a two-step process: first the MHD equilibrium is calculated and then the PFC arrangement, consistent with the equilibrium, is determined in an interactive design environment. The PC-based system developed consists of two programs: (1) PCEQ, which solve the MHD equilibrium problem and (2) PFDE-SIGN, which is employed to arrive at a PFC arrangement. PCEQ provides an output file including, but not limited to, the following: poloidal beta, total beta, safety factors, q, on axis and on edge. PCEQ plots the following contours and/or profiles: flux, pressure and toroidal current density, safety factor, and ratio of plasma toroidal field to vacuum field

  5. Performance of the CNEN MHD Blow-Down Loop Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, E.; Brown, R.; Gasparotto, M.; Gay, P.; Toschi, R. [Laboratorio Conversione Diretta, CNEN, Frascati (Italy)

    1968-11-15

    The CNEN facility has been designed, manufactured and used for alkali-seeded noble gas MHD energy conversion research, as the major experimental effort during the first five-year CNEN Research Programme on MHD. The main specifications and the general arrangement with information on preliminary commissioning tests of some components were given at the Salzburg Symposium. Since then the facility has been successfully commissioned and from March 1967 has been working on MHD experiments. Efforts were made to reduce any adverse effects on the experimental MHD results that were due to inherent limitations of an experimental apparatus (particularly under open-circuit conditions). Great emphasis was placed on problems of caesium vaporization and the mixing with helium, the purity level of the mixture, measurements and the control system. The insulation of the plasma from ground was carefully treated, increasing the ratio between insulator resistance and typical plasma resistance as much as possible. Fluidynamic tests at room and high temperatures have shown that stability in the gas parameters (temperature, pressure and mass flow) can be maintained within few per cent for tens of seconds after a transient, giving a behaviour similar to a continuously running system. The high- temperature, alumina pebble-bed heater has successfully operated, bringing the helium-caesium mixtures up to 2000 Degree-Sign K and up to 4 atm abs pressure, and undergoing seven thermal cycles, for a total of more than 2000 hours operation at top temperature. Preheated generator ducts using alumina as insulator and tantalum for electrodes performed satisfactorily, very much attention having been given in the design to reduction of thermal shocks and to obviating possible paths for caesium leakage and short-circuiting of electrode leads. The pulsed liquid nitrogen precooled magnet has been run for about 50 pulses at high field ( Asymptotically-Equal-To 4.5 tesla) with an operating time of about 10

  6. Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers

    Science.gov (United States)

    Grabbe, Crockett L.; Cairns, Iver H.

    1995-01-01

    A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a

  7. Modeling and analysis of the disk MHD generator component of a gas core reactor/MHD Rankine cycle space power system

    International Nuclear Information System (INIS)

    Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.

    1990-01-01

    A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed

  8. Technical support for open-cycle MHD program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    The support program for open-cycle MHD at Argonne National Lab is developing the analytical tools needed to investigate the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and the high-temperature air preheater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system on either thermodynamic efficiency or with less confidence, cost of electrical power. Also, in support of the open-cycle program, considerable effort has gone into the formulation of a CDIF Test Plan and a National MHD Test Program.

  9. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  10. Neoclassical MHD descriptions of tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Kim, Y.B.; Sundaram, A.K.

    1988-01-01

    Considerable progress has been made in extending neoclassical MHD theory and in exploring the linear instabilities, nonlinear behavior and turbulence models it implies for tokamak plasmas. The areas highlighted in this paper include: extension of the neoclassical MHD equations to include temperature-gradient and heat flow effects; the free energy and entropy evolution implied by this more complete description; a proper ballooning mode formalism analysis of the linear instabilities; a new rippling mode type instability; numerical simulation of the linear instabilities which exhibit a smooth transition from resistive ballooning modes at high collisionality to neoclassical MHD modes at low collisionality; numerical simulation of the nonlinear growth of a single helicity tearing mode; and a Direct-Interaction-Approximation model of neoclassical MHD turbulence and the anomalous transport it induces which substantially improves upon previous mixing length model estimates. 34 refs., 2 figs

  11. Observation of finite-β MHD phenomena in Tokamaks

    International Nuclear Information System (INIS)

    McGuire, K.M.

    1985-01-01

    Stable high beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of qsub(o) and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded

  12. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    Science.gov (United States)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  13. Research report on a study in MHD power generators - end effects

    International Nuclear Information System (INIS)

    Mittal, M.L.

    In MHD devices, there are significant losses due to end effects, boundary layers and instabilities. The present investigations concern the estimation of losses due to end effects. The basic equations and boundary conditions for the analysis of end effects are derived. Using a sinusoidal and exponential termination, at the entrance region of a rectangular MHD channel with continuous electrodes, the end effect phenomenon is analysed. The normal current density on the electrode walls, is examined and the effects of the Hall currents on end losses is discussed. The end effects with diverging electrode walls are also investigated. The normal current distribution on the electrodes and the efficiency are calculated for two different velocity profiles - one with viscosity and the other with source velocity. (K.M.)

  14. Resistive MHD studies of high-β-tokamak plasmas

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.

    1981-01-01

    Numerical calculations have been performed to study the MHD activity in high-β tokamaks such as ISX-B. These initial value calculations built on earlier low β techniques, but the β effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low β to predominantly pressure driven modes at high β is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment

  15. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  16. MHD phenomena in advanced scenarios on ASDEX upgrade and the influence of localised electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Peeters, A.G.; Pinches, S.D.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    MHD instabilities in advanced tokamak scenarios on the one hand are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers. In particular fishbone oscillations driven by fast particles arising from neutral beam injection (NBI) are shown to trigger internal transport barriers in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour is explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive is shown to significantly affect the MHD stability of this type of discharges. (author)

  17. MHD phenomena in advanced scenarios on ASDEX Upgrade and the influence of localized electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    On the one hand, MHD instabilities in advanced tokamak scenarios are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers (ITBs). In particular, fishbone oscillations driven by fast particles arising from NBI are shown to trigger ITBs in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour could be explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand, MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive are shown to significantly affect the MHD stability of this type of discharge. (author)

  18. Universal equations of unsteady two-dimensional MHD boundary layer whose temperature varies with time

    Directory of Open Access Journals (Sweden)

    Boričić Zoran

    2009-01-01

    Full Text Available This paper concerns with unsteady two-dimensional temperature laminar magnetohydrodynamic (MHD boundary layer of incompressible fluid. It is assumed that induction of outer magnetic field is function of longitudinal coordinate with force lines perpendicular to the body surface on which boundary layer forms. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in inductionless approximation. Characteristic properties of fluid are constant because velocity of flow is much lower than speed of light and temperature difference is small enough (under 50ºC . Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for every particular problem. Conclusions based on these solutions are related only with specific temperature MHD boundary layer problem. In this paper, quite different approach is used. First new variables are introduced and then sets of similarity parameters which transform equations on the form which don't contain inside and in corresponding boundary conditions characteristics of particular problems and in that sense equations are considered as universal. Obtained universal equations in appropriate approximation can be solved numerically once for all. So-called universal solutions of equations can be used to carry out general conclusions about temperature MHD boundary layer and for calculation of arbitrary particular problems. To calculate any particular problem it is necessary also to solve corresponding momentum integral equation.

  19. Overview of liquid-metal MHD

    International Nuclear Information System (INIS)

    Dunn, P.F.

    1978-01-01

    The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser

  20. Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method

    Science.gov (United States)

    Gilbreth, C. N.; Alhassid, Y.

    2015-03-01

    Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.

  1. Electricity from MHD, 1968. Vol. IV. Open-Cycle MHD. Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation held by the IAEA at Warsaw, 24-30 July 1968. The meeting was attended by some 300 participants from 21 countries and three international organizations. In contrast to the Symposium held two years ago, much more emphasis was placed on the economic aspects of using MHD generators in large-scale power generation. Among closed- cycle systems, the prospects of linking an ultra-high-temperature reactor with an MHD generator were explored, and the advantages gained by having a liquid-metal generator as a 'topper' in a conventional steam generating plant were presented. Comments were made about the disproportionate effect of end and boundary conditions in experimental MHD generators on the main plasma parameters, and estimates were made of the interrelationship to be expected in real generators. The estimates will have to await confirmation until results are obtained on large-scale prototype MHD systems. Progress in materials research, in design and construction of auxiliary equipment such as heat exchangers, supercooled magnets (which are- now commercially available), etc., is accompanied by sophisticated ideas of plant design. The Proceedings are complemented by three Round Table Discussions in which chosen experts from various countries discuss the outlook for closed-cycle gas, closed-cycle liquid-metal and open-cycle MHD, and give their views as to the most fruitful course to follow to achieve economic full-scale power generation. Contents: (Vol. I) 1. Closed-Cycle MHD with Gaseous Working Fluids: (a) Diagnostics (3 papers); (b) Steady-state non-equilibrium ionization (8 papers); (c) Transient non-equilibrium ionization (7 papers); (d) Pre-ionization and gas discharge (4 papers); (e) Fields and flow in MHD channels (10 papers); (0 Instabilities (8 papers); (g) Generator design and performance studies (6 papers); (Vol. II) (h) Shock waves (6 papers); (i) Power generation experiments (13 papers

  2. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  3. Ideal MHD properties for proposed noncircular tokamaks

    International Nuclear Information System (INIS)

    Helton, F.J.; Greene, J.M.

    1986-01-01

    We obtain Double Dee, TFXC-C, Big Dee, and JET equlibria which are optimized with respect to both shape and current profile for stability to ideal MHD modes. With a wall reasonably far from the plasma surface we find that the external kink constrains q 1 to be above two, where q 1 is the plasma surface value of the safety factor, and the ballooning mode limits the value of β. Then a relevant stable β value for the Double Dee reactor design is over 7%. Such a Double Dee equilibrium is not in a separated second stability region and thus does not have a problem with accessibility. A relevant stable β value for the TFCX-C reactor design is over 6%. Equivalent relevant stable β values for the Big Dee (17%) and JET (7%) are included for calibration purposes. We compare these relevant stable β values with the β's determined by two recent scaling laws

  4. Stability of the n = 1 internal kink mode in equilibria with flows

    International Nuclear Information System (INIS)

    Aydemir, A.Y.; Waelbroeck, F.L.

    1996-01-01

    Stabilizing influence of mass flows, either directly or through their shearing action, on various modes is now generally recognized. Here we examine linear and nonlinear stability of the n = 1 internal kink mode in equilibria with toroidal rotation, using our nonlinear, initial-value MHD code CTD, which can be used to generate self-consistent equilibria with flows in arbitrary geometries. It is well known that equilibrium mass flows introduce complications in determination of MHD equilibria and their stability properties, such as the loss of self-adjointness and an increase in the number of conditions required to uniquely determine the equilibria. Thus, even with purely toroidal flows, an implicit statement about the equation of state is needed, in addition to a knowledge of the magnetic field and velocity profiles; rotation in an adiabatic plasma leads to a different equilibrium than, for example, in an isothermal one, with possibly quite different stability properties. We find that the expected stabilizing influence of toroidal rotation on n = 1 is generally absent in adiabatically generated equilibria in which, of all the relevant thermodynamic variables, only the specific entropy is a flux function, s = s (ψ). Fortunately, physically more relevant isothermal case where the temperature is constant on flux surfaces, T = T(ψ), has more favorable stability characteristics. On the other hand, an inconsistent but common practice of ignoring density perturbations, a benign omission for static equilibria, leads to overly optimistic results when equilibrium flows axe present, predicting stability when there may not be any. The crucial role played by the equation of state in determining equilibrium raises questions regarding the role of parallel transport in stability calculations; this and other nonideal effects, along with the role of plasma β vs. the rotational β, and nonlinear stability when the mode is pushed beyond marginality, will be discussed

  5. ORMEC: a three-dimensional MHD spectral inverse equilibrium code

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Hogan, J.T.

    1986-02-01

    The Oak Ridge Moments Equilibrium Code (ORMEC) is an efficient computer code that has been developed to calculate three-dimensional MHD equilibria using the inverse spectral method. The fixed boundary formulation, which is based on a variational principle for the spectral coefficients (moments) of the cylindrical coordinates R and Z, is described and compared with the finite difference code BETA developed by Bauer, Betancourt, and Garabedian. Calculations for the Heliotron, Wendelstein VIIA, and Advanced Toroidal Facility (ATF) configurations are performed to establish the accuracy and mesh convergence properties for the spectral method. 16 refs., 13 figs

  6. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  7. Linear and nonlinear instability theory of a noble gas MHD generator

    International Nuclear Information System (INIS)

    Mesland, A.J.

    1982-01-01

    This thesis deals with the stability of the working medium of a seeded noble gas magnetohydrodynamic generator. The aim of the study is to determine the instability mechanism which is most likely to occur in experimental MHD generators and to describe its behaviour with linear and nonlinear theories. In chapter I a general introduction is given. The pertinent macroscopic basic equations are derived in chapter II, viz. the continuity, the momentum and the energy equation for the electrons and the heavy gas particles, consisting of the seed particles and the noble gas atoms. Chapter III deals with the linear plane wave analysis of small disturbances of a homogeneous steady state. The steady state is discussed in chapter IV. The values for the steady state parameters used for the calculations both for the linear analysis as for the nonlinear analysis are made plausible with the experimental values. Based on the results of the linear plane wave theory a nonlinear plane wave model of the electrothermal instability is introduced in chapter V. (Auth.)

  8. Solving free-plasma-boundary problems with the SIESTA MHD code

    Science.gov (United States)

    Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.

    2017-10-01

    SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.

  9. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  10. MHD limits in non-inductive tokamak plasmas: simulations and comparison to experiments on Tore Supra

    International Nuclear Information System (INIS)

    Maget, P.; Huysmans, G.; Ottaviani, M.; Garbet, X.; Moreau, Ph.; Segui, J.-L.; Luetjens, H.

    2008-01-01

    Non-inductive tokamak discharges with a flat or hollow current profile are prone to the triggering of large tearing modes when the minimum of the safety factor is just below a low order rational. This issue is of particular importance for discussing the optimal safety factor for MHD modes avoidance in Steady-State reactor plasmas. Different non-linear regimes of such magnetic configurations in Tore Supra are studied using the full MHD code XTOR. Numerical simulations show that the non-linear stage of the Double-Tearing Mode (DTM) is governed by the full reconnection model, but a single tearing mode in a low magnetic shear configuration can have a similar impact on the confinement. The different regimes observed experimentally are recovered in the simulations: a small amplitude (2,1) DTM for close resonant surfaces as seen in Tore Supra, a sawtooth-like behaviour of the (2,1) Double-Tearing Mode as first seen in TFTR, or a large amplitude (2,1) tearing mode that severely degrades the energy confinement, as reported in Tore Supra, JET or DIII-D. Situations where q min ≅1.5 with a stable n = 1 mode, as seen in Tore Supra longest discharges, seem to put specific constraints on the MHD model that is used. Indeed, curvature stabilisation without transport terms as could explain linear stability, but such effect vanishes in presence of heat transport. Electron diamagnetic rotation effect is investigated as a possible mechanism for n = 1 mode stabilization.

