Results from a large-scale MHD propulsion experiment
Petrick, M.; Libera, J.; Bouillard, J. X.; Pierson, E. S.; Hill, D.
Magnetohydrodynamic (MHD) thrusters have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnetic (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2 T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (greater than 6-T) practical MHD propulsion systems appear possible. The feasibility of attaining the requisite higher magnetic fields has increased markedly because of rapid advances in building high-field superconducting magnets and the recent evolution of high-temperature superconductors.
MHD Waves and Coronal Seismology: an overview of recent results
De Moortel, Ineke
2012-01-01
Recent observations have revealed that MHD waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology which have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves and (iv) the rapidly developing topic of quasi-periodic pulsations (QPP) in solar flares.
Turbulent magnetic Prandtl numbers obtained with MHD Taylor-Couette flow experiments
Gellert, M
2008-01-01
The stability problem of MHD Taylor-Couette flows with toroidal magnetic fields is considered in dependence on the magnetic Prandtl number. Only the most uniform (but not current-free) field with B\\_in = B\\_out has been considered. For high enough Hartmann numbers the toroidal field is always unstable. Rigid rotation, however, stabilizes the magnetic (kink-)instability. The axial current which drives the instability is reduced by the electromotive force induced by the instability itself. Numerical simulations are presented to probe this effect as a possibility to measure the turbulent conductivity in a laboratory. It is shown numerically that in a sodium experiment (without rotation) an eddy diffusivity 4 times the molecular diffusivity appears resulting in a potential difference of ~34 mV/m. If the cylinders are rotating then also the eddy viscosity can be measured. Nonlinear simulations of the instability lead to a turbulent magnetic Prandtl number of 2.1 for a molecular magnetic Prandtl number of 0.01. The...
HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)
2007-06-01
seeding for the scramjet- driven MHD demonstration test was accomplished by the injection of liquid NaK into the backplate of the UTRC pre-heater... NaK is a eutectic consisting of approximately 80% potassium and 20% sodium. It exists in liquid form at room temperature and has flow properties...quite similar to water. However, there are materials handling safety issues with use of NaK since it is highly caustic alkali metal and burns on
MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation
Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.
1982-01-01
The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.
Overview of galactic results obtained by MAGIC
Zanin, Roberta
2013-06-15
MAGIC is a system of two atmospheric Cherenkov telescopes which explores the very-high-energy sky, from some tens of GeV up to tens of TeV. Located in the Canary island of La Palma, MAGIC has the lowest energy threshold among the instruments of its kind, well suited to study the still poorly explored energy band below 100 GeV. Although the space-borne gamma-ray telescope Fermi/LAT is sensitive up to 300 GeV, gamma-ray rates drop fast with increasing energy, so γ-ray collection areas larger than 10{sup 4}m{sup 2}, as those provided by grounds-based instruments, are crucial above a few GeV. The combination of MAGIC and Fermi/LAT observations have provided the first astrophysical spectra sampled in the inverse Compton peak region, resulting in a complete coverage from MeV up to TeV energies, as well as the discovery of a pulsed emission in the very-high-energy band. This paper focuses on the latest results on Galactic sources obtained by MAGIC which are highlighted by the detection of the pulsed gamma-ray emission from the Crab pulsar up to 400 GeV. In addition, we will present the morphological study on the W51 complex which allowed to pinpoint the location of the majority of the emission around the interaction point between the supernova remnant W51C and the star forming region W51B, but also to find a possible contribution from the associated pulsar wind nebula. Other important scientific achievements involve the Crab Nebula with an unprecedented spectrum covering three decades in energy starting from 50 GeV and a morphological study of the unidentified source HESS J1857+026 which supports the pulsar wind nebula scenario. Finally we will report on the searches of very-high-energy signals from gamma-ray binaries, mainly LS I 303+ and HESS J0632+057.
MHD Model Results of Solar Wind Plasma Interaction with Mars and Comparison with MAVEN Observations
Ma, Y. J.; Russell, C. T.; Nagy, A. F.; Toth, G.; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.
2015-01-01
The crustal remnant field on Mars rotates constantly with the planet, varying the magnetic field configuration interacting with the solar wind. It has been found that ion loss rates slowly vary with the subsolar longitude, anticorrelating with the intensity of the dayside crustal field source, with some time delay, using a time-dependent multispecies MHD model. In this study, we investigate in detail how plasma properties are influenced locally by the crustal field and its rotation. Model results will be compared in detail with plasma observations from MAVEN.
Linear stability of ideal MHD configurations. II. Results for stationary equilibrium configurations
Demaerel, T.; Keppens, R.
2016-12-01
In this paper, we continue exploring the consequences of the general equation of motion (EOM) governing all Lagrangian perturbations ξ about a time-dependent, ideal magnetohydrodynamic (MHD) configuration, which includes self-gravity, external gravity, pressure gradients, compressibility, inertial effects, and anisotropic Lorentz force. We here address the specific case of MHD stability for 3D stationary equilibria, where the perturbed EOM features a symmetric operator F and an antisymmetric Doppler-Coriolis operator v . ∇ . For this case, we state and prove the general properties for the solutions ξ of the governing dynamical system. For axisymmetric perturbations about axisymmetric equilibria with purely toroidal, or purely poloidal magnetic fields, specific stability theorems can be formulated. We derive a useful integral expression for the quadratic quantity given by the inner product ⟨ ξ , F [ ξ ] ⟩ . For deriving stability statements on MHD states where self-gravity is involved as well, we provide an upper bound on the perturbed self-gravitational energy associated with the displacement ξ . The resulting expression elucidates the role of potentially stabilizing versus destabilizing contributions and shows the role of gravity, entropy gradients, velocity shear, currents, Lorentz forces, inertia, and pressure gradients in offering many routes to unstable behavior in flowing gases and plasmas. These have historically mostly been studied for static v = 0 configurations, looking at stability of exactly force-balanced states, or by assuming stationarity similar to our approach here (i.e., ∂ t ≡ 0 for the state we perturb), but typically in combination with some reduced dimensionality on the configuration of interest (translational or axisymmetry). We show that in these limits, we find and generalize expressions well-known from, e.g., the study of ideal MHD stability of tokamak plasmas or from Schwarzschild's criteria controlling convection in
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
Some results of the study of the application of the MHD method to power engineering
Shelkov, Ye.M.; Pishchikov, S.I.; Pinkhasik, M.S.; Zakharko, Yu.A.
1977-10-01
Several stages in the development of experimental MHD units in the USSR are described and the characteristics of the units listed. The U-25 unit has been in operation since 1971, producing 20 to 25 MW burning natural gas in oxygen-enriched air with 1 mol. % potassium ionizing additive. Photographs are presented of the combustion chamber, MHD generator and MHD generator with top cover removed. The measurement and recording system is outlined.
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-01-01
A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.
Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities
Styrikovich, M.A.; Mostinskii, I.L.
1977-01-01
Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K/sub 2/CO/sub 3/ on the heat exchange surface are also included.
Comparison of helioseismic cut-off frequency formulations by the means of MHD simulation results
Bourdin, Philippe-A.; Thaler, Irina; Roth, Markus
2017-04-01
The discussion of helioseismic wave phenomena requires a self-consistent description of the plasma pressure. Magnetically active regions on the Sun are observed to have distinct wave phenomena as compared to quiet regions. With better helioseismologic diagnostics near active regions one may also better understand not only the chromospheric energy budget, but also halo formation and running penumbral waves. The line formation height (with respect to the beta=1 level) and the magnetic field inclination near the solar surface are in the same time difficult to measure and important to correctly interpret observations. With the help of a large-scale 3D magneto-hydrodynamic (MHD) model, that features an active region as bottom boundary and has shown good agreement to various observations, we may compute values for theoretically derived formulations of cut-off frequencies from the model plasma parameters. Our results show strongly varying vertical atmospheric profiles and we give estimates of their influence on the expected cut-off frequencies.
Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results
Gombosi, Tamas I.; Powell, Kenneth G.; De Zeeuw, Darren L.
1994-01-01
The first results of an axisymmetric magnetohydrodynamic (MHD) model of the interaction of an expanding cometary atmosphere with the solar wind are presented. The model assumes that far upstream the plasma flow lines are parallel to the magnetic field vector. The effects of mass loading and ion-neutral friction are taken into account by the governing equations, whcih are solved on an adaptively refined unstructured grid using a Monotone Upstream Centered Schemes for Conservative Laws (MUSCL)-type numerical technique. The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the near nucleus of the comet. The main findingsare the following: (1) A shock is formed approximately = 0.45 Mkm upstream of the comet (its location is controlled by the sonic and Alfvenic Mach numbers of the ambient solar wind flow and by the cometary mass addition rate). (2) A contact surface is formed approximately = 5,600 km upstream of the nucleus separating an outward expanding cometary ionosphere from the nearly stagnating solar wind flow. The location of the contact surface is controlled by the upstream flow conditions, the mass loading rate and the ion-neutral drag. The contact surface is also the boundary of the diamagnetic cavity. (3) A closed inner shock terminates the supersonic expansion of the cometary ionosphere. This inner shock is closer to the nucleus on dayside than on the nightside.
The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations
Danilovic, S.; Gandorfer, A.; Lagg, A.; SchÜssler, M.; Solanki, S.K.; Vögler, A.; Katsukawa, Y.; Tsuneta, S.
2008-01-01
Context. The contrast of granulation is an important quantity characterizing solar surface convection. Aims. We compare the intensity contrast at 630 nm, observed using the Spectro-Polarimeter (SP) aboard the Hinode satellite, with the 3D radiative MHD simulations of Vögler & Schüssler (2007, A&A, 4
Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes
R. Erdélyi
2002-01-01
Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.
Test Beam Results Obtained with the Q4 Prototype
Aguilar-Benitez, M.; Alberdi, J.; Cerrada, M.; Colino, N.; Daniel, M.; Fouz, M. c.; Marin, J.; Mocholi, J.; Oller, J. C.; Puerta, J.; Romero, L.; Salicio, J. M.
2000-07-01
A prototype of the CMS Barrel Muon Detector incorporating all the features of the final chambers was built at CIEMAT using the mass production assembly procedures and tools. The performance of this prototype was studied in a muon test beam at CERN and the results obtained are presented here. (Author)
Jia, Xianzhe; Slavin, James; Poh, Gangkai; Toth, Gabor; Gombosi, Tamas
2016-04-01
As the innermost planet, Mercury arguably undergoes the most direct space weathering interactions due to its weak intrinsic magnetic field and its close proximity to the Sun. It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to intense magnetopause reconnection and the shielding effect of the induction currents generated at the conducting core, compete against each other in governing the large-scale structure of Mercury's magnetosphere. An outstanding question concerning Mercury's space weather is which of the two processes is more important. To address this question, we have developed a global MHD model in which Mercury's interior is electromagnetically coupled to the surrounding space environment. As demonstrated in Jia et al. (2015), the new modeling capability allows for self-consistently characterizing the dynamical response of the Mercury system to time-varying external conditions. To assess the relative importance of induction and magnetopause reconnection in controlling the magnetospheric configuration, especially under strong solar driving conditions, we have carried out multiple global simulations that adopt a wide range of solar wind dynamic pressure and IMF conditions. We find that, while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the solar wind pressure follows closely a power-law relationship with an index of ~ -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. This result suggests that for the range of solar wind conditions examined, the two competing processes, namely induction and reconnection, appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014) based on MESSENGER observations. We also find that the magnetic perturbations produced by the magnetospheric current systems
Proceedings of the workshop on nonlinear MHD and extended MHD
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Finite Larmor radius influence on MHD solitary waves
E. Mjølhus
2009-04-01
Full Text Available MHD solitons are studied in a model where the usual Hall-MHD model is extended to include the finite Larmor radius (FLR corrections to the pressure tensor. The resulting 4-dimensional set of differential equations is treated numerically. In this extended model, the point at infinity can be of several types. Necessary for the existence of localized solutions is that it is either a saddle-saddle, a saddle-center, or, possibly, a focus-focus. In cases of saddle-center, numerical solutions for localized travelling structures have been obtained, and compared with corresponding results from the Hall-MHD model.
Results obtained by geodetic instruments of SELENE (KAGUYA)
KAWANO; Nobuyuki; VRAD/RSAT; Team; LALT; Team
2010-01-01
Japanese lunar explorer SELENE (KAGUYA) was equipped with 14 instruments for various measurements of the Moon. Three of these instruments took geodetic measurements of the Moon. These were two sub-satellites and a laser altimeter. The main results obtained by the instruments are: (1) precise orbit determination with an accuracy of ten meters by Doppler and same-beam VLBI; (2) the first precise gravity fields on the lunar far side by 4-way Doppler measurements; (3) the first topography in latitudes higher than 86 degrees; (4) a global map of the gravity anomaly by using the global topography and the global gravity fields; (5) a global map of the lunar crustal thickness and (6) an illumination rate map in the north and south polar regions.
Pseudo-reconnection in MHD numerical simulation
无
2000-01-01
A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.
First results obtained by the Cluster STAFF experiment
N. Cornilleau-Wehrlin
Full Text Available The Spatio Temporal Analysis of Field Fluctuations (STAFF experiment is one of the five experiments, which constitute the Cluster Wave Experiment Consortium (WEC. STAFF consists of a three-axis search coil magnetometer to measure magnetic fluctuations at frequencies up to 4 kHz, a waveform unit (up to either 10 Hz or 180 Hz and a Spectrum Analyser (up to 4 kHz. The Spectrum Analyser combines the 3 magnetic components of the waves with the two electric components measured by the Electric Fields and Waves experiment (EFW to calculate in real time the 5 × 5 Hermitian cross-spectral matrix at 27 frequencies distributed logarithmically in the frequency range 8 Hz to 4 kHz. The time resolution varies between 0.125 s and 4 s. The first results show the capabilities of the experiment, with examples in different regions of the magnetosphere-solar wind system that were encountered by Cluster at the beginning of its operational phase. First results obtained by the use of some of the tools that have been prepared specifically for the Cluster mission are described. The characterisation of the motion of the bow shock between successive crossings, using the reciprocal vector method, is given. The full characterisation of the waves analysed by the Spectrum Analyser, thanks to a dedicated program called PRASSADCO, is applied to some events; in particular a case of very confined electromagnetic waves in the vicinity of the equatorial region is presented and discussed.
Key words. Magnetospheric physics (magnetopause, cusp and boundary layer – Space plasma physics (waves and instabilities; shock waves
Extraction of MHD Signal Based on Wavelet Transform
赵晴初; 赵彤; 李旻; 黄胜华; 徐佩霞
2002-01-01
Mirnov signals mixed with interferences are a kind of non-stationary signal. It can not obtain satisfactory effects to extract MHD signals from mirnov signals by Fourier Transform. This paper suggests that the wavelet transform can be used to treat mirnov signals. Theoretical analysis and experimental result have indicated that using the time-frequency analysis characteristics of the wavelet transform to filter mirnov signals can remove effectively interferences and extract useful MHD signals.
Zhai, X. M.; Yeung, P. K.
2016-11-01
Turbulence in an electrically conducting fluid in the limit of low magnetic Reynolds number is, because of the Lorentz force due to an external magnetic field, very different from classical turbulence at both the large scales and the small scales. The importance of minimizing finite domain-size effects on the large scale development has often tended to limit the Reynolds number reached in the past. In this work we use periodic domains stretched along the magnetic field with aspect ratio up to 8 and beyond. The initial state is obtained from decaying isotropic turbulence with large-eddy length scales of order 1% of the length of the domain. After a transient period the kinetic energy returns to a power law decay while the integral length scales in the direction parallel to the magnetic field show preferential growth. At early times the parallel velocity component becomes stronger than the other two but this anisotropy is subsequently reversed under the combined effects of anisotropic Joule dissipation and viscous dissipation. The small scales show characteristics of quasi two-dimensional behavior in the transverse plane. Results over a range of magnetic interaction parameters and Reynolds numbers are compared with known theoretical predictions. Supported by NSF Grant CBET-1510749 and supercomputer resources at TACC/XSEDE and ALCF.
Ade, P A R; Alves, M I R; Aniano, G; Armitage-Caplan, C; Arnaud, M; Arzoumanian, D; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bracco, A; Burigana, C; Cardoso, J -F; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Enßlin, T A; Eriksen, H K; Falgarone, E; Fanciullo, L; Ferrière, K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Ghosh, T; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Guillet, V; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Huffenberger, K M; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Pelkonen, V -M; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Sandri, M; Scott, D; Soler, J D; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Zonca, A
2014-01-01
Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions $p$ and angles $\\psi$. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction $p_\\mathrm{max}$ decreases with column density $N_\\mathrm{H}$ in the more opaque fields with $N_\\mathrm{H} > 10^{21}\\,\\mathrm{cm}^{-2}$; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical (MHD) turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum pol...
Results obtained by investigating saffron ussing FT-IR spectroscopy
Luisa Andronie
2016-11-01
Full Text Available The biological activity and the pharmaceutical properties of plants are strongly dependent on their structure. The FT-IR spectra of saffron (commercial have been obtained. The vibrational fundamentals from the IR spectrum, were analyzed and assigned acoording to the available literature. In the present research work the genus saffron is selected because it is famous in wold as foods and also as medicine.
Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu
2016-12-01
Numerical and experimental investigation results on the magnetohydrodynamics (MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity (V), the chute width (W) and the inlet film thickness (d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field, especially small radial magnetic fields (Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB125003 and 2013GB114002), National Natural Science Foundation of China (No. 11105044)
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
Measurement results obtained from air quality monitoring system
Turzanski, P.K.; Beres, R. [Provincial Inspection of Environmental Protection, Cracow (Poland)
1995-12-31
An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.
Sullivan, L. D.; Klepeis, J. E.; Coderre, W. J.; Fischer, W. H.
1980-01-01
For electrical power generation utilizing a high temperature alkali-seeded coal combustion plasma, the certainty of high electrical conductivity in the presence of coal ash and trace impurities is vitally important, especially for use in extrapolation of existing designs to higher power levels, as envisioned for commercial applications. The paper surveys the results of the workshop which provides an industry wide overview of the computational methods and analyses that are currently in use. Attention is given to uncertainty bands for plasma electrical conductivity. Also discussed are other issues such as coal, slag, seed, and conductivity. Finally, the paper gives suggested areas for further work.
Principal characteristics of SFC type MHD generator
Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki
1988-02-01
This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator.
Application of ADER Scheme in MHD Simulation
ZHANG Yanyan; FENG Xueshang; JIANG Chaowei; ZHOU Yufen
2012-01-01
The Arbitrary accuracy Derivatives Riemann problem method（ADER） scheme is a new high order numerical scheme based on the concept of finite volume integration,and it is very easy to be extended up to any order of space and time accuracy by using a Taylor time expansion at the cell interface position.So far the approach has been applied successfully to flow mechanics problems.Our objective here is to carry out the extension of multidimensional ADER schemes to multidimensional MHD systems of conservation laws by calculating several MHD problems in one and two dimensions： （ⅰ） Brio-Wu shock tube problem,（ⅱ） Dai-Woodward shock tube problem,（ⅲ） Orszag-Tang MHD vortex problem.The numerical results prove that the ADER scheme possesses the ability to solve MHD problem,remains high order accuracy both in space and time,keeps precise in capturing the shock.Meanwhile,the compared tests show that the ADER scheme can restrain the oscillation and obtain the high order non-oscillatory result.
Formation and collimation of relativistic MHD jets - simulations and radio maps
Fendt, Christian; Sheikhnezami, Somayeh
2013-01-01
We present results of magnetohydrodynamic (MHD) simulations of jet formation and propagation, discussing a variety of astrophysical setups. In the first approach we consider simulations of relativistic MHD jet formation, considering jets launched from the surface of a Keplerian disk, demonstrating numerically - for the first time - the self-collimating ability of relativistic MHD jets. We obtain Lorentz factors up to about 10 while acquiring a high degree of collimation of about 1 degree. We then present synchrotron maps calculated from the intrinsic jet structure derived from the MHD jet formation simulation. We finally present (non-relativistic) MHD simulations of jet lauching, treating the transition between accretion and ejection. These setups include a physical magnetic diffusivity which is essential for loading the accretion material onto the outflow. We find relatively high mass fluxes in the outflow, of the order of 20-40 % of the accretion rate.
Analysis on MHD Stability of Free Surface Jet flow in a Gradient Magnetic Fields
许增裕; 康伟山; 潘传杰
2004-01-01
The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.
Frutos-Alfaro, Francisco
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.
MHD Energy Bypass Scramjet Engine
Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)
2001-01-01
Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several
A New MHD-assisted Stokes Inversion Technique
Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-03-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations.
Characteristics of laminar MHD fluid hammer in pipe
Huang, Z.Y.; Liu, Y.J., E-mail: yajun@scut.edu.cn
2016-01-01
As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.
Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...
Exact solutions for MHD flow of couple stress fluid with heat transfer
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
Machine modification for active MHD control in RFX
Sonato, P. E-mail: sonato@igi.pd.cnr.it; Chitarin, G.; Zaccaria, P.; Gnesotto, F.; Ortolani, S.; Buffa, A.; Bagatin, M.; Baker, W.R.; Dal Bello, S.; Fiorentin, P.; Grando, L.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Peruzzo, S.; Pomaro, N.; Serianni, G
2003-09-01
Recent studies on RFP and Tokamak devices call for an active control of the MHD and resistive wall modes to induce plasma mode rotation and to prevent mode phase locking. The results obtained on RFX, where slow rotation of phase locked modes has been induced, support the possibility of extending active MHD mode control through a substantial modification of the device. A new first wall with an integrated system of electric and magnetic transducers has been realised. A close fitting 3 mm thick Cu shell replaces the 65 mm Al shell. A toroidal support structure (TSS) made of stainless steel replaces the shell in supporting all the forces acting on the torus. A system of 192 saddle coils is provided to actively control the MHD modes. This system completely surrounds the toroidal surface and allows the generation of harmonic fields with m=0 and m=1 poloidal wave number and with a toroidal spectrum up to n=24.
Global MHD model of the earth's magnetosphere
Wu, C. C.
1983-01-01
A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.
The mathematical theory of reduced MHD models for fusion plasmas
Guillard, Hervé
2015-01-01
The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.
An MHD model of the earth's magnetosphere
Wu, C. C.
1985-01-01
It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.
A new MHD-assisted Stokes inversion technique
Riethmüller, T L; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; van Noort, M; Rodríguez, J Blanco; Iniesta, J C Del Toro; Suárez, D Orozco; Schmidt, W; Pillet, V Martínez; Knölker, M
2016-01-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a SUNRISE/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that match the observed profiles best. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat t...
Magnetic stresses in ideal MHD plasmas
Jensen, V.O.
1995-01-01
and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem......The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...
2006-09-01
Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman
Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field
N. V. Erkaev
2002-01-01
Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.
A CLASS OF TWO-STEP TVD MACCORMACK TYPE NUMERICAL SCHEME FOR MHD EQUATIONS
FENG Xueshang; WEI Fengsi; ZHONG Dingkun
2003-01-01
In this paper, a new numerical scheme of Total Variation Diminishing (TVD) MacCormack type for MagnetoHydroDynamic (MHD) equations is proposed by taking into account of the characteristics such as convergence, stability, resolution. This new scheme is established by solving the MHD equations with a TVD modified MacCormack scheme for the purpose of developing a scheme of quick convergence as well as of TVD property. To show the validation, simplicity and practicability of the scheme for modelling MHD problems, a self-similar Cauchy problem with the discontinuous initial data consisting of constant states, and the collision of two fast MHD shocks, and two-dimensional Orszag and Tang's MHD vortex problem are discussed with the numerical results conforming to the existing results obtained by the Roe type TVD, the high-order Godunov scheme,and Weighted Essentially Non-Oscillatory (WENO) scheme. The numerical tests show that this two-step TVD MacCormack numerical scheme for MHD system is of robust operation in the presence of very strong waves, thin shock fronts, thin contact and slip surface discontinuities.
2D MHD AND 1D HD MODELS OF A SOLAR FLARE—A COMPREHENSIVE COMPARISON OF THE RESULTS
Falewicz, R.; Rudawy, P. [Astronomical Institute, University of Wrocław, 51-622 Wrocław, ul. Kopernika 11 (Poland); Murawski, K. [Group of Astrophysics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, A. K., E-mail: falewicz@astro.uni.wroc.pl, E-mail: rudawy@astro.uni.wroc.pl, E-mail: kmur@kft.umcs.lublin.pl, E-mail: asrivastava.app@iitbhu.ac.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)
2015-11-01
Without any doubt, solar flaring loops possess a multithread internal structure that is poorly resolved, and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modeling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of one-dimensional (1D) hydrodynamic and two-dimensional (2D) magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in AR 10126 on 2002 September 20 between 09:21 UT and 09:50 UT. The nonideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy-loss mechanisms, while the nonideal 2D models take into account viscosity and thermal conduction as energy-loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are an extreme borderline case of a multithread internal structure of the flaring loop, with a filling factor equal to 1. Nevertheless, these simple models ensure the general correctness of the obtained results and can be adopted as a correct approximation of the real flaring structures.
An advanced implicit solver for MHD
Udrea, Bogdan
A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel
Motion stability of a suspended particle in a MHD flow
Shvarts, I.A.
1977-07-01
An examination is made of the motion instability of a suspended particle in a plane-parallel laminar flow with a velocity profile U(y,A) where A is certain parameter. An expression was obtained for the critical Reynolds number Re = ..cap alpha../delta/U/delta y/:the coefficient ..cap alpha.. is associated with dimensions and form of the particle. The results of the common theory are used for studying the motion instability of suspended spherical particle in Couette--Hartmann MHD flows. At large Hartmann numbers Re*/Ha was shown to be constant. This agrees well with experimental data on the hydrodynamic stability of the MHD flow itself. A definite correlation also takes place between Re/sub kr/(Ha) of a MHD flow and the Reynolds numbers that determine the stability of suspended particles when the Hartmann numbers are small. Thus, in a number of cases it is possible to examine the hydrodynamic stability of a MHD flow by the motion stability of solid particles introduced into the flow. 8 references, 2 illustrations.
Technology obtainment and adopting results, an empirical study based on China’s auto industry
2008-01-01
<正>The article focuses on a development history of China’s auto industry over the past 30 years in learning from the foreign companies and obtaining their technologies, and the relationship between the obtaining methods and the results. Riding on the
Mishin, V. V.; Mishin, V. M.; Karavaev, Yu.; Han, J. P.; Wang, C.
2016-07-01
We report on novel features of the saturation process of the polar cap magnetic flux and Poynting flux into the magnetosphere from the solar wind during three superstorms. In addition to the well-known effect of the interplanetary electric (Esw) and southward magnetic (interplanetary magnetic field (IMF) Bz) fields, we found that the saturation depends also on the solar wind ram pressure Pd. By means of the magnetogram inversion technique and a global MHD numerical model Piecewise Parabolic Method with a Lagrangian Remap, we explore the dependence of the magnetopause standoff distance on ram pressure and the southward IMF. Unlike earlier studies, in the considered superstorms both Pd and Bz achieve extreme values. As a result, we show that the compression rate of the dayside magnetosphere decreases with increasing Pd and the southward Bz, approaching very small values for extreme Pd ≥ 15 nPa and Bz ≤ -40 nT. This dependence suggests that finite compressibility of the magnetosphere controls saturation of superstorms.
Resistive MHD jet simulations with large resistivity
Cemeljic, Miljenko; Vlahakis, Nektarios; Tsinganos, Kanaris
2009-01-01
Axisymmetric resistive MHD simulations for radially self-similar initial conditions are performed, using the NIRVANA code. The magnetic diffusivity could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We introduce, in addition to the classical magnetic Reynolds number Rm, which measures the importance of resistive effects in the induction equation, a new number Rb, which measures the importance of the resistive effects in the energy equation. We find two distinct regimes of solutions in our simulations. One is the low-resistivity regime, in which results do not differ much from ideal-MHD solutions. In the high-resistivity regime, results seem to show some periodicity in time-evolution, and depart significantly from the ideal-MHD case. Whether this departure is caused by numerical or physical reasons is of considerable interest for nu...
Exploración del modelo coronal MHD de Uchida
Francile, C.; Castro, J. I.; Flores, M.
We present an analysis of the MHD model of an isothermal solar corona with radially symmetrical magnetic field and gravity. The solution in the approximation "WKB" was presented by Uchida (1968). The model is ex- plored for different coronal conditions and heights of initial perturbation to study the propagation of coronal waves and reproduce the observed char- acteristics of phenomena such as Moreton waves. Finally we discuss the obtained results. FULL TEXT IN SPANISH
Variable properties of MHD third order fluid with peristalsis
Latif, T.; Alvi, N.; Hussain, Q.; Asghar, S.
This article addresses the impact of temperature dependent variable properties on peristaltic flow of third order fluid in a symmetric channel. The MHD fluid and viscous dissipation effects are taken into account. Assumptions of long wavelength and low Reynolds number are employed to model the problem. The governing nonlinear coupled equations are solved using perturbation method. Approximate solutions are obtained for the stream function, temperature and pressure gradient. The results are graphically analyzed with respect to various pertinent parameters.
MHD Turbulence and Magnetic Dynamos
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Striations in molecular clouds: Streamers or MHD waves?
Tritsis, A
2016-01-01
Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taur...
Schnack, Dalton D.
In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.
Integral Constraints and MHD Stability
Jensen, T. H.
2003-10-01
Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].
MHD control in burning plasmas MHD control in burning plasmas
Donné, Tony; Liang, Yunfeng
2012-07-01
Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge
Harmonic Analysis of Currents and Voltages Obtained in the Result of Computational Experiment
I. V. Novash
2011-01-01
Full Text Available The paper considers a methodology for execution of a harmonic analysis of current and voltage numerical values obtained in the result of a computational experiment and saved in an external data file. The harmonic analysis has been carried out in the Mathcad mathematical packet environment.
Convergence results for MHD system
Ridha Selmi
2006-01-01
A magnetohydrodynamic system is investigated in both cases of the periodic domain T3 and the whole space R3. Existence and uniqueness of strong solution are proved. Asymptotic behavior of the solution when the Rossby number ε goes to zero is studied. The proofs use the spectral properties of the penalization operator and involve Friedrich's method, Schochet's methods, and product laws in Sobolev spaces of sufficiently large exponents.
Özel, Deniz; Özel, Betül Duran; Özkan, Fuat
2016-06-01
The aim of this prospective study was to evaluate factors that could affect the diagnostic result success ratio of fine needle aspiration biopsy of thyroid nodules. 664 patients and 696 nodules were included in this study. Demographic features of age and gender and nodule features of macrocalcification (MC) and internal content (cystic or solid predominance) were evaluated. All biopsies were performed from 1 cm or larger nodules. Three different size needles were used for comparison (22, 23 and 25 G). The patients in each group had a similar number of nodules with MC, and cystic predominance to obtain comparable results. All procedures were performed by the same radiologist, who had 4 years of experience. Histologically adequate material criteria were identified. All pathological specimens were evaluated as diagnostic or non-diagnostic by the same pathology technician. Chi-square, student's t test and univariate analysis were used for statistical analysis. There were no statistically significant differences in demographic features and nodule properties from diagnostic results of fine needle aspiration biopsy of thyroid nodules. On the other hand, 23 G needles offered a better potential for obtaining adequate samples with a statistically significant difference. Obtaining adequate material in fine needle aspiration biopsy from thyroid nodules is a challenging issue and the results are controversial. Since we obtained the best ratio with 23 G needles, we recommend interventional radiologists to use 23 G needles as far as possible and not to consider needles thicker needles than 22 G or thinner than 25 G. Nodule features and demographic features did not have an effect on obtaining adequate cytological material.
Neutrino oscillations in MHD supernova explosions
Kawagoe, S; Kotake, K [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, T, E-mail: shio.k@nao.ac.j [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)
2010-01-01
We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.
A simplified MHD model of capillary Z-Pinch compared with experiments
Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)
2016-11-15
The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.
2016-09-01
Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.
Role of Cross Helicity in Cascade Processes of MHD turbulence
Mizeva, Irina; Frick, Peter; 10.1134/S1028335809020128
2009-01-01
The purpose of this work is to investigate the spectral properties of the developed isotropic (non-Alfven) MHD turbulence stationary excited by an external force, which injects the cross helicity into the flow simultaneously with the energy. It is shown that the cross helicity blocks the spectral energy transfer in MHD turbulence and results in energy accumulation in the system. This accumulation proceeds until the vortex intensification compensates the decreasing efficiency of nonlinear interactions. The formula for estimating the average turbulence energy is obtained for the set ratio between the injected helicity and energy. It is remarkable that the turbulence accumulates the injected cross helicity at its low rate injection -- the integral correlation coefficient significantly exceeds the ratio between the injected helicity and the energy. It is shown that the spectrum slope gradually increases from "5/3" to "2" with the cross helicity level.
JFIT: a framework to obtain combined experimental results through joint fits
AUTHOR|(CDS)2080561; Echenard, Bertrand; Latham, Thomas E
2014-01-01
A framework is presented for obtaining combined experimental results through joint fits of datasets from several experiments. The JFIT framework allows such fits to be performed keeping the data separated, in its original format, and using independent fitting environments, thus simplifying the process with respect to data access policies. It is based on a master-server architecture, using the network communication classes from ROOT. The framework provides an optimal way to exploit data from several experiments: it ensures that correlations are correctly taken into account and results in a better determination of nuisance parameters. Its advantages are discussed and illustrated by two examples from the domain of high energy physics.
