WorldWideScience

Sample records for mhd peristaltic flow

  1. Influence of radiation on MHD peristaltic blood flow through a tapered channel in presence of slip and joule heating

    Science.gov (United States)

    Ahamad, N. Ameer; Ravikumar, S.; Govindaraju, Kalimuthu

    2017-07-01

    The aim of the present attempt was to investigate an effect of slip and joule heating on MHD peristaltic Newtonian fluid through an asymmetric vertical tapered channel under influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The effects of Hartmann number, porosity parameter, volumetric flow rate, radiation parameter, non uniform parameter, shift angle, Prandtl number, Brinkman number, heat source/sink parameter on temperature characteristics are presented graphically and discussed in detail.

  2. Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-06-01

    Full Text Available In this article, the simultaneous effects of slip and Magnetohydrodynamics (MHD on peristaltic blood flow of Jeffrey fluid model have been investigated in a non-uniform porous channel. The governing equation of blood flow for Jeffrey fluid model is solved with the help of long wavelength and creeping flow regime. The solution of the resulting differential equation is solved analytically and a closed form solution is presented. The impact of all the physical parameters is plotted for velocity profile and pressure rise. Nowadays, Magnetohydrodynamics is applicable in various magnetic drug targeting for cancer diseases and also very helpful to control the flow. The present analysis is also described for Newtonian fluid (λ1→0 as a special case of our study. It is observed that magnitude of the velocity is opposite near the walls due to slip effects whereas similar behavior has been observed for magnetic field.

  3. Pressure-driven peristaltic flow

    International Nuclear Information System (INIS)

    Mingalev, S V; Lyubimov, D V; Lyubimova, T P

    2013-01-01

    The peristaltic motion of an incompressible fluid in two-dimensional channel is investigated. Instead of fixing the law of wall's coordinate variation, the law of pressure variation on the wall is fixed and the border's coordinate changes to provide the law of pressure variation on the wall. In case of small amplitude of pressure-variation on the wall A, expansion wave propagates along the length of channel and the wave results in the peristaltic transport of fluid. In the case of large A, the channel divides into two parts. The small pulsating part in the end of the tube creates the flow as a human heart, while the other big part loses this function. The solution of problem for the first peristaltic mode is stable, while the solution for the second 'heart' mode is unstable and depends heavily on boundary conditions.

  4. Brownian motion and thermophoresis effects on Peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel

    Science.gov (United States)

    Sucharitha, G.; Sreenadh, S.; Lakshminarayana, P.; Sushma, K.

    2017-11-01

    The slip and heat transfer effects on MHD peristaltic transport of a nanofluid in a non-uniform symmetric/asymmetric channel have studied under the assumptions of elongated wave length and negligible Reynolds number. From the simplified governing equations, the closed form solutions for velocity, stream function, temperature and concentrations are obtained. Also dual solutions are discussed for symmetric and asymmetric channel cases. The effects of important physical parameters are explained graphically. The slip parameter decreases the fluid velocity in middle of the channel whereas it increases the velocity at the channel walls. Temperature and concentration are decreasing and increasing functions of radiation parameter respectively. Moreover, velocity, temperature and concentrations are high in symmetric channel when compared with asymmetric channel.

  5. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    International Nuclear Information System (INIS)

    Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.

    2015-01-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number

  6. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  7. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, M., E-mail: mkothandapani@gmail.com [Department of Mathematics, University College of Engineering Arni, (A Constituent College of Anna University Chennai), Arni 632326, Tamil Nadu (India); Prakash, J., E-mail: prakashjayavel@yahoo.co.in [Department of Mathematics, Arulmigu Meenakshi Amman College of Engineering, Vadamavandal 604410, Tamil Nadu (India)

    2015-03-15

    Theoretical analyses on the effect of radiation and MHD on the peristaltic flow of a nanofluid through a porous medium in a two dimensional tapered asymmetric channel has been made. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. The transport equation accounts the both Brownian motion and thermophoresis along with the radiation reaction. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynolds number. The analytical expressions obtained for the axial velocity, stream function, temperature field, nanoparticle fraction field and pressure gradient provide satisfactory explanation. Influence of various parameters on the flow characteristics have been discussed with the help of graphical results. The trapping phenomenon has also been discussed in detail. - Highlights: • Combine effect of thermal radiation and MHD on the peristaltic flow of a Newtonian nanofluid are discussed. • This work may be first attempt dealing the study of Newtonian nanofluid flow in the porous tapered asymmetric channel. • The velocity, stream function, temperature field and nanoparticle fraction field provide satisfactory explanation with help of graphs.

  8. Study of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD peristaltic blood flow under the influence of Hall effect

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2017-09-01

    Full Text Available In this article, heat and mass transfer with Joule heating on magnetohydrodynamic (MHD peristaltic blood under the influence of Hall effect is examined. Mathematical modelling is based on momentum, energy and concentration which are taken into account using ohms law. The governing partial differential equations are further simplified by neglecting the inertial forces and long wavelength approximations. Exact solutions have been presented for velocity, temperature and concentration profile. The influence of all the physical pertinent parameters is taken into account with the help graphs. It is found that Hartmann number and Hall parameter shows opposite behaviour on velocity, temperature and concentration profile. It is worth mentioning that pressure rise also depicts opposite behaviour for Hartmann number and Hall parameter. The present analysis is also presented for Newtonian fluid (α→0 as a special case for our study. It is observed that Hall Effect and magnetic field shows opposite behaviour on velocity and temperature profile. Temperature profile increases due to the increment in Prandtl number and Eckert number. Numerical comparison is also presented between the existing published results by taking α=0,M=0 as a special case of our study.

  9. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  10. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  11. Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Tripathi, D.; Ellahi, R.

    2018-04-01

    In this article, effects of heat and mass transfer on MHD peristaltic motion of solid particles in a dusty fluid are investigated. The effects of nonlinear thermal radiation and Hall current are also taken into account. The relevant flow analysis is modelled for fluid phase and dust phase in wave frame by means of Casson fluid model. Computation of solutions is presented for velocity profile, temperature profile and concentration profile. The effects of all the physical parameters such as particle volume fraction, Hartmann number, Hall Effect, Prandtl number, Eckert number, Schmidt number and Soret number are discussed mathematically and graphically. It is noted that the influence of magnetic field and particle volume fraction opposes the flow. Also, the impact of particle volume fraction is quite opposite on temperature and concentration profile. This model is applicable in smart drug delivery systems and bacteria movement in urine flow through the ureter.

  12. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  13. Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid

    Directory of Open Access Journals (Sweden)

    Sadia Ayub

    Full Text Available This paper models the peristaltic transport of magnetohydrodynamic (MHD third grade nanofluid in a curved channel with wall properties. Combined effects of heat and mass transfer are retained via mixed convection. The present analysis is made in the presence of thermal radiation and chemical reaction. No-slip effect is maintained at the boundary for the velocity, temperature and nanoparticle volume fraction. Resulting formulation is simplified by employing the assumptions of long wavelength and low Reynolds number approximations. Results of axial velocity, temperature, nanoparticle mass transfer and heat transfer are studied graphically. Results reveal increment in fluid velocity for larger values of heat transfer Grashof number. There is reduction in nanoparticle mass transfer with the increase in thermophoresis parameter. Keywords: Peristalsis, Third grade nanofluid, Curved channel, Mixed convection, Thermal radiation, Chemical reaction, Flexible walls, Numerical solutions

  14. Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2012-01-01

    Full Text Available Mathematical model for the peristaltic flow of chyme in small intestine along with inserted endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered between the annular region formed by two concentric tubes (i.e., outer tube as small intestine and inner tube as endoscope. Flow is induced by two sinusoidal peristaltic waves of different wave lengths, traveling down the intestinal wall with the same speed. The governing equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting nonlinear momentum equations are simplified using long wavelength and low Reynolds number approximations. The resulting problem is solved using regular perturbation method in terms of a variant of Weissenberg number We. The numerical solution of the problem is also computed by using shooting method, and comparison of results of both solutions for velocity field is presented. The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure gradient are obtained, and the effects of various emerging parameters on the flow characteristics are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

  15. MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls

    International Nuclear Information System (INIS)

    Hayat, T.; Javed, Maryiam; Asghar, S.

    2008-01-01

    A mathematical model for magnetohydrodynamic (MHD) flow of a Johnson-Segalman fluid in a channel with compliant walls is analyzed. The flow is engendered due to sinusoidal waves on the channel walls. A series solution is developed for the case in which the amplitude ratio is small. Our computations show that the mean axial velocity of a Johnson-Segalman fluid is smaller than that of a viscous fluid. The variations of various interesting dimensionless parameters are graphed and discussed

  16. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  17. Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Safia, E-mail: safia_akram@yahoomail.com [Department of Basic Sciences, Military College of Signals, National University of Sciences and Technology (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Hanif, M. [Department of Basic Sciences, Military College of Signals, National University of Sciences and Technology (Pakistan)

    2013-11-15

    In this paper the effects of induced magnetic field on the peristaltic transport of a Williamson fluid model in an asymmetric channel has been investigated. The problem is simplified by using long wave length and low Reynolds number approximations. The perturbation and numerical solutions have been presented. The expressions for pressure rise, pressure gradient, stream function, magnetic force function, current density distribution have been computed. The results of pertinent parameters have been discussed graphically. The trapping phenomena for different wave forms have been also discussed. - highlights: • The main motivation of this work is that we want to see the behavior of peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. In literature no attempt is taken to discuss the lateral Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. • We do not want to fill the gap in literature after studying this.

  18. Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field

    International Nuclear Information System (INIS)

    Akram, Safia; Nadeem, S.; Hanif, M.

    2013-01-01

    In this paper the effects of induced magnetic field on the peristaltic transport of a Williamson fluid model in an asymmetric channel has been investigated. The problem is simplified by using long wave length and low Reynolds number approximations. The perturbation and numerical solutions have been presented. The expressions for pressure rise, pressure gradient, stream function, magnetic force function, current density distribution have been computed. The results of pertinent parameters have been discussed graphically. The trapping phenomena for different wave forms have been also discussed. - highlights: • The main motivation of this work is that we want to see the behavior of peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. In literature no attempt is taken to discuss the lateral Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. • We do not want to fill the gap in literature after studying this

  19. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  20. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. Copyright © 2012 Wiley Periodicals, Inc.

  1. Transient peristaltic transport of grains in a liquid

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  2. Transient peristaltic transport of grains in a liquid

    Science.gov (United States)

    Marconati, Marco; Rault, Sharvari; Charkhi, Farshad; Burbidge, Adam; Engmann, Jan; Ramaioli, Marco

    2017-06-01

    Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  3. MHD-flow in slotted channels with conducting walls

    International Nuclear Information System (INIS)

    Evtushenko, I.A.; Kirillov, I.R.; Reed, C.B.

    1994-07-01

    A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a open-quotes one-electrode movable probeclose quotes for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data

  4. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    International Nuclear Information System (INIS)

    Chakraborty, Suman

    2006-01-01

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  5. Numerical Simulation of 3D Viscous MHD Flows

    National Research Council Canada - National Science Library

    Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M

    2003-01-01

    .... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...

  6. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  7. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  8. Effects of Chaos in Peristaltic Flows: Towards Biological Applications

    Science.gov (United States)

    Wakeley, Paul W.; Blake, John R.; Smith, David J.; Gaffney, Eamonn A.

    2006-11-01

    One in seven couples in the Western World will have problems conceiving naturally and with the cost of state provided fertility treatment in the United Kingdom being over USD 3Million per annum and a round of treatment paid for privately costing around USD 6000, the desire to understand the mechanisms of infertility is leading to a renewed interest in collaborations between mathematicians and reproductive biologists. Hydrosalpinx is a condition in which the oviduct becomes blocked, fluid filled and dilated. Many women with this condition are infertile and the primary method of treatment is in vitro fertilisation, however, it is found that despite the embryo being implanted into the uterus, the hydrosalpinx adversely affects the implantation rate. We shall consider a mathematical model for peristaltic flow with an emphasis towards modelling the fluid flow in the oviducts and the uterus of humans. We shall consider the effects of chaotic behavior on the system and demonstrate that under certain initial conditions trapping regions can be formed and discuss our results with a view towards understanding the effects of hydrosalpinx.

  9. Modeling of flow-dominated MHD instabilities at WiPPAL using NIMROD

    Science.gov (United States)

    Flanagan, K.; McCollam, K. J.; Milhone, J.; Mirnov, V. V.; Nornberg, M. D.; Peterson, E. E.; Siller, R.; Forest, C. B.

    2017-10-01

    Using the NIMROD (non-ideal MHD with rotation - open discussion) code developed at UW-Madison, we model two different flow scenarios to study the onset of MHD instabilities in flow-dominated plasmas in the Big Red Ball (BRB) and the Plasma Couette Experiment (PCX). Both flows rely on volumetric current drive, where a large current is drawn through the plasma across a weak magnetic field, injecting J × B torque across the whole volume. The first scenario uses a vertical applied magnetic field and a mostly radial injected current to create Couette-like flows which may excite the magnetorotational instability (MRI). In the other scenario, a quadrupolar field is applied to create counter-rotating von Karman-like flow that demonstrates a dynamo-like instability. For both scenarios, the differences between Hall and MHD Ohm's laws are explored. The implementation of BRB geometry in NIMROD, details of the observed flows, and instability results are shown. This work was funded by DoE and NSF.

  10. PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems

    International Nuclear Information System (INIS)

    Mamanee, W; Tuantranont, A; Afzulpurkar, N V; Porntheerapat, N; Rahong, S; Wisitsoraat, A

    2006-01-01

    A thermopnuematic peristaltic micropump for controlling micro litters of fluid was designed and fabricated from multi-stack PDMS structure on glass substrate. Pump structure consists of inlet and outlet, microchannel, three thermopneumatic actuation chambers, and three heaters. In microchannel, fluid is controlled and pumped by peristaltic motion of actuation diaphragm. Actuation diaphragm can bend up and down by exploiting air expansion that is induced by increasing heater temperature. The micropump characteristics were measured as a function of applied voltage and frequency. The flow rate was determined by periodically recording the motion of fluid at Nanoport output and computing flow volume from height difference between consecutive records. From the experiment, an optimum flow rate of 0.82 μl/min is obtained under 14 V three-phase input voltages at 0.033 Hz operating frequency

  11. Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, Akihiro; Nakajima, Noriyoshi

    2007-01-01

    This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)

  12. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  13. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  14. Direct numerical simulation of MHD flow with electrically conducting wall

    International Nuclear Information System (INIS)

    Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.

    2006-01-01

    The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget

  15. Combined effects of radiation and chemical reaction on MHD flow ...

    African Journals Online (AJOL)

    (2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate ... boundary layer flow of heat and mass transfer over a moving vertical plate with suction. ... flow considering free convection over a porous plate.

  16. MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water

    Directory of Open Access Journals (Sweden)

    F. M. Abbasi

    2015-07-01

    Full Text Available Advancements in the biomedical engineering have enhanced the usage of magnto-nanoparticles in improving the precision and efficiency of the magneto-drug delivery systems. Such systems make use of the externally applied magnetic fields to direct the drug towards a specific target in the human body. Peristalsis of magneto-nanofluids is of significant importance in such considerations. Hence peristaltic transport of Fe3O4-water nanofluid through a two-dimensional symmetric channel is analyzed in the presence of an externally applied constant magnetic field. Hamilton-Crosser’s model of the thermal conductivity is utilized in the problem development. The nanofluid saturates a non-uniform porous medium in which the porosity of the porous medium varies with the distance from the channel walls. Analysis is performed for the spherical and the cylindrical nanoparticles. Resulting system of equations is numerically solved. Impacts of sundry parameters on the axial velocity, temperature, pressure gradient and heat transfer rate at the boundary are examined. Comparison between the results for spherical and cylindrical nanoparticles is also presented. Results show that the nanoparticles volume fraction and the Hartman number have increasing effect on the pressure gradient throughout the peristaltic tract. Effective heat transfer rate at the boundary tends to enhance with an increase in the nanoparticles volume fraction. Use of spherical nanoparticles results in a higher value of axial velocity and the temperature at the center of channel when compared with the case of cylindrical nanoparticles.

  17. Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium

    Directory of Open Access Journals (Sweden)

    R. Ellahi

    2012-01-01

    Full Text Available We have examined the peristaltic flow of Carreau fluid in a rectangular channel through a porous medium. The governing equations of motion are simplified by applying the long wavelength and low Reynolds number approximations. The reduced highly nonlinear partial differential equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The expression for pressure rise is computed numerically by evaluating the numerical integration. The physical features of pertinent parameters have been discussed by plotting graphs of velocity, pressure rise, pressure gradient, and stream functions.

  18. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  19. Numerical analysis of liquid metal MHD flows through circular pipes based on a fully developed modeling

    International Nuclear Information System (INIS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2013-01-01

    Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2

  20. Studies on the crossed flow type MHD turbines

    International Nuclear Information System (INIS)

    Hori, Toshihiro; Katsurai, Makoto

    1981-01-01

    The studies on crossed flow type MHD turbines were performed to improve its characteristics. Two-dimensional models were considered for the analytical studies. To compensate the edge effect of magnetic field, the magnetic field gradient by tapering was considered. An iron-core structure and an air-core structure were investigated. It was found that the ideal characteristics can be obtained when there is the tapered length more than one wave length. Various methods for the improvement of magnetic field were studied in the case of practical crossed flow type MHD turbines. The methods were the adjustment with an iron-core, and the adoption of a curved channel. It can be expected to obtain the internal efficiency of more than 70 percent, when the number of pole-pairs is more than 10 and the radius of curvature of a few times of rotor radius is given to a curved channel. (Kato, T.)

  1. Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification

    International Nuclear Information System (INIS)

    Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.

    1981-01-01

    This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs

  2. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  3. MHD Hele-Shaw flow of Rivlin-Ericksen fluid

    International Nuclear Information System (INIS)

    Ghosh, B.C.; Sengupta, P.R.

    1995-01-01

    In this paper, an attempt has been made to study the MHD Hele-Shaw flow of Rivlin-Ericksen visco-elastic fluid assuming the pressure gradient to be proportional to exp (-nt). The velocity components are obtained and the effect of visco-elasticity is discussed on velocity components. (author). 8 refs

  4. Numerical Study of Mixed Convective Peristaltic Flow through Vertical Tube with Heat Generation for Moderate Reynolds and Wave Numbers

    Science.gov (United States)

    Javed, Tariq; Ahmed, B.; Sajid, M.

    2018-04-01

    The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.

  5. Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun

    2014-10-15

    In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.

  6. Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...

    Indian Academy of Sciences (India)

    The flow of fluids through porous media has become ... convection-radiation interaction with heat transfer in boundary layer flow over a flat plate sub- ... Unsteady MHD free convection flow of a compressible fluid past a moving vertical plate in.

  7. Simultaneous effects of Hall and convective conditions on peristaltic ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 85, No. 1. — journal of ... 2Department of Electrical and Computer Engineering, Faculty of Engineering, ... inclined magnetic field on peristaltic flow of couple-stress fluid in an inclined channel, secondly to ...

  8. Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms

    International Nuclear Information System (INIS)

    Akram, Safia; Nadeem, S.; Hussain, Anwar

    2014-01-01

    In the present analysis we discussed the influence of heat and mass transfer on the peristaltic flow of a Bingham in an inclined magnetic field and channel with different wave forms. The governing two dimensional equations of momentum, heat and mass transfer are simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions of momentum, heat and mass transfer are calculated. Finally, graphical behaviors of various physical parameters are also discussed through the graphical behavior of pressure rise, pressure gradient, temperature concentration and stream functions. - Highlights: • Combine effects of heat and mass transfer on peristaltic flow problem is discussed. • Effects of inclined magnetic field and channel on new fluid model are discussed. • Effects of different wave forms are also discussed in the present flow problem

  9. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology .... dimensional MHD boundary layer on the body with time varying temperature. ... flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with.

  10. Hydromagnetic effect on inclined peristaltic flow of a couple stress fluid

    Directory of Open Access Journals (Sweden)

    G.C. Shit

    2014-12-01

    Full Text Available In this paper, we have investigated the effect of channel inclination on the peristaltic transport of a couple stress fluid in the presence of externally applied magnetic field. The slip velocity at the channel wall has been taken into account. Under the long wave length and low-Reynolds number assumptions, the analytical solutions for axial velocity, stream function, pressure gradient and pressure rise are obtained. The computed results are presented graphically by taking valid numerical data for non-dimensional physical parameters available in the existing scientific literatures. The results revealed that the trapping fluid can be eliminated and the central line axial velocity can be reduced with a considerable extent by the application of magnetic field. The flow phenomena for the pumping characteristics, trapping and reflux are furthermore investigated. The study shows that the slip parameter and Froude number play an important role in controlling axial pressure gradient.

  11. Inclusion of pressure and flow in the KITES MHD equilibrium code

    International Nuclear Information System (INIS)

    Raburn, Daniel; Fukuyama, Atsushi

    2013-01-01

    One of the simplest self-consistent models of a plasma is single-fluid magnetohydrodynamic (MHD) equilibrium with no bulk fluid flow under axisymmetry. However, both fluid flow and non-axisymmetric effects can significantly impact plasma equilibrium and confinement properties: in particular, fluid flow can produce profile pedestals, and non-axisymmetric effects can produce islands and stochastic regions. There exist a number of computational codes which are capable of calculating equilibria with arbitrary flow or with non-axisymmetric effects. Previously, a concept for a code to calculate MHD equilibria with flow in non-axisymmetric systems was presented, called the KITES (Kyoto ITerative Equilibrium Solver) code. Since then, many of the computational modules for the KITES code have been completed, and the work-in-progress KITES code has been used to calculate non-axisymmetric force-free equilibria. Additional computational modules are required to allow the KITES code to calculate equilibria with pressure and flow. Here, the authors report on the approaches used in developing these modules and provide a sample calculation with pressure. (author)

  12. Analysis of Peristaltic Waves & their Role in Migrating Physarum Plasmodia

    Science.gov (United States)

    Lewis, Owen; Guy, Robert

    2017-11-01

    The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using physarum plasmodia. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.

  13. MHD channel performance for potential early commercial MHD power plants

    International Nuclear Information System (INIS)

    Swallom, D.W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation

  14. Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available Current attempt addresses the peristaltic transport of Bingham plastic fluid under the influence of magnetic force. Space dependent viscosity is considered. Novel Soret and Dufour effects are retained in the mathematical model. Problem formulation is presented through the conventional lubrication approach. Series solutions of the arising non-linear problem are developed via regular perturbation approach. Special attention is given to the role of embedded parameters on the axial velocity, temperature, concentration and pressure distributions. Furthermore the numerical solution of pressure rise per wavelength is obtained through numerical integration because its analytical solution seems impossible. Keywords: Bingham fluid, Variable viscosity, MHD and Joule heating, Soret and Dufour effects

  15. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  16. Analysis of peristaltic waves and their role in migrating Physarum plasmodia

    Science.gov (United States)

    Lewis, Owen L.; Guy, Robert D.

    2017-07-01

    The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of Physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within Physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using Physarum plasmodia. The first is a PDE model based on a dimensional reduction of peristaltic pumping within a finite length chamber. The second is a more sophisticated computational model which accounts for more general shape changes, more complex cellular mechanics, and dynamically modulated adhesion to the underlying substrate. This model allows us to directly compute cell crawling speed. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.

  17. Analysis of peristaltic waves and their role in migrating Physarum plasmodia

    International Nuclear Information System (INIS)

    Lewis, Owen L; Guy, Robert D

    2017-01-01

    The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of Physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within Physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using Physarum plasmodia. The first is a PDE model based on a dimensional reduction of peristaltic pumping within a finite length chamber. The second is a more sophisticated computational model which accounts for more general shape changes, more complex cellular mechanics, and dynamically modulated adhesion to the underlying substrate. This model allows us to directly compute cell crawling speed. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity. (paper)

  18. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  19. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    International Nuclear Information System (INIS)

    Munipalli, Ramakanth; Huang, P.-Y.; Chandler, C.; Rowell, C.; Ni, M.-J.; Morley, N.; Smolentsev, S.; Abdou, M.

    2008-01-01

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as 'canonical',) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  20. Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls

    Directory of Open Access Journals (Sweden)

    M. Ali Abbas

    2016-03-01

    Full Text Available In this present analysis, three dimensional peristaltic flow of hyperbolic tangent fluid in a non-uniform channel has been investigated. We have considered that the pressure is uniform over the whole cross section and the interial effects have been neglected. For this purpose we consider laminar flow under the assumptions of long wavelength (λ→∞ and creeping flow (Re→0 approximations. The attained highly nonlinear equations are solved with the help of Homotopy perturbation method. The influence of various physical parameters of interest is demonstrated graphically for wall tension, mass characterization, damping nature of the wall, wall rigidity, wall elastance, aspect ratio and the Weissenberg number. In this present investigation we found that the magnitude of the velocity is maximum in the center of the channel whereas it is minimum near the walls. Stream lines are also drawn to discuss the trapping mechanism for all the physical parameters. Comparison has also been presented between Newtonian and non-Newtonian fluid.

  1. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies

    Science.gov (United States)

    Rashidi, Saman; Esfahani, Javad Abolfazli; Maskaniyan, Mahla

    2017-10-01

    Magnetohydrodynamic (MHD) fluid flow in different geometries relevant to human body parts is an interesting and important scientific area due to its applications in medical sciences. This article performs a comprehensive review on the applications of MHD and their numerical modelling in biological systems. Applications of MHD in medical sciences are classified into four categories in this paper. Applications of MHD in simple flow, peristaltic flow, pulsatile flow, and drag delivery are these categories. The numerical researches performed for these categories are reviewed and summarized separately. Finally, some conclusions and suggestions for future works based on the literature review are presented. The results indicated that during a surgery when it is necessary to drop blood flow or reduce tissue temperature, it may be achieved by using a magnetic field. Moreover, the review showed that the trapping is an important phenomenon in peristaltic flows that causes the formation of thrombus in blood and the movement of food bolus in gastrointestinal tract. This phenomenon may be disappeared by using a proper magnetic field. Finally, the concentration of particles that are delivered to the target region increases with an increase in the magnetic field intensity.

  2. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  3. Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe

    International Nuclear Information System (INIS)

    Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko

    2007-01-01

    Experimental studies of MHD turbulent pipe flow of Flibe simulant fluid have been conducted as a part of US-Japan JUPITER-II collaboration. Flibe is considered as a promising candidate for coolant and tritium breeder in some fusion reactor design concepts because of its low electrical conductivity compared to liquid metals. This reduces the MHD pressure drop to a negligible level; however, turbulence can be significantly suppressed by MHD effects in fusion reactor magnetic field conditions. Heat transfer in the Flibe coolant is characterized by its high Prandtl number. In order to achieve sufficient heat transfer and to prevent localized heat concentration in a high Prandtl number coolant, high turbulence is essential. Even though accurate prediction of the MHD effects on heat transfer for high Prandtl number fluids in the fusion environment is very important, reliable data is not available. In these experiments, an aqueous solution of potassium hydroxide is used as a simulant fluid for Flibe. This paper presents the experimental results obtained by flow field measurement using particle image velocimetry (PIV) technique. The PIV measurements provide 2-dimensional 2-velocity component information on the MHD flow field. The test section is a circular pipe with 89 mm inner diameter and 7.0 m in length, which is 79 times pipe diameter. This relatively large diameter pipe is selected in order to maximize the MHD effects measured by Hartmann number (Ha=BL(sigma/mu)1/2), and to allow better resolution of the flow in the near-wall region. The test section is placed under maximum 2 Tesla magnetic fields for 1.4m of the axial length. The hydrodynamic developing length under the magnetic field is expected to be 1.2 m. In order to apply PIV technique in the magnetic field condition, special optical devices and visualization sections were created. PIV measurements are performed for Re = 11600 with variable Hartmann numbers. The turbulence statistics of the MHD turbulent flow

  4. Transient flows in rectangular MHD ducts under the influence of suddenly changing applied magnetic fields

    International Nuclear Information System (INIS)

    Kobayashi, Junichi

    1979-01-01

    The study on the transient flow characteristics in MHD ducts under orthogonal magnetic field is divided into handling two problems: the problem of changing pressure gradient in a uniform orthogonal magnetic field and the problem in which the orthogonal magnetic field itself changes with time. The former has been investigated by many persons, but the latter has not been investigated so often as the former because of its difficulty of handling. In addition, if it is intended to grasp properly the transient flow characteristics in actual MHD ducts, it will be also important that the effects of the electric conductivity of side walls and aspect ratio are clarified. In other words, this paper deals with the problem in which a uniform orthogonal magnetic field is suddenly applied in such manner as Heaviside's step function to or removed from the conductive fluids flowing in sufficiently long rectangular MHD ducts. First, the MHD fundamental equations are described, then they are normalized to give boundary conditions and initial conditions. Next, the transient flow and the derived magnetic field characteristics are numerically analyzed by the difference calculus, and thus the effects of conductor, insulated wall, aspect ratio, Hartmann number, magnetic Prandtl number and others on the above characteristics are clarified. (Wakatsuki, Y.)

  5. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.

    Science.gov (United States)

    Tripathi, Dharmendra; Pandey, S K; Siddiqui, Abdul; Bég, O Anwar

    2014-01-01

    A theoretical study is presented for transient peristaltic flow of an incompressible fluid with variable viscosity in a finite length cylindrical tube as a simulation of transport in physiological vessels and biomimetic peristaltic pumps. The current axisymmetric analysis is qualitatively similar to two-dimensional analysis but exhibits quantitative variations. The current analysis is motivated towards further elucidating the physiological migration of gastric suspensions (food bolus) in the human digestive system. It also applies to variable viscosity industrial fluid (waste) peristaltic pumping systems. First, an axisymmetric model is analysed in the limit of large wavelength ([Formula: see text]) and low Reynolds number ([Formula: see text]) for axial velocity, radial velocity, pressure, hydromechanical efficiency and stream function in terms of radial vibration of the wall ([Formula: see text]), amplitude of the wave ([Formula: see text]), averaged flow rate ([Formula: see text]) and variable viscosity ([Formula: see text]). Subsequently, the peristaltic flow of a fluid with an exponential viscosity model is examined, which is based on the analytical solutions for pressure, wall shear stress, hydromechanical efficiency and streamline patterns in the finite length tube. The results are found to correlate well with earlier studies using a constant viscosity formulation. This study reveals some important features in the flow characteristics including the observation that pressure as well as both number and size of lower trapped bolus increases. Furthermore, the study indicates that hydromechanical efficiency reduces with increasing magnitude of viscosity parameter.