  11. The effect of plasma beta on high-n ballooning stability at low magnetic shear

    Science.gov (United States)

    Connor, J. W.; Ham, C. J.; Hastie, R. J.

    2016-08-01

    An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.

  12. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    Science.gov (United States)

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  13. Priority pollutant analysis of MHD-derived combustion products

    Science.gov (United States)

    Parks, Katherine D.

    An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.

  14. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  15. Experimental rigs for MHD studies

    International Nuclear Information System (INIS)

    Venkataramani, N.; Jayakumar, R.; Iyer, D.R.; Dixit, N.S.

    1976-01-01

    An MHD experimental rig is a miniature MHD installation consisting of basic equipments necessary for specific investigations. Some of the experimental rigs used in the investigations being carried out at the Bhabha Atomic Research Centre, Bombay (India) are dealt with. The experiments included diagnostics and evaluation of materials in seeded combustion plasmas and argon plasmas. The design specifications, schematics and some of the results of the investigations are also mentioned. (author)

  16. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Energy Technology Data Exchange (ETDEWEB)

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  17. Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas

    Science.gov (United States)

    Aiba, N.; Pamela, S.; Honda, M.; Urano, H.; Giroud, C.; Delabie, E.; Frassinetti, L.; Lupelli, I.; Hayashi, N.; Huijsmans, G.; JET Contributors, the; Research Unit, JT-60SA

    2018-01-01

    The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift ({ω }* {{i}}), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and {ω }* {{i}} effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in {ω }* {{i}}. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and {ω }* {{i}} effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

  18. Modélisation du champ magnétique d'un propulseur M.H.D. annulaire

    Science.gov (United States)

    Kom, C. H.; Brunet, Y.

    1995-01-01

    Stray fields have to be as small as possible to reduce the magnetic signature of the vessel in M.H.D. propulsion where the magnetic field has to be very high. The calculation of the magnetic field of an angular M.H.D. thruster is presented. The field is produced by a distribution of superconducting magnets in the shape of sectors. An analytical formulation of the field can be used in the active zone, outside the coil ends. An analytical method using a Fourier development of the current sheets is employed for an inductor in cylindrical sectors, and a direct method is used for a massive inductor. Numerical and analytical results are compared. Pour des raisons de discrétion, les champs de fuite doivent être minimisés en propulsion M.H.D. où les champs magnétiques doivent être intenses. Le calcul du champ magnétique d'un propulseur M.H.D. naval annulaire, constitué de secteurs inducteurs supraconducteurs est représenté. Dans la zone active, hors des têtes de bobines, une formulation analytique peut être utilisée. Une méthode analytique utilisant le développemment en série de Fourier du courant est adoptée pour les industeurs cylindriques, et une méthode directe pour les inducteurs massifs. Les résultats numériques sont comparés à ceux obtenus avec un logiciel d'éléments finis 2D.

  19. Variational formalism for kinetic-MHD instabilities in tokamaks

    International Nuclear Information System (INIS)

    Edery, D.; Garbet, X.; Roubin, J.P.; Samain, A.

    1991-07-01

    A variational formalism that includes in a consistent way the tokamak plasma fluid response to an electromagnetic field as well as the particle-field resonant interaction effects is presented. The integrability of the unperturbed motion of the particles is used to establish a general functional similar to the classical Lagrangian for the electromagnetic field, which is extremum with respect to the field potentials. This functional is the sum of fluid terms closely related to the classical MHD energy and of resonant terms describing the kinetic effects. The formalism is used to study a critical issue in tokamak confinement, namely the sawteeth stabilization by energetic particles

  20. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  1. MHD equilibrium identification on ASDEX-Upgrade

    International Nuclear Information System (INIS)

    McCarthy, P.J.; Schneider, W.; Lakner, K.; Zehrfeld, H.P.; Buechl, K.; Gernhardt, J.; Gruber, O.; Kallenbach, A.; Lieder, G.; Wunderlich, R.

    1992-01-01

    A central activity accompanying the ASDEX-Upgrade experiment is the analysis of MHD equilibria. There are two different numerical methods available, both using magnetic measurements which reflect equilibrium states of the plasma. The first method proceeds via a function parameterization (FP) technique, which uses in-vessel magnetic measurements to calculate up to 66 equilibrium parameters. The second method applies an interpretative equilibrium code (DIVA) for a best fit to a different set of magnetic measurements. Cross-checks with the measured particle influxes from the inner heat shield and the divertor region and with visible camera images of the scrape-off layer are made. (author) 3 refs., 3 figs

  2. Applications of Laplace transform methods to airfoil motion and stability calculations

    Science.gov (United States)

    Edwards, J. W.

    1979-01-01

    This paper reviews the development of generalized unsteady aerodynamic theory and presents a derivation of the generalized Possio integral equation. Numerical calculations resolve questions concerning subsonic indicial lift functions and demonstrate the generation of Kutta waves at high values of reduced frequency, subsonic Mach number, or both. The use of rational function approximations of unsteady aerodynamic loads in aeroelastic stability calculations is reviewed, and a reformulation of the matrix Pade approximation technique is given. Numerical examples of flutter boundary calculations for a wing which is to be flight tested are given. Finally, a simplified aerodynamic model of transonic flow is used to study the stability of an airfoil exposed to supersonic and subsonic flow regions.

  3. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  4. Modélisation du champ magnétique d'un propulseur M.H.D. annulaire

    OpenAIRE

    Kom , C.; Brunet , Y.

    1995-01-01

    Pour des raisons de discrétion, les champs de fuite doivent être minimisés en propulsion M.H.D. où les champs magnétiques doivent être intenses. Le calcul du champ magnétique d'un propulseur M.H.D. naval annulaire, constitué de secteurs inducteurs supraconducteurs est représenté. Dans la zone active, hors des têtes de bobines, une formulation analytique peut être utilisée. Une méthode analytique utilisant le développemment en série de Fourier du courant est adoptée pour les industeurs cylindr...

  5. Application of the MHD energy principle to magnetostatic atmospheres

    International Nuclear Information System (INIS)

    Zweibel, E.G.

    1984-11-01

    We apply the MHD energy principle to the stability of a magnetized atmosphere which is bounded below by much denser fluid, as is the solar corona. We treat the two fluids as ideal; the approximation which is consistent with the energy principle, and use the dynamical conditions that must hold at a fluid-fluid interface to show that if vertical displacements of the lower boundary are permitted, then the lower atmosphere must be perturbed as well. However, displacements which do not perturb the coronal boundary can be properly treated as isolated perturbations of the corona alone

  6. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  7. Coupling to fast MHD eigenmodes in a toroidal cavity

    International Nuclear Information System (INIS)

    Paoloni, F.J.

    1975-05-01

    The coupling to fast MHD waves in toroidal-like geometry is calculated when eigenmodes exist in the plasma. The torus is considered to be a resonant cavity into which energy is coupled by a half turn loop. The cavity Q is calculated for the minority heating process, for cyclotron harmonic damping, electron transit-time magnetic pumping, wall loading, and Coulomb collisional damping. The problem of sustaining the eigenmode as the plasma conditions change with time is also discussed. One method that seems to be practical is a feedback scheme that varies the plasma major radius by a small amount as the conditions change. (U.S.)

  8. Tearing modes in toroidal geometry

    International Nuclear Information System (INIS)

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  9. Confinement and stability in JET: recent results

    International Nuclear Information System (INIS)

    Campbell, D.J.

    1990-01-01

    The versatility of the JET device allows a wide range of tokamak operating regimes to be explored and plasmas bounded both by material limiters and by a magnetic separatrix have been investigated extensively. This has permitted the confinement and mhd stability properties of plasmas heated to temperatures above 10keV by neutral beam injection or ion cyclotron resonance heating to be studied in detail. The results of recent analyses of transport and confinement in the L- and H-mode regimes in JET are discussed and the properties of H-mode plasmas produced by both major forms of heating are compared. Several aspects of the mhd stability of such plasmas, particularly at high toroidal beta, β θ , and at the density limit, are reviewed. (author)

  10. Some Fluid Dynamic Effects in Large-Scale MHD Generators

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J. C.R. [University of Warwick, Coventry (United Kingdom)

    1966-10-15

    At the present time we are unable to carry out a complete analysis of the fluid dynamics and electrodynamics of an MHD generator. However, various aspects of the behaviour of an MHD generator may be examined by the use of simplified models, for example: (1) one-dimensional gas dynamics (Louis et al. 1964); (2) the current distribution can be found if the velocity is assumed constant across the duct (Witalis, 1965); (3) the skin friction and heat transfer to the walls can be calculated by boundary layer analysis if the flow is assumed to be laminar (Kerrebrock, 1961), and (4) a complete description of the velocity and current distribution across the duct can be given if the flow is assumed to be uniform, laminar, incompressible and not varying in the flow direction (Hunt and Stewartson, 1965). Taken together, these and other models will enable us to describe most of the effects in an MHD generator. In this paper another simplification is considered in which the electromagnetic forces are assumed to be much larger than the inertial forces. The ratio of these two forces is measured by the parameter, S = aB{sup 2}{sub 0}d/pU, where o is the conductivity, B{sub 0} the magnetic field, d the width of the duct, p the density and U the mean velocity. Thus S >> 1. We also assume that the magnetic Reynolds number is very much less than one. In the largest experimental generators now being built S {approx} 2 . Thus, though the results of this model are not immediately applicable, they should indicate the effects of increasing the magnetic field strength and the size of MHD generators. When S >> 1, one can can consider the duct to be divided into 2 regions: (1) a core region where electromagnetic forces are balanced by the pressure gradient and where inertial as well as viscous forces are negligible, and (2) boundary layers on the walls where again inertial forces are negligible but where the viscous, electromagnetic and pressure forces are of the same order. We show how it is

  11. Cryogenic aspects of the experience in operating the U-25 superconducting MHD magnet in conjunction with the MHD generator

    International Nuclear Information System (INIS)

    Niemann, R.C.; Mataya, K.F.; Smith, R.P.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Privalov, N.P.

    1978-01-01

    In order to facilitate the rapid development of MHD technology for the generation of electrical energy, the U.S. and U.S.S.R. are jointly conducting research within the framework of the Program of Scientific and Technical Cooperation. The Institute for High Temperature (IVTAN) of the U.S.S.R. has designed and fabricated a special MHD facility which uses as its base much of the equipment of the existing U-25 Facility. The new MHD fow train consisting of a combustor, magnet, channel, and diffuser is named U-25B. The U.S. has provided a superconducting magnet system for the U-25B MHD Facility. As a result of these joint efforts, a unique and broad range of experimental test conditions similar to those that will exist in operation of commercial MHD generators has been created. The United States Superconducting Magnet System (U.S. SCMS) was designed, fabricated, and delivered to the U-25B Facility by the Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy. The following description focuses on the cryogenic-related aspects of the magnet system commissioning and operation in the U.S.S.R

  12. Flare-induced MHD disturbances in the corona--Moreton waves and type II shocks

    International Nuclear Information System (INIS)

    Uchida, Y.

    1972-01-01

    The propagation in the corona of the magnetohydrodynamic (MHD) disturbance possibly emitted at the explosive stage in the initial phase of a flare is considered. The behavior of the MHD fast-mode wavefront, whose source is located at the flare, is calculated by using eiconal-characteristic method in the High Altitude Observatory (HAO) realistic models of coronal magnetic field and density for the days of some particular flare events. It is shown as the result that the peculiar behavior of Moreton' s surface wave and the peculiar appearance in the shape and position of the type II burst sources can be consistently understood by considering the refraction, focussing, and fermation of shocks of MHD fast-mode disturbance in the actual distribution of Alfven velocity in the corona. Based on some comparison of the positions of low-Alfven-velocity regions in the corona with observed positions of type II burst sources, it is proposed that the type II burst sources may be identified with such low-Alfven-velocity regions ''illuminated'' by thus enhanced shocks. (U.S.)

  13. User's manual for the FLORA equilibrium and stability code

    International Nuclear Information System (INIS)

    Freis, R.P.; Cohen, B.I.

    1985-01-01

    This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability

  14. Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.L.; Marchant, D.D.

    1986-09-01

    Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.

  15. MHD stability analysis of ELMs in MAST

    International Nuclear Information System (INIS)

    Saarelma, S; Hender, T C; Kirk, A; Meyer, H; Wilson, H R; Team, MAST

    2007-01-01

    In this paper, edge stability analyses of the MAST tokamak plasmas are presented. The analyses show that the experimental equilibrium prior to an edge localized mode (ELM) is unstable against very narrow peeling modes with low growth rate. When the edge pressure gradient becomes steeper, wider peeling-ballooning modes with larger growth rate become unstable. These modes are the likely triggers of ELMs. In the analyses the required pressure increase for destabilization is sensitive to how the X-point is modelled in the equilibrium reconstruction. A 'sharp' X-point approximation is more stable against the peeling-ballooning modes than a 'round' one. An experimental ELM-free single null plasma is significantly more stable against the peeling-ballooning modes than the double null plasma, but this is unlikely to be directly due to the single null geometry but rather due to the different plasma profiles. Sheared toroidal rotation is able to stabilize the peeling-ballooning modes. This suggests the following model for the ELM triggering: the rotation shear keeps the edge stable until the pressure gradient has sufficiently exceeded the stability boundary for the static plasma. When the mode becomes unstable, it starts to grow, ties the flux surfaces together and flattens the rotation profile. This further destabilizes the edge plasma leading to an ELM crash

  16. Astrophysics days and MHD

    International Nuclear Information System (INIS)

    Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien

    2001-05-01

    This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number

  17. Problems in nonlinear resistive MHD

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-01-01

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1

  18. Report of commission for investigating MHD on a visit to U.S. Part 2. Report on each place of visit; Hobei MHD chosadan hokokusho. 2. Homonsakibetsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-01-01

    The members of MHD project examination subcommittee made an investigative tour of the U.S. on the state of development of MHD generation. This report of the 2nd part explains opinions and the present status of the R and D on MHD generation by each of the 19 institutions visited. The U.S. research on MHD generation is under the leadership of DOE, whereby the budget for the development is so large as nearly one hundred million dollars have been provided for several years. The purpose is the effective use of domestic coal. General Electric is of the opinion that a combined gas turbine system will be put to practical use earlier because MHD takes time for practicability despite its highest efficiency in coal-utilized power generation. Yet, GE thinks MHD will be more attractive in the future. Reynolds Metal is considering application of MHD generation to the electro-chemical industry at present. According to Reynolds, combined supply of electric output and heat of MHD can reduce the use of calorie per ton of aluminum from 240 MBTU to 100. Montana Power is promoting practicability through a combined plan with DOE-built MHD generation. (NEDO)

  19. Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Mostinskii, I.L.

    1977-01-01

    Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K 2 CO 3 on the heat exchange surface are also included

  20. MHD power plants - a reality of the 80's

    International Nuclear Information System (INIS)

    Pishchikov, S.

    1981-01-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas. (B.S.)