Results of the 2013 UT modeling benchmark obtained with models implemented in CIVA
Toullelan, Gwénaël; Raillon, Raphaële; Chatillon, Sylvain [CEA, LIST, 91191Gif-sur-Yvette (France); Lonne, Sébastien [EXTENDE, Le Bergson, 15 Avenue Emile Baudot, 91300 MASSY (France)
2014-02-18
The 2013 Ultrasonic Testing (UT) modeling benchmark concerns direct echoes from side drilled holes (SDH), flat bottom holes (FBH) and corner echoes from backwall breaking artificial notches inspected with a matrix phased array probe. This communication presents the results obtained with the models implemented in the CIVA software: the pencilmodel is used to compute the field radiated by the probe, the Kirchhoff approximation is applied to predict the response of FBH and notches and the SOV (Separation Of Variables) model is used for the SDH responses. The comparison between simulated and experimental results are presented and discussed.
Kozhina, T. D.; Kurochkin, A. V.
2016-04-01
The paper highlights results of the investigative tests of GTE compressor Ti-alloy blades obtained by the method of electrochemical machining with oscillating tool-electrodes, carried out in order to define the optimal parameters of the ECM process providing attainment of specified blade quality parameters given in the design documentation, while providing maximal performance. The new technological methods suggested based on the results of the tests; in particular application of vibrating tool-electrodes and employment of locating elements made of high-strength materials, significantly extend the capabilities of this method.
Summary report for ITER Task-T19: MHD pressure drop and heat transfer study for liquid metal systems
Reed, Claude B.; Hua, Thanh Q.; Natesan, Ken; Kirillov, Igor R.; Vitkovski, Ivan V.; Anisimov, Aleksandr M.
1995-03-01
A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To begin experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, a new test section was prepared. Aluminum oxide was chosen as the first candidate insulating material because it may be used in combination with NaK in the ITER vacuum vessel and/or the divertor. Details on the methods used to produce the aluminum oxide layer as well as the microstructures of the coating and the aluminide sublayer are presented and discussed. The overall MHD pressure drop, local MHD pressure gradient, local transverse MHD pressure difference, and surface voltage distributions in both the circumferential and the axial directions are reported and discussed. The positive results obtained here for high-temperature NaK have two beneficial implications for ITER. First, since NaK may be used in the vacuum vessel and/or the divertor, these results support the design approach of using electrically insulating coatings to substantially reduce MHD pressure drop. Secondly, while Al2O3/SS is not the same coating/base material combination which would be used in the advanced blanket, this work nonetheless shows that it is possible to produce a viable insulating coating which is stable in contact with a high temperature alkali metal coolant.
MHD performance demonstration experiment, October 1, 1080-September 30, 1981
Whitehead, G. L.; Christenson, L. S.; Felderman, E. J.; Lowry, R. L.; Bordenet, E. J.
1981-12-01
The Arnold Engineering Development Center (AEDC) has been under contract with the Department of Energy (DOE) since December 1973 to conduct a magnetohydrodynamic (MHD) High Performance Demonstration Experiment (HPDE). The objective of this experimental research is to demonstrate the attainment of MHD performance on a sufficiently large scale to verify that projected commercial MHD objectives are possible. This report describes the testing of the system under power-producing conditions during the period from October 1, 1980 to September 30, 1981. Experimental results have been obtained with the channel configured in the Faraday mode. Test conditions were selected to produce low supersonic velocity along the entire channel length. Tests have been conducted at magnetic fields up to 4.1 Tesla (T) (70% of design). Up to 30.5 MW of power has been produced to date (60% of design) for an enthalpy extraction of approximately 11%. The high Hall voltage transient, observed during the previous series of tests has been reduced. The reduction is mostly probably due to the fuel and seed being introduced simultaneously. The replacement of the ATJ graphite caps on the electrode walls with pyrolytic graphite caps has resulted in significantly higher surface temperature. As a result, the voltage drop is some 60% of the cold wall voltage drop during the previous series of tests. However, the absolute value of the present voltage drop is still greater than the original design predictions. Test results indicate, however, that the overall enthalpy extraction objective can be achieved.
Evolutionary Conditions in the Dissipative MHD System Revisited
Inoue, Tsuyoshi
2007-01-01
The evolutionary conditions for the dissipative continuous magnetohydrodynamic (MHD) shocks are studied. We modify Hada's approach in the stability analysis of the MHD shock waves. The matching conditions between perturbed shock structure and asymptotic wave modes shows that all types of the MHD shocks, including the intermediate shocks, are evolutionary and perturbed solutions are uniquely defined. We also adopt our formalism to the MHD shocks in the system with resistivity without viscosity, which is often used in numerical simulation, and show that all types of shocks that are found in the system satisfy the evolutionary condition and perturbed solutions are uniquely defined. These results suggest that the intermediate shocks may appear in reality.
MHD Turbulence in Accretion Disk Boundary Layers
Chan, Chi-kwan
2012-01-01
The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...
Ideal MHD(-Einstein) Solutions Obeying The Force-Free Condition
Chu, Yi-Zen
2016-01-01
We find two families of analytic solutions to the ideal magnetohydrodynamics (iMHD) equations, in a class of 4-dimensional (4D) curved spacetimes. The plasma current is null, and as a result, the stress-energy tensor of the plasma itself can be chosen to take a cosmological-constant-like form. Despite the presence of a plasma, the force-free condition - where the electromagnetic current is orthogonal to the Maxwell tensor - continues to be maintained. Moreover, a special case of one of these two families leads us to a fully self-consistent solution to the Einstein-iMHD equations: we obtain the Vaidya-(anti-)de Sitter metric sourced by the plasma and a null electromagnetic stress tensor. We also provide a Mathematica code that researchers may use to readily verify analytic solutions to these iMHD equations in any curved 4D geometry.
Giovanni Francesco Spatola
2015-04-01
Full Text Available The use of image analysis methods has allowed us to obtain more reliable and repro-ducible immunohistochemistry (IHC results. Wider use of such approaches and sim-plification of software allowing a colorimetric study has meant that these methods are available to everyone, and made it possible to standardize the technique by a reliable systems score. Moreover, the recent introduction of multispectral image acquisition systems methods has further refined these techniques, minimizing artefacts and eas-ing the evaluation of the data by the observer.
Results obtained with a low cost software-based audiometer for hearing screening
Ferrari, Deborah Viviane
2014-01-01
Full Text Available Introduction: The implementation of hearing screening programs can be facilitated by reducing operating costs, including the cost of equipment. The Telessaúde (TS audiometer is a low-cost, software-based, and easy-to-use piece of equipment for conducting audiometric screening. Aim: To evaluate the TS audiometer for conducting audiometric screening. Methods: A prospective randomized study was performed. Sixty subjects, divided into those who did not have (group A, n = 30 and those who had otologic complaints (group B, n = 30, underwent audiometric screening with conventional and TS audiometers in a randomized order. Pure tones at 25 dB HL were presented at frequencies of 500, 1000, 2000, and 4000 Hz. A "fail" result was considered when the individual failed to respond to at least one of the stimuli. Pure-tone audiometry was also performed on all participants. The concordance of the results of screening with both audiometers was evaluated. The sensitivity, specificity, and positive and negative predictive values of screening with the TS audiometer were calculated. Results: For group A, 100% of the ears tested passed the screening. For group B, "pass" results were obtained in 34.2% (TS and 38.3% (conventional of the ears tested. The agreement between procedures (TS vs. conventional ranged from 93% to 98%. For group B, screening with the TS audiometer showed 95.5% sensitivity, 90.4% sensitivity, and positive and negative predictive values equal to 94.9% and 91.5%, respectively. Conclusions: The results of the TS audiometer were similar to those obtained with the conventional audiometer, indicating that the TS audiometer can be used for audiometric screening.
Naya, J.E. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Ballmoos, P. von [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Smither, R.K. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Faiz, M. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Fernandez, P.B. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Graber, T. [Argonne National Lab., IL (United States). Advanced Photon Source Div.; Albernhe, F. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements; Vedrenne, G. [Toulouse-3 Univ., 31 (France). Centre d`Etude Spatiale des Rayonnements
1996-04-11
We present laboratory measurements obtained with a ground-based prototype of the focusing positron-annihilation-radiation telescope developed by the Toulouse-Argonne collaboration. This instrument has been designed to collect 511-keV photons from astrophysical sources when operating as a balloon borne observatory. The ground-based prototype consists of a crystal lens holding small cubes of diffracting germanium crystals and a 3 x 3 germanium array that detects the concentrated beam in the focal plane. Measured performances of the instrument at different line energies (511 and 662 keV) are presented and compared with Monte Carlo simulations; also the advantages of combining the lens with a detector array are discussed. The results obtained in the laboratory have strengthened interest in a crystal-diffraction telescope: the balloon instrument will provide a combination of high spatial and energy resolution (15 arc sec and 2 keV, respectively) with an extremely low instrumental background resulting in a sensitivity of similar 3.10{sup -5} photons cm{sup -2}s{sup -1}. These features will allow us to resolve a possible narrow 511-keV line both energetically and spatially within a Galactic center microquasar or in other broad-class annihilators. (orig.).
Büttner, M., E-mail: Markus.Buettner@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, 07743 Jena (Germany); Schiffler, M. [Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Burgweg 11, 07749 Jena (Germany); Weber, P.; Seidel, P. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, 07743 Jena (Germany)
2013-11-15
Distributions of energy barriers in systems of magnetic nanoparticles have been calculated by means of the path integral method and the results have been compared with distributions previously obtained in our experiments by means of the temperature dependent magnetorelaxation method. The path integral method allowed to obtain energies of the interactions of magnetic moments of nanoparticles with axes of their easy magnetisation as well as energies of mutual interactions of magnetic moments. Calculated distributions of energy barriers have been described satisfactorily by curves of the lognormal distribution. We found an agreement between the theory and the experiment at temperatures above approximately 100 K. The influence of the volume concentration of nanoparticles and agglomeration on the energy barrier distribution has been investigated. - Highlights: • The path integral method of calculation allows to satisfactorily reproduce the quantitative experimental results. • The simulations of the energy barrier distributions reflect the lognormal distribution of the MNP found in real experiments. • Higher particle volume concentration leads to a broadening of the simulated energy barrier distribution. • At low particle concentration there is only anisotropy energy. • In case of agglomeration the energy barrier distribution broadens.
Deep-sequencing protocols influence the results obtained in small-RNA sequencing.
Joern Toedling
Full Text Available Second-generation sequencing is a powerful method for identifying and quantifying small-RNA components of cells. However, little attention has been paid to the effects of the choice of sequencing platform and library preparation protocol on the results obtained. We present a thorough comparison of small-RNA sequencing libraries generated from the same embryonic stem cell lines, using different sequencing platforms, which represent the three major second-generation sequencing technologies, and protocols. We have analysed and compared the expression of microRNAs, as well as populations of small RNAs derived from repetitive elements. Despite the fact that different libraries display a good correlation between sequencing platforms, qualitative and quantitative variations in the results were found, depending on the protocol used. Thus, when comparing libraries from different biological samples, it is strongly recommended to use the same sequencing platform and protocol in order to ensure the biological relevance of the comparisons.
Equations of state for self-excited MHD generator studies
Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.
1980-02-26
We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.
Naya, J.E.; von Ballmoos, P.; Albernhe, F.; Vedrenne, G. [Centre d`Etude Spatial des Rayonnements, Toulouse (France); Smither, R.K.; Faiz, M.; Fernandez, P.B.; Graber, T. [Argonne National Lab., IL (United States)
1995-10-01
We present laboratory measurements obtained with a ground-based prototype of a focusing positron-annihilation-radiation telescope developed by the Toulouse-Argonne collaboration. This balloon-borne telescope has been designed to collect 511-keV photons with an extremely low instrumental background. The telescope features a Laue diffraction lens and a detector module containing a small array of germanium detectors. It will provide a combination of high spatial and energy resolution (15 arc sec and 2 keV, respectively) with a sensitivity of {approximately}3{times}10{sup {minus}5} photons cm{sup {minus}2}s{sup {minus}1}. These features will allow us to resolve a possible narrow 511-keV line both energetically and spatially within a Galactic center ``microquasar`` or in other broad-class annihilators. The ground-based prototype consists of a crystal lens holding small cubes of diffracting germanium crystals and a 3{times}3 germanium array that detects the concentrated beam in the focal plane. Measured performances of the instrument at different line energies (511 keV and 662 keV) are presented and compared with Monte-Carlo simulations. The advantages of a 3{times}3 Ge-detector array with respect to a standard-monoblock detector have been confirmed. The results obtained in the laboratory have strengthened interest in a crystal-diffraction telescope, offering new perspectives for die future of experimental gamma-ray astronomy.
Conversion of the exhaust emission results obtained from combustion engines of heavy-duty vehicles
Merkisz, J.; Pielecha, J.
2016-09-01
The use of internal combustion engines as the drive for heavy-duty vehicles forces these engines to be tested on an engine dynamometer. Thus, these engines operate under forced conditions, which are significantly different from their actual application. To assess the ecology of such vehicles (or more accurately the engine alone) the emission of pollution per unit of work done by the engine must be determined. However, obtaining the results of unit emissions (expressed in grams of the compound per a unit of performed work) does not give the grounds for determining the mass of pollutants on a given stretch of the road travelled by the vehicle. Therefore, there is a need to change the emission value expressed in units referenced to the engine work into a value of road emissions. The paper presents a methodology of determining pollutant emissions of heavy-duty road vehicles on the basis of the unit emissions, as well as additional parameters determined on the basis of the algorithm presented in the article. A solution was obtained that can be used not only for heavy-duty vehicles, but was also extended to allow use for buses.
Intermittency in MHD turbulence and coronal nanoflares modelling
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
Why should we keep measuring zenital dependence of muon flux? Results obtained at Campinas (SP) BR
Daniel, B; Nunes, M; Vieira, T V; Kemp, E
2013-01-01
The zenital dependence of muon flux which reaches the earth's surface is well known as proportional to cos^n(\\theta). Generally, for practical purposes and simplicity in calculations, n is taken as 2. However, compilations of measurements show dependence on the geographical location of the experiments as well as the muons energy range. Since analytical solutions appear to be increasingly less necessary because of the higher accessibility to low cost computational power, accurate and precise determination of the value of the exponent n, under different conditions, can be useful in the necessary calculations to estimate signals and backgrounds, either for terrestrial and underground experiments. In this work we discuss a method for measuring n using a simple muon telescope and the results obtained for measurements taken at Campinas (SP), Brazil. After validation of the method, we intend to extend the measurements for different geographic locations due to the simplicity of the method, and thus collect more value...
Results obtained with methyl ethyl ketoxime for fixation of oxygen in water-steam cycles
Wal, W.J.F. van der
1989-03-01
It is a well-known problem that the oxygen dissolved in the feedwater is responsible to a large extent for the corrosion problems in steam raising systems. Hence it is a high-priority task of any feedwater treatment programme to provide for oxygen monitoring and control. Usually, the following two means are available and provided for in order to remove the dissolved oxygen in the feedwater: (1) A well functioning thermal degassing system, (2) an efficient agent for fixation of residual oxygen. The article in hand explains the properties of MEKO (methyl ethyl ketoxime) and the results obtained with this agent as an alternative to some other, currently used substances for oxygen removal.
A comparative study for results obtained using biomonitors and PM10 collectors in Sado Estuary.
Costa, C J; Marques, A P; Freitas, M C; Reis, M A; Oliveira, O R
2002-01-01
In 1996 a program was started, financed by the Environmental Ministry of Portugal and IAEA, aiming to study the inorganic atmospheric pollutant dispersion in Sado Estuary. Gent PM10 air samplers were used for air particulate matter sampling. Three sampling sites were chosen, forming a triangle around the fuel power station of Setúbal. Transplants of Parmelia sulcata Taylor were suspended in nylon bags within a rectangle 15 km wide and 25 km long on a 2.5 x 2.5 km grid. Two sets of four transplants were hung in each of the 47 locations, one set facing the wind and the other set opposing the wind. The transplants were suspended in December 1997 for a 1-year period; every 3 months, one transplant of each set was collected. Both lichen transplants and PM10 filters were analysed by INAA and PIXE. A comparative study of results obtained for the two sampling procedures is presented in this work.
IAOOS Microlidar Development and First Results Obtained During 2014 and 2015 Arctic Drifts
Mariage Vincent
2016-01-01
Full Text Available The development of a first ever autonomous aerosol and cloud backscatter lidar system for on-buoy arctic observations has been achieved in 2014, within the French EQUIPEX IAOOS project developed in collaboration with LOCEAN at UPMC. This development is part of a larger set-up designed for integrated ocean-ice-atmosphere observations. First results have been obtained from spring to autumn 2014 after the system was installed at the North Pole at the Barneo Russian camp, and in winter-spring 2015 during the Norwegian campaign N-ICE 2015. The buoys were taking observations as drifting in the high arctic region where very few measurements have been made so far. This project required the design and the conception of an all-new lidar system to fit with the numerous constraints of such a deployment. We describe here the prototype and its performance. First analyzes are presented.
Dipole Alignment in Rotating MHD Turbulence
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Measurements of conductivity nonuniformities and fluctuations in combustion MHD plasmas
Kowalik, R. M.
1980-03-01
Diagnostics for the characterization of electrical conductivity nonuniformities in combustion magnetohydrodynamic (MHD) plasmas were developed. An initial characterization of nonuniformities in the Stanford M-2 linear generator was obtained and recommendations were made concerning the use of the diagnostics in practical MHD generator configurations. A laser induced fluorescene (LIF) diagnostic for nonintrusive measurements of local conductivity fluctuations was developed. This diagnostic and other line of sight averaged optical nonuniformity diagnostics were successfully demonstrated in several experiments in the Standford M-2 combustion systems. Results were used to characterize the nonuniformities in the M-2 system and to compare and evaluate the diagnostics. Conductivity nonuniformities were found to be predominantly streamers which had relatively long length scales of the order of l m in the axial flow direction. Shortet transverse length scales of the order of 0.1 m were found perpendicular to the flow direction. A combination of LIF and plasma luminosity diagnostics is recommended for future characterizations of conductivity uniformities in combustion MHD plasmas.
Magnetorotational Instability of Dissipative MHD Flows
HERRON, ISOM H
2010-07-10
Executive summary Two important general problems of interest in plasma physics that may be addressed successfully by Magnetohydrodynamics (MHD) are: (1) Find magnetic field configurations capable of confining a plasma in equilibrium. (2) Study the stability properties of each such an equilibrium. It is often found that the length scale of many instabilities and waves that are able to grow or propagate in a system, are comparable with plasma size, such as in magnetically confined thermonuclear plasmas or in astrophysical accretion disks. Thus MHD is able to provide a good description of such large-scale disturbances. The Magnetorotational instability (MRI) is one particular instance of a potential instability. The project involved theoretical work on fundamental aspects of plasma physics. Researchers at the Princeton Plasma Physics Laboratory (PPPL) began to perform a series of liquid metal Couette flow experiments between rotating cylinders. Their purpose was to produce MRI, which they had predicted theoretically 2002, but was only observed in the laboratory since this project began. The personnel on the project consisted of three persons: (1) The PI, who was partially supported on the budget during each of four summers 2005-2008. (2) Two graduate research assistants, who worked consecutively on the project throughout the years 2005-2009. As a result, the first student, Fritzner Soliman, obtained an M.S. degree in 2006; the second student, Pablo Suarez obtained the Ph.D. degree in 2009. The work was in collaboration with scientists in Princeton, periodic trips were made by the PI as part of the project. There were 4 peer-reviewed publications and one book produced.
Simulation of wave interactions with MHD
Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)
2008-07-15
The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Simulation of wave interactions with MHD
Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2008-07-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Monitoring system for a synthesizer at SPring-8 synchrotron radiation facility and obtained results
Kawashima, Y., E-mail: ykawashima@bnl.gov [Brookhaven National Laboratory, PS, Bldg. 817, Upton, NY 11973 (United States); Ego, H. [JASRI/SPring-8, 1-1-1, Kouto, Sayo-gun, Hyogo 679-5198 (Japan); Hara, M. [RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan); Ohashi, Y.; Ohshima, T.; Takao, M.; Takashima, T. [JASRI/SPring-8, 1-1-1, Kouto, Sayo-gun, Hyogo 679-5198 (Japan)
2013-02-11
Beam orbit distortion in all dispersive sections was observed in the SPring-8 storage ring during beam commissioning. In order to confirm the stability of the radio frequency (RF) synthesizer, a monitoring system was developed. The system consists of a frequency counter referenced to a global positioning system (GPS) receiver. With this system, the output of the synthesizer, which uses an external 10 MHz-Rubidium atomic clock with the time accuracy of Δt/t=10{sup −12}, is correctly monitored with 11 digits absolute accuracy, verifying that the synthesizer works well. Measurement of the circumference of the SPring-8 storage ring reveals the effect of tidal forces and seasonal temperature variations on beam orbit. To maintain the center axis of photon radiation in experimental beam lines, a beam energy correction is carried out. The frequency of the RF synthesizer is changed every 5 min with 10-digit accuracy. This corresponds to an energy accuracy of ΔE/E=1.16×10{sup −6}. The monitoring system for the synthesizer and obtained results are described.
Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects
Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.
2006-04-01
Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.
Aso, T; Hino, R; Kaminaga, M; Kinoshita, H; Takahashi, T
2002-01-01
The Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization have been developing a Mega-Watt scale spallation target system. In the system, neutrons generated in a target are sorted out their energy to the proper values in liquid-hydrogen moderators. Then, the liquid-hydrogen is forced to circulate in order to suppress hydrogen temperature increase. In the operation of moderators, it is very important to establish a safety protection system against emergency shutdown of the accelerator or accidents of the cold moderator system. In order to obtain a technical data for design and safety review of the liquid-hydrogen system, we have fabricated an experimental apparatus simulated the cold moderator system using liquid nitrogen (max. 1.5 MPa, mini. 77 K) instead of liquid hydrogen. The experiments on a controllability of the system were carried out to investigate dynamic characteristics of the system. This report presents the experimental results and technical issues for the co...
Aso, Tomokazu; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Takahashi, Toshio; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2002-12-01
The Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization have been developing a Mega-Watt scale spallation target system. In the system, neutrons generated in a target are sorted out their energy to the proper values in liquid-hydrogen moderators. Then, the liquid-hydrogen is forced to circulate in order to suppress hydrogen temperature increase. In the operation of moderators, it is very important to establish a safety protection system against emergency shutdown of the accelerator or accidents of the cold moderator system. In order to obtain a technical data for design and safety review of the liquid-hydrogen system, we have fabricated an experimental apparatus simulated the cold moderator system using liquid nitrogen (max. 1.5 MPa, mini. 77 K) instead of liquid hydrogen. The experiments on a controllability of the system were carried out to investigate dynamic characteristics of the system. This report presents the experimental results and technical issues for the construction of a practical liquid-hydrogen moderator system of the Mega-Watt scale target system. (author)
3D MHD simulation of polarized emission in SN 1006
Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F
2015-01-01
We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.
Antolin, Patrick; Van Doorsselaere, Tom; Yokoyama, Takaaki
2016-01-01
In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfv\\'en waves. Due to its localised nature, a direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction, recent observations indicate that in the low amplitude regime such transverse MHD waves can also appear decay-less, a yet unsolved phenomenon. Recent numerical work has shown that Kelvin-Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modelling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant abs...
Bad results obtained from the current public health policies and recommendations of hydration
Ismael San Mauro Martín
Full Text Available Introduction: Achieving an adequate intake of water is crucial within a balanced diet. For that purpose, dietary guidelines for healthy eating and drinking are an important consideration and need to be updated and disseminated to the population. Aim: We aimed to evaluate the liquid intake habits of a Mediterranean and Latin American population (Spain-Portugal and Mexico-Uruguay and if they support the current recommendations of hydration by the EFSA. Methods: A record of fluid intake was obtained from 1,168 participants from 4 countries above; and then compared with current consensus about hydration 1,600 mL/day (female and 2,000 mL/day (male. Results: The average fluid intake slightly surpassed the recommended: mean of 2,049 mL/day (2,223 mL in males, 1,938 mL in females. Portugal stood out due to its lower intake (mean of 1,365 mL/day. Water contributed the largest part to total fluid intake (37% in all countries (mean of 1,365 mL/day. Hot beverages (18% and milk and derivates (17% follow water in highest consumption. The 20% of males and only 0.3% of females knew recommendations of hydration, while 63.3% of males and 62% of females followed them. Only 8.4% of people who follow the recommendations know them. Conclusion: The people studied surpassed the recommendation, although the majority did not realize. Future research should examine actual beverage consumption patterns and evaluate if the current consensuses are correctly adapted to the population needs. Hydration's policies should be transmitted to the population for their knowledge and adequate compliance.
Explosively-driven magnetohydrodynamic (MHD) generator studies
Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)
1995-08-01
Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams
2017-07-01
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.
A Two-Fluid, MHD Coronal Model
Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.
1999-01-01
We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].
Nonlinear helical MHD instability
Zueva, N.M.; Solov' ev, L.S.
1977-07-01
An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.
Stabilization of the SIESTA MHD Equilibrium Code Using Rapid Cholesky Factorization
Hirshman, S. P.; D'Azevedo, E. A.; Seal, S. K.
2016-10-01
The SIESTA MHD equilibrium code solves the discretized nonlinear MHD force F ≡ J X B - ∇p for a 3D plasma which may contain islands and stochastic regions. At each nonlinear evolution step, it solves a set of linearized MHD equations which can be written r ≡ Ax - b = 0, where A is the linearized MHD Hessian matrix. When the solution norm | x| is small enough, the nonlinear force norm will be close to the linearized force norm | r| 0 obtained using preconditioned GMRES. In many cases, this procedure works well and leads to a vanishing nonlinear residual (equilibrium) after several iterations in SIESTA. In some cases, however, | x|>1 results and the SIESTA code has to be restarted to obtain nonlinear convergence. In order to make SIESTA more robust and avoid such restarts, we have implemented a new rapid QR factorization of the Hessian which allows us to rapidly and accurately solve the least-squares problem AT r = 0, subject to the condition | x|QR method is based on a pairwise row factorization of the tri-diagonal Hessian. It provides a complete Cholesky factorization while preserving the memory allocation of A. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.
Ideal MHD beta-limits of poloidally asymmetric equilibria
Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.
1981-05-01
The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.
Feasibility of MHD submarine propulsion
Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Crăciun, R. C.; Stanciu, S.; Geantă, V.; Voiculescu, I.; Manole, V.; Gârneţ, I. A.; Alexandru, A.; Cimpoesu, N.; Săndulache, F.
2017-06-01
Abstract Iron based materials still represent a high percentage from metallic materials used in industry, in general, and in automotive industry, in particular. In this case we used a duplex process in order to obtain the FeMnSiAl experimental alloy for a more efficient use of various units. In the first stage iron, manganese, silicon and aluminum were melted and mixed together using arc melting technology and for the second stage the alloy was re-melt for homogeneity in an induction furnace. Chemical composition, after each melting step, was analyzed using EDS Bruker detector for various areas and microstructural characterization using SEM, VegaTescan LMH II with SE detector, equipment. This alloy is proposed as a metallic approach of mechanical dumpers used in automotive industry for low and medium impact contacts.
VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis
P. Daum
2007-03-01
Full Text Available Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.
Results obtained with the Tropospheric Ozone DIAL System Using a YAG Laser and Raman Cells
Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.
2012-12-01
This poster will detail the findings of the ground based Differential Absorption Lidar (DIAL) system built and operated at the NASA Goddard Space Flight Center (Beltsville, MD 38.99° N, 76.84° W) in 2012. Current atmospheric satellites cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, NASA has funded the ground based Tropospheric Ozone Lidar Network (TOLNET) which currently consists of five stations across the US. The Goddard instrument is based on the Differential Absorption Lidar (DIAL) technique, and has initially transmitted two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm, and the DIAL technique exploits this difference between the two returned signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman Cells, filled with high pressure Hydrogen and Deuterium. Stimulated Raman Scattering within the focus shifts the pump wavelength, and the first Stokes shift in each cell produces the required wavelengths. With the knowledge of the ozone absorption coefficient at these two wavelengths, the vertical number density can then be derived. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make long term ozone profile measurements in the Washington, DC - Baltimore area.
Non-surgical synovectomy in rheumatoid arthritis. Results obtained by radio-synoviorthesis
Delbarre, F.; Menkes, J.C.
1974-01-01
The different radioactive isotopes used in the treatment of rheumatoid arthritis by non-surgical synovectomy are discussed. The results of ..beta.. irradiation on the synovium are compared in a double blind trial using yttrium isotopes. Some cases of polyarticular rheumatoid arthritis and their therapy with ..beta.. emitters are described. Histological and biological changes after synoviorthesis and the results of this therapy are compared with surgical synovectomy.
Kovacheva, M.; Chauvin, A.; Jordanova, N.; Lanos, P.; Karloukovski, V.
2009-06-01
The effect of magnetic anisotropy on the palaeointensity results has been evaluated in different materials, including samples from archaeological structures of various ages, such as baked clay from prehistoric domestic ovens or pottery kilns, burnt soil from ancient fires, and bricks and bricks or tiles used in the kiln's construction. The remanence anisotropy was estimated by the thermoremanent (TRM) anisotropy tensor and isothermal remanence (IRM) tensor methods. The small anisotropy effect (less than 5%) observed in the palaeointensity results of baked clay from the relatively thin prehistoric oven's floors estimated previously through IRM anisotropy was confirmed by TRM anisotropy of this material. The new results demonstrate the possibility of using IRM anisotropy evaluation to correct baked clay palaeointensity data instead of the more difficult to determine TRM anisotropy ellipsoid. This is not always the case for the palaeointensity results from bricks and tiles. The anisotropy correction to palaeointensity results seems negligible for materials other than pottery. It would therefore appear that the palaeointensity determination is more sensitive to the degree of remanence anisotropy P and the angle between the natural remanent magnetization (NRM) vector and the laboratory field direction, than to the angle between the NRM and the maximum axis of the remanence anisotropy ellipsoid (Kmax).
Collisionless magnetic reconnection under anisotropic MHD approximation
Hirabayashi, Kota; Hoshino, Masahiro
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
G. García Segura
2000-01-01
Full Text Available Se presenta un escenario auto consistente para explicar la morfolog a de las nebulosas planetarias. El escenario es consistente con la distribuci on Gal actica de los diferentes tipos morfol ogicos. Este trabajo resuelve, por medio de efectos MHD, algunas de las caracter sticas controversiales que aparecen en las nebulosas planetarias. Estas caracter sticas incluyen la presencia de ujos axisim etricos y colimados, con una cinem atica que aumenta linealmente con la distancia y la existencia de morfolog as asim etricas tales como las de las nebulosas con simetr a de punto.
Comparison of the results obtained by CALUX bioassay and GC-HRMS for different matrices
Carbonnelle, S.; Loco, J. van; Overmeire, I. van; Windal, I.; Wouwe, N. van; Goeyens, L. [Scientific Institute of Public Health, Brussels (Belgium); Cleuvenbergen, R. van [VITO, Mol (Belgium); Leeuwen, S. van [Netherlands Institute for Fisheries Research, Ijmuiden (Netherlands). Animal Science Group
2004-09-15
The reference method used to analyse polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (dl-PCBs) is chromatography with high resolution mass spectrometry (GC-HRMS). It is interesting to check the suitability of screening methods that are faster and less expensive. Different matrices (milk, fish oil, chicken compound feed, pork tissue, chicken tissue, sepiolitic clay, whole egg and herring tissue) were analysed in the frame of the European project DIFFERENCE1. One of the aims of this project is to optimise screening methods. The CALUX bio-assay was one of the screening techniques used. This paper presents the extraction and purification methods used for the analyses. The CALUX results for dioxins and for dl-PCBs were compared to the corresponding GC-HRMS results.
Retallick, F.D.
1978-04-01
This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.
Fully Parallel MHD Stability Analysis Tool
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
Results from CrIS/ATMS Obtained Using an AIRS "Version-6 like" Retrieval Algorithm
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2015-01-01
We tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other. CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS over land, especially under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differences. Updates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.
Students' Progression in Monitoring Anomalous Results Obtained in Inquiry-Based Laboratory Tasks
Crujeiras-Pérez, Beatriz; Jiménez-Aleixandre, Maria Pilar
2017-07-01
This paper examines students' engagement in monitoring anomalous results across a 2-year longitudinal study with 9th and 10th graders (14-15 and 15-16 years of age). The context is a set of five inquiry-based laboratory tasks, requiring students to plan and carry out investigations. The study seeks to examine students' interpretation of data, in particular anomalous results generated by them during the process of solving the tasks, and their ability to monitor them. Data collected include video and audio recordings as well as students' written products. For the analysis, two rubrics were developed drawing on Chinn and Brewer (Cognition and Instruction, 19, 323-393, 2001) and Hmelo-Silver et al. (Science Education, 86, 219-243, 2002). The findings point to a pattern of progress in students' responses across the 2 years: (a) responses revealing a low capacity of monitoring due to not recognizing the data as anomalous or recognizing it as anomalous but being unable to explain their causes are more frequent in the first tasks and (b) responses revealing an improved capacity of monitoring are more frequent in the last tasks. The factors influencing students' regulation of their performances, as the requirement of planning, and specific scaffolding based on activity theory are discussed.
Randomization in laboratory procedure is key to obtaining reproducible microarray results.
Hyuna Yang
Full Text Available The quality of gene expression microarray data has improved dramatically since the first arrays were introduced in the late 1990s. However, the reproducibility of data generated at multiple laboratory sites remains a matter of concern, especially for scientists who are attempting to combine and analyze data from public repositories. We have carried out a study in which a common set of RNA samples was assayed five times in four different laboratories using Affymetrix GeneChip arrays. We observed dramatic differences in the results across laboratories and identified batch effects in array processing as one of the primary causes for these differences. When batch processing of samples is confounded with experimental factors of interest it is not possible to separate their effects, and lists of differentially expressed genes may include many artifacts. This study demonstrates the substantial impact of sample processing on microarray analysis results and underscores the need for randomization in the laboratory as a means to avoid confounding of biological factors with procedural effects.