  6. Soret and Hall effects on unsteady MHD free convection flow of ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... effects on unsteady MHD free convection flow of radiating and chemically reactive fluid ... Expressions for shear stress, rate of heat transfer and rate of mass transfer at the plate ...

  7. Impact of Heat and Mass Transfer on MHD Oscillatory Flow of Jeffery ...

    African Journals Online (AJOL)

    The objective of this paper is to study Dufour, Soret and thermal conductivity on unsteady heat and mass transfer of magneto hydrodynamic (MHD) oscillatory flow of Jeffery fluid through a porous medium in a channel. The partial differential equations governing the flow have been solved numerically using semi-implicit ...

  8. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  9. Hall effects on MHD flow past an accelerated plate

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Ravi, S.; Hiremath, S.B.

    1980-01-01

    An exact solution of the MHD flow of an incompressible, electrically conducting, viscous fluid past a uniformly accelerated plate is presented. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin friction are tabulated. At high values of the Hall parameter, ωtau, the velocity is found to be oscillatory near the plate. (author)

  10. Infusion of iloprost without a peristaltic pump: Safety and tolerability

    Directory of Open Access Journals (Sweden)

    Paola Faggioli

    2013-04-01

    Full Text Available Introduction: Iloprost is a potent prostacyclin (PGI2 analogue that is effective in the treatment of peripheral arterial disease, vasculitis, pulmonary hypertension, and secondary Raynaud’s phenomenon. Intravenous infusions are generally administered with the aid of a peristaltic pump to reduce the risk of adverse reactions caused by unintentional increases in the infusion rate. This increases the cost of care in terms of equipment and personnel and may limit the use of this drug. Materials and methods: We retrospectively analyzed 18,432 iloprost infusions administered between 1999 and 2009 to 272 patients with systemic sclerosis (n = 253 and 19 with peripheral arterial disease (n = 19. All infusions were administered in the day hospital over 6 h with a normal IV set-up with a roller flow regulator. Flow rates were set to deliver iloprost at 1-2 ng/kg/min. Rates were verified by direct drop counts during the first 15-20 minutes of the infusion and at each subsequent check. Results: There were no adverse events that were fatal, life-threatening, or associated with prolongation of hospitalization and very few events requiring intensive care or continuous monitoring. The latter included 4 cases of tachycardia/arrhythmia (extrasystoles in most cases, 3 cases of hypotension (systolic pressure < 80 mmHg, and 2 cases of hypertension (BP > 170/100 mmHg. All other adverse reactions were mild, reversible, and similar to those seen with iloprost infusion with peristaltic pump. Only one patient had to be switched to another prostanoid (due to intolerance. Discussion: Iloprost infusion administered with a normal IV flow regulator appears to be as safe, well tolerated, and effective as traditional infusion with a peristaltic pump.

  11. Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels

    International Nuclear Information System (INIS)

    Saleh, H.; Hashim, I.

    2010-01-01

    The present analysis is concerned with flow reversal phenomena of the fully-developed laminar combined free and forced MHD convection in a vertical parallel-plate channel. The effect of viscous dissipation is taken into account. Flow reversal adjacent to the cold (or hot) wall is found to exist within the channel as Gr/Re is above (or below) a threshold value. Parameter zones for the occurrence of reversed flow are presented. (fundamental areas of phenomenology(including applications))

  12. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2009-01-01

    The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow

  13. Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion

    Directory of Open Access Journals (Sweden)

    M. Jayachandra Babu

    2017-12-01

    Full Text Available The knowledge of heat and mass transfer of MHD flows over different geometries is very important for heat exchangers design, transpiration, fiber coating, etc. With this initiation, a mathematical model is proposed to investigate the two-dimensional flow, heat and mass transfer of magnetohydrodynamic flow over three different geometries (vertical cone, vertical wedge, and a vertical plate. Cattaneo-Christov heat flux with external magnetic field, thermophoresis and Brownian movement effect are introduced in the model. Runge-Kutta and Newton’s methods are employed to solve the altered governing nonlinear equations. The influences of the parameters of concern on the common profiles (velocity, temperature, and concentration are conversed (in three cases. By viewing the same parameters, skin friction coefficient, heat and mass transfer rates are discussed with the assistance of tables. It is discovered that the momentum and thermal boundary layers are non-uniform for the MHD flow over three geometries (vertical cone, wedge, and a plate. Thermal and solutal Grashof numbers regulate the temperature and concentration fields. The heat and mass transfer rates of the flow over a cone are highly influenced by the thermal relaxation parameter. Keywords: MHD, Cattaneo-Christov heat flux, Thermal relaxation, Thermophoresis, Brownian motion

  14. Effect of wall compliance on peristaltic transport of a Newtonian fluid in an asymmetric channel

    Directory of Open Access Journals (Sweden)

    Mohamed H. Haroun

    2006-01-01

    Full Text Available Peristaltic transport of an incompressible viscous fluid in an asymmetric compliant channel is studied. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phases. The fluid-solid interaction problem is investigated by considering equations of motion of both the fluid and the deformable boundaries. The driving mechanism of the muscle is represented by assuming the channel walls to be compliant. The phenomenon of the “mean flow reversal” is discussed. The effect of wave amplitude ratio, width of the channel, phase difference, wall elastance, wall tension, and wall damping on mean-velocity and reversal flow has been investigated. The results reveal that the reversal flow occurs near the boundaries which is not possible in the elastic symmetric channel case.

  15. Effect of slip velocity on oscillatory MHD flow of stretched surface ...

    African Journals Online (AJOL)

    The study of unsteady magnetohydrodynamic heat and mass transfer in MHD flow of an incompressible, electrically conducting, viscous fluid past an infinite vertical porous plate along with porous medium of time dependent permeability with radiative heat transfer and variable suction has been made. Analytical solution of ...

  16. Numerical modeling of first experiments on PbLi MHD flows in a rectangular duct with foam-based SiC flow channel insert

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)

    2016-10-15

    Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical

  17. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    Science.gov (United States)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  18. Effect of Hartmann layer resolution for MHD flow in a straight ...

    Indian Academy of Sciences (India)

    851–861. c Indian Academy of Sciences. Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers. SHARANYA SUBRAMANIAN1,∗, P K SWAIN2,. A V DESHPANDE1 and P SATYAMURTHY2. 1Mechanical Engineering Department, Veermata Jijabai Technological Institute,.

  19. Peristaltic pumping in an elastic tube: feeding the hungry python

    Science.gov (United States)

    Takagi, Daisuke; Balmforth, Neil

    2010-11-01

    Biological ducts convey contents like food in the digestive system by peristaltic action, propagating waves of muscular contraction and relaxation. The motion is investigated theoretically by considering a radial force of sinusoidal or Gaussian form moving steadily down a fluid-filled axisymmetric tube. Effects of the prescribed force on the resultant fluid flow and elastic deformation of the tube wall are presented. The flow can induce a rigid object suspended in the fluid to propel in different ways, as demonstrated in numerous examples.

  20. Studies on MHD pressure drop and heat transfer of helium-lithium annular-mist flow in a transverse magnetic field

    International Nuclear Information System (INIS)

    Inoue, Akira; Aritomi, Masanori; Takahashi, Minoru; Matsuzaki, Mitsuo; Narita, Yoshihito; Yano, Toshikazu.

    1987-01-01

    Pressure drop and heat transfer coefficient of helium-lithium annular-mist flow in a rectangular duct were investigated experimentally under a transverse magnetic field at system pressure of 0.2 MPa. A ratio of MHD pressure drop to that of non-magnetic field increases with magnetic flux density and a mass flow rate ratio of lithium to helium in low helium velocity region. However, as increasing the helium velocity, the increment of MHD pressure drop with the magnetic flux density is much reduced and then becomes almost zero. At this condition, the MHD pressure drop of the annular-mist flow becomes much smaller than that of lithium single phase flow with the same lithium mass flow at the high magnetic flux density. Heat transfer coefficient ratio of the helium-lithium annular-mist flow to helium single phase in the non-magnetic field is well correlated by a ratio of the mass flow rate of lithium to helium. The heat transfer coefficient in the magnetic field increases with the magnetic flux density and then terminates at a certain value depending on the mass flow rate ratio and the helium velocity. These characteristics of the MHD pressure drop and the heat transfer in the magnetic field suggest that the helium-lithium annular-mist flow is effectively applicable to cooling of the high heat flux wall in a strong magnetic field like a first wall of a magnetic confinement fusion reactors. (author)

  1. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Energy Technology Data Exchange (ETDEWEB)

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  2. MHD flow of Kuvshinski fluid through porous medium with temperature gradient heat source

    International Nuclear Information System (INIS)

    Goyal, Mamta; Banshiwal, Anna

    2014-01-01

    MHD free convection time dependent flow of a viscous, dissipative, incompressible, electrically conducting, non Newtonian fluid name as Kuvshinski fluid past an infinite vertical plate is considered The plate is moving with uniform velocity in the direction of flow. Analytical solutions have been obtained for velocity, temperature and concentration using perturbation technique. The effects of governing parameter on flow quantities are discussed with the help of graphs. (author)

  3. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  4. MHD equilibrium of toroidal fusion plasma with stationary flows

    International Nuclear Information System (INIS)

    Galkowski, A.

    1994-01-01

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs

  5. The application of finite element method for mhd viscous flow over a porous stretching sheet

    International Nuclear Information System (INIS)

    Mahmood, R.; Sajid, M.

    2007-01-01

    This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a porous stretching sheet. The similarity solution of the problem is obtained using finite element method. The physical quantities of interest like the fluid velocity and skin friction coefficient is obtained and discussed under the influence of suction parameter and Hartman number. It is evident from the results that MHD can be used to control the boundary layer thickness. (author)

  6. Effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555

    Directory of Open Access Journals (Sweden)

    Ali K. Mohammed

    2018-01-01

    Full Text Available In this research, we studied the effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555 which made by (Radiometer-Copenhagen, by using theories of tribology and Reynolds equation on performance of blood film convergence area, we analyzing the influence of theoretical model for peristaltic pump (consist of steeper motor and 4 cylindrical bearings distributed on circular disc rotating around capillary tube, by using (MATLAB R 2012b programing with numerical solution of finite difference method in 5 nodes element , we fined the blood film thickness and the pressure on contact area grid ( consist from annual and axial lines , then influence of viscosity of blood on pressure generated in limited temperature of ambient and velocity of motor , and flow rate of blood in tube. The important conclusions appear that the rotating sliding movement of motor cause low pressure (positive while the rolling cylindrical rollers of bearings cause high pressure (negative which lead to push the blood in tube, that mean the direction of rotating blood opposite the direction of rotating motor of peristaltic pump, also the viscosity of blood effect on velocity of flow and the speed of motor with bearings, and the effect of blood film thickness effect on pressure generated in tube. DOI: http://dx.doi.org/10.25130/tjes.24.2017.18

  7. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    Science.gov (United States)

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. The Ekman-Hartmann layer in MHD Taylor-Couette flow

    OpenAIRE

    Szklarski, Jacek; Rüdiger, Günther

    2007-01-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical MHD Taylor-Couette flow at the finite aspect ratio $H/D=10$. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed $\\Ha \\approx 10$, the rotation rates correspond to $\\Rey$ of order $10^2-10^3$. We show that the end-plates introduce, besides the well known Ekman circulati...

  9. MHD free convection flow past an oscillating plate in the presence of ...

    African Journals Online (AJOL)

    The study of unsteady magnetohydrodynamic heat and mass transfer in MHD flow past an infinite vertical oscillating plate through porous medium, taking account of the presence of free convection and mass transfer. The energy and chemical species equations are solved in closed form by Laplace-transform technique and ...

  10. Effects of couple stresses in MHD channel flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1977-01-01

    An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)

  11. Flow predictions for MHD channels with an approximation for three-dimensional effects

    International Nuclear Information System (INIS)

    Blottner, F.G.

    1978-01-01

    A finite-difference procedure has been formulated for predicting the flow properties across channels. A quasi-two-dimensional approach has been developed which allows the three-dimensional channel effects to be taken into account. Comparison of the numerical solutions with experimental results show that this approach is a reasonable approximation for MHD flow conditions if there is not significant merging of the wall boundary layers. The resulting code provides a technique to obtain the flow details in the symmetry plane of the channel and requires only a small amount of computer time

  12. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shafique, Maryam [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, A., E-mail: anum@math.qau.edu.pk [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects. - Highlights: • Peristalsis in the presence of Jeffery nanofluid is formulated. • Compliant properties of channel walls are addressed. • Impact of Hall and ion slip effects is outlined. • Influence of Joule heating and radiation is investigated. • Mixed convection for both heat and mass transfer is present.

  13. Experimental characterization of MHD pressure drop of liquid sodium flow under uniform magnetic field

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Park, Jon Ho; Kim, Jong Man; Nam, Ho Yoon; Choi, Jong Hyun

    2001-01-01

    Magnetic field has many effects on the hydraulic pressure drop of fluids with high electrical conductivity. The theoretical solution about MHD pressure drop is sought for the uniform current density model with simplified physical geometry. Using the MHD equation in the rectangular duct of the sodium liquid flow under a transverse magnetic field, the electrical potential is sought in terms of the duct geometry and the electrical parameters of the liquid metal and duct material. By the product of the induced current inside the liquid metal and transverse magnetic field, the pressure gradients is found as a function of the duct size and the electrical conductivity of the liquid metal. The theoretically predicted pressure drop is compared with experimental results on the change of flow velocity and magnetic flux density

  14. Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2014-01-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

  15. Two dimensional MHD flows between porous boundaries

    International Nuclear Information System (INIS)

    Gratton, F.T.

    1994-01-01

    Similarity solutions of dissipative MHD equations representing conducting fluids injected through porous walls and flowing out in both directions from the center of the channel, are studied as a function of four non dimensional parameters, Reynolds number R e , magnetic Reynolds number R m , Alfvenic Mach number, M A , and pressure gradient coefficient, C. The effluence is restrained by an external magnetic field normal to the walls. When R m m >>1, the solution may model a collision of plasmas of astrophysical interest. In this case the magnetic field lines help to drive the outflow acting jointly with the pressure gradient. The law for C as a function of the other parameters is given for several asymptotic limits. (author). 3 refs, 6 figs

  16. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    Science.gov (United States)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  17. MHD flow layer formation at boundaries of magnetic islands in tokamak plasmas

    International Nuclear Information System (INIS)

    Jiaqi Dong; Yongxing Long; Zongze Mou; Jinhua Zhang

    2005-01-01

    Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have sufficient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed. (author)

  18. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid

    International Nuclear Information System (INIS)

    Mekheimer, Kh.S.

    2008-01-01

    We have analyzed the MHD flow of a conducting couple stress fluid in a slit channel with rhythmically contracting walls. In this analysis we are taking into account the induced magnetic field. Analytical expressions for the stream function, the magnetic force function, the axial pressure gradient, the axial induced magnetic field and the distribution of the current density across the channel are obtained using long wavelength approximation. The results for the pressure rise, the frictional force per wave length, the axial induced magnetic field and distribution of the current density across the channel have been computed numerically and the results were studied for various values of the physical parameters of interest, such as the couple stress parameter γ, the Hartmann number M, the magnetic Reynolds number R m and the time averaged mean flow rate θ. Contour plots for the stream and magnetic force functions are obtained and the trapping phenomena for the flow field is discussed

  19. Esophageal peristaltic defects in adults with functional dysphagia.

    Science.gov (United States)

    Ratuapli, Shiva K; Hansel, Stephanie L; Umar, Sarah B; Burdick, George E; Ramirez, Francisco C; Fleischer, David E; Harris, Lucinda A; Lacy, Brian E; DiBaise, John K; Crowell, Michael D

    2014-08-01

    Functional dysphagia (FD) is characterized by the presence of dysphagia without evidence of mechanical esophageal obstruction, GERD, and histopathology-based esophageal motor disorders. Dysphagia is common in older patients; however, there is a paucity of information regarding the type and frequency of peristaltic abnormalities compared to younger patients. Based on recently validated criteria for classification of weak peristalsis using high-resolution manometry (HRM), we hypothesized that older patients with FD would have more peristaltic defects detected by HRM compared to younger FD patients. A retrospective review of our motility database yielded 65 patients that met inclusion criteria. Patients were divided into two groups based on age (younger: dysphagia, or quality of life. Dyspeptic symptoms, including nausea (p 5 cm) (p < 0.001). The mean contraction amplitude was also lower in the older group (p < 0.05). These data support the hypothesis that older patients with FD have a higher frequency of peristaltic abnormalities on HRM compared to younger patients. Older age was associated with increased frequency of weak peristalsis with small and large peristaltic defects.

  20. Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel

    International Nuclear Information System (INIS)

    Abd-Alla, A.M.; Abo-Dahab, S.M.

    2015-01-01

    In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, streamlines, axial velocity and shear stress on the channel walls have been computed numerically. Effects of Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel. - Highlights: • The peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel with magnetic field. • Mathematical modeling for long wavelength and low Reynolds number assumptions. • Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress

  1. An approach to verification and validation of MHD codes for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Badia, S. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat (India); Bühler, L. [Karlsruhe Institute of Technology (Germany); Chen, L. [University of Chinese Academy of Sciences, Beijing (China); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui (China); Jin, H.-G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Krasnov, D. [Technische Universität Ilmenau (Germany); Lee, D.-W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mas de les Valls, E. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Mistrangelo, C. [Karlsruhe Institute of Technology (Germany); Munipalli, R. [HyPerComp, Westlake Village (United States); Ni, M.-J. [University of Chinese Academy of Sciences, Beijing (China); Pashkevich, D. [St. Petersburg State Polytechnical University (Russian Federation); Patel, A. [Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Pulugundla, G. [University of California, Los Angeles (United States); Satyamurthy, P. [Bhabha Atomic Research Center (India); Snegirev, A. [St. Petersburg State Polytechnical University (Russian Federation); Sviridov, V. [Moscow Power Engineering Institute (Russian Federation); Swain, P. [Bhabha Atomic Research Center (India); and others

    2015-11-15

    Highlights: • Review of status of MHD codes for fusion applications. • Selection of five benchmark problems. • Guidance for verification and validation of MHD codes for fusion applications. - Abstract: We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.

  2. MHD PbLi experiments in MaPLE loop at UCLA

    International Nuclear Information System (INIS)

    Courtessole, C.; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-01-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  3. MHD PbLi experiments in MaPLE loop at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Courtessole, C., E-mail: cyril@fusion.ucla.edu; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-11-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  4. Application of Fourier transform to MHD flow over an accelerated plate with partial-slippage

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2014-06-01

    Full Text Available Magneto-Hydrodynamic (MHD flow over an accelerated plate is investigated with partial slip conditions. Generalized Fourier Transform is used to get the exact solution not only for uniform acceleration but also for variable acceleration. The numerical solution is obtained by using linear finite element method in space and One-Step-θ-scheme in time. The resulting discretized algebraic systems are solved by applying geometric-multigrid approach. Numerical solutions are compared with the obtained Fourier transform results. Many interesting results related with slippage and MHD effects are discussed in detail through graphical sketches and tables. Application of Dirac-Delta function is one of the main features of present work.

  5. Study of surface and bulk instabilities in MHD duct flow with imitation of insulator coating imperfections

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zengyu [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China)]. E-mail: xuzy@swip.ac.cn; Pan Chuanjie [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China); Wei Wenhao [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China); Kang Weishan [Southwestern Institute of Physics, P.O. Box 432, Chengdu, Sichuan 610041 (China)

    2006-02-15

    MHD phenomena in a duct flow were studied experimentally by using copper electrodes inserted into the wall of a perfectly insulated duct. The electrodes were connected using a copper wire to imitate different insulator coating imperfection conditions. The experimental results show instabilities of electric potential at the wall (surface instabilities) as well as instabilities in the pressure and velocity (bulk instabilities). The instabilities are strongly dependent on the scale of the copper wire. Three different cases were studied (at the same flow regimes, but with different electrode connections), where the potential at the duct wall is smaller, equal to or higher than the product of duct diameter 2a and transverse magnetic field B and average velocity V . MHD pressure drop {delta}P also exhibits significant changes.

  6. Numerical simulation of magnetohydrodynamic (MHD) flow with internal heat generation

    International Nuclear Information System (INIS)

    Bokade, Vipin; Bhandarkar, U.V.; Bodi, Kowsik

    2016-01-01

    A strong magnetic field is used to confine the plasma in a fusion reactor. This magnetic field also affects the flow of Lead-Lithium (breeder/coolant) in the breeding blanket. So it is important to study MHD flow of Lead-Lithium (Pb-Li). Open-source toolbox, OpenFOAM, is used to study single phase behaviour of Pb-Li. As the induced magnetic field is very small, Ni et al. electric potential algorithm is employed in OpenFOAM and validated with analytical results. This solver can also solve the temperature field with heat source term. Simulations are carried out in 2D straight channel for various values of Hartmann Number ranging from 100 to 5000 and velocity profile, temperature, current density and pressure drop are studied. (author)

  7. Electromagnetic interactions between the U-25 superconducting magnet and the U-25 B MHD flow train

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the Argonne National Laboratory (ANL) 5.0 Tesla MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25 B Facility at the High Temperature Institute (IVAN), Moscow, U.S.S.R. The voltage fluctuations are analyzed with special emphasis on magnet stability. Various other thermodynamic and electrical parameters of the U-25 B flow train have been recorded and statistical correlations between these signals and the signals observed at the magnet terminals are described

  8. Effects of couple stresses on MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1978-01-01

    An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)

  9. Effect of external circuit on heat transfer in MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.

    1982-01-01

    An exact solution of energy equation in fully-developed MHD Coutte flow has been derived. Temperature profiles are shown in open- and short-circuit cases. It has been observed that in short circuit case, temperature and Nusselt number (Nu) increase with increasing M, whereas in open-circuit case, with increasing M, the temperature decreases. Also in open-circuit case, Nu increases with increasing M when M is small, but at large values of M, Nu decreases with increasing M. (author)

  10. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine.

    Science.gov (United States)

    Hina, S; Mustafa, M; Hayat, T; Alsaedi, A

    2016-10-01

    In this work, we explore the heat transfer characteristics in the peristaltic transport of Powell-Eyring fluid inside a curved channel with complaint walls. The study has motivation toward the understanding of blood flow in microcirculatory system. Formulation is developed in the existence of velocity slip and temperature jump conditions. Perturbation approach has been utilized to present series expressions of axial velocity and temperature distributions. Streamlines are prepared to analyze the interesting phenomenon of trapping. Moreover, the plots of heat transfer coefficient for a broad range of embedded parameters are presented and discussed. The results indicate that slip effects substantially influence the velocity and temperature distributions. Axial flow accelerates when slip parameter is incremented. Temperature rises and wall heat flux grows when viscous dissipation effect is strengthened. In contrast to the planar channels, here velocity and temperature functions do not exhibit symmetry with respect to the central line. In addition, bolus size and its shape are different in upper and lower portions of the channel. Heat transfer coefficient enlarges when the curvature effects are reduced. The behaviors of wall tension and wall mass parameters on the profiles are qualitatively similar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Heat transfer with thermal radiation on MHD particle–fluid ...

    Indian Academy of Sciences (India)

    M M BHATTI

    2017-09-12

    Sep 12, 2017 ... ous effects of slip and endoscopy on blood flow of particle–fluid suspension induced by a peristaltic wave. Akbar and Khan [21] ..... effect on pressure rise and decreases in retrograde pump- ing region. It can be seen from ...

  12. MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts

    International Nuclear Information System (INIS)

    Sidorenkov, S.I.; Hua, T.Q.; Araseki, H.

    1994-01-01

    Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. Argonne National Laboratory and The Efremov Institute have jointly defined several benchmark problems for code validation. The problems, described in this paper, are based on two series of rectangular duct experiments conducted at ANL; one of the series is a joint ANL/Efremov experiment. The geometries consist of variation of aspect ratio and wall thickness (thus wall conductance ratio). The transverse magnetic fields are uniform and nonuniform in the axial direction

  13. An MHD Dynamo Experiment.

    Science.gov (United States)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  14. MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available This research explores the magnetohydrodynamic (MHD boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter. Keywords: MHD, Variable thicked surface, Powell-Eyring nanofluid, Zero mass flux conditions

  15. Effects of induced magnetic field on large scale pulsed MHD generator with two phase flow

    International Nuclear Information System (INIS)

    Ishikawa, M.; Koshiba, Y.; Matsushita, T.

    2004-01-01

    A large pulsed MHD generator 'SAKHALIN' was constructed in Russia (the former Soviet-Union) and operated with solid fuels. The 'SAKHALIN' with the channel length of 4.5 m could demonstrate the electric power output of 510 MW. The effects of induced magnetic field and two phase flow on the shock wave within the 'SAKHALIN' generator have been studied by time dependent, one dimensional analyses. It has been shown that the magnetic Reynolds number is about 0.58 for Run No. 1, and the induced magnetic flux density is about 20% at the entrance and exit of the MHD channel. The shock wave becomes stronger when the induced magnetic field is taken into account, when the operation voltage becomes low. The working gas plasma contains about 40% of liquid particles (Al 2 O 3 ) in weight, and the present analysis treats the liquid particles as another gas. In the case of mono-phase flow, the sharp shock wave is induced when the load voltage becomes small such as 500 V with larger Lorentz force, whereas in the case of two phase flow, the shock wave becomes less sharp because of the interaction with liquid particles

  16. MHD power generation for the synthetic-fuels industry

    International Nuclear Information System (INIS)

    Jones, M.S. Jr.

    1982-01-01

    The integration of open cycle MHD with various processes for the recovery of hydrocarbons for heavy oil deposits, oil sands, and oil shales are examined along with its use in producing medium Btu gas, synthetic natural gas and solvent refined coal. The major features of the MHD cycle which are of interest are: (a) the ability to produce hydrogen through the shift reaction by introducing H 2 O into the substoichiometric combustion product flow exiting the MHD diffuser, (b) the use of high temperature waste heat in the MHD exhaust, and (c) the ability of the seed in the MHD flow to remove sulfur from the combustion products. Therefore the use of the MHD cycle allows coal to be used in an environmentally acceptable manner in place of hydrocarbons which are now used to produce process heat and hydrogen. The appropriate plant sizes are in the range of 25 to 50 MWe and the required MHD generator enthalpy extraction efficiencies are low. Sale of electricity produced, over and above that used in the process, can provide a revenue stream which can improve the economics of the hydrocarbon processing. This, coupled with the replacement of coal for hydrocarbons in certain phases of the process, should improve the overall economics, while not requiring a high level of performance by the MHD components. Therefore, this area should be an early target of opportunity for the commercialization of MHD

  17. The Influence of Uniform Suction/Injection on Heat Transfer of MHD Hiemenz Flow in Porous Media

    DEFF Research Database (Denmark)

    Ghsemi, E; Soleimani, S; Barari, Amin

    2012-01-01

    The steady two-dimensional laminar forced magneto-hydrodynamic (MHD) Hiemenz flow against a flat plate with variable wall temperature in a porous medium is analyzed. The transformed nonlinear boundary-layer equations are solved analytically by homotopy analysis method (HAM). Results for the veloc...

  18. Endoscopy and homogeneous-heterogeneous reactions in MHD radiative peristaltic activity of Ree-Eyring fluid

    Science.gov (United States)

    Hayat, Tasawar; Akram, Javaria; Alsaedi, Ahmed; Zahir, Hina

    2018-03-01

    Endoscopic and homogeneous-heterogeneous reactions in MHD peristalsis of Ree-Eyring fluid are addressed. Mathematical modeling and analysis have been performed by utilizing cylindrical coordinates. Nonlinear thermal radiation is present. Impact of slip boundary conditions on temperature and velocity on outer tube are taken into consideration. Lubrication approach is employed. The nonlinear system is executed numerically for solutions of velocity, temperature and concentration. Graphical results are obtained to predict physical interpretation of various embedded parameters. It is noted that homogeneous and heterogeneous reactions affect the concentration alternatively. Moreover Brinkman number rises the temperature and heat transfer coefficient whereas thermal slip drops temperature and heat transfer rate.

  19. On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions

    International Nuclear Information System (INIS)

    Hayat, Tasawar; Imtiaz, Maria; Alsaedi, Ahmed; Almezal, Saleh

    2016-01-01

    This paper investigates the steady two-dimensional magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid over a stretching surface with homogeneous–heterogeneous reactions. Characteristics of relaxation time for heat flux are captured by employing new heat flux model proposed by Christov. A system of ordinary differential equations is obtained by using suitable transformations. Convergent series solutions are derived. Impacts of various pertinent parameters on the velocity, temperature and concentration are discussed. Analysis of the obtained results shows that fluid relaxation and retardation time constants have reverse behavior on the velocity and concentration fields. Also temperature distribution decreases for larger values of thermal relaxation time. - Highlights: • Cattaneo–Christov heat flux model is used to study the MHD flow of an Oldroyd-B fluid. • Velocity is decreasing function of Hartman number. • Increasing values of the strengths of homogeneous and heterogeneous reaction parameters decrease the wall concentration.

  20. Engineering design and development of lead lithium loop for thermo-fluid MHD studies

    International Nuclear Information System (INIS)

    Kumar, M.; Patel, Anita; Jaiswal, A.; Ranjan, A.; Mohanta, D.; Sahu, S.; Saraswat, A.; Rao, T.S.; Mehta, V.; Bhattacharyay, R.; Rajendra Kumar, E.