  1. MHD power plants - a reality of the 80's

    Energy Technology Data Exchange (ETDEWEB)

    Pishchikov, S

    1981-02-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas.

  2. Results from a large-scale MHD propulsion experiment

    International Nuclear Information System (INIS)

    Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.

    1992-01-01

    This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible

  3. An improvement of SiC insulator performances for MHD generator channels

    International Nuclear Information System (INIS)

    Okuo, T.; Ookouchi, T.; Aoki, Y.

    1988-01-01

    A water cooled ceramic-metal bonded wall element has been developed for a coal combustion MHD generator channels. It was shown to have excellent characters of stability under high heat flux and thermal shock conditions and good electrical insulation performance in the splash test stand and the small scale MHD simulation channel of ETL COM Fired Facility. Temperature of the compliant and brazed layer rises significantly with heat flux, and cause troubles such as oxidation, corrosion and deterioration of strength of the compliant material. Not only an application for the ceramics-metal bonding with high reliability, but also an improvement of allowable heat flux is possible. New compliant material made of grooved copper and a high reliable metallizing and brazing method were developed. It will make possible raising the limitation of allowable heat flux up to 1,000 W/cm 2 . Through this research, the compatibility of the grooved copper compliant structure was proved and a design concept obtained to construct a highly efficient, water cooled SiC insulator

  4. Transient behavior of high-interaction MHD generator following external loading faults

    International Nuclear Information System (INIS)

    Ishikawa, Motoo

    1983-01-01

    Transient behavior consequent to external loading faults is studied numerically on four configurations of high-interaction MHD generators-subsonic Faraday, supersonic Faraday, subsonic diagonal and supersonic diagonal, to provide a variable data base to serve in selecting the type of large-scale MHD generator. Time-dependent one-dimensional Navier-Stokes equations are solved with the 1969 MacCormack method, in combination with the Maxwell equations and the generalized Ohm's law. An artificial viscosity term is added to the Navier-Stokes equations to maintain numerical stability. It is shown that, with both supersonic and subsonic flows, the Faraday generator is liable to sustain more harmful effect from short than from open faults of the external loading circuit. For large-scale diagonal types, on the other hand, open faults are more dangerous. With subsonic flow, a shock wave propagating upstream is induced by short fault in the Faraday, and by open fault in the diagonal-type generator. In the case of supersonic flow, propagation upstream of the disturbance is completely obstructed. Larger electrical stress is foreseen for Faraday than for diagonal configuration. (author)

  5. Numerical study for determining PF coil system parameters in MHD equilibrium of KT-2 tokamak plasma

    International Nuclear Information System (INIS)

    Ryu, J.; Hong, S.H.; Lee, K.W.; Hong, B.G.; In, S.R.; Kim, S.K.

    1995-01-01

    The KT-2 is a large-aspect-ratio medium-sized divertor tokamak in the conceptual design phase and planned to be operational in 1998 at the Korea Atomic Energy Research Institute (KAERI). Plasma equilibrium in tokamak can be acquired by controlling the current of poloidal field (PF) coils in appropriate geometries and positions. In this study, the authors have performed numerical calculations to achieve the various equilibrium conditions fitting given plasma shapes and satisfying PF current limitations. Usually an ideal magnetohydrodynamic (MHD) equation is used to obtain the equilibrium solution of tokamak plasma, and it is practical to take advantage of a numerical method in solving the MHD equation because it has nonlinear source terms. Two equilibrium codes have been applied to find a double-null configuration of free-boundary tokamak plasma in KT-2: one is of the authors' own developing and the other is a free-boundary tokamak equilibrium code (FBT) that has been used mainly for the verification of developed code's results. PF coil system parameters including their positions and currents are determined for the optimization of input power required when the specifications of KT-2 tokamak are met. Then, several sets of equilibrium conditions during the tokamak operation are found to observe the changes of poloidal field currents with the passing of operation time step, and the basic stability problems related with the magnetic field structure is also considered

  6. Stabilization of kinetic internal kink mode by ion diamagnetic effects

    International Nuclear Information System (INIS)

    Naitou, H.; Kuramoto, T.; Kobayashi, T.; Yagi, M.; Tokuda, S.; Matsumoto, T.

    2000-04-01

    Ion diamagnetic effects on the m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink mode are studied numerically by the three-field gyro-reduced-MHD code in the cylindrical coordinates, GRM3F-CY. In the derivation of the gryo-reduced-MHD model including the ion diamagnetic effects, finite gyroradius effects of ions are added to the gyrokinetic Poisson equation (quasi-neutral condition) and the convection term of the conservation law of the ion density. It is found that the long wavelength approximation, ksub(perpendicular) ρ ti ti is the thermal ion gyroradius, fails to reproduce the correct dispersion relation; the formulation valid even for ksub(perpendicular) ρ ti >> 1 is necessary. The results of numerical calculation coincide with the theory for |ω *e |+|ω *i | 0 , where the growth rate reduces as the density gradient increases. Here ω *e and ω *i are electron and ion diamagnetic angular frequencies estimated at the rational surface of q=1 (q is a safety factor), respectively, and γ 0 is the growth rate for the uniform density. Very weak instability, however, is observed for |ω *e |+|ω *i | 0 , where the theory predicts the complete stabilization. This residual instability appears since the region with the density gradient is limited in the radial direction and the stabilization by the outgoing drift-wave like mode becomes incomplete. (author)

  7. MHD analysis of high (βt) disruptions in PBX

    International Nuclear Information System (INIS)

    Jahns, G.L.; Chance, M.S.; Kaye, S.M.; Manickam, J.; Takahashi, H.; LeBlanc, B.; Morris, A.W.; Reusch, M.; Sesnic, S.

    1988-01-01

    Princeton Beta Experiment (PBX) discharges run at the lowest q and highest (β t ) always terminated in a hard disruption. The discharges, with (β t ) values of up to 5.5% and q-values down to 2.2, were obtained by employing large current ramps and large gas feed rates during neutral beam injection. Previous work has indicated that the achieved (β t ) values were consistent with the limit imposed by the n=1 ideal external kink with a conducting wall at b/a=2. The authors of the paper investigate further the validity of ideal MHD theory in explaining the low q ψ disruptions. In particular, the characteristics of the pre-disruption MHD activity in these low-q discharges, specifically the time-scale of growth and internal and external mode structures, are compared with those determined from theoretical calculations. The results of these comparisons indicate that non-ideal effects must be considered in order to obtain detailed agreement between theory and experiment. (author). 13 refs, 6 figs

  8. Global and kinetic MHD simulation by the Gpic-MHD code

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Yamada, Yusuke; Kajiwara, Kenji; Lee, Wei-li; Tokuda, Shinji; Yagi, Masatoshi

    2011-01-01

    In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vortex equation and the generalized ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential A z . Particle information is mainly used to estimate second order moments in the generalized ohm's law. Because the lower order moments of the charge density and the longitudinal current density are not used explicitly to determine φ and A z , the numerical noise induced by the discreteness of particle quantities reduces drastically. Another advantage of the algorithm is that the longitudinal induced electric field, E Tz =-∂A z /∂t, is explicitly estimated by the generalized ohm's law and used in the equations of motion. The particle velocities along the magnetic field are used (v z -formulation) instead of generalized momentums (p z -formulation), hence there is no problem of 'cancellation', which appear when estimating A z from the Ampere's law in the p z -formulation. The successful simulation of the collisionless internal kink mode by new Gpic-MHD with the realistic values of the large-scale and high-beta, revealed the usefulness of the new algorithm. (author)

  9. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)

  10. An attempt at MHD mode control by feedback modulation of L.H. driven current

    International Nuclear Information System (INIS)

    Parlange, F.; Vallet, J.C

    1986-01-01

    MHD activity in Tokamak discharges with lower hybrid current drive has distinct features which can be used to stabilize tearing modes. A way of reducing the m=2 tearing mode was recently proposed, consisting in driving more current at the 0 point of the islands than at the X point, by means of amplitude modulated lower hybrid waves. The way it was tested in Petula is presented here

  11. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  12. MHD equilibrium with toroidal rotation

    International Nuclear Information System (INIS)

    Li, J.

    1987-03-01

    The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

  13. Characteristics of Linear MHD Generators with One or a Few Loads

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1966-02-15

    The theoretical performance of linear series segmented MHD generators with finite size electrodes and one or a few identical external loads is investigated. The analysis is an extension of our conformal mapping investigation previously reported. The electrical characteristics are evaluated as functions of the segmentation degree, the Hall parameter and the relative position of short-circuited electrodes. Special consideration is given to the influence of staggering the electrodes, i. e. shifting the relative positions of short-circuited electrodes. General electrical terminal characteristics, i. e. the full current-voltage relation, can not be obtained by the exact analytical method, which is applicable only to so-called design load conditions or infinitely long MHD channels. However, it is shown how the general properties can be explained qualitatively and calculated approximately by describing off-design modes of operation in terms of a fictitious 'effective' number of external loads.

  14. Characteristics of Linear MHD Generators with One or a Few Loads

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1966-02-01

    The theoretical performance of linear series segmented MHD generators with finite size electrodes and one or a few identical external loads is investigated. The analysis is an extension of our conformal mapping investigation previously reported. The electrical characteristics are evaluated as functions of the segmentation degree, the Hall parameter and the relative position of short-circuited electrodes. Special consideration is given to the influence of staggering the electrodes, i. e. shifting the relative positions of short-circuited electrodes. General electrical terminal characteristics, i. e. the full current-voltage relation, can not be obtained by the exact analytical method, which is applicable only to so-called design load conditions or infinitely long MHD channels. However, it is shown how the general properties can be explained qualitatively and calculated approximately by describing off-design modes of operation in terms of a fictitious 'effective' number of external loads

  15. PHYSICAL PERFORMANCE AND BODY COMPOSITION IN MAINTENANCE HEMODIALYSIS (MHD PATIENTS

    Directory of Open Access Journals (Sweden)

    M Zhang

    2012-06-01

    Conclusions: These findings indicate that adult MHD pts had a higher % body fat. Measures of physical performance were markedly reduced in MHD pts as compared to Normals. Physical performance in MHD, measured especially by 6-MW, correlated negatively with some measures of body composition, particularly with LBMI.

  16. An MHD Dynamo Experiment.

    Science.gov (United States)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  17. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  18. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Science.gov (United States)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  19. Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER

    International Nuclear Information System (INIS)

    Zohm, H.; Gantenbein, G.; Leuterer, F.; Manini, A.; Maraschek, M.; Yu, Q.

    2007-01-01

    The requirements for control of MHD instabilities by electron cyclotron current drive (ECCD) are reviewed. It is shown that a localized current drive is needed for control of both sawteeth and neoclassical tearing modes (NTMs). In the case of NTMs, the deposition width should be smaller than the island width for efficient control. At island widths smaller than the deposition width, as is predicted to occur in ITER, theory suggests that efficient control is possible only by modulating the ECCD power in phase with the island. These predictions are experimentally confirmed in ASDEX Upgrade for NTM control. Narrow deposition has also been used to extend the operational range of NTM stabilization in ASDEX Upgrade to lower q 95 and in the improved H-mode scenario. Our results suggest that, for the ITER ECCD system, good localization of the driven current profile as well as the capability to modulate the ECCD in phase with rotating modes will be needed for efficient MHD control by ECCD

  20. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Energy Technology Data Exchange (ETDEWEB)

    Anninos, Peter; Lau, Cheuk [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States); Bryant, Colton [Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Holgado, A. Miguel [Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 (United States); Nemergut, Daniel [Operations and Engineering Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  1. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    International Nuclear Information System (INIS)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Nemergut, Daniel

    2017-01-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  2. MHD power generation research, development and engineering. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Progress is reported on the following tasks: characterization of coal for open-cycle MHD power generation systems; compressive creep and strength studies of MHD preheater materials; preparation of coals for utilization in direct coal-fired MHD generation; characterization of volatile matter in coal; MHD materials evaluation; operability of the Moderate Temperature Slag Flow Facility; slag-seed equilibria and separations related to the MHD system; thermionic emission of coal and electrode materials; MHD instrumentation, consolidated inversion simulator, and data acquisition; combined MHD-steam plant cycle analysis and control; and slag physical properties - electrical and thermal conductivity. (WHK)

  3. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  4. Several hundred megawatt MHD units

    International Nuclear Information System (INIS)

    Pishchikov, S.; Pinkhasik, D.; Sidorov, V.

    1978-01-01

    The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10 6 kJ/m 3 .h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually. (J.B.)

  5. Several hundred megawatt MHD units

    Energy Technology Data Exchange (ETDEWEB)

    Pishchikov, S; Pinkhasik, D; Sidorov, V

    1978-07-01

    The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10/sup 6/ kJ/m/sup 3/.h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually.

  6. Method of operating a MHD power plant

    International Nuclear Information System (INIS)

    Wysk, S.R.

    1982-01-01

    A fossil fuel is burned substoichiometrically in the combustor of a mhd power plant to produce a high temperature, fuelrich product gas. The product gas is passed through a mhd channel to generate electricity. A reducing agent, preferably natural gas or hydrocarbon, is injected into the fuelrich product gas leaving the mhd generator; and the resulting mixture is held at a temperature in the range of 950 to 1500 0 C for about 1 second to permit the reducing agent to decompose a portion of the nitrogen oxides formed in the combustor. The fuel-rich product gas then passes thru an afterburner wherein combustion is completed and any excess reducing agent is consumed

  7. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  8. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  9. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  10. An approach to verification and validation of MHD codes for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Badia, S. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat (India); Bühler, L. [Karlsruhe Institute of Technology (Germany); Chen, L. [University of Chinese Academy of Sciences, Beijing (China); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui (China); Jin, H.-G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Krasnov, D. [Technische Universität Ilmenau (Germany); Lee, D.-W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mas de les Valls, E. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Mistrangelo, C. [Karlsruhe Institute of Technology (Germany); Munipalli, R. [HyPerComp, Westlake Village (United States); Ni, M.-J. [University of Chinese Academy of Sciences, Beijing (China); Pashkevich, D. [St. Petersburg State Polytechnical University (Russian Federation); Patel, A. [Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Pulugundla, G. [University of California, Los Angeles (United States); Satyamurthy, P. [Bhabha Atomic Research Center (India); Snegirev, A. [St. Petersburg State Polytechnical University (Russian Federation); Sviridov, V. [Moscow Power Engineering Institute (Russian Federation); Swain, P. [Bhabha Atomic Research Center (India); and others

    2015-11-15

    Highlights: • Review of status of MHD codes for fusion applications. • Selection of five benchmark problems. • Guidance for verification and validation of MHD codes for fusion applications. - Abstract: We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.

  11. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2014-01-01

    We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated...

  12. Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe

    International Nuclear Information System (INIS)

    Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko

    2007-01-01

    are calculated from 5000 samples of the vector maps obtained by PIV, and the results are compared with the available direct numerical simulation data. The instantaneous fluctuating velocity maps are also examined in order to improve understandings of the spatial structure of the MHD turbulence. (orig.)