Aircrew Exposure To Cosmic Radiation Evaluated By Means Of Several Methods; Results Obtained In 2006
Ploc, Ondřej; Spurný, František; Jadrníčková, Iva; Turek, Karel
2008-08-01
Routine evaluation of aircraft crew exposure to cosmic radiation in the Czech Republic is performed by means of calculation method. Measurements onboard aircraft work as a control tool of the routine method, as well as a possibility of comparison of results measured by means of several methods. The following methods were used in 2006: (1) mobile dosimetry unit (MDU) type Liulin—a spectrometer of energy deposited in Si-detector; (2) two types of LET spectrometers based on the chemically etched track detectors (TED); (3) two types of thermoluminescent detectors; and (4) two calculation methods. MDU represents currently one of the most reliable equipments for evaluation of the aircraft crew exposure to cosmic radiation. It is an active device which measures total energy depositions (Edep) in the semiconductor unit, and, after appropriate calibration, is able to give a separate estimation for non-neutron and neutron-like components of H*(10). This contribution consists mostly of results acquired by means of this equipment; measurements with passive detectors and calculations are mentioned because of comparison. Reasonably good agreement of all data sets could be stated.
Schüler, Torben; Kronschnabl, Gerhard; Plötz, Christian; Neidhardt, Alexander; Bertarini, Alessandra; Bernhart, Simone; la Porta, Laura; Halsig, Sebastian; Nothnagel, Axel
2015-07-30
Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate.
Torben Schüler
2015-07-01
Full Text Available Geodetic Very Long Baseline Interferometry (VLBI uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1, the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate.
First results obtained in France with the latest model of the Fresenius cell separator: AS 104.
Coffe, C; Couteret, Y; Devillers, M; Fest, T; Hervé, P; Kieffer, Y; Lamy, B; Masse, M; Morel, P; Pouthier-Stein, F
1993-01-01
In Besançon, we carried out 40 plateletphereses with the latest model of the Fresenius cell separator AS 104 to check this new system against the new generation of cell separators, according to the following criteria: less than 2x10 6 leukocytes (before filtration) and more than 5x10 11 platelets. The results show that platelet concentrates contained 5.04+/-0.88x10 11 platelets in a total volume of 435+/-113 mL. The mean platelet recovery was 40.95+/-4.86% (from 31.7 to 51.6). The leukocyte content was 2.28+/-5.48x10 6 and the red blood cell contamination was 3.48+/-2.38x10 8. The quality of the platelets was very satisfactory. There was no problem with donor biocompatibility or procedure safety, few adverse donor reactions (0.6%) and good therapeutic efficiency of platelet concentrates.
2D and 3D Core-Collapse Supernovae Simulation Results Obtained with the CHIMERA Code
Bruenn, S W; Hix, W R; Blondin, J M; Marronetti, P; Messer, O E B; Dirk, C J; Yoshida, S
2010-01-01
Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 solar mass progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 solar mass progenitor.
2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code
Bruenn, S W; Marronetti, P; Dirk, C J [Physics Department, Florida Atlantic University, 777 W. Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, A; Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Messer, O E B [Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Yoshida, S, E-mail: bruenn@fau.ed [Max-Planck-Institut fur Gravitationsphysik, Albert Einstein Institut, Golm (Germany)
2009-07-01
Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M{sub o-dot} progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M{sub o-dot} progenitor.
THE ANALYSIS OF SEVERAL RESULTS OBTAINED BY ROMANIA IN THE FIELD OF SUSTAINABLE TRANSPORT
Perțicaș Diana Claudia
2015-07-01
Full Text Available We know that between the transport sector and all other branches of economy there is a strong interdependence link but also between it and the surrounding environment, being one of the most polluting sectors of activity. Transport is considered a primary field in any national economy development context, especially if we take into account its interdependence with other branches of national economy. Developing of transports also includes improving road, rail, river and sea services, as well as air transports. The objectives of the EU aim especially to modernize the transport infrastructures, be them by road, ship or by air, which would result in increasing the speed of freight transport, fluidizing traffic, attracting new foreign investors in various areas, accelerating the renewal of the auto park and decommissioning morally and physically worn vehicles which are extremely pollutant, the revival of maritime transports through Romanian ports, progressive completion of imposed performances through standards and regulations on the transport market, etc. All these objectives have as a main purpose the reducing of energy consumption, reducing transport costs as well as increasing competition in the national transport system.The development of transport has the role of stimulating public transport services and to guarantee a minimum general accessibility to public services for all citizens. Children, the elderly, disabled people or other vulnerable categories of people are not and will not be forgotten, for which certain standards set by the European Union must be respected.The present paper wishes to analyze a part of the results, either positive or negative, in the field of transports, made by our country.
Comparison of NDT techniques to evaluate CFRP. Results obtained in a MAIzfp round robin test
Grosse, Christian U. [Technische Univ. Muenchen (Germany). Chair of Non-destructive Testing; Goldammer, Matthias; Grager, Jan-Carl [Siemens AG Corporate Technology, Muenchen (Germany); and others
2016-10-01
Fiber reinforced polymeric materials are used for lightweight constructions and are an integral part of cars, airplanes or rotor blades of wind turbines. Nondestructive testing (NDT) methods play an increasing role concerning the manufacturing process and the inspection during lifetime. The selection of the best NDT technique for a certain application depends - of course - on many factors including the type, position and size of the defect to be detected but also on secondary issues like accessibility, automation, testing costs, reliability and resolution to mention only some. For the more technical-scientific part of these issues, the determination of the probability of detection (PoD) plays a significant role. Early in the design process questions should be raised concerning the probability with which certain attribute of interest (a defect that has an effect on the structural behavior) can be detected (and localized) in a certain construction. Several defect types have been identified to be critical like impact damages, undulations and porosity. Test samples out of differently processed Carbon Fiber-Reinforced Polymers (CFRP) as used in the automotive or aeronautical industry have been produced including defects of different type and size. In order to determine the PoD and to check whether a technique is applicable the different partners applied a broad variety of selected NDT techniques including Micro CT, Ultrasound (including phased-array and air-coupled UT), Active Thermography, Eddy Current, Vibration and Visual Analysis and Local Acoustic Resonance Spectroscopy (LARS). The presentation will summarize some of the results of the experiments and ongoing data analysis.
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Restrepo CA
2014-10-01
Full Text Available Cesar A Restrepo, Carlos Alberto Buitrago, Cielo Holguin Division of Nephrology, Department of Health Sciences, Caldas University, Caldas, ColombiaPurpose: To analyze the complications and costs of minilaparotomies performed by a nephrologist (group A compared with conventional laparotomies performed by a surgeon (group B for peritoneal catheter implantation.Setting: Two university hospitals (Santa Sofia and Caldas in Manizales, Caldas, Colombia.Methods: The study included stage 5 chronic kidney disease patients, with indication of renal replacement therapy, who were candidates for peritoneal dialysis and gave informed consent for a peritoneal catheter implant. Minilaparotomies were performed by a nephrologist in a minor surgery room under local anesthesia. Conventional laparotomies were performed by a surgeon in an operating room under general anesthesia.Results: Two nephrologists inserted 157 peritoneal catheters, and seven general surgeons inserted 185 peritoneal catheters. The groups had similar characteristics: the mean age was 55 years, 49.5% were men, and the primary diagnoses were diabetic nephropathy, hypertensive nephropathy, and unknown etiology. The implant was successful for 98.09% of group A and 99.46% of group B. There was no procedure-related mortality. The most frequent complications in the first 30 days postsurgery in group A versus group B, respectively, were: peritonitis (6.37% versus 3.78%, exit-site infection (3.82% versus 2.16%, tunnel infection (0% versus 0.54%, catheter entrapment by omentum (1.27% versus 3.24%, peritoneal effluent spillover (1.91% versus 2.16%, draining failure (4.46% versus 6.49%, hematoma (0% versus 1.08%, catheter migration with kinking (3.18% versus 2.70%, hemoperitoneum (1.27% versus 0%, and hollow viscera accidental puncture (1.91% versus 0.54%. There were no statistically significant differences in the number of complications between groups. In 2013, the cost of a surgeon-implanted peritoneal
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology
Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena
2013-01-01
which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.
Results from CrIS/ATMS obtained using the AIRS Science Team retrieval methodology
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2013-09-01
which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.
MHD simulations of radiative jets from young stellar objects: Halpha emission
De Colle, F; Colle, Fabio De; Raga, Alejandro
2005-01-01
We study the H$\\alpha$ emission from jets using two-dimensional axisymmetrical simulations. We compare the emission obtained from hydrodynamic (HD) simulations with that obtained from magnetohydrodynamics (MHD) simulations. The magnetic field is supposed to be present in the jet only, and with a toroidal configuration. The simulations have time-dependent ejection velocities and different intensities for the initial magnetic field. The results show an increase in the H$\\alpha$ emission along the jet for the magnetized cases with respect to the HD case. The increase in the emission is due to a better collimation of the jet in the MHD case, and to a small increase in the shock velocity. These results could have important implications for the interpretation of the observations of jets from young stellar objects.
MHD simulation studies of z-pinch shear flow stabilization
Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.
2003-10-01
The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.
Cosmological AMR MHD with Enzo
Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
MHD Shallow Water Waves: Linear Analysis
Heng, Kevin
2009-01-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
Cosmic ray transport in MHD turbulence
Yan, Huirong
2007-01-01
Numerical simulations shed light onto earlier not trackable problem of magnetohydrodynamic (MHD) turbulence. They allowed to test the predictions of different models and choose the correct ones. Inevitably, this progress calls for revisions in the picture of cosmic ray (CR) transport. It also shed light on the problems with the present day numerical modeling of CR. In this paper we focus on the analytical way of describing CR propagation and scattering, which should be used in synergy with the numerical studies. In particular, we use recently established scaling laws for MHD modes to obtain the transport properties for CRs. We include nonlinear effects arising from large scale trapping, to remove the 90 degree divergence. We determine how the efficiency of the scattering and CR mean free path depend on the characteristics of ionized media, e.g. plasma $\\beta$, Coulomb collisional mean free path. Implications for particle transport in interstellar medium and solar corona are discussed. We also examine the perp...
Observational signatures of numerically simulated MHD waves in small-scale fluxtubes
Khomenko, E; Felipe, T
2008-01-01
We present some results obtained from the synthesis of Stokes profiles in small-scale flux tubes with propagating MHD waves. To that aim, realistic flux tubes showing internal structure have been excited with 5 min period drivers, allowing non-linear waves to propagate inside the magnetic structure. The observational signatures of these waves in Stokes profiles of several spectral lines that are commonly used in spectropolarimetric measurements are discussed.
Implementation of a 3-D nonlinear MHD calculation on the Intel hypercube
Drake, J.B.; Lawkins, W.F.; Carreras, B.A.; Hicks, H.R.
1987-08-01
As part of an exploratory study of the suitability of hypercube multiprocessors for scientific computations, the non-linear magnetohydrodynamics (MHD) code RSF was parallelized for use on an Intel iPSC hypercube. This report presents the numerical algorithm of RSF and the techniques used to obtain parallelism without sacrificing the numerical properties of the serial algorithm. Timing results are presented for a sample problem.
Cattell, Cynthia A.
2004-01-01
This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.
Corrosion and arc erosion in MHD channels
Rosa, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering); Pollina, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering EG and G Energy Measurements, Inc., Las Vegas, NV (United States))
1992-08-01
The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.
MHD Simulation of the Inner-Heliospheric Magnetic Field
Wiengarten, T; Fichtner, H; Cameron, R; Jiang, J; Kissmann, R; Scherer, K; 10.1029/2012JA018089
2013-01-01
Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-helio...
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D; Abdelhamid, H M; Morrison, P J
2016-01-01
A comprehensive study of a reduced version of Lust's equations, the extended magnetohydrodynamic (XMHD) model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality, is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way energy conservation along with four families of Casimir invariants are naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D.; Tassi, E.; Abdelhamid, H. M.; Morrison, P. J.
2017-01-01
A comprehensive study of the extended magnetohydrodynamic model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way, the energy conservation along with four families of Casimir invariants is naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular, normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
MHD thrust vectoring of a rocket engine
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Nonlinear MHD dynamo operating at equipartition
Archontis, V.; Dorch, Bertil; Nordlund, Åke
2007-01-01
Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......-equipartition and a turbulent state. The generation and evolution of such strong magnetic fields is relevant for the understanding of dynamo action that occurs in stars and other astrophysical objects. Aims.We study the mode of operation of this dynamo, in the linear and non-linear saturation regimes. We also consider...... the effect of varying the magnetic and fluid Reymolds number on the non-linear behaviour of the system. Methods.We perform three-dimensional non-linear MHD simulations and visualization using a high resolution numerical scheme. Results.We find that this dynamo has a high growth rate in the linear regime...
Lie group analysis of viscoelastic MHD aligned flow and heat transfer
Asif Ali; Ahmer Mehmood; Muhammad R. Mohyuddin; Keren Wang; Yunming Chen
2005-01-01
Exact solutions for an incompressible, viscoelastic, electrically conducting MHD aligned fluid are obtained for velocity components and temperature profiles. Lie Group method is applied to obtain the solution and the symmetries used are of translational type.
Fabro, M A; Milanesio, H V; Robert, L M; Speranza, J L; Murphy, M; Rodríguez, G; Castañeda, R
2006-03-01
In Argentina, one analytical method is usually carried out to determine acidity in whole raw milk: the Instituto Nacional de Racionalización de Materiales standard (no. 14005), based on the Dornic method of French origin. In a national and international regulation, the Association of Official Analytical Chemists International method (no. 947.05) is proposed as the standard method of analysis. Although these methods have the same foundation, there is no evidence that results obtained using the 2 methods are equivalent. The presence of some trends and discordant data lead us to perform a statistical study to verify the equivalency of the obtained results. We analyzed 266 samples and the existence of significant differences between the results obtained by both methods was determined.
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
Rex, J H; Hanson, L H; Amantea, M A; Stevens, D.A.; BENNETT,J.E.
1991-01-01
An improved bioassay for fluconazole was developed. This assay is sensitive in the clinically relevant range (2 to 40 micrograms/ml) and analyzes plasma, serum, and cerebrospinal fluid specimens; bioassay results correlate with results obtained by high-pressure liquid chromatography (HPLC). Bioassay and HPLC analyses of spiked plasma, serum, and cerebrospinal fluid samples (run as unknowns) gave good agreement with expected values. Analysis of specimens from patients gave equivalent results b...
An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow
Vasile Marinca
2011-01-01
Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.
Orain, François; Bécoulet, M.; Morales, J.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Garbet, X.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.
2015-01-01
The dynamics of a multi-edge localized mode (ELM) cycle as well as the ELM mitigation by resonant magnetic perturbations (RMPs) are modeled in realistic tokamak X-point geometry with the non-linear reduced MHD code JOREK. The diamagnetic rotation is found to be a key parameter enabling us to reproduce the cyclical dynamics of the plasma relaxations and to model the near-symmetric ELM power deposition on the inner and outer divertor target plates consistently with experimental measurements. Moreover, the non-linear coupling of the RMPs with unstable modes are found to modify the edge magnetic topology and induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. At larger diamagnetic rotation, a bifurcation from unmitigated ELMs—at low RMP current—towards fully suppressed ELMs—at large RMP current—is obtained.
MHD Shock Conditions for Accreting Plasma onto Kerr Black Holes - I
Takahashi, M; Fukumura, K; Tsuruta, S; Takahashi, Masaaki; Rilett, Darrell; Fukumura, Keigo; Tsuruta, Sachiko
2002-01-01
We extend the work by Appl and Camenzind (1988) for special relativistic magnetohydrodynamic (MHD) jets, to fully general relativistic studies of the standing shock formation for accreting MHD plasma in a rotating, stationary and axisymmetric black hole magnetosphere. All the postshock physical quantities are expressed in terms of the relativistic compression ratio, which can be obtained in terms of preshock quantities. Then, the downstream state of a shocked plasma is determined by the upstream state of the accreting plasma. In this paper sample solutions are presented for slow magnetosonic shocks for accreting flows in the equatorial plane. We find that some properties of the slow magnetosonic shock for the rotating magnetosphere can behave like a fast magnetosonic shock. In fact, it is confirmed that in the limit of weak gravity for the upstream non-rotating accretion plasma where the magnetic field lines are leading and rotating, our results are very similar to the fast magnetosonic shock solution by Appl...
Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept
Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))
1988-10-01
The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.
2015-12-01
We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
Gonzalez-Aviles, J J; Lora-Clavijo, F D; Guzman, F S
2015-01-01
We present a new code designed to solve the equations of classical ideal magneto-hydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvenic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Design Study: Rocket Based MHD Generator
1997-01-01
This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.
The Statistical Mechanics of Ideal MHD Turbulence
Shebalin, John V.
2003-01-01
Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.
Louisy, F; Andre-Deshays, C; Schroiff, P; Cauquil, D; Lazerges, M; Lafaye, C; Camus, A L; Fomina, G
1997-01-01
First results on changes in vascular physiology in the first french spationaut during the French-russian spatial mission CASSIOPEE are reported in this paper. The data, obtained by Air Plethysmography during flight, evidence at the level of lower limbs alterations of venous filling and emptying characteristics (the latter particularly depending on the muscular pump function of the calf) and of capillary circulation.
LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu
2011-01-01
This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.
Motylicki, Juan Enrique [Oleoductos del Valle S.A. (OLDEVAL S.A.), (Argentina)
2003-07-01
The main objective of the pipelines maintenance is to assure the integrity of them in order to have a reliable operation and with an acceptable level of risk that minimizes the impact to people, to the environment and the business. The objective of this work is to expose the experiences obtained before by Oldelval and after the passages of the intelligent pig, carried out in the years 1999/2000. In the same one they will be described: How the flaws were selected to verify / to repair. Results obtained in digs. Laboratory studies to determine like they affect to the integrity of the pipeline, the different types of opposing plane defects. Conclusions. (author)
MHD Integrated Topping Cycle Project
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
MHD Integrated Topping Cycle Project
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Physical Model Development and Benchmarking for MHD Flows in Blanket Design
Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou
2008-06-05
An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.
A 3rd Order WENO GLM-MHD Scheme for Magnetic Reconnection
FENG Xueshang; ZHOU Yufen; HU Yanqi
2006-01-01
A new numerical scheme of 3rd order Weighted Essentially Non-Oscillatory (WENO)type for 2.5D mixed GLM-MHD in Cartesian coordinates is proposed. The MHD equations are modified by combining the arguments as by Dellar and Dedner et al to couple the divergence constraint with the evolution equations using a Generalized Lagrange Multiplier (GLM). Moreover, the magnetohydrodynamic part of the GLM-MHD system is still in conservation form. Meanwhile, this method is very easy to add to an existing code since the underlying MHD solver does not have to be modified. To show the validation and capacity of its application to MHD problem modelling,interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems are used to verify this new MHD code. The numerical tests for 2D Orszag and Tang's MHD vortex,interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems show that the third order WENO MHD solvers are robust and yield reliable results by the new mixed GLM or the mixed EGLM correction here even if it can not be shown that how the divergence errors are transported as well as damped as done for one dimensional ideal MHD by Dedner et al.
MHD discontinuities in solar flares: continuous transitions and plasma heating
Ledentsov, L S
2015-01-01
The boundary conditions for the ideal MHD equations on a plane dis- continuity surface are investigated. It is shown that, for a given mass flux through a discontinuity, its type depends only on the relation between inclina- tion angles of a magnetic field. Moreover, the conservation laws on a surface of discontinuity allow changing a discontinuity type with gradual (continu- ous) changes in the conditions of plasma flow. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of the complete system of boundary conditions for the MHD equations. We also found the expression describing a jump of internal energy of the plasma flowing through the dis- continuity. Firstly, this allows constructing a generalized scheme of possible continuous transitions between MHD discontinuities. Secondly, it enables the examination of the dependence of plasma heating by plasma density and configuration of the magnetic field near t...
Sublet, A; Calatroni, S; D'Elia, A; Jecklin, N; Mondino, I; Prunet, S; Therasse, M; Venturini Delsolaro, W; Zhang, P
2013-01-01
In the context of the HIE-ISOLDE upgrade at CERN, several new facilities for the niobium sputter coating of QWR-type superconducting RF accelerating cavities have been developed, built, and successfully operated. In order to further optimize the production process of these cavities the magnetron sputtering technique has been further investigated and continued as an alternative to the already successfully operational DC bias diode sputtering method. The purpose of this poster is to present the results obtained with this technique. The Nb thickness profile along the cavity and its correlation with the electro-magnetic field distribution inside the cavity are discussed. Film structure, morphology and Residual Resistivity Ratio (RRR) will be considered as well and compared with films obtained by DC bias diode sputtering. Finally these results will be compared with RF measurement of a production-like magnetron-coated cavity.
de Bruyne, J J
1977-09-01
The "Merckognost Harntoff" strip method described in a previous paper was recently modified by the manufactures. An important alterations consisted in the method by which samples were applied to the strips, viz. using micropipetters rather than by dipping. In view of the findings in the comparative study reported, the results obtained on dipping are regarded as superior, the method also being easier to handle. However, the prescribed correction factor should be used.
Problems in nonlinear resistive MHD
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R.
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
Oliver Laeyendecker
Full Text Available BACKGROUND: Accurate incidence estimates are needed for surveillance of the HIV epidemic. HIV surveillance occurs at maternal-child health clinics, but it is not known if pregnancy affects HIV incidence testing. METHODS: We used the BED capture immunoassay (BED and an antibody avidity assay to test longitudinal samples from 51 HIV-infected Ugandan women infected with subtype A, C, D and intersubtype recombinant HIV who were enrolled in the HIVNET 012 trial (37 baseline samples collected near the time of delivery and 135 follow-up samples collected 3, 4 or 5 years later. Nineteen of 51 women were also pregnant at the time of one or more of the follow-up visits. The BED assay was performed according to the manufacturer's instructions. The avidity assay was performed using a Genetic Systems HIV-1/HIV-2 + O EIA using 0.1M diethylamine as the chaotropic agent. RESULTS: During the HIVNET 012 follow-up study, there was no difference in normalized optical density values (OD-n obtained with the BED assay or in the avidity test results (% when women were pregnant (n = 20 results compared to those obtained when women were not pregnant (n = 115; for BED: p = 0.9, generalized estimating equations model; for avidity: p = 0.7, Wilcoxon rank sum. In addition, BED and avidity results were almost exactly the same in longitudinal samples from the 18 women who were pregnant at only one study visit during the follow-up study (p = 0.6, paired t-test. CONCLUSIONS: These results from 51 Ugandan women suggest that any changes in the antibody response to HIV infection that occur during pregnancy are not sufficient to alter results obtained with the BED and avidity assays. Confirmation with larger studies and with other HIV subtypes is needed.
Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten
2001-01-01
FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.
Realistic Modeling of Fast MHD Wave Trains in Coronal Active Regions
Ofman, Leon; Sun, Xudong
2017-08-01
Motivated by recent SDO/AIA observations we have developed realistic modeling of quasi-periodic, fast-mode propagating MHD wave trains (QFPs) using 3D MHD model initiated with potential magnetic field extrapolated from the solar coronal boundary. Localized quasi-periodic pulsations associated with C-class flares that drive the waves (as deduced from observations) are modeled with transverse periodic displacement of magnetic field at the lower coronal boundary. The modeled propagating speed and the form of the wave expansions matches the observed fast MHD waves speed >1000 km/s and topology. We study the parametric dependence of the amplitude, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, and the location of the flaring site within the active region. We investigate the interaction of multiple QFP wave trains excited by adjacent flaring sources. We use the model results to synthesize EUV intensities in multiple AIA channels and obtain the model parameters that best reproduce the properties of observed QFPs, such as the recent DEM analysis. We discuss the implications of our modeling results for the seismological application of QFPs for the diagnostic of the active region field, flare pulsations, end estimate the energy flux carried by the waves.
Marco Bramanti
1992-01-01
In this paper we deal with a uniformly elliptic operator of the kind: Lu Au + Vu, where the principal part A is in divergence form, and V is a function assumed in a “Kato class”. This operator has been studied in different contexts, especially using probabilistic techniques. The aim of the present work is to give a unified and simplified presentation of the results obtained with non probabilistic methods for the operator L on a bounded Lipschitz domain. These results regard: con...
Wing tip vortex control by the pulsed MHD actuator
Moralev, I. A.; Biturin, V. A.; Kazansky, P. N.; Zaitsev, M. Yu.; Kopiev, Vl. A.
2016-10-01
The paper presents the experimental results and the analysis of the wingtip vortex control by magnetohydrodynamic (MHD) plasma actuator [1]. The actuator is installed on the surface of the asymmetric wing of a finite span. In a single cycle of actuator operation, the pulsed discharge is created between two electrodes and then driven by the Lorentz force in the spanwise direction. The evolution of the vortex after the actuator pulse is studied directly downstream of the wing trailing edge. The shift of the vortex position, without a significant change in the vortex circulation is the main effect obtained after the discharge pulse. The effect of the external flow velocity and the position of the actuator on the shift amplitude were studied. The authority of the flow control by the actuator is shown to reduce at higher velocity values; the position on the suction side of the airfoil is shown to be crucial for the effective actuator operation.
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
Exact Solutions for an MHD Generalized Burgers fluid: Stokes' Second Problem
Khan, Masood; Anjum, Asia
2013-01-01
This paper offers the exact analytical solutions for the magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers fluid corresponding to the second problem of Stokes in the presence of the transverse magnetic field. Modified Darcy's law has been taken into account. The expression for the velocity field and associated tangential stress, presented as a sum of the steady-state and transient solutions, are obtained by means of the integral transforms. Moreover, several figures are plotted to investigate the effects of various emerging parameters on the velocity field. The obtained results show that the magnitude of the velocity and boundary layer thickness significantly reduce in the presence of magnetic field.
Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry
Furukawa, M
2016-01-01
Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.
Dynamo action in dissipative, forced, rotating MHD turbulence
Shebalin, John V.
2016-06-01
Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.
Aoyagi, Mitsuhiro, E-mail: mao@karma.qse.tohoku.ac.jp; Ito, Satoshi; Hashizume, Hidetoshi
2014-10-15
A 3D MHD flow simulation was conducted to clarify the effects of the inlet flow conditions on the results of the validation experiment carried out previously and on the design window of the first wall using a three-surface-multi-layered channel. MHD pressure drop was largely influenced by the inlet condition. The numerical model with turbulent velocity profile showed qualitatively good agreement with the experimental result. The first wall temperature and pressure distributions obtained by the 3D simulation corresponded well to those obtained by the 2D simulation assuming fully developed flow. This suggested that complicated three-dimensional inlet flow condition generated in the L-shape elbow would not affects the existing design window.
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
Structure of the dayside reconnection layer in resistive MHD and hybrid models
Lin, Y.; Lee, L. C.
1993-01-01
Numerical simulations were performed to investigate the structure of the reconnection layer at the dayside magnetopause. Two typical cases are examined in detail; both are asymmetric in magnetic field and plasma density. In case 1, the guide fields in the magnetosheath and in the magnetosphere are set at zero and thus the tangential magnetic fields on the two sides of the initial current sheet are exactly antiparallel. In case 2, the angle between the tangential magnetic fields on the two sides of the initial current sheet is 145 deg. The results obtained from a resistive MHD model and from a hybrid model are found to be different. In the MHD simulation of case 1, a 2-4 intermediate shock is found to bound the reconnection layer on the magnetosheath side, while an Alfven wave pulse bounds the reconnection layer on the magnetospheric side. In case 2, it is found that a time-dependent intermediate shock (TDIS) bounds the reconnection layer on the magnetosheath side, with a slow expansion wave propagating behind. With the MHD simulations, in the general case in which the tangential magnetic fields on the two sides of the initial current sheet are not exactly antiparallel, a rotational discontinuity across which the tangential magnetic field rotates, a large angle is found to bound the reconnection layer on the magnetosheath side.
Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction
Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.
1998-07-01
finally the shocks disappear. This process repeats. The old MacCormack scheme fails to calculate this situation but the present TVD scheme can obtain the flow field. It has also been found that when no water impurity exits, the maximum power output becomes about 1.42 MW at the loading resistance of 0.8O. When the water molecule exists, the generator can produce almost the same power until about 20 ppm of water impurity, but the performance degrades strongly with increasing the impurity more than 20 ppm, especially at large loading current conditions. When the loading current is small, the Joule heating is enhanced, resulting in a sudden recovery of the performance near the open-circuit condition even if the water molecule of 150 ppm exists. When the water molecule is assumed to be 150 ppm, the maximum power output is 512 kW at the loading resistance between 0.8 through 1.4O. Under this condition the enthalpy extraction ratio is 16.7% (300 K base; 14.1% with 0 K base), whereas the experiment showed that the power output is 502 kW and the enthalpy extraction ratio is 16.7% (300 K base), indicating almost the same generator performance but at the different loading resistance (1.4O at the analysis and 0.245O at the experiment). As summary, the output power agrees with the experiment if the impurity is about 150 ppm but the operating condition is different between the analysis and the experiment.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Borowicz, K K; Rwiader, M; Drelewska, E; Czuczwar, S J
2004-12-01
The exact types of pharmacodynamic interactions between riluzole and conventional antiepileptic drugs were evaluated in two available ways, the subthreshold and isobolographic analysis. Maximal electroshock test in mice was used as an animal model for generalized tonic-clonic convulsions. In the first method, riluzole (1.25-2.5 mg/kg) significantly raised the electroconvulsive threshold in mice. The drug administered at its subprotective dose of 0.3125 mg/kg enhanced the antiseizure activity of carbamazepine and phenobarbital, while, when applied at the higher dose of 0.625 mg/kg, it potentiated also the action of valproate and diphenylhydantoin. Riluzole (0.625) alone and in combinations with antiepileptic drugs did not produced any motor or log-term memory deficit. Results obtained from isobolographic analysis determined pure additive interaction between riluzole and all used conventional antiepileptic drugs. Since riluzole did not change plasma concentrations of co-administered antiepileptics, pharmacokinetic interactions, at least in terms of their free plasma levels, do not seem probable. The results of the present study confirm significant antiseizure properties of riluzole in the model of generalized tonic-clonic epileptic attacks. Moreover, comparison of effects obtained from both methods evaluating drug interactions strongly indicates a crucial role of the isobolographic analysis in verification and supplementation data achieved from the subthreshold method.
Marco Bramanti
1992-05-01
Full Text Available In this paper we deal with a uniformly elliptic operator of the kind: Lu Au + Vu, where the principal part A is in divergence form, and V is a function assumed in a “Kato class”. This operator has been studied in different contexts, especially using probabilistic techniques. The aim of the present work is to give a unified and simplified presentation of the results obtained with non probabilistic methods for the operator L on a bounded Lipschitz domain. These results regard: continuity of the solutions of Lu=0; Harnack inequality; estimates on the Green's function and L-harmonic measure; boundary behavior of positive solutions of Lu=0, in particular a “Fatou's theorem”.
High-Order Finite Difference GLM-MHD Schemes for Cell-Centered MHD
Mignone, A; Bodo, G
2010-01-01
We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting...
Lattice Boltzmann Large Eddy Simulation Model of MHD
Flint, Christopher
2016-01-01
The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...
Bogdanović-Jovanović Jasmina B.
2012-01-01
Full Text Available In the increasing need for energy saving worldwide, the designing process of turbomachinery, as an essential part of thermal and hydroenergy systems, goes in the direction of enlarging efficiency. Therefore, the optimization of turbomachinery designing strongly affects the energy efficiency of the entire system. In the designing process of turbomachinery blade profiling, the model of axisymmetric fluid flows is commonly used in technical practice, even though this model suits only the profile cascades with infinite number of infinitely thin blades. The actual flow in turbomachinery profile cascades is not axisymmetric, and it can be fictively derived into the axisymmetric flow by averaging flow parameters in the blade passages according to the circular coordinate. Using numerical simulations of flow in turbomachinery runners, its operating parameters can be preliminarily determined. Furthermore, using the numerically obtained flow parameters in the blade passages, averaged axisymmetric flow surfaces in blade profile cascades can also be determined. The method of determination of averaged flow parameters and averaged meridian streamlines is presented in this paper, using the integral continuity equation for averaged flow parameters. With thus obtained results, every designer can be able to compare the obtained averaged flow surfaces with axisymmetric flow surfaces, as well as the specific work of elementary stages, which are used in the procedure of blade designing. Numerical simulations of flow in an exemplary axial flow pump, used as a part of the thermal power plant cooling system, were performed using Ansys CFX. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 kW to 1000 kW in the territory of South and Southeast Serbia
MHD Equations with Regularity in One Direction
Zujin Zhang
2014-01-01
Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth. This improves previous results greatly.
MHD squeezing flow between two infinite plates
Umar Khan
2014-03-01
Full Text Available Magneto hydrodynamic (MHD squeezing flow of a viscous fluid has been discussed. Conservation laws combined with similarity transformations have been used to formulate the flow mathematically that leads to a highly nonlinear ordinary differential equation. Analytical solution to the resulting differential equation is determined by employing Variation of Parameters Method (VPM. Runge–Kutta order-4 method is also used to solve the same problem for the sake of comparison. It is found that solution using VPM reduces the computational work yet maintains a very high level of accuracy. The influence of different parameters is also discussed and demonstrated graphically.
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
Ortiz, Alejandra; Ortiz, Rita; Soto, Evelyn; Hartmann, Jonathan; Manzur, Alejandro; Marconi, Marcelo
2016-06-01
The goal of this study was to compare the semen parameters of two successive samples obtained within an interval of less than 60 minutes from patients planning to undergo intrauterine insemination (IUI) whose first samples exhibited low semen quality. Thirty-two consecutive patients were enrolled in the study. On the day of IUI, the semen analysis of the samples initially presented by all patients met at least two of the following criteria: sperm concentration <5×10(6)/mL, total sperm count <10×10(6), progressive sperm motility (a+b) in the native sample <30%, and total motile sperm count (TMSC) <4×10(6). A successive semen sample was obtained no more than 60 minutes after the first sample. Compared to the first sample, the second exhibited significantly (p<0.05) improved sperm concentration, TMSC, progressive motility, and vitality. Regarding TMSC, the most critical parameter on the day of IUI, 23 patients (71.8%) improved it, while nine (28.2%) displayed poorer outcomes. In defined cases, requesting a second successive ejaculate on the day of insemination may result in a high percentage of cases in an improvement of the quality of the sample.