    2017-01-01

    In the frame of the design and development of LLCB TBM, number of R and D activities is in progress in the area of Pb-Li technology development. Molten Pb-Li is used as a tritium breeder and also as a coolant for the internals of the TBM structure. In presence of strong plasma confining toroidal magnetic field, motion of electrically conducting Pb-Li leads to Magneto Hydro Dynamic (MHD) phenomena, as a consequence of which the flow profile of Pb-Li is significantly modified inside the Pb-Li channels of TBM. This causes additional pressure drop inside TBM and affects the heat transfer from internal structure. The detail studies of these MHD effects are of prime importance for successful design of LLCB TBM and its performance evaluation. Although, various numerical MHD codes have been developed, validated in simple flow configuration and are being used to study MHD phenomena in LLCB TBM, experimental validation of these codes in TBM relevant complex flow geometry is yet to be performed. A Pb-Li MHD experimental loop is, therefore, being developed at IPR to perform thermo-fluid MHD experiments in various LLCB TBM relevant flow configuration. MHD experiments are planned with different test sections instrumented with potential pins, thermo couples, etc. under a uniform magnetic field of ∼1.4 T. The obtained experimental data will be analyzed to understand the MHD phenomena in TBM like flow configuration and also for validation of MHD codes. This paper describes the detailed process as well as engineering design of the Pb-Li MHD loop and its major components along with the plan of MHD experiments in various test mock ups. (author)

  1. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  2. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

  3. Comparison of peristaltic and Venturi pumps in bimanual microincisional cataract surgery.

    Science.gov (United States)

    Karaguzel, Hande; Karalezli, Aylin; Aslan, Bekir Sitki

    2009-12-01

    Comparison of peristaltic and Venturi pumps in bimanual microincision phacoemulsification on the success of the cataract surgery by using sleeveless phaco tip. Bimanual microincision phacoemulsification was done in 49 eyes using a 1.4-mm temporal clear corneal incision. A peristaltic pump was used in 23 eyes, and a Venturi pump was used in 26 eyes for phacoemulsification. Intraoperative complications, anterior chamber stability, and mean duration of surgery were recorded. Duration of surgery was shorter in the Venturi pump group. Anterior chamber stability could not be established in 17 eyes in the peristaltic pump group; it was established in all eyes in the Venturi pump group. Corneal burns were observed in two eyes in the peristaltic pump group and no eyes in the Venturi pump group. Use of a Venturi pump system and a vented gas-forced infusion system can significantly shorten surgery time and reduce risk of thermal burns.

  4. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  5. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions

    Institute of Scientific and Technical Information of China (English)

    H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI

    2014-01-01

    This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.

  6. Astrophysics days and MHD

    International Nuclear Information System (INIS)

    Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien

    2001-05-01

    This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number

  7. On MHD nonlinear stretching flow of Powell–Eyring nanomaterial

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface

  8. Characteristics of laminar MHD fluid hammer in pipe

    International Nuclear Information System (INIS)

    Huang, Z.Y.; Liu, Y.J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  9. On axisymmetric resistive MHD equilibria with flow free of Pfirsch-Schlüter diffusion

    Science.gov (United States)

    Throumoulopoulos, George N.; Tasso, Henri

    2002-11-01

    The equilibrium of an axisymmetric magnetically confined plasma with anisotropic electrical conductivity and flows parallel to the magnetic field is investigated within the framework of the MHD theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order partial differential equation for the poloidal magnetic flux function along with a Bernoulli equation for the density identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the conductivities σ_allel and σ_⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic conductivity and parallel flows (see [1]) the equilibrium is compatible with non-vanishing poloidal currents. For incompressible flows exact solutions of the above mentioned set of equations can be constructed with σ_allel and σ_⊥ profiles compatible with collisional conductivity profiles, i.e. profiles peaked close to the magnetic axis, vanishing on the boundary and such that σ_allel> σ_⊥. In particular, an exact equilibrium describing a toroidal plasma of arbitrary aspect ratio being contained within a perfectly conducting boundary of rectangular cross-section and peaked toroidal current density profile vanishing on the boundary is further considered. For this equilibrium in the case of vanishing flows the difference σ_allel-σ_⊥ for the reversed field pinch scaling Bp Bt (where Bp and Bt are the poloidal and toroidal magnetic field components) is nearly two times larger than that for the tokamak scaling B_p 0.1 B_t. [1] G. N. Throumoulopoulos, H. Tasso, J. Plasma Physics 64, 601 (2000).

  10. Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, Graphene and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Mamatha Upadhya

    2018-06-01

    Full Text Available A Comprehensive study on laminar, magnetohydrodynamic (MHD boundary layer flow of nanofluid (water + Silver, water + Graphene embedded with conducting micrometer sized dust particles over a stretching cylinder with the incorporation of Cattaneo-Christov heat flux model is conducted. Appropriate similarity variables are employed to the flow governing equations and the resulting ordinary differential equations are solved by employing Runge-Kutta-Fehlberg method. The results for varied controlling parameters for both dusty nano fluid and dust phase are shown through graphs, table and discussed in detail. Authentication of the obtained results is provided by comparing with published results. Results indicate that Graphene + water dusty nanofluid shows better heat transfer performance compared with Silver + water dusty nanofluid. Improvement in thermal relaxation boosts temperature distribution in both fluid and dust phase. Keywords: Graphene nano particles, Silver nano particles, Stretching cylinder, Dusty fluid, Cattaneo-Christov heat flux, MHD

  11. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R.N., E-mail: barik.rabinarayan@rediffmail.com [Department of Mathematics, Trident Academy of Technology, Bhubaneswar (India); Dash, G.C., E-mail: gcdash@indiatimes.com [Department of Mathematics, S.O.A. University, Bhubaneswar (India); Rath, P.K., E-mail: pkrath_1967@yahoo.in [Department of Mathematics, B.R.M. International Institute of Technology, Bhubaneswar (India)

    2013-01-15

    Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S{sup 2}. Further, the axis of rotation has no effect on the fluid flow. (author)

  12. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

    International Nuclear Information System (INIS)

    Barik, R.N.; Dash, G.C.; Rath, P.K.

    2013-01-01

    Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S 2 . Further, the axis of rotation has no effect on the fluid flow. (author)

  13. Heat transfer characteristics of rectangular coolant channels with various aspect ratios in the plasma-facing components under fully developed MHD laminar flow

    International Nuclear Information System (INIS)

    Takase, K.; Hasan, M.Z.

    1995-01-01

    Convective heat transfer in MHD laminar flow through rectangular channels in the plasma-facing components of a fusion reactor has been analyzed numerically to investigate the effects of channel aspect ratio, defined as the ratio of the lengths of the plasma-facing side to the other side. The adverse effect of the nonuniformity of surface heat flus on Nusselt number (Nu) at the plasma-facing side can be alleviated by increasing the aspect ratio of a rectangular duct. At the center and corner of the plasma-facing side of a square duct, the Nu of non-MHD flow are 6.8 and 2.2, respectively, for uniform surface heat flux. In the presence of a strong magnetic field, Nu at the center and corner increases to 22 and 3.6, respectively. However, when the heat flux is highly nonuniform, as in the plasma-facing components, Nu decreases from 22 to 3.1 at the center and from 3.6 to 3.1 at the corner. When the aspect ratio is increased to 4, Nu at the center and corner increase to 5 and 4.7. Along the circumference of a rectangular channel, there are locations where the wall temperature is equal to or less than the bulk coolant temperature, thus making the Nu with conventional definition infinity or negative. The ratio between Nu of MHD flow and Nu of non-MHD flow for various aspect ratios is constant in the region of Hartmann number of more than 200 at least. On the other hand, its ratio increases monotonously with increasing the aspect ratio

  14. The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet

    International Nuclear Information System (INIS)

    Sajid, M.; Hayat, T.

    2009-01-01

    This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a shrinking sheet. The cases of two dimensional and axisymmetric shrinking have been discussed. Exact series solution is obtained using the homotopy analysis method (HAM). The convergence of the obtained series solution is discussed explicitly. The obtained HAM solution is valid for all values of the suction parameter and Hartman number.

  15. The Statistical Mechanics of Ideal MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  16. Neoclassical MHD descriptions of tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Kim, Y.B.; Sundaram, A.K.

    1988-01-01

    Considerable progress has been made in extending neoclassical MHD theory and in exploring the linear instabilities, nonlinear behavior and turbulence models it implies for tokamak plasmas. The areas highlighted in this paper include: extension of the neoclassical MHD equations to include temperature-gradient and heat flow effects; the free energy and entropy evolution implied by this more complete description; a proper ballooning mode formalism analysis of the linear instabilities; a new rippling mode type instability; numerical simulation of the linear instabilities which exhibit a smooth transition from resistive ballooning modes at high collisionality to neoclassical MHD modes at low collisionality; numerical simulation of the nonlinear growth of a single helicity tearing mode; and a Direct-Interaction-Approximation model of neoclassical MHD turbulence and the anomalous transport it induces which substantially improves upon previous mixing length model estimates. 34 refs., 2 figs

  17. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  18. Methods for the Determination of Currents and Fields in Steady Two-Dimensional MHD Flow With Tensor Conductivity

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1965-12-01

    Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given

  19. Methods for the Determination of Currents and Fields in Steady Two-Dimensional MHD Flow With Tensor Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-12-15

    Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given.

  20. Theory of a peristaltic pump for fermionic quantum fluids

    Science.gov (United States)

    Romeo, F.; Citro, R.

    2018-05-01

    Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.

  1. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  2. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Mukhopadhyay, Swati; Layek, G. C.

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate. (fundamental areas of phenomenology(including applications))

  3. Electricity from MHD, 1968. Vol. IV. Open-Cycle MHD. Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation held by the IAEA at Warsaw, 24-30 July 1968. The meeting was attended by some 300 participants from 21 countries and three international organizations. In contrast to the Symposium held two years ago, much more emphasis was placed on the economic aspects of using MHD generators in large-scale power generation. Among closed- cycle systems, the prospects of linking an ultra-high-temperature reactor with an MHD generator were explored, and the advantages gained by having a liquid-metal generator as a 'topper' in a conventional steam generating plant were presented. Comments were made about the disproportionate effect of end and boundary conditions in experimental MHD generators on the main plasma parameters, and estimates were made of the interrelationship to be expected in real generators. The estimates will have to await confirmation until results are obtained on large-scale prototype MHD systems. Progress in materials research, in design and construction of auxiliary equipment such as heat exchangers, supercooled magnets (which are- now commercially available), etc., is accompanied by sophisticated ideas of plant design. The Proceedings are complemented by three Round Table Discussions in which chosen experts from various countries discuss the outlook for closed-cycle gas, closed-cycle liquid-metal and open-cycle MHD, and give their views as to the most fruitful course to follow to achieve economic full-scale power generation. Contents: (Vol. I) 1. Closed-Cycle MHD with Gaseous Working Fluids: (a) Diagnostics (3 papers); (b) Steady-state non-equilibrium ionization (8 papers); (c) Transient non-equilibrium ionization (7 papers); (d) Pre-ionization and gas discharge (4 papers); (e) Fields and flow in MHD channels (10 papers); (0 Instabilities (8 papers); (g) Generator design and performance studies (6 papers); (Vol. II) (h) Shock waves (6 papers); (i) Power generation experiments (13 papers

  4. Study of MHD problems in liquid metal blankets of fusion reactors

    International Nuclear Information System (INIS)

    Michael, I.

    1984-12-01

    This study describes in a concise form the state of knowledge regarding MHD problems to be expected in case of use of liquid metal in the blankets of fusion reactors with magnetic confinement. MHD pressure losses and MHD friction coefficients in the straight channel, in bent sections and in case of variation of the channel cross section play a major role because the high MHD flow resistances call for high pumping powers. Influencing the velocity profile transverse to the main flow direction of the liquid metal by application of an external, strong magnetic field bears consequences on the release and transport of corrosion products in the liquid metal circuit and on the heat transfer. Possibilities of reducing the MHD effects are discussed. However, it becomes obvious that an account of the lack of experimental results there are still major gaps in the knowledge of MHD effects occurring in strong magnetic fields. These gaps can be greatly reduced by implementation of an experimental program as proposed in this report. (orig.) [de

  5. Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment

    Science.gov (United States)

    1980-04-01

    An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.

  6. Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy's law

    International Nuclear Information System (INIS)

    Khan, M.; Hayat, T.; Asghar, S.

    2005-12-01

    This paper deals with an exact solution for the magnetohydrodynamic (MHD) flow of a generalized Oldroyd-B fluid in a circular pipe. For the description of such a fluid, the fractional calculus approach has been used throughout the analysis. Based on modified Darcy's law for generalized Oldroyd-B fluid, the velocity field is calculated analytically. Several known solutions can be recovered as the limiting cases of our solution. (author)

  7. US/USSR cooperative program in open-cycle MHD electrical power gneration. Joint test report No. 2: tests in the U-25B facility; MHD generator test No. 3

    International Nuclear Information System (INIS)

    Tempelmeyer, K.E.; Sokolov, Y.N.

    1979-04-01

    The third joint test with a Soviet U-25B MHD generator and a US superconducting magnet system (SCMS) was conducted in the Soviet U-25B Facility. The primary objectives of the 3rd test were: (1) to operate the facility and MHD channel over a wider range of test parameters, and (2) to study the performance of all components and systems of the flow train at increased mass flow rates of combustion products (up to 4 kg/s), at high magnetic-field induction (up to 5 T), and high values of the electrical field in the MHD generator. The third test has demonstrated that all components and systems of the U-25B facility performed reliably. The electric power generated by the MHD generaor reached a maximum of 575 kW during this test. The MHD generator was operated under electrical loading conditions for 9 hours, and the combustor for a total of approximately 14 hours. Very high Hall fields (2.1 kV/m) were produced in the MHD channel, with a total Hall voltage of 4.24 kV. A detailed description is given of (1) performance of all components and systems of the U-25B facility, (2) analysis of the thermal, gasdynamic, and electrical characteristics of the MHD generator, (3) results of plasma diagnostic studies, (4) studies of vibrational characteristics of the flow train, (5) fluctuation of electrodynamic and gasdynamic parameters, (6) interaction of the MHD generator with the superconducting magnet, and (7) an operational problem, which terminated the test

  8. On the theory of Heiser and Shercliff experiment. Part 2: MHD flow between two cylinders in strong radical magnetic field

    Science.gov (United States)

    Molokov, S. Y.; Allen, J. E.

    A magnetohydrodynamic (MHD) flow of conducting fluid between two concentric insulating cylinders in strong radial magnetic field which is parallel to a free surface of a fluid is investigated by means of matched asymptotic expansions method. The flow region is divided into various subregions and leading terms of asymptotic expansions as M tends towards infinity (M is the Hartmann number) of solutions of problems governing flow in these subregions are obtained.

  9. Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Guillermo [Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez, Chiapas 29000 (Mexico); Cuevas, Sergio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico A.P. 34, Temixco, Mor. 62580 (Mexico)

    2010-10-15

    The dissipative processes that arise in a microchannel flow subjected to electromagnetic interactions, as occurs in a MHD (magnetohydrodynamic) micropump, are analyzed. The entropy generation rate is used as a tool for the assessment of the intrinsic irreversibilities present in the microchannel owing to viscous friction, heat flow and electric conduction. The flow in a parallel plate microchannel produced by a Lorentz force created by a transverse magnetic field and an injected electric current is considered assuming a thermally fully developed flow and conducting walls of finite thickness. The conjugate heat transfer problem in the fluid and solid walls is solved analytically using thermal boundary conditions of the third kind at the outer surfaces of the walls and continuity of temperature and heat flux across the fluid-wall interfaces. Velocity, temperature and current density fields in the fluid and walls are used to calculate the global entropy generation rate. Conditions under which this quantity is minimized are determined for specific values of the geometrical and physical parameters of the system. The Nusselt number is also calculated and explored for different conditions. Results can be used to determine optimized conditions that lead to a minimum dissipation consistent with the physical constraints demanded by the microdevice. (author)

  10. Priority pollutant analysis of MHD-derived combustion products

    Science.gov (United States)

    Parks, Katherine D.

    An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.

  11. MHD power generation research, development and engineering. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Progress is reported on the following tasks: characterization of coal for open-cycle MHD power generation systems; compressive creep and strength studies of MHD preheater materials; preparation of coals for utilization in direct coal-fired MHD generation; characterization of volatile matter in coal; MHD materials evaluation; operability of the Moderate Temperature Slag Flow Facility; slag-seed equilibria and separations related to the MHD system; thermionic emission of coal and electrode materials; MHD instrumentation, consolidated inversion simulator, and data acquisition; combined MHD-steam plant cycle analysis and control; and slag physical properties - electrical and thermal conductivity. (WHK)

  12. An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow

    Directory of Open Access Journals (Sweden)

    Vasile Marinca

    2011-01-01

    Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.

  13. Convective heat transfer in MHD channels and its influence on channel performance

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Doss, E.D.

    1980-01-01

    The limitations of the integral boundary layer methods and the potential of the differential boundary layer method in analyzing MHD channel flows are assessed. The sensitivity of results from the integral method to the parametrization of boundary layer profiles and calculation of wall heat transfer is established. A mixing-length type turbulence model for flow on rough walls is developed and validated by comparison with experimental data. The turbulence model is used in a quasi-three-dimensional boundary layer model to evaluate the influence of wall roughness and pressure gradients on the flow characteristics and performance of MHD channels. The behaviors of skin friction and Stanton number calculated from the analytical model are found to differ considerably from the empirical correlations valid for non-MHD flows without pressure gradients

  14. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  15. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  16. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  17. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  18. Qualification of MHD effects in dual-coolant DEMO blanket and approaches to their modelling

    International Nuclear Information System (INIS)

    Mas de les Valls, E.; Batet, L.; Medina, V. de; Fradera, J.; Sedano, L.A.

    2011-01-01

    Design refinements of vertical insulated banana-shaped liquid metal channels are being considered as a progress of conceptual design of dual-coolant liquid metal blankets (DEMO specifications). Among them: (a) optimised channel geometry and (b) improvements on flow channel inserts. Progress of channel conceptual design is conducted in parallel with underlying physics of MHD models in diverse aspects: (1) MHD models, (2) MHD turbulence, (3) LM buoyancy effects, (4) three-dimensional flows, and (5) LM/FCI/wall electrical and thermal coupling; in order to progress on common liquid metal flow characterisation, pressure drop and three-dimensional flows. The analyses are assumed as extension of those previous carried out for the DCLL blankets for new design refinements. At the present stage of the conceptual design progress, a preliminary thermofluid MHD study is of crucial interest for further design improvements and future detailed modelling. The paper overviews the ongoing modelling studies, making model refinements explicit, and anticipates some modelling results.

  19. PERISTALTIC PUMPING NEAR POST-CORONAL MASS EJECTION SUPRA-ARCADE CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Roger B.; Longcope, Dana W.; McKenzie, David E., E-mail: rscott@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2013-10-10

    Temperature and density measurements near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of 'pre-heating' and 'pre-densification' prior to reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here, we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances, these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of descending regions of density depletion or supra-arcade downflows.

  20. Rotation and Radiation Effects on MHD Flow through Porous Medium Past a Vertical Plate with Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Uday Singh Rajput

    2017-11-01

    Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid

  1. An analytical and numerical study of peristaltic transport of a Johnson—Segalman fluid in an endoscope

    International Nuclear Information System (INIS)

    Akbar, Noreen Sher; Nadeem, S.

    2013-01-01

    In the present study, we discuss the peristaltic flow of a Johnson—Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson—Segalman fluid. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries

    Science.gov (United States)

    Shoaib Anwar, Muhammad; Rasheed, Amer

    2017-07-01

    Heat transfer through a Forchheimer medium in an unsteady magnetohydrodynamic (MHD) developed differential-type fluid flow is analyzed numerically in this study. The boundary layer flow is modeled with the help of the fractional calculus approach. The fluid is confined between infinite parallel plates and flows by motion of the plates in their own plane. Both the plates have variable surface temperature. Governing partial differential equations with appropriate initial and boundary conditions are solved by employing a finite-difference scheme to discretize the fractional time derivative and finite-element discretization for spatial variables. Coefficients of skin friction and local Nusselt numbers are computed for the fractional model. The flow behavior is presented for various values of the involved parameters. The influence of different dimensionless numbers on skin friction and Nusselt number is discussed by tabular results. Forchheimer medium flows that involve catalytic converters and gas turbines can be modeled in a similar manner.

  3. MHD from a Microscopic Concept and Onset of Turbulence in Hartmann Flow

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Bo-ot, L. Ma.; Chiang, C. M.

    2010-01-01

    We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using projection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number. (physics of gases, plasmas, and electric discharges)

  4. Using Differential Transform Method and Padé Approximant for Solving MHD Flow in a Laminar Liquid Film from a Horizontal Stretching Surface

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rashidi

    2010-01-01

    Full Text Available The purpose of this study is to approximate the stream function and temperature distribution of the MHD flow in a laminar liquid film from a horizontal stretching surface. In this paper DTM-Padé method was used which is a combination of differential transform method (DTM and Padé approximant. The DTM solutions are only valid for small values of independent variables. Comparison between the solutions obtained by the DTM and the DTM-Padé with numerical solution (fourth-order Runge–Kutta revealed that the DTM-Padé method is an excellent method for solving MHD boundary-layer equations.

  5. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    Science.gov (United States)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  6. Combine effects of Magnetohydrodynamics (MHD and partial slip on peristaltic Blood flow of Ree–Eyring fluid with wall properties

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-09-01

    Full Text Available In this article, combine effects of Magnetohydrodynamics and partial slip on Blood flow of Ree–Eyring fluid through a porous medium have been investigated. The walls of the non-uniform porous channel are considered as compliant. The governing equation of Ree–Eyring fluid for blood flow are simplified using long wavelength and low Reynolds number approximation. The obtained resulting equation are solved analytically and exact solution has been obtained. The impact of different physical parameters such as Hartmann number, slip parameter, porous parameter, wall rigidity parameter, wall tension and mass characterization parameter are taken into account. It is found that velocity distribution increases due to slip effects while its behavior is opposite for Hartmann number. Trapping mechanism has also taken under consideration by drawing contour streamlines.

  7. Multi-region relaxed magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  8. Peristalticity-driven banded chemical garden

    Science.gov (United States)

    Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.

    2018-05-01

    Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.

  9. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  10. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  11. On Unsteady Three-Dimensional Axisymmetric MHD Nanofluid Flow with Entropy Generation and Thermo-Diffusion Effects on a Non-Linear Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammed Almakki

    2017-07-01

    Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.

  12. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    Full Text Available Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC and low and high density polyethylene (LDPE/HDPE, nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD. Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM. The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM. The effect of important parameters such as magnetic parameter Mi, the dilatant constant α, the Pseodoplastic constant β, the radii ratio δ, the pressure gradient Ω, the speed of fiber optics V, and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero. Keywords: Non-Newtonian fluid, Oldroyd 8-constant fluid, MHD flow, Double-layer fiber coating, OHAM, ADM, Wet-on-wet coating process

  13. Influence of wall couple stress in MHD flow of a micropolar fluid in a porous medium with energy and concentration transfer

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2018-06-01

    Full Text Available The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement. Keywords: Micropolor fluid, Microrotation, MHD, Porosity, Wall couple stress, Exact solutions

  14. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  15. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Directory of Open Access Journals (Sweden)

    Zhaoying Zhou

    2009-04-01

    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  16. Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium

    Directory of Open Access Journals (Sweden)

    Nor Athirah Mohd Zin

    Full Text Available In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs are dispersed in the Kerosene Oil (KO which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ, material parameters of Jeffrey fluid λ1, λ, rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Keywords: Jeffrey nanofluid, AgNPs, MHD and Porosity, Rotating flow, Laplace transform technique

  17. Proceedings of the workshop on nonlinear MHD and extended MHD

    International Nuclear Information System (INIS)

    1998-01-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  18. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    International Nuclear Information System (INIS)

    He, Qingyun; Chen, Hongli; Feng, Jingchao

    2015-01-01

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  20. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao

    2015-12-15

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  1. Experimental investigation of MHD effects in a manifold of a downstream circular pipe

    International Nuclear Information System (INIS)

    Xu Zengyu; Pan Chuanjie; Wei Wenhao; Chen Xiaoqiong; Zhang Yanxu

    2001-01-01

    The velocity distribution in the mid-plane of the cross section of a main pipe in the region of a junction is investigated. The result confirms that the MHD-flow near the junction is strongly affected by the junction itself. This holds even if the bypass pipe is closed. The MHD pressure drops are also measured, and a three-dimensional (3D) factor of MHD pressure drop due to manifold effects is obtained with theoretical analysis and comparing with experimental data. The factor is directly proportional to Hartmann number Ha. Two dimensional MHD pressure drop is also discussed

  2. Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shashi, E-mail: shashisharma1984@gmail.com; Singh, Uaday; Katiyar, V.K.

    2015-03-01

    In this paper, the effect of external uniform magnetic field on flow parameters of both blood and magnetic particles is reported through a mathematical model using magnetohydrodynamics (MHD) approach. The fluid is acted upon by a varying pressure gradient and an external uniform magnetic field is applied perpendicular to the cylindrical tube. The governing nonlinear partial differential equations were solved numerically and found that flow parameters are affected by the influence of magnetic field. Further, artificial blood (75% water+25% Glycerol) along with iron oxide magnetic particles were prepared and transported into a glass tube with help of a peristaltic pump. The velocity of artificial blood along with magnetic particles was experimentally measured at different magnetic fields ranging from 100 to 600 mT. The model results show that the velocity of blood and magnetic particles is appreciably reduced under the influence of magnetic field, which is supported by our experimental results. - Highlights: • Effect of magnetic field on flow parameters of blood and magnetic particles is studied. • The velocity of blood and magnetic particles is appreciably reduced under a magnetic field. • Experimental results of the velocity of magnetic particles within blood support the mathematical model results.

  3. Impact of induced magnetic field on synovial fluid with peristaltic flow in an asymmetric channel

    Science.gov (United States)

    Afsar Khan, Ambreen; Farooq, Arfa; Vafai, Kambiz

    2018-01-01

    In this paper, we have worked for the impact of induced magnetic field on peristaltic motion of a non-Newtonian, incompressible, synovial fluid in an asymmetric channel. We have solved the problem for two models, Model-1 which behaves as shear thinning fluid and Model-2 which behaves as shear thickening fluid. The problem is solved by using modified Adomian Decomposition method. It has seen that two models behave quite opposite to each other for some parameters. The impact of various parameters on u, dp/dx, Δp and induced magnetic field bx have been studied graphically. The significant findings of this study is that the size of the trapped bolus and the pressure gradient increases by increasing M for both models.

  4. Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, I.A., E-mail: corpuskula@gmail.com; Sviridov, E.V.; Sviridov, V.G.; Razuvanov, N.G.

    2016-11-15

    Highlights: • Local and averaged heat transfer coefficient are measured. • Free convection influence on MHD-flow is investigated. • The region with the free convection effect of MHD-heat transfer is found. • Temperature low-frequency fluctuations of abnormally high amplitude are detected. • Analysis of the MHD-heat transfer experimental data is performed. - Abstract: The article is devoted to the results of experimental investigation of heat transfer for a downward mercury flow in a vertical round tube in the presence of a transverse magnetic with non-uniform heat flux along the tube circumference.

  5. Computer controlled titration with piston burette or peristaltic pump - a comparison.

    Science.gov (United States)

    Hoffmann, W

    1996-09-01

    The advantages and problems of the use of piston burettes and peristaltic pumps for dosage of titrant solutions in automatic titrations are shown. For comparison, only the dosing devices were exchanged and all other components and conditions remained unchanged. The results of continuous acid base titration show good agreement and comparable reproducibility. Potentiometric sensors (glass electrodes) with different equilibration behaviour influence the results. The capability of such electrodes was tested. Conductometric measurements allow a much faster detection because there is no equilibration of electrodes. Piston burettes should be used for titration with very high precision, titration with organic solvents and slow titrations. Peristaltic pumps seem to be more suitable for continuous titrations and long time operation without service.

  6. Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field

    International Nuclear Information System (INIS)

    Akram, Safia; Nadeem, S.

    2014-01-01

    In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters. - Highlights: • The main motivation of this work is that we want to see the behavior of nanofluids in peristaltic flows. • In literature few articles are available on this, but no article is available in asymmetric channel on the new fluid model hyperbolic tangent fluid. • So we want to fill the gap in literature studying this

  7. Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Safia, E-mail: safia_akram@yahoo.com [Department of Basic Sciences, MCS, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan)

    2014-05-01

    In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters. - Highlights: • The main motivation of this work is that we want to see the behavior of nanofluids in peristaltic flows. • In literature few articles are available on this, but no article is available in asymmetric channel on the new fluid model hyperbolic tangent fluid. • So we want to fill the gap in literature studying this.

  8. Magnetohydrodynamic peristaltic motion of a Newtonian fluid through porous walls through suction and injection

    Science.gov (United States)

    Sivaiah, R.; Hemadri Reddy, R.

    2017-11-01

    In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.

  9. Summary of results of research on magneto hydrodynamic (MHD) generation in fiscal 1977; 1977 nendo denji ryutai (MHD) hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-08-01

    This is the summary of results of the research on MHD generation in fiscal 1977. In the experimental studies on MHD generators using a copper/iron magnet, the combustor of the Mark 7 generator was manufactured and installed, as were the supply systems of fuel, oxygen, air, seed, sulfur dioxide, cooling water, etc., respectively of the Mark 7 generator based on the design implemented in the previous year. In the studies on element technologies, various tests were performed, namely, immersion tests by K{sub 2}SO{sub 4} solution for electrode materials; tests of corrosion resistance, thermal shock resistance, and compatibility with electrode materials, for insulation wall materials; and material selection tests, based on a dynamic state, for consumption quantity and distribution, surface temperature and heat flow, measurement of arc spot generating critical current and electrode lowering voltage, etc.. In the research on the MHD generation system, examinations were carried out on the position of MHD generation as a total system, as well as on a system of a practical plant, MHD generation for peak load, superconducting magnet, etc. In addition, examinations were also conducted on the Mark 7 calculation, Mark 8 plan, surveys on overseas trend, etc. (NEDO)

  10. NaK-nitrogen liquid metal MHD converter tests at 30 kw

    Science.gov (United States)

    Cerini, D. J.

    1974-01-01

    The feasibility of electrical power generation with an ambient temperature liquid-metal MHD separator cycle is demonstrated by tests in which a NaK-nitrogen LM-MHD converter was operated at nozzle inlet pressures ranging from 100 to 165 N/sq cm, NaK flow rates from 46 to 72 kg/sec, and nitrogen flow rates from 2.4 to 3.8 kg/sec. The generator was operated as an eight-phase linear induction generator, with two of the eight phases providing magnetic field compensation to minimized electrical end losses at the generator channel inlet and exit.