  13. Stability of DIII-D high-performance, negative central shear discharges

    Science.gov (United States)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  14. Numerical study of the unstable MHD spectrum of a small aspect ratio, flat current, non-circular tokamak

    International Nuclear Information System (INIS)

    Berger, D.; Bernard, L.C.; Gruber, R.; Troyon, F.

    1980-01-01

    The Lausanne ideal MHD stability code ERATO is used to investigate spectral properties of Solovev's equilibrium at small aspect ratios. Two different elongations are considered. Both free and rigid boundary models are computed and compared. Modes characterized by a large radial extension have been found which appear to be due to coupling of m=1 and m=2 modes due to toricity. The internal modes spectrum is compared with the predictions of the full Mercier criterion, taking into account its spatial dependence, and with the ballooning modes stability criterion. (Auth.)

  15. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  16. MHD generator performance analysis for the Advanced Power Train study

    Science.gov (United States)

    Pian, C. C. P.; Hals, F. A.

    1984-01-01

    Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.

  17. A MHD channel study for the ETF conceptual design

    Science.gov (United States)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  18. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  19. Resistive toroidal stability of internal kink modes in circular and shaped tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Luetjens, H.; Vlad, G.

    1991-12-01

    The linear resistive magnetohydrodynamical (MHD) stability of the n=1 internal kink mode in tokamaks is studied by toroidal computations. The stabilizing influence of small aspect ratio is confirmed, but it is found that shaping of the cross section influences the internal kink mode significantly. For finite pressure and small resistivity, curvature effects at the q=1 surface make the stability sensitively dependent on shape, and ellipticity (including JET shape) is destabilizing. Only a very restricted set of finite pressure equilibria is completely stable for q 0 <1. A typical result is that the resistive kink mode is slowed down by toroidal effects to a weak tearing/resistive interchange mode. It is suggested that weak resistive instabilities are stabilized during the ramp phase of the sawteeth by effects not included in the linear resistive MHD model. Possible mechanisms for triggering a sawtooth crash are discussed. (author) 18 figs., 34 refs

  20. Averaged description of 3D MHD equilibrium

    International Nuclear Information System (INIS)

    Medvedev, S.Yu.; Drozdov, V.V.; Ivanov, A.A.; Martynov, A.A.; Pashekhonov, Yu.Yu.; Mikhailov, M.I.

    2001-01-01

    A general approach by S.A.Galkin et al. in 1991 to 2D description of MHD equilibrium and stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators and configurations with spatial magnetic axis can be studied. In the present report the formulation and numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately described by analytic scalar potential

  1. Outline of fiscal 1967 achievements in research on MHD power generation; 1967 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-09-01

    Compiled are the results of studies conducted in fiscal 1967 on MHD (magnetohydrodynamic) power generation. In the test operation and modification of a 1,000kW-class MHD power generator at the Electrical Research Laboratory, a test is conducted using Faraday-type electrodes. It is then found that this configuration results in a maximum output of approximately 700kW, which is less than expected. In the experimental construction at the Hitachi, Ltd., of a machine capable of a long-term operation, an MHD power generator is built for a continuous operation of 100 hours with an maximum output of 2kW, and a 110-hour power generation is successfully achieved with a maximum output of 1.9kW. In the research and development of heat exchangers, tests are conducted for a bulkhead type heat exchanger, heat accumulator type heat exchanger, molten slag type heat exchanger, and a gas/liquid 2-phase flow type heat exchanger. In the study of heat-resisting insulators, materials based on zirconate, magnesia, thoria, zirconia, etc., are tested. In addition, studies are conducted on electrode materials, superconductive electromagnets (small superconductive electromagnets for MHD power generators, turbine type helium liquefiers, superconductive wires for 70-kilogauss electromagnets, etc.), and thermal performance rating. (NEDO)

  2. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)

  3. Magnetohydrodynamic stability of tokamaks

    CERN Document Server

    Zohm, Hartmut

    2014-01-01

    This book bridges the gap between general plasma physics lectures and the real world problems in MHD stability. In order to support the understanding of concepts and their implication, it refers to real world problems such as toroidal mode coupling or nonlinear evolution in a conceptual and phenomenological approach. Detailed mathematical treatment will involve classical linear stability analysis and an outline of more recent concepts such as the ballooning formalism. The book is based on lectures that the author has given to Master and PhD students in Fusion Plasma Physics. Due its strong lin

  4. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  5. Stability analysis of internal ideal modes in low-shear tokamaks

    International Nuclear Information System (INIS)

    Wahlberg, C.; Graves, J. P.

    2007-01-01

    The stability of internal, ideal modes in tokamaks with low magnetic shear in the plasma core is analyzed. For equilibria with large aspect ratio, a parabolic pressure profile and a flat q profile in the core, an exact solution of the ideal magnetohydrodynamic (MHD) stability equations is found. The solution includes the eigenfunctions and the complete spectra of two distinctly different MHD phenomena: A family of fast-growing, Mercier-unstable global eigenmodes localized in a low-shear region with q 1 in the core. In the latter case the solution in addition includes one unstable eigenmode, if beta is larger than a critical value depending on the width of the low-shear region and on the q-profile in the edge region

  6. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Bateman, G.; Brennan, D.P.; Schnack, D.D.; Snyder, P.B.; Voitsekhovitch, I.; Kritz, A.H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2006-01-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD

  7. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    NARCIS (Netherlands)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an 'intuitive' description based on the energy principle that is very misleading for

  8. Computer Programs for Calculating and Plotting the Stability Characteristics of a Balloon Tethered in a Wind

    Science.gov (United States)

    Bennett, R. M.; Bland, S. R.; Redd, L. T.

    1973-01-01

    Computer programs for calculating the stability characteristics of a balloon tethered in a steady wind are presented. Equilibrium conditions, characteristic roots, and modal ratios are calculated for a range of discrete values of velocity for a fixed tether-line length. Separate programs are used: (1) to calculate longitudinal stability characteristics, (2) to calculate lateral stability characteristics, (3) to plot the characteristic roots versus velocity, (4) to plot the characteristic roots in root-locus form, (5) to plot the longitudinal modes of motion, and (6) to plot the lateral modes for motion. The basic equations, program listings, and the input and output data for sample cases are presented, with a brief discussion of the overall operation and limitations. The programs are based on a linearized, stability-derivative type of analysis, including balloon aerodynamics, apparent mass, buoyancy effects, and static forces which result from the tether line.

  9. The effect of walking speed on local dynamic stability is sensitive to calculation methods

    DEFF Research Database (Denmark)

    Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona

    2014-01-01

    Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been...... reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...

  10. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    Science.gov (United States)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  11. MHD equilibrium of heliotron J plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya

    2004-01-01

    MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)

  12. MHD PbLi experiments in MaPLE loop at UCLA

    International Nuclear Information System (INIS)

    Courtessole, C.; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-01-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  13. MHD PbLi experiments in MaPLE loop at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Courtessole, C., E-mail: cyril@fusion.ucla.edu; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-11-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  14. A performance analysis for MHD power cycles operating at maximum power density

    International Nuclear Information System (INIS)

    Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi

    1996-01-01

    An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)

  15. Study of MHD problems in liquid metal blankets of fusion reactors

    International Nuclear Information System (INIS)

    Michael, I.

    1984-12-01

    This study describes in a concise form the state of knowledge regarding MHD problems to be expected in case of use of liquid metal in the blankets of fusion reactors with magnetic confinement. MHD pressure losses and MHD friction coefficients in the straight channel, in bent sections and in case of variation of the channel cross section play a major role because the high MHD flow resistances call for high pumping powers. Influencing the velocity profile transverse to the main flow direction of the liquid metal by application of an external, strong magnetic field bears consequences on the release and transport of corrosion products in the liquid metal circuit and on the heat transfer. Possibilities of reducing the MHD effects are discussed. However, it becomes obvious that an account of the lack of experimental results there are still major gaps in the knowledge of MHD effects occurring in strong magnetic fields. These gaps can be greatly reduced by implementation of an experimental program as proposed in this report. (orig.) [de

  16. Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment

    Science.gov (United States)

    1980-04-01

    An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.

  17. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  18. The energy associated with MHD waves generation in the solar wind plasma

    Science.gov (United States)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  19. Influence of slag-seed interaction on MHD generator performance

    International Nuclear Information System (INIS)

    Luongo, C.A.; Kruger, C.M.

    1984-01-01

    An overview of past work in the field of slag/seed interaction is presented. The ideal solution model for the slag and its failure to lead to accurate predictions are discussed. The non-ideal solution model is introduced. Data on potassium vapor pressure over slags taken at the National Bureau of Standards and Montana State University were compiled and compared. Large disagreement between these sources was observed. The shortcomings of the complete thermodynamic equilibrium models led to over predictions in the fraction of seed lost to the slag. A model including non-equilibrium effects is introduced. The heat/mass transfer analogy is invoked to calculate the mass transfer rate of potassium towards the slag. Using typical conditions for a large MHD generator, an integral method is used to evaluate the potassium concentration boundary layer thickness. The calculations are performed with the slag runoff (ash rejection) as a parameter. The increase in boundary layer resistance due to potassium depletion is calculated

  20. Engineering design and development of lead lithium loop for thermo-fluid MHD studies

    International Nuclear Information System (INIS)

    Kumar, M.; Patel, Anita; Jaiswal, A.; Ranjan, A.; Mohanta, D.; Sahu, S.; Saraswat, A.; Rao, T.S.; Mehta, V.; Bhattacharyay, R.; Rajendra Kumar, E.

    2017-01-01

    In the frame of the design and development of LLCB TBM, number of R and D activities is in progress in the area of Pb-Li technology development. Molten Pb-Li is used as a tritium breeder and also as a coolant for the internals of the TBM structure. In presence of strong plasma confining toroidal magnetic field, motion of electrically conducting Pb-Li leads to Magneto Hydro Dynamic (MHD) phenomena, as a consequence of which the flow profile of Pb-Li is significantly modified inside the Pb-Li channels of TBM. This causes additional pressure drop inside TBM and affects the heat transfer from internal structure. The detail studies of these MHD effects are of prime importance for successful design of LLCB TBM and its performance evaluation. Although, various numerical MHD codes have been developed, validated in simple flow configuration and are being used to study MHD phenomena in LLCB TBM, experimental validation of these codes in TBM relevant complex flow geometry is yet to be performed. A Pb-Li MHD experimental loop is, therefore, being developed at IPR to perform thermo-fluid MHD experiments in various LLCB TBM relevant flow configuration. MHD experiments are planned with different test sections instrumented with potential pins, thermo couples, etc. under a uniform magnetic field of ∼1.4 T. The obtained experimental data will be analyzed to understand the MHD phenomena in TBM like flow configuration and also for validation of MHD codes. This paper describes the detailed process as well as engineering design of the Pb-Li MHD loop and its major components along with the plan of MHD experiments in various test mock ups. (author)

  1. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  2. MHD computation of feedback of resistive-shell instabilities in the reversed field pinch

    International Nuclear Information System (INIS)

    Zita, E.J.; Prager, S.C.

    1992-05-01

    MHD computation demonstrates that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. Edge feedback on ∼2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes

  3. Calculations of NTM stabilization in ITER-FEAT by ECCD with realistic antenna geometry

    International Nuclear Information System (INIS)

    Ramponi, G.; Nowak, S.; Lazzaro, E.; Giruzzi, G.; Bosia, G.

    2001-01-01

    Neoclassical Tearing Modes stabilization is one of the main purposes for the implementation of an Electron Cyclotron Current Drive system on ITER-FEAT. Previous estimates have shown that a wave power level of 20-30 MW should be appropriate for a substantial reduction of the (3,2) and/or (2,1) modes. Here detailed calculations are presented combining, for the first time, the following elements: i) realistic antenna geometry resulting from detailed study of the implementation in an ITER upper port; ii) Gaussian beam-tracing calculations; iii) 3D Fokker-Planck calculations of the driven current density profile; iv) island evolution calculation, including island rotation effects. The power level necessary for complete stabilization of NTMs is evaluated for the ITER FEAT reference scenarios and the chosen wave frequency of 170 GHz. Optimization as a function of the injection poloidal and toroidal angles is discussed

  4. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    1990-01-01

    This document summarizes progress made on the research of high beta and second region transport and stability. In the area second stability region studies we report on an investigation of the possibility of second region access in the center of TFTR ''supershots.'' The instabilities found may coincide with experimental observation. Significant progress has been made on the resistive stability properties of high beta poloidal ''supershot'' discharges. For these studies profiles were taken from the TRANSP transport analysis code which analyzes experimental data. Invoking flattening of the pressure profile on mode rational surfaces causes tearing modes to persist into the experimental range of interest. Further, the experimental observation of the modes seems to be consistent with the predictions of the MHD model. In addition, code development in several areas has proceeded

  5. Compressibility effects on ideal and kinetic ballooning modes and elimination of finite Larmor radius stabilization

    International Nuclear Information System (INIS)

    Kotschenreuther, M.

    1985-07-01

    The dynamics of ideal and kinetic ballooning modes are considered analytically including parallel ion dynamics, but without electron dissipation. For ideal modes, parallel dynamics predominantly determine the growth rate when β is within approx.30% of the ideal threshold, resulting in a substantial reduction in growth rate. Compressibility also eliminates the stabilization effects of finite Larmor radius (FLR); FLR effects (when temperature gradients are neglected) can even increase the growth rate above the MHD value. Temperature gradients accentuate this by adding a new source of free energy independent of the MHD drive, in this region of ballooning coordinate corresponding in MHD to the continuum. Analytic dispersion relations are derived demonstrating the effects above; the formalism emphasizes the similarities between the ideal MHD and kinetic cases

  6. Calculability and stability in the flipped string

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V. (Texas A and M Univ., College Station, TX (USA). Center for Theoretical Physics Houston Advanced Research Center (HARC), The Woodlands, TX (USA). Astroparticle Physics Group)

    1991-03-07

    We show that the highly successful structure of the recently proposed superstring flipped SU(5) model remains intact after the inclusion in the superpotential of the low-energy effective theory of all relevant string-induced nonrenormalizable terms. This structure provides for only two light Higgs doublets, hierarchical fermion mass matrices, and an adequate proton lifetime. We reach this conclusion explicit calculations using a recently derived set of rules to evaluate nonrenormalizable terms in the four-dimensional free fermionic formulation of superstrings. This remarkable stability of the infrared limit of the flipped string makes its experimental predictions trustworthy and hence its physical existence falsifiable. (orig.).

  7. Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD

    Science.gov (United States)

    Ferraro, N. M.

    2015-11-01

    The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  8. The L-H transition and the stability of the edge pedestal

    International Nuclear Information System (INIS)

    Rogers, B.N.; Drake, J.F.; Zeiler, A.