Knudsen, Cindy Søndersø; Højskov, Carsten Schriver; Møller, Holger Jon
2016-01-01
hormonebinding globulin (SHBG), and albumin employing Cobas e601/c501. Testosterone, androstenedione (andro), dehydroepiandrosterone sulphate (DHEAS), and 17-hydroxyprogesterone (17-OHP) concentrations were measured employing LC-MS/MS. We evaluated the difference between testosterone measured by the two methods...... for the difference between results obtained by the two methods and the sample concentration of DHEAS and andro: Diff (Cobas e601 - LC-MS/MS) = 0.116 x DHEAS - 0.396, r = 0.84 and Diff (Cobas e601 - LC-MS/MS) = 0.08 andro - 0.380, r = 0.58. No statistically significant interference was observed for progesterone, 17......-OHP, SHBG, and albumin. Conclusions: We report significant differences between testosterone measurements employing an automatic second generation immunoassay and LC-MS/MS. The difference can be correlated with the measured concentrations of DHEAS and andro, and its magnitude is judged to be of limited...
Kitadai, Norio
2014-04-01
Prediction of the thermodynamic behaviors of biomolecules at high temperature and pressure is fundamental to understanding the role of hydrothermal systems in the origin and evolution of life on the primitive Earth. However, available thermodynamic dataset for amino acids, essential components for life, cannot represent experimentally observed polymerization behaviors of amino acids accurately under hydrothermal conditions. This report presents the thermodynamic data and the revised HKF parameters for the simplest amino acid "Gly" and its polymers (GlyGly, GlyGlyGly and DKP) based on experimental thermodynamic data from the literature. Values for the ionization states of Gly (Gly(+) and Gly(-)) and Gly peptides (GlyGly(+), GlyGly(-), GlyGlyGly(+), and GlyGlyGly(-)) were also retrieved from reported experimental data by combining group additivity algorithms. The obtained dataset enables prediction of the polymerization behavior of Gly as a function of temperature and pH, consistent with experimentally obtained results in the literature. The revised thermodynamic data for zwitterionic Gly, GlyGly, and DKP were also used to estimate the energetics of amino acid polymerization into proteins. Results show that the Gibbs energy necessary to synthesize a mole of peptide bond is more than 10 kJ mol(-1) less than previously estimated over widely various temperatures (e.g., 28.3 kJ mol(-1) → 17.1 kJ mol(-1) at 25 °C and 1 bar). Protein synthesis under abiotic conditions might therefore be more feasible than earlier studies have shown.
A Parametric Study of Extended-MHD Drift Tearing
King, Jacob R
2014-01-01
The linear drift-tearing mode is analyzed for different regimes of the plasma-$\\beta$, ion-skin-depth parameter space with an unreduced, extended-MHD model. New dispersion relations are found at moderate plasma $\\beta$ and previous drift-tearing results are classified as applicable at small plasma $\\beta$. The drift stabilization of the mode in the regimes varies from non-existent/weak to complete. As the diamagnetic-drift frequency is proportional to the plasma $\\beta$, verification exercises with unreduced, extended-MHD models in the small plasma-$\\beta$ regimes are impractical. The new dispersion relations in the moderate plasma-$\\beta$ regimes are used to verify the extended-MHD implementation of the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Given the small boundary-layer skin depth, discussion of the validity of the first-order finite-Larmour-radius model is presented.
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
Magnetic levitation and MHD propulsion
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods
Wu, S. T.
1988-01-01
Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.
Relativistic MHD and excision: formulation and initial tests
Neilsen, David; Hirschmann, Eric W; Millward, R Steven [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)
2006-08-21
A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids and elliptic and hyperbolic divergence cleaning.
Relativistic MHD and black hole excision: Formulation and initial tests
Neilsen, D; Millward, R S; Hirschmann, Eric W; Neilsen, David
2006-01-01
A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.
The superconducting MHD-propelled ship YAMATO-1
Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro
1995-04-01
In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world's first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.
Roxana HOROIAŞ
2015-06-01
Full Text Available This paper approaches a difficult issue especially by its originality and complexity, since it involves the application of the same type of research on completely different areas of activity. Based on the idea that nowadays it is increasingly thought that „the school of life” is the one which really matters and that the level of educational training has no longer an important role in the professional achievements, we proposed ourselves to emphasize the concrete results of those working in agriculture, education and legal field, according to their level of specialization. The orientation towards a socio-economic study has determined the selection of some suitable research methods, in order to help us to obtain answers as close as possible with reality. For this purpose, a series of questionnaires, adapted to each individual case, but having a common basis were used. Interviews with 50 people for each of the mentioned branches of activity have been established. All the responses have been then inserted into a database and statistically processed, being obtained three distinct analyzes, which afterwards could be compared to each other, leading to the final findings. Another direction of research has been the one represented by the education awareness, many of the surveyed persons, who oriented themselves to these professions, completing their studies along the way, and afterwards continuing to inform themselves, to learn, to ask other specialized people. Conclusions arising are among the most diverse, but all guides us to the necessity of changing the way of thinking, of education and of its entire aim perception. Motivating people is an aspect that deserves all the specialists in sociology attention, being a phenomenon of real importance for the society we live in and especially for the future of education.
V.V. Lalin
2015-02-01
Full Text Available The problem of verification of different program suites for structural analysis has recently become an important component of the construction science. One of the most extensively used benchmark problem is a classical geometrically nonlinear problem of deflection of the cantilever beam of linear elastic material, under the action of external vertical concentrated load at the free end. In fact, the solution for Kirchhoff’s rod is used as an analytical result. This rod is inextensible and Kirchhoff’s rod theory disregards flexibility of the rod in tension and shear. But in modern program suites Cosserat-Timoshenko rod is often used because Cosserat-Timoshenko rod theory is a geometrically exact theory. It considers not only bending strain but also shear and tensile strain. This means that it is necessary to get a model solution for Cosserat – Timoshenko rod, which can be used for verification of different software suites. This paper presents solutions of the geometrically nonlinear problem obtained by Cosserat – Timoshenko and Kirchhoff’s rod theory with comparison of those results. The findings can be used as a benchmark problem for verification of software suites.
Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation
Xu, Siyao; Lazarian, A
2015-01-01
We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Extended MHD Effects in High Energy Density Experiments
Seyler, Charles
2016-10-01
The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation
Birzvalk, Yu.
1978-01-01
The shunting ratio and the local shunting ratio, pertaining to currents induced by a magnetic field in a flow channel, are properly defined and systematically reviewed on the basis of the Lagrange criterion. Their definition is based on the energy balance and related to dimensionless parameters characterizing an MHD flow, these parameters evolving from the Hartmann number and the hydrodynamic Reynolds number as well as the magnetic Reynolds number, and the Lundquist number. These shunting ratios, of current density in the core of a stream (uniform) or equivalent mean current density to the short-circuit (maximum) current density, are given here for a slot channel with nonconducting or conducting walls, for a conduction channel with heavy side rails, and for an MHD-flow around bodies. 5 references, 1 figure.
Wang, Yungang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Gadgil, Ashok J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Wang, Yilun [ISO Innovative Analytics San Francisco, CA (United States); Lask, Kathleen M. [Univ. of California, Berkeley, CA (United States). College of Engineering Applied Science and Technology Program; Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division
2013-02-01
Almost half of the world’s population still cooks on biomass cookstoves of poor efficiency and primitive design, such as three stone fires (TSF). Emissions from biomass cookstoves contribute to adverse health effects and climate change. A number of “improved cookstoves” with higher energy efficiency and lower emissions have been designed and promoted across the world. During the design development, and for selection of a stove for dissemination, the stove performance and emissions are commonly evaluated, communicated and compared using the arithmetic average of replicate tests made using a standardized laboratory-based test, commonly the water boiling test (WBT). However, published literature shows different WBT results reported from different laboratories for the same stove technology. Also, there is no agreement in the literature on how many replicate tests should be performed to ensure “significance” in the reported average performance. This matter has not received attention in the rapidly growing literature on stoves, and yet is crucial for estimating and communicating the performance of a stove, and for comparing the performance between stoves. We present results of statistical analyses using data from a number of replicate tests of performance and emission of the Berkeley-Darfur Stove (BDS) and the TSF under well-controlled laboratory conditions. We observed moderate variability in the test results for the TSF and BDS when measuring several characteristics. Here we focus on two as illustrative: time-to-boil and PM2.5 (particulate matter less than or equal to 2.5 micrometers in diameter) emissions. We demonstrate that interpretation of the results comparing these stoves could be misleading if only a small number of replicates had been conducted. We then describe a practical approach, useful to both stove testers and designers, to assess the number of replicates needed to obtain useful data. Caution should be exercised in attaching high credibility to
Kántor, Noémi; Kovács, Attila; Takács, Ágnes
2016-11-01
Wide research attention has been paid in the last two decades to the thermal comfort conditions of different outdoor and semi-outdoor urban spaces. Field studies were conducted in a wide range of geographical regions in order to investigate the relationship between the thermal sensation of people and thermal comfort indices. Researchers found that the original threshold values of these indices did not describe precisely the actual thermal sensation patterns of subjects, and they reported neutral temperatures that vary among nations and with time of the year. For that reason, thresholds of some objective indices were rescaled and new thermal comfort categories were defined. This research investigates the outdoor thermal perception patterns of Hungarians regarding the Physiologically Equivalent Temperature ( PET) index, based on more than 5800 questionnaires. The surveys were conducted in the city of Szeged on 78 days in spring, summer, and autumn. Various, frequently applied analysis approaches (simple descriptive technique, regression analysis, and probit models) were adopted to reveal seasonal differences in the thermal assessment of people. Thermal sensitivity and neutral temperatures were found to be significantly different, especially between summer and the two transient seasons. Challenges of international comparison are also emphasized, since the results prove that neutral temperatures obtained through different analysis techniques may be considerably different. The outcomes of this study underline the importance of the development of standard measurement and analysis methodologies in order to make future studies comprehensible, hereby facilitating the broadening of the common scientific knowledge about outdoor thermal comfort.
Kántor, Noémi; Kovács, Attila; Takács, Ágnes
2016-11-01
Wide research attention has been paid in the last two decades to the thermal comfort conditions of different outdoor and semi-outdoor urban spaces. Field studies were conducted in a wide range of geographical regions in order to investigate the relationship between the thermal sensation of people and thermal comfort indices. Researchers found that the original threshold values of these indices did not describe precisely the actual thermal sensation patterns of subjects, and they reported neutral temperatures that vary among nations and with time of the year. For that reason, thresholds of some objective indices were rescaled and new thermal comfort categories were defined. This research investigates the outdoor thermal perception patterns of Hungarians regarding the Physiologically Equivalent Temperature (PET) index, based on more than 5800 questionnaires. The surveys were conducted in the city of Szeged on 78 days in spring, summer, and autumn. Various, frequently applied analysis approaches (simple descriptive technique, regression analysis, and probit models) were adopted to reveal seasonal differences in the thermal assessment of people. Thermal sensitivity and neutral temperatures were found to be significantly different, especially between summer and the two transient seasons. Challenges of international comparison are also emphasized, since the results prove that neutral temperatures obtained through different analysis techniques may be considerably different. The outcomes of this study underline the importance of the development of standard measurement and analysis methodologies in order to make future studies comprehensible, hereby facilitating the broadening of the common scientific knowledge about outdoor thermal comfort.
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
K. S. Al-Ghafri
2015-06-01
The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.
MHD discontinuities in solar flares: continuous transitions and plasma heating
Ledentsov, Leonid; Somov, Boris
The conservation laws on a surface of discontinuity in the ideal magnetohydrodynamics (MHD) allow changing a discontinuity type with gradual (continuous) changes in conditions of plasma. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of a complete system of boundary conditions for the MHD equations. We also found an expression describing a jump of internal energy of the plasma flowing through the discontinuity. It allows, firstly, to construct a generalized scheme of possible transitions between MHD discontinuities, and secondly, to examine the dependence of plasma heating by plasma density and configuration of the magnetic field near the surface of the discontinuity (i.e., by the type of the MHD discontinuity). The problem of the heating of "superhot" plasma (with the electron temperature is greater than 10 keV) in solar flares are discussed. It is shown that the best conditions for heating are carried out in the vicinity of the reconnecting current layer near the areas of reverse currents. Bibl.: B.V.Somov. Plasma Astrophysics, Part II: Reconnection and Flares, Second Edition. (New York: Springer SBM, 2013).
Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer
Ezzat, Magdy A., E-mail: maezzat2000@yahoo.co [Department of Mathematics, Faculty of Education, Alexandria University, Alexandria (Egypt)
2010-10-01
In this work, a new mathematical model of thermoelectric MHD theory has been constructed in the context of a new consideration of heat conduction with fractional order. This model is applied to Stokes' first problem for a viscoelastic fluid with heat sources. Laplace transforms and state-space techniques will be used to obtain the general solution for any set of boundary conditions. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some comparisons have been shown in figures to estimate the effects of the fractional order parameter on all the studied fields.
Van Noten, Koen; Lecocq, Thomas
2016-04-01
Estimating the resonance frequency (f0) and amplification factor of unconsolidated sediments by H/V spectral ratio (HVSR) analysis of seismic ambient noise has been widely used since Nakamura's proposal in 1989. To measure f0 properly, Nakamura suggested to perform microzonation surveys at night when the artificial microtremor is small and does not fully disrupt the ambient seismic noise. As nightly fieldwork is not always a reasonable demand, we propose an alternative workflow of Nakamura's technique to improve the quality of HVSR results obtained by ambient noise measurements of mobile stations during the day. This new workflow includes the automated H/V calculation of continuous seismic data of a stationary or permanent station installed near the microzonation site for as long as the survey lasts in order to control the error in the HVSR analysis obtained by the mobile stations. In this presentation, we apply this workflow on one year of seismic data at two different case studies; i.e. a rural site with a shallow bedrock depth of 30 m and an urban site (Brussels, capital of Belgium, bedrock depth of 110 m) where human activity is continuous 24h/day. By means of an automated python script, the fundamental peak frequency and the H/V amplitude are automatically picked from H/V spectra that are calculated from 50% overlapping, 30 minute windows during the whole year. Afterwards, the f0 and amplitude picks are averaged per hour/per day for the whole year. In both case studies, the H/V amplitude and the fundamental frequencies range considerable, up to ˜15% difference between the daily and nightly measurements. As bedrock depth is known from boreholes at both sites, we concluded that the nightly picked f0 is the true one. Our results thus suggest that changes in the determined f0 and H/V amplitude are dominantly caused by the human behaviour which is stored in the ambient seismic noise (e.g. later onset of traffic in a weekend, quiet Sundays, differences between
Mazgaj Piotr
2016-01-01
Full Text Available Thermal-hydraulic analysis is a key part in support of regulatory work and nuclear power plant design and operation. In the field of Loss Of Coolant Accident, evolutions of the regulations are discussed in various countries taking into account the very unlikely character of a double-ended guillotine break and questioning the necessity to study such an event with Design Basis Conditions assumptions. As a consequence, the consideration of intermediate size piping rupture becomes more and more important. The paper presents the modeling of the Test Facility ROSA-2/LSTF in the calculation code CATHARE 2.V2.5. OECD/NEA ROSA-2 Project Test 7 was conducted with the Large Scale Test Facility on June 14, 2012. The experiment simulated the thermal-hydraulic responses during a PWR 13% cold leg Intermediate Break Loss Of Coolant Accident (IBLOCA. The break was simulated by a cold leg upwardly mounted long break nozzle. The facility and the experiment conditions are modeled in CATHARE. The vessel is modeled by using a 3D module. A thermal-hydraulic analysis is conducted and the obtained results are subsequently compared with the experimental results from ROSA-2/LSTF Test 7. Evaluation of the differences between experimental and calculated results is discussed.
MHD natural convection in open inclined square cavity with a heated circular cylinder
Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar
2017-06-01
MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around
M. RAHIMI EOSBOEE,
2010-12-01
Full Text Available In this study magnetohydrodynamics (MHD boundary layer flow of an upper-convected Maxwell fluid has been investigated. Similarity transformation has been used to reduce the governing differential equations into an ordinary non-linear differential equation. homotopy perturbation Method (HPM has applied to solve this developed nonlinear equation. In this article firstly, the basic idea of the HPM for solving nonlinear differential equations is briefly ntroduced and then it is employed to derive solution of nonlinear governing equation of MHD boundary layer flow with highly nonlinear term. The obtained results from HPM have been compared with numerical Boundary Value problem Method (BVP to verify the accuracy of the proposed method. The effects of the Hartman number (M and Deborah number (β for various conditions have been shown through graphs.
Combs, Laura Gaydosh; Warren, Joseph E; Huynh, Vivian; Castaneda, Joanna; Golden, Teresa D; Roby, Rhonda K
2015-11-01
Forensic DNA samples may include the presence of PCR inhibitors, even after extraction and purification. Studies have demonstrated that metal ions, co-purified at specific concentrations, inhibit DNA amplifications. Metal ions are endogenous to sample types, such as bone, and can be introduced from environmental sources. In order to examine the effect of metal ions as PCR inhibitors during quantitative real-time PCR, 2800 M DNA was treated with 0.0025-18.750 mM concentrations of aluminum, calcium, copper, iron, nickel, and lead. DNA samples, both untreated and metal-treated, were quantified using the Quantifiler(®) Human DNA Quantification Kit. Quantification cycle (Cq) values for the Quantifiler(®) Human DNA and internal PCR control (IPC) assays were measured and the estimated concentrations of human DNA were obtained. Comparisons were conducted between metal-treated and control DNA samples to determine the accuracy of the quantification estimates and to test the efficacy of the IPC inhibition detection. This kit is most resistant to the presence of calcium as compared to all metals tested; the maximum concentration tested does not affect the amplification of the IPC or quantification of the sample. This kit is most sensitive to the presence of aluminum; concentrations greater than 0.0750 mM negatively affected the quantification, although the IPC assay accurately assessed the presence of PCR inhibition. The Quantifiler(®) Human DNA Quantification Kit accurately quantifies human DNA in the presence of 0.5000 mM copper, iron, nickel, and lead; however, the IPC does not indicate the presence of PCR inhibition at this concentration of these metals. Unexpectedly, estimates of DNA quantity in samples treated with 18.750 mM copper yielded values in excess of the actual concentration of DNA in the samples; fluorescence spectroscopy experiments indicated this increase was not a direct interaction between the copper metal and 6-FAM dye used to label the probe that
System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134
Annen, K.D.
1981-08-01
The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.
MHD Shock Conditions for Accreting Plasma onto Kerr Black Holes - I
Takahashi, Masaaki; Rilett, Darrell; Fukumura, Keigo; Tsuruta, Sachiko
2002-01-01
We extend the work by Appl and Camenzind (1988) for special relativistic magnetohydrodynamic (MHD) jets, to fully general relativistic studies of the standing shock formation for accreting MHD plasma in a rotating, stationary and axisymmetric black hole magnetosphere. All the postshock physical quantities are expressed in terms of the relativistic compression ratio, which can be obtained in terms of preshock quantities. Then, the downstream state of a shocked plasma is determined by the upstr...
Bean, J.E.; Berglund, J.W.; Davis, F.J.; Economy, K.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; MacKinnon, R.J.; Miller, J.; O' Brien, D.G.; Ramsey, J.L.; Schreiber, J.D.; Shinta, A.; Smith, L.N.; Stockman, C.; Stoelzel, D.M.; Vaughn, P.
1998-09-01
The Waste Isolation Pilot Plant (WPP) is located in southeastern New Mexico and is being developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. A detailed performance assessment (PA) for the WIPP was carried out in 1996 and supports an application by the DOE to the U.S. Environmental Protection Agency (EPA) for the certification of the WIPP for the disposal of TRU waste. The 1996 WIPP PA uses a computational structure that maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the many possible disruptions that could occur over the 10,000 yr regulatory period that applies to the WIPP and subjective uncertainty arising from the imprecision with which many of the quantities required in the PA are known. Important parts of this structure are (1) the use of Latin hypercube sampling to incorporate the effects of subjective uncertainty, (2) the use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncertainty, and (3) the efficient use of the necessarily limited number of mechanistic calculations that can be performed to support the analysis. The use of Latin hypercube sampling generates a mapping from imprecisely known analysis inputs to analysis outcomes of interest that provides both a display of the uncertainty in analysis outcomes (i.e., uncertainty analysis) and a basis for investigating the effects of individual inputs on these outcomes (i.e., sensitivity analysis). The sensitivity analysis procedures used in the PA include examination of scatterplots, stepwise regression analysis, and partial correlation analysis. Uncertainty and sensitivity analysis results obtained as part of the 1996 WIPP PA are presented and discussed. Specific topics considered include two phase flow in the vicinity of the repository, radionuclide release from the repository, fluid flow and radionuclide
李莉; 刘悦; 许欣洋; 夏新念
2012-01-01
A cylindrical model of linear MHD instabilities in tokamaks is presented. In the model, the cylindrical plasma is surrounded by a vacuum which is divided into inner and outer vacuum areas by a conducting wall. Linearized resistivity MHD equations with plasma viscosity are adopted to describe our model, and the equations are solved numerically as an initial value problem. Some of the results are used as benchmark tests for the code, and then a series of equilibrium current profiles are used to simulate the bootstrap current profiles in actual experiments with a bump on tail. Thus the effects of these kinds of profiles on MHD instabilities in tokamaks are revealed. From the analysis of the numerical results, it is found that more plasma can be confined when the center of the current bump is closer to the plasma surface, and a higher and narrower current bump has a better stabilizing effect on the MHD instabilities.
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Bruun, Signe; Wedderkopp, Niels; Mølgaard, Christian
2016-01-01
AIM: Our aim was to use text message questions to obtain prospective, real-time data on exclusive and partial breastfeeding and introduction to complementary foods in a Danish birth cohort. We also wanted to identify factors influencing breastfeeding initiation and cessation. METHODS: This study ...
MHD Energy Bypass Scramjet Performance with Real Gas Effects
Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.
2000-01-01
The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.
1987-06-01
This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.
MHD Driving of Relativistic Jets
Arieh Königl
2007-01-01
Full Text Available Paulatinamente se ha ido reconociendo que los campos magnéticos juegan un papel dominante en la producción y colimación de chorros astrofísicos. Demostramos aquí, usando soluciones semianalíticas exactas para las ecuaciones de MHD ideal en relatividad especial, que un disco de acreción altamente magnetizado (con un campo magnético principalmente poloidal o azimutal alrededor de un agujero negro es capaz de acelerar un flujo de protones y electrones a los factores de Lorentz y energías cinéticas asociadas a fuentes de destellos de rayos gama y nucleos activos de galaxias. También se discuten las contribuciones a la aceleración provenientes de efectos térmicos (por presión de radiación y pares electrón-positrón y de MHD no ideal. Notamos que la aceleración por MHD se caracteriza por ser extendida espacialmente, y esta propiedad se manifesta más claramente en flujos relativistas. Las indicaciones observacionales de que la aceleración de movimientos superlumínicos en chorros de radio ocurre sobre escalas mucho más grandes que las del agujero negro propiamente, apoyan la idea de que la producción de chorros es principalmente un fenómeno magnético. Presentamos resultados preliminares de un modelo global que puede utilizarse para probar esta interpretación.
Buoyancy induced MHD transient mass transfer flow with thermal radiation
N. Ahmed
2016-09-01
Full Text Available The problem of a transient MHD free convective mass transfer flow past an infinite vertical porous plate in presence of thermal radiation is studied. The fluid is considered to be a gray, absorbing-emitting radiating but non-scattered medium. Analytical solutions of the equations governing the flow problem are obtained. The effects of mass transfer, suction, radiation and the applied magnetic field on the flow and transport characteristics are discussed through graphs.
Self-excitation of a diagonal MHD channel
Doperchuk, I.I.; Koneyev, S.M.A.
1982-01-01
Questions are examined of self-excitation of a diagonal MHD channel. Conditions are obtained for self-excitation using 0-dimensional approximation. An algorithm is presented for calculating the optimal self-exciting diagonal channel with regard for development and separation of the boundary layers, presence of near-electrode drops in voltage. Graphs are presented for the transitional regimes of channel operation with intermediate point of connection of the excitation winding.
Model problem of MHD flow in a lithium blanket
Cherepanov, V.Y.
1978-01-01
A model problem is considered for a feasibility study concerning controlled MHD flow in the blanket of a Tokamak nuclear reactor. The fundamental equations for the steady flow of an incompressible viscous fluid in a uniform transverse magnetic field are solved in rectangular coordinates, in the zero-induction approximation and with negligible induced currents. A numerical solution obtained for a set of appropriate boundary constraints establishes the conditions under which no stagnation zones will be formed.
MHD Turbulence, Turbulent Dynamo and Applications
Beresnyak, Andrey
2014-01-01
MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov -5/3) and is represented by critically balanced strong MHD turbulence. In this paper we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo $C_E=0.05$, Kolmogorov constant $C_K=4.2$ and anisotropy constant $C_A=0.63$ for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfv\\'enic part of MHD cascade in compressible turbul...
3D MHD Models of Active Region Loops
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
MHD computations for stellarators
Johnson, J.L.
1985-12-01
Considerable progress has been made in the development of computational techniques for studying the magnetohydrodynamic equilibrium and stability properties of three-dimensional configurations. Several different approaches have evolved to the point where comparison of results determined with different techniques shows good agreement. 55 refs., 7 figs.
Performance and flow characteristics of MHD seawater thruster
Doss, E.D.
1990-01-01
The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.
Global MHD Models of the Solar Corona
Suess, S. T.; Rose, Franklin (Technical Monitor)
2001-01-01
Global magnetohydrodynamic (MHD) models of the solar corona are computationally intensive, numerically complex simulations that have produced important new results over the past few years. After a brief overview of how these models usually work, I will address three topics: (1) How these models are now routinely used to predict the morphology of the corona and analyze Earth and space-based remote observations of the Sun; (2) The direct application of these models to the analysis of physical processes in the corona and chromosphere and to the interpretation of in situ solar wind observations; and (3) The use of results from global models to validate the approximations used to make detailed studies of physical processes in the corona that are not otherwise possible using the global models themselves.
ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,
Engelis, T.; Rapp, R. H.; Tscherning, C. C.
1984-01-01
Ellipsoidal height differences have been determined for 13 station pairs in the central Ohio region using measurements made with the Global Positioning System. This information was used to compute geoid undulation differences based on known orthometric heights. These differences were compared to gravimetrically-computed undulations (using a Stokes integration procedure, and least squares collocation having an internal r.m.s. agreement of plus or minus 1 cm in undulation differences). The two sets of undulation differences have an r.m.s. discrepancy of plus or minus 5 cm while the average station separation is of the order of 14 km. This good agreement suggests that gravimetric data can be used to compute accurate geoid undulation differences that can be used to convert ellipsoidal height differences obtained from GPS to orthometric height differences.
Three-dimensional fluid and electrodynamic modeling for MHD DCW channels
Liu, B. L.; Lineberry, J. T.; Schmidt, H. J.
1983-01-01
A three dimensional, numerical solution for modeling diagonal conducting wall (DCW) magnetohydrodynamic (MHD) generators is developed and discussed. Cross plane gasdynamic and electrodynamic profiles are computed considering coupled MHD flow and electrical phenomena. A turbulent transport model based on the mixing length theory is used to deal with wall roughness generated turbulence effects. The infinitely fine electrode segmentation formulation is applied to simplify the governing electrical equations. Calculations show the development of distorted temperature and velocity profiles under influence of magnetohydrodynamic interaction. Since both sidewall and electrode wall boundary losses are treated, the results furnish a realistic representation of MHD generator behavior.
2012-02-28
Engineering, 2010. 8 Roth, T., “ Modeling and Numerical Simulations of Pulse Detonation Engines with MHD Thrust Augmentation”, M.S. thesis, Department of...throat, at time 2.3ms. Results are shown for the PDE (blow-down model ) with and without MHD generation in the region between 0.4 and 0.8m from the...down model ) for different values of the exit- to-throat area ratio and for different altitudes, without MHD generation and without the presence of the
Electron MHD: dynamics and turbulence
Lyutikov, Maxim
2013-01-01
(Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...
Pop, P.C.; Still, Georg J.
1999-01-01
In linear programming it is known that an appropriate non-homogeneous Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite
Blanket-relevant liquid metal MHD channel flows: Data base and optimization simulation development
Evtushenko, I.A.; Kirillov, I.R.; Sidorenkov, S.I. [D.V. Efremov Inst. of Electrophysical Apparatus, St Petersburg (Russian Federation)
1995-12-31
The problems of generalization and integration of test, theoretical and design data relevant to liquid metal (LM) blanket are discussed in present work. First results on MHD data base and LM blanket optimization codes are presented.
Schwarb, F P; Smith, E W; Haigh, J M; Surber, C
1999-05-01
In a Guidance document, the American FDA recommends the use of a Minolta chromameter rather than the human eye for the quantitative assessment of the pharmacodynamic blanching response produced by topical application of corticosteroids. The purpose of this study was to compare the appropriateness of the human eye and two models of chromameter for the estimation of skin blanching, in terms of the quality of the data generated by each method. The corticosteroid-induced skin blanching from four different betamethasone 17-valerate cream formulations was compared in a typical human skin blanching trial. The optimized assay methodology routinely practised in our laboratories was utilized. The blanching responses were assessed visually by three trained, independent observers and recorded by two chromameters (Minolta model CR-200 and model CR-300). The topical availability of the four creams was determined using visual scoring and chromameter measurements. All data were manipulated in such a manner as to produce a blanching response versus time profile from which AUBC analysis could be performed. Good correlation was observed between the visual assessments made by three independent observers. In contrast, moderate correlation was determined between visual, CR-200 and CR-300 measurements. Surprisingly, no direct linear relationship between the AUBCs produced by the two chromameters was observed indicating that the quality of the data obtained from the two instruments may not be equal. This investigation also indicated that the use of the chromameter is not completely objective. Visual scoring and chromameter measurement produce data sets that differ in quality. Each procedure needs to be validated and investigators have to be trained for both visual assessment and the operation of the chromameter, particularly with regard to the manipulation of the measuring head of the instrument.
Drag reduction in turbulent MHD pipe flows
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
The Biermann Catastrophe in Numerical MHD
Graziani, Carlo; Lee, Dongwook; Lamb, Donald Q; Weide, Klaus; Fatenejad, Milad; Miller, Joshua
2014-01-01
The Biermann Battery effect is a popular mechanism for generating magnetic fields in initially unmagnetized plasmas, and is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Generation of magnetic fields by the Biermann effect due to mis-aligned density and temperature gradients in smooth flow _behind_ shocks is well known. We show that a magnetic field is also generated _within_ shocks as a result of the electron-ion charge separation that they induce. A straightforward implementation of the Biermann effect in MHD codes does not capture this physical process, and worse, produces unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this breakdown of convergence is due to naive discretization. We show that a careful consideration of the kinetic picture of ion viscous shocks leads to a formulation of the Biermann effect in terms of the electron temperature -- which is continuous across shocks -- that gives r...
3-D nonlinear evolution of MHD instabilities
Bateman, G.; Hicks, H. R.; Wooten, J. W.
1977-03-01
The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.
A helically distorted MHD flux rope model
Theobald, Michael L.; Montgomery, David
1990-01-01
A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.
Activation of MHD reconnection on ideal timescales
Landi, S; Del Zanna, L; Tenerani, A; Pucci, F
2016-01-01
Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number $S$, up to $10^7$. Results confirm that when the critical aspect ratio of $S^{1/3}$ is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be ro...
Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence
Lemaster, M Nicole
2008-01-01
We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...
The complete set of Casimirs in Hall-MHD
Kawazura, Yohei; Hameiri, Eliezer
2012-03-01
A procedure to determine all Casimir constants of motion in MHDfootnotetextE. Hameiri, Phy. Plasmas, 11, 3423 (2004). is extended to Hall-MHD. We obtain differential equations for the variational derivatives of all Casimirs which must be satisfied for any dynamically accessible motion of Hall-MHD. In an extension of the more commonly considered model, we also include the electron fluid entropy. The most interesting case, usually true for axisymmetric configurations, is when both the electron and ion entropy functions form families of nested toroidal surfaces. The Casimirs are then three functions of each of the entropies, involving fluxes of certain vector fields and the number of particles contained in each torus. If any of the species loses its nested tori, the number of the associated Casimirs is much larger (but physically less relevant).
Divergence-free MHD Simulations with the HERACLES Code
Vides J.
2013-12-01
Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.
Eigenanalysis of Ideal Hall MHD Turbulence
Fu, T.; Shebalin, J. V.