  11. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  12. The effects of imperfect insulator coatings on MHD and heat transfer in rectangular duct

    International Nuclear Information System (INIS)

    Ying, A.Y.; Gaizer, A.A.

    1994-01-01

    In self cooled liquid metal blankets, the use of an insulator coating to reduce the flow of the eddy current to the structure leads to a significant reduction in MHD pressure drop. Furthermore, this insulating layer alters the velocity structure by reducing the potential difference between the side wall and boundary layer. The questions which arise are: (1) How the imperfections in the insulator coating affect the velocity profiles and their consequent impacts on heat transfer performance?; and, (2) How much crack can lead to an unacceptable MHD pressure drop? The dynamics of the crack healing in an insulator coating duct is one of the important subjects requiring study. The purpose of this work is to present numerical simulations of fully developed MHD flow and developing heat transfer characteristics in imperfectly insulated ducts, and to quantify the influences of crack locations, sizes and resistivities on 2-D MHD pressure drops. Comparisons of finite element solutions of pressure drops in partially insulated ducts with analytical solutions obtained from a circuit analogy show excellent agreement. In addition, the remarkable side layer velocity profile observed in a laminar MHD flow of a conducting duct gradually diminishes as the resistance of the insulating layer increases. The average side wall Nusselt number drops by a factor of 2 as the duct becomes fully insulated

  13. Outline of fiscal 1967 achievements in research on MHD power generation; 1967 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-09-01

    Compiled are the results of studies conducted in fiscal 1967 on MHD (magnetohydrodynamic) power generation. In the test operation and modification of a 1,000kW-class MHD power generator at the Electrical Research Laboratory, a test is conducted using Faraday-type electrodes. It is then found that this configuration results in a maximum output of approximately 700kW, which is less than expected. In the experimental construction at the Hitachi, Ltd., of a machine capable of a long-term operation, an MHD power generator is built for a continuous operation of 100 hours with an maximum output of 2kW, and a 110-hour power generation is successfully achieved with a maximum output of 1.9kW. In the research and development of heat exchangers, tests are conducted for a bulkhead type heat exchanger, heat accumulator type heat exchanger, molten slag type heat exchanger, and a gas/liquid 2-phase flow type heat exchanger. In the study of heat-resisting insulators, materials based on zirconate, magnesia, thoria, zirconia, etc., are tested. In addition, studies are conducted on electrode materials, superconductive electromagnets (small superconductive electromagnets for MHD power generators, turbine type helium liquefiers, superconductive wires for 70-kilogauss electromagnets, etc.), and thermal performance rating. (NEDO)

  14. Development and Research of Peristaltic Multiphase Piezoelectric Micro-Pump

    Science.gov (United States)

    Vinogradov, Alexander N.; Ivanikin, Igor A.; Lubchenco, Roman V.; Matveev, Yegor V.; Titov, Pavel A.

    2016-01-01

    The paper presents the results of a study of existing models and mathematical representations of a range of truly peristaltic multiphase micro-pumps with a piezoelectric actuator (piezo drive). Piezo drives with different types of substrates use vertical movements at deformation of individual piezoelectric elements, which define device…

  15. Experimental investigation of rotating-drum separators for liquid-metal MHD applications

    International Nuclear Information System (INIS)

    Lenzo, C.S.; Dauzvardis, P.V.; Hantman, R.G.

    1978-01-01

    For the past several years, Argonne National Laboratory has been active in the development of closed-cycle two-phase-flow MHD power systems. One of the key components in such systems is an effective and efficient gas-liquid separator-diffuser. On the basis of an assessment of present technology, it was decided to study the characteristics of a rotating drum type of separator, and a multitask research and development program was initiated within the overall liquid-metal MHD research program. The first task, now completed, centered on the investigation of single-phase flow (liquid) deposited by a flow nozzle on the inner surface of freely-rotating cylinders or drums of 423 mm and 282 mm diam. The tests were designed to study the recovery of energy in the liquid layer deposited on the drum; the torque transmitted to the drum by the liquid as the result of shear stress between the liquid and the drum surface; the characteristics of the liquid layer; and the effects of drum size, nozzle shape and orientation, and nozzle velocity. The test results showed that a stable liquid film was formed on the drum and that the kinetic energy of the liquid layer was high enough to be potentially useful in two-phase-flow MHD power systems

  16. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

    OpenAIRE

    Misra, J. C.; Maiti, S.

    2011-01-01

    Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bo...

  17. Magnus: A New Resistive MHD Code with Heat Flow Terms

    Science.gov (United States)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  18. The design of a heat transfer liquid metal MHD experiment for ALEX [Argonne Liquid-Metal Experiment

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Lavine, A.S.

    1988-01-01

    An experiment to study heat transfer in liquid metal MHD flow, under conditions relevant to coolant channels for tokamak first wall and high heat flux devices, is described. The experimental configuration is a rectangular duct in a transverse magnetic field, heated on one wall parallel to the field. The specific objective of the experiment is to resolve important issues related to the presence and heat transfer characteristics of wall jets and flow instabilities in MHD flows in rectangular duct with electrically conducting walls. Available analytical tools for MHD thermal hydraulics have been used in the design of the test article and its instrumentation. Proposed tests will cover a wide range of Peclet and Hartmann numbers and interaction parameters. 14 refs., 3 figs., 1 tab

  19. MHD equilibrium with toroidal rotation

    International Nuclear Information System (INIS)

    Li, J.

    1987-03-01

    The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

  20. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    International Nuclear Information System (INIS)

    Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.

    2013-01-01

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient

  1. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

    2013-12-15

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

  2. Construction program for a large superconducting MHD magnet system at the coal-fired flow facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Genens, L.; Gonczy, J.; Ludwig, H.; Lieberg, M.; Kraft, E.; Gacek, D.; Huang, Y.C.; Chen, C.J.

    1980-01-01

    The Argonne National Laboratory has designed and is constructing a 6 T large aperture superconducting MHD magnet for use in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee. The magnet system consists of the superconducting magnet, a magnet power supply, an integrated instrumentation for operation, control and protection, and a complete cryogenic facility including a CTI Model 2800 helium refrigerator/liquefier with two compressors, helium gas handling system and a 7500 liter liquid helium dewar. The complete system will be tested at Argonne, IL in 1981. The magnet design is reviewed, and the coil fabrication programs are described in detail

  3. On the stability of dissipative MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-04-01

    The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)

  4. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  5. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  6. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

    International Nuclear Information System (INIS)

    Daltorio, Kathryn A; Horchler, Andrew D; Quinn, Roger D; Boxerbaum, Alexander S; Shaw, Kendrick M; Chiel, Hillel J

    2013-01-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress. (paper)

  7. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots.

    Science.gov (United States)

    Daltorio, Kathryn A; Boxerbaum, Alexander S; Horchler, Andrew D; Shaw, Kendrick M; Chiel, Hillel J; Quinn, Roger D

    2013-09-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress

  8. Peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium: a study of chyme dynamics through the diseased intestine.

    Science.gov (United States)

    Tripathi, D; Anwar Bég, O

    2014-02-01

    A mathematical study of the peristaltic flow of complex rheological viscoelastic fluids using the generalized fractional Burgers' model through a non-uniform channel is presented. This model is designed to study the movement of chyme and undigested chyme (biophysical waste materials) through the small intestine to the large intestine. To simulate blockages and impedance of debris generated by cell shedding, infections, adhesions on the wall and undigested material, a drag force porous media model is utilized. This effectively mimicks resistance to chyme percolation generated by solid matrix particles in the regime. The conduit geometry is mathematically simulated as a sinusoidal propagation with linear increment in shape of the bolus along the length of channel. A modified Darcy-Brinkman model is employed to simulate the generalized flows through isotropic, homogenous porous media, a simplified but physically robust approximation to actual clinical situations. To model the rheological properties of chyme, a viscoelastic Burgers' fluid formulation is adopted. The governing equations are simplified by assuming long wavelength and low Reynolds number approximations. Numerical and approximate analytical solutions are obtained with two semi-numerical techniques, namely the homotopy perturbation method and the variational iteration method. Visualization of the results is achieved with Mathematica software. The influence of the dominant hydromechanical and geometric parameters such as fractional viscoelastic parameters, wave number, non-uniformity constant, permeability parameter, and material constants on the peristaltic flow characteristics are depicted graphically. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. On the theory of Heiser and Shercliff experiment. Part 1: MHD flow in an open channel in strong uniform magnetic field

    Science.gov (United States)

    Molokov, S. Y.; Allen, J. E.

    Magnetohydrodynamic (MHD) flows of viscous incompressible fluid in strong magnetic fields parallel to a free surface of fluid are investigated. The problem of flow in an open channel due to a moving side wall in uniform magnetic field is considered, and treated by means of matched asymptotic expansions method. The flow region is divided into various subregions and leading terms of asymptotic expansions as M tends towards infinity (M is the Hartmann number) of solutions of correspondent problems in each subregion are obtained. An exact analytic solution of equations governing the free-surface layer of thickness of order M to the minus 1/2 power is obtained.

  10. Prediction of transverse asymmetries in MHD ducts with zero net Hall current

    International Nuclear Information System (INIS)

    Swean, T.F. Jr.; Oliver, D.A.; Maxwell, C.D.; Demetriades, S.T.

    1981-01-01

    A new class of fluid-electrical asymmetries in MHD generator channel flow are predicted. It is shown that the existence of interelectrode asymmetries is not confined to generators in which there exists a nonzero net axial current, but rather they are induced even in the case of the Faraday generators. Also demonstrated is the impact of these asymmetries upon the generator and diffuser flow. It is concluded that in MHD generators, the net axial current in the cross plane is identically zero, while at any given point in the plane, the local Hall current density is in general nonzero

  11. MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Present work is devoted to convective flow of ferrofluid due to non linear stretching curved sheet. Electrically conducting fluid is considered in the presence of uniform magnetic field. Nanofluid comprises water and magnetite-Fe3O4 as nanoparticles. Thermal radiation and heat generation/absorption are explained. Homotopy concept is utilized for the development of solutions. Highly nonlinear partial differential systems are reduced into the nonlinear ordinary differential system. Impact of non-dimensional radius of curvature and power law index on the physical quantities like fluid pressure, velocity and temperature field are examined. Computations for surface shear stress and heat transfer rate also analyzed. Keywords: MHD nanofluid, Thermal radiation, Porous medium, Convective boundary conditions, Non-linear curved stretching sheet

  12. Acquisition of earthworm-like movement patterns of many-segmented peristaltic crawling robots

    Directory of Open Access Journals (Sweden)

    Norihiko Saga

    2016-09-01

    Full Text Available In recent years, attention has been increasingly devoted to the development of rescue robots that can protect humans from the inherent risks of rescue work. Particularly, anticipated is the development of a robot that can move deeply through small spaces. We have devoted our attention to peristalsis, the movement mechanism used by earthworms. A reinforcement learning technique used for the derivation of the robot movement pattern, Q-learning, was used to develop a three-segmented peristaltic crawling robot with a motor drive. Characteristically, peristalsis can provide movement capability if at least three segments work, even if a segmented part does not function. Therefore, we had intended to derive the movement pattern of many-segmented peristaltic crawling robots using Q-learning. However, because of the necessary increase in calculations, in the case of many segments, Q-learning cannot be used because of insufficient memory. Therefore, we devoted our attention to a learning method called Actor–Critic, which can be implemented with low memory. Because Actor-Critic methods are TD methods that have a separate memory structure to explicitly represent the policy independent of the value function. Using it, we examined the movement patterns of six-segmented peristaltic crawling robots.

  13. Heat and Mass Transfer with Free Convection MHD Flow Past a Vertical Plate Embedded in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2013-01-01

    on free convection unsteady magnetohydrodynamic (MHD flow of viscous fluid embedded in a porous medium is presented. The flow in the fluid is induced due to uniform motion of the plate. The dimensionless coupled linear partial differential equations are solved by using Laplace transform method. The solutions that have been obtained are expressed in simple forms in terms of elementary function exp(· and complementary error function erfc(·. They satisfy the governing equations; all imposed initial and boundary conditions and can immediately be reduced to their limiting solutions. The influence of various embedded flow parameters such as the Hartmann number, permeability parameter, Grashof number, dimensionless time, Prandtl number, chemical reaction parameter, Schmidt number, and Soret number is analyzed graphically. Numerical solutions for skin friction, Nusselt number, and Sherwood number are also obtained in tabular forms.

  14. Effect of Magnetic Flux Density and Applied Current on Temperature, Velocity and Entropy Generation Distributions in MHD Pumps

    Directory of Open Access Journals (Sweden)

    M. Kiyasatfar

    2011-01-01

    Full Text Available In the present study, simulation of steady state, incompressible and fully developed laminar flow has been conducted in a magneto hydrodynamic (MHD pump. The governing equations are solved numerically by finite-difference method. The effect of the magnetic flux density and current on the flow and temperature distributions in a MHD pump is investigated. The obtained results showed that controlling the flow and the temperature is possible through the controlling of the applied current and the magnetic flux. Furthermore, the effects of the magnetic flux density and current on entropy generation in MHD pump are considered. Our presented numerical results are in good agreement with the experimental data showed in literature.

  15. Further analysis of MHD acceleration for a hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.

    1995-01-01

    A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation

  16. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  17. Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, Graphene and silver nanoparticles

    Science.gov (United States)

    Mamatha Upadhya, S.; Raju, C. S. K.; Saleem, S.; Alderremy, A. A.; Mahesha

    2018-06-01

    A Comprehensive study on laminar, magnetohydrodynamic (MHD) boundary layer flow of nanofluid (water + Silver, water + Graphene) embedded with conducting micrometer sized dust particles over a stretching cylinder with the incorporation of Cattaneo-Christov heat flux model is conducted. Appropriate similarity variables are employed to the flow governing equations and the resulting ordinary differential equations are solved by employing Runge-Kutta-Fehlberg method. The results for varied controlling parameters for both dusty nano fluid and dust phase are shown through graphs, table and discussed in detail. Authentication of the obtained results is provided by comparing with published results. Results indicate that Graphene + water dusty nanofluid shows better heat transfer performance compared with Silver + water dusty nanofluid. Improvement in thermal relaxation boosts temperature distribution in both fluid and dust phase.

  18. MHD power conversion employing liquid metals

    International Nuclear Information System (INIS)

    Houben, J.W.M.A.; Massee, P.

    1969-02-01

    The work performed in the field of MHD generation of electricity by means of liquid metals is described. It is shown that the study of two-phase flows is essential in this topic of research; two-phase flows are therefore described. Two types of generators which can be utilized with liquid metals have been studied. The results of this study are described. A short survey of the prospects of other liquid metal systems which emerge from a study of the literature is given. Finally, conclusions are drawn concerning possibilities for further investigation

  19. Interim report on research and development of magnetohydrodynamic (MHD) power generation. General remarks; Denji ryutai (MHD) hatsuden kenkyu kaihatsu chukan hokokusho. Soron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-08-01

    This report covers the MHD power generation research and development project which has been under way for 7 years since fiscal 1966, and contains guidelines to follow in the next 3 years during which studies will continue toward the consummation of the project. Subjected to research and development under this project are the development of superconductive magnets and helium refrigeration/liquefaction equipment, clarification of the power generation characteristics of the 1,000kW-class MHD (magnetohydrodynamic) power generator and of a test machine designed for a long-term operation, etc. Since they contain many basic studies, the efforts are being exerted primarily by the Electrotechnical Laboratory. In the research and development of MHD power generation characteristics, a power generation experiment is conducted through oxygen combustion in a hot wall channel, with the combustor and insulation against the Hall voltage improved. In this test, a maximum output of 1,182kW is achieved under the conditions of a flow rate of 2.9kg/s, a thermal input of 24.6MW, and a flux density of 3.2T. Since there are some problems to solve in connection with the stability of MHD power generation characteristics, durability of the MHD power generation channel, characteristics of heat exchanger system, measures for NOx reduction, etc., some more deliberation is necessary before taking the next research and development step. (NEDO)

  20. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    Science.gov (United States)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the

  1. Liquid metal coolant flow rate regulation

    International Nuclear Information System (INIS)

    Vitkovskij, I.V.; Glukhikh, V.A.; Kirillov, I.R.; Smirnov, A.M.

    1981-01-01

    Some aspects of fast reactor and experimental bench operation related to liquid metal flow rate regulation are considered. Requirements to the devices for the flow rate regulation are formulated. A new type of these devices namely magnetohydrodynamic (MHD) throttles is described. Structural peculiarities of MHD throttles of different types are described as well. It is noted that the MHD throttles with a screw channel have the best energy mass indices. On the basis of the comparison of the MHD throttles with mechanical valves it is concluded that the MHD throttles described are useful for regulating the flow rates of any working media. Smoothness and accuracy of the flow rate regulation by the throttles are determined by the electric control circuit and may be practically anyone. The total coefficient of hydraulic losses in the throttle channel in the absence of a magnetic field is ten and more times lesser than in completely open mechanical valve. Electromagnetic time constant of the MHD throttles does not exceed several tenths of a second [ru

  2. Impact of anisotropic slip on transient three dimensional MHD flow of ferrofluid over an inclined radiate stretching surface

    Directory of Open Access Journals (Sweden)

    A.M. Rashad

    2017-04-01

    Full Text Available The present study explores the impact of anistropic slip on transient three dimensional MHD flow of Cobalt-kerosene ferrofluid over an inclined radiate stretching surface. The governing partial differential equations for this study are solved by the Thomas algorithm with finite-difference type. The impacts of several significant parameters on flow and heat transfer characteristics are exhibited graphically. The conclusion is revealed that the local Nusselt number is significantly promoted due to influence of thermal radiation whereas diminished with elevating the solid volume fraction, magnet parameter and slip factors. Further, the skin friction coefficients visualizes a considerable enhancement with boosting the magnet and radiation parameters, but a prominent reduction is recorded by elevating the solid volume fraction and slip factors.

  3. Code development for analysis of MHD pressure drop reduction in a liquid metal blanket using insulation technique based on a fully developed flow model

    International Nuclear Information System (INIS)

    Smolentsev, Sergey; Morley, Neil; Abdou, Mohamed

    2005-01-01

    The paper presents details of a new numerical code for analysis of a fully developed MHD flow in a channel of a liquid metal blanket using various insulation techniques. The code has specially been designed for channels with a 'sandwich' structure of several materials with different physical properties. The code includes a finite-volume formulation, automatically generated Hartmann number sensitive meshes, and effective convergence acceleration technique. Tests performed at Ha ∼ 10 4 have showed very good accuracy. As an illustration, two blanket flows have been considered: Pb-17Li flow in a channel with a silicon carbide flow channel insert, and Li flow in a channel with insulating coating

  4. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2015-01-01

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study

  5. Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Department of Mechanical Systems Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University Yoshida, Sakyo, Kyoto 606-8501 (Japan)

    2015-01-15

    Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study.

  6. MHD Program Plan, FY 1992

    International Nuclear Information System (INIS)

    1991-10-01

    The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector

  7. MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet

    KAUST Repository

    Ferdows, M.; Khan, M.S.; Alam, M.M.; Sun, S.

    2012-01-01

    Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.

  8. Thermal-diffusion and diffusion-thermo effects on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation

    Directory of Open Access Journals (Sweden)

    S. Srinivas

    2016-01-01

    Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.

  9. Local similar solution of MHD stagnation point flow in Carreau fluid over a non-linear stretched surface with double stratified medium

    Directory of Open Access Journals (Sweden)

    M. Farooq

    Full Text Available This article studies MHD double stratified stagnation point flow of Carreau fluid towards a non linear stretchable surface with radiation. Features of heat and mass transfer are evaluated by using convective boundary conditions. Resulting nonlinear problems are solved and studied for the velocity, temperature and concentration fields. Heat and mass transfer rates in addition to skin friction are discussed. Besides this for the verification of the present findings, the results of presented analysis have been compared with the available works in particular situations and reasonable agreement is noted. Keywords: Convective boundary condition, Thermal radiation, Double stratification, Stagnation point flow

  10. Effects of Thermal Radiation and Chemical Reaction on MHD Free Convection Flow past a Flat Plate with Heat Source and Convective Surface Boundary Condition

    OpenAIRE

    E.Hemalatha; N. Bhaskar Reddy

    2015-01-01

    This paper analyzes the radiation and chemical reaction effects on MHD steady two-dimensional laminar viscous incompressible radiating boundary layer flow over a flat plate in the presence of internal heat generation and convective boundary condition. It is assumed that lower surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the upper surface with a heat source that decays exponentially. The Rosseland approximation is used to desc...

  11. Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Peristaltic transport of Williamson fluid in a curved geometry is modeled. Problem formulation is completed by complaint walls of channel. Radial magnetic field in the analysis is taken into account. Resulting problem formulation is simplified using long wavelength and low Reynolds number approximations. Series solution is obtained for small Weissenberg number. Influences of different embedded parameters on the axial velocity and stream function are examined. As expected the velocity in curved channel is not symmetric. Axial velocity is noticed decreasing for Hartman number. Trapped bolus increases for Hartman and curvature parameters. Keywords: Williamson fluid, Curved channel, Radial magnetic field, Complaint walls

  12. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects

    Institute of Scientific and Technical Information of China (English)

    M Ramzan; M Farooq; T Hayat; A Alsaedi; J Cao

    2015-01-01

    Combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained. Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.

  13. Development of a potential based code for MHD analysis of LLCB TBM

    International Nuclear Information System (INIS)

    Bhuyan, P.J.; Goswami, K.S.

    2010-01-01

    A two dimensional solver is developed for MHD flows with low magnetic Reynolds' number based on the electrostatic potential formulation for the Lorentz forces and current densities which will be used to calculate the MHD pressure drop inside the channels of liquid breeder based Test Blanket Modules (TBMs). The flow geometry is assumed to be rectangular and perpendicular to the flow direction, with flow and electrostatic potential variations along the flow direction neglected. A structured, non-uniform, collocated grid is used in the calculation, where the velocity (u), pressure (p) and electrostatic potential (φ) are calculated at the cell centers, whereas the current densities are calculated at the cell faces. Special relaxation techniques are employed in calculating the electrostatic potential for ensuring the divergence-free condition for current density. The code is benchmarked over a square channel for various Hartmann numbers up to 25,000 with and without insulation coatings by (i) comparing the pressure drop with the approximate analytical results found in literature and (ii) comparing the pressure drop with the ones obtained in our previous calculations based on the induction formulation for the electromagnetic part. Finally the code is used to determine the MHD pressure drop in case of LLCB TBM. The code gives similar results as obtained by us in our previous calculations based on the induction formulation. However, the convergence is much faster in case of potential based code.

  14. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    Science.gov (United States)

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.

  15. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  16. Present state of research and development of MHD power generation

    International Nuclear Information System (INIS)

    Ikeda, Shigeru

    1978-01-01

    MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)

  17. Multi-region relaxed magnetohydrodynamics with anisotropy and flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-07-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.

  18. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Layek, G. C.

    2011-01-01

    An analysis is carried out to study a steady magnetohydrodynamic (MHD) boundary layer flow of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel. The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls. The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls. The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations. The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model. The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls, even in the absence of a magnetic field. Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter. It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid. The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physically. (fundamental areas of phenomenology(including applications))

  19. Analyses of MHD instabilities

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    1985-01-01

    In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)

  20. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  1. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    Science.gov (United States)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  2. Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.

    2018-03-01

    An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.

  3. MHD magnet technology development program summary, September 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  4. MHD magnet technology development program summary, September 1982

    International Nuclear Information System (INIS)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references

  5. Particle simulation algorithms with short-range forces in MHD and fluid flow

    International Nuclear Information System (INIS)

    Cable, S.; Tajima, T.; Umegaki, K.

    1992-07-01

    Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced

  6. Experiments and models of MHD jets and their relevance to astrophysics and solar physics

    Science.gov (United States)

    Bellan, Paul

    2017-10-01

    MHD-driven flows exist in both space and lab plasmas because the MHD force-balance equation J × B - ∇ P = 0 can only be satisfied in situations having an unusual degree of symmetry. In the normal situation where such symmetry does not exist, an arbitrary magnetic field B and its associated current J =μ0- 1 ∇ × B provide a magnetic force F = J × B having the character of a torque, i.e., ∇ × F ≠ 0 . Because ∇ × ∇ P = 0 is a mathematical identity, no pressure gradient can balance this torque so a flow is driven. Additionally, since ideal MHD has magnetic flux frozen into the frame of the moving plasma, the flow convects frozen-in magnetic flux. If the flow slows and piles up, both the plasma and the frozen-in magnetic flux will be compressed. This magnetic flux compression amplifies both the frozen-in B and its associated J . Slowing down thus increases certain components of F , in particular the pinch force associated with the electric current in the flow direction. This increased pinching causes the flow to self-collimate if the leading edge of the flow moves slower than the trailing part so there is compression in the flow frame. The result is that the flow self-collimates and forms a narrow jet. Self-collimating jets with embedded electric current and helical magnetic field are analogous to the straight cylindrical approximation of a tokamak, but now with the length of the cylinder continuously increasing and the radius depending on axial position. The flows are directed from axial regions having small radius to axial regions having large radius. The flow velocity is proportional to the axial electric current and is a significant fraction of the Alfvén velocity. Examples of these MHD-driven flows are astrophysical jets, certain solar coronal situations, and the initial plasma produced by the coaxial magnetized plasma guns used for making spheromaks. The above picture has been developed from laboratory measurements, analytic models, and numerical

  7. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  8. Study of grid independence of finite element method on MHD free convective casson fluid flow with slip effect

    Science.gov (United States)

    Raju, R. Srinivasa; Ramesh, K.

    2018-05-01

    The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.

  9. Relativistic MHD simulations of stellar core collapse and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A; Gabler, Michael [Departamento de AstronomIa y Astrofisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain); Cerda-Duran, Pablo; Mueller, Ewald [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Stergioulas, Nikolaos, E-mail: j.antonio.font@uv.es [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2011-02-01

    We present results from simulations of magneto-rotational stellar core collapse along with Alfven oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. We further compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.

  10. MHD pilot industrial applications

    International Nuclear Information System (INIS)

    Freeman, M.; Riviere-Wekstein, G.

    1994-01-01

    MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun

  11. Substorm effects in MHD and test particle simulations of magnetotail dynamics

    International Nuclear Information System (INIS)

    Birn, J.; Hesse, M.

    1998-01-01

    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures

  12. Gasdynamic performance in relation to the power extraction of an MHD generator

    International Nuclear Information System (INIS)

    Massee, P.

    1983-01-01

    A study of the gasdynamical processes in MHD generators has been made both theoretically and experimentally. A core flow and boundary layer model has been developed. In order to obtain a fast computer code which can be used for engineering purposes the quasi-one-dimensional approximation is used. It is shown in this thesis that the boundary layers have to be calculated from integral equations describing momentum, kinetic energy and stagnation enthalpy respectively, when the MHD effects in the boundary layers are properly taken into account. Calculations with the developed core flow and boundary layer model have shown that the electrical power output is limited by the design of the existing facility and have indicated possibilities to circumvent this limitation. (Auth.)

  13. Performance of MHD coatings in flowing Li at 700 deg

    International Nuclear Information System (INIS)

    Pint, B.; Pawel, S.J.; Howell, M.; Moser, J.L.; Garner, G.W.; Santella, M.L.; Tortorelli, P.F.; Di Stefano, J.R.

    2007-01-01

    Full text of publication follows: A thermal convection loop was constructed from V-4Cr-4Ti tubing and operated in vacuum at a maximum Li temperature of 700 deg. C for ∼1000 h.. Due to slow Li flow (∼1 cm/s) in the loop, the temperature gradient was ∼340 deg. C. Specimens in the hot and cold legs of the loop included V-4Cr-4Ti spacers, tensile specimens (SS-3 type) and coupons coated by physical vapor deposition with yttria and over coated with unalloyed vanadium. Based on prior work, the multi-layer electrically-insulating coatings were developed to reduce the magneto hydrodynamic (MHD) force expected in the first wall of a lithium cooled blanket in a magnetic confinement fusion reactor. Characterization of the specimens after exposure will include: (1) mass change and chemistry change as a function of location in the temperature gradient, (2) the effect of Li exposure on the tensile properties of V-4Cr-4Ti and (3) characterization of the properties and microstructure of the coatings after exposure. Of particular interest will be the coating resistivity after exposure and any degradation of the thin (∼10 μm) vanadium overlayer. Chemistry of the Li before and after the experiment will be compared in order to assess any mass transfer effects. (authors)

  14. Neoclassical MHD equilibria with ohmic current

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.

    1989-01-01

    MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)

  15. Construction and initial operation of MHD PbLi facility at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu; Li, F.-C.; Morley, N.; Ueki, Y.; Abdou, M.; Sketchley, T.

    2013-06-15

    Highlights: • New MHD PbLi loop has been constructed and tested at UCLA. • Pressure diagnostics system has been developed and successfully tested. • Ultrasound Doppler velocimeter is tested as velocity diagnostics. • Experiments on pressure drop reduction have been performed. • Experiments on MHD flow in a duct with SiC flow channel insert are underway. -- Abstract: A magnetohydrodynamic flow facility MaPLE (Magnetohydrodynamic PbLi Experiment) that utilizes molten eutectic alloy lead–lithium (PbLi) as working fluid has been constructed and tested at University of California, Los Angeles. The loop operation parameters are: maximum magnetic field 1.8 T, PbLi temperature up to 350 °C, maximum PbLi flow rate with/without a magnetic field 15/50 l/min, maximum pressure head 0.15 MPa. The paper describes the loop itself and its major components, basic operation procedures, experience of handling PbLi, initial loop testing, flow diagnostics and current and near-future experiments. The obtained test results of the loop and its components have demonstrated that the new facility is fully functioning and ready for experimental studies of magnetohydrodynamic, heat and mass transfer phenomena in PbLi flows and also can be used in mock up testing in conditions relevant to fusion applications.