    2001-01-01

    Based on three-dimensional simulations of the Braginskii equations, we identify two main parameters which control transport in the edge of tokamaks: the MHD ballooning parameter and a diamagnetic parameter. The space defined by these parameters delineates regions where typical L-mode levels of transport arise, where the transport is catastrophically large (density limit) and where the plasma spontaneously forms a transport barrier (H-mode). Ion diamagnetic effects allow the edge pedestal to steepen well beyond the first ideal MHD stability boundary. (author)

  9. CCSD(T) calculations of stabilities and properties of confined systems

    Energy Technology Data Exchange (ETDEWEB)

    Holka, F.; Urban, M. [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava (Slovakia); Melicherčík, M.; Neogrády, P. [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Paldus, J. [Department of Applied Mathematics, University of Waterloo, N2L 3G1, Ontario (Canada)

    2015-01-22

    We analyze energies, electron affinities and polarizabilities of small anions exposed to an external confinement. The second electron in free O{sup 2−} and S{sup 2−} anions is unbound. We investigate the stabilizing effect of the spherical harmonic-oscillator confining potential ω. on these anions employing the Hartree-Fock stability analysis as introduced by Čížek and Paldus. With increasing strength of the external harmonic-oscillator confinement potential ω the broken symmetry (BS) solutions are systematically eliminated. For ω larger than 0.1 all BS solutions for O{sup 2−} disappear. For ω larger than 0.13 the CCSD(T) energy of O{sup 2−} becomes more negative than the energy of the singly charged O{sup −} anion. We relate the harmonic-oscillator confining potential to a crystalline environment in which the O{sup 2−} and S{sup 2−} anions are stable. We also present a model allowing calculations of the in-crystal polarizabilities of anions. The model is based on CCSD(T) calculations of static polarizabilities of selected anions exposed to the spherical harmonic-oscillator confining potential ω This artificial confinement potential ω is then related to the ionic radii of the cation in representative crystal lattices. We investigate the polarizability of O{sup 2−} and S{sup 2−} anions in MgO, MgS, CaO, CaS, SrO, SrS, BaO and BaS crystals. We compare our results with alternative models for in-crystal polarizabilities. External confinement also stabilizes the uracil anion U{sup −}, as is shown by calculations with a stepwise micro-hydration of U{sup −}. Upon hydration is the CCSD(T) adiabatic electron affinity (AEA) of uracil enhanced by about 250 up to 570 meV in comparison with AEA of the isolated molecule, depending on the geometry of the hydrated uracil anion complex. We tried to find an analogy of the stabilization effect of the external confinement on the otherwise unstable anions. In uracil and its anion is the external

  10. New method for computing ideal MHD normal modes in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Wysocki, F.; Grimm, R.C.

    1984-11-01

    Analytic elimination of the two magnetic surface components of the displacement vector permits the normal mode ideal MHD equations to be reduced to a scalar form. A Galerkin procedure, similar to that used in the PEST codes, is implemented to determine the normal modes computationally. The method retains the efficient stability capabilities of the PEST 2 energy principle code, while allowing computation of the normal mode frequencies and eigenfunctions, if desired. The procedure is illustrated by comparison with earlier various of PEST and by application to tilting modes in spheromaks, and to stable discrete Alfven waves in tokamak geometry

  11. Diagnostic development and support of MHD test facilities

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.

  12. Diagnostic development and support of MHD test facilities

    International Nuclear Information System (INIS)

    Shepard, W.S.; Cook, R.L.

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/ Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs

  13. Approach to high stability beta limit and its control by fast wave current drive in reversed field pinch plasma

    International Nuclear Information System (INIS)

    Kusano, K.; Kondoh, Y.; Gesso, H.; Osanai, Y.; Saito, K.N.; Ukai, R.; Nanba, T.; Nagamine, Y.; Shiina, S.

    2001-01-01

    Before the generation of steady state, dynamo-free RFP configuration by rf current driving scheme, it is necessary to find an optimum configuration into high stability beta limit against m=1 resonant resistive MHD modes and reducing nonlinearly turbulent level with less rf power. As first step to the optimization study, we are interested in partially relaxed state model (PRSM) RFP configuration, which is considered to be closer to a relaxed state at finite beta since it has force-free fields for poloidal direction with a relatively shorter characteristic length of relaxation and a relatively higher stability beta limit to m=1 resonant ideal MHD modes. The stability beta limit to m=1 resonant resistive MHD modes can be predicted to be relatively high among other RFP models and to be enhanced by the current density profile control using fast magnetosonic waves (FMW), which are accessible to high density region with strong absorption rate. (author)

  14. Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations

    International Nuclear Information System (INIS)

    Radhakrishnan, Balachandran; Ong, Shyue Ping

    2016-01-01

    Ceramic alkali superionic conductor solid electrolytes (SICEs) play a prominent role in the development of rechargeable alkali-ion batteries, ranging from replacement of organic electrolytes to being used as separators in aqueous batteries. The aqueous stability of SICEs is an important property in determining their applicability in various roles. In this work, we analyze the aqueous stability of twelve well-known Li-ion and Na-ion SICEs using Pourbaix diagrams constructed from first-principles calculations. We also introduce a quantitative free-energy measure to compare the aqueous stability of SICEs under different environments. Our results show that though oxides are, in general, more stable in aqueous environments than sulfides and halide-containing chemistries, the cations present play a crucial role in determining whether solid phases are formed within the voltage and pH ranges of interest.

  15. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    Science.gov (United States)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  16. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    Science.gov (United States)

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  17. Mathematical and numerical study of nonlinear boundary problems related to plasma physics

    International Nuclear Information System (INIS)

    Sermange, M.

    1982-06-01

    After the study of some equations based on the Hodgkin-Huxley model, the work presented here is concerned with nonlinear boundary problems in MHD. They are gathered in two subjects: equilibrium equations and stability equations. The axisymmetric MHD equilibrium equations with free boundary have been studied by different authors, particularly the existence, regularity, unicity and non-unicity. Here, bifurcation, convergence of calculation methods existence of solutions in a discontinuous frame are studied. MHD stability can be determined by the principle of Bernstein et al; the mathematical work concerned here bears on the equivalence, in the case of two-dimensional or axisymmetric stability, between this model and a scalar eigenvalue problem which is introduced. At last, modules for computing MHD equilibrium for the simulation of plasma confinement in a tokamak are described [fr

  18. US/USSR cooperative program in open-cycle MHD electrical power gneration. Joint test report No. 2: tests in the U-25B facility; MHD generator test No. 3

    International Nuclear Information System (INIS)

    Tempelmeyer, K.E.; Sokolov, Y.N.

    1979-04-01

    The third joint test with a Soviet U-25B MHD generator and a US superconducting magnet system (SCMS) was conducted in the Soviet U-25B Facility. The primary objectives of the 3rd test were: (1) to operate the facility and MHD channel over a wider range of test parameters, and (2) to study the performance of all components and systems of the flow train at increased mass flow rates of combustion products (up to 4 kg/s), at high magnetic-field induction (up to 5 T), and high values of the electrical field in the MHD generator. The third test has demonstrated that all components and systems of the U-25B facility performed reliably. The electric power generated by the MHD generaor reached a maximum of 575 kW during this test. The MHD generator was operated under electrical loading conditions for 9 hours, and the combustor for a total of approximately 14 hours. Very high Hall fields (2.1 kV/m) were produced in the MHD channel, with a total Hall voltage of 4.24 kV. A detailed description is given of (1) performance of all components and systems of the U-25B facility, (2) analysis of the thermal, gasdynamic, and electrical characteristics of the MHD generator, (3) results of plasma diagnostic studies, (4) studies of vibrational characteristics of the flow train, (5) fluctuation of electrodynamic and gasdynamic parameters, (6) interaction of the MHD generator with the superconducting magnet, and (7) an operational problem, which terminated the test

  19. Stability of n = 1 kink modes in bean-shaped tokamaks

    International Nuclear Information System (INIS)

    Manickam, J.; Grimm, R.C.; Okabayashi, M.

    1983-08-01

    Numerical studies show that by indenting the small-major-radius side of conventional finite-aspect-ratio tokamaks, significant improvements to the stability of pressure-driven ideal MHD modes can be achieved. The internal n - 1 kink mode can be stabilized completely with quite modest indentation. Kink-ballooning mode stability is also improved, and, in the presence of a nearby conducting wall, accessibility to a second stable region at high plasma β is possible

  20. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  1. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  2. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  3. On soft stability loss in rotating turbulent MHD flows

    International Nuclear Information System (INIS)

    Kapusta, Arkady; Mikhailovich, Boris

    2014-01-01

    The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)

  4. Present state of research and development of MHD power generation

    International Nuclear Information System (INIS)

    Ikeda, Shigeru

    1978-01-01

    MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)

  5. Further analysis of MHD acceleration for a hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.

    1995-01-01

    A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation

  6. MHD analysis of high (β/sub t/) disruptions in PBX [Princeton Beta Experiment

    International Nuclear Information System (INIS)

    Jahns, G.L.; Chance, M.S.; Kaye, S.M.; Manickam, J.; Takahashi, H.; LeBlanc, B.; Morris, A.W.; Reusch, M.; Sesnic, S.

    1987-10-01

    PBX discharges run at the lowest q and highest (β/sub t/) always terminated in a hard disruption. The discharges, with (β/sub t/) values of up to 5.5% and q-values down to 2.2, were obtained by employing large current ramps and large gas feed rates during neutral beam injection. Previous work has indicated that the achieved (β/sub t/)-values were consistent with the limit imposed by the n = 1 ideal external kink with a conducting wall at b/a = 2. In this work, we investigate further the validity of ideal MHD theory in explaining the low-q/sub psi/j disruptions. In particular, the character of the pre-disruption MHD activity in these low-q discharges, specifically the time scales of growth and internal and external mode structures, was compared with those determined from theoretical calculations. The results of these comparisons indicate that non-ideal effects must be considered to obtain detailed agreement between theory and experiment. 13 refs., 6 figs

  7. Stabilization of long wavelength sausage and kink modes of a Z-pinch by nonlinear radial oscillations

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Karlson, E.T.; Liberman, M.A.

    1992-01-01

    A number of experiments with fiber-initiated dense Z-pinches, with compressional and gas-embedded Z-pinches, with imploding gas-puff Z-pinches and the straight Extrap configuration performed in the last decade demonstrated sufficiently improved stability of Z-pinch configurations. The striking stability with respect to the sausage modes can be explained, in principle, by ideal MHD theory as well as by finite plasma conductivity effects. The global kink mode can not be stabilized by the appropriate choice of the unperturbed profiles neither within the scope of the ideal MHD nor taking into account finite ion Larmor radius and viscous damping effects. In this report we shall demonstrate that stabilization of the global kink modes can be explained by the assumption that pinch is not in a stationary but in a dynamic equilibrium. (author) 12 refs., 2 figs

  8. Equations of state for self-excited MHD generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.

    1980-02-26

    We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.

  9. Discharges in the inlet region of a noble gas MHD generator

    International Nuclear Information System (INIS)

    Borghi, C.A.

    1982-01-01

    In this work the onset of the development of the non-equilibrium conductivity in the entrance region of a noble gas MHD generator is investigated both theoretically and experimentally. At low electron densities the discharge seems to be affected by a non-Maxwellian electron distribution. In Chapter II a self-consistent model of a stationary discharge in an Ar-Cs mixture at atmospheric pressure, is set up. It includes the possibility of deviations from a Maxwellian electron energy distribution. The model allows to calculate at what discharge parameters deviations from the Maxwellian electron distribution will become important. In Chapter III the relaxation of the plasma to a new equilibrium situation following a sudden change in the electron thermal energy is calculated by a model which can take radiation and a non-Maxwellian distribution into account. In Chapter IV an Ar-Cs discharge experiment is described with plasma parameters similar to those present in the entrance region of the generator. The ionization relaxation process in a noble gas MHD generator is experimentally studied and described in Chapter V. In this chapter the relaxation ionization region with and without pre-ionization is investigated. Current voltage characteristics are obtained by varying the applied voltage or the external load. The results are confronted with the theoretical results of the non-Maxwellian model developed in Chapter II. Conclusions of this work are drawn in Chapter VI. (Auth.)

  10. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  11. Particle acceleration in regions of magnetic flux emergence: a statistical approach using test-particle- and MHD-simulations

    Science.gov (United States)

    Vlahos, Loukas; Archontis, Vasilis; Isliker, Heinz

    We consider 3D nonlinear MHD simulations of an emerging flux tube, from the convection zone into the corona, focusing on the coronal part of the simulations. We first analyze the statistical nature and spatial structure of the electric field, calculating histograms and making use of iso-contour visualizations. Then test-particle simulations are performed for electrons, in order to study heating and acceleration phenomena, as well as to determine HXR emission. This study is done by comparatively exploring quiet, turbulent explosive, and mildly explosive phases of the MHD simulations. Also, the importance of collisional and relativistic effects is assessed, and the role of the integration time is investigated. Particular aim of this project is to verify the quasi- linear assumptions made in standard transport models, and to identify possible transport effects that cannot be captured with the latter. In order to determine the relation of our results to Fermi acceleration and Fokker-Planck modeling, we determine the standard transport coefficients. After all, we find that the electric field of the MHD simulations must be downscaled in order to prevent an un-physically high degree of acceleration, and the value chosen for the scale factor strongly affects the results. In different MHD time-instances we find heating to take place, and acceleration that depends on the level of MHD turbulence. Also, acceleration appears to be a transient phenomenon, there is a kind of saturation effect, and the parallel dynamics clearly dominate the energetics. The HXR spectra are not yet really compatible with observations, we have though to further explore the scaling of the electric field and the integration times used.

  12. Bifurcated equilibria in two-dimensional MHD with diamagnetic effects

    International Nuclear Information System (INIS)

    Ottaviani, M.; Tebaldi, C.

    1998-12-01

    In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)

  13. MHD turbulent dynamo in astrophysics: Theory and numerical simulation

    Science.gov (United States)

    Chou, Hongsong

    2001-10-01

    This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).

  14. Magnetic analysis of tokamak plasma with approximate MHD equilibrium solution

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Hiraki, Naoji

    1993-01-01

    A magnetic analysis method for determining equilibrium configuration parameters (plasma shape, poloidal beta and internal inductance) on a non-circular tokamak is described. The feature is to utilize an approximate MHD equilibrium solution which explicitly relates the configuration parameters with the magnetic fields picked up by magnetic sensors. So this method is suitable for the real-time analysis performed during a tokamak discharge. A least-squares fitting procedure is added to the analytical algorithm in order to reduce the errors in the magnetic analysis. The validity is investigated through the numerical calculation for a tokamak equilibrium model. (author)

  15. Principal characteristics of SFC type MHD generator

    International Nuclear Information System (INIS)

    Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki

    1988-01-01

    This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator. (author)

  16. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Drake, R. P.; Remington, B. A.

    2000-01-01

    We demonstrate that two systems described by the equations of the ideal magnetohydrodynamics (MHD) evolve similarly, if the initial conditions are geometrically similar and certain scaling relations hold. The thermodynamic properties of the gas must be such that the internal energy density is proportional to the pressure. The presence of the shocks is allowed. We discuss the applicability conditions of the ideal MHD and demonstrate that they are satisfied with a large margin both in a number of astrophysical objects, and in properly designed simulation experiments with high-power lasers. This allows one to perform laboratory experiments whose results can be used for quantitative interpretation of various effects of astrophysical MHD. (c) 2000 The American Astronomical Society

  17. Conversion software for ANSYS APDL 2 FLUENT MHD magnetic file

    International Nuclear Information System (INIS)

    Ghita, G.; Ionescu, S.; Prisecaru, I.

    2016-01-01

    The present paper describes the improvements made to the conversion software for ANSYS APDL 2 FLUENT MHD Magnetic File which is able to extract the data from ANSYS APDL file and write down a file containing the magnetic field data in FLUENT magneto hydro dynamics (MHD) format. The MHD module has some features for the uniform and non uniform magnetic field but it is limited for sinusoidal or pulsed, square wave, having a fixed duty cycle of 50%. The present software, ANSYS APDL 2 FLUENT MHD Magnetic File, suffered major modifications in comparison with the last one. The most important improvement consists in a new graphical interface, which has 3D graphical interface for the input file but also for the output file. Another improvement has been made for processing time, the new version is two times faster comparing with the old one. (authors)

  18. Concept for a high performance MHD airbreathing-IEC fusion rocket

    International Nuclear Information System (INIS)

    Froning, H.D. Jr.; Miley, G.H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-01-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion

  19. Concept for a high performance MHD airbreathing-IEC fusion rocket

    Science.gov (United States)

    Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .

  20. Outline of fast analyzer for MHD equilibrium 'FAME'

    International Nuclear Information System (INIS)

    Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto.

    1994-03-01

    The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author)

  1. Computing in plasma physics

    International Nuclear Information System (INIS)

    Nuehrenberg, J.

    1986-01-01

    These proceedings contain the articles presented at the named conference. These concern numerical methods for astrophysical plasmas, the numerical simulation of reversed-field pinch dynamics, methods for numerical simulation of ideal MHD stability of axisymmetric plasmas, calculations of the resistive internal m=1 mode in tokamaks, parallel computing and multitasking, particle simulation methods in plasma physics, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, computing of rf heating and current drive in tokamaks, three-dimensional free boundary calculations using a spectral Green's function method, as well as the calculation of three-dimensional MHD equilibria with islands and stochastic regions. See hints under the relevant topics. (HSI)

  2. MHD equilibrium of toroidal fusion plasma with stationary flows

    International Nuclear Information System (INIS)

    Galkowski, A.

    1994-01-01

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs

  3. Linear analysis of neoclassical tearing mode based on the four-field reduced neoclassical MHD equation

    International Nuclear Information System (INIS)

    Furuya, Atsushi; Yagi, Masatoshi; Itoh, Sanae-I.

    2003-01-01

    The linear neoclassical tearing mode is investigated using the four-field reduced neoclassical MHD equations, in which the fluctuating ion parallel flow and ion neoclassical viscosity are taken into account. The dependences of the neoclassical tearing mode on collisionality, diamagnetic drift and q profile are investigated. These results are compared with the results from the conventional three-field model. It is shown that the linear neoclassical tearing mode is stabilized by the ion neoclassical viscosity in the banana regime even if Δ' > 0. (author)

  4. Effects of a current on the redistribution of an ionizing additive over an MHD channel

    International Nuclear Information System (INIS)

    Reznikov, M.B.; Lamden, D.I.; Mostinskii, I.L.

    1983-01-01

    A solution is obtained for the steady-state distribution of an ionizing impurity over the cross section of the channel in an MHD generator. It is assumed that the flow in the channel is turbulent and stabilized. Allowance is made for chemical reactions, nonisothermal flow, and ion current drift. It is shown that ion drift can lead to a substantial redistribution of the additive over the cross section and in particular to a rise in concentration by the cathode and a reduction near the anode

  5. The Prognosis of Political Stability of the Russian Federation on the Basis of Calculation of the Index of National External Economic Stability

    Directory of Open Access Journals (Sweden)

    Владимир Геннадьевич Иванов

    2012-12-01

    Full Text Available The article contains the development of ideas presented in the previous issue of the bulletin. On the basis of the proposed by V.G. Ivanov methodology of calculation of the index of national external economic stability there has been prepared the short- mid-term prognosis of the level of stability of the Russian political regime. With a glance to the specificity of the development of the Russian Federation the methodology of calculation of the deflator of the referred index has been worked out as well.

  6. Magnetohydrodynamic (MHD) simulation of solar prominence formation

    International Nuclear Information System (INIS)

    Bao, J.

    1987-01-01

    Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode

  7. Neutronics and Thermal Hydraulics Analysis of a Conceptual Ultra-High Temperature MHD Cermet Fuel Core for Nuclear Electric Propulsion

    Directory of Open Access Journals (Sweden)

    Jian Song

    2018-04-01

    Full Text Available Nuclear electric propulsion (NEP offers unique advantages for the interplanetary exploration. The extremely high conversion efficiency of magnetohydrodynamics (MHD conversion nuclear reactor makes it a highly potential space power source in the future, especially for NEP systems. Research on ultra-high temperature reactor suitable for MHD power conversion is performed in this paper. Cermet is chosen as the reactor fuel after a detailed comparison with the (U,ZrC graphite-based fuel and mixed carbide fuel. A reactor design is carried out as well as the analysis of the reactor physics and thermal-hydraulics. The specific design involves fuel element, reactor core, and radiation shield. Two coolant channel configurations of fuel elements are considered and both of them can meet the demands. The 91 channel configuration is chosen due to its greater heat transfer performance. Besides, preliminary calculation of nuclear criticality safety during launch crash accident is also presented. The calculation results show that the current design can meet the safety requirements well.

  8. Calculation and Simulation Study on Transient Stability of Power System Based on Matlab/Simulink

    Directory of Open Access Journals (Sweden)

    Shi Xiu Feng

    2016-01-01

    Full Text Available The stability of the power system is destroyed, will cause a large number of users power outage, even cause the collapse of the whole system, extremely serious consequences. Based on the analysis in single machine infinite system as an example, when at the f point two phase ground fault occurs, the fault lines on either side of the circuit breaker tripping resection at the same time,respectively by two kinds of calculation and simulation methods of system transient stability analysis, the conclusion are consistent. and the simulation analysis is superior to calculation analysis.

  9. Dynamic stabilization of disruption precursors in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maoquan, Wang; Jianshan, Mao; Yuan, Pan [Academia Sinica, Hefei, AH (China). Inst. of Plasma Physics

    1994-12-01

    A method for dynamic stabilization of the disruption precursors in tokamak is proposed, that is a controlled ac current induced and added to the equilibrium current. The ac currents applied can be a sine alternative current with a relevant frequency, or a pulsed current with a suitable pulsed width {tau} and or a discontinuous pulsed current whose width {tau} is very shorter than the intervals between pulses, and or a `sawtooth` pulsed current with the time of ramp phase of the sawtooth is very much shorter than the sawtooth descending time, the ratio of them can be {<=}10{sup -3}. The physical model of the ac current drive is analyzed in detail. The suppression role of the ac current on the MHD perturbations was analyzed in theory and proved numerically. It is indicated that the ac current can make the discontinuous derivative, {Delta}`, more favorable for the tearing mode stabilities, and so, as long as the parameters of the applied ac currents are selected suitably, the MHD perturbations can be suppressed effectively, the perturbations will be in the zero-growing state, the profile of the plasma current and temperature remain in the initial states and not variate basically, the tokamak be in the stabilized operation state. (8 figs.).

  10. Liquid metal MHD research and development in Israel

    International Nuclear Information System (INIS)

    Branover, H.

    1993-01-01

    The study of liquid metal MHD in Israel commenced in 1973. Initially it was concentrated mainly on laminar flows influenced by external magnetic fields. In 1978 a liquid metal MHD energy conversion program was started. This program was developed at the Center for MHD Studies at Ben-Gurion University in Beer-Sheva, with the participation of specialists from the Technion, the Hebrew University of Jerusalem, Israel Atomic Energy Commission, and others. The program was sponsored initially by the Israel Ministry of Energy and Infrastructure, and later by the Ministry of Industry and Trade. Since 1980, Solmecs, a private commercial company has become a major factor in the development of liquid metal MHD in Israel. From the very beginning the program was based on broad international cooperation. A number of overseas institutions and individuals became participants in the program. Through extensive research and evaluation of a number of concepts of liquid metal MHD power generation systems, It was established that the most promising concept, demanding a relatively short period of development, is the gravitational system using heavy metals (lead, lead alloys) as the magneto-hydrodynamic fluid and steam or gases as thermodynamic fluids. This concept was chosen for further development and industrial application, and the program related to such systems was named the Etgar Program. The main directions of research and development activities have been defined as follows: investigations of physical phenomena, development of universal numerical code for parametric studies, optimization and design of the system, material studies, development of engineering components, building and testing of integrated small-scale Etgar type systems, economic evaluation of the system and comparison with conventional technologies, development of moderate scale industrial demonstration plant. At this time 6 items have been fully implemented and activities on the last item were started. (author)

  11. Linear calculations of edge current driven kink modes with BOUT++ code

    Energy Technology Data Exchange (ETDEWEB)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y. [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Snyder, P. B.; Turnbull, A. D. [General Atomics, San Diego, California 92186 (United States); Ma, C. H.; Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); FSC, School of Physics, Peking University, Beijing 100871 (China)

    2014-10-15

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.

  12. Linear calculations of edge current driven kink modes with BOUT++ code

    International Nuclear Information System (INIS)

    Li, G. Q.; Xia, T. Y.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Ma, C. H.; Xi, P. W.

    2014-01-01

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density

  13. Technical support for open-cycle MHD program. Progress report, July--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E D [ed.

    1979-06-01

    The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and high-temperature air heater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system relative to either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request in support of the needs and requirements of the DOE/MHD Division.

  14. Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)

    2010-09-01

    One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.

  15. Ideal MHD B limits in the BIG DEE tokamak

    International Nuclear Information System (INIS)

    Helton, F.J.; Bernard, L.C.; Greene, J.M.

    1983-01-01

    Using D-D reactions, tokamak reactors become economically attractive when B (the ratio of volume averaged pressure to magnetic pressure) exceeds 5 percent. Ideal MID instabilities are of great concern because they have the potential to limit B below this range and so extensive studies have been done to determine ideal MHD B limits. As B increases with inverse aspect ratio, elongation and triangularity, the Doublet III upgrade machine -- BIG DEE -- is particularly suited to study the possibility of very high B. The authors have done computations to determine ideal MHD B limits for various plasma shapes and elongations in BIG DEE. They have determined that for q at the plasma surface greater than 2, B is limited by the ballooning mode if the wall is reasonably close to the plasma surface (d/a < 1.5 where d and a are the wall and plasma radii respectively). On the other hand, for q at the plasma surface less than 2, the n=1 external kink is unstable even with a wall close by. Thus, relevant values of limiting B can be obtained by assuming that the external kink limits the value of q at the limiter to a value greater than 2 and that the ballooning modes limit B. Under this assumption, a relevant B limit for the BIG DEE would be over 18%. For such an equilibrium, the wall position necessary to stabilize the n=1 and n=2 modes is 2a and the equilibrium is stable for n=3

  16. Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, Akihiro; Nakajima, Noriyoshi

    2007-01-01

    This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)

  17. Safety and reliability in superconducting MHD magnets

    International Nuclear Information System (INIS)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included

  18. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    International Nuclear Information System (INIS)

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  19. Calculation of Flexible Bus-Bars Electrodynamic Stability with Application of Implicit Scheme

    Directory of Open Access Journals (Sweden)

    Y. G. Panamarenka

    2008-01-01

    Full Text Available A numerical method for calculation of open-air substations’ flexible bus-bars dynamic at short-circuit has been improved on equations of a flexible elastic string with application of an implicit scheme. On the basis of the numerical method a computer program FLEBUS for calculation of substations’ flexible bus-bars dynamic at short-circuit has been developed. An approbation and an estimation of calculation result reliability have been carried out in accordance with the program while using experimental data. On the basis of the obtained information it is possible to assert that the developed program is an independent tool for calculation of electrodynamic stability of substations’ flexible bus-bars.

  20. A simplified MHD model of capillary Z-Pinch compared with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)

    2016-11-15

    The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  2. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  3. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Science.gov (United States)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  4. MHD repowering of a 250 MWe unit of the TVA Allen Steam Plant

    International Nuclear Information System (INIS)

    Chapman, J.N.; Attig, R.C.

    1992-01-01

    In this paper coal fired MHD repowering is considered for the TVA Allen Steam Plant. The performance of the repowered plant is presented. Cost comparisons are made of the cost of repowering with MHD versus the cost of meeting similar standards by installing scrubbers and selective catalytic NO x reduction (SCNR). For repowering of a single 250 MW e unit, the costs favor scrubbing and SCNR. If one considers a single repowering of all three 250 MW e units by a single MHD topping cycle and boiler, MHD repowering is more economical. Environmental emissions from the repowered plant are estimated

  5. Experimental investigation of MHD effects in a manifold of a downstream circular pipe

    International Nuclear Information System (INIS)

    Xu Zengyu; Pan Chuanjie; Wei Wenhao; Chen Xiaoqiong; Zhang Yanxu

    2001-01-01

    The velocity distribution in the mid-plane of the cross section of a main pipe in the region of a junction is investigated. The result confirms that the MHD-flow near the junction is strongly affected by the junction itself. This holds even if the bypass pipe is closed. The MHD pressure drops are also measured, and a three-dimensional (3D) factor of MHD pressure drop due to manifold effects is obtained with theoretical analysis and comparing with experimental data. The factor is directly proportional to Hartmann number Ha. Two dimensional MHD pressure drop is also discussed

  6. Two dimensional analysis for magnetic flux distribution in electromagnet used for MHD applications

    International Nuclear Information System (INIS)

    Desai, S.V.; Venkatramani, N.; Rohatgi, V.K.

    1984-01-01

    Magnetic flux densities in air and iron region of iron core MHD electromagnet, are calculated based on concept of magnetic vector potential. Numerical solution to the problem is obtained by converting partial differential equations into finite difference form with simplifying assumptions. A computer progrm is developed, giving solution by finite difference method. Over-relaxation technique based on Stoke's theorem is applied. Magnetic induction along the transverse axis of the magnet and plot for magnetic induction lines for current = 2420 A is presented. (author)

  7. Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy's law

    International Nuclear Information System (INIS)

    Khan, M.; Hayat, T.; Asghar, S.

    2005-12-01

    This paper deals with an exact solution for the magnetohydrodynamic (MHD) flow of a generalized Oldroyd-B fluid in a circular pipe. For the description of such a fluid, the fractional calculus approach has been used throughout the analysis. Based on modified Darcy's law for generalized Oldroyd-B fluid, the velocity field is calculated analytically. Several known solutions can be recovered as the limiting cases of our solution. (author)

  8. Measured MHD equilibrium in Alcator C

    International Nuclear Information System (INIS)

    Pribyl, P.A.

    1986-03-01

    A method of processing data from a set of partial Rogowski loops is developed to study the MHD equilibrium in Alcator C. Time dependent poloidal fields in the vicinity of the plasma are calculated from measured currents, with field penetration effects being accounted for. Fields from eddy currents induced by the plasma in the tokamak structure are estimated as well. Each of the set of twelve B/sub θ/ measurements can then be separated into a component from the plasma current and a component from currents external to the pickup loops. Harmonic solutions to Maxwell's equations in toroidal coordinates are fit to these measurements in order to infer the fields everywhere in the vacuum region surrounding the plasma. Using this diagnostic, plasma current, position, shape, and the Shafranov term Λ = β/sub p/ + l/sub i//2 - 1 may be computed, and systematic studies of these plasma parameters are undertaken for Alcator C plasmas

  9. MHD-flow in slotted channels with conducting walls

    International Nuclear Information System (INIS)

    Evtushenko, I.A.; Kirillov, I.R.; Reed, C.B.

    1994-07-01

    A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a open-quotes one-electrode movable probeclose quotes for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data

  10. Ideal stability of cylindrical plasma in the presence of mass flow

    International Nuclear Information System (INIS)

    Bondeson, A.; Iacono, R.

    1988-11-01

    The ideal stability of cylindrical plasma with mass flows is investigated using the guiding centre plasma (GCP) model of Grad. For rotating plasmas, the kinetic treatment of the parallel motion in GCP gives significantly different results than fluid models, where the pressures are obtained from equations of state. In particular, GCP removes the resonance with slow magnetoacoustic waves and the loss of stability that results in magnetohydrodynamics (MHD) for near-soni flows. Because of the strong kinetic damping of the sound waves in an isothermal plasma, the slow waves have little influence on plasma stability in GCP at low β. In the large aspect ratio, low-β tokamak ordering, Alfvenic flows are needed to change the ideal GCP stability significantly. At lowest order in the inverse aspect ratio, flow can be favorable or unfavorable for stability of local modes depending on the profiles, but external kinks are always destilized by flow if the velocity vanishes at the edge. For high-β, reversed field pinch equilibria, numerical computations show that flow can be stabilizing for local modes, but external modes are destabilized by flow. It is shown that in three dimensions, the MHD equilibrium problem becomes hyperbolic for arbitrarily small flows across the magnetic field, whereas in GCP the equilibrium remains elliptic for sub-Alfvenic flows. (author) 7 figs., 1 tab, 32 refs

  11. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  12. The stability of Z-pinches with equilibrium flows

    International Nuclear Information System (INIS)

    Howell, D.F.

    1999-01-01

    According to Ideal Magnetohydrodynamic (MHD) theory the Z-pinch is an inherently unstable magnetic configuration. However it is possible that there exist regimes of operation whereby the predicted instabilities may be reduced or even eliminated. We must look to effects normally ignored in the Ideal MHD model in order to predict such regimes. In this thesis various non-ideal effects will be studied, namely the inclusion of equilibrium flow and finite Larmor radius effects. Astrophysical jets, for example those seen to be emitted from active galactic nuclei, are seen to persist for a greater time than suggested by Ideal MHD before the onset of instabilities. It is postulated that one of the contributing factors to this enhanced stability is the presence of a sheared axial flow. In this thesis we study the stability properties of the Z-pinch where flow is present in the equilibrium. It is found that a sheared axial flow generally has a stabilising effect, the degree of which is determined by the equilibrium and flow profiles, but that absolute stability cannot be achieved due to the onset of the Kelvin-Helmholtz instability. The effect of adding rotation has also been studied. It is found that adding rotation changes the equilibrium density profiles from the static case, and that it always has a destabilising effect. Another postulated method of stabilising the Z-pinch is by increasing the ratio of the ion Larmor radius to the pinch radius, and it is seen to have a stabilising effect for some equilibria in the collisionless regime. In this thesis we study the effects of increasing the Larmor radius in the collisional regime using the Hall fluid model. It is found that for free boundary modes the stability properties are unchanged for experimentally realistic values of the Larmor radius, but for fixed boundary modes a small stabilising effect is noted for some equilibria. (author)

  13. Topics on MHD equilibrium and stability in heliotron / torsatron

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji; Nakajima, Noriyoshi; Okamoto, Masao.

    1996-10-01

    Recent topics on the MHD properties with and without bootstrap current in Heliotron / Torsatron configurations are presented. In a currentless equilibrium with a large Shafranov shift, a high-n ballooning mode can be unstable even in the region with positive gradient of the rotational transform. This is because the local shear in the field line bending term can be reduced by the fact that the local enhancement of the poloidal field varies in the radial direction. Since the local curvature of the field lines depends on the label of the magnetic field line, α, in Heliotron / Torsatron, the eigenvalue ω 2 also depends on α. In the Mercier stable region, the level surfaces of ω 2 of unstable modes form spheroids in the (ψ, θ k , α) space, where ψ and θ k are the label of the flux surface and the radial wave number, while they form cylinders in tokamaks. Such high-n modes cannot be related to low-n modes in this case. In the LHD configuration, bootstrap current depends on the collisionality of the plasma. When the beta value is raised by increasing the temperature with the density fixed, the plasma becomes less collisional and the bootstrap current grows in the direction where the rotational transform is increased. On the contrary, when the beta value is raised by increasing the density with the temperature fixed, the plasma becomes more collisional. While a small amount of the current flows in the same direction as in the above sequence at low beta in this case, the direction of the current reverses at high beta equilibrium. This is because the geometrical factor in the expression of the bootstrap current in the plateau regime has opposite signature to that in the 1/ν regime. The latter equilibrium sequence is more stable in the Mercier criterion than the former one. Thus, the beta should be raised by increasing the density rather than the temperature to obtain stable high beta plasma. (author)

  14. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  15. Technical surveys on MHD combustors. Surveys on incorporation of pressurized coal partial combustion furnaces; MHD combustor gijutsu chosa. Kaatsugata sekitan bubun nenshoro no donyu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The pressurized coal partial combustion (PCPC) furnace is surveyed/studied for its incorporation in MHD generation. The technical development of the atmospheric CPC has been basically completed, and the concept is demonstrated using a test system of commercial size. Many techniques developed for the atmospheric CPC are applicable to the PCPC system. These include structures of the CPC furnace walls, and slag handling and simulation techniques. Combination of PFBC with PCPC or IGCC can bring about many merits, e.g., enhanced efficiency and abated NOx emissions for the combined cycle power generation. These topping cycles, therefore, should be developed in the early stage. MHD power generation is one of the concepts that can enhance efficiency. In particular, the techniques for closed cycle MHD generation have notably advanced recently. The PCPC techniques are useful for coal combustors for MHD generation. Full-scale development works for the direct coal combustion gas turbine systems have been just started for the IGCC systems of the next generation, and the PCPC-related techniques are expected to serve as the central techniques for these turbine systems. (NEDO)

  16. Stability of plasma cylinder with current in a helical plasma flow

    Science.gov (United States)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  17. Optimization and control of the plasma shape and current profile in noncircular cross-section tokamaks

    International Nuclear Information System (INIS)

    Moore, R.W.; Bernard, L.C.; Chan, V.S.; Davidson, R.H.; Dobrott, D.R.; Helton, F.J.; Miller, R.L.; Pfeiffer, W.; Waltz, R.E.; Wang, T.S.

    1980-06-01

    High-β equilibria which are stable to all ideal MHD modes are found by optimizing the plasma shape and current profile for doublets, up-down asymmetric dees, and symmetric dees. The ideal MHD stability of these equilibria for low toroidal mode number n is analyzed with a global MHD stability code, GATO. The stability to high-n modes is analyzed with a localized ballooning code, BLOON. The attainment of high β is facilitated by an automated optimization search on shape and current parameters. The equilibria are calculated with a free-boundary equilibrium code using coils appropriate for the Doublet III experimental device. The optimal equilibria are characterized by broad current profiles with values of β/sub poloidal/ approx. =1. Experimental realization of the shapes and current profiles giving the highest β limits is explored with a 1 1/2-D transport code, which simulates the time evolution of the 2-D MHD equilibrium while calculating consistent current profiles from a 1-D transport model. Transport simulations indicate that nearly optimal shapes may be obtained provided that the currents in the field-shaping coils are appropriately programmed and the plasma current profile is sufficiently broad. Obtaining broad current profiles is possible by current ramping, neutral beam heating, and electron cyclotron heating. With combinations of these techniques it is possible to approach the optimum β predicted by the MHD theory

  18. Flow shear stabilization of rotating plasmas due to the Coriolis effect

    NARCIS (Netherlands)

    Haverkort, J. W.; de Blank, H. J.

    2012-01-01

    A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating

  19. Flow shear stabilization of rotating plasmas due to the Coriolis effect

    NARCIS (Netherlands)

    J.W. Haverkort (Willem); H.J. de Blank

    2012-01-01

    htmlabstractA radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a

  20. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  1. Alpha particle effects on MHD ballooning

    International Nuclear Information System (INIS)

    1991-01-01

    During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs

  2. High pressure MHD coal combustors investigation, phase 2

    Science.gov (United States)

    Iwata, H.; Hamberg, R.

    1981-05-01

    A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.

  3. Feedback stabilization of axisymmetric modes in tokamaks

    International Nuclear Information System (INIS)

    Jardin, S.C.; Larrabee, D.A.

    1982-01-01

    Noncircular tokamak plasmas can be unstable to ideal MHD axisymmetric instabilities. Passive conductors with finite resistivity will at best slow down these instabilities to the resistive (L/R) time of the conductors. An active feedback system far from the plasma which responds on this resistive time can stabilize the system provided its mutual inductance with the passive coils is small enough

  4. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  5. Evolution of the MHD sheet pinch

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Montgomery, D.

    1979-01-01

    A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table

  6. An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Rieben, R N; White, D A; Wallin, B K; Solberg, J M

    2006-06-12

    We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.

  7. INCORPORATING AMBIPOLAR AND OHMIC DIFFUSION IN THE AMR MHD CODE RAMSES

    International Nuclear Information System (INIS)

    Masson, J.; Mulet-Marquis, C.; Chabrier, G.; Teyssier, R.; Hennebelle, P.

    2012-01-01

    We have implemented non-ideal magnetohydrodynamics (MHD) effects in the adaptive mesh refinement code RAMSES, namely, ambipolar diffusion and Ohmic dissipation, as additional source terms in the ideal MHD equations. We describe in details how we have discretized these terms using the adaptive Cartesian mesh, and how the time step is diminished with respect to the ideal case, in order to perform a stable time integration. We have performed a large suite of test runs, featuring the Barenblatt diffusion test, the Ohmic diffusion test, the C-shock test, and the Alfvén wave test. For the latter, we have performed a careful truncation error analysis to estimate the magnitude of the numerical diffusion induced by our Godunov scheme, allowing us to estimate the spatial resolution that is required to address non-ideal MHD effects reliably. We show that our scheme is second-order accurate, and is therefore ideally suited to study non-ideal MHD effects in the context of star formation and molecular cloud dynamics.

  8. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    Science.gov (United States)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  9. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    International Nuclear Information System (INIS)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.; Nasiatka, J.R.; Kirillov, I.R.; Ogorodnikov, A.P.; Preslitski, G.V.; Goloubovitch, G.P.; Xu, Zeng Yu

    1996-01-01

    The Vanadium/Lithium system has been the recent focus of ANL's Blanket Technology Pro-ram, and for the last several years, ANL's Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne's Liquid Metal EXperiment (ALEX) from a 200 degrees C NaK facility to a 350 degrees C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10 3 to 10 5 in lithium at 350 degrees C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230 degrees C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000

  10. Numerical solutions of magnetohydrodynamic stability of axisymmetric toroidal plasmas using cubic B-spline finite element method

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1988-12-01

    A nonvariational ideal MHD stability code (NOVA) has been developed. In a general flux coordinate (/psi/, θ, /zeta/) system with an arbitrary Jacobian, the NOVA code employs Fourier expansions in the generalized poloidal angle θ and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /psi/ direction. Extensive comparisons with these variational ideal MHD codes show that the NOVA code converges faster and gives more accurate results. An extended version of NOVA is developed to integrate non-Hermitian eigenmode equations due to energetic particles. The set of non-Hermitian integro-differential eigenmode equations is numerically solved by the NOVA-K code. We have studied the problems of the stabilization of ideal MHD internal kink modes by hot particle pressure and the excitation of ''fishbone'' internal kink modes by resonating with the energetic particle magnetic drift frequency. Comparisons with analytical solutions show that the values of the critical β/sub h/ from the analytical theory can be an order of magnitude different from those computed by the NOVA-K code. 24 refs., 11 figs., 1 tab

  11. Investigation of MHD instabilities and control in KSTAR preparing for high beta operation

    Science.gov (United States)

    Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Park, J. K.; Kim, J.; Hahn, S. H.; Ahn, J.-W.; Yoon, S. W.; Lee, K. D.; Choi, M. J.; Yun, G. S.; Park, H. K.; You, K.-I.; Bae, Y. S.; Oh, Y. K.; Kim, W.-C.; Kwak, J. G.

    2013-08-01

    Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied

  12. Investigation of MHD instabilities and control in KSTAR preparing for high beta operation

    International Nuclear Information System (INIS)

    Park, Y.S.; Sabbagh, S.A.; Bialek, J.M.; Berkery, J.W.; Lee, S.G.; Ko, W.H.; Bak, J.G.; Jeon, Y.M.; Kim, J.; Hahn, S.H.; Yoon, S.W.; Lee, K.D.; You, K.-I.; Bae, Y.S.; Oh, Y.K.; Park, J.K.; Ahn, J.-W.; Choi, M.J.; Yun, G.S.; Park, H.K.

    2013-01-01

    Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with W tot = 340 kJ, β N = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce W tot . In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H–L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of β N by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2

  13. Statistical Theory of the Ideal MHD Geodynamo

    Science.gov (United States)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  14. Finite Larmor radius effects on Z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1987-10-01

    The effect of finite Larmor radius (FLR) on the stability of m=1 small axial wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the Incompressible FLR MHD model; a collisionless fluid model which consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD 2rdp/dr+m 2 B 2 /μ 0 >=0 predicts instability for internal modes unless the current density becomes singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall terms have a damping, however not stabilizing, effect, in agreement with earlier work. Specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m=1 modes are then fully stabilized over the cross-section for wavelengths λ/a max =3-5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (authors)

  15. MHD magnet technology development program summary, September 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  16. MHD magnet technology development program summary, September 1982

    International Nuclear Information System (INIS)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references

  17. Diagnostics for a coal-fired MHD retrofit of an existing power station

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R L; Shepard, W S [Mississippi State Univ. (USA). Diagnostic Instrumentation and Analysis Lab.

    1990-01-01

    MHD flows represent one of the most severe environments encountered by gasdynamic diagnostics. Special state-of-the-art techniques and instrumentation systems are required to monitor and collect data for the MHD components, and these diagnostic systems must operate under very severe environmental and magnetic field conditions. The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University has developed, and is continuing to develop, advanced optical diagnostic techniques and instrumentation systems to provide nonintrusive, remote real-time measurements and to operate successfully in the industrial-like environment of a large-scale MHD retrofit power station. Such diagnostic instrumentation can provide the information to completely evaluate the performance of individual components, as well as, the entire power plant. It is essential to determine as much detail as possible about the various component operations in an MHD retrofit system so that a commercial plant design can be optimized quickly. This paper discusses the instrumentation systems which DIAL proposed for an MHD retrofit of an existing power station. Instruments which have been making measurements on the U.S. MHD test facilities for several years are presented, along with instruments which will be available within two years. Parameters to be measured along with location and frequency are discussed in detail. These parameters include electron density, electrical conductivity, K-atom density, gas temperature, gas velocity, temperature and velocity profiles, gas composition, and particle size, number, density and distrib00000

  18. Dependence of ideal MHD kink and ballooning modes on plasma shape and profiles in tokamaks

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Manickam, J.; Okabayashi, M.; Chance, M.S.; Grimm, R.C.; Greene, J.M.; Johnson, J.L.

    1978-08-01

    Extensive numerical studies of ideal MHD instabilities have been carried out to gain insight into the parametric dependence of critical β's in tokamaks. The large number of interrelated equilibrium quantities involved in establishing a critical β has demanded a careful, systematic survey in order to isolate this dependence. The results of this survey establish the scaling with geometrical quantities including aspect ratio, elongation, and triangularity in the parameter regimes appropriate for both current and reactor-sized plasmas. A moderate dependence on the pressure profile and a strong variation with the current profile is found. The principal result is that for aspect ratio R/a approximately equal to 3, critical β's are of the order of 2% for circular cross sections and 5% for plasmas with elongation K approximately equal to 2; somewhat higher values could be achieved with more optimal shaping. Finally, sequences of equilibria have been analyzed to compare critical β as a function of toroidal mode number n. We conclude that the infinite-n analytic ballooning theory provides a sufficient condition for ideal MHD internal mode stability. Low-n free boundary modes appear to set a lower limit

  19. MHD mode evolutions prior to minor and major disruptions in SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dhongde, Jasraj; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Bhandarkar, Manisha

    2017-01-15

    Highlights: • Observation of different regimes of MHD phenomena in SST-1 plasma. • MHD mode (m/n = 1/1, m/n = 2/1) evolutions prior to minor and major disruptions in SST-1 plasma. • MHD mode characteristics such as mode frequency, mode number, island width etc. in different regimes. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak (R{sub 0} = 1.1 m, a = 0.2 m, B{sub T} = 1.5T, Ip ∼ 110 kA) in operation at the Institute for Plasma Research, India. SST-1 uniquely experiments large aspect ratio (∼5.5) plasma in different operation regimes. In these experiments, repeatable characteristic MHD phenomena have been consistently observed. As the large aspect ratio plasma pulse progresses, these MHD phenomena display minor-major disruptions ably indicated in Mirnov oscillations, Mirnov oscillations with saw teeth and locked modes etc. Even though somewhat similar observations have been found in some other machines, these observations are found for the first time in large aspect ratio plasma of SST-1. This paper elaborates the magnetic field perturbations and mode evolutions due to MHD activities from Mirnov coils (poloidal and toroidal), Soft X-ray diagnostics, ECE diagnostics etc. This work further, for the first time reports quantitatively different regimes of MHD phenomena observed in SST-1 plasma, their details of mode evolutions characteristics as well as the subsequently observed minor, major disruptions supported with the physical explanations. This study will help developing disruption mitigation and avoidance scenarios for having better confinement plasma experiments.

  20. MHD simulation of Columbia HBT

    International Nuclear Information System (INIS)

    Li, X.L.

    1987-01-01

    The plasma of Columbia High Beta Tokamak (HBT) is studied numerically by using the two dimensional resistive MHD model. The main object of this work is to understand the high beta formation process of HBT plasma and to compare the simulation with the experiments. 21 refs., 48 figs., 2 tabs

  1. Numerical computation of MHD equilibria

    International Nuclear Information System (INIS)

    Atanasiu, C.V.

    1982-10-01

    A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)

  2. Ion temperature increase during MHD events on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Ejiri, A.; Shiraiwa, S.; Takase, Y.; Yamada, T.; Nagashima, Y.; Kasahara, H.; Iijima, D.; Kobori, Y.; Nishi, T.; Taniguchi, T.; Aramasu, M.; Ohara, S.; Ushigome, M.; Yamagishi, K.

    2003-01-01

    Various types of MHD events including internal reconnection events are studied on the TST-2 spherical tokamak. In weak MHD events no positive current spike was observed, but in strong MHD events with positive current spikes, a rapid and significant impurity ion temperature increase was observed. The decrease in the poloidal magnetic energy is the most probable energy source for ion heating. The plasma current shows a stepwise change. The magnitude of this step correlates with the temperature increase and is found to be a good indicator of the strength of each event. (author)

  3. The Statistical Mechanics of Ideal MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  4. Report on evaluation concerning R and D of magneto hydrodynamic (MHD) generation. Introduction; Denji ryutai (MHD) hatsuden no kenkyu kaihatsu ni kansuru hyoka hokokusho. Soron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    Evaluation was conducted concerning R and D on magneto hydrodynamic (MHD) generation, with proposals made for the future R and D. As a result of the experimental operation and studies of the Mark 7 machine for MHD generation, a cold wall type generation channel was found promising in the long-term durability under MHD generation conditions. In addition, R and D was conducted on the exhaust gas control system that fulfilled an environmental standard, seed recovery method, grasp of seed coagulation state, etc. The R and D on element technologies were carried out along with the R and D of the Mark 7 and played a role in the backup of its experiment. MHD generation presents a large number of attractive characteristics, with its development expected in the future. However, it seems too early to immediately move on to the next step. Examinations should be made on such matters as comparisons with various kinds of new power generation systems using coal, trends in foreign countries particularly the U-500 project of the Soviet Union, the ideal system for more efficient development, and possibility of international cooperation. (NEDO)

  5. Equilibrium and stability of a rotating plasma

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1979-01-01

    The author considers the equilibrium and stability of a rotating plasma. The kinetic equations for ions and electrons supplemented with the Maxwell equations and the appropriate boundary conditions are used. Two different models for the rotating plasma are considered: the equilibrium of a 'fast' rotating plasma (Magneto Hydrodynamic ordering) and the stability of a slowly rotating, 'weakly' unstable plasma (Finite Larmor Radius ordering). A striking difference between these orderings is the fact that, regarding the stability of the plasma, for a F.L.R. plasma viscosity effects due to the finite Larmor radius are important, whereas in a M.H.D. plasma they are negligible (at least to the required order). (Auth.)

  6. Nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.

    1975-01-01

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  7. Role of MHD activity in LH-assisted discharges in the PBX-M tokamak

    International Nuclear Information System (INIS)

    Talvard, M.; Bell, R.E.; Bernabei, S.; Kaye, S.; Okabayashi, M.; Sesnic, S.; von Goeler, S.

    1995-01-01

    A data base for the 1993 run period of PBX-M has been documented (i) to investigate whether it was possible to forecast the development of MHD instabilities often observed in LH assisted discharges and (ii) to detail the origin, the nature and the effects of those instabilities. The deposition radius of the RF current, the plasma internal inductance and the LH power are used to separate MHD active and quiescent regimes prior the MHD onset. 1/1, 2/1, 3/1 global modes driven by the m = 2, n = 1 component are observed in discharges with LHCD. The destabilization is attributed to an increase of the current density gradient within the q = 2 surface. MHD fluctuations reduce the soft x-ray and hard x-ray intensities mainly around the RF current deposition radius. Minor disruptions with large inversion radii and mode locking are analyzed. Pi possible precursor to the MHD is evidenced on the hard x-ray horizontal profiles. A resonance between fast trapped electrons and turbulent waves present in the background plasma is proposed to support the observations

  8. Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak

    International Nuclear Information System (INIS)

    Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.

    1980-08-01

    A force balance relation, a representation for the poloidal beta (β/sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively

  9. On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

    Directory of Open Access Journals (Sweden)

    L.-N. Hau

    2007-09-01

    Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

  10. Analyses of the Photospheric Magnetic Dynamics in Solar Active Region 11117 Using an Advanced CESE-MHD Model

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL (United States); Wu, Shi T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL (United States); Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, AL (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China)

    2016-05-10

    In this study, the photospheric vector magnetograms obtained by Helioseismic and Magnetic Imager on-board the Solar Dynamics Observatory are used as boundary conditions for a CESE-MHD model to investigate some photosphere characteristics around the time of a confined flare in solar active region NOAA AR 11117. We report our attempt of characterizing a more realistic solar atmosphere by including a plasma with temperature stratified from the photosphere to the corona in the CESE-MHD model. The resulted photospheric transverse flow is comparable to the apparent movements of the magnetic flux features that demonstrates shearing and rotations. We calculated the relevant parameters such as the magnetic energy flux and helicity flux, and with analysis of these parameters, we find that magnetic non-potentiality is transported across the photosphere into the corona in the simulated time interval, which might provide a favorable condition for producing the flare.

  11. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    Science.gov (United States)

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics

  12. Pulsed power sources based on MHD generators (A state-of-art review)

    International Nuclear Information System (INIS)

    Das, A.K.; Venkatramani, N.; Rohatgi, V.K.

    1986-01-01

    pulsed Power sources are finding increased applications in powering plasma experiments, CTF devices, investigations of structure of earth's crust or self-contained compact power supplies for military applications. This report reviews the development of magnetohydrodynamic (MHD) power systems for pulsed power applications. The major critical components, which are analysed in detail, include the combustor, high energy fuel development, high field magnet, high power density channel and power conditioning unit. The report concludes that the MHD research has now reached a stage, where it is possible to design and achieve requisite performance from short duration high power compact MHD generators. (author)

  13. Equilibrium and stability of high-beta toroidal plasmas with toroidal and poloidal flow in reduced magnetohydrodynamic models

    International Nuclear Information System (INIS)

    Ito, A.; Nakajima, N.

    2010-11-01

    Effects of flow, finite ion temperature and pressure anisotropy on equilibrium and stability of a high-beta toroidal plasma are studied in the framework of reduced magnetohydrodynamics (MHD). A set of reduced equilibrium equations for high-beta tokamaks with toroidal and poloidal flow comparable to the poloidal sound velocity is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD model with ion finite Larmor radius (FLR) terms. Pressure anisotropy is introduced with equations for the parallel heat flux which are closed by a fluid closure model. It is solved analytically for the single-fluid model and the solutions shows complicated characteristics in the region around the poloidal sound velocity due to pressure anisotropy and the parallel heat flux. Numerical solutions are found by using the finite element method for the two-fluid model with FLR effects in the case of isotropic, adiabatic pressure and indicate the following features of two-fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream function do not coincide with each other, and the solutions depend on the sign of the radial electric field. Reduced single-fluid MHD equations with time evolution that are consistent with the above equilibria are also derived in order to study their stability. They conserve the energy up to the order required by the equilibria. (author)

  14. Ceramic component for M.H.D electrode

    International Nuclear Information System (INIS)

    Marchant, D.D.; Bates, J.L.

    1980-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hfsub(x)Insub(y)Asub(z)O 2 where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a rare earth or yttrium. The rare earth may be Yb, Tb, Pr or Ce. The component is suitable for use in the fabrication of MHD electrodes or as the current lead-out portion of a composite electrode with other ceramic components. An MHD electrode comprises a cap of a known ceramic, e.g. stabilised zirconium or hafnium oxide or terbium stabilised hafnium, a current lead-out ceramic according to the invention, and a copper frame. (author)

  15. MHD stability of runaway electron discharge in tokamaks

    International Nuclear Information System (INIS)

    Wakatani, M.

    1978-04-01

    A runaway current concentrating in the central region has stabilizing effects on kink and tearing instabilities on the basis of a model in which the runaway current is assumed rigid. The Kruskal-Shafranov limit (iota(a) = iota sub(σ(a) + iota sub( b)(a) <= 1) disappears for iota sub(σ(a) <= 0.2 in the case of parabolic profiles of both the runaway current and the conduction current. Here iota sub(σ)(a) is a rotational transform due to the conduction current and iota sub( b)(a) is a rotational transform due to the runaway current. (auth.)

  16. Closed-loop feedback of MHD instabilities on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.D.; Johnson, L.C.; Manickam, J.; Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Bialek, J.; Garofalo, A.M.; Navratil, G.A. [Columbia University, New York, NY 10027 (United States); La Haye, R.J.; Scoville, J.T.; Strait, E.J. [General Atomics, La Jolla, CA 92186 (United States); Lazarus, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2001-03-01

    A system of coils, sensors and amplifiers has been installed on the DIII-D tokamak to study the physics of feedback stabilization of low-frequency MHD modes such as the resistive wall mode (RWM). Experiments are being performed to assess the effectiveness of this minimal system and benchmark the predictions of theoretical models and codes. In the last campaign the experiments had been extended to a regime where the RWM threshold is lowered by a fast ramp of the plasma current. In these experiments the onset time of the RWM is very reproducible. With this system, the onset of the RWM had been delayed by up to 100 ms without degrading the plasma performance. The growth rate of the mode increases proportional to the length of the delay, suggesting that the plasma is evolving towards a more unstable configuration. The present results have suggested directions for improving the feedback system, including better sensors and improved feedback algorithms. (author)

  17. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  18. Improving the calculated core stability by the core nuclear design optimization

    International Nuclear Information System (INIS)

    Partanen, P.

    1995-01-01

    Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)

  19. On the thermal stability of radiation-dominated accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Fei; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S3H4 (Canada)

    2013-11-20

    We study the long-term thermal stability of radiation-dominated disks in which the vertical structure is determined self-consistently by the balance of heating due to the dissipation of MHD turbulence driven by magneto-rotational instability (MRI) and cooling due to radiation emitted at the photosphere. The calculations adopt the local shearing box approximation and utilize the recently developed radiation transfer module in the Athena MHD code based on a variable Eddington tensor rather than an assumed local closure. After saturation of the MRI, in many cases the disk maintains a steady vertical structure for many thermal times. However, in every case in which the box size in the horizontal directions are at least one pressure scale height, fluctuations associated with MRI turbulence and dynamo action in the disk eventually trigger a thermal runaway that causes the disk to either expand or contract until the calculation must be terminated. During runaway, the dependence of the heating and cooling rates on total pressure satisfy the simplest criterion for classical thermal instability. We identify several physical reasons why the thermal runaway observed in our simulations differ from the standard α disk model; for example, the advection of radiation contributes a non-negligible fraction to the vertical energy flux at the largest radiation pressure, most of the dissipation does not happen in the disk mid-plane, and the change of dissipation scale height with mid-plane pressure is slower than the change of density scale height. We discuss how and why our results differ from those published previously. Such thermal runaway behavior might have important implications for interpreting temporal variability in observed systems, but fully global simulations are required to study the saturated state before detailed predictions can be made.

  20. Transverse MHD shock waves in a partly ionized plasma

    International Nuclear Information System (INIS)

    Mathers, C.D.

    1980-01-01

    The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)