2011-12-01
Ideal, incompressible, homogeneous, Hall magnetohydrodynamic (HMHD) turbulence may be investigated through a Fourier spectral method. In three-dimensional periodic geometry, the independent Fourier coefficients represent a canonical ensemble described by a Gaussian probability density. The canonical ensemble is based on the conservation of three invariants: total energy, generalized helicity, and magnetic helicity. Generalized helicity in HMHD takes the place of cross helicity in MHD. The invariants determine the modal probability density giving the spectral structure and equilibrium statistics of ideal HMHD, which are compared to known MHD results. New results in absolute equilibrium ensemble theory are derived using a novel approach that involves finding the eigenvalues of a Hermitian covariance matrix for each modal probability density. The associated eigenvectors transform the original phase space variables into eigenvariables through a special unitary transformation. These are the normal modes which facilitate the analysis of ideal HMHD non-linear dynamics. The eigenanalysis predicts that the low wavenumber modes with very small eigenvalues may have mean values that are large compared to their standard deviations, contrary to the ideal ensemble prediction of zero mean values. (Expectation values may also be relatively large at the highest wave numbers, but the addition of even small levels of dissipation removes any relevance this may have for real-world turbulence.) This behavior is non-ergodic over very long times for a numerical simulation and is termed 'broken ergodicity'. For fixed values of the ideal invariants, the effect is seen to be enhanced with increased numerical grid size. Broken ergodicity at low wave number modes gives rise to large-scale, quasi-stationary, coherent structure. Physically, this corresponds to plasma relaxation to force-free states. For real HMHD turbulence with dissipation, broken ergodicity and coherent structure are still
Corrosion and arc erosion in MHD channels. Final report
Rosa, R.J. [Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering; Pollina, R.J. [Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering]|[EG and G Energy Measurements, Inc., Las Vegas, NV (United States)
1992-08-01
The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.
UNSTEADY PLANE MHD BOUNDARY LAYER FLOW OF A FLUID OF VARIABLE ELECTRICAL CONDUCTIVITY
Zoran B Boričić
2010-01-01
Full Text Available This paper is devoted to the analysis of unsteady plane laminar magnetohydrodynamic (MHD boundary layer flow of incompressible and variable electrical conductivity fluid. The present magnetic field is homogenous and perpendicular to the body surface. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in induction-less approximation. Free stream velocity is an arbitrary differentiable function. Fluid electrical conductivity is decreasing function of velocity ratio. In order to solve the described problem multiparametric (generalized similarity method is used and so-called universal equations are obtained. Obtained universal equations are solved numerically in appropriate approximation and a part of obtained results is given in the form of figures and corresponding conclusions.
Ascoli, Giorgio A; Domenici, Enrico; Bertucci, Carlo
2006-09-01
The drug binding to plasma and tissue proteins are fundamental factors in determining the overall pharmacological activity of a drug. Human serum albumin (HSA), together with alpha1-acid glycoprotein (AGP), are the most important plasma proteins, which act as drug carriers, with drug pharmacokinetic implications, resulting in important clinical impacts for drugs that have a relatively narrow therapeutic index. This review focuses on the combination of biochromatography and circular dichroism as an effective approach for the characterization of albumin binding sites and their enantioselectivity. Furthermore, their applications to the study of changes in the binding properties of the protein arising by the reversible or covalent binding of drugs are discussed, and examples of physiological relevance reported. Perspectives of these studies reside in supporting the development of new drugs, which require miniaturization to facilitate the screening of classes of compounds for their binding to the target protein, and a deeper characterization of the mechanisms involved in the molecular recognition processes.
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Swinger, C A
1983-01-01
The limited experience with LRK precludes a valid comparison with IOLs and extended-wear contact lenses. Only observations, unsupported by valid statistical analysis, are possible. Some of these observations follow. Technically, LRK is very difficult. In their present form, the classic Barraquer procedures could never be used widely. However, if lenticle banks were to supply preground lenticles, the level of difficulty of LRK procedures would be comparable to IOL implantation. The magnitude of refractive correction possible with LRK compares favorably with that of contact lenses and IOLs. However, the accuracy of achieving a given correction is lower with LRK. Unlike contact lenses or IOLs, LRK induces both regular and irregular astigmatism. The latter accounts, in part, for the delayed visual result with LRK. The percentage of patients with 20/40 or better vision following LRK compares favorably with the percentages for contact lenses or IOLs, whereas the percentage of patients with 20/25 or better vision does not. This is true for at least 1 year following surgery. Compared to extended-wear contact lenses, IOLs and LRK typically require less commitment, fewer postoperative visits, and less expenditure by the patient, in terms of time and money, to achieve full-time correction. Although LRK is associated with a number of postoperative complications, none are known to be intraocular, and there have been no known reports of permanent severe visual loss. In contrast, the patient with an extended-wear contact lens or IOL is permanently at risk to develop sight-threatening complications. This is not the case with LRK, which has no known complications after the early postoperative period. Application of the IOL or extended-wear contact lens to the neonate or pediatric patient is associated with increased risk and difficulty. This may not be true with LRK, especially epikeratophakia. The major advantages of LRK appear to be permanent optical correction without the threat
Donachie, Gillian E; Dawnay, Nick; Ahmed, Romana; Naif, Sarah; Duxbury, Nicola J; Tribble, Nicholas D
2015-07-01
The rise of DNA evidence to the forefront of forensic science has led to high sample numbers being submitted for profiling by investigators to casework laboratories: bottleneck effects are often seen resulting in slow turnaround times and sample backlog. The ParaDNA(®) Screening and Intelligence Tests have been designed to guide investigators on the viability of potential sources of DNA allowing them to determine which samples should be sent for full DNA analysis. Both tests are designed to augment the arsenal of available forensic tests for end users and be used concurrently to those commonly available. Therefore, assessing the impact that common forensic tests have on such novel technology is important to measure. The systems were tested against various potential inhibitors to which samples may be exposed as part of the investigative process. Presumptive test agents for biological materials (blood, semen and saliva) and those used as fingerprint enhancement agents were both used. The Screening Test showed a drop in performance following application of aluminium powder and cyanoacrylate (CNA) on fingerprints samples; however this drop in performance was not replicated with high template DNA. No significant effect was observed for any agent using the Intelligence Test. Therefore, both tests stand up well to the chemical agents applied and can be used by investigators with confidence that system performance will be maintained.
Alfven Wave Tomography for Cold MHD Plasmas
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers
Zhang, Lin; Ouyang, Jie; Zhang, Xiaohua
2013-04-01
The aim of the paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics (MHD) flow problems with either fully insulating walls or partially insulating and partially conducting walls. Toward this, we first extend the influence domain of the shape function for the element free Galerkin (EFG) method to have arbitrary shape. When the influence factor approaches 1, we find that the EFG shape function almost has the Delta property at the node (i.e. the value of the EFG shape function of the node is nearly equal to 1 at the position of this node) as well as the property of slices in the influence domain of the node (i.e. the EFG shape function in the influence domain of the node is nearly constructed by different functions defined in different slices). Therefore, for MHD flow problems at high Hartmann numbers we follow the idea of the variational multiscale finite element method (VMFEM) to combine the EFG method with the variational multiscale (VM) method, namely the variational multiscale element free Galerkin (VMEFG) method is proposed. Subsequently, in order to validate the proposed method, we compare the obtained approximate solutions with the exact solutions for some problems where such exact solutions are known. Finally, several benchmark problems of MHD flows are simulated and the numerical results indicate that the VMEFG method is stable at moderate and high values of Hartmann number. Another important feature of this method is that the stabilization parameter has appeared naturally via the solution of the fine scale problem. Meanwhile, because this proposed method is a type of meshless method, it can avoid the need for meshing, a very demanding task for complicated geometry problems.
Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Binila Chacko
2011-01-01
Full Text Available Background and Aims: When dealing with very sick patients, the speed and accuracy of tests to detect metabolic derangements is very important. We evaluated if there was agreement between whole blood electrolytes measured by a point-of-care device and serum electrolytes measured using indirect ion-selective electrodes. Materials and Methods: In this prospective study, electrolytes were analyzed in 44 paired samples drawn from critically ill patients. Whole blood electrolytes were analyzed using a point-of-care blood gas analyzer and serum electrolytes were analyzed in the central laboratory on samples transported through a rapid transit pneumatic system. Agreement was summarized by the mean difference with 95% limits of agreement (LOA and Lin′s concordance correlation (p c. Results: There was a significant difference in the mean (±standard deviation sodium value between whole blood and serum samples (135.8 ± 5.7 mmol/L vs. 139.9 ± 5.4 mmol/L, P < 0.001, with the agreement being modest (p c = 0.71; mean difference -4.0; 95% LOA -8.78 to 0.65. Although the agreement between whole blood and serum potassium was good (p c = 0.96, and the average difference small (-0.3; 95% LOA -0.72 to 0.13, individual differences were clinically significant, particularly at lower potassium values. For potassium values <3.0 mmol/L, the concordance was low (p c = 0.53 and the LOA was wide (1.0 to -0.13. The concordance for potassium was good (p c = 0.96 for values ≥3.0 (mean difference -0.2; 95% LOA -0.48 to 0.06. Conclusions: Clinicians should be aware of the difference between whole blood and serum electrolytes, particularly when urgent samples are tested at point of care and routine follow-up electrolytes are sent to the central laboratory. A correction factor needs to be determined at each center.
MHD Integrated Topping Cycle Project
1992-07-01
This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.
Two-dimensional MHD model of the Jovian magnetodisk
Kislov, R. A.; Malova, H. V.; Vasko, I. Y.
2015-09-01
A self-consistent stationary axially symmetric MHD model of the Jovian magnetodisk is constructed. This model is a generalization of the models of plane current sheets that have been proposed earlier in order to describe the structure of the current sheet in the magnetotail of the Earth [1, 2]. The model takes centrifugal force, which is induced by the corotation electric field, and the azimuthal magnetic field into account. The configurations of the magnetic field lines for the isothermic (plasma temperature assumed to be constant) and the isentropic (plasma entropy assumed to be constant) models of the magnetodisk are determined. The dependence of the thickness of the magnetodisk on the distance to Jupiter is obtained. The thickness of the magnetodisk and the magnetic field distribution in the isothermic and isentropic models are similar. The inclusion of a low background plasma pressure results in a considerable reduction in the thickness of the magnetodisk. This effect may be attributed to the fact that centrifugal force prevails over the pressure gradient at large distances from the planet. The mechanism of unipolar induction and the related large-scale current system are analyzed. The direct and return Birkeland currents are determined in the approximation of a weak azimuthal magnetic field. The modeling results agree with theoretical estimates from other studies and experimental data.
Computer controlled MHD power consolidation and pulse-generation system
Johnson, R.
The major goal of this project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility will be established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a magnetohydrodynamic (MHD) Faraday connected generator which may be viewed as a multi-terminal d.c. source. This consolidation/inversion process is referred to subsequently as Pulse-Amplitude-Synthesis-and-Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible Phase 2 prototype system. This report covers the initial six months portion of the project and includes discussions on the following areas: (1) selection of a control computer with software tool kit for development of the PASC controller contract requirement; (2) problem formulation considerations for simulation of the PASC technique on digital computers; (3) initial simulation results for the PASC transformer, including simulation results obtained using SPICE and the INTEG program; (4) a survey of available gate-turn-off (GTO's), power semiconductors, power field effect transistors (PFET's), and fiber optics signal cabling and transducers.
Expected IPS variations due to a disturbance described by a 3-D MHD model
Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.
1988-01-01
The variations of interplanetary scintillation due to a disturbance described by a three-dimensional, time-dependent, MHD model of the interplanetary medium are calculated. The resulting simulated IPS maps are compared with observations of real disturbances and it is found that there is some qualitative agreement. It is concluded that the MHD model with a more realistic choice of input conditions would probably provide a useful description of many interplanetary disturbances.
A three dimensional MHD model of the earth's magnetosphere
Wu, C. C.; Walker, R. J.; Dawson, J. M.
1981-01-01
The results of a global MHD calculation of the steady state solar wind interaction with a dipole magnetic field are presented. The computer code used, being much faster than previous codes, makes it possible to increase the number of grid points in the system by an order of magnitude. The resulting model qualitatively reproduces many of the observed features of the quiet time magnetosphere including the bow shock, magnetopause, and plasma sheet.
Free-boundary ideal MHD stability of W7-X divertor equilibria
Nührenberg, C.
2016-07-01
Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.
Dellinger, T. C.; Hnat, J. G.; Marston, C. H.
1979-01-01
A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.
MHD stability limits in the TCV Tokamak
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
Noreen Sher Akbar; S. Nadeem; Rizwan Ul Haq; Z.H. Khan
2013-01-01
The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder. The effects of radiation and convective boundary condition are also taken into account. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The result-ing nonlinear momentum, energy and nano particle equations are simplified using similarity trans-formations. Numerical solutions have been obtained for the velocity, temperature and nanoparticle fraction profiles. The influence of physical parameters on the velocity, temperature, nanoparticle fraction, rates of heat transfer and nanoparticle fraction are shown graphically.
MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method
S. ABBASBANDY; T. HAYAT; H. R. GHEHSAREH; A. ALSAEDI
2013-01-01
The magnetohydrodynamics (MHD) Falkner-Skan flow of the Maxwell fluid is studied. Suitable transform reduces the partial differential equation into a nonlinear three order boundary value problem over a semi-infinite interval. An eﬃcient approach based on the rational Chebyshev collocation method is performed to find the solution to the proposed boundary value problem. The rational Chebyshev collocation method is equipped with the orthogonal rational Chebyshev function which solves the problem on the semi-infinite domain without truncating it to a finite domain. The obtained results are presented through the illustrative graphs and tables which demonstrate the affectivity, stability, and convergence of the rational Chebyshev collocation method. To check the accuracy of the obtained results, a numerical method is applied for solving the problem. The variations of various embedded parameters into the problem are examined.
Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM
Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou
2015-11-15
Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.
Open Boundary Conditions for Dissipative MHD
Meier, E T
2011-11-10
In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.
A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus
DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.
1996-01-01
A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.
Two-dimensional MHD model of the reconnection diffusion region
N. V. Erkaev
2002-01-01
Full Text Available Magnetic reconnection is an important process providing a fast conversion of magnetic energy into thermal and kinetic plasma energy. In this concern, a key problem is that of the resistive diffusion region where the reconnection process is initiated. In this paper, the diffusion region is associated with a nonuniform conductivity localized to a small region. The nonsteady resistive incompressible MHD equations are solved numerically for the case of symmetric reconnection of antiparallel magnetic fields. A Petschek type steady-state solution is obtained as a result of time relaxation of the reconnection layer structure from an arbitrary initial stage. The structure of the diffusion region is studied for various ratios of maximum and minimum values of the plasma resistivity. The effective length of the diffusion region and the reconnection rate are determined as functions of the length scale and the maximum of the resistivity. For sufficiently small length scale of the resistivity, the reconnection rate is shown to be consistent with Petschek's formula. By increasing the resistivity length scale and decreasing the resistivity maximum, the reconnection layer tends to be wider, and correspondingly, the reconnection rate tends to be more consistent with that of the Parker-Sweet regime.
Quasi-isotropic cascade in MHD turbulence with mean field
Grappin, Roland; Gürcan, Özgür
2012-01-01
We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].
Simulation of three-dimensional nonideal MHD flow at high magnetic Reynolds number
无
2010-01-01
A conservative TVD scheme is adopted to solve the equations governing the three-dimensional flow of a nonideal compressible conducting fluid in a magnetic field.The eight-wave equations for magnetohydrodynamics(MHD) are proved to be a non-strict hyperbolic system,therefore it is difficult to develop its eigenstructure.Powell developed a new set of equations which cannot be numerically simulated by conservative TVD scheme directly due to its non-conservative form.A conservative TVD scheme augmented with a new set of eigenvectors is proposed in the paper.To validate this scheme,1-D MHD shock tube,unsteady MHD Rayleigh problem and steady MHD Hartmann problem for different flow conditions are simulated.The simulated results are in good agreement with the existing analytical results.So this scheme can be used to effectively simulate high-conductivity fluids such as cosmic MHD problem and hypersonic MHD flow over a blunt body,etc.
Parallel high-order methods for deterministic and stochastic CFD and MHD problems
Lin, Guang
In computational fluid dynamics (CFD) and magneto-hydro-dynamics (MHD) applications there exist many sources of uncertainty, arising from imprecise material properties, random geometric roughness, noise in boundary/initial condition, transport coefficients, or external forcing. In this dissertation, stochastic perturbation analysis and stochastic simulations based on multi-element generalized polynomial chaos (ME-gPC) are employed synergistically, to solve large-scale stochastic CFD and MHD problems with many random inputs. Stochastic analytical solutions are obtained to serve in verifying the accuracy of the numerical results for small random inputs, but also in shedding light into the physical mechanisms and scaling laws associated with the structural changes of flow field due to random inputs. First, the Karhuen-Loeve (K-L) decomposition is presented; it is an efficient technique for modeling the random inputs. How to represent the covariance kernel for different boundary constrains is an important issue. A new covariance matrix for an one-dimensional fourth-order random process with four boundary constraints is derived analytically, and it is used to model random rough wedge surfaces subjected to supersonic flow. The algorithm of ME-gPC is presented next. ME-gPC is based on the decomposition of random space and spectral expansions. To efficiently solve complex stochastic fluid dynamical systems, e.g., stochastic compressible flows, the ME-gPC method is extended to multi-element probabilistic collocation method on sparse grids (ME-PCM) by coupling it with the probabilistic collocation projection. By using the sparse grid points, ME-PCM can handle random process with large number of random dimensions, with relative lower computational cost, compared to full tensor products. Several prototype problems in compressible and MHD flows are investigated by employing the aforementioned high-order stochastic numerical methods in conjunction with the stochastic
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
magnet assembly were then installed on Marshall Space Flight Center's (MSFC's) rectangular channel pulse detonation research engine. Magnetohydrodynamic (MHD) electrical power extraction experiments were carried out for a range of load impedances in which cesium hydroxide seed (dissolved in methanol) was sprayed into the gaseous oxygen/hydrogen propellants. Positive power extraction was obtained, but preliminary analysis of the data indicated that the plasma electrical conductivity is lower than anticipated and the near-electrode voltage drop is not negligible. It is believed that the electrical conductivity is reduced due to a large population of negative OH ions. This occurs because OH has a strong affinity for capturing free electrons. The effect of near-electrode voltage drop is associated with the high surface-to-volume ratio of the channel (1-inch by 1-inch cross-section) where surface effects play a dominant role. As usual for MHD devices, higher performance will require larger scale devices. Overall, the gathered data is extremely valuable from the standpoint of understanding plasma behavior and for developing empirical scaling laws.
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
magnet assembly were then installed on Marshall Space Flight Center's (MSFC's) rectangular channel pulse detonation research engine. Magnetohydrodynamic (MHD) electrical power extraction experiments were carried out for a range of load impedances in which cesium hydroxide seed (dissolved in methanol) was sprayed into the gaseous oxygen/hydrogen propellants. Positive power extraction was obtained, but preliminary analysis of the data indicated that the plasma electrical conductivity is lower than anticipated and the near-electrode voltage drop is not negligible. It is believed that the electrical conductivity is reduced due to a large population of negative OH ions. This occurs because OH has a strong affinity for capturing free electrons. The effect of near-electrode voltage drop is associated with the high surface-to-volume ratio of the channel (1-inch by 1-inch cross-section) where surface effects play a dominant role. As usual for MHD devices, higher performance will require larger scale devices. Overall, the gathered data is extremely valuable from the standpoint of understanding plasma behavior and for developing empirical scaling laws.
Seismic Halos Around Active Regions: An MHD Theory
Hanasoge, Shravan M
2007-01-01
Comprehending the manner in which magnetic fields affect propagating waves is a first step toward the helioseismic construction of accurate models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Results from a simulation of waves interacting with a flux tub...
Investigations on application of multigrid method to MHD equilibrium analysis
Ikuno, Soichiro [Faculty of Engineering Science, School of Engineering, Tokyo Univ. of Technology, Tokyo (Japan)
2000-06-01
The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)
MHD rotation of electrically conducting media in crossed fields
Nikitin, N.V.
1978-01-01
A nonlinear scheme is developed for calculating the hydrodynamic characteristics of MHD flow in a cylindrical vessel of finite dimensions, in an electric field and a magnetic field crossing each other. The incompressible fluid is assumed to have a constant viscosity and electrical conductivity. The solution to the complete system of MHD equations is expanded in a series with respect to the magnetic Reynolds number, for a large hydrodynamic Reynolds number. And rather simple engineering formulas for calculating the velocity field and the pressure field are derived by the Karman-Pohlhausen method of integral relations. The results are compared with experimental data pertaining to a model helium-xenon discharge chamber with distribution of the Lorentz force causing the plasma to rotate as a quasi-solid. 15 references, 5 figures, 1 table.
Unsteady MHD free convective Couette flow between vertical porous plates with thermal radiation
Basant K. Jha
2015-10-01
Full Text Available This study investigates the unsteady MHD free convective Couette flow of viscous incompressible electrically conducting fluid between two infinite vertical porous plates in the presence of transverse magnetic field and thermal radiation. Solutions for time dependent energy and momentum equations are obtained by the implicit finite difference method. To check the accuracy of the numerical solutions, steady state solutions for energy and momentum equations are obtained by using the perturbation method. The effect of various parameters controlling the physical situation is discussed with the aid of line graphs. Significant results from this study are that both velocity and temperature increase with the increase in thermal radiation parameter and time. A series of numerical experiments show that steady state velocity and temperature occur when the dimensionless time approaches the values of Prandtl number of the fluid. During the course of numerical computation, an excellent agreement was found between unsteady and steady state solutions at large value of time.
MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects
M Ramzan; M Farooq; T Hayat; A Alsaedi; J Cao
2015-01-01
Combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained. Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.
Proposal of a brand-new gyrokinetic algorithm for global MHD simulation
Naitou, Hiroshi; Kobayashi, Kenichi; Hashimoto, Hiroki; Andachi, Takehisa; Lee, Wei-Li; Tokuda, Shinji; Yagi, Masatoshi
2009-11-01
A new algorithm for the gyrokinetic PIC code is proposed. The basic equations are energy conserving and composed of (1) the gyrokinetic Vlasov (GKV) equation, (2) the Vortex equation, and (3) the generalized Ohm's law along the magnetic field. Equation (2) is used to advance electrostatic potential in time. Equation (3) is used to advance longitudinal component of vector potential in time as well as estimating longitudinal induced electric field to accelerate charged particles. The particle information is used to estimate pressure terms in equation (3). The idea was obtained in the process of reviewing the split-weight-scheme formalism. This algorithm was incorporated in the Gpic-MHD code. Preliminary results for the m=1/n=1 internal kink mode simulation in the cylindrical geometry indicate good energy conservation, quite low noise due to particle discreteness, and applicability to larger spatial scale and higher beta regimes. The advantage of new Gpic-MHD is that the lower order moments of the GKV equation are estimated by the moment equation while the particle information is used to evaluate the second order moment.
Power, W. H.
1980-05-01
The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.
MHD Disc Winds and Linewidth Distributions
Chajet, Laura S
2013-01-01
We study AGN emission line profiles combining an improved version of the accretion disc-wind model of Murray & Chiang with the magneto-hydrodynamic model of Emmering et al. We show how the shape, broadening and shift of the C IV line depend not only on the viewing angle to the object but also on the wind launching angle, especially for small launching angles. We have compared the dispersions in our model C IV linewidth distributions to observational upper limit on that dispersion, considering both smooth and clumpy torus models. As the torus half-opening angle (measured from the polar axis) increases above about 18? degrees, increasingly larger wind launching angles are required to match the observational constraints. Above a half-opening angle of about 47? degrees, no wind launch angle (within the maximum allowed by the MHD solutions) can match the observations. Considering a model that replaces the torus by a warped disc yields the same constraints obtained with the two other models.
Analysis of Linear MHD Power Generators
Witalis, E.A.
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
Shen, Bingyu; Zheng, Liancun, E-mail: liancunzheng@ustb.edu.cn; Chen, Shengting [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)
2015-10-15
This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.
Bingyu Shen
2015-10-01
Full Text Available This paper presents an investigation for magnetohydrodynamic (MHD viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.
MHD seed recovery and regeneration, Phase II. Final report
1994-10-01
This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.
Extended MHD Modeling of Tearing-Driven Magnetic Relaxation
Sauppe, Joshua
2016-10-01
Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from / ne can counter the MHD effect from - in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at University of Wisconsin
MHD-flow in slotted channels with conducting walls
Evtushenko, I.A.; Kirillov, I.R. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Reed, C.B. [Argonne National Lab., Chicago, IL (United States)
1994-07-01
A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a {open_quotes}one-electrode movable probe{close_quotes} for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data.
Three-dimensional characteristics of SFC type MHD generator
Oikawa, Shun' ichi; Kayukawa, Naoyuki
1988-03-20
Concerning a Faraday type MHD generator with power output 100 MWe, a parabolic three-dimensional analysis was made on the SFC type and the conventional UFC type of the applied magnetic field, comparing the electrical and fluid fields of both types. Results are as follows: (1) In Faraday type MHD generator, Hall current which is an ineffective current is suppressed by SFC magnetic field coordination. (2) In the case of UFC, a current concentration to the central anode which occurs in the large Faraday type MHD generator does not occur in the case of SFC type. (3) In SFC, a secondary flow in the electrode boundary, especially in the vicinity of the anode is weak. (4) In addition to the velocity overshoot in the dielectric wall boundary layer, in the case of SFC, it generates in the electric wall. As a result, concentrated arc columns are suppressed by the acceleration of heat transfer to the electrode wall. (13 figs, 1 tab, 13 refs)
Numerical simulation study of disk MHD generator for nonequilibrium plasma (NPG) system
Tsunoda, Kazumi [Shibaura Institute of Technology, Tokyo (Japan); Harada, Nob [Nagaoka Univ. of Technology (Japan)
1995-12-31
Design and performance prediction of a disk-shaped magnetohydrodynamic (MHD) generator, which is applied to the nonequilibrium plasma generator (NPG) system, have been carried out by means of a quasi-one-dimensional numerical simulation. The calculations have been performed for generator with constant height which is planned to be used for NPG-MHD disk generator pulse power demonstration. A maximum enthalpy extraction ratio obtained from the present calculation reached up to 20%, and, in this case, the electron temperature of working plasma fluctuated in the unstable regime against ionization instability. Taking into account this phenomenon, in order to obtain much higher generator performance, the MHD channel, in which electron temperature was kept at 5000 K, was designed. With this channel, enthalpy extraction ratio of 40% and output power of 7.2 MW were achieved without major modification of the supersonic nozzle, the inlet swirl vanes and the configuration of magnet system.
Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)
2016-10-15
Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical
MHD equilibria with diamagnetic effects
Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.
1997-11-01
An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.
MHD Jets in inhomogeneous media
S. O´Sullivan
2002-01-01
Full Text Available Presentamos simulaciones de la propagaci on de jets moleculares no-adiab aticos en un medio ambiente inhomog eneo. Los jets tienen condiciones descritos por un modelo de jet MHD en el cual la forma de las l neas magn eticas se prescribe cerca de la fuente. Per les de densidad ambiental fueron elegidos para representar la zona de transici on entre las regiones exteriores de una nube molecular y el medio interestelar. Escalamos las tasas de enfriamiento at omico y molecular a niveles apropriados para resolver todas las escalas espaciales apropriadas. Con la inclusi on de variabilidad de la fuente, las simulaciones reproducen varias caracter sticas observacionales de jets moleculares, entre ellas las cavidades moleculares. Adicionalmente, encontramos similitudes entre teor a y observaci on para la fracci on de ionizaci on a lo largo del jet. Encontramos que la extensi on lateral de las super cies de trabajo internas son sensibles al medio ambiente. Tambi en presentamos resultados preliminares para un m etodo de calcular mapas de emisi on en l neas usando solamente variables fundamentales de estado que parecen reproducir la emisi on lamentosa de Balmer en frentes de choque.
MHD Integrated Topping Cycle Project
1992-02-01
This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.
MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles
Sandeep Naramgari
2016-06-01
Full Text Available In this study we analyzed the momentum and heat transfer behavior of MHD nanofluid embedded with conducting dust particles past a stretching surface in the presence of volume fraction of dust particles. The governing equations of the flow and heat transfer are transformed into nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Runge–Kutta based shooting technique. The effect of non-dimensional governing parameters on velocity and temperature profiles of the flow are discussed and presented through graphs. Additionally friction factor and the Nusselt number have also been computed. Under some special conditions, numerical results obtained by the present study were compared with the existed studies. The result of the present study proves to be highly satisfactory. The results indicate that an increase in the interaction between the fluid and particle phase enhances the heat transfer rate and reduces the friction factor.
MHD magnet technology development program summary, September 1982
1983-11-01
The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Aaiza Gul
Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Effects of Joule Heating and Viscous Dissipation on MHD Marangoni Convection Boundary Layer Flow
Rohana Abdul Hamid
2011-09-01
Full Text Available An analysis is performed to study the effects of the Joule heating and viscous dissipation on the magnetohydrodynamics (MHD Marangoni convection boundary layer flow. The governing partial differential equations are reduced to a system of ordinary differential equations via the similarity transformations. Numerical results of the similarity equations are obtained using the Runge-Kutta-Fehlberg method. Effects of the magnetic field parameter, and the combined effects of the Joule heating and the viscous dissipation are investigated and the numerical results are tabulated in tables and figures. It is found that the magnetic field reduces the fluid velocity but increases the fluid temperature. On the other hand, the combined effects of the Joule heating and viscous dissipation have significantly influenced the surface temperature gradient.
N. N. Skaletskiy
2013-01-01
Full Text Available Purpose. A comparative morphological analysis of adult pancreas and newborn rabbits as acceptable model for obtaining of islet cell cultures having a low immunogenicity was agoal of this study. Materials and methods. Pancreas from adult and newborn rabbits and islet cell culture was examined by histological and immunohistochemical techniques. Results. Shown, the pancreas of adult rabbits contains great amount of exocrine tissue and culturing it does not allow to obtain the purified islets of impurities. By contrast, pancreas of newborn rabbits in which the ratio of the islets and the exocrine tissue is much higher, it is possible to obtain highly purified cultures of islet cells. Conclusion. Morphological features of newborn rabbit pancreas can use it as a model for obtaining cultures of islet cells having low immunogenicity.
Radiation-driven MHD systems for space applications
Lee, J. H.; Jalufka, N. W.
High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.
MHD-steam thermal power plant electrical stations with zero stack emission
Borghi, C.A.; Botti, M.; Ribani, P.L. [Univ. of Bologna (Italy)
1994-12-31
In the present work a system study of a combined cycle MHD-steam thermal power plant electrical station with zero stack emission through recirculation of CO{sub 2}, is presented. The design of the MHD generator of the topper is done by means of a quasi-one-dimensional optimisation model. The thermodynamic of the combustion gas, typical of this cycle, is considered. The technology of the components is conventional. An overall efficiency larger than 41% for power plants with electrical power inputs above 600 MWe, are obtained.
Nanoflares and MHD turbulence in coronal loops: a hybrid shell model.
Nigro, Giuseppina; Malara, Francesco; Carbone, Vincenzo; Veltri, Pierluigi
2004-05-14
A model to describe injection, due to footpoint motions, storage, and dissipation of MHD turbulence in coronal loops, is presented. The model is based on the use of the shell technique in the wave vector space applied to the set of reduced MHD equations. Numerical simulation showed that the energy injected is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions among these fluctuations give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. The statistical analysis performed on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics.
Variational Integration for Ideal MHD with Built-in Advection Equations
Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2014-08-05
Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Acceleration of the OpenFOAM-based MHD solver using graphics processing units
He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao
2015-12-15
Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.
Activation of MHD reconnection on ideal timescales
Landi, S.; Papini, E.; Del Zanna, L.; Tenerani, A.; Pucci, F.
2017-01-01
Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number S, up to 107. Results confirm that when the critical aspect ratio of S 1/3 is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfvénic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be robust, as the predicted scaling is measured both in inviscid simulations and when using a Prandtl number P = 1 in the viscous regime.
Hot self-similar relativistic MHD flows
Zakamska, Nadia L; Blandford, Roger D
2008-01-01
We consider axisymmetric relativistic jets with a toroidal magnetic field and an ultrarelativistic equation of state, with the goal of studying the lateral structure of jets whose pressure is matched to the pressure of the medium through which they propagate. We find all self-similar steady-state solutions of the relativistic MHD equations for this setup. One of the solutions is the case of a parabolic jet being accelerated by the pressure gradient as it propagates through a medium with pressure declining as p(z)\\propto z^{-2}. As the jet material expands due to internal pressure gradients, it runs into the ambient medium resulting in a pile-up of material along the jet boundary, while the magnetic field acts to produce a magnetic pinch along the axis of the jet. Such jets can be in a lateral pressure equilibrium only if their opening angle \\theta_j at distance z is smaller than about 1/\\gamma, where \\gamma is the characteristic bulk Lorentz-factor at this distance; otherwise, different parts of the jet canno...
Euler potentials for the MHD Kamchatnov-Hopf soliton solution
Semenov, VS; Korovinski, DB; Biernat, HK
2002-01-01
In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf invarian
Safety and reliability in superconducting MHD magnets
Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.
1979-07-01
This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.
Liu Li
2012-09-01
Full Text Available Abstract Background Bioimpedance analysis (BIA has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients’ survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. Methods This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM—Fresenius Medical Care D GmbH will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Discussions Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain
Design of a MHD conduction machine with frame-type electrodes
Gel' fgat, Yu.M.; Gorbunov, L.A.
1977-01-01
An examination is made of a spatial channel model of a MHD conduction machine with frame type electrodes. The design was performed by the finite differences method. Relationships were obtained between the channel's basic magnetohydrodynamic characteristics and its form and the shape of the frame electrodes.
Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.
2013-12-01
The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.
Pazzaglia, A
1985-07-01
Forty outpatients with skin diseases were treated with an extempore combination of three creams, the respective bases of which were beclomethasone dipropionate, sodium fusidate and ketoconazole. Positive results were obtained in 97.5% of the cases with good relief of symptoms and excellent local tolerance in all cases treated.
1995-02-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.