  16. Observation of voltage fluctuations in a superconducting magnet during MHD power generation

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the ANL 5.0 T MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25B Facility at the High Temperature Institute (IVTAN) Moscow, USSR. Various other thermodynamic and electrical parameters of the U-25B flow train have been recorded, and statistical analysis concerning correlations between the phenomena with a view of discerning causal interdependence is in progress. Voltage fluctuations observed at the magnet terminals are analyzed with special emphasis on magnet stability

  17. Some Fluid Dynamic Effects in Large-Scale MHD Generators

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J. C.R. [University of Warwick, Coventry (United Kingdom)

    1966-10-15

    At the present time we are unable to carry out a complete analysis of the fluid dynamics and electrodynamics of an MHD generator. However, various aspects of the behaviour of an MHD generator may be examined by the use of simplified models, for example: (1) one-dimensional gas dynamics (Louis et al. 1964); (2) the current distribution can be found if the velocity is assumed constant across the duct (Witalis, 1965); (3) the skin friction and heat transfer to the walls can be calculated by boundary layer analysis if the flow is assumed to be laminar (Kerrebrock, 1961), and (4) a complete description of the velocity and current distribution across the duct can be given if the flow is assumed to be uniform, laminar, incompressible and not varying in the flow direction (Hunt and Stewartson, 1965). Taken together, these and other models will enable us to describe most of the effects in an MHD generator. In this paper another simplification is considered in which the electromagnetic forces are assumed to be much larger than the inertial forces. The ratio of these two forces is measured by the parameter, S = aB{sup 2}{sub 0}d/pU, where o is the conductivity, B{sub 0} the magnetic field, d the width of the duct, p the density and U the mean velocity. Thus S >> 1. We also assume that the magnetic Reynolds number is very much less than one. In the largest experimental generators now being built S {approx} 2 . Thus, though the results of this model are not immediately applicable, they should indicate the effects of increasing the magnetic field strength and the size of MHD generators. When S >> 1, one can can consider the duct to be divided into 2 regions: (1) a core region where electromagnetic forces are balanced by the pressure gradient and where inertial as well as viscous forces are negligible, and (2) boundary layers on the walls where again inertial forces are negligible but where the viscous, electromagnetic and pressure forces are of the same order. We show how it is

  18. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  19. MHD diffuser model test program

    Energy Technology Data Exchange (ETDEWEB)

    Idzorek, J J

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.

  20. MHD diffuser model test program

    International Nuclear Information System (INIS)

    Idzorek, J.J.

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment

  1. Effect of chemical reaction on unsteady MHD free convective two ...

    African Journals Online (AJOL)

    The effect of flow parameters on the coefficient of skin friction, Nusselt number and Sherwood number are also tabulated and discussed appropriately. It was observed that the increase in chemical reaction coefficient/parameter suppresses both velocity and concentration profiles. Keywords: Chemical Reaction, MHD, ...

  2. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    Science.gov (United States)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  3. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  4. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  5. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    Science.gov (United States)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  6. Liquid metal MHD research and development in Israel

    International Nuclear Information System (INIS)

    Branover, H.

    1993-01-01

    The study of liquid metal MHD in Israel commenced in 1973. Initially it was concentrated mainly on laminar flows influenced by external magnetic fields. In 1978 a liquid metal MHD energy conversion program was started. This program was developed at the Center for MHD Studies at Ben-Gurion University in Beer-Sheva, with the participation of specialists from the Technion, the Hebrew University of Jerusalem, Israel Atomic Energy Commission, and others. The program was sponsored initially by the Israel Ministry of Energy and Infrastructure, and later by the Ministry of Industry and Trade. Since 1980, Solmecs, a private commercial company has become a major factor in the development of liquid metal MHD in Israel. From the very beginning the program was based on broad international cooperation. A number of overseas institutions and individuals became participants in the program. Through extensive research and evaluation of a number of concepts of liquid metal MHD power generation systems, It was established that the most promising concept, demanding a relatively short period of development, is the gravitational system using heavy metals (lead, lead alloys) as the magneto-hydrodynamic fluid and steam or gases as thermodynamic fluids. This concept was chosen for further development and industrial application, and the program related to such systems was named the Etgar Program. The main directions of research and development activities have been defined as follows: investigations of physical phenomena, development of universal numerical code for parametric studies, optimization and design of the system, material studies, development of engineering components, building and testing of integrated small-scale Etgar type systems, economic evaluation of the system and comparison with conventional technologies, development of moderate scale industrial demonstration plant. At this time 6 items have been fully implemented and activities on the last item were started. (author)

  7. Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD

    KAUST Repository

    Gao, Song

    2013-05-01

    The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.

  8. MHD model of magnetosheath flow: comparison with AMPTE/IRM observations on 24 October, 1985

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    1998-05-01

    Full Text Available We compare numerical results obtained from a steady-state MHD model of solar wind flow past the terrestrial magnetosphere with documented observations made by the AMPTE/IRM spacecraft on 24 October, 1985, during an inbound crossing of the magnetosheath. Observations indicate that steady conditions prevailed during this about 4 hour-long crossing. The magnetic shear at spacecraft entry into the magnetosphere was 15°. A steady density decrease and a concomitant magnetic field pile-up were observed during the 40 min interval just preceding the magnetopause crossing. In this plasma depletion layer (1 the plasma beta dropped to values below unity; (2 the flow speed tangential to the magnetopause was enhanced; and (3 the local magnetic field and velocity vectors became increasingly more orthogonal to each other as the magnetopause was approached (Phan et al., 1994. We model parameter variations along a spacecraft orbit approximating that of AMPTE/IRM, which was at slightly southern GSE latitudes and about 1.5 h post-noon Local Time. We model the magnetopause as a tangential discontinuity, as suggested by the observations, and take as input solar wind parameters those measured by AMPTE/IRM just prior to its bow shock crossing. We find that computed field and plasma profiles across the magnetosheath and plasma depletion layer match all observations closely. Theoretical predictions on stagnation line flow near this low-shear magnetopause are confirmed by the experimental findings. Our theory does not give, and the data on this pass do not show, any localized density enhancements in the inner magnetosheath region just outside the plasma depletion layer.Key words. Steady-state magnetosheath · Plasma depletion layer · Stagnation line flow

  9. MHD Generating system

    Science.gov (United States)

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  10. Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall

    Directory of Open Access Journals (Sweden)

    S. Nadeem

    2015-12-01

    Full Text Available This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.

  11. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    Science.gov (United States)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  12. Transient behavior of high-interaction MHD generator following external loading faults

    International Nuclear Information System (INIS)

    Ishikawa, Motoo

    1983-01-01

    Transient behavior consequent to external loading faults is studied numerically on four configurations of high-interaction MHD generators-subsonic Faraday, supersonic Faraday, subsonic diagonal and supersonic diagonal, to provide a variable data base to serve in selecting the type of large-scale MHD generator. Time-dependent one-dimensional Navier-Stokes equations are solved with the 1969 MacCormack method, in combination with the Maxwell equations and the generalized Ohm's law. An artificial viscosity term is added to the Navier-Stokes equations to maintain numerical stability. It is shown that, with both supersonic and subsonic flows, the Faraday generator is liable to sustain more harmful effect from short than from open faults of the external loading circuit. For large-scale diagonal types, on the other hand, open faults are more dangerous. With subsonic flow, a shock wave propagating upstream is induced by short fault in the Faraday, and by open fault in the diagonal-type generator. In the case of supersonic flow, propagation upstream of the disturbance is completely obstructed. Larger electrical stress is foreseen for Faraday than for diagonal configuration. (author)

  13. Diagnostics for a coal-fired MHD retrofit of an existing power station

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R L; Shepard, W S [Mississippi State Univ. (USA). Diagnostic Instrumentation and Analysis Lab.

    1990-01-01

    MHD flows represent one of the most severe environments encountered by gasdynamic diagnostics. Special state-of-the-art techniques and instrumentation systems are required to monitor and collect data for the MHD components, and these diagnostic systems must operate under very severe environmental and magnetic field conditions. The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University has developed, and is continuing to develop, advanced optical diagnostic techniques and instrumentation systems to provide nonintrusive, remote real-time measurements and to operate successfully in the industrial-like environment of a large-scale MHD retrofit power station. Such diagnostic instrumentation can provide the information to completely evaluate the performance of individual components, as well as, the entire power plant. It is essential to determine as much detail as possible about the various component operations in an MHD retrofit system so that a commercial plant design can be optimized quickly. This paper discusses the instrumentation systems which DIAL proposed for an MHD retrofit of an existing power station. Instruments which have been making measurements on the U.S. MHD test facilities for several years are presented, along with instruments which will be available within two years. Parameters to be measured along with location and frequency are discussed in detail. These parameters include electron density, electrical conductivity, K-atom density, gas temperature, gas velocity, temperature and velocity profiles, gas composition, and particle size, number, density and distrib00000

  14. FLIP-MHD: A particle-in-cell mehtod for magnetohydrodynamics

    International Nuclear Information System (INIS)

    Brackbill, J.U.

    1990-01-01

    A particle-in-cell (PIC) method, FLIP is extended to magnetohydrodynamic (MHD) flow in two dimensions. Particles are used to reduce computational diffusion of the magnetic field. FLIP is an extension of ''classical'' PIC, where particles have mass, but every other property of the fluid is stored on a grid. In FLIP, particles have every property of the fluid, so that they provide a complete Lagrangian description not only to resolve contact discontinuities but also to reduce computational diffusion of linear and angular momentum. The interactions among the particles are calculated on a grid, for convenience and economy. The present study extends FLIP to MHD, by including information about the magnetic field among the attributes of the particles. 6 refs

  15. Liquid blanket MHD effects experimental results from LMEL facility at SWIP

    International Nuclear Information System (INIS)

    Xu Zengyu; Pan Chuanjie; Liu Yong; Pan Chuanhong; Reed, C.B.

    2007-01-01

    The self-cooled /helium-cooled liquid metal blanket concept is an attractive ITER and DEMO blanket candidate as it has low operating pressure, simplicity, and a convenient tritium breeding cycle. But MHD pressure drop remains a key issue, especially in ducts with flow channel inserts (FCI), where the reduction in MHD pressure drop is difficult to predict with existing tools, and there are no available experimental data to check current predictions. To understand well various kinds of MHD effects, it is important for us to analyze and understand FCI effects. In this paper, we present measurements of the MHD effects due to off normal power shutdown, two-dimensional effects due to channel velocity profiles, three-dimensional effects caused by manifolds, and surface/bulk instability effects as a result of insulator coating imperfections. These results were collected from the Liquid Metal Experimental Loop (LMEL) facility at Southwestern Institute of Physics, China and in collaboration with Argonne National Laboratory, US under an umbrella of the People's Republic of China/United States program of cooperation in magnetic fusion. Some results were observed for the first time, such as two dimensional effects and instabilities due to insulator coating imperfections. The experiments were conducted under the following conditions: a uniform magnetic field volume of 80 x 170 x 740 mm and a maximum value of magnetic field, B 0 , of 2 Tesla. The mean flow velocity v 0 was measured with an electromagnetic (EM) flow meter (error of 1.2%); a Liquid-metal Electro-magnetic Velocity Instrument (LEVI) was provided by Argonne National Laboratory. The flow was driven by two Electro-magnetic (EM) pumps (6.5+11.6 m3/h); the operating temperature was 85 centigrade degree due to self-heating by the EM pump and friction of the fluid against the loop piping. Experimental parameters were: Hartmann number, M, up to 3500, velocity v 0 up to 1.2 m/s under magnetic field, and B 0 =1.95 Tesla

  16. Stationary shear flows in CGL anisotropic toroidal plasmas

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Ilgisonis, V.I.

    1996-01-01

    Recently a general structure of stationary shear flows in toroidal plasmas was obtained in the frame of ideal isotropic-pressure MHD model. The structure of the stationary plasma flows was shown to be determined by a hidden symmetry of MHD equations inherent in the toroidal systems with nested magnetic surfaces. However, the characteristic frequencies of the stationary plasma motion can considerably exceed the collisional frequencies in real plasma experiments. In this case the CGL collisionless MHD model seems to be more adequate than the simplified isotropic-pressure MHD model to describe the stationary plasma flows. In this paper we have generalized our approach to analyze the stationary plasma flows in the frame of the collisionless CGL model. We have found again that the hidden symmetry inherent in the toroidal topology results in two integral invariants which depend on two independent surface functions. The structure of stationary flows for CGL model is still the same as for isotropic MHD, however, the pressure tensor components satisfy a appreciably modifies the steady state force-balance equation. These results are applied to analyze the generalized equilibrium in axisymmetric (tokamak-like) magnetic confinement systems

  17. Comparison of MHD pressure losses of liquid-lithium flows in coaxial and parallel ducts, passing through strong transverse magnetic fields

    International Nuclear Information System (INIS)

    Trommer, G.

    1979-08-01

    This report deals with theoretical calculations of MHD pressure losses of liquid-lithium flows in tubes of circular cross-section exposed to strong magnetic fields. Some simplifying assumptions were introduced, yielding an analytical solution which allows the pressure drop and losses in double tubes of coaxial geometry to be compared with those in normal flow pipes. The investigations show that coaxial ducts require much more pumping power than normal ones under similar conditions. This great difference of the properties of the two duct types will decrease if the pipes are embedded in materials of good electrical conductivity. In this case the normal duct will afford a drastic increase in the pressure drop, while the coaxial one will be nearly unaffected. But even under these conditions the losses of the latter will dominate. (orig.)

  18. Outline of fiscal 1970 achievements in research on MHD power generation; 1970 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    Compiled are the results of studies conducted in fiscal 1970 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1000kW-class MHD power generator, modification is carried out involving the combustion system, seed collecting method, and power generation channel, and reviews through experiments are conducted about the analysis and control of the boundary layer structure. In the operation test of the MHD power generator designed for prolonged operation, a test operation for resistance to heat and seeds continues more than 100 hours using a cold wall type power generation channel constituted of water cooled ceramics, and the ceramics are analyzed for failure and loss. Studies are also conducted involving MHD power generator heat exchangers, seed collecting methods, electrode materials for MHD power generators, heat-resistant materials for MHD power generators, thermal performance rating for MHD power plants, etc. In the research and development of superconductive electromagnets, superconductive electromagnets are developed and tested for 1000kW-class MHD power generators, and studies are conducted on turbine type helium liquefiers, superinsulated superconductive electromagnetic field generators, etc. (NEDO)

  19. Multi-region relaxed Hall magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2016-08-15

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  20. Superconducting dipole magnet for the UTSI MHD facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Niemann, R.C.; Turner, L.R.

    1978-01-01

    The Argonne National Laboratory is designing and will build a large superconducting dipole magnet system for use in the Coal Fired Flow MHD Research Facility at the University of Tennessee Space Institute (UTSI). Presented in detail are the conceptual design of the magnet geometry, conductor design, cryostability evaluation, magnetic pressure computation, structural design, cryostat design, the cryogenics system design, and magnet instrumentations and control

  1. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  2. MHD pressure drop of imperfect insulation of liquid metal flow

    International Nuclear Information System (INIS)

    Horiike, H.; Nishiura, R.; Inoue, S.; Miyazaki, K.

    2000-01-01

    An experiment was performed to study magnetohydrodynamic (MHD) pressure gradient in the case of an imperfect electric insulation coating when using NaK loop. Test channels with uniform defects in their coating were made by painting inner surface with acrylic lacquer insulation. It was found that the exponent to B -- which is 1 for insulated walls, and 2 for conducting ones, was very sensitive to crack fractions lower than 25%. The pressure gradient was found to increase almost linearly with the fraction

  3. A Peristaltic Pump Integrated on a 100% Glass Microchip Using Computer Controlled Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Yo Tanaka

    2014-05-01

    Full Text Available Lab-on-a-chip technology is promising for the miniaturization of chemistry, biochemistry, and/or biology researchers looking to exploit the advantages of a microspace. To manipulate fluid on a microchip, on-chip pumps are indispensable. To date, there have been several types of on-chip pumps including pneumatic, electroactive, and magnetically driven. However these pumps introduce polymers, metals, and/or silicon to the microchip, and these materials have several disadvantages, including chemical or physical instability, or an inherent optical detection limit. To overcome/avoid these issues, glass has been one of the most commonly utilized materials for the production of multi-purpose integrated chemical systems. However, glass is very rigid, and it is difficult to incorporate pumps onto glass microchips. This paper reports the use of a very flexible, ultra-thin glass sheet (minimum thickness of a few micrometers to realize a pump installed on an entirely glass-based microchip. The pump is a peristaltic-type, composed of four serial valves sealing a cavity with two penetrate holes using ultra-thin glass sheet. By this pump, an on-chip circulating flow was demonstrated by directly observing fluid flow, visualized via polystyrene tracking particles. The flow rate was proportional to the pumping frequency, with a maximum flow rate of approximately 0.80 μL/min. This on-chip pump could likely be utilized in a wide range of applications which require the stability of a glass microchip.

  4. The on-line data acquisition system for the MHD facility of Frascati

    International Nuclear Information System (INIS)

    Di Bartolomeo, M.; Papalia, B.; Gay, P.; Panaccione, L.

    1975-01-01

    An on-line data acquisition system for the MHD facility of the Laboratorio Conversione Diretta at Frascati is described. After a brief description of the MHD facility and of the measurement requirements, the criteria a,d the configuration of the minicomputer-based data acquisition system chosen are presented. Then the general philosophy and the flow-charts of the software implemented are shown, with particular emphasis to the real-time requirements of the measurement system. At last it is illustrated an off-line program, running on a large computer, that elaborates the output data of the data acquisition system

  5. On coupled development of MHD instabilities of Rayleigh-Taylor and Kelvin-Helmholtz types in nonuniform gas-plasmas flows

    International Nuclear Information System (INIS)

    Likhachev, A P; Medin, S A

    2010-01-01

    The simultaneous development of the MHD instabilities of Raylegh-Taylor and Kelvin-Helmholtz types at the interface between high-conducting plasmoid and surrounding non- or low-conducting gas is considered. The linear stage of the RTI development is studied analytically for incompressible and compressible fluids. The nonlinear stage of the individual development of the RTI and the coupled development of both instabilities has been investigated numerically. The time-dependent two-dimensional numerical model based on the solution of the Euler gasdynamic equations with body momentum and energy sources of MHD origin has been developed and used in calculations. A disturbance introducing in the background flow has been periodic with varied assignment type and wave length. Fundamental difference between the results of linear and nonlinear analysis has been revealed. In particular, the increment of the RTI development at nonlinear stage is one-two order of magnitude less than that predicted by linear theory and rather weakly depends on initial disturbance mode. In linear analysis the coupled development of the RTI and the KHI is determined by simple summing of the two effects in the expression of wave increment, whereas in nonlinear case the mutual influence of the instabilities leads to essential alterations in their development, main of which is the intensive 'layer-by-layer' destruction of the plasmoid surface.

  6. MHD program plan, FY 1991

    Science.gov (United States)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  7. Particle shedding from peristaltic pump tubing in biopharmaceutical drug product manufacturing.

    Science.gov (United States)

    Saller, Verena; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-04-01

    In a typical manufacturing setup for biopharmaceutical drug products, the fill and dosing pump is placed after the final sterile filtration unit in order to ensure adequate dispensing accuracy and avoid backpressure peaks. Given the sensitivity of protein molecules, peristaltic pumps are often preferred over piston pumps. However, particles may be shed from the silicone tubing employed. In this study, particle shedding and a potential turbidity increase during peristaltic pumping of water and buffer were investigated using three types of commercially available silicone tubing. In the recirculates, mainly particles of around 200 nm next to a very small fraction of particles in the lower micrometer range were found. Using 3D laser scanning microscopy, surface roughness of the inner tubing surface was found to be a determining factor for particle shedding from silicone tubing. As the propensity toward particle shedding varied between tubing types and also cannot be concluded from manufacturer's specifications, individual testing with the presented methods is recommended during tubing qualification. Choosing low abrasive tubing can help to further minimize the very low particle counts to be expected in pharmaceutical drug products. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels

    International Nuclear Information System (INIS)

    Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.

    1995-01-01

    The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant

  9. Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial segment

    Energy Technology Data Exchange (ETDEWEB)

    Majee, Sreeparna; Shit, G.C., E-mail: gcs@math.jdvu.ac.in

    2017-02-15

    A numerical investigation of unsteady flow of blood and heat transfer has been performed with an aim to provide better understanding of blood flow through arteries under stenotic condition. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. The heat transfer characteristic has been analyzed by taking into consideration of the dissipation of energy due to applied magnetic field and the viscosity of blood. The vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman–Rachford Alternating Direction Implicit (ADI) scheme. The quantitative profile analysis of velocity, temperature and wall shear stress as well as Nusselt number is carried out over the entire arterial segment. The streamline and temperature contours have been plotted to understand the flow pattern in the diseased artery, which alters significantly in the downstream of the stenosis in the presence of magnetic field. Both the wall shear stress and Nusselt number increases with increasing magnetic field strength. However, wall shear stress decreases and Nusselt number enhances with Reynolds number. The results show that with an increase in the magnetic field strength upto 8 T, does not causes any damage to the arterial wall, but the study is significant for assessing temperature rise during hyperthermic treatment. - Highlights: • Fully numerical simulation is carried out for MHD blood flow in stenosed artery. • Dissipation of energy due to both magnetic field and blood viscosity is considered. • Strong Vortices are observed at the downstream of the stenosis in the arterial wall. • Flow reversal of blood is reduced by applying sufficient magnetic field strength. • Isothermal lines are strongly distorted in the presence of magnetic field strength.

  10. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, A. [Saitama Industrial Technology Center, Japan Society for the Promotion of Science, Kawaguchi (Japan). Domestic Research Fellowship; Hashiride, M.; Morimoto, R.; Nagai, Y. [Saitama Industrial Technology Center, Kawaguchi (Japan). Materials Engineering Division; Aogaki, R. [Polytechnic University, Sagamihara (Japan). Department of Product Design

    2004-11-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected. (author)

  11. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    International Nuclear Information System (INIS)

    Sugiyama, Atsushi; Hashiride, Makoto; Morimoto, Ryoichi; Nagai, Yutaka; Aogaki, Ryoichi

    2004-01-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected

  12. Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect

    Directory of Open Access Journals (Sweden)

    S.M. Arifuzzaman

    2018-04-01

    Full Text Available This paper concerns with the modelling of an unsteady natural convective and higher order chemically reactive magnetohydrodynamics (MHD fluid flow with the effect of heat and radiation absorption. The flow is generated through a vertical oscillating porous plate. Boundary layer approximations is carried out to establish a flow model which represents the time dependent momentum, energy and diffusion balance equations. Before being solved numerically, the governing partial differential equations (PDEs were transformed into a set of nonlinear ordinary differential equation (ODEs by using non-similar technique. A very efficient numerical approach solves the obtained nonlinear coupled ODEs so called Explicit Finite Difference Method (EFDM. An algorithm is implemented in Compaq Visual Fortran 6.6a as a solving tool. In addition, the stability and convergence analysis (SCA is examined and shown explicitly. The advantages of SCA is its optimizes the accuracy of system parameters such as Prandtl number (Pr and Schmidt number (Sc.The velocity, temperature and concentration fields in the boundary layer region are studied in detail and the outcomes are shown in graphically with the influence of various pertinent parameters such as Grashof number (Gr, modified Grashof number (Gr, magnetic parameter (M, Darcy number (Da,Prandtl number (Pr, Schmidt number (Sc, radiation (R, heat sink (Q,radiation absorption (Q1, Eckert number (Ec, Dufour number (Du,Soret number (Sr, Schmidt number (Sc, reaction index (P and chemical reaction (Kr. Furthermore, the effect of skin friction coefficient (Cf, Nusselt number (Nu and Sherwood number (Sh are also examined graphically. Keywords: MHD, Oscillating porous plate, Radiation absorption, High order chemical reaction, EFDM

  13. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    International Nuclear Information System (INIS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-01-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite–Fe 3 O 4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction. - Highlights: • Nanofluid flow due to exponentially stretching sheet. • Exponentially varying surface temperature distribution is accounted. • Sparrow–Gregg type Hills (SGH) for temperature distribution exist. • Numerical values of local Nusselt number are presented. • Cooling performance of ferrofluid is superior to pure water.

  14. Ceramics and M.H.D

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr

  15. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  16. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    International Nuclear Information System (INIS)

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-01-01

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed

  17. Bernstein method for the MHD flow and heat transfer of a second grade fluid in a channel with porous wall

    Directory of Open Access Journals (Sweden)

    A. Sami Bataineh

    2016-09-01

    Full Text Available In this paper, we present an approximate solution method for the problem of magnetohydrodynamic (MHD flow and heat transfer of a second grade fluid in a channel with a porous wall. The method is based on the Bernstein polynomials with their operational matrices and collocation method. Under some regularity conditions, upper bounds of the absolute errors are given. We apply the residual correction procedure which may estimate the absolute error to the problem. We may estimate the absolute error by using a procedure depends on the sequence of the approximate solutions. For some certain cases, we apply the method to the problem in the numerical examples. Moreover, we test the impact of changing the flow parameters numerically. The results are consistent with the results of Runge-Kutta fourth order method and homotopy analysis method.

  18. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Science.gov (United States)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  19. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Directory of Open Access Journals (Sweden)

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  20. MHD instabilities in heliotron/torsatron

    International Nuclear Information System (INIS)

    Wakatani, Masahiro; Nakamura, Yuji; Ichiguchi, Katsuji

    1992-01-01

    Recent theoretical results on MHD instabilities in heliotron/torsatron are reviewed. By comparing the results with experimental data in Heliotron E, Heliotron DR and ATF, it is pointed out that resistive interchange modes are the most crucial instabilities, since the magnetic hill occupies a substantial region of the plasma column. Development of three-dimensional MHD equilibrium codes has made significant progress. By applying the local stability criteria shown by D 1 (ideal MHD mode) and D R (resistive MHD mode) to the equilibria given by the three-dimensional codes such as BETA and VMEC, stability thresholds for the low n ideal modes or the low n resistive modes may be estimated with resonable accuracy, where n is a toroidal mode number. (orig.)

  1. Design of an Open-Cycle, Vortex MHD Generator

    Energy Technology Data Exchange (ETDEWEB)

    Thalimer, J. R.; Kurtzrock, R. C.; Simons, W. H.; Bienstock, D. [Pittsburgh Coal Research Center, US Bureau Of Mines, Pittsburgh, PA (United States); Hughes, W. F. [Carnegie-Mellon University, Pittsburgh, PA (United States)

    1968-11-15

    The US Bureau of Mines has built a vortex MHD generator which combines the combustor-nozzle-duct combination into one integral unit. The vortex MHD generator consists of a cyclone burner, 7.5 in. diameter, 21 in. in length, with the inner wall used as one electrode together with a coaxial centre electrode. Power is obtained by impressing an axial field of 3000 G from an air solenoid magnet. Electrical output is expected to be one kilowatt. For the initial runs natural gas will be burned in oxygen-enriched, preheated air with a subsequent change to coal as a fuel. A theoretical analysis has been completed which predicts the velocity profiles and the electrical output characteristics of the generator. This analysis assumes variations in the radial and axial directions for all variables, steady state inviscid flow, constant electrical conductivity and a small magnetic Reynolds number. (author)

  2. MHD dynamo action in space plasmas

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1984-05-01

    Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)

  3. Development and validation of a magneto-hydrodynamic solver for blood flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kainz, W; Guag, J; Krauthamer, V; Myklebust, J; Bassen, H; Chang, I [Center for Devices and Radiological Health, FDA, Silver Spring, MD (United States); Benkler, S; Chavannes, N [Schmid and Partner Engineering AG, Zurich (Switzerland); Szczerba, D; Neufeld, E; Kuster, N [Foundation for Research on Information Technology in Society (IT' IS), Zurich (Switzerland); Kim, J H; Sarntinoranont, M, E-mail: wolfgang.kainz@fda.hhs.go [Soft Tissue Mechanics and Drug Delivery Laboratory, Mechanical and Aerospace Engineering, University of Florida, FL (United States)

    2010-12-07

    The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal.

  4. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    Science.gov (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  5. Tolerability, safety and efficacy of Iloprost infusion without peristaltic pump in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    S. Tosi

    2011-09-01

    Full Text Available Objective. To evaluate safety, tolerability and efficacy on Raynaud’s phenomenon (Rp of iloprost infusion without peristaltic pump in patients with systemic sclerosis (SSc. Patients and methods. The inclusion criteria were diagnosis of SSc, age between 18 and 65 years, presence of Rp, and absence of any controindication to the use of iloprost. The treatment was carried out in a day hospital setting and consisted first of 5 consecutive days of iloprost infusion (from an initial dose of 1.0 ng/Kg/min up to 2 ng/kg/min, and then of 2 days of infusions at the maximum possible dose every 45 days for one year. All of the adverse events were carefully recorded and the changes in the Rp were measured by a 5 grade scale (worsened, unmodified, slightly improved, very improved, disappeared. Results. Thirty-eight SSc patients (all females, mean age 49 years (range 18.5-65, disease duration 1.5 years (range 0.5-10.8 were enrolled in the study. During the first cycle of therapy, 14 avderse events occurred in 11 (28.9% patients and during the next cycles, 3 adverse events were seen in 3 (7.9% patients. In all of the cases they were mild and transient. Rp was considered very improved in 15 (39.5% patients, slightly improved in 13 (34.2%, unmodified in 8 (21% and worse in 2 (5.2%. Discussion. In this study intravenous iloprost without peristaltic pump proved to be safe, well tolerated, and as effective as traditional infusion through peristaltic pump in improving Rp in patients with SSc.

  6. Linear ideal MHD stability calculations for ITER

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1988-01-01

    A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs

  7. An in vivo endoluminal ultrasonographic study of peristaltic activity in the distal porcine ureter

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Dijkhuis, T.; Kurth, K. H.; Lamers, W. H.

    2000-01-01

    PURPOSE: Experiments were performed to quantify the duration and frequency of ureteric peristaltic activity in the laparotomized and non-laparotomized pig in its virgin and postinstrumented states. MATERIALS AND METHODS: Pigs (n = 10) in a steady state of hydration were studied under halothane

  8. End Effects on the Linear Induction MHD Generator Calculated by Two-Sided Laplace Transform

    Energy Technology Data Exchange (ETDEWEB)

    Engeln, F.; Peschka, W. [Deutsche Versuchsanstalt fuer Luft- und Raumfahrt e.V., Institut fuer Energiewandlung und Elektrische Antriebe, Stuttgart, Federal Republic of Germany (Germany)

    1966-11-15

    In induction MHD systems special problems occur where the flow enters or leaves the magnetic field. These problems are generally described as end effects. Large gradients of the magnetic field are present at the inlet and also at the outlet of an MHD induction engine, these generating electric current systems in the fluid which may spoil the performance characteristics of the generator due to the interaction with the primary field of the engine. The two-dimensional induction MHD generator of finite length, using a polyphase winding system to obtain a travelling magnetic field, is treated as a boundary value problem by two-sided Laplace transform. For simplicity incompressibility is assumed. The two- dimensional boundary value problem of the induction engine is solved for - {infinity} Less-Than-Over-Equal-To x Less-Than-Over-Equal-To {infinity}. x is parallel to the flow direction of the linear MHD generator. In the region 0 Less-Than-Over-Equal-To x Less-Than-Over-Equal-To L the magnetic travelling wave is sinusoidal with a cyclical frequency {omega} and a phase-velocity v{sub s}. At x = 0 the conducting incompressible working fluid enters the field region and leaves it at the point-x = L. Two mathematical methods can be used to solve the boundary value problem, the Fourier transform or the two-sided Laplace transform. The latter offers the advantage of representing a complex analytical function in the image space. Moreover, it is possible to obtain the characteristics of the generator in the image space (e. g. field configuration, power flow function, etc.). That implies a large simplification of mathematical treatment. The solution in the original space then is given by asymptotic expansion of the known image function. (author)

  9. Elms: MHD Instabilities at the transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Huysmans, G.T.A

    2005-07-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER.

  10. Elms: MHD Instabilities at the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.

    2005-01-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER

  11. Numerical investigation of the LM MHD flows in a curved duct with an FCI with varying slot locations

    International Nuclear Information System (INIS)

    Yang, Jong Hoon; Yan, Yue; Kim, Chang Nyung

    2016-01-01

    Highlights: • This study numerically investigates the liquid-metal magnetohydrodynamic flows in a curved duct with an FCI. • The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. • The influence of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. - Abstract: This study numerically investigates the liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with an FCI having three different slot locations and having no slot under a uniform magnetic field perpendicular to the duct. The flow velocity, current density, electric potential, Lorentz force, and pressure in different flow situations are presented in detail. The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. The flow field is examined with an introduction of the electric-field component and electro-motive component of the current, allowing us to analyze the interdependency of the flow variables. The effect of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. The result shows that and the case with an FCI slot located in the neutral position yields the smallest pressure gradient in the main flow direction among the cases with an FCI slot, resulting in the smallest pressure drop. Also, in a flow situation with smaller radius of curvature with the FCI slot in the neutral position, the axial velocity near the inner (in terms of the curvature) part of a cross-section is higher than that near the outer part.

  12. Outline of fiscal 1969 achievements in research on MHD power generation; 1969 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    Compiled are the results of studies conducted in fiscal 1969 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1,000kW-class MHD power generator, the operation test continues from the preceding fiscal year using high-temperature air as oxidant, and the growth of boundary layer in the channel is determined. In the operation test of the MHD power generator designed for prolonged operation, insulation walls, electrode materials, and structures capable of prolonged operation are developed and tested. In the research of MHD power generator heat exchangers, studies are made about the bulkhead type and heat accumulator types (stationary type, rotary type, and falling-grain type). In addition, studies are conducted about seed collecting methods, MHD power generator electrode materials, heat-resisting insulators, and thermal performance rating. In the research and development of superconductive electromagnets, studies are conducted about superconductive electromagnets for 1kW MHD power generators, ferromagnetic superconductive electromagnets for 1,000kW-class MHD power generators, 45-kilogauss col type superconductive electromagnets, turbine type helium liquefier, high current density col type superconductive electromagnets, superinsulated magnetic field generators, etc. (NEDO)

  13. Predesign of an experimental (5 to 10 MWt) disk MHD facility and prospects of commercial (1,000 MWt) MHD/steam systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    Experimental disk MHD facilities are predesigned, and commercial-scale (1,000 MWt) MHD/steam systems are investigated. The predesigns of the disk MHD facilities indicate that enthalpy extraction is 8.7% for a 10 MWt open cycle MHD generator, and increases to 37% for a 5 MWt closed cycle MHD generator. Commercial (1,000 MWt) MHD/steam systems are studied for 4 types. Of these types, the open cycle disk MHD generator shows the lowest efficiency of 42.8%, while the closed cycle disk MHD generator the highest efficiency of 50.0%. The open cycle linear generator, although showing an efficiency of 49.4%, may be the lowest-cost type, when the necessary heat source, heat exchangers and the like are taken into consideration. For the design of superconducting magnet, it is necessary to further investigate whether the one for the test facility is applicable to the commercial systems. (NEDO)

  14. Influence of wall couple stress in MHD flow of a micropolar fluid in a porous medium with energy and concentration transfer

    Science.gov (United States)

    Khalid, Asma; Khan, Ilyas; Khan, Arshad; Shafie, Sharidan

    2018-06-01

    The intention here is to investigate the effects of wall couple stress with energy and concentration transfer in magnetohydrodynamic (MHD) flow of a micropolar fluid embedded in a porous medium. The mathematical model contains the set of linear conservation forms of partial differential equations. Laplace transforms and convolution technique are used for computation of exact solutions of velocity, microrotations, temperature and concentration equations. Numerical values of skin friction, couple wall stress, Nusselt and Sherwood numbers are also computed. Characteristics for the significant variables on the physical quantities are graphically discussed. Comparison with previously published work in limiting sense shows an excellent agreement.

  15. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  16. Stability of ideal MHD configurations. I. Realizing the generality of the G operator

    Science.gov (United States)

    Keppens, R.; Demaerel, T.

    2016-12-01

    A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes

  17. MHD saga in the gases

    International Nuclear Information System (INIS)

    Petit, J.P.

    1995-01-01

    Jean-Pierre PETIT, one of the best MHD specialists, is telling this technology story and he is insisting on its military consequences. Civil MHD is only one iceberg emerged part, including a lot of leader technologies, interesting he defense. 3 notes

  18. Study of the Behavior of a Bell-Shaped Colonic Self-Expandable NiTi Stent under Peristaltic Movements

    Directory of Open Access Journals (Sweden)

    Sergio Puértolas

    2013-01-01

    Full Text Available Managing bowel obstruction produced by colon cancer requires an emergency intervention to patients usually in poor conditions, and it requires creating an intestinal stoma in most cases. Regardless of that the tumor may be resectable, a two-stage surgery is mandatory. To avoid these disadvantages, endoscopic placement of self-expanding stents has been introduced more than 10 years ago, as an alternative to relieve colonic obstruction. It can be used as a bridge to elective single-stage surgery avoiding a stoma or as a definitive palliative solution in patients with irresectable tumor or poor estimated survival. Stents must be capable of exerting an adequate radial pressure on the stenosed wall, keeping in mind that stent must not move or be crushed, guaranteeing an adequate lumen when affected by peristaltic waves. A finite element simulation of bell-shaped nitinol stent functionality has been done. Catheter introduction, releasing at position, and the effect of peristaltic wave were simulated. To check the reliability of the simulation, a clinical experimentation with porcine specimens was carried out. The stent presented a good deployment and flexibility. Stent behavior was excellent, expanding from the very narrow lumen corresponding to the maximum peristaltic pressure to the complete recovery of operative lumen when the pressure disappears.

  19. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-02-01

    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  20. Couple stress fluid flow in a rotating channel with peristalsis

    Science.gov (United States)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  1. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Directory of Open Access Journals (Sweden)

    Fiaz Ur Rehman

    2018-03-01

    Full Text Available In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3 types of nanoparticles considered in this study namely, CuO (Copper oxide, Fe3O4 (Magnetite, and Al2O3 (Alumina are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid. Keywords: Heat transfer, Nanofluids, Stagnation-point flow, Three-dimensional flow, Nano particles, Boundary layer

  2. Generation of compressible modes in MHD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)

    2005-05-01

    Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)

  3. UTSI/CFFF MHD Program Completion and Related Activity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Routine preventive maintenance of the DOE Coal Fired Flow Facility (CFFF) is being performed. Modernization programs, being funded under subcontract from Foster Wheeler Development by the DOE HIPPS Program, are being implemented on the coal processing system, the data acquisition and control system and control room. Environmental restoration actions continued with monitoring of groundwater wells and holding pond effluent. Actions are under way to dispose of spent seed/ash mixtures and excess coal remaining from the MHD POC program.

  4. Numerical analysis and optimization of 3D magnetohydrodynamic flows in rectangular U-bend

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun, E-mail: hqingyun@mail.ustc.edu.cn; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-11-01

    Highlights: • MHD flows in rectangular U bends have been investigated under specific magnetic field. • U bends analyzed with different aspect ratio, distance of U bends and the wall conductance ratio. • Pressure optimization of rectangular U bends at corner region. • Studying different inclination of magnetic field cases according to original MHD flows. - Abstract: Liquid metal flow in rectangular bends is a common phenomenon of fusion liquid metal blanket operation, in which the velocity distributions and magnetohydrodynamic (MHD) pressure drop are considered as critical issues. Previous studies mainly aimed at specific fixed geometry for bend flows in LM blanket. The present investigation focuses on numerical analysis of MHD flow in 3D rectangular bends at laminar conditions, which is aimed to reduce MHD pressure drop caused by electromagnetic coupling in conductive flow, especially in bend corner region. The used code has been developed by University of Science and Technology of China (USTC) and validated by recommended benchmark cases such as Shercliff, ALEX experiments and KIT experiment cases, etc. In order to search the optimal duct bending, certain parameters such as different aspect ratio of the duct corner area cross-section, distance of import and export from the elbow and wall conductance ratio have been considered to investigate the pressure drop of MHD flow. Moreover, the effects of different magnetic field direction relative to flow distribution between bends have also been analyzed.

  5. Numerical analysis and optimization of 3D magnetohydrodynamic flows in rectangular U-bend

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in rectangular U bends have been investigated under specific magnetic field. • U bends analyzed with different aspect ratio, distance of U bends and the wall conductance ratio. • Pressure optimization of rectangular U bends at corner region. • Studying different inclination of magnetic field cases according to original MHD flows. - Abstract: Liquid metal flow in rectangular bends is a common phenomenon of fusion liquid metal blanket operation, in which the velocity distributions and magnetohydrodynamic (MHD) pressure drop are considered as critical issues. Previous studies mainly aimed at specific fixed geometry for bend flows in LM blanket. The present investigation focuses on numerical analysis of MHD flow in 3D rectangular bends at laminar conditions, which is aimed to reduce MHD pressure drop caused by electromagnetic coupling in conductive flow, especially in bend corner region. The used code has been developed by University of Science and Technology of China (USTC) and validated by recommended benchmark cases such as Shercliff, ALEX experiments and KIT experiment cases, etc. In order to search the optimal duct bending, certain parameters such as different aspect ratio of the duct corner area cross-section, distance of import and export from the elbow and wall conductance ratio have been considered to investigate the pressure drop of MHD flow. Moreover, the effects of different magnetic field direction relative to flow distribution between bends have also been analyzed.

  6. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  7. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  8. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  9. Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence

    Science.gov (United States)

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2017-11-01

    In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.

  10. Universal equations of unsteady two-dimensional MHD boundary layer whose temperature varies with time

    Directory of Open Access Journals (Sweden)

    Boričić Zoran

    2009-01-01

    Full Text Available This paper concerns with unsteady two-dimensional temperature laminar magnetohydrodynamic (MHD boundary layer of incompressible fluid. It is assumed that induction of outer magnetic field is function of longitudinal coordinate with force lines perpendicular to the body surface on which boundary layer forms. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in inductionless approximation. Characteristic properties of fluid are constant because velocity of flow is much lower than speed of light and temperature difference is small enough (under 50ºC . Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for every particular problem. Conclusions based on these solutions are related only with specific temperature MHD boundary layer problem. In this paper, quite different approach is used. First new variables are introduced and then sets of similarity parameters which transform equations on the form which don't contain inside and in corresponding boundary conditions characteristics of particular problems and in that sense equations are considered as universal. Obtained universal equations in appropriate approximation can be solved numerically once for all. So-called universal solutions of equations can be used to carry out general conclusions about temperature MHD boundary layer and for calculation of arbitrary particular problems. To calculate any particular problem it is necessary also to solve corresponding momentum integral equation.

  11. MHD stability, operational limits and disruptions

    International Nuclear Information System (INIS)

    1999-01-01

    The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and

  12. Initial liquid metal magnetohydrodynamic thin film flow experiments in the MeGA-loop facility at UCLA

    International Nuclear Information System (INIS)

    Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.

    1995-01-01

    Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)

  13. Analysis of liquid metal MHD flow in multiple adjacent ducts using an iterative method to solve the core flow equations

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Abdou, M.A.

    1991-01-01

    A computationally fast and efficient method for analyzing MHD flow at high Hartmann number and interaction parameter is presented and used to analyze a multiple duct geometry. This type of geometry is of practical interest in fusion applications. Because the Hartmann number and interaction parameter are generally large in fusion applications, the inertial and viscous terms in the Navier-Stokes equation can often be neglected in the core flow region, making this equation linear. In addition, because the magnetic fields in a fusion reactor vary slowly and the magnetic Reynolds number is small, the induced magnetic field can be neglected. The resulting equations representing core flow have certain characteristics which make it possible to reduce them to two dimensional without losing the three dimensional characteristics. The method which has been developed is an 'iterative' method. A velocity profile is assumed, then Ohm's law and the current conservation equation are combined and used to solve for the potential distribution in a plane in the fluid, and in a surface in the duct wall. The potential variation along magnetic field lines is checked, and if necessary, the velocities are adjusted. This procedure is repeated until the potentials along field lines vary to within a specified error. The analysis of the multiple duct geometry shows the importance of global effects. The results of two basic cases are presented. In the first, the average velocity in each duct is the same, but the wall conductance ratios of the walls perpendicular to the magnetic field vary from duct to duct. The total pressure drop in the electrically connected ducts was greater than or equal to the total pressure drop in the same ducts electrically isolated. In addition, the velocity profile in the ducts can be significantly affected by the presence of neighboring ducts. (orig./AH)

  14. Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field

    Directory of Open Access Journals (Sweden)

    Moustafa Elshahed

    2005-01-01

    Full Text Available The peristaltic transport of Johnson-Segalman fluid by means of an infinite train of sinusoidal waves traveling along the walls of a two-dimensional flexible channel is investigated. The fluid is electrically conducted by a transverse magnetic field. A perturbation solution is obtained for the case in which amplitude ratio is small. Numerical results are reported for various values of the physical parameters of interest.

  15. Flow of conductive fluid between parallel disks in an axial magnetic field, (2)

    International Nuclear Information System (INIS)

    Koike, Kazuo; Kamiyama, Shin-ichi

    1981-01-01

    The basic characteristics of the flow in a disc type non-equilibrium MHD power generator were studied. The flow of conductive fluid between parallel disks in an axial magnetic field was analyzed as the subsonic MHD turbulent approach flow of viscous compressible fluid, taking the electron temperature dependence of conductivity into account. The equations for the flow between disks are described by ordinary electromagnetic hydrodynamic approximation. Practical numerical calculation was performed for the non-equilibrium argon plasma seeded with potassium. The effects of the variation of characteristics of non-equilibrium plasma in main flow and boundary layer on the flow characteristics became clear. The qualitative tendency of the properties of MHD generators can be well explained. (Kato, T.)

  16. Mixed convection and heat generation/absorption aspects in MHD flow of tangent-hyperbolic nanoliquid with Newtonian heat/mass transfer

    Science.gov (United States)

    Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.

  17. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  18. Modeling and analysis of the disk MHD generator component of a gas core reactor/MHD Rankine cycle space power system

    International Nuclear Information System (INIS)

    Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.

    1990-01-01

    A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed

  19. Technical support for open-cycle MHD program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    The support program for open-cycle MHD at Argonne National Lab is developing the analytical tools needed to investigate the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and the high-temperature air preheater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system on either thermodynamic efficiency or with less confidence, cost of electrical power. Also, in support of the open-cycle program, considerable effort has gone into the formulation of a CDIF Test Plan and a National MHD Test Program.

  20. Steady hydromagnetic Couette flow in a rotating system with non ...

    African Journals Online (AJOL)

    user

    energy equation and numerical values of rate of heat transfer at both plates are ... An investigation of MHD flow of an electrically conducting fluid in a rotating ... bounded by stationary free stream whereas MHD flow past a stationary plate ... induced magnetic field produced by fluid motion is negligible in comparison to the ...

  1. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  2. MHD stability of JET high performance discharges. Comparison of MHD calculations with experimental observations

    International Nuclear Information System (INIS)

    Huysmans, G.

    1998-03-01

    One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption

  3. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax =3.6 m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  4. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax = 3.6m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  5. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  6. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  7. Overview of liquid-metal MHD

    International Nuclear Information System (INIS)

    Dunn, P.F.

    1978-01-01

    The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser

  8. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  9. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  10. Peristaltic modes of a single vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Kojo, Toru; Suganuma, Hideo; Tsumura, Kyosuke

    2007-01-01

    Using the Abelian Higgs model, we study the radial excitations of single vortex and their propagation modes along the vortex line. We call such beyond-stringy modes peristaltic modes of single vortex. With the profile of the static vortex, we derive the vortex-induced potential, i.e., single-particle potential for the Higgs and the photon field fluctuations around the static vortex, and investigate the coherently propagating fluctuations which correspond to the vibration of the vortex. We derive, analyze, and numerically solve the field equations of the Higgs and the photon field fluctuations around the static vortex with various Ginzburg-Landau parameter κ and topological charge n. Around the Bogomol'nyi-Prasad-Sommerfield value or critical coupling κ 2 =1/2, there appears a significant correlation between the Higgs and the photon field fluctuations mediated by the static vortex. As a result, for κ 2 =1/2, we find the characteristic new-type discrete pole of the peristaltic mode corresponding to the quasibound state of coherently fluctuating fields and the static vortex. We investigate its excitation energy, correlation energy of coherent fluctuations, spatial distributions, and the resulting magnetic flux behavior in detail. Our investigation covers not only usual type-II vortices with n=1 but also type-I and type-II vortices with n set-membership sign Z for the application to various general systems where the vortexlike objects behave as the essential degrees of freedom

  11. Performance of the CNEN MHD Blow-Down Loop Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, E.; Brown, R.; Gasparotto, M.; Gay, P.; Toschi, R. [Laboratorio Conversione Diretta, CNEN, Frascati (Italy)

    1968-11-15

    The CNEN facility has been designed, manufactured and used for alkali-seeded noble gas MHD energy conversion research, as the major experimental effort during the first five-year CNEN Research Programme on MHD. The main specifications and the general arrangement with information on preliminary commissioning tests of some components were given at the Salzburg Symposium. Since then the facility has been successfully commissioned and from March 1967 has been working on MHD experiments. Efforts were made to reduce any adverse effects on the experimental MHD results that were due to inherent limitations of an experimental apparatus (particularly under open-circuit conditions). Great emphasis was placed on problems of caesium vaporization and the mixing with helium, the purity level of the mixture, measurements and the control system. The insulation of the plasma from ground was carefully treated, increasing the ratio between insulator resistance and typical plasma resistance as much as possible. Fluidynamic tests at room and high temperatures have shown that stability in the gas parameters (temperature, pressure and mass flow) can be maintained within few per cent for tens of seconds after a transient, giving a behaviour similar to a continuously running system. The high- temperature, alumina pebble-bed heater has successfully operated, bringing the helium-caesium mixtures up to 2000 Degree-Sign K and up to 4 atm abs pressure, and undergoing seven thermal cycles, for a total of more than 2000 hours operation at top temperature. Preheated generator ducts using alumina as insulator and tantalum for electrodes performed satisfactorily, very much attention having been given in the design to reduction of thermal shocks and to obviating possible paths for caesium leakage and short-circuiting of electrode leads. The pulsed liquid nitrogen precooled magnet has been run for about 50 pulses at high field ( Asymptotically-Equal-To 4.5 tesla) with an operating time of about 10

  12. Magnetohydrodynamic flows and turbulence: a report on the Third Beer-Sheva Seminar

    International Nuclear Information System (INIS)

    Branover, H.; Mestel, A.J.; Moore, D.J.; Shercliff, J.A.

    1981-01-01

    This paper is a summary of the Third Beer-Sheva Seminar on magnetohydrodynamic (MHD) flows and turbulence, held in Israel in March 1981 with 67 participants from 9 countries. Reviews and research papers were presented on fundamental MHD and turbulence studies, both theoretical and experimental, including two-phase phenomena, and on applications of MHD to electrical generation (especially in two-phase systems), electromagnetic pumps, flow-couplers and flowmeters, thermonuclear fusion and a range of metallurgical problems, many involving free surfaces. (author)

  13. MHD convective flow through porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    K.V.S. Raju

    2014-06-01

    Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.

  14. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  15. Free Convection Heat and Mass Transfer MHD Flow in a Vertical Channel in the Presence of Chemical Reaction

    Directory of Open Access Journals (Sweden)

    R. N. Barik

    2013-09-01

    Full Text Available An analysis is made to study the effects of diffusion-thermo and chemical reaction on fully developed laminar MHD flow of electrically conducting viscous incompressible fluid in a vertical channel formed by two vertical parallel plates was taken into consideration with uniform temperature and concentration. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature and concentration. It is interesting to note that during the course of computation, the transient solution at large time coincides with steady state solution derived separately and the diffusion-thermo effect creates an anomalous situation in temperature and velocity profiles for small Prandtl numbers. The study is restricted to only destructive reaction and non-conducting case cannot be derived as a particular case still it is quite interesting and more realistic than the earlier one.

  16. Peristaltic pumps for waste disposal

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1992-09-01

    Laboratory robots are capable of generating large volumes of hazardous liquid wastes when they are used to perform chemical analyses of metal finishing solutions. A robot at Allied-Signal Inc., Kansas City Division, generates 30 gallons of acid waste each month. This waste contains mineral acids, heavy metals, metal fluorides, and other materials. The waste must be contained in special drums that are closed to the atmosphere. The initial disposal method was to have the robot pour the waste into a collecting funnel, which contained a liquid-sensing valve to admit the waste into the drum. Spills were inevitable, splashing occurred, and the special valve often didn't work well. The device also occupied a large amount of premium bench space. Peristaltic pumps are made to handle hazardous liquids quickly and efficiently. A variable-speed pump, equipped with a quick-loading pump head, was mounted below the robot bench near the waste barrel. The pump inlet tube was mounted above the bench within easy reach of the robot, while the outlet tube was connected directly to the barrel. During operation, the robot brings the waste liquid up to the pump inlet tube and activates the pump. When the waste has been removed, the pump stops. The procedure is quick, simple, inexpensive, safe, and reliable

  17. Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, C., E-mail: chiara.mistrangelo@kit.edu; Bühler, L.

    2014-10-15

    Highlights: • MHD flows in model geometries of DCLL blanket manifolds. • Study of velocity, pressure distributions and flow partitioning in parallel ducts. • Flow partitioning affected by 3D MHD pressure drop and velocity distribution in the expanding zone. • Reduced pressure drop in a continuous expansion compared to a sudden expansion. - Abstract: An attractive blanket concept for a fusion reactor is the dual coolant lead lithium (DCLL) blanket where reduced activation steel is used as structural material and a lead lithium alloy serves both to produce tritium and to remove the heat in the breeder zone. Helium is employed to cool the first wall and the blanket structure. Some critical issues for the feasibility of this blanket concept are related to complex induced electric currents and 3D magnetohydrodynamic (MHD) phenomena that occur in distributing and collecting liquid metal manifolds. They can result in large pressure drop and undesirable flow imbalance in parallel poloidal ducts forming blanket modules. In the present paper liquid metal MHD flows are studied for different design options of a DCLL blanket manifold with the aim of identifying possible sources of flow imbalance and to predict velocity and pressure distributions.

  18. Study of MHD events initiated by pellet injection into T-10 plasmas

    International Nuclear Information System (INIS)

    Kuteev, B.; Khimchenko, L.; Krylov, S.; Pavlov, Y.; Pustovitov, V.; Sarychev, D.; Sergeev, V.; Skokov, V.; Timokhin, V.

    2005-01-01

    There are several events which might be responsible for ultra fast transport of heat and particles during pellet ablation stage in a tokamak. Those are jumps of transport coefficients, plasma drifts in the pellet vicinity and MHD events with time scale significantly shorter than the pellet ablation time. The role of the latter is still not very well understood due to a lack of studies. This paper is devoted to detailed study of the effects during the pellet ablation phase (∼ one millisecond) with main objective to determine the relation between pellet (material Li, C., KCl, size and velocity) and plasma parameters ( q-value a the pellet position, plasma density and temperature) which initiate microsecond MHD events in plasma. The pellets were injected into both into Ohmic and ECE heated plasmas (up to 3 MW) in the T-10 tokamak at various stages of the plasma discharge, in a wide range from the very beginning up to the post-disruption stage. It is observed that at some conditions a pellet ablates in the plasma without accompanying MHD events. This occurs at the highest plasma densities even if a pellet penetrates through q=1 magnetic surface. The ablation rate corresponds to NGSM in this case. Small scale events may occur near rational magnetic surfaces and the ablation rate fluctuations may be explained by reconnection. Both increase of the longitudinal heat flow due to plasma conventional from higher temperature region and growth of the electric field generation supra-thermal electrons may be responsible for the enhanced ablation. Large scale MHD events envelop a region inside q<3. It is observed that the MHD-cooled area is not poloidally symmetric. Mechanisms of the phenomena observed and their consequences on tokamak operation are discussed. (Author)

  19. Observation of SOL Current Correlated with MHD Activity in NBI-heated DIII-D Tokamak Discharges

    International Nuclear Information System (INIS)

    Takahashi, H.; Fredrickson, E.D.; Schaffer, M.J.; Austin, M.E.; Evans, T.E.; Lao, L.L.; Watkins, J.G.

    2004-01-01

    This work investigates the potential roles played by the scrape-off-layer current (SOLC) in MHD activity of tokamak plasmas, including effects on stability. SOLCs are found during MHD activity that are: (1) slowly growing after a mode-locking-like event, (2) oscillating in the several kHz range and phase-locked with magnetic and electron temperature oscillations, (3) rapidly growing with a sub-ms time scale during a thermal collapse and a current quench, and (4) spiky in temporal behavior and correlated with spiky features in Da signals commonly identified with the edge localized mode (ELM). These SOLCs are found to be an integral part of the MHD activity, with a propensity to flow in a toroidally non-axisymmetric pattern and with magnitude potentially large enough to play a role in the MHD stability. Candidate mechanisms that can drive these SOLCs are identified: (a) toroidally non-axisymmetric thermoelectric potential, (b) electromotive force (EMF) from MHD activity, and (c) flux swing, both toroidal and poloidal, of the plasma column. An effect is found, stemming from the shear in the field line pitch angle, that mitigates the efficacy of a toroidally non-axisymmetric SOLC to generate a toroidally non-axisymmetric error field. Other potential magnetic consequences of the SOLC are identified: (i) its error field can introduce complications in feedback control schemes for stabilizing MHD activity and (ii) its toroidally non-axisymmetric field can be falsely identified as an axisymmetric field by the tokamak control logic and in equilibrium reconstruction. The radial profile of a SOLC observed during a quiescent discharge period is determined, and found to possess polarity reversals as a function of radial distance

  20. Effect of peristalsis in balance of intestinal microbial ecosystem

    Science.gov (United States)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2017-11-01

    A balance of microbiota density in gastrointestinal tracts is necessary for health of the host. Although peristaltic flow made by intestinal muscles is constantly evacuating the lumen, bacterial density stay balanced. Some of bacteria colonize in the secreted mucus where there is no flow, but the rest resist the peristaltic flow in lumen and maintain their population. Using a coupled two-dimensional model of flow induced by large amplitude peristaltic waves, bacterial motility, reproduction, and diffusion, we address how bacterial growth and motility combined with peristaltic flow affect the balance of the intestinal microbial ecosystem.

  1. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    Science.gov (United States)

    Saeidi, Sheida

    Two important components of a liquid breeder blanket of a fusion power reactor are the liquid breeder/coolant and the steel structure that the liquid is enclosed in. One candidate combination for such components is Lead-Lithium (PbLi) eutectic alloy and advanced Reduced Activation Ferritic/Martensitic (RAFM) steel. The research performed here is aimed at: (1) better understanding of corrosion processes in the system including RAFM steel and flowing PbLi in the presence of a strong magnetic field and (2) prediction of corrosion losses in conditions of a Dual Coolant Lead Lithium (DCLL) blanket, which is at present the key liquid metal blanket concept in the US. To do this, numerical and analytical tools have been developed and then applied to the analysis of corrosion processes. First, efforts were taken to develop a computational suite called TRANSMAG (Transport phenomena in Magnetohydrodynamic Flows) as an analysis tool for corrosion processes in the PbLi/RAFM system, including transport of corrosion products in MHD laminar and turbulent flows. The computational approach in TRANSMAG is based on simultaneous solution of flow, energy and mass transfer equations with or without a magnetic field, assuming mass transfer controlled corrosion and uniform dissolution of iron in the flowing PbLi. Then, the new computational tool was used to solve an inverse mass transfer problem where the saturation concentration of iron in PbLi was reconstructed from the experimental data resulting in the following correlation: CS = e 13.604--12975/T, where T is the temperature of PbLi in K and CS is in wppm. The new correlation for saturation concentration was then used in the analysis of corrosion processes in laminar flows in a rectangular duct in the presence of a strong transverse magnetic field. As shown in this study, the mass loss increases with the magnetic field such that the corrosion rate in the presence of a magnetic field can be a few times higher compared to purely

  2. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  3. Experimental rigs for MHD studies

    International Nuclear Information System (INIS)

    Venkataramani, N.; Jayakumar, R.; Iyer, D.R.; Dixit, N.S.

    1976-01-01

    An MHD experimental rig is a miniature MHD installation consisting of basic equipments necessary for specific investigations. Some of the experimental rigs used in the investigations being carried out at the Bhabha Atomic Research Centre, Bombay (India) are dealt with. The experiments included diagnostics and evaluation of materials in seeded combustion plasmas and argon plasmas. The design specifications, schematics and some of the results of the investigations are also mentioned. (author)

  4. Optimization of transversal phacoemulsification settings in peristaltic mode using a new transversal ultrasound machine.