MHD Homogeneous-Heterogeneous Reactions in a Nanofluid due to a Permeable Shrinking Surface
Syahira Mansur
2016-01-01
Full Text Available The MHD homogeneous-heterogeneous reaction in a nanofluid flow due to a permeable shrinking surface is studied. The bvp4c program in MATLAB is used to obtain the numerical solutions for several values of parameters such as suction parameter, magnetic parameter, nanoparticle volume fraction, heterogeneous reaction and homogeneous reaction rates. The results show that dual solutions exist and the magnetic parameter and the nanoparticle volume fraction widen the range of the solution domain. Suction parameter, magnetic parameter and nanoparticle volume fraction cause the skin friction coefficient to increase and the velocity to decrease. The concentration increases as the nanoparticle volume fraction increases but decrease as the homogeneous reaction rate and heterogeneous reaction rate increase.
Dissipation on Steady MHD Marangoni Convection Flow over a Flat Surface with Suction and Injection
S. Mohammed Ibrahim
2013-01-01
Full Text Available The combined effects of radiation and mass transfer on a steady MHD two-dimensional Marangoni convection flow over a flat surface in presence of Joule heating and viscous dissipation under influence of suction and injection is studied numerically. The general governing partial differential equations are transformed into a set of nonlinear ordinary differential equations by using unique similarity transformation. Numerical solutions of the similarity equations are obtained using the Runge-Kutta method along with shooting technique. The effects of governing parameters on velocity, temperature, and concentration as well as interface velocity, the surface temperature gradient, and the surface concentration gradient were presented in graphical and tabular forms. Comparisons with previously published work are performed and the results are found to be in excellent agreement.
P. LOGANATHAN,
2010-11-01
Full Text Available The numerical study of effects of thermal conductivity on unsteady MHD free convective flow over an isothermal semi infinite vertical plate is presented. It is assumed that the thermal conductivity of the fluid as a linear function of temperature. A magnetic field is applied transversely to the direction of the flow. The boundary layer equations of continuity, momentum and energy equations are transformed into non-linear coupled equations and then solved using implicit finite-difference method of Crank-Nicholson type. A parametric study is performed to illustrate the influence of thermal conductivity, magnetic parameter and Prandtl number on the velocity and temperature profiles. In addition, the local and average skin friction, Nusselt number at the plate are shown graphically for both air and water. An analysis of the results obtained shows that the flowfield is influenced appreciably by the strength of magnetic field, thermal conductivity at the wall of the plate.
Ahmed, Rubel; Rana, B. M. Jewel; Ahmmed, S. F.
2017-06-01
Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.
Kitiashvili, I N; Goode, P R; Kosovichev, A G; Lele, S K; Mansour, N N; Wray, A A; Yurchyshyn, V B
2012-01-01
Turbulent properties of the quiet Sun represent the basic state of surface conditions, and a background for various processes of solar activity. Therefore understanding of properties and dynamics of this `basic' state is important for investigation of more complex phenomena, formation and development of observed phenomena in the photosphere and atmosphere. For characterization of the turbulent properties we compare kinetic energy spectra on granular and sub-granular scales obtained from infrared TiO observations with the New Solar Telescope (Big Bear Solar Observatory) and from 3D radiative MHD numerical simulations ('SolarBox' code). We find that the numerical simulations require a high spatial resolution with 10 - 25 km grid-step in order to reproduce the inertial (Kolmogorov) turbulence range. The observational data require an averaging procedure to remove noise and potential instrumental artifacts. The resulting kinetic energy spectra show a good agreement between the simulations and observations, opening...
Approximate analytical solution of MHD flow of an Oldroyd 8-constant fluid in a porous medium
Faisal Salah
2014-12-01
Full Text Available The steady flow in an incompressible, magnetohydrodynamic (MHD Oldroyd 8-constant fluid in a porous medium with the motion of an infinite plate is investigated. Using modified Darcy’s law of an Oldroyd 8-constant fluid, the equations governing the flow are modelled. The resulting nonlinear boundary value problem is solved using the homotopy analysis method (HAM. The obtained approximate analytical solutions clearly satisfy the governing nonlinear equations and all the imposed initial and boundary conditions. The convergence of the HAM solutions for different orders of approximation is demonstrated. For the Newtonian case, the approximate analytical solution via HAM is shown to be in close agreement with the exact solution. Finally, the variations of velocity field with respect to the magnetic field, porosity and non-Newtonian fluid parameters are graphically shown and discussed.
USXR Based MHD, Transport, Equilibria and Current Profile Diagnostics for NSTX. Final Report
Finkenthal, Michael
2009-06-01
The present report resumes the research activities of the Plasma Spectroscopy/Diagnostics Group at Johns Hopkins University performed on the NSTX tokamak at PPPL during the period 1999-2009. During this period we have designed and implemented XUV based diagnostics for a large number of tasks: study of impurity content and particle transport, MHD activity, time-resolved electron temperature measeurements, ELM research, etc. Both line emission and continuum were used in the XUV range. New technics and novel methods have been devised within the framework of the present research. Graduate and post-graduate students have been involved at all times in addition to the senior research personnel. Several tens of papers have been published and lectures have been given based on the obtained results at conferences and various research institutions (lists of these activities were attached both in each proposal and in the annual reports submitted to our supervisors at OFES).
Maria Balcerek
2016-10-01
Full Text Available The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol than those obtained on a semi-technical scale.
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.
A stochastic approach to uncertainty in the equations of MHD kinematics
Phillips, Edward G., E-mail: egphillips@math.umd.edu [Applied Mathematics & Statistics, and Scientific Computation Program, University of Maryland, College Park, MD (United States); Elman, Howard C., E-mail: elman@cs.umd.edu [Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD (United States)
2015-03-01
The magnetohydrodynamic (MHD) kinematics model describes the electromagnetic behavior of an electrically conducting fluid when its hydrodynamic properties are assumed to be known. In particular, the MHD kinematics equations can be used to simulate the magnetic field induced by a given velocity field. While prescribing the velocity field leads to a simpler model than the fully coupled MHD system, this may introduce some epistemic uncertainty into the model. If the velocity of a physical system is not known with certainty, the magnetic field obtained from the model may not be reflective of the magnetic field seen in experiments. Additionally, uncertainty in physical parameters such as the magnetic resistivity may affect the reliability of predictions obtained from this model. By modeling the velocity and the resistivity as random variables in the MHD kinematics model, we seek to quantify the effects of uncertainty in these fields on the induced magnetic field. We develop stochastic expressions for these quantities and investigate their impact within a finite element discretization of the kinematics equations. We obtain mean and variance data through Monte Carlo simulation for several test problems. Toward this end, we develop and test an efficient block preconditioner for the linear systems arising from the discretized equations.
Translationally symmetric extended MHD via Hamiltonian reduction: Energy-Casimir equilibria
Kaltsas, D. A.; Throumoulopoulos, G. N.; Morrison, P. J.
2017-09-01
The Hamiltonian structure of ideal translationally symmetric extended MHD (XMHD) is obtained by employing a method of Hamiltonian reduction on the three-dimensional noncanonical Poisson bracket of XMHD. The existence of the continuous spatial translation symmetry allows the introduction of Clebsch-like forms for the magnetic and velocity fields. Upon employing the chain rule for functional derivatives, the 3D Poisson bracket is reduced to its symmetric counterpart. The sets of symmetric Hall, Inertial, and extended MHD Casimir invariants are identified, and used to obtain energy-Casimir variational principles for generalized XMHD equilibrium equations with arbitrary macroscopic flows. The obtained set of generalized equations is cast into Grad-Shafranov-Bernoulli (GSB) type, and special cases are investigated: static plasmas, equilibria with longitudinal flows only, and Hall MHD equilibria, where the electron inertia is neglected. The barotropic Hall MHD equilibrium equations are derived as a limiting case of the XMHD GSB system, and a numerically computed equilibrium configuration is presented that shows the separation of ion-flow from electro-magnetic surfaces.
Hodograph method in MHD orthogonal fluid flows
P. V. Nguyen
1992-01-01
Full Text Available Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid of finite electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the streamfunction. Three examples are studied to illustrate the developed theory. Solutions and geometries for these examples are determined.
MHD equilibrium and stability in heliotron plasmas
Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-09-01
Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)
Grzyb Tomasz
2017-06-01
Full Text Available The article discusses the issue of the necessity of obtaining informed consent from an individual who is to be a participant in an experiment. Codes of ethics concerning the behaviour of a psychologist fundamentally do not permit conducting experiments without informing their participants in advance that they will be conducted. Meanwhile, the act of obtaining prior consent (and thus of informing the study participant that they will be taking part in an experiment can have a significant impact on results. The article describes an experiment in the field of social influence psychology during which one group was asked for their informed consent to participate in a study, while the second was simply presented with the main request (to sign a letter to the mayor about reducing the number of parking spaces for the disabled. The results demonstrate the strong influence of awareness that a study is being conducted on the decisions taken in the course of the experiment.
Blocki, J. [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Brueckman de Renstrom, P.; Budziak, A. [Institute of Nuclear Physics, Cracow (Poland)] [and others
1993-10-01
We characterize the most important problems of modern elementary particles physics, for the solution of which the LEP (Large Electron Positron) accelerator was built. We present the characteristics of this accelerator. The structure and properties of the DELPHI detector are described with special emphasis on the contribution of Polish groups. The most important results obtained so far in the LEP accelerator are discussed. (author). 12 refs, 17 figs, 1 tab.
Upton, Arlo; Bromhead, Collette; Whiley, David M
2013-01-01
The Roche cobas 4800 CT/NG assay is a commonly used commercial system for screening for Neisseria gonorrhoeae infection, and previous studies have shown the method to be highly sensitive and specific for urogenital samples. We present the first confirmed clinical N. gonorrhoeae false-positive result using the cobas 4800 NG assay, obtained from testing a pharyngeal swab sample and caused by cross-reaction with a commensal Neisseria strain.
Reproducing the Solar Wind proton temperature profile via DNS of MHD turbulence
Montagud-Camps, Victor; Grappin, Roland; Verdini, Andrea
2017-04-01
Context: The Solar Wind proton temperature Tp shows a radial profile R-0.9 significantly shallower than the adiabatic R-4/3 profile [Totten et al 1996]. This temperature profile has been attributed to turbulent heating, which requires a dissipation rate equal to Q = 3.610-5TpU/R[J/(kg s)] (1) [Vasquez et al 2007]. The possibility of a turbulent heating large enough to modify the radial profile of the temperature has not been verified yet via direct numerical simulations. Aim: We want to test if MHD turbulence developing in the range [0.2,1] AU is able to reproduce the observed R-0.9 temperature profile. Method: We use the expanding box model (EBM) [Grappin & Velli 1996] which incorporates the effects of expansion into the compressible MHD equations, and so allows to follow the evolution of the plasma advected by the solar wind between 0.2 and 1 AU. In the absence of turbulence, the R-4/3 temperature profile is obtained. We start at 0.2 AU with mean field almost aligned with the radial and k⊥-1 spectrum perpendicular to the mean field [Verdini, Grappin 2016]. Simple phenomenology (Kolmogorov) suggests that the ratio between turbulent heating and the required heating (1) is close to M2/ɛ, where M is the Mach number of the large eddies and ɛ is the nonlinear time normalized by the transport time of the plasma by the wind. We thus explore the (M,ɛ) parameter space and examine whether a large enough value of M2/ɛ indeed allows to recover the temperature profile observed by Totten et al (1996). Results: We have obtained significant slowing down of the adiabatic cooling by considering increasing Mach numbers and/or decreasing ɛ and approach in some cases the R-0.9 temperature profile. The role of the compressibility in the cascade is examined.
Nabert, Christian; Othmer, Carsten; Glassmeier, Karl-Heinz
2017-05-01
The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.
Multi-fluid MHD study of the solar wind interaction with Pluto
Dong, C.; Ma, Y.; McComas, D. J.; Bhattacharjee, A.; Zirnstein, E.; Toth, G.; Luhmann, J. G.; Wang, L.
2016-12-01
The study of the solar wind interaction with Pluto's upper atmosphere has triggered a great of interest in recent years. The Solar Wind Around Pluto (SWAP) instrument onboard New Horizon (NH) spacecraft has provided a wealth of detailed and quantitative information about Pluto and its interaction with the tenuous solar wind out at 33 AU. The SWAP data reveals Pluto's unique interaction with the solar wind as a hybrid of comet-like and the Venus/Mars-like interactions. While SWAP data has provided many of the key results, a lot of details are still missing merely based on NH flyby observations. In order to further investigate the solar wind-Pluto interaction from a global point of view, we develop a 3-D multi-fluid MHD (MF-MHD) model. The MF-MHD model solves separate continuity, momentum and energy equations for each ion species. We adopt the 1-D modeled neutral atmosphere, which is based on NH observations, as the MF-MHD input. Photoionization, charge exchange and electron impact ionization are all included in the MF-MHD model. We will study the ion escape rate, and Pluto's magnetosphere and heavy ion tail structure. We will also do some data-model comparisons. This work has the potential to improve our understanding of present day Pluto's unique solar wind interaction and thus enhance the science returned from the NH mission.
Enhanced MHD transport in astrophysical accretion flows: turbulence, winds and jets
Dobbie, Peter B; Bicknell, Geoffrey V; Salmeron, Raquel
2009-01-01
Astrophysical accretion is arguably the most prevalent physical process in the Universe; it occurs during the birth and death of individual stars and plays a pivotal role in the evolution of entire galaxies. Accretion onto a black hole, in particular, is also the most efficient mechanism known in nature, converting up to 40% of accreting rest mass energy into spectacular forms such as high-energy (X-ray and gamma-ray) emission and relativistic jets. Whilst magnetic fields are thought to be ultimately responsible for these phenomena, our understanding of the microphysics of MHD turbulence in accretion flows as well as large-scale MHD outflows remains far from complete. We present a new theoretical model for astrophysical disk accretion which considers enhanced vertical transport of momentum and energy by MHD winds and jets, as well as transport resulting from MHD turbulence. We also describe new global, 3D simulations that we are currently developing to investigate the extent to which non-ideal MHD effects may...
Simulation of three-dimensional nonideal MHD flow at low magnetic Reynolds number
LU HaoYu; LEE ChunHian
2009-01-01
A numerical procedure based on a five-wave model associated with non-ideal,low magnetic Reynolds number magnetohydrodynamic(MHD)flows was developed.It is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential of flow field.To validate the developed procedure,two different test cases were used which included MHD Rayleigh problem and MHD Hartmann problem.The simulations were performed under the assumption of low magnetic Reynolds number.The simulated results were found to be in good agreement with the closed form analytical solutions deduced in the present study,showing that the present algorithm could simulate engineering MHD flow at low magnetic Reynolds number effectively.In the end,a flow field between a pair of segmented electrodes in a three dimensional MHD channel was simulated using the present algorithm with and without including Hall effects.Without the introduction of Hall effects,no distortion was observed in the current and potential lines.By taking the Hall effects into account,the potential lines distorted and clustered at the upstream and downstream edges of the cathode and anode,respectively.
On the measurements of numerical viscosity and resistivity in Eulerian MHD codes
Rembiasz, Tomasz; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel; Müller, Ewald
2016-01-01
We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfven waves, and the tearing mode instability using the MHD code Aenus. By comparing the simu- lation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of tearing modes we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast-magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) systems. We also determine the dependance of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results we infer the numerical resolution (as a function of the spatial reconstruction ...
Test-field method for mean-field coefficients with MHD background
Rheinhardt, M
2010-01-01
Aims: The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to the regime with a magnetohydrodynamic (MHD) background. Methods: A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By employing an additional set of auxiliary equations, we derive linear equations describing the response of the system to a set of prescribed test fields. Purely magnetic and MHD backgrounds are emulated by applying an electromotive force in the induction equation analogously to the ponderomotive force in the momentum equation. Both forces are chosen to have Roberts flow-like geometry. Results: Examples with an MHD background are studied where the previously used quasi-kinematic test-field method breaks down. In cases with homogeneous mean fields it is shown that the generalized test-field method produces the same results as the imposed-field method, where the field-aligned component of the actual electr...
Krebs, Derek; Budynas, Richard G.
A common procedure for performing a cross orthogonality check for the purpose of modal correlation between the test and the finite element analysis results incorporates the Guyan reduction method to obtain a reduced mass matrix. This paper describes a procedure which uses NASTRAN's Generalized Dynamic Reduction solution routine which is much more accurate than the standard Guyan reduction solution and which offers the advantage of not requiring the selection of mdof. Using NASTRAN's DMAP programming methods, a modal reduction of the full analytical mass matrix is performed based on the accelerometer locations and the analytical modal matrix results. The accuracy of the procedure is illustrated in two case studies.
Uranium droplet nuclear reactor core with MHD generator
Anghaie, Samim; Kumar, Ratan
An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.
LI Hui; ZHOU TuanHui; LI JingWei; SHEN JinHua; JI HaiSheng; NI HouKun; ZHANG HaiYing; ZHANG YaNan; LIU HongRui; DENG YuanYong; WANG DongGuang; DU QiuSheng
2009-01-01
The flash spectra in the Hel D3 line were obtained during the 2008 total solar eclipse. This paper describes the instrument and the calibration of the obtained flash spectrum, and presents our initial results.The average integrated intensity is E_(ave)=8.13×10~(13)erg·cm~(-1)·s~(-1)·ster~(-1)ath=1100km,which confirms that the Hel D3 emission is negatively correlated with the solar activity. The surface brightness reaches a maximum of F_(ave)=8.25×10~5 erg·cm~(-2)·s~(-1)·ster(-1) at about h≈(1290±75) km and then decreases exponentially with height when h > 1800 km with an exponential index β= 1.63×10~(-8)cm~(-1).
无
2009-01-01
The flash spectra in the HeI D3 line were obtained during the 2008 total solar eclipse. This paper describes the instrument and the calibration of the obtained flash spectrum, and presents our initial results. The average integrated intensity is Eave = 8.13×1013 erg·cm-1· s-1·ster-1 at h = 1100 km, which confirms that the HeI D3 emission is negatively correlated with the solar activity. The surface brightness reaches a maximum of F ave = 8.25×105 erg·cm-2·s-1·ster-1 at about h ≈ (1290 ± 75) km and then decreases exponentially with height when h >1800 km with an exponential index β = 1.63×10-8 cm-1.
ZHANG Guo-yan; PENG Yan; ZHAO Ling-zhi; LI Ran; SHA Ci-wen
2007-01-01
A new method of recovering maritime oil-spill based on electromagnetic force, the so-called MHD oil-spill recovery method was proposed in the IEECAS. The operating process of MHD channel was described in this article. Numerical study was carried out using a two-dimensional water-air two-phase model and the VOF method. The agreement between the numerical and the experimental results was reached.
Intensity contrast from MHD simulations and from HINODE observations
Afram, N; Solanki, S K; Schuessler, M; Lagg, A; Voegler, A
2010-01-01
Changes in the solar surface area covered by small-scale magnetic elements are thought to cause long-term changes in the solar spectral irradiance, which are important for determining the impact on Earth's climate. To study the effect of small-scale magnetic elements on total and spectral irradiance, we derive their contrasts from 3-D MHD simulations of the solar atmosphere. Such calculations are necessary since measurements of small-scale flux tube contrasts are confined to a few wavelengths and suffer from scattered light and instrument defocus, even for space observations. To test the contrast calculations, we compare rms contrasts from simulations with those obtained with the broad-band filter imager mounted on the Solar Optical Telescope (SOT) onboard the Hinode satellite and also analyse centre-to-limb variations (CLV). The 3-D MHD simulations include the interaction between convection and magnetic flux tubes. They have been run with non-grey radiative transfer using the MURaM code. Simulations have an ...
MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields
C.Z. Cheng
2002-05-30
By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.
Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-02-01
In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.
Ali, Farhad; Saqib, Muhammad; Khan, Ilyas; Sheikh, Nadeem Ahmad; Jan, Syed Aftab Alam
2017-02-01
This paper carries out an exact analysis of the MHD free convection flow of a Walters'-B fluid over an oscillating isothermal vertical plate embedded in a porous medium. Exact solutions are produced for velocity, temperature and concentration with the aid of the Laplace transform technique. Similarly, at the wall, the corresponding shear stress is also calculated from the velocity expression. The obtained results confirm an excellent agreement with previously published work. The influence of various pertinent parameters is plotted and illustrated graphically. Finally, the numerical results for the skin friction are exhibited in tabular form.
Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.
2016-02-01
As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.
MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts. Final paper
Sidorenkov, S.I. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Hua, T.Q. [Argonne National Lab., IL (United States); Araseki, Hideo [Central Research Inst. of Electric Power Industry, Tokyo (Japan)
1994-07-01
Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. This paper describes four benchmark problems to validate magnetohydrodynamic (MHD) and heat transfer computer codes. The problems include rectangular duct geometry with uniform and nonuniform magnetic fields, with and without surface heat flux, and various rectangular cross sections. Two of the problems are based on experiments. Participants in this benchmarking activity come from three countries: The Russian Federation, The United States, and Japan. The solution methods to the problems are described. Results from the different computer codes are presented and compared.
On the 2D behavior of 3D MHD with a strong guiding field
Alexakis, Alexandros
2011-01-01
The Magneto-hydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of 9 runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two dimensional (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three dimensional MHD-fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependencies are demonstrated by the varying parameters of simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes.
Staiger, P.J.; Abbott, J.M.
1980-06-01
The Parametric Study of Potential Early Commercial MHD Power Plants is described and the results of the study are summarized. Two parallel contracted studies were conducted. Each contractor investigated three base cases and parametric variation about these base cases. Each contractor concluded that two of the base cases (a plant using separate firing of an advanced high temperature regenerative air heater with fuel from an advanced coal gasifier and a plant using an intermediate temperature metallic recuperative heat exchanger to heat oxygen enriched combustion air) were comparable in both performance and cost of electricity. The contractors differed in the level of their cost estimates with the capital cost estimates for the MHD topping cycle and the magnet subsystem in particular accounting for a significant part of the difference. The impact of the study on the decision to pursue a course which leads to an oxygen enriched plant as the first commercial MHD plant is described.
Benyo, Theresa L.
2010-01-01
This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.
Hamiltonian and action formalisms for two-dimensional gyroviscous MHD
Morrison, P J; Acevedo, R
2014-01-01
A general procedure for constructing action principles for continuum models via a generalization of Hamilton's principle of mechanics is described. Through the procedure, an action principle for a gyroviscous magnetohydrodynamics (MHD) model is constructed. The model is shown to agree with a reduced version of Braginskii's fluid equations. The construction reveals the origin of the gyromap, a device used to derive previous gyrofluid models. Also, a systematic reduction procedure is presented for obtaining the Hamiltonian structure in terms of the noncanonical Poisson bracket. The construction procedure yields a class of Casimir invariants, which are then used to variational principles for equilibrium equations with flow and gyroviscosity. The procedure for obtaining reduced fluid models with gyroviscosity is also described.
Carter, Cory; Eatough, Norman L; Eatough, Delbert J; Olson, Neal; Long, Russell W
2008-01-01
The Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) has been previously verified as being capable of measuring total fine particulate matter (PM2.5), including semi-volatile species. The present study was conducted to determine if the simple modification of a commercial speciation sampler with a charcoal denuder followed by a filter pack containing a quartz filter and a charcoal-impregnated glass (CIG) fiber filter would allow for the measurement of total PM2.5, including semi-volatile organic material. Data were collected using an R&P (Rupprecht and Pastasnik Co., Inc.) Partisol Model 2300 speciation sampler; an R&P Partisol speciation sampler modified with a BOSS denuder, followed by a filter pack with a quartz and a CIG filter; a Met One spiral aerosol speciation sampler (SASS); and the PC-BOSS from November 2001 to March 2002 at a U.S. Environmental Protection Agency (EPA) Science to Achieve Results (STAR) sampling site in Lindon, UT. Total PM2.5 mass, ammonium nitrate (both nonvolatile and semi-volatile), ammonium sulfate, organic carbon (both non-volatile and semi-volatile), and elemental carbon were determined on a 24-hr basis. Results obtained with the individual samplers were compared to determine the capability of the modified R&P speciation sampler for measuring total PM2.5, including semi-volatile components. Data obtained with the modified speciation sampler agreed with the PC-BOSS results. Data obtained with the two unmodified speciation samplers were low by an average of 26% because of the loss of semi-volatile organic material from the quartz filter during sample collection.
Impact of ideal MHD stability limits on high-beta hybrid operation
Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team
2017-01-01
The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.
Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2017-04-01
Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.
Drake, Hubert M; Mclaughlin, Milton D; Goodman, Harold R
1948-01-01
Results are presented of tests up to a Mach number of 0.92 at altitudes around 30,000 feet. The data obtained show that the airplane can be flown to this Mach number above 30,000 feet. Longitudinal trim changes have been experienced but the forces involved have been small. The elevator effectiveness decreased about one-half with increase of Mach number from 0.70 to 0.87. Buffeting has been experienced in level flight but it has been mild and the associated tail loads have been small. No aileron buzz or other flutter phenomena have been noted.
Nielsen, Tine; Kreiner, Svend
2011-01-01
approach to item reduction based on results of graphical loglinear Rasch modeling (GLLRM) was designed. This approach was then used to reduce the number of items in the subscales of the R-D-LSI which had an item-length of more than seven items, thereby obtaining the Danish Self-Assessment Learning Styles......The Revised Danish Learning Styles Inventory (R-D-LSI) (Nielsen 2005), which is an adaptation of Sternberg- Wagner Thinking Styles Inventory (Sternberg, 1997), comprises 14 subscales, each measuring a separate learning style. Of these 14 subscales, 9 are eight items long and 5 are seven items long...
1978-01-01
The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.
High-temperature coal-syngas plasma characteristics for advanced MHD power generation
Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)
2006-03-15
Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.
Electrolysis Bubble Noise in Small-Scale Tests of a Seawater MHD thruster
1990-09-01
reported on an MHD ship propulsion program. 7,8 Their work has apparently resulted in the construc- tion of a prototype which is reported to have two MHD...150 tons.* Recent interest in this ship propulsion concept is also stimulated in part by the cx- pectation tha! an I-il thruster would be qieter than...1. The production of hydrogen bubbles through the electrolysis of seawater at cur- rent densities expected for M-ID ship propulsion , 0.1 to 0.3 A/cm
Tempelmeyer, K E; Sokolov, Y N [eds.
1979-04-01
The third joint test with a Soviet U-25B MHD generator and a US superconducting magnet system (SCMS) was conducted in the Soviet U-25B Facility. The primary objectives of the 3rd test were: (1) to operate the facility and MHD channel over a wider range of test parameters, and (2) to study the performance of all components and systems of the flow train at increased mass flow rates of combustion products (up to 4 kg/s), at high magnetic-field induction (up to 5 T), and high values of the electrical field in the MHD generator. The third test has demonstrated that all components and systems of the U-25B facility performed reliably. The electric power generated by the MHD generaor reached a maximum of 575 kW during this test. The MHD generator was operated under electrical loading conditions for 9 hours, and the combustor for a total of approximately 14 hours. Very high Hall fields (2.1 kV/m) were produced in the MHD channel, with a total Hall voltage of 4.24 kV. A detailed description is given of (1) performance of all components and systems of the U-25B facility, (2) analysis of the thermal, gasdynamic, and electrical characteristics of the MHD generator, (3) results of plasma diagnostic studies, (4) studies of vibrational characteristics of the flow train, (5) fluctuation of electrodynamic and gasdynamic parameters, (6) interaction of the MHD generator with the superconducting magnet, and (7) an operational problem, which terminated the test.
Sibel Kocabeyoglu
2013-01-01
Full Text Available Aims : The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP using the Swedish interactive threshold algorithm (SITA-Standard 24-2 test. Materials and Methods: This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD] were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Results: Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651. MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P < 0.001, and fixation losses and false negative errors were significantly less with SAP (P < 0.05. A weak positive correlation between the two tests in terms of MD (r = 0.352, P = 0.008 and PSD (r = 0.329, P = 0.014 was observed. Conclusion: Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.
MHD Equilibria and Triggers for Prominence Eruption
Fan, Yuhong
2015-01-01
Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.
Type I Planetary Migration with MHD Turbulence
Laughlin, G; Adams, F; Laughlin, Gregory; Steinacker, Adriane; Adams, Fred
2004-01-01
This paper examines how type I planet migration is affected by the presence of turbulent density fluctuations in the circumstellar disk. For type I migration, the planet does not clear a gap in the disk and its secular motion is driven by torques generated by the wakes it creates in the surrounding disk fluid. MHD turbulence creates additional density perturbations that gravitationally interact with the planet and can dominate the torques produced by the migration mechanism itself. This paper shows that conventional type I migration can be readily overwhelmed by turbulent perturbations and hence the usual description of type I migration should be modified in locations where the magnetorotational instability is active. In general, the migrating planet does not follow a smooth inward trned, but rather exhibits a random walk through phase space. Our main conclusion is that MHD turbulence will alter the time scales for type I planet migration and -- because of chaos -- requires the time scales to be described by ...
MHD modeling of dense plasma focus electrode shape variation
McLean, Harry; Hartman, Charles; Schmidt, Andrea; Tang, Vincent; Link, Anthony; Ellsworth, Jen; Reisman, David
2013-10-01
The dense plasma focus (DPF) is a very simple device physically, but results to date indicate that very extensive physics is needed to understand the details of operation, especially during the final pinch where kinetic effects become very important. Nevertheless, the overall effects of electrode geometry, electrode size, and drive circuit parameters can be informed efficiently using MHD fluid codes, especially in the run-down phase before the final pinch. These kinds of results can then guide subsequent, more detailed fully kinetic modeling efforts. We report on resistive 2-d MHD modeling results applying the TRAC-II code to the DPF with an emphasis on varying anode and cathode shape. Drive circuit variations are handled in the code using a self-consistent circuit model for the external capacitor bank since the device impedance is strongly coupled to the internal plasma physics. Electrode shape is characterized by the ratio of inner diameter to outer diameter, length to diameter, and various parameterizations for tapering. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Experimental Study of MHD-Assisted Mixing and Combustion Under Low Pressure Conditions
Gao, Ling; Zhang, Bailing; Li, Yiwen; Fan, Hao; Duan, Chengduo; Wang, Yutian
2016-08-01
In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butane-air combustion system. The evolvement of the discharge section and the effect of MHD-assisted mixing on combustion are investigated by changing the magnetic flux density and airflow velocity. The results show that the discharge area not only bends but also rotates around the centered wire electrode, which are mainly caused by the Lorentz force. Moreover, the highest curvature occurs near the centered wire electrode. The discharge localizes near the surface of the wire electrode and annular electrode when there is no ponderomotive force. However, if the ponderomotive force is applied, the discharge happens between these two electrodes and it gradually shrinks with time. The discharge area cannot localize near the annular electrode, which is due to the increase of energy loss in the airflow. When the airflow velocity exceeds a certain value, the discharge section becomes unstable because the injected energy cannot maintain the discharge. The rotation motion of the discharge section could enlarge the contact surface between butane and air, and is therefore beneficial for mixing and combustion. Magnetic flux density and airflow velocity are critical parameters for MHD-assisted mixing. supported by National Natural Science Foundation of China (No. 11372352) and the Mechanism Research on Near Electrode Thermal-Electromagnetic-Flow of High Temperature Supersonic MHD Generation (No. 51306207), and Natural Science Foundation of Shaanxi Province of China (No. 2015JM5184)
Testing MHD models of prominences and flares with observations of solar plasma electric fields
Foukal, Peter V.; Behr, Bradford B.
1995-02-01
We present measurements of electric fields in quiescent prominences and in a small flare surge, obtained with CRI electrograph at the NSO/SP 40 cm coronagraph, in 1993 and 1994. Our results on the 9 brightest quiescent prominences enable us to place r.m.s. upper limits of Et less than 2 - 5 V/cm on the component of E transverse to the line of sight. We show that these upper limits may be difficult to reconcile with non-ideal MHD models of quiescent prominences formed in extended neutral sheets, whethere or not the tearing mode instability is present. They do, however, seem consistent with ideal MHD models of prominence support. We point out also that these upper limits are within a factor 4 of the minimum value of anistropic electric field that exists due to motional Stark effect in any thermal plasma permeated by a directed magnetic field. Our data on the flare surge suggest and electric field of intensity E approximately 35 V/cm, oriented approximately parallel to the inferred magnetic field. This detection of Eparallel needs to be verified in other flares. But we note that a detectable Eparallel would not be expected in the current interruption flare mechanism, if only a single double layer is present. We show further that the observed relatively narrow, approximately-Gaussian, and only slightly Doppler-shifted Paschen lines, seem inconsistent with the multiple double layers invoked in other models based on the current interruption mechanism. Our detection of Eparallel does seem consistent with reconnection (including tearing-mode) models of flares, provided the field-aligned electrical conductivity is anomalous over substantial volumes of the plasma circuit joining the reconnecting domain to the photosphere.
Magnetic Reconnection in a Compressible MHD Plasma
Hesse, Michael; Birn, Joachim; Zenitani, Seiji
2011-01-01
Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed
MHD simulations on an unstructured mesh
Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
MHD Technology Transfer, Integration and Review Committee
1992-01-01
This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.
Chatillon, Sylvain; Robert, Sébastien; Brédif, Philippe; Calmon, Pierre; Daniel, Guillaume; Cartier, François
2015-03-01
The last decade has seen the emergence of new ultrasonic array techniques going beyond the simple application of suitable delays (phased array techniques) for focusing purposes. Amongst these techniques, the particular method combining the so-called FMC (Full Matrix Capture) acquisition scheme with the synthetic focusing algorithm denoted by TFM (Total Focusing Method) has become popular in the NDE community. The 2014 WFNDEC ultrasonic benchmark aims at providing FMC experimental data for evaluating the ability of models to predict images obtained by TFM algorithms (or equivalent ones). In this paper we describe the benchmark and report comparisons obtained with the CIVA simulation software. The simulations and measurements are carried out on two steel blocks, one in carbon steel and another in stainless steel. The reference probe is a 64 elements linear array, with .5mm element width and a gap of .1mm, working at 5 MHz. The benchmark problem consists in predicting images of vertical and tilted notches located on plane or inclined backwalls. The notches have different heights and different ligaments. The images can be obtained considering different paths (direct echoes or corner echoes). For each notch, the full matrix capture (FMC) have been recorded in one unique position with the probe positioned such that than angle between the probe axis and the notch direction corresponds to 45°. The results are calibrated on the response of a 2mm side drilled hole. For each case, TFM images have been reconstructed for both experimental and simulated signals. The models used are those implemented in CIVA based on Kirchhoff approximation. Comparisons are reported and discussed.
Inductive ionospheric solver for magnetospheric MHD simulations
H. Vanhamäki
2011-01-01
Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km^{−1} in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.
Inductive ionospheric solver for magnetospheric MHD simulations
Vanhamäki, H.
2011-01-01
We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).
The CHEASE code for toroidal MHD equilibria
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
COUETTE FLOW PROBLEM FOR AN UNSTEADY MHD THIRD-GRADE FLUID WITH HALL CURRENTS
Muhammad Azram
2014-12-01
Full Text Available ABSTRACT: In this work, we analyze Coutte flow problem for an unsteady mangneto-hydrodynamic (MHD third-grade fluid in the presence of a pressure gradient and Hall currnts. Existing literature on the topic shows that the effecs of Hall current on Coutte flow of an unsteady MHD third-grade fluid with a prssure gradient has not yet been investigated. The arising non-linear problem is solved by the homotopy analysis method (HAM and the convergence of the obtained complex series solution is carefully analyzed. The effects of pressure number, Hartmann number and Hall parameter on unsteady velocity are discussed via analysis of plots. ABSTRAK: Kajian dijalan untuk menganalisa masalah aliran Coutte bagi bendalir MHD gred ketiga dan arus Hall. Bagi topik ini kesan arus Hall terhadap aliran Couette dalam bendalir MHD gred ketiga tak mantap dengan kecerunan tekanan, belum pernah dikaji selidik. Masalah tak linear berbangkit diselesaikan dengan kaedah analisis homotopi (HAM dan ketumpuan solusi rangkaian kompleks dianalisa dengan teliti. Kesan nilai tekanan, nombor Hartmann dan parameter Hall terhadap halaju tak mantap diperbincangkan melalui plot yang dianalisis.KEYWORDS: Cuette; flow; hall currents; unsteady; third-grade fluid; HAM
MHD heat and seed recovery technology project. Tenth quarterly report, April-June 1980
Petrick, M.; Johnson, T. R.
1980-12-01
The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The primary effort of the HSR Technology Project at Argonne is directed toward experimental investigations of critical problem areas, such as (1) corrosion and erosion of refractories and metal alloys; (2) NO/sub x/ behavior in the radiant boiler and secondary combustor; (3) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (4) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (5) formation, growth, and deposition of seed-slag particles; and (6) character of the combustion gas effluents. These investigations are performed primarily in a 2-MW test facility, the Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, and evaluation of seed regeneration processes. Progress is reported.
Mabood, F., E-mail: mabood1971@yahoo.com [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Khan, W.A., E-mail: wkhan_2000@yahoo.com [Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Ismail, A.I.M., E-mail: izani@cs.usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia)
2015-01-15
The MHD laminar boundary layer flow with heat and mass transfer of an electrically conducting water-based nanofluid over a nonlinear stretching sheet with viscous dissipation effect is investigated numerically. This is the extension of the previous study on flow and heat transfer of a nanofluid over nonlinear stretching sheet (Rana and Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 212–226). The governing equations are reduced to nonlinear ordinary differential equations using suitable similarity transformation. The effects of the governing parameters on dimensionless quantities like velocity, temperature, nanoparticle concentration, friction factor, local Nusselt, and Sherwood numbers are explored. It is found that the dimensionless velocity decreases and temperature increases with magnetic parameter, and the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters. - Highlights: • MHD flow of nanofluid and heat transfer over a nonlinear stretching sheet has not been studied yet. • Numerical solutions are computed with Runge–Kutta Fehlberg fourth–fifth order method. • Previous published results can be obtained from present study. • Reduced Nusselt and Sherwood numbers decrease with magnetic parameter.
Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria
Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.
2015-11-01
Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.
Sheikh, Mariam; Abbas, Zaheer
2015-12-01
The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.
Toullelan, Gwénaël; Chatillon, Sylvain; Raillon, Raphaële; Mahaut, Steve; Lonné, Sébastien; Bannouf, Souad
2017-02-01
For several years, the World Federation of NDE Centers, WFNDEC, proposes benchmark studies in which simulated results (in either ultrasonic, X-rays or eddy current NDT configurations) obtained with various models are compared to experiments. This year the proposed UT benchmark proposed by CEA concerns inspection configurations with multi-skips echoes i.e. the incident beam undergoes several skips on the surface and bottom of the specimen before interacting with the defect. This technique is commonly used to inspect thin specimen and/or in case of limited access inspection. This technique relies on the use of T45° mode in order to avoid mode conversion and to facilitate the interpretation of the echoes. The inspections were carried out with two probes of different aperture working at 5MHz.
Rodrigo de Souza
2014-02-01
Full Text Available The objective of this study was to evaluate the use of calcium salts of fatty acids (CSFA to increase the dietary energy levels for Saanen goats and their effects on the lactation curve, dry matter intake, body weight, and economic results of the goats. Twenty multiparous goats, weighing an average of 63.5±10.3 kg, were randomly assigned to one of four treatment groups, each receiving one of the following dietary energy levels: a control diet consisting of 2.6 Mcal of metabolizable energy per kg of dry matter (Mcal ME/kg DM or a test diet supplemented with CSFA (Lactoplus® to obtain 2.7, 2.8, or 2.9 Mcal ME/kg DM. Goats were housed in individual stalls and were fed and milked twice daily. The animals were evaluated until 180 days in milk by measuring dry matter intake and milk yield. These measurements were used to calculate feed efficiencies and the cost-benefit ratio of diet and lactation curves using Wood's nonlinear model. Increasing dietary energy levels showed no effect on body weight. Supplementation with CSFA did not limit dry matter intake; however, it changed the shape of the lactation curve by promoting a late peak lactation with a longer duration. Milk yields at 180 days in milk had a quadratic increase with a maximum energy level at 2.85 Mcal ME/kg DM. Increasing the dietary energy level for Saanen goats using CSFA changes their lactation curves, with the best milk production achieved with a 2.85 Mcal ME/kg DM diet; however, the greatest economic results were obtained with a 2.7 Mcal ME/kg DM diet.
Shirley Nakagaki
2016-02-01
Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.
Irwan, Roy; Edens, Mireille A; Sijens, Paul E
2008-04-01
A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers and compared the outcomes with the results of MR spectroscopy (MRS), the gold standard in quantifying liver fat content. Novel was the use of spectroscopic imaging yielding the variations in fat content across the liver rather than a single value obtained by single voxel MRS. Compared with the results of MRS, liver fat content according to MRI was too high in nine subjects (range 3.3-10.7% vs. 0.9-7.7%) and correct in one (21.1 vs. 21.3%). Furthermore, in one of the ten subjects the MRI fat content according to the Dixon-based MRI method was incorrect due to a (100-x) versus x percent lipid content mix-up. The second problem was fixed by a minor adjustment of the MRI algorithm. Despite systematic overestimation of liver fat contents by MRI, Spearman's correlation between the adjusted MRI liver fat contents with MRS was high (r = 0.927, P < 0.001). Even after correction of the algorithm, the problem remaining with the Dixon-based MRI method for the assessment of liver fat content,is that, at the lower end range, liver fat content is systematically overestimated by 4%.
MHD Wind Models in X-Ray Binaries and AGN
Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis
2017-08-01
Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.
Coupled simulation of kinetic pedestal growth and MHD ELM crash
Park, G [Courant Institute of Mathematical Sciences, New York University (United States); Cummings, J [California Institute of Technology (United States); Chang, C S [Courant Institute of Mathematical Sciences, New York University (United States); Podhorszki, N [Univ. California at Davis (United States); Klasky, S [ORNL (United States); Ku, S [Courant Institute of Mathematical Sciences, New York University (United States); Pankin, A [Lehigh Univ. (United States); Samtaney, R [Princeton Plasma Physics Laboratory (United States); Shoshani, A [LBNL (United States); Snyder, P [General Atomics (United States); Strauss, H [Courant Institute of Mathematical Sciences, New York University (United States); Sugiyama, L [MIT (United States)
2007-07-15
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest
Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (USA)); Roy, G.D. (Office of Naval Research, Arlington, VA (USA))
1990-01-01
This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.
Kinetic effects of energetic particles on resistive MHD stability.
Takahashi, R; Brennan, D P; Kim, C C
2009-04-03
We show that the kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode in tokamaks (e.g., JET, JT-60U, and DIII-D), where the fraction of energetic particle beta(frac) is high. Using model equilibria based on DIII-D experimental reconstructions, the nonideal MHD linear stability of cases unstable to the 2/1 mode is investigated including a deltaf particle-in-cell model for the energetic particles coupled to the nonlinear 3D resistive MHD code NIMROD [C. C. Kim et al., Phys. Plasmas 15, 072507 (2008)10.1063/1.2949704]. It is observed that energetic particles have significant damping and stabilizing effects at experimentally relevant beta, beta(frac), and S, and excite a real frequency of the 2/1 mode. Extrapolation of the results is discussed for implications to JET and ITER, where the effects are projected to be significant.
Initial Active MHD Spectroscopy Experiments on Alcator C-MOD
Schmittdiel, D. A.; Snipes, J. A.; Granetz, R. S.; Parker, R. R.; Wolfe, S. M.; Fasoli, A.
2002-11-01
The Active MHD Spectroscopy system is a new diagnostic on C-MOD that will be used to study low frequency MHD modes and TAE's present at high B_tor, n_e, and Te ˜= T_i. The present system consists of two antennas, power amplifiers, and an impedance matching network. Each antenna is 15 × 25 cm with five turns, an inductance of ˜10 μH, and is covered by boron nitride tiles. The two antennas are placed at the same toroidal location, symmetrically above and below the midplane. Each antenna is driven by a ˜1 kW power amplifier in the range of 1 kHz - 1 MHz with an expected antenna current ˜10 A, which will produce a vacuum field of ˜0.5 G at the q = 1.5 surface. This diagnostic is designed to excite high n ( ˜20) stable TAE's and initial results regarding their frequency, mode structure, and damping rate will be presented. Evolution of these modes could also provide information on the q profile to compare with MSE measurements, which will be important for planned lower hybrid current drive operation in 2003.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Solution of MHD problems with mixed-type boundary conditions
Antimirov, M.IA.
1985-06-01
The introduction of artificial anisotropy of the dynamic viscosity in one of the subregions in which the solution is sought is utilized to derive an approximation method for MHD problems with mixed-type boundary conditions. The method is demonstrated through two problems: slow rotation of a disk and motion of a finite-width infinitely long plate in an infinite volume of a conducting fluid. The velocity and magnetic field solutions are obtained in the form of integrals of Bessel functions, and the torque is found. It is shown that when the Hartmann number approaches infinity the torque of a convex body of revolution in a longitudinal magnetic field is equal to that of a disk lying at the centerline section of the body.
Nutini, F.; Boschetti, M.; Brivio, P. A.; Antoninetti, M.
2012-04-01
The Sahelian belt of West Africa is a semiarid region characterized by wide climate variations, which can in turn affect the livelihood of local populations particularly in rangeland areas, as happens during the dramatic food crisis in the 70-80s caused by rainfall scarcity. The monitoring of natural resources and rainfed agricultural activities, with the aim to provide information to support Sahelian food security action, needs the production of detailed thematic maps as emphasized by several scientific papers. In this framework, a study was conducted to develop a method to exploit time series of remote sensed satellite data to 1) provide reliable land cover (LC) map at local scale in a dry region and 2) obtain a LC change (LCC) map that contribute to identify the plausible causes of local environmental instability. Satellite images used for this work consist in a time series of Landsat Thematic Mapper (TM) (path row 195-50) acquired in the 2000 (6 scenes) and 2007 (9 scenes) from February (Dry season) to September (end of wet season). The study investigates the different contribution provided by spectra information of a single Landsat TM image and by time series of derived NDVI. Different tests have been conducted with different combination of data set (spectral and temporal)in order to identify the best approach to obtain a LC map in five classes of interest: Shrubland, Cultivated Land, Water body, Herbaceous vegetation and Bare soil. The best classification approach is exposed and applied on two years in the last decade. The comparison between this two LC results in land cover change map, that displays the changes of vegetation patterns that have been characterized the area. The discussed results show a largely stable dryland region, but locally characterized by hot-spot of decreasing in natural vegetation inside the rangelands and an increasing of cultivations along fossil valleys where human activities are slightly intense. The discussion shows that this hot
Irwan, Roy [University Medical Center Groningen, Radiology, Groningen (Netherlands); Toshiba Medical Systems Europe, Zoetermeer (Netherlands); Edens, Mireille A. [University of Groningen, Epidemiology, Groningen (Netherlands); Sijens, Paul E. [University Medical Center Groningen, Radiology, Groningen (Netherlands)
2008-04-15
A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers and compared the outcomes with the results of MR spectroscopy (MRS), the gold standard in quantifying liver fat content. Novel was the use of spectroscopic imaging yielding the variations in fat content across the liver rather than a single value obtained by single voxel MRS. Compared with the results of MRS, liver fat content according to MRI was too high in nine subjects (range 3.3-10.7% vs. 0.9-7.7%) and correct in one (21.1 vs. 21.3%). Furthermore, in one of the ten subjects the MRI fat content according to the Dixon-based MRI method was incorrect due to a (100-x) versus x percent lipid content mix-up. The second problem was fixed by a minor adjustment of the MRI algorithm. Despite systematic overestimation of liver fat contents by MRI, Spearman's correlation between the adjusted MRI liver fat contents with MRS was high (r = 0.927, P < 0.001). Even after correction of the algorithm, the problem remaining with the Dixon-based MRI method for the assessment of liver fat content,is that, at the lower end range, liver fat content is systematically overestimated by 4%. (orig.)
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
Thampi, Smitha V.; Yamamoto, Mamoru
2010-03-01
A chain of newly designed GNU (GNU is not UNIX) Radio Beacon Receivers (GRBR) has recently been established over Japan, primarily for tomographic imaging of the ionosphere over this region. Receivers installed at Shionomisaki (33.45°N, 135.8°E), Shigaraki (34.8°N, 136.1°E), and Fukui (36°N, 136°E) continuously track low earth orbiting satellites (LEOS), mainly OSCAR, Cosmos, and FORMOSAT-3/COSMIC, to obtain simultaneous total electron content (TEC) data from these three locations, which are then used for the tomographic reconstruction of ionospheric electron densities. This is the first GRBR network established for TEC observations, and the first beacon-based tomographic imaging in Japanese longitudes. The first tomographic images revealed the temporal evolution with all of the major features in the ionospheric electron density distribution over Japan. A comparison of the tomographically reconstructed electron densities with the ƒ o F 2 data from Kokubunji (35°N, 139°E) revealed that there was good agreement between the datasets. These first results show the potential of GRBR and its network for making continuous, unattended ionospheric TEC measurements and for tomographic imaging of the ionosphere.
Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods
Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S
2009-06-03
This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.
Ring-shaped discharge structures in a closed cycle MHD disk generator
Fukuda, H.; Kabashima, S.
1987-06-01
Numerical simulations are carried out to study plasma properties in a nonequilibrium disk-type MHD generator. The analysis is based on a two-dimensional time-dependent MHD equation, and is performed in the r-z plane. From the r-z analysis, the current distributions in the boundary layer, electrode regions are obtained, as well as the channel main flow region. The two-state nature of plasma, i.e., the formation of streamers and their dynamical behavior in the channel is confirmed. The dependence of the streamer properties on the magnetic field strength and load resistance is examined. The calculations suggest the existence of an eddy current in the boundary layer for the high-loading parameter. Some enhanced eddy currents in the nozzle region and the intensive eddy current at the upper-stream edge of the cathode are obtained for some plasma parameters. 19 references.
Alireza AZIMI
2014-07-01
Full Text Available In this paper the velocity fields associated with the two-dimensional unsteady magnetohydrodynamic (MHD flow of a viscous fluid between moving parallel plates have been investigated. The governing Navier-Stokes equations for the flow are reduced to a fourth order nonlinear ordinary differential equation. The Homotopy Perturbation Method (HPM and Reconstruction of Variational Iteration Method (RVIM have been used to achieve analytical solutions. The obtained approximate results have been compared with numerical ones and results from pervious works in some cases. It has been shown that the current study is accurate and validated and can be used for other nonlinear cases.doi:10.14456/WJST.2014.70
MHD stability limits in the TCV Tokamak
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
Measurements of properties concerning isentropic efficiency in a nonequilibrium MHD disk generator
Nakamura, H.; Okamura, T.; Shioda, S. [Tokyo Inst. of Tech., Yokohama (Japan)
1996-06-01
The isentropic efficiency and the effective Hall parameter in a nonequilibrium disk MHD generator have been successfully evaluated on the basis of the experiments under high enthalpy extraction conditions. Special attention is devoted to measuring the exit total pressure and the Faraday current. The maximum isentropic efficiency achieved in the present experiments was 46% with the enthalpy extraction ratio of 31.6%. The experimentally obtained values of the effective Hall parameter covered a range of 2--3.
Lavrent' yev, I.V.
1982-01-01
A solution is provided to the task of distributing electromagnetic fields in the MHD channel with nonconducting partitions of finite length with random magnetic Reynolds numbers. Local and integral characteristics of these channels are obtained. It is indicated that their high effectiveness can be guaranteed only by arranging partitions at the inlet to the channel at a certain distance from the electronic zone which must be greater the greater the magnetic Reynolds number.
Modeling magnetized neutron stars using resistive MHD
Palenzuela, Carlos
2013-01-01
This work presents an implementation of the resistive MHD equations for a generic algebraic Ohm's law which includes the effects of finite resistivity within full General Relativity. The implementation naturally accounts for magnetic-field-induced anisotropies and, by adopting a phenomenological current, is able to accurately describe electromagnetic fields in the star and in its magnetosphere. We illustrate the application of this approach in interesting systems with astrophysical implications; the aligned rotator solution and the collapse of a magnetized rotating neutron star to a black hole.
Local potential analysis of MHD instability
Sen, K. K.; Wilson, S. J.
1985-02-01
The use of the local potential method for studying instabilities of MHD fluids is examined. The mathematical method is similar to that developed by the authors for studying the time-dependent radiative transfer problem and the radiative stability of interstellar masers. The scheme is based on the universal evolution criterion proposed by Glansdorff and Prigogine (1964) as demonstrated by Hays (1965) for the heat equation and Schechter and Himmelblau (1965) for the Benard problem in hydrodynamics. The scheme for securing stability criteria is demonstrated for two particular cases.
3D MHD Simulations of Tokamak Disruptions
Woodruff, Simon; Stuber, James
2014-10-01
Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.
Evaluation of feedback in conductive MHD devices
Grinberg, G.K.
1977-01-01
A method is recommended for computing feedback and the self-energizing threshold of conducting MHD devices. Circuits of equivalent magnetizing currents are used for this purpose in addition to equivalent electrical circuits. This kind of an approach makes it possible to reflect the influence of R/sub m/ on the operation of the device. Dimensionless functions were found which determine the critical value of the Reynolds magnetic number. The computations demonstrated that the redistribution of the magnetic field in the machine's operating zone under the influence of an induced field must be considered.
Stationary MHD equilibria describing azimuthal rotations in symmetric plasmas
da Silva, Sidney T.; Viana, Ricardo L.
2016-12-01
We consider the stationary magnetohydrodynamical (MHD) equilibrium equation for an axisymmetric plasma undergoing azimuthal rotations. The case of cylindrical symmetry is treated, and we present two semi-analytical solutions for the stationary MHD equilibrium equations, from which a number of physical properties of the magnetically confined plasma are derived.
Superconducting magnet system for an experimental disk MHD facility
Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.
1991-01-01
A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.
The Calculus of Variations and the Ideal MHD Energy Principle
Schnack, Dalton D.
In Lecture 22, we showed that the ideal MHD force operator is self-adjoint and suggested that this allowed a formulation in which the stability of a system could be determined without solving a differential equation. Going further requires a little background in the calculus of variations. In the lecture we begin this discussion,1 and formulate the ideal MHD energy principle.
Maciaszek, Thierry; Ealet, Anne; Jahnke, Knud; Prieto, Eric; Barbier, Rémi; Mellier, Yannick; Beaumont, Florent; Bon, William; Bonnefoi, Anne; Carle, Michael; Caillat, Amandine; Costille, Anne; Dormoy, Doriane; Ducret, Franck; Fabron, Christophe; Febvre, Aurélien; Foulon, Benjamin; Garcia, Jose; Gimenez, Jean-Luc; Grassi, Emmanuel; Laurent, Philippe; Le Mignant, David; Martin, Laurent; Rossin, Christelle; Pamplona, Tony; Sanchez, Patrice; Vives, Sébastien; Clémens, Jean Claude; Gillard, William; Niclas, Mathieu; Secroun, Aurélia; Serra, Benoit; Kubik, Bogna; Ferriol, Sylvain; Amiaux, Jérôme; Barrière, Jean Christophe; Berthe, Michel; Rosset, Cyrille; Macias-Perez, Juan Francisco; Auricchio, Natalia; De Rosa, Adriano; Franceschi, Enrico; Guizzo, Gian Paolo; Morgante, Gianluca; Sortino, Francesca; Trifoglio, Massimo; Valenziano, Luca; Patrizii, Laura; Chiarusi, T.; Fornari, F.; Giacomini, F.; Margiotta, A.; Mauri, N.; Pasqualini, L.; Sirri, G.; Spurio, M.; Tenti, M.; Travaglini, R.; Dusini, Stefano; Dal Corso, F.; Laudisio, F.; Sirignano, C.; Stanco, L.; Ventura, S.; Borsato, E.; Bonoli, Carlotta; Bortoletto, Favio; Balestra, Andrea; D'Alessandro, Maurizio; Medinaceli, Eduardo; Farinelli, Ruben; Corcione, Leonardo; Ligori, Sebastiano; Grupp, Frank; Wimmer, Carolin; Hormuth, Felix; Seidel, Gregor; Wachter, Stefanie; Padilla, Cristóbal; Lamensans, Mikel; Casas, Ricard; Lloro, Ivan; Toledo-Moreo, Rafael; Gomez, Jaime; Colodro-Conde, Carlos; Lizán, David; Diaz, Jose Javier; Lilje, Per B.; Toulouse-Aastrup, Corinne; Andersen, Michael I.; Sørensen, Anton N.; Jakobsen, Peter; Hornstrup, Allan; Jessen, Niels-Christian; Thizy, Cédric; Holmes, Warren; Israelsson, Ulf; Seiffert, Michael; Waczynski, Augustyn; Laureijs, René J.; Racca, Giuseppe; Salvignol, Jean-Christophe; Boenke, Tobias; Strada, Paolo
2016-07-01
The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM).
The Acceleration Mechanism of Resistive MHD Jets Launched from Accretion Disks
Kuwabara, T; Kudoh, T; Matsumoto, R
2004-01-01
We analyzed the results of non-linear resistive magnetohydrodynamical (MHD) simulations of jet formation to study the acceleration mechanism of axisymmetric, resistive MHD jets. The initial state is a constant angular momentum, polytropic torus threaded by weak uniform vertical magnetic fields. The time evolution of the torus is simulated by applying the CIP-MOCCT scheme extended for resistive MHD equations. We carried out simulations up to 50 rotation period at the innermost radius of the disk created by accretion from the torus. The acceleration forces and the characteristics of resistive jets were studied by computing forces acting on Lagrangian test particles. Since the angle between the rotation axis of the disk and magnetic field lines is smaller in resistive models than in ideal MHD models, magnetocentrifugal acceleration is smaller. The effective potential along a magnetic field line has maximum around $z \\sim 0.5r_0$ in resistive models, where $r_0$ is the radius where the density of the initial toru...
Fromang, S; Teyssier, R
2006-01-01
In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. The algorithm is based on a previous work in which the MUSCL--Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss its properties. Through a series of test problems, we illustrate the performances of this new code using two different MHD Riemann solvers (Lax-Friedrich and Roe) and the need of the Adaptive Mesh Refinement capabilities in some cases. Finally, we show its versatility by applying it to two completely different astrophysical situations well studied in the past years: the growth of the magnetorotational instability in the shearing box and the collapse of magnetized cloud cores. We have implemented this new Godunov scheme to solve the ideal MHD equations in the AMR code RAMSES. It results in a powerful tool that can be applied to a grea...
MHD compressor---expander conversion system integrated with GCR inside a deployable reflector
Tuninetti, G. (Ansaldo S.p.A., Genoa (Italy). Research Div.); Botta, E.; Criscuolo, C.; Riscossa, P. (Ansaldo S.p.A., Genoa (Italy). Nuclear Div.); Giammanco, F. (Pisa Univ. (Italy). Dipt. di Fisica); Rosa-Clot, M. (Florence Univ. (Italy). Dipt. di Fisica)
1989-04-20
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.
Initial Studies of Validation of MHD Models for MST Reversed Field Pinch Plasmas
Jacobson, C. M.; Almagri, A. F.; Craig, D.; McCollam, K. J.; Reusch, J. A.; Sauppe, J. P.; Sovinec, C. R.; Triana, J. C.
2015-11-01
Quantitative validation of visco-resistive MHD models for RFP plasmas takes advantage of MST's advanced diagnostics. These plasmas are largely governed by MHD relaxation activity, so that a broad range of validation metrics can be evaluated. Previous nonlinear simulations using the visco-resistive MHD code DEBS at Lundquist number S = 4 ×106 produced equilibrium relaxation cycles in qualitative agreement with experiment, but magnetic fluctuation amplitudes b~ were at least twice as large as in experiment. The extended-MHD code NIMROD previously suggested that a two-fluid model may be necessary to produce b~ in agreement with experiment. For best comparisons with DEBS and to keep computational expense tractable, NIMROD is run in single-fluid mode at low S. These simulations are complemented by DEBS at higher S in cylindrical geometry, which will be used to examine b~ as a function of S. Experimental measurements are used with results from these simulations to evaluate validation metrics. Convergence tests of previous high S DEBS simulations are also discussed, along with benchmarking of DEBS and NIMROD with the SPECYL and PIXIE3D codes. Work supported by U.S. DOE and NSF.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas
L.-N. Hau
2007-09-01
Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.
Berling, E.
1991-05-02
MHD-, ships-, jet engine-unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquifier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. Ships water jet engines with magneto hydrodynamic (MHD) low temperature superconductor drive are known. The invention of the ceramic high temperature superconductor MHD drive, which is cooled with liquid hydrogen. The hydrogen is obtained electro-chemically directly from seawater, and is liquified magneto-calorically. The high temperature superconductor elements of the engine, liquifier, generator, storage coil, permanent magnet hollow cylinder store are coupled by a common liquid hydrogen cooling circuit. The internal combustion engine driving the generator is fuelled by the same liquid hydrogen by which the high temperature superconductor elements are cooled.
Performance experiments with a shock-tunnel-driven argon-cesium MHD disk generator
Veefkind, A.; Karavasilev, P.; Wang, D.
1988-08-01
An extensive amount of data has been collected concerning MHD disk generator performance under different operation conditions. The results are obtained from a large number of runs with the Eindhoven shock tunnel facility. The runs are carried out at different stagnation temperatures, stagnation pressures, external loads, and seed fractions. Two channels have been used, one with and one without inlet swirl. Voltage, pressure, and radiation measurements have been employed. Current to voltage characteristics have been measured for different seed ratios. The enthalpy extractions of the disk with inlet swirl are found to be comparable with similar experiments with linear channels. The enthalpy extractions of the radial disk are found to be lower. A high enthalpy extraction (18 percent at a stagnation temperature of 2100 K) is reported at a comparatively low stagnation pressure (4.2 bar). A one-dimensional-gasdynamical analysis using measured voltages as an input is discussed. The measured fluctuations of electron temperature and density indicate that the results are obtained in a nonuniform plasma. 10 references.
Wu, C.; Chang, T.
2010-12-01
A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.
MHD Remote Numerical Simulations: Evolution of Coronal Mass Ejections
Hernandez-Cervantes, L; Gonzalez-Ponce, A R
2008-01-01
Coronal mass ejections (CMEs) are solar eruptions into interplanetary space of as much as a few billion tons of plasma, with embedded magnetic fields from the Sun's corona. These perturbations play a very important role in solar--terrestrial relations, in particular in the spaceweather. In this work we present some preliminary results of the software development at the Universidad Nacional Autonoma de Mexico to perform Remote MHD Numerical Simulations. This is done to study the evolution of the CMEs in the interplanetary medium through a Web-based interface and the results are store into a database. The new astrophysical computational tool is called the Mexican Virtual Solar Observatory (MVSO) and is aimed to create theoretical models that may be helpful in the interpretation of observational solar data.
Generation of sheet currents by high frequency fast MHD waves
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.
Muhammad Ramzan
Full Text Available The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM. Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.
Arshad Khan
Full Text Available This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.
Zhang, Weiqun; Wang, Peng
2008-01-01
Magnetic field strengths inferred for relativistic outflows including gamma-ray bursts (GRB) and active galactic nuclei (AGN) are larger than naively expected by orders of magnitude. We present three-dimensional relativistic magnetohydrodynamics (MHD) simulations demonstrating amplification and saturation of magnetic field by a macroscopic turbulent dynamo triggered by the Kelvin-Helmholtz shear instability. We find rapid growth of electromagnetic energy due to the stretching and folding of field lines in the turbulent velocity field resulting from non-linear development of the instability. Using conditions relevant for GRB internal shocks and late phases of GRB afterglow, we obtain amplification of the electromagnetic energy fraction to $\\epsilon_B \\sim 5 \\times 10^{-3}$. This value decays slowly after the shear is dissipated and appears to be largely independent of the initial field strength. The conditions required for operation of the dynamo are the presence of velocity shear and some seed magnetization b...
Mohammad H. Yazdi
2011-12-01
Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.
Operational analysis of open-cycle MHD
Lippert, T. E.; McCutchan, D. A.
1980-07-01
Open cycle magnetohydrodynamic (OCMHD) conceptual power plant designs are studied in the context of a utility system to form a better basis for understanding their design, design requirements, and market possibilities. Based on assumed or projected plant costs and performance characteristics, assumed economics and escalation factors, and one coal supply and delivery scenario, overall and regional OCMHD utility market possibilities are reviewed. Additionally, for one hypothetical utility system a generation expansion plan is developed that includes OCMHD as a baseload power generating station. The impact on generation system economics and operation of alternating selected MHD plant cost and performance characteristics is reviewed. Baseload plant availability is shown as an important plant design consideration, and a general methodology and data base is developed to assess the impact on design and cost of various reliability decisions. An overall plant availability goal is set and the required availabilities of various MHD high technology components are derived to meet the plant goal. The approach is then extended to projecting channel life goals for various plant design configurations and assumptions.
Loywyck, V.; Bijma, P.; Pinard-van der Laan, M.H.; Arendonk, van J.A.M.; Verrier, E.
2005-01-01
Selection programmes are mainly concerned with increasing genetic gain. However, short-term progress should not be obtained at the expense of the within-population genetic variability. Different prediction models for the evolution within a small population of the genetic mean of a selected trait, it
Graniczny, Marek; Colombo, Davide; Kowalski, Zbigniew; Przyłucka, Maria; Zdanowski, Albin
2015-11-01
This paper presents application of satellite interferometric methods (persistent scatterer interferometric synthetic aperture radar (PSInSAR™) and differential interferometric synthetic aperture radar (DInSAR)) for observation of ground deformation in the Upper Silesian Coal Basin (USCB) in Southern Poland. The presented results were obtained during the DORIS project (EC FP 7, Grant Agreement n. 242212, www.doris-project.eu). Several InSAR datasets for this area were analysed. Most of them were processed by Tele-Rilevamento Europa - T.R.E. s.r.l. Italy. Datasets came from different SAR satellites (ERS 1 and 2, Envisat, ALOS- PALSAR and TerraSAR-X) and cover three different SAR bands (L, C and X). They were processed using both InSAR techniques: DInSAR, where deformations are presented as interferometric fringes on the raster image, and PSInSAR, where motion is indentified on irregular set of persistent scatterer (PS) points. Archival data from the C-band European Space Agency satellites ERS and ENVISAT provided information about ground movement since 1992 until 2010 in two separate datasets (1992-2000 and 2003-2010). Two coal mines were selected as examples of ground motion within inactive mining areas: Sosnowiec and Saturn, where mining ceased in 1995 and 1997, respectively. Despite well pumping after closure of the mines, groundwater rose several dozen meters, returning to its natural horizon. Small surface uplift clearly indicated on satellite interferometric data is related to high permeability of the hydrogeological subregion and insufficient water withdrawal from abandoned mines. The older 1992-2000 PSInSAR dataset indicates values of ground motion ranging from -40.0 to 0.0 mm. The newer 2003-2010 dataset shows values ranging from -2.0 to +7.0 mm. This means that during this period of time subsidence was less and uplift greater in comparison to the older dataset. This is even more evident in the time series of randomly selected PS points from both coal
Distinguin, Marc; Lavanchy, Jean-Marc
-term monitoring sections). Borehole simulators were used to define a suitable flow model taking into account the complete pressure history of the borehole, and to derive best-guess estimates and uncertainty ranges for the hydraulic parameters. The sources of perturbations and the consistency of results are discussed in this paper. For instance, for a same interval tested through different techniques, an overestimation by one order of magnitude of the hydraulic conductivity due to a large overestimation of pore pressure during packer test was observed. In situ permeability estimations are also compared with those obtained from laboratory tests on core samples. Both short-term and long-term measurements provide values for the hydraulic conductivity at different scales with high consistency. This parameter is shown to be less than 2 × 10 -12 m/s. Pressures measurements from long-term monitoring are sufficiently accurate for determining formation hydraulic heads. A pressure profile in the argillite, derived from the extensive set of data currently available, shows an overpressure in the argillite 20-60 m above its surrounding formations. As a whole, the pressure data and derived hydraulic properties acquired from deep boreholes, offer a high degree of reliability and constitute a major contribution to the hydraulic characterisation of the low-permeable argillite formation. In 2006, this data will be complemented with measurements carried out in the Laboratory at 490 m depth, with the aim to characterize in greater depth the pressure profile of the argillite.
Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments
Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.
1996-01-01
First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current
Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations
Jiang, Yan-Fei
I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal
Müller, Juliane; Sanchez Montes, Maria Luisa; McClymont, Erin; Stein, Ruediger; Fahl, Kirsten; Mangelsdorf, Kai; Wilkes, Heinz; 341 Scientists, Expedition
2014-05-01
(Etourneau et al., 2013) - is applied to gain information about the variability in polar water/sea ice extent in the study area. Previously, Rowland et al. (2001) documented that not only the degree of unsaturation in C25-HBIs but also the E- to Z-isomerisation in the C25-HBI trienes increases with increasing water temperature. Based on this observation we suggest that the ratio of the Z-isomer to the E-isomer in the trienes might reflect SST changes and could be used as an additional SST proxy. The applicability of this approach, however, needs further evaluation (e.g. through comparisons with alkenone SST data obtained from Expedition 341 sediments). References Addison, J.A., Finney, B.P., Dean, W.E., Davies, M.H., Mix, A.C., Stoner, J.S. and Jaeger, J.M., 2012. Productivity and sedimentary d15N variability for the last 17,000 years along the northern Gulf of Alaska continental slope. Paleoceanography, 27 (1), PA1206. Barron, J.A., Bukry, D., Dean, W.E., Addison, J.A. and Finney, B., 2009. Paleoceanography of the Gulf of Alaska during the past 15,000 years: Results from diatoms, silicoflagellates, and geochemistry. Marine Micropaleontology, 72 (3-4), 176-195. Davies, M.H., Mix, A.C., Stoner, J.S., Addison, J.A., Jaeger, J., Finney, B. and Wiest, J., 2011. The deglacial transition on the southeastern Alaska Margin: Meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography, 26 (2), PA2223. Etourneau, J., Collins, L.G., Willmott, V., Kim, J.H., Barbara, L., Leventer, A., Schouten, S., Sinninghe Damsté, J.S., Bianchini, A., Klein, V., Crosta, X. and Massé, G., 2013. Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability. Clim. Past, 9 (4), 1431-1446. Rowland, S.J., Allard, W.G., Belt, S.T., Masse, G., Robert, J.M., Blackburn, S., Frampton, D., Revill, A.T. and Volkman, J.K., 2001. Factors influencing the distributions of
MHD Simulations of Core Collapse Supernovae with Cosmos++
Akiyama, Shizuka
2010-01-01
We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core--collapse supernovae. We have initialized a non--rotating 15 solar mass progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post--collapse environment is expected to be only ~ 200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. (2003) and Obergaulinger et al. (2009).
Newest insights from MHD numerical modeling of Pulsar Wind Nebulae
Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.
2016-06-01
Numerical MHD models are considered very successful in accounting for many of the observed properties of Pulsar Wind Nebulae (PWNe), especially those concerning the high energy emission morphology and the inner nebula dynamics. Although PWNe are known to be among the most powerful accelerators in nature, producing particles up to PeV energies, the mechanisms responsible of such an efficient acceleration are still a deep mystery. Indeed, these processes take place in one of the most hostile environment for particle acceleration: the relativistic and highly magnetized termination shock of the pulsar wind. The newest results from numerical simulations of the Crab Nebula, the PWN prototype, will be presented, with special attention to the problem of particle acceleration. In particular it will be shown how a multi-wavelengths analysis of the wisps properties can be used to constrain the particle acceleration mechanisms working at the Crab's termination shock, by identifying the particle acceleration site at the shock front.
Viscous, resistive MHD stability computed by spectral techniques
Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.
1983-01-01
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.
New tests for a singularity of ideal MHD
Kerr, R M; Kerr, Robert M.; Brandenburg, Axel
2000-01-01
Analysis using new calculations with 3 times the resolution of the earlier linked magnetic flux tubes confirms the transition from singular to saturated growth rate reported by Grauer and Marliani \\cite{GrauerMar99} for the incompressible cases is confirmed. However, all of the secondary tests point to a transition back to stronger growth rate at a different location at late times. Similar problems in ideal hydrodynamics are discussed, pointing out that initial negative results eventually led to better initial conditions that did show evidence for a singularity of Euler. Whether singular or near-singular growth in ideal MHD is eventually shown, this study could have bearing on fast magnetic reconnection, high energy particle production and coronal heating.
Hybrid Method for Tokamak MHD Equilibrium Configuration Reconstruction
HE Hong-Da; DONG Jia-Qi; ZHANG Jin-Hua; JIANG Hai-Bin
2007-01-01
A hybrid method for tokamak MHD equilibrium configuration reconstruction is proposed and employed in the modified EFIT code. This method uses the free boundary tokamak equilibrium configuration reconstruction algorithm with one boundary point fixed. The results show that the position of the fixed point has explicit effects on the reconstructed divertor configurations. In particular, the separatrix of the reconstructed divertor configuration precisely passes the required position when the hybrid method is used in the reconstruction. The profiles of plasma parameters such as pressure and safety factor for reconstructed HL-2A tokamak configurations with the hybrid and the free boundary methods are compared. The possibility for applications of the method to swing the separatrix strike point on the divertor target plate is discussed.
Characteristics of Linear MHD Generators with One or a Few Loads
Witalis, E.A.
1966-02-15
The theoretical performance of linear series segmented MHD generators with finite size electrodes and one or a few identical external loads is investigated. The analysis is an extension of our conformal mapping investigation previously reported. The electrical characteristics are evaluated as functions of the segmentation degree, the Hall parameter and the relative position of short-circuited electrodes. Special consideration is given to the influence of staggering the electrodes, i. e. shifting the relative positions of short-circuited electrodes. General electrical terminal characteristics, i. e. the full current-voltage relation, can not be obtained by the exact analytical method, which is applicable only to so-called design load conditions or infinitely long MHD channels. However, it is shown how the general properties can be explained qualitatively and calculated approximately by describing off-design modes of operation in terms of a fictitious 'effective' number of external loads.
Linear Two-Dimensional MHD of Accretion Disks: Crystalline structure and Nernst coefficient
Montani, Giovanni
2009-01-01
We analyse the two-dimensional MHD configurations characterising the steady state of the accretion disk on a highly magnetised neutron star. The model we describe has a local character and represents the extension of the crystalline structure outlined in Coppi (2005), dealing with a local model too, when a specific accretion rate is taken into account. We limit our attention to the linearised MHD formulation of the electromagnetic back-reaction characterising the equilibrium, by fixing the structure of the radial, vertical and azimuthal profiles. Since we deal with toroidal currents only, the consistency of the model is ensured by the presence of a small collisional effect, phenomenologically described by a non-zero constant Nernst coefficient (thermal power of the plasma). Such an effect provides a proper balance of the electron force equation via non zero temperature gradients, related directly to the radial and vertical velocity components. We show that the obtained profile has the typical oscillating feat...
Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents
Pulkkinen, T. I.; Baker, D. N.; Walker, R. J.; Raeder, J.; Ashour-Abdalla, M.
1995-01-01
The tail currents predicted by empirical magnetic field models and global MHD simulations are compared. It is shown that the near-Earth currents obtained from the MHD simulations are much weaker than the currents predicted by the Tsyganenko models, primarily because the ring current is not properly represented in the simulations. On the other hand, in the mid-tail and distant tail the lobe field strength predicted by the simulations is comparable to what is observed at about 50 R(sub E) distance, significantly larger than the very low lobe field values predicted by the Tsyganenko models at that distance. Ways to improve these complementary approaches to model the actual magnetospheric configuration are discussed.
Forward and inverse problems in MHD: numerical and experimental results
Stefani, F.; Gerbeth, G.; Gundrum, T.; Xu, M. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Gailitis, A. [Inst. of Physics, Latvian Univ., Salaspils (Latvia)
2007-07-01
When a conducting fluid comes under the influence of a magnetic field, electrical currents are induced that give rise to a modification of this magnetic field. The ratio of induced magnetic field to applied magnetic field is characterized by the magnetic Reynolds number Rm of the flow. For large Rm, even self-excitation of a magnetic field can occur. This hydromagnetic dynamo effect is responsible for the maintenance of the magnetic fields of planets, stars and galaxies. In the present paper, we delineate some recent developments in the numerical treatment of induction effects in arbitrary geometry, and their application for dynamo experiments as well as for a ''contactless inductive flow tomography (CIFT).'' (orig.)
MHD models compared with Artemis observations at -60 Re
Gencturk Akay, Iklim; Sibeck, David; Angelopoulos, Vassilis; Kaymaz, Zerefsan; Kuznetsova, Maria
2016-07-01
The distant magnetotail has been one of the least studied magnetic regions of the Earth's magnetosphere compared to the other near Earth both dayside and nightside magnetospheric regions owing to the limited number of spacecraft observations. Since 2011, ARTEMIS spacecraft give an excellent opportunity to study the magnetotail at lunar distances in terms of data quality and parameter space. This also gives opportunities to improve the magnetotail models at -60 Re and encourages the modelling studies of the distant magnetotail. Using ARTEMIS data in distant magnetotail, we create magnetic field and plasma flow vector maps in different planes and separated with IMF orientation to understand the magnetotail dynamics at this distance. For this study, we use CCMC's Run-on-Request resources of the MHD models; specifically SWMF-BATS-R-US, OpenGGCM, and LFM and perform the similar analysis with the models. Our main purpose in this study is to measure the performance of the MHD models at -60 Re distant magnetotail by comparing the model results with Artemis observations. In the literature, such a comprehensive comparative study is lacking in the distant tail. Preliminary results show that in general all three models underestimate the magnetic field structure while overestimating the flow speed. In the cross-sectional view, LFM seems to produce the better agreement with the observations. A clear dipolar magnetic field structure is seen with dawn-dusk asymmetry in all models owing to slight positive IMF By but the effect was found to be exaggerated. All models show tailward flows at this distance of the magnetotail, most possibly owing to the magnetic reconnection at the near Earth tail distances. A detailed comparison of several tail characteristics from the models will be presented and discussions will be given with respect to the observations from Artemis at this distance.
MHD Flow Visualization of Magnetopause and Polar Cusps Vortices
Collado-Vega, Y. M.; Kessel, R. L.; Shao, X.; Boller, R. A.
2007-01-01
Detailed analysis of Wind, Geotail, and Cluster data shows how magnetopause boundary and polar cusps vortices associated with high speed streams can be a carrier of energy flux to the Earth's magnetosphere. For our analysis time interval, March 29 . - April 5 2002, the Interplanetary Magnetic Field (IMF) is primarily northward and MHD simulations of vortices along the flanks within nine hours of the time interval suggest that a Kelvin Helmholtz (KH) instability is likely present. Vortices were classified by solar wind input provided by the Wind satellite located 70-80 RE upstream from Earth. We present statistics for a total of 304 vortices found near the ecliptic plane on the magnetopause flanks, 273 with northward IMF and 31 with southward IMF. The vortices generated under northward IMF were more driven into the dawnside than into the duskside, being substantially more ordered on the duskside. Most of the vortices were large in scale, up to 10 RE, and with a rotation axis closely aligned with the Z(sub GSE) direction. They rotated preferentially clockwise on the dawnside, and. counter-clockwise on the duskside. Those generated under southward IMF were less ordered, fewer in number, and also smaller in diameter. Significant vortex activity occurred on the nightside region of the magnetosphere for these southward cases in contrast to the northward IMF cases on which most of the activity was driven onto the magnetopause flanks. Magnetopause crossings seen by the Geotail spacecraft for the time interval were analyzed and compared with the MHD simulation to validate our results. Vortices over the polar cusps are also being analyzed and the simulation results will be compared to the multi-point measurements of the four Cluster satellites.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Ramos Perez, S.; Rodriguez Gonzalez, M.; Uribe Carvajal, A.; Espinosa Aranda, J.; Cuellar Martinez, A.
2013-05-01
In this talk we show seismological processes performed with data obtained from the records collected by the strong motion recorders that constitute the seismic alert system of Mexico (SASMEX). The instruments and the triggering algorithms are original design of CIRES, This has allowed that optimal time modifications, improvements and error corrections. Punctual parameters as first time arrivals, S-P times, and maximum acceleration (Amax) for each seismic station can be obtained from the warning record it self, before the earthquake arrives. When the system initiates the alert process the S-P time at least two sites are already known and at this moment common time is set in all the array which allows the synchronization of all the records, these are recovered during field trips after every trigger. The time histories are obtained by A/D converters (12 bits) and MEMS accelerometers. During the March 20, 2012 earthquake nine seismic stations of the SASMEX array detected the event at less than one hundred kilometres of epicentral distance, this allowed to calculate the location of the hypocenter, the maxima displacements associated to each of these sites. The greatest value corresponds to the Llano Grande seismic station, 0.47m on the SW direction, for the NS component. The distributions of Amax and the estimated movement displacement are shown. The foreshock of October 6 is also analysed, The behaviour of the SASMEX during the earthquakes of Tehuacan (June 15, 1999) and of Guatemala (Nov 7, 2012) are shown as examples of the possibility that the nature of the seismic activity it self point the need and probable success of increasing the coverage of SASMEX.
Prasath, E B; Chan, M L H; Wong, W H W; Lim, C J W; Tharmalingam, M D; Hendricks, M; Loh, S F; Chia, Y N
2014-02-01
In vitro maturation (IVM) of immature oocytes retrieved from surgically resected ovaries has been proposed as a method of fertility preservation in ovarian cancer patients undergoing definitive surgery. While there had been several reports of successful derivation of mature oocytes and or embryos, there have been no reports as yet of successful pregnancies. In this case report, we present a pregnancy and live birth from a young patient, with stage IIIC ovarian cancer, who had undergone fertility sparing surgery. The immature oocytes recovered after oophorectomy were fertilized after IVM. The embryos obtained were cryopreserved and later transferred to achieve a singleton healthy pregnancy leading to a live birth.
Boričić Zoran
2009-01-01
Full Text Available This paper concerns with unsteady two-dimensional temperature laminar magnetohydrodynamic (MHD boundary layer of incompressible fluid. It is assumed that induction of outer magnetic field is function of longitudinal coordinate with force lines perpendicular to the body surface on which boundary layer forms. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in inductionless approximation. Characteristic properties of fluid are constant because velocity of flow is much lower than speed of light and temperature difference is small enough (under 50ºC . Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for every particular problem. Conclusions based on these solutions are related only with specific temperature MHD boundary layer problem. In this paper, quite different approach is used. First new variables are introduced and then sets of similarity parameters which transform equations on the form which don't contain inside and in corresponding boundary conditions characteristics of particular problems and in that sense equations are considered as universal. Obtained universal equations in appropriate approximation can be solved numerically once for all. So-called universal solutions of equations can be used to carry out general conclusions about temperature MHD boundary layer and for calculation of arbitrary particular problems. To calculate any particular problem it is necessary also to solve corresponding momentum integral equation.
Pramitha, M.; Venkat Ratnam, M.; Krishna Murthy, B. V.; Vijaya Bhaskar Rao, S.
2017-02-01
Using 8 years (May 2006 to March 2014) of high resolution and high accuracy GPS radiosonde observations available from a tropical station Gadanki (13.5°N, 79.2°E), India, we have investigated the climatology of gravity wave energy and zonal momentum fluxes in the lower stratosphere. We also obtained best fit spectrum model for the gravity waves (GWs) for this tropical station. In general, strong annual variation in the energy and momentum flux with maximum during Indian summer monsoon is observed in the lower stratospheric region (18-25 km). By considering different source spectra, we have applied Gravitywave Regional or Global RAy Tracer (GROGRAT) model run on monthly basis using the source spectrum values at different altitudes on the ERA-Interim background fields to obtain the kinetic energy and zonal momentum fluxes for each of the spectra considered. These simulated fluxes are compared with the observed fluxes to arrive at the best fit spectrum model. It is found that the spectrum which represents the convection transient mountain mechanism that is purely anti-symmetric and anisotropic in nature is the best fit model for Gadanki location. This information would be useful in parameterization of the GWs in numerical models over Indian region.
Global and Kinetic MHD Simulation by the Gpic-MHD Code
Hiroshi NAITOU; Yusuke YAMADA; Kenji KAJIWARA; Wei-li LEE; Shinji TOKUDA; Masatoshi YAGI
2011-01-01
In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC （particle-in-cell） code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic （MHD） simulation]. In the new algorithm, the vorticity equation and the generalized Ohm＇s law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential Az. The basic algorithm is equivalent to solving the reduced-MHD-type equations with kinetic corrections, in which MHD physics related to Alfven modes are well described. The estimation of perturbed electron pressure from particle dynamics is dominant, while the effects of other moments are negligible. Another advantage of the algorithm is that the longitudinal induced electric field, ETz = -δAz/δt, is explicitly estimated by the generalized Ohm＇s law and used in the equations of motion. Furthermore, the particle velocities along the magnetic field are used （vz-formulation） instead of generalized momentums （pz-formulation）, hence there is no problem of ＇cancellation＇, which would otherwise appear when Az is estimated from the Ampere＇s law in the pz-formulation. The successful simulation of the collisionless internal kink mode by the new Gpic-MHD with realistic values of the large-scale and high-beta tokamaks revealed the usefulness of the new algorithm.
K.V.S. Raju
2014-06-01
Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.
Nakamizo, A.; Tanaka, T.
2006-12-01
Existing global models of the solar-wind/IMF expanding to the Earth's orbit are basically grounded in the idea of "source surface." It is widely accepted that the sector structure and the solar wind speed are primarily controlled by the magnetic field at the source surface and the so-called "expansion factor." On the other hand, 3-D MHD model is still off from practical use because both of scientific and technical problems. One of the former problems is the reproduction of supersonic solar-wind. From the viewpoint of the physics of the solar wind, coronal heating and outward acceleration mechanisms are invoked to explain the supersonic evolution of the solar wind. Since the mechanism responsible for the heating/acceleration is still one of the primary subjects of the physics of the solar wind, many MHD models have taken into account their effects by incorporating additional source terms corresponding to promising candidates such as thermal conductions, radiation losses and wave pressures. However there are few MHD models considering the effect of the expansion factor, which determines the solar-wind speed in the series of source surface models. In this study we newly incorporate the flux tube expansion rate into the MHD equation system including heat source function in the energy equation. Appling the unstructured grid system, we achieved the dense grid spacing at the inner boundary, which enable us to adopt realistic solar magnetic fields, and a size of simulation space of 1AU. Photospheric magnetic field data is used as the inner boundary condition.The simulation results are summarized as: (1) The variation of solar wind speed is well controlled by the structure of magnetic fields at and little above the solar surface and (2) Far above the solar surface, the interface between high and low speed flows evolves to a structure suggestive of CIRs. Comparing the data from simulation with the actual solar wind data obtained by spacecrafts, we will discuss the future
Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I
1979-05-01
A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.
Realistic radiative MHD simulation of a solar flare
Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.
2017-08-01
We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".
Loganathan P.
2010-01-01
Full Text Available An analysis is presented to investigate the effect of thermophoresis particle deposition and variable viscosity on non-Darcy MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of suction/injection. The wall of the wedge is embedded in a uniform non-Darcian porous medium in order to allow for possible fluid wall suction or injection. The governing partial differential equations of the problem, subjected to their boundary conditions, are solved numerically by applying an efficient solution scheme for local nonsimilarity boundary layer analysis. Numerical calculations are carried out for different values of dimensionless parameter in the problem and an analysis of the results obtained show that the flow field is influenced appreciably by the applied magnetic field. The results are compared with those known from the literature and excellent agreement between the results is obtained.
Analogue Kerr-like geometries in a MHD inflow
Noda, Sousuke; Takahashi, Masaaki
2016-01-01
We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.
Batusov, V; Gayde, J C; Khubua, J I; Lasseur, C; Lyablin, M V; Miralles-Verge, L; Nessi, Marzio; Rusakovitch, N A; Sissakian, A N; Topilin, N D
2002-01-01
The high-precision assembly of large experimental set-ups is of a principal necessity for the successful execution of the forthcoming LHC research programme in the TeV-beams. The creation of an adequate survey and control metrology method is an essential part of the detector construction scenario. This work contains the dimension measurement data for ATLAS hadron calorimeter MODULE No. 8 (6 m, 22 tons) which were obtained by laser and by photogrammetry methods. The comparative data analysis demonstrates the measurements agreement within +or-70 mu m. It means, these two clearly independent methods can be combined and lead to the rise of a new-generation engineering culture: high-precision metrology when precision assembling of large scale massive objects. (3 refs).
Last, Carsten
2017-01-01
This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.
Observational Tests of Recent MHD Turbulence Perspectives
Ghosh, Sanjoy
2001-06-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
MHD power generation with fully ionized seed
Yamasaki, H.; Shioda, S.
1977-01-01
Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.
The Biermann catastrophe of numerical MHD
Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.
2016-05-01
The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.
Resonant interactions of perturbations in MHD flows
Sagalakov, A.M.; Shtern, V.N.
1977-01-17
The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.
Fitzgibbons, Megan; Meert, Deborah
2010-01-01
The use of bibliographic management software and its internal search interfaces is now pervasive among researchers. This study compares the results between searches conducted in academic databases' search interfaces versus the EndNote search interface. The results show mixed search reliability, depending on the database and type of search…
Fitzgibbons, Megan; Meert, Deborah
2010-01-01
The use of bibliographic management software and its internal search interfaces is now pervasive among researchers. This study compares the results between searches conducted in academic databases' search interfaces versus the EndNote search interface. The results show mixed search reliability, depending on the database and type of search…
The Hanle effect of Ly$\\alpha$ in an MHD model of the Solar Transition Region
Stepan, Jiri; Carlsson, Mats; Leenaarts, Jorrit
2012-01-01
In order to understand the heating of the solar corona it is crucial to obtain empirical information on the magnetic field in its lower boundary (the transition region). To this end, we need to measure and model the linear polarization produced by scattering processes in strong UV lines, such as the hydrogen Ly$\\alpha$ line. The interpretation of the observed Stokes profiles will require taking into account that the outer solar atmosphere is highly structured and dynamic, and that the height of the transition region may well vary from one place in the atmosphere to another. Here we report on the Ly$\\alpha$ scattering polarization signals we have calculated in a realistic model of an enhanced network region, resulting from a state-of-the-art radiation MHD simulation. This model is characterized by spatially complex variations of the physical quantities at transition region heights. The results of our investigation lead us to emphasize that scattering processes in the upper solar chromosphere should indeed prod...
Prasad Kerehalli
2015-01-01
Full Text Available An analysis is carried out to study the effects of temperature-dependent transport properties on the fully developed free and forced MHD convection flow in a vertical channel. In this model, viscous and Ohmic dissipation terms are also included. The governing nonlinear equations (in non-dimensional form are solved numerically by a second order finite difference scheme. A parametric study is performed in order to illustrate the interactive influences of the model parameters; namely, the magnetic parameter, the variable viscosity parameter, the mixed convection parameter, the variable thermal conductivity parameter, the Brinkmann number and the Eckert number. The velocity field, the temperature field, the skin friction and the Nusselt number are evaluated for several sets of values of these parameters. For some special cases, the obtained numerical results are compared with the available results in the literature: Good agreement is found. Of all the parameters, the variable thermo-physical transport property has the strongest effect on the drag, heat transfer characteristics, the stream-wise velocity, and the temperature field.
Global MHD simulations of Neptune's magnetosphere
Mejnertsen, L.; Eastwood, J. P.; Chittenden, J. P.; Masters, A.
2016-08-01
A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the "pole-on" magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning "off" and "on" when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations.
On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD
Trakhinin, Yuri
2010-01-01
We study the initial-boundary value problem resulting from the linearization of the plasma-vacuum interface problem in ideal compressible magnetohydrodynamics (MHD). We suppose that the plasma and the vacuum regions are unbounded domains and the plasma density does not go to zero continuously, but jumps. For the basic state upon which we perform linearization we find two cases of well-posedness of the "frozen" coefficient problem: the "gas dynamical" case and the "purely MHD" case. In the "gas dynamical" case we assume that the jump of the normal derivative of the total pressure is always negative. In the "purely MHD" case this condition can be violated but the plasma and the vacuum magnetic fields are assumed to be non-zero and non-parallel to each other everywhere on the interface. For this case we prove a basic a priori estimate in the anisotropic weighted Sobolev space $H^1_*$ for the variable coefficient problem.
Resonant absorption of kink MHD waves by magnetic twist in coronal loops
Ebrahimi, Z
2015-01-01
There is ample evidences of twisted magnetic structures in the corona. This motivates us to consider the magnetic twist as the cause of Alfven frequency continuum in coronal loops, which can support the resonant absorption as the rapid damping mechanism for the observed coronal kink MHD oscillations. For a straight cylindrical compressible zero-beta thin flux tube with a magnetic twist in a thin boundary and straight magnetic field in the interior and exterior regions as well as a step-like radial density profile, we derive the dispersion relation and solve it analytically. Consequently, we obtain the frequencies and damping rates of the fundamental (l=1) and first/second overtones (l=2,3) kink (m=1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can achieve deviations from P_1/P_2=2 and P_1/P_3=3 of the same order of magnitude as in the observations.
Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability.
Gardiner, Thomas Anthony
2010-09-01
This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.
Ramamoorthy MUTHURAJ
2013-07-01
Full Text Available This paper investigates the magnetohydrodynamic (MHD mixed convective heat and mass transfer flow in a vertical wavy porous space in the presence of a heat source with the combined effects of chemical reaction and wall slip condition. The dimensionless governing equations are perturbed into: mean (zeroth-order part and a perturbed part, using amplitude as a small parameter. The perturbed quantities are obtained by perturbation series expansion for small wavelength in which terms of exponential order arise. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, magnetic field, porous medium, heat source/sink parameter and wall slip condition. Further, the results of the skin friction and rate of heat and mass transfer at the wall are presented for various values of parameters entering into the problem and discussed with the help of graphs.
Weinans, M.J.; Kooij, L.; Muller, M.A.; Bilardo, K.M.; van Lith, J.M.; Tymstra, T.
2004-01-01
OBJECTIVE: To compare the experiences of women who received a screen-positive test result for Down syndrome after nuchal translucency screening or after biochemical screening in the first trimester of pregnancy in the Netherlands. METHOD: Semi-quantitative questionnaires were sent to 40 women with a
Local conservative regularizations of compressible MHD and neutral flows
Krishnaswami, Govind S; Thyagaraja, Anantanarayanan
2016-01-01
Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...
Generalized similarity method in unsteady two-dimensional MHD ...
user
International Journal of Engineering, Science and Technology. Vol. 1, No. ... Controlling of crystallization processes in metallurgy and influence of magnetic field on discrete chemical systems bring. MHD and heat ...... Nomenclature. B. [T].
Laser-powered MHD generators for space application
Jalufka, N. W.
1986-10-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Unsteady MHD free convective flow past a vertical porous plate ...
user
2000 Mathematics subject classification: 76 W 05. Keywords: Free ... the design of MHD generators and accelerators, underground water energy storage system etc. ... In many works on plasma physics, the Hall effect is disregarded. But if the.
Schwarcz, Sandra; Spindler, Hilary; Scheer, Susan; Valleroy, Linda; Lansky, Amy
2007-07-01
Convenience samples are used to determine HIV-related behaviors among men who have sex with men (MSM) without measuring the extent to which the results are representative of the broader MSM population. We compared results from a cross-sectional survey of MSM recruited from gay bars between June and October 2001 to a random digit dial telephone survey conducted between June 2002 and January 2003. The men in the probability sample were older, better educated, and had higher incomes than men in the convenience sample, the convenience sample enrolled more employed men and men of color. Substance use around the time of sex was higher in the convenience sample but other sexual behaviors were similar. HIV testing was common among men in both samples. Periodic validation, through comparison of data collected by different sampling methods, may be useful when relying on survey data for program and policy development.
Klöpffer, Walter; Curran, Mary Ann; Frankl, Paolo; Heijungs, Reinout; Köhler, Annette; OLSEN Stig Irving
2007-01-01
This report summarizes the results of “Nanotechnology and Life Cycle Assessment,” a twoday workshop jointly convened by the Woodrow Wilson Center Project on Emerging Nanotechnologies; the United States Environmental Protection Agency Office of Research and Development; and the European Commission, RTD.G4 “Nano S&T: Converging Science and Technologies.” Held in October 2006, the workshop involved international experts from the fields of Life Cycle Assessment (LCA) and nanotechnology. The m...
Larin, A. B.; Kolegov, A. V.
2012-10-01
Results of industrial tests of the new method used for the automatic chemical control of the quality of boiler water of the drum-type power boiler ( P d = 13.8 MPa) are described. The possibility of using an H-cationite column for measuring the electric conductivity of an H-cationized sample of boiler water over a long period of time is shown.
Valdmane, R.A.; Krishberg, R.R.; Lielpeter, Ya.Ya.; Mikryukov, Ch.K.; Ulmanis, L.Ya.
1977-07-01
A study is made of the velocity distribution along the duct width of an induction MHD machine with a traveling magnetic field under pump, generator and damping conditions. The computed velocity profiles were compared to those obtained on a sodium circuit under pump and damping conditions. The parameter values for electromagnetic interaction E in the experiments and in the computations changed from 2 to 4.5. Agreement was obtained between the measured velocity distribution and the compared ones at values E > 1. 6 references, 7 figures.
Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations
Olmi, Barbara; Amato, Elena; Bucciantini, Niccolò
2015-01-01
The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time varia...
A.H.Srinivasa,
2016-02-01
Full Text Available This paper presents a study of MHD free convection flow of an electrically conducting incompressible fluid with variable viscosity about an isothermal truncated cone in the presence of heat generation or absorption. The fluid viscosity is assumed to vary as a inverse linear function of temperature. The non-linear coupled partial differential equations governing the flow and heat transfer have been solved numerically by using an implicit finite - difference scheme along with quasilinearization technique. The non-similar solutions have been obtained for the problem, overcoming numerical difficulties near the leading edge and in the downstream regime. Results indicate that skin friction and heat transfer are strongly affected by, both, viscosity-variation parameter and magnetic field. In fact, the transverse magnetic field influences the momentum and thermal fields, considerably. Further, skin friction is found to decrease and heat transfer increases near the leading edge. Also, it is found that the direction of heat transfer gets reversed during heat generation.
Passive stabilization in a linear MHD stability code
Todd, A.M.M.
1980-03-01
Utilizing a Galerkin procedure to calculate the vacuum contribution to the ideal MHD Lagrangian, the implementation of realistic boundary conditions are described in a linear stability code. The procedure permits calculation of the effect of arbitrary conducting structure on ideal MHD instabilities, as opposed to the prior use of an encircling shell. The passive stabilization of conducting coils on the tokamak vertical instability is calculated within the PEST code and gives excellent agreement with 2-D time dependent simulations of PDX.
DNS of MHD turbulent flow via the HELIOS supercomputer system at IFERC-CSC
Satake, Shin-ichi; Kimura, Masato; Yoshimori, Hajime; Kunugi, Tomoaki; Takase, Kazuyuki
2014-06-01
The simulation plays an important role to estimate characteristics of cooling in a blanket for such high heating plasma in ITER-BA. An objective of this study is to perform large -scale direct numerical simulation (DNS) on heat transfer of magneto hydro dynamic (MHD) turbulent flow on coolant materials assumed from Flibe to lithium. The coolant flow conditions in ITER-BA are assumed to be Reynolds number and Hartmann number of a higher order. The maximum target of the DNS assumed by this study based on the result of the benchmark of Helios at IFERC-CSC for Project cycle 1 is 116 TB (2048 nodes). Moreover, we tested visualization by ParaView to visualize directly the large-scale computational result. If this large-scale DNS becomes possible, an essential understanding and modelling of a MHD turbulent flow and a design of nuclear fusion reactor contributes greatly.
SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS
Franci, Luca; Verdini, Andrea; Landi, Simone [Dipartimento di Fisica e Astronomia, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, Petr [Astronomical Institute, AS CR, Bocni II/1401, CZ-14100 Prague (Czech Republic)
2015-05-10
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD
Gao, Song
2013-05-01
The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.
Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry
Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.
2001-01-01
In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.
Alfvén ionization in an MHD-gas interactions code
Wilson, A. D.; Diver, D. A.
2016-07-01
A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.
Study of MHD activities in the plasma of SST-1
Dhongde, Jasraj; Bhandarkar, Manisha; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Kumar, Sameer
2016-10-15
Highlights: • An account of MHD activity in the plasma of SST-1 • Observation of MHD instabilities with mode m = 2, n = 1 in SST-1 plasma. • MHD instabilities study of characteristic growth time, growth rate of island and island width etc. in SST-1 plasma. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak in operation at the Institute for Plasma Research, India. SST-1 has been consistently producing plasma currents in excess of 60 kA, with plasma durations above 400 ms and a central magnetic field of 1.5 T over last few experimental campaigns of 2014. Investigation of these experimental data suggests the presence of MHD activity in the SST-1 plasma. Further analysis clearly explains the behavior of MHD instabilities observed (i.e. tearing modes with m = 2, n = 1), estimating the growth rate and the island width in the SST-1 plasma. Poloidal magnetic field and Toroidal magnetic field fluctuations in SST-1 are observed using Mirnov coils. Onsets of disruptions in connection with MHD activities have been correlated with other diagnostics such as ECE, Density and Hα etc. The observations have been cross compared with the theoretical calculations and are found to be in good agreement.