    Science.gov (United States)

    Wright, Dannen D; Wright, Alex J; Boulter, Tyler D; Bernhisel, Ashlie A; Stagg, Brian C; Zaugg, Brian; Pettey, Jeff H; Ha, Larry; Ta, Brian T; Olson, Randall J

    2017-09-01

    To determine the optimum bottle height, vacuum, aspiration rate, and power settings in the peristaltic mode of the Whitestar Signature Pro machine with Ellips FX tip action (transversal). John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, USA. Experimental study. Porcine lens nuclei were hardened with formalin and cut into 2.0 mm cubes. Lens cubes were emulsified using transversal and fragment removal time (efficiency), and fragment bounces off the tip (chatter) were measured to determine optimum aspiration rate, bottle height, vacuum, and power settings in the peristaltic mode. Efficiency increased in a linear fashion with increasing bottle height and vacuum. The most efficient aspiration rate was 50 mL/min, with 60 mL/min statistically similar. Increasing power increased efficiency up to 90% with increased chatter at 100%. The most efficient values for the settings tested were bottle height at 100 cm, vacuum at 600 mm Hg, aspiration rate of 50 or 60 mL/min, and power at 90%. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Fully developed MHD turbulence near critical magnetic Reynolds number

    International Nuclear Information System (INIS)

    Leorat, J.; Pouquet, A.; Frisch, U.

    1981-01-01

    Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers Rsup(M) where magnetic fields can be self-excited by a dynamo mechanism. Such flows have kinetic Reynolds numbers Rsup(V) of the order of 10 7 and are therefore highly turbulent. The behaviour of MHD turbulence with high Rsup(V) and low magnetic Prandtl numbers is investigated, using the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity the study is restricted to homogeneous and isotropic turbulence, but includes helicity. A critical magnetic Reynolds number Rsub(c)sup(M) of the order of a few tens (non-helical case) is obtained above which magnetic energy is present. Rsub(c)sup(M) is practically independent of Rsup(V) (in the range 40 to 10 6 ) and can be considerably decreased by the presence of helicity. No attempt is made to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding Rsub(c)sup(M) such as decreased turbulent heat transport. (author)

  6. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  7. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  8. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  9. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    International Nuclear Information System (INIS)

    Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula

    2015-01-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed

  10. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  11. Axisymmetric MHD stable sloshing ion distributions

    International Nuclear Information System (INIS)

    Berk, H.L.; Dominguez, N.; Roslyakov, G.V.

    1986-07-01

    The MHD stability of a sloshing ion distribution is investigated in a symmetric mirror cell. Fokker-Planck calculations show that stable configurations are possible for ion injection energies that are at least 150 times greater than the electron temperture. Special axial magnetic field profiles are suggested to optimize the favorable MHD properties

  12. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  13. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    Science.gov (United States)

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for

  14. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    Science.gov (United States)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K

  15. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.

    Science.gov (United States)

    Kou, W; Pandolfino, J E; Kahrilas, P J; Patankar, N A

    2017-06-01

    Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone. Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared. Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar. The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture. © 2017 John Wiley & Sons Ltd.

  16. MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid

    Science.gov (United States)

    Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.

    2018-01-01

    In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.

  17. Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications

    International Nuclear Information System (INIS)

    Pattison, M.J.; Premnath, K.N.; Morley, N.B.; Abdou, M.A.

    2008-01-01

    In this paper, an approach to simulating magnetohydrodynamic (MHD) flows based on the lattice Boltzmann method (LBM) is presented. The dynamics of the flow are simulated using a so-called multiple relaxation time (MRT) lattice Boltzmann equation (LBE), in which a source term is included for the Lorentz force. The evolution of the magnetic induction is represented by introducing a vector distribution function and then solving an appropriate lattice kinetic equation for this function. The solution of both distribution functions are obtained through a simple, explicit, and computationally efficient stream-and-collide procedure. The use of the MRT collision term enhances the numerical stability over that of a single relaxation time approach. To apply the methodology to solving practical problems, a new extrapolation-based method for imposing magnetic boundary conditions is introduced and a technique for simulating steady-state flows with low magnetic Prandtl number is developed. In order to resolve thin layers near the walls arising in the presence of high magnetic fields, a non-uniform gridding strategy is introduced through an interpolated-streaming step applied to both distribution functions. These advances are particularly important for applications in fusion engineering where liquid metal flows with low magnetic Prandtl numbers and high Hartmann numbers are introduced. A number of MHD benchmark problems, under various physical and geometrical conditions are presented, including 3-D MHD lid driven cavity flow, high Hartmann number flows and turbulent MHD flows, with good agreement with prior data. Due to the local nature of the method, the LBM also demonstrated excellent performance on parallel machines, with almost linear scaling up to 128 processors for a MHD flow problem

  18. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  19. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  20. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  1. Blood flow analysis with considering nanofluid effects in vertical channel

    Science.gov (United States)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  2. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    Science.gov (United States)

    Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.

  3. Preliminary results of MHD stability in HL-1 tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Ma Tengcai; Xiao Zhenggui Cai Renfang

    1987-01-01

    In this paper, MHD activities of HL-1 tokamak plasma are studied with Fourier transform and correlatio analysis. The poloidal modes m = 1, 2, 3,4 and toroidal modes n of MHD magnetic fluctuation signals are detected. Methods for suppressing MHD instabilities are suggested and tested, after MHD instabilities are studied in HL-1. The effects of MHD characteristics in the beginning stage of discharge on the whole process of discharge are analyzed. The disruption, in HL-1 device could be divided into three kinds: internal disruption, minor disruption and major disruption. The result shows that HL-1 will have a better operation condition if internal disruption appears. In is end, the stable operation region of HL-1 tokamak is also given

  4. Resistive MHD Stability Analysis in Near Real-time

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  5. Cryogenic aspects of the experience in operating the U-25 superconducting MHD magnet in conjunction with the MHD generator

    International Nuclear Information System (INIS)

    Niemann, R.C.; Mataya, K.F.; Smith, R.P.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Privalov, N.P.

    1978-01-01

    In order to facilitate the rapid development of MHD technology for the generation of electrical energy, the U.S. and U.S.S.R. are jointly conducting research within the framework of the Program of Scientific and Technical Cooperation. The Institute for High Temperature (IVTAN) of the U.S.S.R. has designed and fabricated a special MHD facility which uses as its base much of the equipment of the existing U-25 Facility. The new MHD fow train consisting of a combustor, magnet, channel, and diffuser is named U-25B. The U.S. has provided a superconducting magnet system for the U-25B MHD Facility. As a result of these joint efforts, a unique and broad range of experimental test conditions similar to those that will exist in operation of commercial MHD generators has been created. The United States Superconducting Magnet System (U.S. SCMS) was designed, fabricated, and delivered to the U-25B Facility by the Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy. The following description focuses on the cryogenic-related aspects of the magnet system commissioning and operation in the U.S.S.R

  6. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    International Nuclear Information System (INIS)

    Mellet, N.; Maget, P.; Meshcheriakov, D.; Lütjens, H.

    2013-01-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value. (paper)

  7. The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats.

    Science.gov (United States)

    Sibaev, Andrei; Yuece, Birol; Allescher, Hans Dieter; Saur, Dieter; Storr, Martin; Kurjak, Manfred

    2014-04-01

    Endocannabinoids (EC) and the cannabinoid-1 (CB1) receptor are involved in the regulation of motility in the gastrointestinal (GI) tract. However, the underlying physiological mechanisms are not completely resolved. The purpose of this work was to study the physiological influence of the endocannabinoid anandamide, the putative endogenous CB1 active cannabinoid, and of the CB1 receptor on ascending peristaltic activity and to identify the involved neuro-neuronal, neuro-muscular and electrophysiological mechanisms. The effects of anandamide and the CB1 receptor antagonist SR141716A were investigated on contractions of the circular smooth muscle of rat ileum and in longitudinal rat ileum segments where the ascending myenteric part of the peristaltic reflex was studied in a newly designed organ bath. Additionally intracellular recordings were performed in ileum and colon. Anandamide significantly reduced cholinergic twitch contractions of ileum smooth muscle whereas SR141716A caused an increase. Anandamide reduced the ascending peristaltic contraction by affecting neuro-neuronal and neuro-muscular neurotransmission. SR141716A showed opposite effects and all anandamide effects were antagonized by SR141716A (1 μM). Anandamide reduced excitatory junction potentials (EJP) and inhibitory junction potentials (IJP), whereas intestinal slow waves were not affected. CB1 receptors regulate force and timing of the intestinal peristaltic reflex and these actions involve interneurons and motor-neurons. The endogenous cannabinoid anandamide mediates these effects by activation of CB1 receptors. The endogenous cannabinoid system is permanently active, suggesting the CB1 receptor being a possible target for the treatment of motility related disorders. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Towards Integrated Pulse Detonation Propulsion and MHD Power

    Science.gov (United States)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated

  9. Analysis of voltage-drop near cold-electrodes of a combustion MHD generator

    International Nuclear Information System (INIS)

    Satyamurthy, P.; Venkatramani, N.; Rohatgi, V.K.

    1983-01-01

    In this paper turbulent compressible boundary layer equations for mass, momentum and energy are solved near the cold electrode wall of a combustion MHD generator. Arcs are simulated by freezing the electron temperature (and hence electrical conductivity) to a temperature called Tsub(arc) when gas temperature is less than Tsub(arc). Theoretical near electrode drop for various current densities along the flow direction is analysed for various Tsub(arc) temperatures and compared with experimentally obtained near electrode drop. It is found that the Tsub(arc) temperature increases as a square root along the flow direction and has linear dependency on current density. (author)

  10. Problems in nonlinear resistive MHD

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-01-01

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1

  11. Aspects of magnetohydrodynamic duct flow at high magnetic Reynolds number

    International Nuclear Information System (INIS)

    Turner, R.B.

    1973-07-01

    The thesis is concerned with the performance of a flow coupler, which consists of an MHD generator coupled to an MHD pump so that one stream of fluid is induced to move by the motion of another. The flow coupler investigations include: the effects caused by eddy currents on the applied magnetic field and electric potential distribution, the velocity perturbation which occurs as a liquid flows through a magnetic field, devices in which large currents flow through a moving conductor and through an external circuit, and the movement of two conductors through the gap of a magnet. The expected performance of a flow coupler is calculated. (U.K.)

  12. Closed cycle MHD specialist meeting. Progress report, 1971--1972

    International Nuclear Information System (INIS)

    Rietjens, L.H.

    1972-04-01

    Abstracts of the conference papers on closed cycle MHD research are presented. The general areas of discussion are the following: results on closed cycle experiments; plasma properties, and instabilities and stabilization in nonequilibrium plasmas; loss mechanisms, current distributions, electrode effects, boundary layers, and gas dynamic effects; and design concepts of large MHD generators, and nuclear MHD power plants. (GRA)

  13. Report of commission for investigating MHD on a visit to U.S. Part 2. Report on each place of visit; Hobei MHD chosadan hokokusho. 2. Homonsakibetsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-01-01

    The members of MHD project examination subcommittee made an investigative tour of the U.S. on the state of development of MHD generation. This report of the 2nd part explains opinions and the present status of the R and D on MHD generation by each of the 19 institutions visited. The U.S. research on MHD generation is under the leadership of DOE, whereby the budget for the development is so large as nearly one hundred million dollars have been provided for several years. The purpose is the effective use of domestic coal. General Electric is of the opinion that a combined gas turbine system will be put to practical use earlier because MHD takes time for practicability despite its highest efficiency in coal-utilized power generation. Yet, GE thinks MHD will be more attractive in the future. Reynolds Metal is considering application of MHD generation to the electro-chemical industry at present. According to Reynolds, combined supply of electric output and heat of MHD can reduce the use of calorie per ton of aluminum from 240 MBTU to 100. Montana Power is promoting practicability through a combined plan with DOE-built MHD generation. (NEDO)

  14. Experimental and numerical studies of pressure drop in PbLi flows in a circular duct under non-uniform transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.-C., E-mail: lifch@hit.edu.cn; Sutevski, D.; Smolentsev, S.; Abdou, M.

    2013-11-15

    Highlights: • An indirect DP measurement approach for high-temperature LM MHD flow is developed. • Experiments and numerical simulations of PbLi MHD flow are performed. • Characteristics of DP in LM MHD flow under fringing magnetic field are studied. • Pressure distributions in LM MHD flow at entry and exit of magnet are different. -- Abstract: Experiments and three-dimensional (3D) numerical simulations are performed to investigate the magnetohydrodynamic (MHD) characteristics of liquid metal (LM) flows of molten lead-lithium (PbLi) eutectic alloy in an electrically conducting circular duct subjected to a transverse non-uniform (fringing) magnetic field. An indirect measurement approach for differential pressure in high temperature LM PbLi is first developed, and then detailed data on pressure drop in this PbLi MHD flow are measured. The obtained experimental results for the pressure distribution are in good agreement with numerical simulations. Using the numerical simulation results, the 3D effects caused by fringing magnetic field on the LM flow are illustrated via distributions for the axial pressure gradients and transverse pressure differences. It has been verified that a simple approach for estimation of pressure drop in LM MHD flow in a fringing magnetic field proposed by Miyazaki et al. [22] i.e., a simple integral of pressure gradient along the fringing field zone using a quasi-fully-developed flow assumption, is also applicable to the conditions of the present experiment providing the magnetic interaction parameter is large enough. Furthermore, for two different sections of the LM flow at the entry to and at the exit from the magnet, it is found that the pressure distributions in the duct cross sections in these two regions are different.

  15. MHD power plants - a reality of the 80's

    International Nuclear Information System (INIS)

    Pishchikov, S.

    1981-01-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas. (B.S.)

  16. MHD power plants - a reality of the 80's

    Energy Technology Data Exchange (ETDEWEB)

    Pishchikov, S

    1981-02-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas.

  17. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Kari, Jeppe; Borch, Kim

    2017-01-01

    of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100 ms. The general performance was verified by alkali...

  18. Results from a large-scale MHD propulsion experiment

    International Nuclear Information System (INIS)

    Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.

    1992-01-01

    This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible

  19. The fabrication of a vanadium-stainless steel test section for MHD testing of insulator coatings in flowing lithium

    International Nuclear Information System (INIS)

    Reed, C.B.; Mattas, R.F.; Smith, D.L.; Chung, H.; Tsai, H.-C.; Morgan, G.D.; Wille, G.W.; Young, C.

    1996-01-01

    To test the magnetohydrodynamic (MHD) pressure drop reduction performance of candidate insulator coatings for the ITER Vanadium/Lithium Breeding Blanket, a test section comprised of a V- 4Cr-4Ti liner inside a stainless steel pipe was designed and fabricated. Theoretically, the MHD pressure drop reduction benefit resulting, from an electrically insulating coating on a vanadium- lined pipe is identical to the benefit derived from an insulated pipe fabricated of vanadium alone. A duplex test section design consisting of a V alloy liner encased in a SS pressure boundary provided protection for vanadium from atmospheric contamination during operation at high temperature and obviated any potential problems with vanadium welding while also minimizing the amount of V alloy material required. From the MHD and insulator coating- point of view, the test section outer SS wall and inner V alloy liner can be modeled simply as a wall having a sandwich construction. Two 52.3 mm OD x 2.9 m long V-alloy tubes were fabricated by Century Tubes from 64 mm x 200 mm x 1245 mm extrusions produced by Teledyne Wah Chang. The test section's duplex structure was subsequently fabricated at Century Tubes by drawing down a SS pipe (2 inch schedule 10) over one of the 53.2 mm diameter V tubes

  20. Global and kinetic MHD simulation by the Gpic-MHD code

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Yamada, Yusuke; Kajiwara, Kenji; Lee, Wei-li; Tokuda, Shinji; Yagi, Masatoshi

    2011-01-01

    In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vortex equation and the generalized ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential A z . Particle information is mainly used to estimate second order moments in the generalized ohm's law. Because the lower order moments of the charge density and the longitudinal current density are not used explicitly to determine φ and A z , the numerical noise induced by the discreteness of particle quantities reduces drastically. Another advantage of the algorithm is that the longitudinal induced electric field, E Tz =-∂A z /∂t, is explicitly estimated by the generalized ohm's law and used in the equations of motion. The particle velocities along the magnetic field are used (v z -formulation) instead of generalized momentums (p z -formulation), hence there is no problem of 'cancellation', which appear when estimating A z from the Ampere's law in the p z -formulation. The successful simulation of the collisionless internal kink mode by new Gpic-MHD with the realistic values of the large-scale and high-beta, revealed the usefulness of the new algorithm. (author)

  1. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Science.gov (United States)

    Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.

    2018-06-01

    The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.

  2. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)

  3. Investigations of MHD activity in ASDEX discharges

    International Nuclear Information System (INIS)

    Stambaugh, R.; Gernhardt, J.; Klueber, O.; Wagner, F.

    1984-06-01

    This report makes a strong attempt to relate some specific observations of MHD activity in ADEX discharges to observations made on the Doublet III and PDX tokamaks and to theoretical work on high β MHD modes at GA and PPPL. Three topics are discussed. The first topic is the detailed analysis of the time history of MHD activity in a β discharge. The β limit discharge in ASDEX is identified as a discharge in which, during constant neutral beam power, β reaches a maximum and then decreases, often to a lower steady level if the heating pulse is long enough. During the L phase of this discharge, the MHD activity observed in the B coils is both a continuous and bursting coupled m >= 1 mode of the 'fishbone' type. When β is rising in the H phase, this mode disappears; only ELMs are present. At βsub(max), a different mode appears, the m=2, n=1 tearing mode, which grows rapidly as β decreases. The second topic is the very new observation of the fishbone-like mode in a discharge heated by combined neutral beam and ion cyclotron heating power. The mode characteristics are modulated by sawtooth oscillations in a manner consistent with the importance of q(0) in the stability of this mode. The third topic is the search for ELM precursors in discharges designed to have no other competing and complicating MHD activity. In these cases nonaxisymmetric precursors to the Hsub(α) spike were observed. Hence, it appears that an MHD mode, rather than an energy balance problem, must be the origin of the ELM. (orig./GG)

  4. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  5. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

    Science.gov (United States)

    Spinello, Davide; Fattahi, Javad S.

    2017-08-01

    We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

  6. 交错网格下MHD相容守恒格式的发展%Development of a consistent and conservative scheme on a staggered grid for liquid metal MHD flows

    Institute of Scientific and Technical Information of China (English)

    李俊峰; 倪明玖

    2011-01-01

    在低磁场雷诺数条件下,基于电势泊松方程,发展了交错网格下可以精确计算电流和洛伦兹力(电磁力)的相容守恒格式.采用压力为变量的原始变量法求解不可压缩Navier-Stokes方程,所计算的电流满足电荷守恒定律,所计算的电磁力满足动量守恒定律.对金属流体在Hartmann数50~5000范围内验证了格式的精确性.交错网格下相容守恒格式的发展为后续MHD稳定性分析、湍流的大涡模拟及直接数值模拟提供很好的选择.%A consistent and conservative scheme has been extended and developed on a staggered grid system for liquid metal MHD flow at a low magnetic Reynolds number by solving electrical potential Poisson equation based on the Ohm's law and the charge conservation law. The consistent scheme is used to ensure the calculated current density conserves the charge, and the divergence formula of the Lorentz force is used to ensure the momentum conservation. Simulation of liquid metal flows in a three-dimensional straight channel is conducted and compared with the analytical solutions from Shercliff's and Hunt's. The numerical results are in good agreement with analytical solutions for the Hartmann numbers from 50 to 5000. A fully conservative scheme on a staggered grid, which can conserve mass, momentum and kinetic energy and charge, is then developed with the central-symmetrical scheme for the convective term and the pressure term and with the consistent and conservative scheme for the calculation of the current density and the Lorentz force. A fully conservative scheme can be a good tool for numerical analysis of MHD flow instability, large eddy simulation (LES) and direct-numerical simulation (DNS) of MHD turbulence.

  7. PHYSICAL PERFORMANCE AND BODY COMPOSITION IN MAINTENANCE HEMODIALYSIS (MHD PATIENTS

    Directory of Open Access Journals (Sweden)

    M Zhang

    2012-06-01

    Conclusions: These findings indicate that adult MHD pts had a higher % body fat. Measures of physical performance were markedly reduced in MHD pts as compared to Normals. Physical performance in MHD, measured especially by 6-MW, correlated negatively with some measures of body composition, particularly with LBMI.

  8. Computational manipulation of a radiative MHD flow with Hall current and chemical reaction in the presence of rotating fluid

    Science.gov (United States)

    Alias Suba, Subbu; Muthucumaraswamy, R.

    2018-04-01

    A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.

  9. Free-boundary perturbed MHD equilibria

    International Nuclear Information System (INIS)

    Nührenberg, C

    2012-01-01

    The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].

  10. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    Science.gov (United States)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd

  11. Electric vortex in MHD flow

    International Nuclear Information System (INIS)

    Garcia, M.

    1995-01-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low β flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion

  12. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  13. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Directory of Open Access Journals (Sweden)

    Q. Hussain

    2018-06-01

    Full Text Available The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study. Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters. Keywords: Nonlinear thermal radiation, Variable viscosity, Porous medium, Soret and Dufour effects, Peristalsis

  14. A Study of Chemically Reactive Species and Thermal Radiation Effects on an Unsteady MHD Free Convection Flow Through a Porous Medium Past a Flat Plate with Ramped Wall Temperature

    Science.gov (United States)

    Pandit, K. K.; Sarma, D.; Singh, S. I.

    2017-12-01

    An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.

  15. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  16. Several hundred megawatt MHD units

    International Nuclear Information System (INIS)

    Pishchikov, S.; Pinkhasik, D.; Sidorov, V.

    1978-01-01

    The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10 6 kJ/m 3 .h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually. (J.B.)

  17. Several hundred megawatt MHD units

    Energy Technology Data Exchange (ETDEWEB)

    Pishchikov, S; Pinkhasik, D; Sidorov, V

    1978-07-01

    The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10/sup 6/ kJ/m/sup 3/.h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually.

  18. Method of operating a MHD power plant

    International Nuclear Information System (INIS)

    Wysk, S.R.

    1982-01-01

    A fossil fuel is burned substoichiometrically in the combustor of a mhd power plant to produce a high temperature, fuelrich product gas. The product gas is passed through a mhd channel to generate electricity. A reducing agent, preferably natural gas or hydrocarbon, is injected into the fuelrich product gas leaving the mhd generator; and the resulting mixture is held at a temperature in the range of 950 to 1500 0 C for about 1 second to permit the reducing agent to decompose a portion of the nitrogen oxides formed in the combustor. The fuel-rich product gas then passes thru an afterburner wherein combustion is completed and any excess reducing agent is consumed

  19. Pseudo-MHD ballooning modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.

    1996-08-01

    The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant open-quotes pseudo-MHDclose quotes model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for α > s 2 (2 7/3 /9) (r p /R 0 ) or-d√Β/dr > (2 1/6 /3)(s/ R 0q ), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas

  20. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  1. Unsteady MHD flow of a dusty nanofluid past a vertical stretching surface with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    C. Sulochana

    2016-02-01

    Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.

  2. Influence of Thermal Radiation on Unsteady Free Convection MHD Flow of Brinkman Type Fluid in a Porous Medium with Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2013-01-01

    Full Text Available The focus of this paper is to analyze the influence of thermal radiation on some unsteady magnetohydrodynamic (MHD free convection flows of an incompressible Brinkman type fluid past a vertical flat plate embedded in a porous medium with the Newtonian heating boundary condition. The fluid is considered as a gray absorbing-emitting but nonscattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. For a detailed analysis of the problem, four important situations of flow due to (i impulsive motion of the plate (ii uniform acceleration of the plate (iii nonuniform acceleration of the plate, and (iv highly nonuniform acceleration of the plate are considered. The governing equations are first transformed into a system of dimensionless equations and then solved analytically using the Laplace transform technique. Numerical results for temperature and velocity are shown graphically, while skin friction and Nusselt number are computed in tables. The results show that temperature and velocity increase on increasing radiation and Newtonian heating parameters. However, the results of magnetic and porosity parameters on velocity are found quite opposite.

  3. Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.L.; Marchant, D.D.

    1986-09-01

    Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.

  4. Effects of a current on the redistribution of an ionizing additive over an MHD channel

    International Nuclear Information System (INIS)

    Reznikov, M.B.; Lamden, D.I.; Mostinskii, I.L.

    1983-01-01

    A solution is obtained for the steady-state distribution of an ionizing impurity over the cross section of the channel in an MHD generator. It is assumed that the flow in the channel is turbulent and stabilized. Allowance is made for chemical reactions, nonisothermal flow, and ion current drift. It is shown that ion drift can lead to a substantial redistribution of the additive over the cross section and in particular to a rise in concentration by the cathode and a reduction near the anode

  5. Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Mustafa, M.; Ahmad, B.

    Current attempt addresses the peristaltic transport of Bingham plastic fluid under the influence of magnetic force. Space dependent viscosity is considered. Novel Soret and Dufour effects are retained in the mathematical model. Problem formulation is presented through the conventional lubrication approach. Series solutions of the arising non-linear problem are developed via regular perturbation approach. Special attention is given to the role of embedded parameters on the axial velocity, temperature, concentration and pressure distributions. Furthermore the numerical solution of pressure rise per wavelength is obtained through numerical integration because its analytical solution seems impossible.

  6. Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    S. Baag

    2017-01-01

    Full Text Available In this paper, the steady magnetohydrodynamic (MHD mixed convection stagnation point flow of an incompressible and electrically conducting micropolar fluid past a vertical flat plate is investigated. The effects of induced magnetic field, heat generation/absorption and chemical reaction have been taken into account during the present study. Numerical solutions are obtained by using the Runge–Kutta fourth order scheme with shooting technique. The skin friction and rate of heat and mass transfer at the bounding surface are also calculated. The generality of the present study is assured of by discussing the works of Ramachandran et al. (1988, Lok et al. (2005 and Ishak et al. (2008 as particular cases. It is interesting to note that the results of the previous authors are in good agreement with the results of the present study tabulated which is evident from the tabular values. Further, the novelty of the present analysis is to account for the effects of first order chemical reaction in a flow of reactive diffusing species in the presence of heat source/sink. The discussion of the present study takes care of both assisting and opposing flows. From the computational aspect, it is remarked that results of finite difference (Ishak et al. (2008 and Runge–Kutta associated with shooting technique (present method yield same numerical results with a certain degree of accuracy. It is important to note that the thermal buoyancy parameter in opposing flow acts as a controlling parameter to prevent back flow. Diffusion of lighter foreign species, suitable for initiating a destructive reaction, is a suggestive measure for reducing skin friction.

  7. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  8. MHD generator performance analysis for the Advanced Power Train study

    Science.gov (United States)

    Pian, C. C. P.; Hals, F. A.

    1984-01-01

    Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.

  9. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    Science.gov (United States)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  10. Chemical reaction effects on unsteady MHD free convective flow in a rotating porous medium with mass transfer

    Directory of Open Access Journals (Sweden)

    Govindarajan Arunachalam

    2014-01-01

    Full Text Available An investigation of unsteady MHD free convective flow and mass transfer during the motion of a viscous incompressible fluid through a porous medium, bounded by an infinite vertical porous surface, in a rotating system is presented. The porous plane surface and the porous medium are assumed to rotate in a solid body rotation. The vertical surface is subjected to uniform constant suction perpendicular to it and the temperature at this surface fluctuates in time about a non-zero constant mean. Analytical expressions for the velocity, temperature and concentration fields are obtained using the perturbation technique. The effects of R (rotation parameter, k0 (permeability parameter, M (Hartmann number and w (frequency parameter on the flow characteristics are discussed. It is observed that the primary velocity component decreases with the increase in either of the rotation parameter R, the permeability parameter k0, or the Hartmann number M. It is also noted that the primary skin friction increases whenever there is an increase in the Grashof number Gr or the modified Grashof number Gm. It is clear that the heat transfer coefficient in terms of the Nusselt number decreases in the case of both air and water when there is an increase in the Hartmann number M. It is observed that the magnitude of the secondary velocity profiles increases whenever there is an increase in either of the Grashof number or the modified Grashof number for mass transfer or the permeability of the porous media. Concentration profiles decreases with an increase in the Schmidt number.

  11. Nonlinear 2D convection and enhanced cross-field plasma transport near the MHD instability threshold

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Chudin, N.V.

    2003-01-01

    Results of theoretical study and computer simulations of nonlinear 2D convection induced by a convective MHD instability near its threshold in FRC-like non-paraxial magnetic confinement system are presented. An appropriate closed set of weakly nonideal reduced MHD equations is derived to describe the self-consistent plasma dynamics. It is shown that the convection forms nonlinear large scale stochastic vortices (convective cells), which tend to restore and to maintain the marginally stable pressure pro e and result in an essentially nonlocal enhanced heat transport. A large amount of data on the structure of the nascent convective flows is obtained and analyzed. The computer simulations of long time plasma evolutions demonstrate such features of the resulting anomalous transport as pro e consistency, L-H transition, external transport barrier, pinch of impurities, etc. (author)

  12. A MHD channel study for the ETF conceptual design

    Science.gov (United States)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  13. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela [Astronomický ústav, Akademie věd České Republiky, v.v.i., Fričova 298, 251 65 Ondřejov (Czech Republic); Wiegelmann, Thomas, E-mail: dieter.nickeler@asu.cas.cz [Max-Planck Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-10

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.

  14. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  15. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  16. A Study of Chemically Reactive Species and Thermal Radiation Effects on an Unsteady MHD Free Convection Flow Through a Porous Medium Past a Flat Plate with Ramped Wall Temperature

    Directory of Open Access Journals (Sweden)

    Pandit K. K.

    2017-12-01

    Full Text Available An investigation of the effects of a chemical reaction and thermal radiation on unsteady MHD free convection heat and mass transfer flow of an electrically conducting, viscous, incompressible fluid past a vertical infinite flat plate embedded in a porous medium is carried out. The flow is induced by a general time-dependent movement of the vertical plate, and the cases of ramped temperature and isothermal plates are studied. An exact solution of the governing equations is obtained in closed form by the Laplace Transform technique. Some applications of practical interest for different types of plate motions are discussed. The numerical values of fluid velocity, temperature and species concentration are displayed graphically whereas the numerical values of skin friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters for both ramped temperature and isothermal plates.

  17. The analysis of the influence of the current regulation on the parameters of the MHD-genarator Faraday's type and on the mutual work of the generator and electric power network

    International Nuclear Information System (INIS)

    Dabrowski, K.

    1988-07-01

    This paper contains: comparison of the influence of the I=const. and U=const. regulation on the gasdynamic characteristics of the MHD-generator Faraday's type with segmented electrodes, comparison of the influence of the I=const. and U=const. regulation on choice of the compressor which causes the gas flow in the MHD generator, analysis of the influence of the I=const. regulation on the mutual work of the MHD-generator and electric power network in nonsteady states caused by the stagnation temperature drop at the MHD-duct inlet. In the work was assumed: one dimensional mathematical model of the MHD-generator, mathematical model of the inverter was constructed by means of the ''zero-one'' model of the thyristor, multichannel, synchronous control system of the inverters, inflexible electric power network. 12 refs., 11 figs., 2 tabs. (author)

  18. Azimuthal MHD stirring of metal in vessels with cross-sections of different configuration

    Science.gov (United States)

    Siraev, R. R.; Khripchenko, S. Yu

    2017-11-01

    Continuous casting of cylindrical ingots from aluminum and preparation of aluminum-based alloys and composites require intensive mixing of liquid metal phase in the crystallization area of the melt. It is evident that the topology of the flow in the liquid phase of an ingot should influence the processes occurring during crystallization. Contemporary continuous casting machines use MHD-stirrers that generate an azimuthal motion in a crystallizer with a warm top of circular cross-section in the presence of rotating magnetic field. The flow of metal in the liquid phase of an ingot is similar to its rotation in a solid state, and transport processes are most intensively carried out in the near near-wall region and near the ingot solidification front, where shear flows are essential. In this work, we consider the possibility of amplifying transport processes in the entire volume of a stirred metal by making the cross-section shape of the warm top of the crystallizer different from a circle. It has been found numerically that the total energy of the flow in a crucible of square cross-section is twice as lower as that in a crucible with circular cross-section at the same inductor current. Turbulent pulsations in the square crucible, as well as in the circular one, are concentrated mainly in the near-wall region. The energy of pulsations in the square crucible also reduces, but the time of stirring of the passive impurity introduced into the volume of the metal is less than in the circular crucible. The effect of MHD stirring on the vertical temperature distribution on the square crucible is higher than in the “round crucible”.

  19. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  20. Effect of bootstrap current on MHD equilibrium beta limit in heliotron plasmas

    International Nuclear Information System (INIS)

    Watanabe, K.Y.

    2001-01-01

    The effect of bootstrap current on the beta limit of MHD equilibria is studied systematically by an iterative calculation of MHD equilibrium and the consistent bootstrap current in high beta heliotron plasmas. The LHD machine is treated as a standard configuration heliotron with an L=2 planar axis. The effects of vacuum magnetic configurations, pressure profiles and the vertical field control method are studied. The equilibrium beta limit with consistent bootstrap current is quite sensitive to the magnetic axis location for finite beta, compared with the currentless cases. For a vacuum configuration with the magnetic axis shifted inwards in the torus, even in the high beta regimes, the bootstrap current flows to increase the rotational transform, leading to an increase in the equilibrium beta limit. On the contrary, for a vacuum configuration with the magnetic axis shifted outwards in the torus, even in the low beta regimes, the bootstrap current flows so as to reduce the rotational transform; therefore, there is an acceleration of the Shafranov shift increase as beta increases, leading to a decrease in the equilibrium beta limit. The pressure profiles and vertical field control methods influence the equilibrium beta limit through the location of the magnetic axis for finite beta. These characteristics are independent of both device parameters, such as magnetic field strength, and device size in the low collisional regime. (author)

  1. Computation of tokamak equilibria with steady flow

    International Nuclear Information System (INIS)

    Kerner, W.; Tokuda, Shinji

    1987-08-01

    The equations for ideal MHD equilibria with stationary flow are reexamined and addressed as numerically applied to tokamak configurations with a free plasma boundary. Both the isothermal (purely toroidal flow) and the poloidal flow cases are treated. Experiment-relevant states with steady flow (so far only in the toroidal direction) are computed by the modified SELENE40 code. (author)

  2. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  3. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)

  4. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  5. Internal Short-Circuiting Phenomena In An Open-Cycle MHD Generator

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y.; Ishibashi, E. [Hitachi Research Laboratory, Hitachi-shi, Ibaraki-ken (Japan); Kasahara, T.; Kazawa, Y. [Hitachi Works, Hitachi Ltd., Hitachi-shi, Ibaraki-ken (Japan)

    1968-11-15

    The influence of internal electrical leakage due to circulating currents flowing through velocity boundary layers and due to metallic elements in insulating walls (peg walls) is experimentally investigated. For this purpose a combustion-driven MHD generator is utilized. The active part of the generator test section is 60 cm in length with a constant cross-section of 3 x 12 cm{sup 2}. At typical operating conditions about 70 g/s of diesel light oil is burned with oxygen-enriched air, resulting in a thermal input of 3 MW, a fluid velocity of 500 to 700 m/s and a gas temperature of 2700 to 2900 Degree-Sign K at the channel inlet. KOH is used as the seed material. The magnetic field can be raised up to 1.95 Teslas. In the range of lower magnetic fields (B < 0.8T) it is shown that an observed open-circuit voltage agrees well with the theoretical value OBh which is defined in a one-dimensional MHD model. In other words, the circulating currents scarcely affect the open-circuit voltage. The theoretical basis for this fact is obtained by the use of a simple model. Experimental results obtained in several runs using three sets of insulating walls show that thermal boundary layers at water-cooled metals are more conductive than expected and that the open- circuit voltage decreases because of leakage currents flowing through metal pegs, when the internal resistance of the generator is relatively large. Also, it is shown that an alumina coating is effective in reducing the leakage currents. (author)

  6. Chemical Recovery of Energy in a Combined MHD-Steam Power Station; Recuperation Chimique d'Energie dans une Centrale Combinee MHD-Vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Carrasse, J. [Societe Alsthom, Paris (France)

    1966-12-15

    This paper studies the energetic and chemical aspects of the operation of a combined MHD-steam power station using the combustion gases from a fossil fuel in an open circuit with potassium seeding. It describes a process for the recovery of energy by endothermal chemical gasification of the fuel. The author first recalls briefly the thermal and chemical conditions to be met throughout the length of the gas flow and points out that it is vital to ensure as much recycling of energy as possible from below to above the MHD generator, at the expense of the conventional power station located further on in the system. The paper then describes the various processes intended to ensure the thermal operating conditions required, including preheating of the air, oxygen enrichment etc. The last part of the paper, which goes into greater detail while taking the foregoing considerations into account, explains the principle and various feasible methods of application of a process at present under study and experimentation. In this process some of the heat energy of the gases discharged from the MHD duct is recycled, partly in chemical form and partly as a limited amount of gas preheat. For this purpose the fuel, mixed with oxidizing agents such as water vapour or carbon dioxide, is gasified, at about 950 Degree-Sign C and after a series of collectively endothermal reactions, into a gas composed mainly of carbon monoxide, hydrogen, nitrogen and excess water vapour and carbon dioxide. It is thus possible to avoid the employment of very high temperature heat exchangers working with seeded gas. The paper stresses the extraction of seeding material, which is simple and can here take place to a great extent in liquid form (fused salts) due to the fact that operation is in the temperature range around 1000 Degree-Sign C. Consideration is finally given to the use after treatment (cooling, extraction of seeding material, absorption of excess H{sub 2}O and CO{sub 2}, compression and re

  7. MHD stagnation point flow and heat transfer of a nanofluid over a permeable nonlinear stretching/shrinking sheet with viscous dissipation effect

    Science.gov (United States)

    Jusoh, Rahimah; Nazar, Roslinda

    2018-04-01

    The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.

  8. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, David J. [IKOtech, LLC, 3130 Highland Avenue, 3rd Floor, Cincinnati, OH 45219-2374 (United States)]. E-mail: David.Kennedy@IKOtech.com; Todd, Paul [SHOT, Inc., Greenville, IN (United States); Logan, Sam [SHOT, Inc., Greenville, IN (United States); Becker, Matthew [SHOT, Inc., Greenville, IN (United States); Papas, Klearchos K. [Diabetes Institute for Immunology and Transplantation, University of Minnesota, Minneapolis, MN (United States); Moore, Lee R. [Biomedical Engineering Department, Cleveland Clinic Foundation, Cleveland, OH (United States)

    2007-04-15

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 {mu}m) to the isolation of pancreatic islets (150-350 {mu}m) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  9. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    International Nuclear Information System (INIS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-01-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation

  10. On the Quantitative Analysis of Liquid Flow in Physiological Tubes.

    Science.gov (United States)

    1982-12-01

    cri- copharyngeal sphincter which is aided by skeletal muscle (Vantrap- pen and hellemans, 1980) relaxes to accept the bolus and the gastro - esophageal ...lower ( gastro -) esophageal junction during peristalsis resulting from the interaction of gastric, esophageal and thoracic pressures. PIP is a pressure...higher than the downstream pressure and a flow velocity profile with no reflux (syn.: retropulsion). The 5 Pumping in Biological Tubes a. Peristaltic

  11. Equations of state for self-excited MHD generator studies

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.

    1980-02-26

    We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.

  12. Excitation of macromagnetohydrodynamic mode due to multiscale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    This is the first numerical simulation demonstrating that a macromagnetohydrodynamic (macro-MHD) mode is excited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow based on a reduced two-fluid model. This simulation of a macro-MHD mode, a double tearing mode, is accomplished in a reversed shear equilibrium that includes zonal flow and turbulence due to kinetic ballooning modes. In the quasi-steady equilibrium, a macroscale fluctuation that has the same helicity as the double tearing mode is a part of the turbulence. After a certain period of time, the macro-MHD mode begins to grow. It effectively utilizes free energy of the equilibrium current density gradient and is destabilized by a positive feedback loop between zonal flow suppression and magnetic island growth. Thus, once the macro-MHD appears from the quasi-equilibrium, it continues to grow steadily. This simulation is more comparable with experimental observations of growing macro-MHD activity than earlier MHD simulations starting from linear macroinstabilities in a static equilibrium

  13. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2001-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. In the previous report, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It was found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It was also found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. However, it is very difficult to estimate the gas-liquid slip ratio theoretically, especially in the heavy liquid metal two-phase natural circulation. For example, the effects of MHD load on the two-phase flow characteristics, such as the void fraction and gas-liquid slip ratio are not known well. In the present study, therefore, as the second step of the feasibility study, a series of the experiments were performed to investigate, especially, the effect of MHD load at the single-phase shown-comer flow channel on the characteristics of the two-phase natural circulation. In the first series of the experiments, Woods-metal (Density: 9517 Kg/m 3 ) and nitrogen gas were chosen as the two-phase working fluids. The MHD pressure drop was simulated by the ball valve. The experiments with water and nitrogen gas were also performed to check the effects of the physical properties. From the present experiments, it is found that the average void fraction in the two-phase flow channel is determined by the force balance between the MHD pressure drop, frictional and pressure losses in the tube, and

  14. Structure of reconnection boundary layers in incompressible MHD

    International Nuclear Information System (INIS)

    Sonnerup, B.U.Oe.; Wang, D.J.

    1987-01-01

    The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process

  15. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  16. MHD free convection flow of a visco-elastic (Kuvshiniski type dusty gas through a semi infinite plate moving with velocity decreasing exponentially with time and radiative heat transfer

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2011-06-01

    Full Text Available The present paper is concerned with the study of MHD free convective flow of a visco-elastic (Kuvshinski type dusty gas through a porous medium induced by the motion of a semi-infinite flat plate under the influence of radiative heat transfer moving with velocity decreasing exponentially with time. The expressions for velocity distribution of a dusty gas and dust particles, concentration profile and temperature field are obtained. The effect of Schmidt number (Sc, Magnetic field parameter (M and Radiation parameter (N on velocity distribution of dusty gas and dust particles, concentration and temperature distribution are discussed graphically.

  17. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    NARCIS (Netherlands)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an 'intuitive' description based on the energy principle that is very misleading for

  18. Studies of MHD stability using data mining technique in helical plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd

    2010-01-01

    Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)

  19. MHD equilibrium of heliotron J plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya

    2004-01-01

    MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)

  20. Nonlinear radiative heat transfer in magnetohydrodynamic (MHD stagnation point flow of nanofluid past a stretching sheet with convective boundary condition

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    2015-12-01

    Full Text Available Two-dimensional boundary layer flow of nanofluid fluid past a stretching sheet is examined. The paper reveals the effect of non-linear radiative heat transfer on magnetohydrodynamic (MHD stagnation point flow past a stretching sheet with convective heating. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is considered. The nanoparticle fractions on the boundary are considered to be passively controlled. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. Prandtl number Pr, velocity ratio parameter A, magnetic parameter M, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Moreover, the problem is governed by temperature ratio parameter (Nr=TfT∞ and radiation parameter Rd. Similarity transformation is used to reduce the governing non-linear boundary-value problems into coupled higher order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab software for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient Cf increases as the values of magnetic parameter M increase and decreases as the values of velocity ratio parameter A increase. The local Nusselt number −θ′(0 decreases as the values of thermophoresis parameter Nt and radiation parameter Nr increase and it increases as the values of both Biot number Bi and Prandtl number Pr increase. Furthermore, radiation has a positive effect on temperature and concentration profiles.

  1. A performance analysis for MHD power cycles operating at maximum power density

    International Nuclear Information System (INIS)

    Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi

    1996-01-01

    An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)

  2. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  3. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    Science.gov (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Experimental and theoretical studies of the effects of nonuniformities in equilibrium MHD generators

    International Nuclear Information System (INIS)

    Rosenbaum, M.; Shamma, S.E.; Louis, J.F.

    1980-01-01

    An experimental study of the effects of thermal and velocity nonuniformities is performed in an equilibrium plasma for a range of Hall parameters. An electrodeless MHD disk generator with radial flow is chosen as the ideal geometry for these experiments. By introducing equally spaced cold blades in the flow, it is possible to create well defined two-dimensional wake nonuniformities with strong variations of the plasma properties in the direction normal to the magnetic field and the flow. This type of nonuniformity is predicted to provide the strongest reduction of Hall coefficient and effective conductivity for high values of Hall parameter. This degradation is controlled by both the level of nonuniformities and the value of the ideal Hall parameter. The former is dependent upon the number of blades (root mean square deviation of the conductivity), and the latter is dependent upon the values of the magnetic field intensities. The results provide basic quantitative information about the effects of conductivity and velocity nonuniformities on the performance of equilibrium MHD generators over a wide range of Hall coefficients, between 2 and 7. Reduction formulae are established between the effective and ideal Hall parameters for different levels of nonuniformities intensities. Theoretical predictions are derived from a detailed two-dimensional electrodynamic analysis and a simplified engineering model based on a generalization of Rosa's layer model. These experiments validate the analytical studies and support the use of the theoretical layer models in describing the effect of boundary layers on the performance of linear generators

  5. On nonlinear MHD-stability of toroidal magnetized plasma

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.; Pastukhov, V.P.

    1994-01-01

    The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs

  6. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Science.gov (United States)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  7. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2018-04-01

    Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification

  8. Engineering feasibility evaluation of a peristaltic pinch

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1977-04-01

    A recent proposal for reducing the end loss of a linear theta pinch is to produce moving magnetic mirrors at the coil ends. The concept entails the sequential pulsing of an axially arranged series of two-turn coaxial coils. The electrical design of such a system presents some unique problems. Ideally, the individual pulse circuits should be completely independent. This would facilitate the design by eliminating interactive effects. In practice, the circuits must be interconnected through isolating inductors to enable the production of a uniform biasing magnetic field. Moreover, the coils must be located physically close together. This produces strong magnetic coupling between the pulse circuits, which can seriously affect the shape and speed of the inward-moving magnetic-mirror field. Possible systems were modeled for the NET-2 circuit analysis code. The models took account of the inductive coupling between the individual circuits in the model. The results show that an increasing magnetic mirror can be produced provided the radius of the theta pinch is not too great compared to the intercoil spacing. The peristaltic field can be maintained for several cycles in the inner coils. The voltage hold-off requirements on the pulse circuit switches are found to be severe, but not impossible to meet

  9. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  10. General Physical Problems Related to MHD. Shock Tubes. Introduction to Papers in Section 1-b

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-10-15

    The papers which will be considered here are Nos. SM-74/26, 134, 172, 182 and 219. Each of the five papers will be discussed in turn, but before beginning this discussion, some general comments concerning shock tube studies of MHD generator plasmas seem in order. There is little doubt that the shock tube is an excellent facility-for the study of the basic processes which occur in the bulk of the plasma. It provides a large flow of uniform plasma with well-controlled properties. Because of the very short operating times, the materials problems, which plague continuously operating facilities, are eliminated. Depending upon the mode of operation of the shock tube, the gas dynamic conditions of an MHD generator may also be simulated more or less well. Three different modes have been used by the authors of the present papers. Abbas and Howatson have carried out their measurements in the driver plasma of an electrical shock tube. Both Zauderer and Mori, Kawada, Yamamoto and Imani have used the more conventional technique of experimenting in the plasma produced by the incident shock. Louis uses the plasma produced by reflection of the shock wave from the tube-end as a plasma source for the MHD channel.

  11. Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder

    Science.gov (United States)

    Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.

    2018-06-01

    An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.

  12. Analytical solution to the problem of heat transfer in an MHD flow inside a channel with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    Zniber, K.; Oubarra, A.; Lahjomri, J.

    2005-01-01

    An MHD laminar flow through a two dimensional channel subjected to a uniform magnetic field and heated at the walls of the conduit over the whole length with a sinusoidal heat flux of vanishing mean value or not, is studied analytically. General expressions of the temperature distribution and of the local and mean Nusselt numbers are obtained by using the technique of linear operators in the case of negligible Joule and viscous dissipation and by taking into account the axial conduction effect. The principal results show that an increase of the local Nusselt number with Hartmann number is observed, and, far from the inlet section, the average heat transfer between the fluid and the walls shows a significant improvement at all values of Hartmann number used when the frequency of the prescribed sinusoidal wall heat flux is increasing in the case of vanishing mean value of the heat flux and this is true especially at low Peclet numbers

  13. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    Science.gov (United States)

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (PInfiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  14. Analysis of Linear MHD Power Generators

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-02-15

    The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.

  15. Diagnostic development and support of MHD test facilities

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.

  16. Diagnostic development and support of MHD test facilities

    International Nuclear Information System (INIS)

    Shepard, W.S.; Cook, R.L.

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/ Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs

  17. An induction-based magnetohydrodynamic 3D code for finite magnetic Reynolds number liquid-metal flows in fusion blankets

    International Nuclear Information System (INIS)

    Kawczynski, Charlie; Smolentsev, Sergey; Abdou, Mohamed

    2016-01-01

    Highlights: • A new induction-based magnetohydrodynamic code was developed using a finite difference method. • The code was benchmarked against purely hydrodynamic and MHD flows for low and finite magnetic Reynolds number. • Possible applications of the new code include liquid-metal MHD flows in the breeder blanket during unsteady events in the plasma. - Abstract: Most numerical analysis performed in the past for MHD flows in liquid-metal blankets were based on the assumption of low magnetic Reynolds number and involved numerical codes that utilized electric potential as the main electromagnetic variable. One limitation of this approach is that such codes cannot be applied to truly unsteady processes, for example, MHD flows of liquid-metal breeder/coolant during unsteady events in plasma, such as major plasma disruptions, edge-localized modes and vertical displacements, when changes in plasmas occur at millisecond timescales. Our newly developed code MOONS (Magnetohydrodynamic Object-Oriented Numerical Solver) uses the magnetic field as the main electromagnetic variable to relax the limitations of the low magnetic Reynolds number approximation for more realistic fusion reactor environments. The new code, written in Fortran, implements a 3D finite-difference method and is capable of simulating multi-material domains. The constrained transport method was implemented to evolve the magnetic field in time and assure that the magnetic field remains solenoidal within machine accuracy at every time step. Various verification tests have been performed including purely hydrodynamic flows and MHD flows at low and finite magnetic Reynolds numbers. Test results have demonstrated very good accuracy against known analytic solutions and other numerical data.

  18. An induction-based magnetohydrodynamic 3D code for finite magnetic Reynolds number liquid-metal flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kawczynski, Charlie; Smolentsev, Sergey, E-mail: sergey@fusion.ucla.edu; Abdou, Mohamed

    2016-11-01

    Highlights: • A new induction-based magnetohydrodynamic code was developed using a finite difference method. • The code was benchmarked against purely hydrodynamic and MHD flows for low and finite magnetic Reynolds number. • Possible applications of the new code include liquid-metal MHD flows in the breeder blanket during unsteady events in the plasma. - Abstract: Most numerical analysis performed in the past for MHD flows in liquid-metal blankets were based on the assumption of low magnetic Reynolds number and involved numerical codes that utilized electric potential as the main electromagnetic variable. One limitation of this approach is that such codes cannot be applied to truly unsteady processes, for example, MHD flows of liquid-metal breeder/coolant during unsteady events in plasma, such as major plasma disruptions, edge-localized modes and vertical displacements, when changes in plasmas occur at millisecond timescales. Our newly developed code MOONS (Magnetohydrodynamic Object-Oriented Numerical Solver) uses the magnetic field as the main electromagnetic variable to relax the limitations of the low magnetic Reynolds number approximation for more realistic fusion reactor environments. The new code, written in Fortran, implements a 3D finite-difference method and is capable of simulating multi-material domains. The constrained transport method was implemented to evolve the magnetic field in time and assure that the magnetic field remains solenoidal within machine accuracy at every time step. Various verification tests have been performed including purely hydrodynamic flows and MHD flows at low and finite magnetic Reynolds numbers. Test results have demonstrated very good accuracy against known analytic solutions and other numerical data.

  19. Entropy Generation on Nanofluid Thin Film Flow of Eyring–Powell Fluid with Thermal Radiation and MHD Effect on an Unsteady Porous Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammad Ishaq

    2018-05-01

    Full Text Available This research paper investigates entropy generation analysis on two-dimensional nanofluid film flow of Eyring–Powell fluid with heat amd mass transmission over an unsteady porous stretching sheet in the existence of uniform magnetic field (MHD. The flow of liquid films are taken under the impact of thermal radiation. The basic time dependent equations of heat transfer, momentum and mass transfer are modeled and converted to a system of differential equations by employing appropriate similarity transformation with unsteady dimensionless parameters. Entropy analysis is the main focus in this work and the impact of physical parameters on the entropy profile are discussed in detail. The influence of thermophoresis and Brownian motion has been taken in the nanofluids model. An optima approach has been applied to acquire the solution of modeled problem. The convergence of the HAM (Homotopy Analysis Method has been presented numerically. The disparity of the Nusslet number, Skin friction, Sherwood number and their influence on the velocity, heat and concentration fields has been scrutinized. Moreover, for comprehension, the physical presentation of the embedded parameters are explored analytically for entropy generation and discussed.

  20. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  1. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren

    2011-01-01

    well-defined conditions(2,3). The system consists of a flow cell that serves as growth chamber for the biofilm. The flow cell is supplied with nutrients and oxygen from a medium flask via a peristaltic pump and spent medium is collected in a waste container. This construction of the flow system allows......Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1...... a continuous supply of nutrients and administration of e.g. antibiotics with minimal disturbance of the cells grown in the flow chamber. Moreover, the flow conditions within the flow cell allow studies of biofilm exposed to shear stress. A bubble trapping device confines air bubbles from the tubing which...

  2. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  3. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  4. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  5. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  6. MHD stability analyses of a tokamak plasma by time-dependent codes

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi

    1982-07-01

    The MHD properties of a tokamak plasma are investigated by using time evolutional codes. As for the ideal MHD modes we have analyzed the external modes including the positional instability. Linear and nonlinear ideal MHD codes have been developed. Effects of the toroidicity and conducting shell on the external kink mode are studied minutely by the linear code. A new rezoning algorithm is devised and it is successfully applied to express numerically the axisymmetric plasma perturbation in a cylindrical geometry. As for the resistive MHD modes we have developed nonlinear codes on the basis of the reduced set of the resistive MHD equations. By using the codes we have studied the major disruption processes and properties of the low n resistive modes. We have found that the effects of toroidicity and finite poloidal beta are very important. Considering the above conclusion we propose a new scenario of the initiation of the major disruption. (author)

  7. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  8. MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect

    Science.gov (United States)

    Mishra, A.; Sharma, B. K.

    2017-11-01

    A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.

  9. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  10. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an initial-value problem. (author)

  11. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamaks is reported. A solution method for the two dimensional Newcomb equation, a dispersion relation for an unstable ideal MHD mode in tokamaks and a new scheme for solving resistive MHD inner layer equations as an initial value problem are reported. (author)

  12. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, Klaus; Poulsen, Steen Seier

    1993-01-01

    A new improved technique for whole-body perfusion-fixation of rats and other small animals is described. The driving force is a peristaltic pump which is feedback regulated by a pressure transducer that monitors the blood-perfusion pressure in the left ventricle of the heart. The primary perfusate...... to cannulate the heart; the outer and inner barrels of the cannula are connected to the peristaltic pump and to the pressure transducer, respectively. The tissue oxygen tension in the rat is monitored by a subcutaneous oxygen electrode. Measurements showed that tissue hypoxia/anoxia did not develop before......-fixative is composed of a blood substitute--13.3% oxygenated fluorocarbon FC-75--in 0.05 M cacodylate buffer (pH 7.4) with a 2% glutaraldehyde. The secondary perfusate-fixative is composed of 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.4) with 20 mM CaCl2. A double-barrelled, self-holding cannula is used...

  13. Peristaltic transport of a fractional Burgers' fluid with variable viscosity through an inclined tube

    Science.gov (United States)

    Rachid, Hassan

    2015-12-01

    In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.

  14. Bifurcation theory for toroidal MHD instabilities

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1992-01-01

    Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found

  15. Liquid-metal MHD flow in a duct whose cross section changes from a rectangle to a trapezoid, with applications in fusion blanket designs

    International Nuclear Information System (INIS)

    Walker, J.S.

    1986-04-01

    This paper treats the liquid-metal MHD flow in a semi-infinite rectangular duct and a semi-infinite trapezoidal duct, which are connected by a finite-length transition duct. There is a strong, transverse, uniform magnetic field. The walls parallel to the magnetic field (sides) remain parallel, while the walls intersecting the magnetic field are twisted in the transition duct to provide the change in cross sectional shape. The left side has a constant height, while the height of the right side increases or decreases in the transition duct. This geometry gives a skewed velocity profile with a high velocity near the left side, provided the right side is relatively thick. All walls are thin and electrically conducting, but the sides are considerably thicker than the other walls. The application is to fusion-reactor blankets in which a high velocity near the first wall (separating the plasma chamber from the coolant) improves the thermal performance. Junctions of different ducts with walls parallel to the magnetic field are treated for the first time. In expansions, contractions and other geometric transition ducts, as well as in straight ducts with axially varying magnetic fields, the fluid flow and electric currents are concentrated in boundary layers adjacent to the sides and in the side. At a junction with a straight duct with a uniform magnetic field, the flow and current must transfer from the boundary layers adn sides to the core regions. These transfers at junctions play a key role in any three-dimensional flow

  16. Liquid-metal MHD flow in a duct whose cross section changes from a rectangle to a trapezoid, with applications in fusion blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.S.

    1986-04-01

    This paper treats the liquid-metal MHD flow in a semi-infinite rectangular duct and a semi-infinite trapezoidal duct, which are connected by a finite-length transition duct. There is a strong, transverse, uniform magnetic field. The walls parallel to the magnetic field (sides) remain parallel, while the walls intersecting the magnetic field are twisted in the transition duct to provide the change in cross sectional shape. The left side has a constant height, while the height of the right side increases or decreases in the transition duct. This geometry gives a skewed velocity profile with a high velocity near the left side, provided the right side is relatively thick. All walls are thin and electrically conducting, but the sides are considerably thicker than the other walls. The application is to fusion-reactor blankets in which a high velocity near the first wall (separating the plasma chamber from the coolant) improves the thermal performance. Junctions of different ducts with walls parallel to the magnetic field are treated for the first time. In expansions, contractions and other geometric transition ducts, as well as in straight ducts with axially varying magnetic fields, the fluid flow and electric currents are concentrated in boundary layers adjacent to the sides and in the side. At a junction with a straight duct with a uniform magnetic field, the flow and current must transfer from the boundary layers adn sides to the core regions. These transfers at junctions play a key role in any three-dimensional flow.

  17. MHD turbulent dynamo in astrophysics: Theory and numerical simulation

    Science.gov (United States)

    Chou, Hongsong

    2001-10-01

    This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).

  18. Principal characteristics of SFC type MHD generator

    International Nuclear Information System (INIS)

    Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki

    1988-01-01

    This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator. (author)

  19. Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation

    Science.gov (United States)

    Nasir, Saleem; Islam, Saeed; Gul, Taza; Shah, Zahir; Khan, Muhammad Altaf; Khan, Waris; Khan, Aurang Zeb; Khan, Saima

    2018-05-01

    In this article the modeling and computations are exposed to introduce the new idea of MHD three-dimensional rotating flow of nanofluid through a stretching sheet. Single wall carbon nanotubes (SWCNTs) are utilized as a nano-sized materials while water is used as a base liquid. Single-wall carbon nanotubes (SWNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena are deliberated subject to thermal radiation and moreover the impact of nanoparticles Brownian motion and thermophoresis are involved in the present investigation. For the nanofluid transport mechanism, we implemented the Xue model (Xue, Phys B Condens Matter 368:302-307, 2005). The governing nonlinear formulation based upon the law of conservation of mass, quantity of motion, thermal field and nanoparticles concentrations is first modeled and then solved by homotopy analysis method (HAM). Moreover, the graphical result has been exposed to investigate that in what manner the velocities, heat and nanomaterial concentration distributions effected through influential parameters. The mathematical facts of skin friction, Nusselt number and Sherwood number are presented through numerical data for SWCNTs.

  20. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Neil B. [Univ. of California, Los Angeles, CA (United States)

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along {rvec B}. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization.