MHD modeling of dense plasma focus electrode shape variation
McLean, Harry; Hartman, Charles; Schmidt, Andrea; Tang, Vincent; Link, Anthony; Ellsworth, Jen; Reisman, David
2013-10-01
The dense plasma focus (DPF) is a very simple device physically, but results to date indicate that very extensive physics is needed to understand the details of operation, especially during the final pinch where kinetic effects become very important. Nevertheless, the overall effects of electrode geometry, electrode size, and drive circuit parameters can be informed efficiently using MHD fluid codes, especially in the run-down phase before the final pinch. These kinds of results can then guide subsequent, more detailed fully kinetic modeling efforts. We report on resistive 2-d MHD modeling results applying the TRAC-II code to the DPF with an emphasis on varying anode and cathode shape. Drive circuit variations are handled in the code using a self-consistent circuit model for the external capacitor bank since the device impedance is strongly coupled to the internal plasma physics. Electrode shape is characterized by the ratio of inner diameter to outer diameter, length to diameter, and various parameterizations for tapering. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Design of a MHD conduction machine with frame-type electrodes
Gel' fgat, Yu.M.; Gorbunov, L.A.
1977-01-01
An examination is made of a spatial channel model of a MHD conduction machine with frame type electrodes. The design was performed by the finite differences method. Relationships were obtained between the channel's basic magnetohydrodynamic characteristics and its form and the shape of the frame electrodes.
MHD seed recovery and regeneration, Phase II. Final report
1994-10-01
This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.
Corrosion and arc erosion in MHD channels. Final report
Rosa, R.J. [Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering; Pollina, R.J. [Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering]|[EG and G Energy Measurements, Inc., Las Vegas, NV (United States)
1992-08-01
The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.
MHD electrode development. Quarterly report, April-June 30, 1980
Sadler, J W; Dietrick, D L; Frantti, E W
1980-08-01
Emphasis within this program is now being directed towards the engineering development of cold metallic electrodes, and in particular the identification and evaluation of alternatives to platinum for use as anodes. A literature search, concentrating on hot corrosion resistant alloys, has been undertaken and results are presented. In addition, results of platinum-copper diffusion studies and a preliminary evaluation of sputter coated specimens of TiB/sub 2/ clad copper are reported. Laboratory anode arc erosion studies have continued. A number of modifications incorporated in the test setup are described. This modified test arrangement has been used to obtain comparative data on a number of potential anode metal alloys. Further work is required to refine the test, particularly to provide a reliable method of applying corrodent to the specimens under test. No significant laboratory electrochemical corrosion tests were completed during this reporting period. Facility test operations were suspended upon completion of WESTF Test 49 during the prior quarter to permit basic facility modifications in support of the addition of a 3 Tesla magnet. The status of design, procurement and modification activities is presented.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
MHD Advanced Power Train Phase I, Final Report, Volume 7
A. R. Jones
1985-08-01
This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.
FINAL REPORT: Transformational electrode drying process
Claus Daniel, C.; Wixom, M.(A123 Systems, Inc.)
2013-12-19
This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.
Final Report: "Large-Eddy Simulation of Anisotropic MHD Turbulence"
Zikanov, Oleg
2008-06-23
To acquire better understanding of turbulence in flows of liquid metals and other electrically conducting fluids in the presence of steady magnetic fields and to develop an accurate and physically adequate LES (large-eddy simulation) model for such flows. The scientific objectives formulated in the project proposal have been fully completed. Several new directions were initiated and advanced in the course of work. Particular achievements include a detailed study of transformation of turbulence caused by the imposed magnetic field, development of an LES model that accurately reproduces this transformation, and solution of several fundamental questions of the interaction between the magnetic field and fluid flows. Eight papers have been published in respected peer-reviewed journals, with two more papers currently undergoing review, and one in preparation for submission. A post-doctoral researcher and a graduate student have been trained in the areas of MHD, turbulence research, and computational methods. Close collaboration ties have been established with the MHD research centers in Germany and Belgium.
Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode
Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi
2016-01-01
The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms. PMID:26791269
Ovchinnikov, V.L.
1982-01-01
In a 3-dimensional statement, a study is made of the effect of finite sectioning, shapes of electrodes and heterogeneity of the plasma parameters on the characteristics of the diagonal MHD generator. It is indicated that increase in specific electrical conductance of the plasma at the insulator wall results in a monotonic decrease in the voltage idling. There is an optimal specific electrical conductance of plasma at the electrode wall in which the voltage idling is the maximum. The expediency is shown of making channels with external commutation. There is an optimal ratio between the lengths of the electrode and the insulator.
MHD coal combustor technology. Final report, phase II
1980-09-01
The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)
MHD generator electrode development. Quarterly report, October-December 31, 1980
Sadler, J W; Cadoff, L H; Dietrick, D L
1981-01-01
This program is directed towards the engineering development of cold metallic electrodes which are alternatives to the use of platinum as an anode clad material for MHD generators. Results of continuing laboratory screening tests are presented. Improvements in the anode arc test methodology and test setup, which have resulted in improved reproducibility as well as test simplification, are discussed. Laboratory electrochemical corrosion testing has been initiated using aqueous and molten salts as the aggressive constituent in the electrolyte. Initial results from these tests are reported. On the basis of these test results, electrochemical corrosion tests using a molten salt are preferred. As a result of ongoing laboratory screening tests, acceptance criteria, which are interim in nature and are likely to change based on future test results have been defined for the anode arc and electrochemical corrosion tests. Reflecting the initial laboratory test results, a listing of candidate advanced alloys which should demonstrate improved corrosion resistance has been defined. Upon completion of WESTF modifications, facility checkout and activation operations have been initiated. Progress, as well as those difficulties which have been encountered, in completing WESTF activation is reported. Detailed engineering and test planning activities in support of WESTF tests are reported.
Electrocatalysts for oxygen electrodes. Final report
Yeager, E.B. [Case Western Reserve Univ., Cleveland, OH (United States)
1991-10-01
The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.
Nonlinear and Nonideal MHD. Final annual progress report, January 1, 2003 through December 31, 2003
Callen, James D
2003-04-30
This is the third and final annual progress report on the current 3-year ''Nonlinear and Nonideal MHD'' DoE grand DE-FG02-86ER53218 for the six months since the November 2002 progress report. During this grant year the funding level was $309k. The participating personnel and their approximate degree of funded involvement in this research project this grant year has been as follows: Professor J. D. Callen (PI, 1.8 months during academic year, 2.2 summer months); Professor C.C. Hegna (Co-PI: 2.3 months during academic year, 1.5 summer months); postdoc Dr. S. Gupta (100%); and graduate students A.L. Garcia-Perciante (50% RA) and X. Liu (50% RA).
Lavrent' yev, I.V.
1982-01-01
A solution is provided to the task of distributing electromagnetic fields in the MHD channel with nonconducting partitions of finite length with random magnetic Reynolds numbers. Local and integral characteristics of these channels are obtained. It is indicated that their high effectiveness can be guaranteed only by arranging partitions at the inlet to the channel at a certain distance from the electronic zone which must be greater the greater the magnetic Reynolds number.
1987-06-01
This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.
1995-02-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.
MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts. Final paper
Sidorenkov, S.I. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Hua, T.Q. [Argonne National Lab., IL (United States); Araseki, Hideo [Central Research Inst. of Electric Power Industry, Tokyo (Japan)
1994-07-01
Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. This paper describes four benchmark problems to validate magnetohydrodynamic (MHD) and heat transfer computer codes. The problems include rectangular duct geometry with uniform and nonuniform magnetic fields, with and without surface heat flux, and various rectangular cross sections. Two of the problems are based on experiments. Participants in this benchmarking activity come from three countries: The Russian Federation, The United States, and Japan. The solution methods to the problems are described. Results from the different computer codes are presented and compared.
1978-01-01
The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.
USXR Based MHD, Transport, Equilibria and Current Profile Diagnostics for NSTX. Final Report
Finkenthal, Michael
2009-06-01
The present report resumes the research activities of the Plasma Spectroscopy/Diagnostics Group at Johns Hopkins University performed on the NSTX tokamak at PPPL during the period 1999-2009. During this period we have designed and implemented XUV based diagnostics for a large number of tasks: study of impurity content and particle transport, MHD activity, time-resolved electron temperature measeurements, ELM research, etc. Both line emission and continuum were used in the XUV range. New technics and novel methods have been devised within the framework of the present research. Graduate and post-graduate students have been involved at all times in addition to the senior research personnel. Several tens of papers have been published and lectures have been given based on the obtained results at conferences and various research institutions (lists of these activities were attached both in each proposal and in the annual reports submitted to our supervisors at OFES).
Boquist, Carl W.; Marchant, David D.
1978-01-01
A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.
Principal characteristics of SFC type MHD generator
Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki
1988-02-01
This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator.
Alternate electrode materials for the SP100 reactor. Final report
Randich, E.
1992-05-01
This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB{sub 2} (C) CVD coating on SiMo substrates, (2) development of a ZrB{sub 2} (C) CVD coating on SiGe substrates, (3) development of CVI W for porous graphite electrodes, and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB{sub 2} coatings on SiGe and graphite substrates, and later into developing ZrB{sub 2} coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB{sub 2} during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R.
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
Jones, A.R.
1985-08-01
This System Design Description and Specification provides the basis for the design of the magnetohydrodynamic (MHD) Power Train (PT) for a nominal 200 MWe early commercial tiHD/Steam Power Plant. This document has been developed under Task 2, Conceptual Design, of Contract DE-AC22-83PC60575 and is to be used by the project as the controlling and coordinating documentation during future design efforts. Modification and revision of this specification will occur as the design matures, and tiie-Westinghouse MHD Project Manager will be the focal point for maintaining this document and issuing periodic revisions. This document is intended to delineate the power train and-power train components requirements and assumptions that properly reflect the MHD/Steam Power Plant in the PT design. The parameters discussed in this document have been established through system calculations as well as through constraints set by technology and by limitations on materials, cost, physical processes associated with MHD, and the expected operating data for the plant. The specifications listed in this document have precedence over all referenced documents. Where this specification appears to conflict with the requirements of a reference document, such conflicts should be brought to the attention of the Westinghouse MHD Project Manager for resolution.
Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)
Meilin Liu, James Gole
2006-12-14
The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the
Woodford, William [24M Technologies, Inc., Cambridge, MA (United States)
2017-01-10
This document is the final technical report from 24M Technologies on the project titled: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing. All of the program milestones and deliverables were completed during the performance of the award. Specific accomplishments are 1) 24M demonstrated the processability and electrochemical performance of semi-solid electrodes with active volume contents increased by 10% relative to the program baseline; 2) electrode-level metrics, quality, and yield were demonstrated at an 80 cm^{2} electrode footprint; 3) these electrodes were integrated into cells with consistent capacities and impedances, including cells delivered to Argonne National Laboratory for independent testing; 4) those processes were scaled to a large-format (> 260 cm^{2}) electrode footprint and quality and yield were demonstrated; 5) a high-volume manufacturing approach for large-format electrode fabrication was demonstrated; and 6) large-format cells (> 100 Ah capacity) were prototyped with consistent capacity and impedance, including cells which were delivered to Argonne National Laboratory for independent testing.
2012-07-11
... International Trade Administration Small Diameter Graphite Electrodes From the People's Republic of China: Final... diameter graphite electrodes (SDGEs) from the People's Republic of China (PRC). The review covers 25...: Background On March 6, 2012, the Department published Small Diameter Graphite Electrodes from the People's...
2011-09-13
... International Trade Administration Small Diameter Graphite Electrodes from the People's Republic of China: Final... results of the first administrative review of the antidumping duty order on small diameter graphite..., through January 31, 2010. See Small Diameter Graphite Electrodes from the People's Republic of China...
Global MHD model of the earth's magnetosphere
Wu, C. C.
1983-01-01
A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.
Open Boundary Conditions for Dissipative MHD
Meier, E T
2011-11-10
In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.
2013-09-16
... International Trade Administration Small Diameter Graphite Electrodes From the People's Republic of China... from the People's Republic of China (PRC) of graphite electrodes, produced and/or exported by Sinosteel...\\ \\1\\ See Antidumping Duty Order: Small Diameter Graphite Electrodes From the People's Republic of...
Louis, J.F.
1978-03-01
Research and development in open-cycle coal-fired MHD power generation is described. The scope and objectives of the MIT program are: (1) establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the listed tasks into a model of the MHD channel; (8) participate in the US/USSR Cooperative Program in MHD Power Generation; and (9) participate in technical support of the DOE MHD Project Office. Progress in each of these areas is reported. (WHK)
Louis, J.F.
1977-08-01
Research progress in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology (MIT) is reported. The scope and objectives of the MIT program are to: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) establish basic mechanical properties to guide detail design and fabrication of high field strength superconducting magnets for MHD applications; (3) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (4) develop combustion data pertinent to the design of MHD combustors; (5) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (6) establish the operating characteristics of an MHD disk generator; (7) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (8) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (9) Participate in technical support of the ERDA MHD Project Office; (10) participate in the US/USSR Cooperative Program in MHD Power Generation. (11) During the summer of 1976, a short-term task in U-25 electrode screening was temporarily added to the scope of the contract. This effort involved screening tests, in the MIT MHD simulation facility of electrode modules and configurations intended for tests in the Soviet U-25 generator.
2006-09-01
Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman
Steinbach, Andrew [3M Company, Maplewood, MN (United States)
2017-05-31
The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.
Louis, J.F.
1977-12-01
Research and development in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology (MIT) is summarized. Progress is reported on the following tasks: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; this work is intended to determine the combustion characteristics of selected coal feedstock in terms of devolatilization kinetics, char characteristics, and combustion gas chemistry; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (8) participate in technical support of the DOE MHD Project Office.
1981-11-01
Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)
Dave, Bhasker B. [Texas A & M Univ., College Station, TX (United States)
1992-07-07
Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D_{O}^{1/2}C_{O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D_{O}^{1/2}C_{O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.
MHD control in burning plasmas MHD control in burning plasmas
Donné, Tony; Liang, Yunfeng
2012-07-01
Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge
Louis, J.F.
1977-10-01
Current research and development in open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology is presented. Progress is reported on the following tasks: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) Parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) Develop combustion data pertinent to the design of MHD combustors; this work is intended to determine the combustion characteristics of selected coal feed stock in terms of devolatilization kinetics, char characteristics, and combustion gas chemistry; (4) Establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; such phenomena include inter-electrode breakdown, time-dependent behavior, effective plasma properties and plasma inhomogeneities; (5) Establish the operating characteristics of an MHD disk generator; (6) Continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) Integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel.
Louis, J.F.
1976-10-01
Research progress on open-cycle coal-fired MHD power generation at Massachusetts Institute of Technology is detailed. Work is reported in the following areas: (1) Establish chemical, thermal, and electrical data to guide materials selection, develop improved detail designs, and support performance analyses of MHD electrode modules and insulator materials; (2) parametrically investigate selected electrode properties of critical design importance in chemical, thermal, and electrical environments simulating a coal-fired MHD generator; (3) develop combustion data pertinent to the design of MHD combustors; (4) establish techniques for the analysis and understanding of critical MHD phenomena which have an important bearing on MHD generator performance; (5) establish the operating characteristics of an MHD disk generator; (6) continue work on computer techniques for modeling and for design and cost analysis of MHD components and the overall system; (7) integrate the engineering data and design criteria, as applicable, which are developed in the above-listed tasks into a model of the MHD channel; (8) U-25 electrode screening tests.
Design Study: Rocket Based MHD Generator
1997-01-01
This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.
Schnack, Dalton D.
In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.
Chapman, A.
2005-07-01
Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.
2012-08-09
... completion in the United Kingdom to be minor and insignificant based on each facet of the analysis under.... \\37\\ See, e.g., Laminated Woven Sacks From the People's Republic of China: Final Results of...
Thiele, D.; Zuettel, A.
2008-04-15
This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
Three-dimensional fluid and electrodynamic modeling for MHD DCW channels
Liu, B. L.; Lineberry, J. T.; Schmidt, H. J.
1983-01-01
A three dimensional, numerical solution for modeling diagonal conducting wall (DCW) magnetohydrodynamic (MHD) generators is developed and discussed. Cross plane gasdynamic and electrodynamic profiles are computed considering coupled MHD flow and electrical phenomena. A turbulent transport model based on the mixing length theory is used to deal with wall roughness generated turbulence effects. The infinitely fine electrode segmentation formulation is applied to simplify the governing electrical equations. Calculations show the development of distorted temperature and velocity profiles under influence of magnetohydrodynamic interaction. Since both sidewall and electrode wall boundary losses are treated, the results furnish a realistic representation of MHD generator behavior.
2012-03-14
... International Trade Administration Small Diameter Graphite Electrodes From the People's Republic of China... the antidumping duty administrative review of small diameter graphite electrodes (``SDGE'') from the... (``the Act''), and 19 CFR 351.224(e). \\1\\ See Small Diameter Graphite Electrodes from the People's...
Analysis of Linear MHD Power Generators
Witalis, E.A.
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
Suppression of electron emission from metal electrodes : LDRD 28771 final report.
Stygar, William A.; Savage, Mark Edward; Ives, Harry Crockett, III; Johnson, David J.; Fowler, William E.
2003-11-01
This research consisted of testing surface treatment processes for stainless steel and aluminum for the purpose of suppressing electron emission over large surface areas to improve the pulsed high voltage hold-off capabilities of these metals. Improvements to hold-off would be beneficial to the operation of the vacuum-insulator grading rings and final self-magnetically insulated transmission line on the ZR-upgrade machine and other pulsed power applications such as flash radiograph and pulsed-microwave machines. The treatments tested for stainless steel include the Z-protocol (chemical polish, HVFF, and gold coating), pulsed E-beam surface treatments by IHCE, Russia, and chromium oxide coatings. Treatments for aluminum were anodized and polymer coatings. Breakdown thresholds also were measured for a range of surface finishes and gap distances. The study found that: (1.) Electrical conditioning and solvent cleaning in a filtered air environment each improve HV hold-off 30%. (2.) Anodized coatings on aluminum give a factor of two improvement in high voltage hold-off. However, anodized aluminum loses this improvement when the damage is severe. Chromium oxide coatings on stainless steel give a 40% and 20% improvement in hold-off before and after damage from many arcs. (3.) Bare aluminum gives similar hold-off for surface roughness, R{sub a}, ranging from 0.08 to 3.2 {micro}m. (4.) The various EBEST surfaces tested give high voltage hold-off a factor of two better than typical machined and similar to R{sub a} = 0.05 {micro}m polished stainless steel surfaces. (5.) For gaps > 2 mm the hold-off voltage increases as the square root of the gap for bare metal surfaces. This is inconsistent with the accepted model for metals that involves E-field induced electron emission from dielectric inclusions. Micro-particles accelerated across the gap during the voltage pulse give the observed voltage dependence. However the similarity in observed breakdown times for large and small
Louis, J.F.
1980-09-01
A separate entry was made in the data base for reports on each of the four tasks: (1) arcing phenomena in MHD generators; (2) open cycle MHD disk generator program; (3) electrode module development and testing; and (4) coal combustion studies. (WHK)
Proceedings of the workshop on nonlinear MHD and extended MHD
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Frutos-Alfaro, Francisco
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.
Magnetohydrodynamic generator electrode
Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.
1979-01-01
An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.
Nonlinear helical MHD instability
Zueva, N.M.; Solov' ev, L.S.
1977-07-01
An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.
Performance and flow characteristics of MHD seawater thruster
Doss, E.D.
1990-01-01
The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.
Results from a large-scale MHD propulsion experiment
Petrick, M.; Libera, J.; Bouillard, J. X.; Pierson, E. S.; Hill, D.
Magnetohydrodynamic (MHD) thrusters have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnetic (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2 T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (greater than 6-T) practical MHD propulsion systems appear possible. The feasibility of attaining the requisite higher magnetic fields has increased markedly because of rapid advances in building high-field superconducting magnets and the recent evolution of high-temperature superconductors.
Experimental Study of MHD-Assisted Mixing and Combustion Under Low Pressure Conditions
Gao, Ling; Zhang, Bailing; Li, Yiwen; Fan, Hao; Duan, Chengduo; Wang, Yutian
2016-08-01
In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butane-air combustion system. The evolvement of the discharge section and the effect of MHD-assisted mixing on combustion are investigated by changing the magnetic flux density and airflow velocity. The results show that the discharge area not only bends but also rotates around the centered wire electrode, which are mainly caused by the Lorentz force. Moreover, the highest curvature occurs near the centered wire electrode. The discharge localizes near the surface of the wire electrode and annular electrode when there is no ponderomotive force. However, if the ponderomotive force is applied, the discharge happens between these two electrodes and it gradually shrinks with time. The discharge area cannot localize near the annular electrode, which is due to the increase of energy loss in the airflow. When the airflow velocity exceeds a certain value, the discharge section becomes unstable because the injected energy cannot maintain the discharge. The rotation motion of the discharge section could enlarge the contact surface between butane and air, and is therefore beneficial for mixing and combustion. Magnetic flux density and airflow velocity are critical parameters for MHD-assisted mixing. supported by National Natural Science Foundation of China (No. 11372352) and the Mechanism Research on Near Electrode Thermal-Electromagnetic-Flow of High Temperature Supersonic MHD Generation (No. 51306207), and Natural Science Foundation of Shaanxi Province of China (No. 2015JM5184)
Frutos-Alfaro, Francisco; Carboni-Mendez, Rodrigo
2015-01-01
A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a c...
G. García Segura
2000-01-01
Full Text Available Se presenta un escenario auto consistente para explicar la morfolog a de las nebulosas planetarias. El escenario es consistente con la distribuci on Gal actica de los diferentes tipos morfol ogicos. Este trabajo resuelve, por medio de efectos MHD, algunas de las caracter sticas controversiales que aparecen en las nebulosas planetarias. Estas caracter sticas incluyen la presencia de ujos axisim etricos y colimados, con una cinem atica que aumenta linealmente con la distancia y la existencia de morfolog as asim etricas tales como las de las nebulosas con simetr a de punto.
Retallick, F.D.
1978-04-01
This document establishes criteria to be utilized for the design of a pilot-scale (150 to 300 MW thermal) open cycle, coal-fired MHD/steam plant. Criteria for this Engineering Test Facility (ETF) are presented relative to plant siting, plant engineering and operations, MHD-ETF testing, costing and scheduling.
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
Preliminary Analysis of Liquid Metal MHD Pressure Drop in the Blanket for the FDS
王红艳; 吴宜灿; 何晓雄
2002-01-01
Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.
MHD Integrated Topping Cycle Project
1992-02-01
This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.
Self-excitation of a diagonal MHD channel
Doperchuk, I.I.; Koneyev, S.M.A.
1982-01-01
Questions are examined of self-excitation of a diagonal MHD channel. Conditions are obtained for self-excitation using 0-dimensional approximation. An algorithm is presented for calculating the optimal self-exciting diagonal channel with regard for development and separation of the boundary layers, presence of near-electrode drops in voltage. Graphs are presented for the transitional regimes of channel operation with intermediate point of connection of the excitation winding.
Final Report for Project DE-FG02-05ER15718 Fluoropolymers, Electrolytes, Composites and Electrodes
Creager, Stephen [Clemson Univ., SC (United States)
2017-05-24
This report is for a project that was initiated under the title “New Proton-Conducting Fluoropolymer Electrolytes for PEM Fuel Cells”, as part of the DOE program titled “Basic Research for the Hydrogen Fuel Cell Initiative”, Program Notice DE-FG01-04ER04-20. The project received 750,000 dollars in initial funding for a three-year term with a start date of August 15, 2005. Creager was PI and co-PIs were DesMarteau and Smith, all from Clemson. The project was renewed for a second three-year term with a start date of June 15 2008, again for 750,000 dollars, with the new title, “Fluoropolymers, Electrolytes, Composites and Electrodes”. Shortly after the renewal was put in place, co-PI Smith left Clemson to accept a position at the University of Texas at Dallas. After a period of no-cost extension the project was renewed on January 1 2013 for another three-year term, this time for a smaller amount ($525,000) and with Thrasher, a new senior hire at Clemson, as co-PI in place of Smith. DesMarteau had retired from Clemson by this time but was retained as a project advisor. After a final one-year no-cost extension for calendar year 2016, the project ended on December 31, 2016, giving it an active period of eleven and one-half years, from August 15 2005 to December 31 2016. The overall objective of this research project has been to create and understand the behavior of new fluoropolymer-based electrolytes and electrodes suitable for use in electrochemical energy storage and conversion devices. The objective was pursued via research on new fluorinated monomers, new polymers and polyelectrolytes (also known as ionomers), and new electrocatalyst supports that in some cases include chemically grafted electrolytes to promote rapid ion transport to electrocatalytically active sites (usually platinum nanoparticles) on the support. The research involved synthesis and characterization of new materials, and creation and use of new measurement techniques that address key
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
MHD Energy Bypass Scramjet Engine
Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)
2001-01-01
Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several
Frese, K.W.; Pound, B.G.
1990-03-20
An objective of the research was to gain insight into the role of surface geometry, heat of reaction, force constants and adsorption site in the activated chemisorption of methane to adsorbed hydrogen and adsorbed methyl. The model successfully calculated the activation energy for abstraction of H from CH4 by O atoms in the gas phase. The results for two crystal planes of Ni were in very good agreement with experimental findings and other calculations. For Ni(111) and Ni(110) Ea = 14 and 18 kcal/mol, respectively. The minimum electrode potential for adsorption of methane, OH, and O atoms on various metal electrodes was calculated. The open circuit decay method was employed to measure the rate of reaction between hydrocarbons including methane and adsorbed oxygen species on Pt, Pd and Rh electrodes. The rates of reaction with Pt-OH at 95C in 0.5 M H2SO4 followed the trend CH4 < C2H6 < C3H8 < H2. The faradaic efficiency for CO2 was 80% at 0.25 V vs SCE, indicating that deep oxidation occurs as desired in fuel cell applications.
Three-dimensional characteristics of SFC type MHD generator
Oikawa, Shun' ichi; Kayukawa, Naoyuki
1988-03-20
Concerning a Faraday type MHD generator with power output 100 MWe, a parabolic three-dimensional analysis was made on the SFC type and the conventional UFC type of the applied magnetic field, comparing the electrical and fluid fields of both types. Results are as follows: (1) In Faraday type MHD generator, Hall current which is an ineffective current is suppressed by SFC magnetic field coordination. (2) In the case of UFC, a current concentration to the central anode which occurs in the large Faraday type MHD generator does not occur in the case of SFC type. (3) In SFC, a secondary flow in the electrode boundary, especially in the vicinity of the anode is weak. (4) In addition to the velocity overshoot in the dielectric wall boundary layer, in the case of SFC, it generates in the electric wall. As a result, concentrated arc columns are suppressed by the acceleration of heat transfer to the electrode wall. (13 figs, 1 tab, 13 refs)
Recent observations of MHD fluctuations in the solar wind
B. Bavassano
Full Text Available A short review of recent observations of solar wind fluctuations in the magnetohydrodynamic (MHD range of scales is presented. In recent years, the use of high time-resolution data on an extended interval of heliocentric distance has allowed significant advances in our knowledge of MHD fluctuations. We first focus on the origin and evolution of the Alfvénic-type fluctuations. The role of interplanetary sources and the influence of interactions with structures convected by the solar wind are examined. Then compressive fluctuations are investigated, with special attention being given to their nature and origin. Observations are discussed in the light of recent theories and models. Finally, predictions for MHD turbulence in polar regions of the heliosphere are highlighted.
Characteristics of Linear MHD Generators with One or a Few Loads
Witalis, E.A.
1966-02-15
The theoretical performance of linear series segmented MHD generators with finite size electrodes and one or a few identical external loads is investigated. The analysis is an extension of our conformal mapping investigation previously reported. The electrical characteristics are evaluated as functions of the segmentation degree, the Hall parameter and the relative position of short-circuited electrodes. Special consideration is given to the influence of staggering the electrodes, i. e. shifting the relative positions of short-circuited electrodes. General electrical terminal characteristics, i. e. the full current-voltage relation, can not be obtained by the exact analytical method, which is applicable only to so-called design load conditions or infinitely long MHD channels. However, it is shown how the general properties can be explained qualitatively and calculated approximately by describing off-design modes of operation in terms of a fictitious 'effective' number of external loads.
Formation and collimation of relativistic MHD jets - simulations and radio maps
Fendt, Christian; Sheikhnezami, Somayeh
2013-01-01
We present results of magnetohydrodynamic (MHD) simulations of jet formation and propagation, discussing a variety of astrophysical setups. In the first approach we consider simulations of relativistic MHD jet formation, considering jets launched from the surface of a Keplerian disk, demonstrating numerically - for the first time - the self-collimating ability of relativistic MHD jets. We obtain Lorentz factors up to about 10 while acquiring a high degree of collimation of about 1 degree. We then present synchrotron maps calculated from the intrinsic jet structure derived from the MHD jet formation simulation. We finally present (non-relativistic) MHD simulations of jet lauching, treating the transition between accretion and ejection. These setups include a physical magnetic diffusivity which is essential for loading the accretion material onto the outflow. We find relatively high mass fluxes in the outflow, of the order of 20-40 % of the accretion rate.
Nguyen, Thuc-Quyen [UCSB; Bazan, Guillermo [UCSB; Mikhailovsky, Alexander [UCSB
2014-04-15
Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced
MHD Integrated Topping Cycle Project
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
MHD Integrated Topping Cycle Project
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Problems in nonlinear resistive MHD
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Evaluation of MHD materials for use in high-temperature fuel cells
Guidotti, R.
1978-06-15
The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent
Pulse Detonation Rocket MHD Power Experiment
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent
Ruckman, M.W.; Strongin, M.; Weismann, H. [and others
1997-04-01
The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 {mu}m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.
MHD-flow in slotted channels with conducting walls
Evtushenko, I.A.; Kirillov, I.R. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Reed, C.B. [Argonne National Lab., Chicago, IL (United States)
1994-07-01
A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a {open_quotes}one-electrode movable probe{close_quotes} for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data.
MHD performance demonstration experiment, October 1, 1080-September 30, 1981
Whitehead, G. L.; Christenson, L. S.; Felderman, E. J.; Lowry, R. L.; Bordenet, E. J.
1981-12-01
The Arnold Engineering Development Center (AEDC) has been under contract with the Department of Energy (DOE) since December 1973 to conduct a magnetohydrodynamic (MHD) High Performance Demonstration Experiment (HPDE). The objective of this experimental research is to demonstrate the attainment of MHD performance on a sufficiently large scale to verify that projected commercial MHD objectives are possible. This report describes the testing of the system under power-producing conditions during the period from October 1, 1980 to September 30, 1981. Experimental results have been obtained with the channel configured in the Faraday mode. Test conditions were selected to produce low supersonic velocity along the entire channel length. Tests have been conducted at magnetic fields up to 4.1 Tesla (T) (70% of design). Up to 30.5 MW of power has been produced to date (60% of design) for an enthalpy extraction of approximately 11%. The high Hall voltage transient, observed during the previous series of tests has been reduced. The reduction is mostly probably due to the fuel and seed being introduced simultaneously. The replacement of the ATJ graphite caps on the electrode walls with pyrolytic graphite caps has resulted in significantly higher surface temperature. As a result, the voltage drop is some 60% of the cold wall voltage drop during the previous series of tests. However, the absolute value of the present voltage drop is still greater than the original design predictions. Test results indicate, however, that the overall enthalpy extraction objective can be achieved.
MHD Turbulence and Magnetic Dynamos
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Magnetic levitation and MHD propulsion
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
Exploración del modelo coronal MHD de Uchida
Francile, C.; Castro, J. I.; Flores, M.
We present an analysis of the MHD model of an isothermal solar corona with radially symmetrical magnetic field and gravity. The solution in the approximation "WKB" was presented by Uchida (1968). The model is ex- plored for different coronal conditions and heights of initial perturbation to study the propagation of coronal waves and reproduce the observed char- acteristics of phenomena such as Moreton waves. Finally we discuss the obtained results. FULL TEXT IN SPANISH
Integral Constraints and MHD Stability
Jensen, T. H.
2003-10-01
Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].
Birzvalk, Yu.
1978-01-01
The shunting ratio and the local shunting ratio, pertaining to currents induced by a magnetic field in a flow channel, are properly defined and systematically reviewed on the basis of the Lagrange criterion. Their definition is based on the energy balance and related to dimensionless parameters characterizing an MHD flow, these parameters evolving from the Hartmann number and the hydrodynamic Reynolds number as well as the magnetic Reynolds number, and the Lundquist number. These shunting ratios, of current density in the core of a stream (uniform) or equivalent mean current density to the short-circuit (maximum) current density, are given here for a slot channel with nonconducting or conducting walls, for a conduction channel with heavy side rails, and for an MHD-flow around bodies. 5 references, 1 figure.
Macdonald, D.D.; Pound, B.G.; Lenhart, S.J.
1984-11-01
The degradation processes occurring within porous nickel battery electrodes were investigated during charge/discharge cycling at temperatures in the range 0 to 100/sup 0/C. The ac impedance of two types of porous nickel electrodes (sintered electrodes and rolled and bonded electrodes) in a 8 m KOH solution was measured, and the data were analyzed in terms of a transmission line model (TLM). In addition, cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on nickel electrodes during charging. Impedance data of planar, non-porous electrodes were obtained over a range of potentials and temperatures in order to provide an equivalent circuit to model the pore-wall and backing-plate interfacial impedance components in the TLM. Parameters in the TLM were curve-fitted to experimental impedance data obtained for porous electrodes at different stages of cycling. Changes in these parameters with cycling time for rolled and bonded electrodes were consistent with experimental observations, and could be attributed to various degradation processes. The principal changes found to occur with increasing cycle number were that the average pore effective length decreases and the average solid-phase resistivity increases. The impedance data for sintered electrodes do not change during galvanostatic cycling and failures occur abruptly after a relatively large number of cycles. Consequently, the TLM provides little insight into cycle-dependent degradation phenomena on sintered electrodes.
Dynamics for Controlled 2D Generalized MHD Systems with Distributed Controls
AKMEL De G; BAHI L.C
2013-01-01
We study the dynamics of a piecewise (in time) distributed optimal control problem for Generalized MHD equations which model velocity tracking coupled to magnetic field over time.The long-time behavior of solutions for an optimal distributed control problem associated with the Generalized MHD equations is studied.First,a quasi-optimal solution for the Generalized MHD equations is constructed; this quasi-optimal solution possesses the decay (in time) properties.Then,some preliminary estimates for the long-time behavior of all solutions of Generalized MHD equations are derived.Next,the existence of a solution of optimal control problem is proved also optimality system is derived.Finally,the long-time decay properties for the optimal solutions is established.
Ferreira, J
2006-01-01
This is a doctorate level lecture on the physics of accretion discs driving magnetically self-confined jets, usually referred to in the literature as disc winds. I will first review the governing magnetohydrodynamic equations and then discuss their physical content. At that level, necessary conditions to drive jets from keplerian accretion discs can already be derived. These conditions are validated with self-similar calculations of accretion-ejection structures. In a second part, I will critically discuss the biases introduced when using self-similarity as well as some other questions such as: Are these systems really unstable? Can a standard accretion disc provide the conditions to launch jets in its innermost parts? What is the difference between X-winds and disc-winds? Finally, the magnetic interaction between a protostar and its circumstellar disc will be discussed with a focus on stellar spin down.
Characterization of the three-dimensional supersonic flow for the MHD generator
LU HaoYu; LEE ChunHian; DONG HaiTao
2009-01-01
A numerical procedure based on a five-wave MHD model associated with non-ideal, low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy condi-tioned scheme for solving the non-homogeneous Navier-Stokes equations, in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode, where the local adverse pressure gradient is large, and the core of the flow field is characterized as a 2-D flow due to the Hartmann ef-fects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases, and even induce an eddy current. Induced eddy cur-rent was also found in the different cross-sections along the axial direction, all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section, which, in turn, induces the corner eddy current at the cor-ner. A numerical parametric study was also performed, and the computed performance parameters for the MHD generator suggest that, in order to enhance the performance of MHD generator, the magnetic interaction parameter should be elevated.
Characterization of the three-dimensional supersonic flow for the MHD generator
LEE; ChunHian
2009-01-01
A numerical procedure based on a five-wave MHD model associated with non-ideal,low magnetic Reynolds number MHD flows was developed in the present study for analyzing the flow fields in the MHD generator of a MHD bypass scramjet. The numerical procedure is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential. It was found that a separation would take place near the downstream edge of the second electrode,where the local adverse pressure gradient is large,and the core of the flow field is characterized as a 2-D flow due to the Hartmann effects along the direction of the magnetic field. The electric current lines would be increasingly distorted as the magnetic interactive parameter increases,and even induce an eddy current. Induced eddy current was also found in the different cross-sections along the axial direction,all of these would definitely deteriorate the performance of the MHD generator. The cross-sectional M-shape velocity profile found along the axial direction between the insulating walls is responsible for the formation of the vortex flow at the corner of the insulator cross-section,which,in turn,induces the corner eddy current at the corner. A numerical parametric study was also performed,and the computed performance parameters for the MHD generator suggest that,in order to enhance the performance of MHD generator,the magnetic interaction parameter should be elevated.
Simulation of three-dimensional nonideal MHD flow at low magnetic Reynolds number
LU HaoYu; LEE ChunHian
2009-01-01
A numerical procedure based on a five-wave model associated with non-ideal,low magnetic Reynolds number magnetohydrodynamic(MHD)flows was developed.It is composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations,in conjunction with an SOR method for solving the elliptic equation governing the electrical potential of flow field.To validate the developed procedure,two different test cases were used which included MHD Rayleigh problem and MHD Hartmann problem.The simulations were performed under the assumption of low magnetic Reynolds number.The simulated results were found to be in good agreement with the closed form analytical solutions deduced in the present study,showing that the present algorithm could simulate engineering MHD flow at low magnetic Reynolds number effectively.In the end,a flow field between a pair of segmented electrodes in a three dimensional MHD channel was simulated using the present algorithm with and without including Hall effects.Without the introduction of Hall effects,no distortion was observed in the current and potential lines.By taking the Hall effects into account,the potential lines distorted and clustered at the upstream and downstream edges of the cathode and anode,respectively.
Direct numerical simulations of helical dynamo action: MHD and beyond
D. O. Gómez
2004-01-01
Full Text Available Magnetohydrodynamic dynamo action is often invoked to explain the existence of magnetic fields in several astronomical objects. In this work, we present direct numerical simulations of MHD helical dynamos, to study the exponential growth and saturation of magnetic fields. Simulations are made within the framework of incompressible flows and using periodic boundary conditions. The statistical properties of the flow are studied, and it is found that its helicity displays strong spatial fluctuations. Regions with large kinetic helicity are also strongly concentrated in space, forming elongated structures. In dynamo simulations using these flows, we found that the growth rate and the saturation level of magnetic energy and magnetic helicity reach an asymptotic value as the Reynolds number is increased. Finally, extensions of the MHD theory to include kinetic effects relevant in astrophysical environments are discussed.
Striations in molecular clouds: Streamers or MHD waves?
Tritsis, A
2016-01-01
Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taur...
MHD Driving of Relativistic Jets
Arieh Königl
2007-01-01
Full Text Available Paulatinamente se ha ido reconociendo que los campos magnéticos juegan un papel dominante en la producción y colimación de chorros astrofísicos. Demostramos aquí, usando soluciones semianalíticas exactas para las ecuaciones de MHD ideal en relatividad especial, que un disco de acreción altamente magnetizado (con un campo magnético principalmente poloidal o azimutal alrededor de un agujero negro es capaz de acelerar un flujo de protones y electrones a los factores de Lorentz y energías cinéticas asociadas a fuentes de destellos de rayos gama y nucleos activos de galaxias. También se discuten las contribuciones a la aceleración provenientes de efectos térmicos (por presión de radiación y pares electrón-positrón y de MHD no ideal. Notamos que la aceleración por MHD se caracteriza por ser extendida espacialmente, y esta propiedad se manifesta más claramente en flujos relativistas. Las indicaciones observacionales de que la aceleración de movimientos superlumínicos en chorros de radio ocurre sobre escalas mucho más grandes que las del agujero negro propiamente, apoyan la idea de que la producción de chorros es principalmente un fenómeno magnético. Presentamos resultados preliminares de un modelo global que puede utilizarse para probar esta interpretación.
MHD Turbulence, Turbulent Dynamo and Applications
Beresnyak, Andrey
2014-01-01
MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov -5/3) and is represented by critically balanced strong MHD turbulence. In this paper we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo $C_E=0.05$, Kolmogorov constant $C_K=4.2$ and anisotropy constant $C_A=0.63$ for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfv\\'enic part of MHD cascade in compressible turbul...
An MHD model of the earth's magnetosphere
Wu, C. C.
1985-01-01
It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Feasibility of MHD submarine propulsion
Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Electron MHD: dynamics and turbulence
Lyutikov, Maxim
2013-01-01
(Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...
Key contributions in MHD power generation. Quarterly report, 1 June 1979-31 August 1979
Louis, J F
1979-11-01
Activities during the third quarter of the contract period are reported in detail. The tasks reported on include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage.
Louis, J F
1980-03-01
Separate entries were made in the data base for the four tasks which include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage. (WHK)
Some questions of variable operational modes of an MHD generator
Belikov, V.V.; Breyev, V.V.; Gubarev, A.V.; Zotov, A.V.
1979-01-01
A Faraday MHD generator with solid electrodes is analyzed for the case of a variable load and three circuit configurations: series, parallel and independent excitation of the generator. The equivalent circuits are drawn along with the current-voltage and load characteristics (power and voltage at the load terminals as a function of generator current) for the series and parallel excitation cases. With independent excitation, the current-voltage characteristic is linear since the magnetic field induction in the generator channel at small magnetic Reynolds numbers does not depend on the generator current. The influence of the counterpressure at the channel outlet in a supersonic MHD generator is discussed in qualitative terms. Two modes are defined: when the pressure in the receiver following the channel is less than a certain value below the critical cross-section of the supersonic nozzle ahead of the channel (normal flow); and when the receiver pressure exceeds this specified value (anomalous flow), which leads to density jumps in the supersonic nozzle and subsonic flow in the interaction region. These concepts are employed in a discussion of the stability of steady-state flow and transient modes. Analytical expressions are derived for the excitation current and the load current in an MHD generator with a parallel configuration of the excitation winding, and these are plotted as a function of time. Transient operational modes of the generator with a series winding configuration of the magnet system are also shown, with the current plotted as a function of time. Expressions are derived for characteristic parameters which specify stable operational modes.
Alfven Wave Tomography for Cold MHD Plasmas
I.Y. Dodin; N.J. Fisch
2001-09-07
Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation.
MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest
Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (USA)); Roy, G.D. (Office of Naval Research, Arlington, VA (USA))
1990-01-01
This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.
MHD Integrated Topping Cycle Project
1992-07-01
This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.
Cosmological AMR MHD with Enzo
Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
Wing tip vortex control by the pulsed MHD actuator
Moralev, I. A.; Biturin, V. A.; Kazansky, P. N.; Zaitsev, M. Yu.; Kopiev, Vl. A.
2016-10-01
The paper presents the experimental results and the analysis of the wingtip vortex control by magnetohydrodynamic (MHD) plasma actuator [1]. The actuator is installed on the surface of the asymmetric wing of a finite span. In a single cycle of actuator operation, the pulsed discharge is created between two electrodes and then driven by the Lorentz force in the spanwise direction. The evolution of the vortex after the actuator pulse is studied directly downstream of the wing trailing edge. The shift of the vortex position, without a significant change in the vortex circulation is the main effect obtained after the discharge pulse. The effect of the external flow velocity and the position of the actuator on the shift amplitude were studied. The authority of the flow control by the actuator is shown to reduce at higher velocity values; the position on the suction side of the airfoil is shown to be crucial for the effective actuator operation.
Corrosion and arc erosion in MHD channels
Rosa, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering); Pollina, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering EG and G Energy Measurements, Inc., Las Vegas, NV (United States))
1992-08-01
The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.
Characteristics of laminar MHD fluid hammer in pipe
Huang, Z.Y.; Liu, Y.J., E-mail: yajun@scut.edu.cn
2016-01-01
As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Resistive MHD jet simulations with large resistivity
Cemeljic, Miljenko; Vlahakis, Nektarios; Tsinganos, Kanaris
2009-01-01
Axisymmetric resistive MHD simulations for radially self-similar initial conditions are performed, using the NIRVANA code. The magnetic diffusivity could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We introduce, in addition to the classical magnetic Reynolds number Rm, which measures the importance of resistive effects in the induction equation, a new number Rb, which measures the importance of the resistive effects in the energy equation. We find two distinct regimes of solutions in our simulations. One is the low-resistivity regime, in which results do not differ much from ideal-MHD solutions. In the high-resistivity regime, results seem to show some periodicity in time-evolution, and depart significantly from the ideal-MHD case. Whether this departure is caused by numerical or physical reasons is of considerable interest for nu...
MHD-effects in a turbulent medium of nonuniform density
Vaynshteyn, S.I.
1978-01-01
Turbulence in a medium of nonuniform density, such as the convective solar layer, is analyzed with the assumption that Del rho = rho lambda (exponential stratification). Considered are first the simplest case of a quasi-isotropic turbulence, then addition of a scalar factor such as the temperature, and finally anisotropic turbulence. The magnetic field and MHD-effects are then calculated without diffusion, and with two-dimensional turbulence as a special case. Also the values of the essential parameters in this problem are estimated. 7 references.
Wavelet transforms and their applications to MHD and plasma turbulence: a review
Farge, Marie
2015-01-01
Wavelet analysis and compression tools are reviewed and different applications to study MHD and plasma turbulence are presented. We introduce the continuous and the orthogonal wavelet transform and detail several statistical diagnostics based on the wavelet coefficients. We then show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising. Finally some multiscale numerical simulation schemes using wavelets are described. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented.
Stimulation and recording electrodes for neural prostheses
Pour Aryan, Naser; Rothermel, Albrecht
2015-01-01
This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.
Picologlou, B.F.; Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (United States)); Sikes, W.C.; Ranellone, R.F. (Newport News Shipbuilding and Dry Dock Co., VA (United States))
1992-01-01
A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.
MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980
Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.
1980-11-01
Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.
MHD equilibria with diamagnetic effects
Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.
1997-11-01
An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.
MHD Jets in inhomogeneous media
S. O´Sullivan
2002-01-01
Full Text Available Presentamos simulaciones de la propagaci on de jets moleculares no-adiab aticos en un medio ambiente inhomog eneo. Los jets tienen condiciones descritos por un modelo de jet MHD en el cual la forma de las l neas magn eticas se prescribe cerca de la fuente. Per les de densidad ambiental fueron elegidos para representar la zona de transici on entre las regiones exteriores de una nube molecular y el medio interestelar. Escalamos las tasas de enfriamiento at omico y molecular a niveles apropriados para resolver todas las escalas espaciales apropriadas. Con la inclusi on de variabilidad de la fuente, las simulaciones reproducen varias caracter sticas observacionales de jets moleculares, entre ellas las cavidades moleculares. Adicionalmente, encontramos similitudes entre teor a y observaci on para la fracci on de ionizaci on a lo largo del jet. Encontramos que la extensi on lateral de las super cies de trabajo internas son sensibles al medio ambiente. Tambi en presentamos resultados preliminares para un m etodo de calcular mapas de emisi on en l neas usando solamente variables fundamentales de estado que parecen reproducir la emisi on lamentosa de Balmer en frentes de choque.
Bedrov, Dmitry [University of Utah
2013-08-15
Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.
Ring-shaped discharge structures in a closed cycle MHD disk generator
Fukuda, H.; Kabashima, S.
1987-06-01
Numerical simulations are carried out to study plasma properties in a nonequilibrium disk-type MHD generator. The analysis is based on a two-dimensional time-dependent MHD equation, and is performed in the r-z plane. From the r-z analysis, the current distributions in the boundary layer, electrode regions are obtained, as well as the channel main flow region. The two-state nature of plasma, i.e., the formation of streamers and their dynamical behavior in the channel is confirmed. The dependence of the streamer properties on the magnetic field strength and load resistance is examined. The calculations suggest the existence of an eddy current in the boundary layer for the high-loading parameter. Some enhanced eddy currents in the nozzle region and the intensive eddy current at the upper-stream edge of the cathode are obtained for some plasma parameters. 19 references.
Dipole Alignment in Rotating MHD Turbulence
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Radiation-driven MHD systems for space applications
Lee, J. H.; Jalufka, N. W.
High-power radiation such as concentrated solar or high-power laser radiation is considered as a driver for magnetohydrodynamic (MHD) systems which could be developed for efficient power generation and propulsion in space. Eight different systems are conceivable since the MHD systems can be classified in two: plasma and liquid-metal MHD's. Each of these systems is reviewed and solar- (or laser-) driven MHD thrusters are proposed.
The mathematical theory of reduced MHD models for fusion plasmas
Guillard, Hervé
2015-01-01
The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.
Simulation of wave interactions with MHD
Batchelor, D; Bernholdt, D; Berry, L; Elwasif, W; Jaeger, E; Keyes, D; Klasky, S [Oak Ridge National Laboratory, Oak Ridge, TN 37331 (United States); Alba, C; Choi, M [General Atomics, San Diego, CA 92186 (United States); Bateman, G [Lehigh University, Bethlehem, PA 18015 (United States); Bonoli, P [Plasma Science and Fusion Center, MTT, Cambridge, MA 02139 (United States); Bramley, R [Indiana University, Bloomington, IN 47405 (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Harvey, R [CompX, Del Mar, CA 92014 (United States); Jenkins, T [University of Wisconsin, Madison, WI 53706 (United States); Kruger, S [Tech-X, Boulder, CO 80303 (United States)], E-mail: batchelordb@ornl.gov (and others)
2008-07-15
The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Simulation of wave interactions with MHD
Batchelor, Donald B [ORNL; Abla, G [General Atomics, San Diego; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, J. [Princeton Plasma Physics Laboratory (PPPL); Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2008-07-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
Techniques of Electrode Fabrication
Guo, Liang; Li, Xinyong; Chen, Guohua
Electrochemical applications using many kinds of electrode materials as an advanced oxidation/reduction technique have been a focus of research by a number of groups during the last two decades. The electrochemical approach has been adopted successfully to develop various environmental applications, mainly including water and wastewater treatment, aqueous system monitoring, and solid surface analysis. In this chapter, a number of methods for the fabrication of film-structured electrode materials were selectively reviewed. Firstly, the thermal decomposition method is briefly described, followed by introducing chemical vapor deposition (CVD) strategy. Especially, much attention was focused on introducing the methods to produce diamond novel film electrode owing to its unique physical and chemical properties. The principle and influence factors of hot filament CVD and plasma enhanced CVD preparation were interpreted by refereeing recent reports. Finally, recent developments that address electro-oxidation/reduction issues and novel electrodes such as nano-electrode and boron-doped diamond electrode (BDD) are presented in the overview.
Euler potentials for the MHD Kamchatnov-Hopf soliton solution
Semenov, VS; Korovinski, DB; Biernat, HK
2002-01-01
In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf invarian
Safety and reliability in superconducting MHD magnets
Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.
1979-07-01
This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.
Explosively-driven magnetohydrodynamic (MHD) generator studies
Agee, F.J.; Lehr, F.M. [Phillips Lab., Kirtland AFB, NM (United States); Vigil, M.; Kaye, R. [Sandia National Labs., Albuquerque, NM (United States); Gaudet, J.; Shiffler, D. [New Mexico Univ., Albuquerque, NM (United States)
1995-08-01
Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.
Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro
2016-09-01
Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.
Buttery, Richard
2011-08-01
This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd
Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction
Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.
1998-07-01
Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and
Fully Parallel MHD Stability Analysis Tool
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
Application of ADER Scheme in MHD Simulation
ZHANG Yanyan; FENG Xueshang; JIANG Chaowei; ZHOU Yufen
2012-01-01
The Arbitrary accuracy Derivatives Riemann problem method（ADER） scheme is a new high order numerical scheme based on the concept of finite volume integration,and it is very easy to be extended up to any order of space and time accuracy by using a Taylor time expansion at the cell interface position.So far the approach has been applied successfully to flow mechanics problems.Our objective here is to carry out the extension of multidimensional ADER schemes to multidimensional MHD systems of conservation laws by calculating several MHD problems in one and two dimensions： （ⅰ） Brio-Wu shock tube problem,（ⅱ） Dai-Woodward shock tube problem,（ⅲ） Orszag-Tang MHD vortex problem.The numerical results prove that the ADER scheme possesses the ability to solve MHD problem,remains high order accuracy both in space and time,keeps precise in capturing the shock.Meanwhile,the compared tests show that the ADER scheme can restrain the oscillation and obtain the high order non-oscillatory result.
Hodograph method in MHD orthogonal fluid flows
P. V. Nguyen
1992-01-01
Full Text Available Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid of finite electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the streamfunction. Three examples are studied to illustrate the developed theory. Solutions and geometries for these examples are determined.
Pseudo-reconnection in MHD numerical simulation
无
2000-01-01
A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.
MHD equilibrium and stability in heliotron plasmas
Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-09-01
Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)
Collisionless magnetic reconnection under anisotropic MHD approximation
Hirabayashi, Kota; Hoshino, Masahiro
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
Fromang, S; Teyssier, R
2006-01-01
In this paper, we present a new method to perform numerical simulations of astrophysical MHD flows using the Adaptive Mesh Refinement framework and Constrained Transport. The algorithm is based on a previous work in which the MUSCL--Hancock scheme was used to evolve the induction equation. In this paper, we detail the extension of this scheme to the full MHD equations and discuss its properties. Through a series of test problems, we illustrate the performances of this new code using two different MHD Riemann solvers (Lax-Friedrich and Roe) and the need of the Adaptive Mesh Refinement capabilities in some cases. Finally, we show its versatility by applying it to two completely different astrophysical situations well studied in the past years: the growth of the magnetorotational instability in the shearing box and the collapse of magnetized cloud cores. We have implemented this new Godunov scheme to solve the ideal MHD equations in the AMR code RAMSES. It results in a powerful tool that can be applied to a grea...
Electrode Evaporation Effects on Air Arc Behavior
LI Xingwen; CHEN Degui; LI Rui; WU Yi; NIU Chunping
2008-01-01
A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.
VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis
P. Daum
2007-03-01
Full Text Available Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.
MHD Shallow Water Waves: Linear Analysis
Heng, Kevin
2009-01-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
MHD Equilibria and Triggers for Prominence Eruption
Fan, Yuhong
2015-01-01
Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.
Cosmic ray transport in MHD turbulence
Yan, Huirong
2007-01-01
Numerical simulations shed light onto earlier not trackable problem of magnetohydrodynamic (MHD) turbulence. They allowed to test the predictions of different models and choose the correct ones. Inevitably, this progress calls for revisions in the picture of cosmic ray (CR) transport. It also shed light on the problems with the present day numerical modeling of CR. In this paper we focus on the analytical way of describing CR propagation and scattering, which should be used in synergy with the numerical studies. In particular, we use recently established scaling laws for MHD modes to obtain the transport properties for CRs. We include nonlinear effects arising from large scale trapping, to remove the 90 degree divergence. We determine how the efficiency of the scattering and CR mean free path depend on the characteristics of ionized media, e.g. plasma $\\beta$, Coulomb collisional mean free path. Implications for particle transport in interstellar medium and solar corona are discussed. We also examine the perp...
Type I Planetary Migration with MHD Turbulence
Laughlin, G; Adams, F; Laughlin, Gregory; Steinacker, Adriane; Adams, Fred
2004-01-01
This paper examines how type I planet migration is affected by the presence of turbulent density fluctuations in the circumstellar disk. For type I migration, the planet does not clear a gap in the disk and its secular motion is driven by torques generated by the wakes it creates in the surrounding disk fluid. MHD turbulence creates additional density perturbations that gravitationally interact with the planet and can dominate the torques produced by the migration mechanism itself. This paper shows that conventional type I migration can be readily overwhelmed by turbulent perturbations and hence the usual description of type I migration should be modified in locations where the magnetorotational instability is active. In general, the migrating planet does not follow a smooth inward trned, but rather exhibits a random walk through phase space. Our main conclusion is that MHD turbulence will alter the time scales for type I planet migration and -- because of chaos -- requires the time scales to be described by ...
Magnetic Reconnection in a Compressible MHD Plasma
Hesse, Michael; Birn, Joachim; Zenitani, Seiji
2011-01-01
Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed
MHD simulations on an unstructured mesh
Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
MHD Technology Transfer, Integration and Review Committee
1992-01-01
This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.
1985-09-25
Microvoltammetric Electrodes, J. 0. Howell, R. M. Wightman, Anal. Chem., 56, 524-529 (1984). 2. Flow Rate Independent Amperometric Cell , W. L. Caudill...Electroanal. Chem., 182, 113-122 (1985). C. List of all publications 1. Flow Rate Independent Amperometric Cell , W. L. Caudill, J. 0. Howell, R. M
Turbulence evolution in MHD plasmas
Wisniewski, M; Spanier, F
2013-01-01
Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. But while there are a number of simulations on the market some questions have not been answered finally. In this paper we are going to examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving not only has an influence on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.
Inductive ionospheric solver for magnetospheric MHD simulations
H. Vanhamäki
2011-01-01
Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km^{−1} in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.
The Statistical Mechanics of Ideal MHD Turbulence
Shebalin, John V.
2003-01-01
Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.
MHD thrust vectoring of a rocket engine
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Inductive ionospheric solver for magnetospheric MHD simulations
Vanhamäki, H.
2011-01-01
We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).
Nonlinear MHD dynamo operating at equipartition
Archontis, V.; Dorch, Bertil; Nordlund, Åke
2007-01-01
Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......-equipartition and a turbulent state. The generation and evolution of such strong magnetic fields is relevant for the understanding of dynamo action that occurs in stars and other astrophysical objects. Aims.We study the mode of operation of this dynamo, in the linear and non-linear saturation regimes. We also consider...... the effect of varying the magnetic and fluid Reymolds number on the non-linear behaviour of the system. Methods.We perform three-dimensional non-linear MHD simulations and visualization using a high resolution numerical scheme. Results.We find that this dynamo has a high growth rate in the linear regime...
The CHEASE code for toroidal MHD equilibria
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
Bloom, M. H.
1980-01-01
The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to a significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)
Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments
Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.
1996-01-01
First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current
Evolutionary Conditions in the Dissipative MHD System Revisited
Inoue, Tsuyoshi
2007-01-01
The evolutionary conditions for the dissipative continuous magnetohydrodynamic (MHD) shocks are studied. We modify Hada's approach in the stability analysis of the MHD shock waves. The matching conditions between perturbed shock structure and asymptotic wave modes shows that all types of the MHD shocks, including the intermediate shocks, are evolutionary and perturbed solutions are uniquely defined. We also adopt our formalism to the MHD shocks in the system with resistivity without viscosity, which is often used in numerical simulation, and show that all types of shocks that are found in the system satisfy the evolutionary condition and perturbed solutions are uniquely defined. These results suggest that the intermediate shocks may appear in reality.
Chiral Recognition of Amino Acids by Magnetoelectrodeposited Cu Film Electrodes
Iwao Mogi
2011-01-01
Full Text Available Chiral behavior of magnetoelectrodeposited (MED Cu film electrodes was investigated for the electrochemical reactions of amino acids. The Cu films were electrodeposited under a magnetic field of 5 T perpendicular to the electrode surface. Such MED Cu films were employed as an electrode, and cyclic voltammograms were measured for the electrochemical reactions of several kinds of amino acids. Chiral behavior was clearly observed as oxidation current difference between the enantiomers of alanine, aspartic acid, and glutamic acid. The MED film electrodes with the thickness of 50~500 nm exhibited such chiral behavior, and their surface morphologies had network structures, which could be induced by the micro-MHD effect.
MHD stability limits in the TCV Tokamak
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
An advanced implicit solver for MHD
Udrea, Bogdan
A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves
Zhai, Xiang
This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and
Magnetic stresses in ideal MHD plasmas
Jensen, V.O.
1995-01-01
and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem......The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...
Modeling magnetized neutron stars using resistive MHD
Palenzuela, Carlos
2013-01-01
This work presents an implementation of the resistive MHD equations for a generic algebraic Ohm's law which includes the effects of finite resistivity within full General Relativity. The implementation naturally accounts for magnetic-field-induced anisotropies and, by adopting a phenomenological current, is able to accurately describe electromagnetic fields in the star and in its magnetosphere. We illustrate the application of this approach in interesting systems with astrophysical implications; the aligned rotator solution and the collapse of a magnetized rotating neutron star to a black hole.
Local potential analysis of MHD instability
Sen, K. K.; Wilson, S. J.
1985-02-01
The use of the local potential method for studying instabilities of MHD fluids is examined. The mathematical method is similar to that developed by the authors for studying the time-dependent radiative transfer problem and the radiative stability of interstellar masers. The scheme is based on the universal evolution criterion proposed by Glansdorff and Prigogine (1964) as demonstrated by Hays (1965) for the heat equation and Schechter and Himmelblau (1965) for the Benard problem in hydrodynamics. The scheme for securing stability criteria is demonstrated for two particular cases.
MHD Equations with Regularity in One Direction
Zujin Zhang
2014-01-01
Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth. This improves previous results greatly.
MHD squeezing flow between two infinite plates
Umar Khan
2014-03-01
Full Text Available Magneto hydrodynamic (MHD squeezing flow of a viscous fluid has been discussed. Conservation laws combined with similarity transformations have been used to formulate the flow mathematically that leads to a highly nonlinear ordinary differential equation. Analytical solution to the resulting differential equation is determined by employing Variation of Parameters Method (VPM. Runge–Kutta order-4 method is also used to solve the same problem for the sake of comparison. It is found that solution using VPM reduces the computational work yet maintains a very high level of accuracy. The influence of different parameters is also discussed and demonstrated graphically.
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
3D MHD Simulations of Tokamak Disruptions
Woodruff, Simon; Stuber, James
2014-10-01
Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.
Evaluation of feedback in conductive MHD devices
Grinberg, G.K.
1977-01-01
A method is recommended for computing feedback and the self-energizing threshold of conducting MHD devices. Circuits of equivalent magnetizing currents are used for this purpose in addition to equivalent electrical circuits. This kind of an approach makes it possible to reflect the influence of R/sub m/ on the operation of the device. Dimensionless functions were found which determine the critical value of the Reynolds magnetic number. The computations demonstrated that the redistribution of the magnetic field in the machine's operating zone under the influence of an induced field must be considered.
Stationary MHD equilibria describing azimuthal rotations in symmetric plasmas
da Silva, Sidney T.; Viana, Ricardo L.
2016-12-01
We consider the stationary magnetohydrodynamical (MHD) equilibrium equation for an axisymmetric plasma undergoing azimuthal rotations. The case of cylindrical symmetry is treated, and we present two semi-analytical solutions for the stationary MHD equilibrium equations, from which a number of physical properties of the magnetically confined plasma are derived.
Superconducting magnet system for an experimental disk MHD facility
Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.
1991-01-01
A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.
The Calculus of Variations and the Ideal MHD Energy Principle
Schnack, Dalton D.
In Lecture 22, we showed that the ideal MHD force operator is self-adjoint and suggested that this allowed a formulation in which the stability of a system could be determined without solving a differential equation. Going further requires a little background in the calculus of variations. In the lecture we begin this discussion,1 and formulate the ideal MHD energy principle.
Neutrino oscillations in MHD supernova explosions
Kawagoe, S; Kotake, K [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, T, E-mail: shio.k@nao.ac.j [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)
2010-01-01
We calculate the neutrino oscillations numerically in magnetohydrodynamic (MHD) explosion models to see how asphericity has impacts on neutrino spectra. Magneto-driven explosions are one of the most attracting scenarios for producing large scale departures from spherical symmetric geometry, that are reported by many observational data. We find that the event rates at Super-Kamiokande (SK) seen from the polar direction (e.g., the rotational axis of the supernovae) decrease when the shock wave is propagating through H-resonance. In addition, we find that L-resonance in this situation becomes non-adiabatic, and the effect of L-resonance appears in the neutrino signal, because the MHD shock can propagate to the stellar surface without shock-stall after core bounce, and the shock reaches the L-resonance at earlier stage than the conventional spherical supernova explosion models. Our results suggest that we may obtain the observational signatures of the two resonances in SK for Galactic supernova.
Operational analysis of open-cycle MHD
Lippert, T. E.; McCutchan, D. A.
1980-07-01
Open cycle magnetohydrodynamic (OCMHD) conceptual power plant designs are studied in the context of a utility system to form a better basis for understanding their design, design requirements, and market possibilities. Based on assumed or projected plant costs and performance characteristics, assumed economics and escalation factors, and one coal supply and delivery scenario, overall and regional OCMHD utility market possibilities are reviewed. Additionally, for one hypothetical utility system a generation expansion plan is developed that includes OCMHD as a baseload power generating station. The impact on generation system economics and operation of alternating selected MHD plant cost and performance characteristics is reviewed. Baseload plant availability is shown as an important plant design consideration, and a general methodology and data base is developed to assess the impact on design and cost of various reliability decisions. An overall plant availability goal is set and the required availabilities of various MHD high technology components are derived to meet the plant goal. The approach is then extended to projecting channel life goals for various plant design configurations and assumptions.
Nonlinear tearing mode study using the almost ideal magnetohydrodynamics (MHD) constraint
Ren, C.; Callen, J.D. [Univ. of Wisconsin, Madison, WI (United States); Jensen, T.H. [General Atomics, San Diego, CA (United States)
1998-12-31
The tearing mode is an important resistive magnetohydrodynamics (MHD) mode. It perturbs the initial equilibrium magnetic flux surfaces through magnetic field line reconnection to form new flux surfaces with magnetic islands. In the study of the tearing mode, usually the initial equilibria are one dimensional with two ignorable coordinates and the perturbed equilibria are two dimensional with one ignorable coordinate. The tearing mode can be linearly unstable and its growth saturates at a fine amplitude. The neoclassical tearing mode theory shows that the mode can be nonlinearly driven by the bootstrap current even when it is linearly stable to the classical tearing mode. It is important to study the nonlinear behavior of the tearing mode. As an intrinsically nonlinear approach, the use of the almost ideal MHD constraint is suited to study the nonlinear properties of the tearing mode. In this paper, as a validation of the method, the authors study two characteristics of the tearing mode using the almost ideal MHD constraint: (1) the linear stability condition for the initial one dimensional equilibrium; and (2) the final saturation level for the unstable case. In this work, they only consider the simplest case where no gradient of pressure or current density exists at the mode resonant surface.
LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu
2011-01-01
This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.
High-Order Finite Difference GLM-MHD Schemes for Cell-Centered MHD
Mignone, A; Bodo, G
2010-01-01
We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting...
Global and Kinetic MHD Simulation by the Gpic-MHD Code
Hiroshi NAITOU; Yusuke YAMADA; Kenji KAJIWARA; Wei-li LEE; Shinji TOKUDA; Masatoshi YAGI
2011-01-01
In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC （particle-in-cell） code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic （MHD） simulation]. In the new algorithm, the vorticity equation and the generalized Ohm＇s law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential Az. The basic algorithm is equivalent to solving the reduced-MHD-type equations with kinetic corrections, in which MHD physics related to Alfven modes are well described. The estimation of perturbed electron pressure from particle dynamics is dominant, while the effects of other moments are negligible. Another advantage of the algorithm is that the longitudinal induced electric field, ETz = -δAz/δt, is explicitly estimated by the generalized Ohm＇s law and used in the equations of motion. Furthermore, the particle velocities along the magnetic field are used （vz-formulation） instead of generalized momentums （pz-formulation）, hence there is no problem of ＇cancellation＇, which would otherwise appear when Az is estimated from the Ampere＇s law in the pz-formulation. The successful simulation of the collisionless internal kink mode by the new Gpic-MHD with realistic values of the large-scale and high-beta tokamaks revealed the usefulness of the new algorithm.
Analogue Kerr-like geometries in a MHD inflow
Noda, Sousuke; Takahashi, Masaaki
2016-01-01
We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Finite Larmor radius influence on MHD solitary waves
E. Mjølhus
2009-04-01
Full Text Available MHD solitons are studied in a model where the usual Hall-MHD model is extended to include the finite Larmor radius (FLR corrections to the pressure tensor. The resulting 4-dimensional set of differential equations is treated numerically. In this extended model, the point at infinity can be of several types. Necessary for the existence of localized solutions is that it is either a saddle-saddle, a saddle-center, or, possibly, a focus-focus. In cases of saddle-center, numerical solutions for localized travelling structures have been obtained, and compared with corresponding results from the Hall-MHD model.
MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980
Altstatt, M. C.; Attig, R. C.; Baucum, W. E.
1980-07-31
Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.
Observational Tests of Recent MHD Turbulence Perspectives
Ghosh, Sanjoy
2001-06-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
MHD Turbulence in Accretion Disk Boundary Layers
Chan, Chi-kwan
2012-01-01
The physical modeling of the accretion disk boundary layer, the region where the disk meets the surface of the accreting star, usually relies on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity, widely adopted in astrophysics, satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability is inefficient in this inner disk region. I will discuss the results of a recent study on the generation of hydromagnetic stresses and energy density in the boundary layer around a weakly magnetized star. Our findings suggest that although magnetic energy density can be significantly amplified in this region, angular momentum transport is rather inefficient. This seems consistent with the results obtained in numerical simulations...
Drag reduction in turbulent MHD pipe flows
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
The Biermann Catastrophe in Numerical MHD
Graziani, Carlo; Lee, Dongwook; Lamb, Donald Q; Weide, Klaus; Fatenejad, Milad; Miller, Joshua
2014-01-01
The Biermann Battery effect is a popular mechanism for generating magnetic fields in initially unmagnetized plasmas, and is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Generation of magnetic fields by the Biermann effect due to mis-aligned density and temperature gradients in smooth flow _behind_ shocks is well known. We show that a magnetic field is also generated _within_ shocks as a result of the electron-ion charge separation that they induce. A straightforward implementation of the Biermann effect in MHD codes does not capture this physical process, and worse, produces unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this breakdown of convergence is due to naive discretization. We show that a careful consideration of the kinetic picture of ion viscous shocks leads to a formulation of the Biermann effect in terms of the electron temperature -- which is continuous across shocks -- that gives r...
MHD power generation with fully ionized seed
Yamasaki, H.; Shioda, S.
1977-01-01
Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.
3-D nonlinear evolution of MHD instabilities
Bateman, G.; Hicks, H. R.; Wooten, J. W.
1977-03-01
The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.
A helically distorted MHD flux rope model
Theobald, Michael L.; Montgomery, David
1990-01-01
A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.
Global MHD Models of the Solar Corona
Suess, S. T.; Rose, Franklin (Technical Monitor)
2001-01-01
Global magnetohydrodynamic (MHD) models of the solar corona are computationally intensive, numerically complex simulations that have produced important new results over the past few years. After a brief overview of how these models usually work, I will address three topics: (1) How these models are now routinely used to predict the morphology of the corona and analyze Earth and space-based remote observations of the Sun; (2) The direct application of these models to the analysis of physical processes in the corona and chromosphere and to the interpretation of in situ solar wind observations; and (3) The use of results from global models to validate the approximations used to make detailed studies of physical processes in the corona that are not otherwise possible using the global models themselves.
The Biermann catastrophe of numerical MHD
Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.
2016-05-01
The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.
Activation of MHD reconnection on ideal timescales
Landi, S; Del Zanna, L; Tenerani, A; Pucci, F
2016-01-01
Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number $S$, up to $10^7$. Results confirm that when the critical aspect ratio of $S^{1/3}$ is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be ro...
Resonant interactions of perturbations in MHD flows
Sagalakov, A.M.; Shtern, V.N.
1977-01-17
The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.
Magnetorotational Instability of Dissipative MHD Flows
HERRON, ISOM H
2010-07-10
Executive summary Two important general problems of interest in plasma physics that may be addressed successfully by Magnetohydrodynamics (MHD) are: (1) Find magnetic field configurations capable of confining a plasma in equilibrium. (2) Study the stability properties of each such an equilibrium. It is often found that the length scale of many instabilities and waves that are able to grow or propagate in a system, are comparable with plasma size, such as in magnetically confined thermonuclear plasmas or in astrophysical accretion disks. Thus MHD is able to provide a good description of such large-scale disturbances. The Magnetorotational instability (MRI) is one particular instance of a potential instability. The project involved theoretical work on fundamental aspects of plasma physics. Researchers at the Princeton Plasma Physics Laboratory (PPPL) began to perform a series of liquid metal Couette flow experiments between rotating cylinders. Their purpose was to produce MRI, which they had predicted theoretically 2002, but was only observed in the laboratory since this project began. The personnel on the project consisted of three persons: (1) The PI, who was partially supported on the budget during each of four summers 2005-2008. (2) Two graduate research assistants, who worked consecutively on the project throughout the years 2005-2009. As a result, the first student, Fritzner Soliman, obtained an M.S. degree in 2006; the second student, Pablo Suarez obtained the Ph.D. degree in 2009. The work was in collaboration with scientists in Princeton, periodic trips were made by the PI as part of the project. There were 4 peer-reviewed publications and one book produced.
Eigenanalysis of Ideal Hall MHD Turbulence
Fu, T.; Shebalin, J. V.
2011-12-01
Ideal, incompressible, homogeneous, Hall magnetohydrodynamic (HMHD) turbulence may be investigated through a Fourier spectral method. In three-dimensional periodic geometry, the independent Fourier coefficients represent a canonical ensemble described by a Gaussian probability density. The canonical ensemble is based on the conservation of three invariants: total energy, generalized helicity, and magnetic helicity. Generalized helicity in HMHD takes the place of cross helicity in MHD. The invariants determine the modal probability density giving the spectral structure and equilibrium statistics of ideal HMHD, which are compared to known MHD results. New results in absolute equilibrium ensemble theory are derived using a novel approach that involves finding the eigenvalues of a Hermitian covariance matrix for each modal probability density. The associated eigenvectors transform the original phase space variables into eigenvariables through a special unitary transformation. These are the normal modes which facilitate the analysis of ideal HMHD non-linear dynamics. The eigenanalysis predicts that the low wavenumber modes with very small eigenvalues may have mean values that are large compared to their standard deviations, contrary to the ideal ensemble prediction of zero mean values. (Expectation values may also be relatively large at the highest wave numbers, but the addition of even small levels of dissipation removes any relevance this may have for real-world turbulence.) This behavior is non-ergodic over very long times for a numerical simulation and is termed 'broken ergodicity'. For fixed values of the ideal invariants, the effect is seen to be enhanced with increased numerical grid size. Broken ergodicity at low wave number modes gives rise to large-scale, quasi-stationary, coherent structure. Physically, this corresponds to plasma relaxation to force-free states. For real HMHD turbulence with dissipation, broken ergodicity and coherent structure are still
Global MHD simulations of Neptune's magnetosphere
Mejnertsen, L.; Eastwood, J. P.; Chittenden, J. P.; Masters, A.
2016-08-01
A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the "pole-on" magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning "off" and "on" when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations.
A Two-Fluid, MHD Coronal Model
Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.
1999-01-01
We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].
Indo-Soviet experiment on an MHD generator test section at the Soviet U-O/sub 2/ facility
Ananthapadmanabhan, P.V.; Bapat, A.V.; Das, A.K. (Bhabha Atomic Research Centre, Bombay (India))
1982-09-01
This paper summarizes the major results of the joint Indo-Soviet experiment for testing the Indian MHD generator channel section, designed and fabricated at the Bhabha Atomic Research Centre, Bombay, which was carried out at the U-02 facility in Moscow, USSR, in May 1980. The total test duration was 65 hours and included electrophysical tests and life tests under applied electric fields. The main purpose of the tests was to substantiate the physical concepts, computer codes, design features and special processing techniques involved in the development of MHD generators for the Indian pilot plant at Tiruchirapalli. The experimental observations on the phenomena of heat transfer to the walls, gas dynamics in the channel, electrical characteristics of the generator and near-electrode processes including the analysis of arc spots correlate with the theoretical estimates based on present uderstanding of the physical processes occuring in similar MHD generators. The post-operational inspection of the channel section and extensive investigation of materials through microscopic analysis, chemical analysis and x-ray analysis are also reported in this paper. The joint test programme has clearly demonstrated the definite operating capability of the test section and has given sufficient information and encouragement for building better and improved channels for the future.
Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces
2015-10-10
Characterizing Microstructures at Ionic Liquid /Electrode Interfaces Report Title This report details the procurement and integration of a multichannel...Haverhals, “Microstructure at the Ionic Liquid /Electrode Interface ”, 226th ECS Meeting, 8 October, 2014, Cancun, Mexico. (c) Presentations Received Paper...Technology Transfer FINAL REPORT “Potentiostat for Characterizing Microstructures at Ionic Liquid /Electrode Interfaces ” Proposal #: 66259CHRI
MHD stability limits in the TCV Tokamak
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
MHD Disk Winds and Planetary Nebulae I. Existence and Applicability
Frank, A; Blackman, E G
2002-01-01
Winds from accretion disks have been proposed as the driving source for precessing jets and extreme bipolar morphologies in Planetary Nebulae (PNe) and proto-PNe (pPNe). In this paper we address the applicability of self-consistent MHD disk wind models to PNe and pPNe. We first review the basic features of magneto-centrifugal launching disk wind models adapting results from previously published non-self similar calculations of Peltier & Pudritz (1992). We then estimate the relevant conditions whichshould occur in PNe and pPNe accretion disks that form via binary interactions. Finally, examining conditions on dimensionless parameters needed for magneto-centrifugal disk wind models we show that such winds can recover the observed momentum and energy input rates for PNe and pPNe. High accretion rates are required in thelatter case (M_a approx 10^{-4} \\mdot) and we find that the observed total energy and momentum in pPNe can be recovered with disk wind models using existing disk formation scenarios
MHD simulations with resistive wall and magnetic separatrix
Strauss, H. R.; Pletzer, A.; Park, W.; Jardin, S.; Breslau, J.; Sugiyama, L.
2004-12-01
A number of problems in resistive MHD magnetic fusion simulations describe plasmas with three regions: the core, the halo region, and the resistive boundary. Treating these problems requires maintenance of an adequate resistivity contrast between the core and halo. This can be helped by the presence of a magnetic separatrix, which in any case is required for reasons of realistic modeling. An appropriate mesh generation capability is also needed to include the halo region when a separatrix is present. Finally a resistive wall boundary condition is required, to allow both two dimensional and three dimensional magnetic perturbations to penetrate the wall. Preliminary work is presented on halo current simulations in ITER. The first step is the study of VDE (vertical displacement event) instabilities. The growth rate is consistent with scaling inversely proportional to the resistive wall penetration time. The simulations have resistivity proportional to the -3/2 power of the temperature. Simulations have been done with resistivity contrast between the plasma core and wall of 1000 times, to model the vacuum region between the core and resistive shell. Some 3D simulations are shown of disruptions competing with VDEs. Toroidal peaking factors are up to about 3.
Paper‐Based Electrodes for Flexible Energy Storage Devices
Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu
2017-01-01
Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532
Local conservative regularizations of compressible MHD and neutral flows
Krishnaswami, Govind S; Thyagaraja, Anantanarayanan
2016-01-01
Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...
Generalized similarity method in unsteady two-dimensional MHD ...
user
International Journal of Engineering, Science and Technology. Vol. 1, No. ... Controlling of crystallization processes in metallurgy and influence of magnetic field on discrete chemical systems bring. MHD and heat ...... Nomenclature. B. [T].
Laser-powered MHD generators for space application
Jalufka, N. W.
1986-10-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Unsteady MHD free convective flow past a vertical porous plate ...
user
2000 Mathematics subject classification: 76 W 05. Keywords: Free ... the design of MHD generators and accelerators, underground water energy storage system etc. ... In many works on plasma physics, the Hall effect is disregarded. But if the.
1988-03-15
This progress report of the Space Power MHD System project presents the accomplishments during 1 November 1987 through 31 January 1988. The scope of work covered encompasses the definition of an MHD power system conceptual design and development plan (Task 1). Progress included the following: Subcontracts were issued to the MIT Plasma Fusion Center and the Westinghouse R and D Center. The performance of the 100 MW 500 sec. power system was optimized and the design concept finalized, including mass and energy balances. Mass and cost estimates were prepared. A design review was held at DOE/PETC. This also included the review of the technical issues definition and of the R and D Plan. Following the review, a final iteration on the conceptual design was initiated. Formulation of the R and D Plan was continued. Preparation of the Task 1 R and D Report was initiated. 12 figs.
Calculation of three-dimensional MHD equilibria with islands and stochastic regions
Reiman, A.; Greenside, H.
1986-08-01
A three-dimensional MHD equilibrium code is described that does not assume the existence of good surfaces. Given an initial guess for the magnetic field, the code proceeds by calculating the pressure-driven current and then by updating the field using Ampere's law. The numerical algorithm to solve the magnetic differential equation for the pressure-driven current is described, and demonstrated for model fields having islands and stochastic regions. The numerical algorithm which solves Ampere's law in three dimensions is also described. Finally, the convergence of the code is illustrated for a particular stellarator equilibrium with no large islands.
Passive stabilization in a linear MHD stability code
Todd, A.M.M.
1980-03-01
Utilizing a Galerkin procedure to calculate the vacuum contribution to the ideal MHD Lagrangian, the implementation of realistic boundary conditions are described in a linear stability code. The procedure permits calculation of the effect of arbitrary conducting structure on ideal MHD instabilities, as opposed to the prior use of an encircling shell. The passive stabilization of conducting coils on the tokamak vertical instability is calculated within the PEST code and gives excellent agreement with 2-D time dependent simulations of PDX.
Extraction of MHD Signal Based on Wavelet Transform
赵晴初; 赵彤; 李旻; 黄胜华; 徐佩霞
2002-01-01
Mirnov signals mixed with interferences are a kind of non-stationary signal. It can not obtain satisfactory effects to extract MHD signals from mirnov signals by Fourier Transform. This paper suggests that the wavelet transform can be used to treat mirnov signals. Theoretical analysis and experimental result have indicated that using the time-frequency analysis characteristics of the wavelet transform to filter mirnov signals can remove effectively interferences and extract useful MHD signals.
Study of MHD activities in the plasma of SST-1
Dhongde, Jasraj; Bhandarkar, Manisha; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Kumar, Sameer
2016-10-15
Highlights: • An account of MHD activity in the plasma of SST-1 • Observation of MHD instabilities with mode m = 2, n = 1 in SST-1 plasma. • MHD instabilities study of characteristic growth time, growth rate of island and island width etc. in SST-1 plasma. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak in operation at the Institute for Plasma Research, India. SST-1 has been consistently producing plasma currents in excess of 60 kA, with plasma durations above 400 ms and a central magnetic field of 1.5 T over last few experimental campaigns of 2014. Investigation of these experimental data suggests the presence of MHD activity in the SST-1 plasma. Further analysis clearly explains the behavior of MHD instabilities observed (i.e. tearing modes with m = 2, n = 1), estimating the growth rate and the island width in the SST-1 plasma. Poloidal magnetic field and Toroidal magnetic field fluctuations in SST-1 are observed using Mirnov coils. Onsets of disruptions in connection with MHD activities have been correlated with other diagnostics such as ECE, Density and Hα etc. The observations have been cross compared with the theoretical calculations and are found to be in good agreement.
Maget, P.; Huysmans, G. T. A.; Lütjens, H.; Ottaviani, M.; Moreau, Ph; Ségui, J.-L.
2009-06-01
Attempts to run non-inductive plasma discharges on Tore Supra sometimes fail due to the triggering of magneto-hydro-dynamic (MHD) instabilities that saturate at a large amplitude, producing degraded confinement and loss of wave driven fast electrons (the so-called MHD regime (Maget et al 2005 Nucl. Fusion 45 69-80)). In this paper we investigate the transition to this soft (in the sense of non-disruptive) MHD limit from experimental observations, and compare it with non-linear code predictions. Such a comparison suggests that different non-linear regimes, with periodic relaxations or saturation, are correctly understood. However, successful non-inductive discharges without detectable magnetic island at q = 2 cannot be reproduced if realistic transport coefficients are used in the computation. Additional physics seems mandatory for explaining these discharges, such as diamagnetic effects, that could also justify cases of abrupt transition to the MHD regime.
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)
2015-11-10
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1995-01-01
Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.
MHD Disc Winds and Linewidth Distributions
Chajet, Laura S
2013-01-01
We study AGN emission line profiles combining an improved version of the accretion disc-wind model of Murray & Chiang with the magneto-hydrodynamic model of Emmering et al. We show how the shape, broadening and shift of the C IV line depend not only on the viewing angle to the object but also on the wind launching angle, especially for small launching angles. We have compared the dispersions in our model C IV linewidth distributions to observational upper limit on that dispersion, considering both smooth and clumpy torus models. As the torus half-opening angle (measured from the polar axis) increases above about 18? degrees, increasingly larger wind launching angles are required to match the observational constraints. Above a half-opening angle of about 47? degrees, no wind launch angle (within the maximum allowed by the MHD solutions) can match the observations. Considering a model that replaces the torus by a warped disc yields the same constraints obtained with the two other models.
Simulation of MHD collimation from differential rotation
Carey, Christopher
2005-10-01
Recent observations indicate that astrophysical outflows from active galactic nuclei are permeated with helical magnetic fields[1]. The most promising theory for the formation of the magnetic configurations in these magnetically driven jets is the coiling of an initial seed field by the differential rotation of the accretion disk surrounding the central object. We have begun simulations that are relevant to these Poynting jets using the NIMROD code[2]. To simulate dynamics on length scales that are significantly larger than the accretion disk, the non-relativistic MHD equations are evolved on a hemispherical logarithmic mesh. The accretion disk is treated as a condition on the lower boundary by applying a Keplerian velocity to the azimuthal component of the fluid velocity and a prescribed flux of mass through the boundary. The magnetic field configuration is initialized to a dipole like field. Formation of a jet outflow is observed later in time. The initial field is coiled up and collimated, driving a large current density on the axis of symmetry. Slipping of magnetic field lines due to non-ideal effects has been investigated. 1. Asada K. et. al., Pub. of the Astr. Soc. of Japan, 54, L39-L43, 2002 2. Sovinec C. et. al., J. Comp. Phys., 195, 355-386, 2004
Nonlinear MHD waves in a Prominence Foot
Ofman, Leon; Kucera, Therese; Schmieder, Brigitte
2015-01-01
We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...
Activation of MHD reconnection on ideal timescales
Landi, S.; Papini, E.; Del Zanna, L.; Tenerani, A.; Pucci, F.
2017-01-01
Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number S, up to 107. Results confirm that when the critical aspect ratio of S 1/3 is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfvénic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be robust, as the predicted scaling is measured both in inviscid simulations and when using a Prandtl number P = 1 in the viscous regime.
Hot self-similar relativistic MHD flows
Zakamska, Nadia L; Blandford, Roger D
2008-01-01
We consider axisymmetric relativistic jets with a toroidal magnetic field and an ultrarelativistic equation of state, with the goal of studying the lateral structure of jets whose pressure is matched to the pressure of the medium through which they propagate. We find all self-similar steady-state solutions of the relativistic MHD equations for this setup. One of the solutions is the case of a parabolic jet being accelerated by the pressure gradient as it propagates through a medium with pressure declining as p(z)\\propto z^{-2}. As the jet material expands due to internal pressure gradients, it runs into the ambient medium resulting in a pile-up of material along the jet boundary, while the magnetic field acts to produce a magnetic pinch along the axis of the jet. Such jets can be in a lateral pressure equilibrium only if their opening angle \\theta_j at distance z is smaller than about 1/\\gamma, where \\gamma is the characteristic bulk Lorentz-factor at this distance; otherwise, different parts of the jet canno...
Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
A New MHD-assisted Stokes Inversion Technique
Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-03-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations.
Dynamo action in dissipative, forced, rotating MHD turbulence
Shebalin, John V.
2016-06-01
Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.
Two-dimensional coupled fluid and electrodynamic calculations for a MHD DCW channel with slag layers
Liu, B. L.
1982-01-01
A fully coupled, two dimensional numerical method of modeling linear, coal-fired MHD generators is developed for the case of a plasma flow bounded by a slag layer on the channel walls. The governing partial differential equations for the plasma flow, slag layer and electrodynamics are presented and their coupling discussed. An iterative, numerical procedure employing non-uniform computational meshes and appropriate tridiagonal matrix solution schemes for the equations is presented. The method permits the investigation of the mutual plasma flow-slag layer development for prescribed wall temperatures, electrode geometry, slag properties and channel loading. In particular, the slag layer-plasma interface properties which require prior specification in an uncoupled analysis comprise part of the solution in the present approach. Results are presented for a short diagonally connected generator channel and include contour plots of the electric potential and current stream function as well as transverse and axial profiles of pertinent plasma properties. The results indicate that a thin electrode slag layer can be maintained in the presence of reasonable current density levels.
FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.
Study of high frequency MHD modes from ECE radiometer in Tore Supra
Dubuit N.
2012-09-01
Full Text Available Tore Supra ECE diagnostic has been recently upgraded to study MHD modes driven by energetic particles up to 400 kHz. To improve the measurement sensitivity, the ECE signals of the 32 channels radiometer were amplified just below the saturation limit and sources of noise were investigated in order to keep it as low as possible. With such an improvement, fast particle driven modes with frequencies up to 200 kHz were detected. A 4-channel correlation ECE system using YIG filters with tuneable frequency was also installed. It allows fine radial scans of MHD modes and correlation length measurements. For the two kinds of YIG filter in use, the minimum frequency separation between two ECE channels that could be achieved was established measuring the correlation coefficient between the respective radiation noises. Finally, by modelling the ECE radiometer taking into account the antenna radiation pattern and the vertical position of the ECE beam relative to the plasma centre we improved the data analysis tools, thus giving a better determination of the phase radial structure of ECE oscillations. The poloidal structure of MHD modes can then be identified from ECE data and, for off axis ECE lines of sight, the direction of the plasma rotation can also be determined. This method allows identifying the occurrence of an inverse cascade of electron fishbone modes ranging from m/n=4/4 to 1/1 (m and n are the poloidal and toroidal mode numbers, respectively which appears in lower hybrid current drive plasmas.
The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers
Zhang, Lin; Ouyang, Jie; Zhang, Xiaohua
2013-04-01
The aim of the paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics (MHD) flow problems with either fully insulating walls or partially insulating and partially conducting walls. Toward this, we first extend the influence domain of the shape function for the element free Galerkin (EFG) method to have arbitrary shape. When the influence factor approaches 1, we find that the EFG shape function almost has the Delta property at the node (i.e. the value of the EFG shape function of the node is nearly equal to 1 at the position of this node) as well as the property of slices in the influence domain of the node (i.e. the EFG shape function in the influence domain of the node is nearly constructed by different functions defined in different slices). Therefore, for MHD flow problems at high Hartmann numbers we follow the idea of the variational multiscale finite element method (VMFEM) to combine the EFG method with the variational multiscale (VM) method, namely the variational multiscale element free Galerkin (VMEFG) method is proposed. Subsequently, in order to validate the proposed method, we compare the obtained approximate solutions with the exact solutions for some problems where such exact solutions are known. Finally, several benchmark problems of MHD flows are simulated and the numerical results indicate that the VMEFG method is stable at moderate and high values of Hartmann number. Another important feature of this method is that the stabilization parameter has appeared naturally via the solution of the fine scale problem. Meanwhile, because this proposed method is a type of meshless method, it can avoid the need for meshing, a very demanding task for complicated geometry problems.
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
Al-Ghafri, Khalil Salim
2015-01-01
The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...
Machine modification for active MHD control in RFX
Sonato, P. E-mail: sonato@igi.pd.cnr.it; Chitarin, G.; Zaccaria, P.; Gnesotto, F.; Ortolani, S.; Buffa, A.; Bagatin, M.; Baker, W.R.; Dal Bello, S.; Fiorentin, P.; Grando, L.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Peruzzo, S.; Pomaro, N.; Serianni, G
2003-09-01
Recent studies on RFP and Tokamak devices call for an active control of the MHD and resistive wall modes to induce plasma mode rotation and to prevent mode phase locking. The results obtained on RFX, where slow rotation of phase locked modes has been induced, support the possibility of extending active MHD mode control through a substantial modification of the device. A new first wall with an integrated system of electric and magnetic transducers has been realised. A close fitting 3 mm thick Cu shell replaces the 65 mm Al shell. A toroidal support structure (TSS) made of stainless steel replaces the shell in supporting all the forces acting on the torus. A system of 192 saddle coils is provided to actively control the MHD modes. This system completely surrounds the toroidal surface and allows the generation of harmonic fields with m=0 and m=1 poloidal wave number and with a toroidal spectrum up to n=24.
Lattice Boltzmann Large Eddy Simulation Model of MHD
Flint, Christopher
2016-01-01
The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...
Using Coronal Hole Maps to Constrain MHD Models
Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran
2017-08-01
In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.
A Parametric Study of Extended-MHD Drift Tearing
King, Jacob R
2014-01-01
The linear drift-tearing mode is analyzed for different regimes of the plasma-$\\beta$, ion-skin-depth parameter space with an unreduced, extended-MHD model. New dispersion relations are found at moderate plasma $\\beta$ and previous drift-tearing results are classified as applicable at small plasma $\\beta$. The drift stabilization of the mode in the regimes varies from non-existent/weak to complete. As the diamagnetic-drift frequency is proportional to the plasma $\\beta$, verification exercises with unreduced, extended-MHD models in the small plasma-$\\beta$ regimes are impractical. The new dispersion relations in the moderate plasma-$\\beta$ regimes are used to verify the extended-MHD implementation of the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Given the small boundary-layer skin depth, discussion of the validity of the first-order finite-Larmour-radius model is presented.
Using Faraday Rotation to Probe MHD Instabilities in Intracluster Media
Bogdanovic, Tamara; Massey, Richard
2010-01-01
It has recently been suggested that conduction-driven magnetohydrodynamic (MHD) instabilities may operate at all radii within an intracluster medium (ICM), and profoundly affect the structure of a cluster's magnetic field. Where MHD instabilities dominate the dynamics of an ICM, they will re-orient magnetic field lines perpendicular to the temperature gradient inside a cooling core, or parallel to the temperature gradient outside it. This characteristic structure of magnetic field could be probed by measurements of polarized radio emission from background sources. Motivated by this possibility we have constructed 3-d models of a magnetized cooling core cluster and calculated Faraday rotation measure (RM) maps in the plane of the sky under realistic observing conditions. We compare a scenario in which magnetic field geometry is characterized by conduction driven MHD instabilities to that where it is determined by the turbulent motions. We find that future high-sensitivity spectro-polarimetric measurements of R...
MHD discontinuities in solar flares: continuous transitions and plasma heating
Ledentsov, L S
2015-01-01
The boundary conditions for the ideal MHD equations on a plane dis- continuity surface are investigated. It is shown that, for a given mass flux through a discontinuity, its type depends only on the relation between inclina- tion angles of a magnetic field. Moreover, the conservation laws on a surface of discontinuity allow changing a discontinuity type with gradual (continu- ous) changes in the conditions of plasma flow. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of the complete system of boundary conditions for the MHD equations. We also found the expression describing a jump of internal energy of the plasma flowing through the dis- continuity. Firstly, this allows constructing a generalized scheme of possible continuous transitions between MHD discontinuities. Secondly, it enables the examination of the dependence of plasma heating by plasma density and configuration of the magnetic field near t...
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions
Wang, Lile
2014-01-01
Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...
Course 1: Accretion and Ejection-Related MHD
Heyvaerts, Jean
This lecture is an introduction to MHD. Relevant equations, both in the classical and special-relativistic regimes are derived. The magnetic field evolution is considered both in the perfect-MHD limit and when weak resistivity is present, giving rise to reconnection flows. A short section gives a flavour of dynamo theory. Examples of simple stationnary flows and equilibria are then presented. Stationnary, axisymmetric, rotating perfect-MHD winds and jets are discussed in some more detail. Their asymptotic structure is described. The last sections deal with small motions about an equilibrium and stability. These issues are illustrated by a few classical examples. The last section discusses linear aspects of the magneto-rotationnal instability.
Lectures in magnetohydrodynamics. With an appendix on extended MHD
Schnack, Dalton D. [Wisconsin Univ., Madison, WI (United States). Dept. Physics
2009-07-01
This concise and self-contained primer is based on class-tested notes for an advanced graduate course in MHD. The broad areas chosen for presentation are the derivation and properties of the fundamental equations, equilibrium, waves and instabilities, self-organization, turbulence, and dynamos. The latter topics require the inclusion of the effects of resistivity and nonlinearity. Together, these span the range of MHD issues that have proven to be important for understanding magnetically confined plasmas as well as in some space and astrophysical applications. The combined length and style of the thirty-eight lectures are appropriate for complete presentation in a single semester. An extensive appendix on extended MHD is included as further reading. (orig.)
Microresonator electrode design
Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.
2016-05-10
A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.
Eggen, Per-Odd
2009-01-01
This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…
The Composite Insertion Electrode
Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld
1984-01-01
The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...
Eggen, Per-Odd
2009-01-01
This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…
Portnoy, W. M.; David, R. M.
1973-01-01
Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.
Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes
R. Erdélyi
2002-01-01
Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.
Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.
Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods
Wu, S. T.
1988-01-01
Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.
Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B [ORNL; D' Azevedo, Eduardo [ORNL; Bateman, Glenn [ORNL; Bernholdt, David E [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, Randall B [ORNL; Breslau, Joshua [ORNL; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Klasky, Scott A [ORNL; Kruger, Scott E [ORNL; Ku, Long-Poe [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, David P [ORNL; Schnack, Dalton D [ORNL
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
Batchelor, Donald B [ORNL; Abla, Gheni [ORNL; D' Azevedo, Ed F [ORNL; Bateman, Glenn [Lehigh University, Bethlehem, PA; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Bonoli, P. [Massachusetts Institute of Technology (MIT); Bramley, R [Indiana University; Breslau, Joshua [ORNL; Chance, M. [Princeton Plasma Physics Laboratory (PPPL); Chen, J. [Princeton Plasma Physics Laboratory (PPPL); Choi, M. [General Atomics; Elwasif, Wael R [ORNL; Foley, S. [Indiana University; Fu, GuoYong [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Jaeger, Erwin Frederick [ORNL; Jardin, S. C. [Princeton Plasma Physics Laboratory (PPPL); Jenkins, T [University of Wisconsin; Keyes, David E [Columbia University; Klasky, Scott A [ORNL; Kruger, Scott [Tech-X Corporation; Ku, Long-Poe [Princeton Plasma Physics Laboratory (PPPL); Lynch, Vickie E [ORNL; McCune, Douglas [Princeton Plasma Physics Laboratory (PPPL); Ramos, J. [Massachusetts Institute of Technology (MIT); Schissel, D. [General Atomics; Schnack, [University of Wisconsin; Wright, J. [Massachusetts Institute of Technology (MIT)
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in simulation of wave interactions with extended MHD phenomena
Batchelor, D; D' Azevedo, E; Bernholdt, D E; Berry, L; Elwasif, W; Jaeger, E [Oak Ridge National Laboratory (United States); Abla, G; Choi, M [General Atomics (United States); Bateman, G [Lehigh University (United States); Bonoli, P [Plasma Science and Fusion Center, Massachusetts Institute of Technology (United States); Bramley, R; Foley, S [Indiana University (United States); Breslau, J; Chance, M; Chen, J; Fu, G; Jardin, S [Princeton Plasma Physics Laboratory (United States); Harvey, R [CompX International (United States); Jenkins, T [University of Wisconsin (United States); Keyes, D, E-mail: batchelordb@ornl.go [Columbia University (United States)
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
MHD Waves and Coronal Seismology: an overview of recent results
De Moortel, Ineke
2012-01-01
Recent observations have revealed that MHD waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology which have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves and (iv) the rapidly developing topic of quasi-periodic pulsations (QPP) in solar flares.
Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow
Dimitrov, Z D; Hristov, T S; Mishonov, T M
2011-01-01
We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.
Superconducting magnet system for an experimental disk MHD facility
Knoopers, H.G.; Kate, ten, H.H.J.; Klundert, van de, L.J.M.
1991-01-01
A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel. The optimization process, which is based on minimum conductor costs is discussed, and the proposed conductor design is described. Basic solutions for the construction of the magnet, the cryostat an...
Relativistic MHD and excision: formulation and initial tests
Neilsen, David; Hirschmann, Eric W; Millward, R Steven [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)
2006-08-21
A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids and elliptic and hyperbolic divergence cleaning.
Relativistic MHD and black hole excision: Formulation and initial tests
Neilsen, D; Millward, R S; Hirschmann, Eric W; Neilsen, David
2006-01-01
A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.
Extended MHD Effects in High Energy Density Experiments
Seyler, Charles
2016-10-01
The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation
The superconducting MHD-propelled ship YAMATO-1
Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro
1995-04-01
In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world's first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
Surface EMG of jaw elevator muscles: effect of electrode location and inter-electrode distance.
Castroflorio, T; Farina, D; Bottin, A; Piancino, M G; Bracco, P; Merletti, R
2005-06-01
This study addresses methodological issues on surface electromyographic (EMG) signal recording from jaw elevator muscles. The aims were (i) to investigate the sensitivity to electrode displacements of amplitude and spectral surface EMG variables, (ii) to analyse if this sensitivity is affected by the inter-electrode distance of the bipolar recording, and (iii) to investigate the effect of inter-electrode distance on the estimated amplitude and spectral EMG variables. The superficial masseter and anterior temporalis muscles of 13 subjects were investigated by means of a linear electrode array. The percentage difference in EMG variable estimates from signals detected at different locations over the muscle was larger than 100% of the estimated value. Increasing the inter-electrode distance resulted in a significant reduction of the estimation variability because of electrode displacement. A criterion for electrode placement selection is suggested, with which the sensitivity of EMG variables to small electrode displacements was of the order of 2% for spectral and 6% for amplitude variables. Finally, spectral and, in particular, amplitude EMG variables were very sensitive to inter-electrode distance, which thus should be fixed when subjects or muscles are compared in the same or different experimental conditions.
Shift-and-inverse Lanczos algorithm for ideal MHD stability analysis
Chen, J.; Nakajima, N.; Okamoto, M.
1997-11-01
CAS3D and TERPSICHORE have been designed to analyze the global ideal MHD stability of three dimensional equilibria. Their critical part is to obtain the smallest eigenvalue and its corresponding eigenvector of a large but sparse real symmetric band matrix. In CAS3D the inverse iteration have been applied to do this and the spectral shift is computed by EISPACK eigensolver. It has been shown that application of such kind of software becomes very expensive in the sense of computational time and storage when matrix order and bandwidth become very large. Here this problem is resolved by using the Lanczos algorithm which is economical in CPU time and storage and particularly suitable for very large scale problems. The version of CAS3D2MN with shift-and-inverse Lanczos algorithm is called CAS3D2MNv1. Practical calculations in CAS3D2MNv1 indicate that the shift-and-inverse Lanczos recursion needs only 15 - 20 steps to calculate the smallest eigenvalue. The computation is reliable and efficient. The storage is much smaller and CPU time is saved significantly by 50 - 100 times compared with EISPACK subroutine. Finally the ballooning mode in three dimensional MHD equilibria has been mentioned briefly. (author)
Reasoning and choice in the Monty Hall Dilemma (MHD: Implications for improving Bayesian reasoning
Elisabet eTubau
2015-03-01
Full Text Available The Monty Hall Dilemma (MHD is a two-step decision problem involving counterintuitive conditional probabilities. The first choice is made among three equally probable options, whereas the second choice takes place after the elimination of one of the non-selected options which does not hide the prize. Differing from most Bayesian problems, statistical information in the MHD has to be inferred, either by learning outcome probabilities or by reasoning from the presented sequence of events. This often leads to suboptimal decisions and erroneous probability judgments. Specifically, decision makers commonly develop a wrong intuition that final probabilities are equally distributed, together with a preference for their first choice. Several studies have shown that repeated practice enhances sensitivity to the different reward probabilities, but does not facilitate correct Bayesian reasoning. However, modest improvements in probability judgments have been observed after guided explanations. To explain these dissociations, the present review focuses on two types of causes producing the observed biases: Emotional-based choice biases and cognitive limitations in understanding probabilistic information. Among the latter, we identify a crucial cause for the universal difficulty in overcoming the equiprobability illusion: Incomplete representation of prior and conditional probabilities. We conclude that repeated practice and/or high incentives can be effective for overcoming choice biases, but promoting an adequate partitioning of possibilities seems to be necessary for overcoming cognitive illusions and improving Bayesian reasoning.
FLASH MHD simulations of experiments that study shock-generated magnetic fields
Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.
2015-12-01
We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.
A new MHD-assisted Stokes inversion technique
Riethmüller, T L; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; van Noort, M; Rodríguez, J Blanco; Iniesta, J C Del Toro; Suárez, D Orozco; Schmidt, W; Pillet, V Martínez; Knölker, M
2016-01-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a SUNRISE/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that match the observed profiles best. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat t...
Numerical Calculation of the Output Power of a MHD Generator
Adrian CARABINEANU
2014-12-01
Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
K. S. Al-Ghafri
2015-06-01
The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.
MHD Energy Bypass Scramjet Performance with Real Gas Effects
Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.
2000-01-01
The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.
CASTOR: Normal-mode analysis of resistive MHD plasmas
Kerner, W.; Goedbloed, J. P.; Huysmans, G. T. A.; Poedts, S.; Schwarz, E.
1998-01-01
The CASTOR (complex Alfven spectrum of toroidal plasmas) code computes the entire spectrum of normal-modes in resistive MHD for general tokamak configurations. The applied Galerkin method, in conjunction with a Fourier finite-element discretisation, leads to a large scale eigenvalue problem A (x)
Modified NASA-Lewis Chemical Equilibrium Code for MHD applications
Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.
1979-12-01
A substantially modified version of the NASA-Lewis Chemical Equilibrium Code has recently been developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. This report describes the effect of the programming details from a user point of view, but does not describe the Code in detail.
MHD discontinuities in solar flares: continuous transitions and plasma heating
Ledentsov, Leonid; Somov, Boris
The conservation laws on a surface of discontinuity in the ideal magnetohydrodynamics (MHD) allow changing a discontinuity type with gradual (continuous) changes in conditions of plasma. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of a complete system of boundary conditions for the MHD equations. We also found an expression describing a jump of internal energy of the plasma flowing through the discontinuity. It allows, firstly, to construct a generalized scheme of possible transitions between MHD discontinuities, and secondly, to examine the dependence of plasma heating by plasma density and configuration of the magnetic field near the surface of the discontinuity (i.e., by the type of the MHD discontinuity). The problem of the heating of "superhot" plasma (with the electron temperature is greater than 10 keV) in solar flares are discussed. It is shown that the best conditions for heating are carried out in the vicinity of the reconnecting current layer near the areas of reverse currents. Bibl.: B.V.Somov. Plasma Astrophysics, Part II: Reconnection and Flares, Second Edition. (New York: Springer SBM, 2013).
General Description of Ideal Tokamak MHD Instability Ⅱ
石秉仁
2002-01-01
In this subsequent study on general description of ideal tokamak MHD instability,the part Ⅱ, by using a coordinate with rectified magnetic field lines, the eigenmode equationsdescribing the low-mode-number toroidal Alfven modes (TAE and EAE) are derived through afurther expansion of the shear Alfven equation of motion.
3D MHD Models of Active Region Loops
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
Motion stability of a suspended particle in a MHD flow
Shvarts, I.A.
1977-07-01
An examination is made of the motion instability of a suspended particle in a plane-parallel laminar flow with a velocity profile U(y,A) where A is certain parameter. An expression was obtained for the critical Reynolds number Re = ..cap alpha../delta/U/delta y/:the coefficient ..cap alpha.. is associated with dimensions and form of the particle. The results of the common theory are used for studying the motion instability of suspended spherical particle in Couette--Hartmann MHD flows. At large Hartmann numbers Re*/Ha was shown to be constant. This agrees well with experimental data on the hydrodynamic stability of the MHD flow itself. A definite correlation also takes place between Re/sub kr/(Ha) of a MHD flow and the Reynolds numbers that determine the stability of suspended particles when the Hartmann numbers are small. Thus, in a number of cases it is possible to examine the hydrodynamic stability of a MHD flow by the motion stability of solid particles introduced into the flow. 8 references, 2 illustrations.
TAE modes and MHD activity in TFTR DT plasmas
Fredrickson, E.; Batha, S.; Bell, M.
1995-03-01
The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas.
Malapaka, Shiva Kumar; Mueller, Wolf-Christian [Max-Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
Advanced membrane electrode assemblies for fuel cells
Kim, Yu Seung; Pivovar, Bryan S
2014-02-25
A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.
1978-10-15
An initial survey of the literature produced a list of ceramic materials with properties which made them potential candidates for use in molten-carbonate fuel cell tiles or electrodes. Seven of the materials in the original list were dropped from consideration because of unfavorable thermodynamic properties; four materials were set aside because of high cost, lack of availability, or fabrication difficulties. Thirteen compositions were tested statically at 1000 K in a Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ bath under a dry CO/sub 2/ atmosphere. Only four of the materials tested showed severe degradation reactions in the molten carbonate. A low-temperature process for forming small diameter, high-aspect ratio ceramic fibers for fuel cell use has been developed. A short-term program to initiate a computer study on the thermodynamic analysis of fuel cell materials was initiated at Montana State University. The report on this program is included as Appendix B. The MHD and high-temperature fuel cell literature was surveyed, and material properties were evaluated to identify MHD materials with potential use for fuel cell applications. A technology transfer report of these findings was prepared. This report is included as Appendix A. Laboratory facilities were established to conduct research on interfacial diffusion processes which could be detrimental to successful long-term operation of the solid-electrolyte fuel cell. A variety of physical and chemical techniques were examined for the preparation of high-density substituted LaCrO/sub 3/ which was to be one component of a diffusion couple with Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/. Hydrolysis of a mixed metal-nitrate solution with urea produced the most reactive powder. A final theoretical density of almost 98% was attained in cold-pressed sintered discs of this material. (Extensive list of references)
Lund, Gordon F. (Inventor)
1982-01-01
A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.
Handbook of reference electrodes
Inzelt, György; Scholz, Fritz
2013-01-01
Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen
Transient tests on an MHD thruster
Pierson, E.S. (Purdue Univ., Hammond, IN (United States). Dept. of Engineering); Libera, J.; Petrick, M. (Argonne National Lab., IL (United States). Energy Systems Div.)
1993-01-01
Three different types of transient tests were made -- coast downs to zero voltage and current under open circuit and short circuit conditions, reverses where the applied voltage was reversed to the same or a different value, and jumps where the voltage applied to the thruster was increased without a change in polarity. Most except the coast downs were dons both quickly (voltage changes as fast as possible) and slowly (6 s to complete the voltage change). A few slower (12 s) transients were done. Transient runs were made for water conductivities of 16.2 and 5.09 S/m. In all cases steady-state conditions were established and several seconds of data taken before initiating the transients. Data were measured every 0.75 to 1 .5 second over the time interval of interest. Particular attention was paid to looking for evidence of gas bubbles, and to the chance of the voltage profiles between the electrodes. The data are interpreted based on the behavior of the power supply and the thruster.
Murphy, G C; Pelletier, Guy
2008-01-01
Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary ...
Observational Diagnostics of Self-Gravitating MHD Turbulence in Giant Molecular Clouds
Burkhart, Blakesley; Lazarian, Alex
2015-01-01
We study the observable signatures of self-gravitating MHD turbulence by applying the probability density functions (PDFs) and the spatial density power spectrum to synthetic column density maps. We find that there exists three characterizable stages of the evolution of the collapsing cloud which we term "early," "intermediate," and "advanced." At early times, i.e. $t0.35t_{ff}$, the power spectral slope is positive valued, and a dramatic increase is observed in the PDF moments and the Tsallis incremental PDF parameters, which gives rise to deviations between PDF-sonic Mach number relations. Finally, we show that the imprint of gravity on the density power spectrum can be replicated in non-gravitating turbulence by introducing a delta-function with amplitude equivalent to the maximum valued point in a given self-gravitating map. We find that the turbulence power spectrum restored through spatial filtering of the high density material.
Modelling stellar jets with magnetospheres using as initial states analytical MHD solutions
Todorov, P; Cayatte, V; Sauty, C; Lima, J J G; Tsinganos, K
2016-01-01
In this paper we focus on the construction of stellar outflow models emerging from a polar coronal hole-type region surrounded by a magnetosphere in the equatorial regions during phases of quiescent accretion. The models are based on initial analytical solutions. We adopt a meridionally self-similar solution of the time-independent and axisymmetric MHD equations which describes effectively a jet originating from the corona of a star. We modify appropriately this solution in order to incorporate a physically consistent stellar magnetosphere. We find that the closed fieldline region may exhibit different behaviour depending on the associated boundary conditions and the distribution of the heat flux. However, the stellar jet in all final equilibrium states is very similar to the analytical one prescribed in the initial conditions. When the initial net heat flux is maintained, the magnetosphere takes the form of a dynamical helmet streamer with a quasi steady state slow magnetospheric wind. With no heat flux, a s...
Approximate analytical solution of MHD flow of an Oldroyd 8-constant fluid in a porous medium
Faisal Salah
2014-12-01
Full Text Available The steady flow in an incompressible, magnetohydrodynamic (MHD Oldroyd 8-constant fluid in a porous medium with the motion of an infinite plate is investigated. Using modified Darcy’s law of an Oldroyd 8-constant fluid, the equations governing the flow are modelled. The resulting nonlinear boundary value problem is solved using the homotopy analysis method (HAM. The obtained approximate analytical solutions clearly satisfy the governing nonlinear equations and all the imposed initial and boundary conditions. The convergence of the HAM solutions for different orders of approximation is demonstrated. For the Newtonian case, the approximate analytical solution via HAM is shown to be in close agreement with the exact solution. Finally, the variations of velocity field with respect to the magnetic field, porosity and non-Newtonian fluid parameters are graphically shown and discussed.
Cheung, M. C.; Schüssler, M.; Moreno-Insertis, F.; Tarbell, T. D.
2007-12-01
With high angular resolution, high temporal cadence and a stable point spread function, the Solar Optical Telescope (SOT) onboard the Hinode satellite is the ideal instrument for the study of magnetic flux emergence and its manifestations on the solar surface. In this presentation, we focus on the development of ephemeral regions and small active regions. In many instances, SOT has been able to capture the entire emergence process from beginning to end: i.e. from the initial stages of flux appearance in granule interiors, through the intermediate stages of G-band bright point formation, and finally to the coalescence of small vertical flux elements to form pores. To investigate the physics of the flux emergence process, we performed 3D numerical MHD simulations with the MURaM code. The models are able to reproduce, and help us explain, various observational signatures of magnetic flux emergence.
Zhai, Xiaoping; Yin, Zhaoyang
2017-02-01
The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (2012) [2], and (2013) [3] to a lower regularity index about the initial velocity. The key to that improvement is a new a priori estimate for an elliptic equation with nonconstant coefficients in Besov spaces which have the same degree as L2 in R3. Finally, we also generalize our well-posedness result to the inhomogeneous incompressible MHD equations.
Sushila
2013-09-01
Full Text Available In this paper, we present an efficient analytical approach based on new homotopy perturbation sumudu transform method (HPSTM to investigate the magnetohydrodynamics (MHD viscous flow due to a stretching sheet. The viscous fluid is electrically conducting in the presence of magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Finally, some numerical comparisons among the new HPSTM, the homotopy perturbation method and the exact solution have been made. The numerical solutions obtained by the proposed method show that the approach is easy to implement and computationally very attractive.
2017-01-01
the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...
Rechnitz, Garry A.
1975-01-01
Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)
Rechnitz, Garry A.
1975-01-01
Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)
A semiconductor based electrode
Khamatani, A.; Kobayasi, K.
1983-03-30
The semiconductor electrode is submerged into an electrolyte which is held in the illuminated chamber. The other electrode is placed in a dark chamber connected with the channel to be illuminated, which has a partition in the form of a membrane. An electric current flows in the external circuit of the element with illumination of the first electrode. The illuminated electrode is covered with a thin film of a substance which is stable with the action of the electrolyte. The film is made of Si02, A1203, GaN or A1N. The protective coating makes it possible to use materials less stable than Ti02 in a rutile modification, but which have higher characteristics than the GaP, GaAs, CdS and InP, for making the electrode.
Turbulent MHD transport coefficients - An attempt at self-consistency
Chen, H.; Montgomery, D.
1987-01-01
In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.
Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence
Lemaster, M Nicole
2008-01-01
We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...
MHD waves generated by high-frequency photospheric vortex motions
V. Fedun
2011-06-01
Full Text Available In this paper, we discuss simulations of MHD wave generation and propagation through a three-dimensional open magnetic flux tube in the lower solar atmosphere. By using self-similar analytical solutions for modelling the magnetic field in Cartesian coordinate system, we have constructed a 3-D magnetohydrostatic configuration which is used as the initial condition for non-linear MHD wave simulations. For a driver we have implemented a high-frequency vortex-type motion at the footpoint region of the open magnetic flux tube. It is found that the implemented swirly source is able to excite different types of wave modes, i.e. sausage, kink and torsional Alfvén modes. Analysing these waves by magneto-seismology tools could provide insight into the magnetic structure of the lower solar atmosphere.
Turning the resistive MHD into a stochastic field theory
M. Materassi
2008-08-01
Full Text Available Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD. Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.
Turning the resistive MHD into a stochastic field theory
Materassi, M.; Consolini, G.
2008-08-01
Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD). Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.
Seismic Halos Around Active Regions: An MHD Theory
Hanasoge, Shravan M
2007-01-01
Comprehending the manner in which magnetic fields affect propagating waves is a first step toward the helioseismic construction of accurate models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Results from a simulation of waves interacting with a flux tub...
The complete set of Casimirs in Hall-MHD
Kawazura, Yohei; Hameiri, Eliezer
2012-03-01
A procedure to determine all Casimir constants of motion in MHDfootnotetextE. Hameiri, Phy. Plasmas, 11, 3423 (2004). is extended to Hall-MHD. We obtain differential equations for the variational derivatives of all Casimirs which must be satisfied for any dynamically accessible motion of Hall-MHD. In an extension of the more commonly considered model, we also include the electron fluid entropy. The most interesting case, usually true for axisymmetric configurations, is when both the electron and ion entropy functions form families of nested toroidal surfaces. The Casimirs are then three functions of each of the entropies, involving fluxes of certain vector fields and the number of particles contained in each torus. If any of the species loses its nested tori, the number of the associated Casimirs is much larger (but physically less relevant).
Synchrotron radiation of self-collimating relativistic MHD jets
Porth, Oliver; Meliani, Zakaria; Vaidya, Bhargav
2011-01-01
The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate...
Role of Cross Helicity in Cascade Processes of MHD turbulence
Mizeva, Irina; Frick, Peter; 10.1134/S1028335809020128
2009-01-01
The purpose of this work is to investigate the spectral properties of the developed isotropic (non-Alfven) MHD turbulence stationary excited by an external force, which injects the cross helicity into the flow simultaneously with the energy. It is shown that the cross helicity blocks the spectral energy transfer in MHD turbulence and results in energy accumulation in the system. This accumulation proceeds until the vortex intensification compensates the decreasing efficiency of nonlinear interactions. The formula for estimating the average turbulence energy is obtained for the set ratio between the injected helicity and energy. It is remarkable that the turbulence accumulates the injected cross helicity at its low rate injection -- the integral correlation coefficient significantly exceeds the ratio between the injected helicity and the energy. It is shown that the spectrum slope gradually increases from "5/3" to "2" with the cross helicity level.
Investigations on application of multigrid method to MHD equilibrium analysis
Ikuno, Soichiro [Faculty of Engineering Science, School of Engineering, Tokyo Univ. of Technology, Tokyo (Japan)
2000-06-01
The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)
Protostellar collapse and fragmentation using an MHD GADGET
Bürzle, Florian; Stasyszyn, Federico; Greif, Thomas; Dolag, Klaus; Klessen, Ralf S; Nielaba, Peter
2010-01-01
Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics (SPH) method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsical difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation o...
Quasi-isotropic cascade in MHD turbulence with mean field
Grappin, Roland; Gürcan, Özgür
2012-01-01
We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].
Divergence-free MHD Simulations with the HERACLES Code
Vides J.
2013-12-01
Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.
MHD rotation of electrically conducting media in crossed fields
Nikitin, N.V.
1978-01-01
A nonlinear scheme is developed for calculating the hydrodynamic characteristics of MHD flow in a cylindrical vessel of finite dimensions, in an electric field and a magnetic field crossing each other. The incompressible fluid is assumed to have a constant viscosity and electrical conductivity. The solution to the complete system of MHD equations is expanded in a series with respect to the magnetic Reynolds number, for a large hydrodynamic Reynolds number. And rather simple engineering formulas for calculating the velocity field and the pressure field are derived by the Karman-Pohlhausen method of integral relations. The results are compared with experimental data pertaining to a model helium-xenon discharge chamber with distribution of the Lorentz force causing the plasma to rotate as a quasi-solid. 15 references, 5 figures, 1 table.
A multi-electrode biomimetic electrolocation sensor
Mayekar, K.; Damalla, D.; Gottwald, M.; Bousack, H.; von der Emde, G.
2012-04-01
We present the concept of an active multi-electrode catheter inspired by the electroreceptive system of the weakly electric fish, Gnathonemus petersii. The skin of this fish exhibits numerous electroreceptor organs which are capable of sensing a self induced electrical field. Our sensor is composed of a sending electrode and sixteen receiving electrodes. The electrical field produced by the sending electrode was measured by the receiving electrodes and objects were detected by the perturbation of the electrical field they induce. The intended application of such a sensor is in coronary diagnostics, in particular in distinguishing various types of plaques, which are major causes of heart attack. For calibration of the sensor system, finite element modeling (FEM) was performed. To validate the model, experimental measurements were carried out with two different systems. The physical system was glass tubing with metal and plastic wall insertions as targets. For the control of the experiment and for data acquisition, the software LabView designed for 17 electrodes was used. Different parameters of the electric images were analyzed for the prediction of the electrical properties and size of the inserted targets in the tube. Comparisons of the voltage modulations predicted from the FEM model and the experiments showed a good correspondence. It can be concluded that this novel biomimetic method can be further developed for detailed investigations of atherosclerotic lesions. Finally, we discuss various design strategies to optimize the output of the sensor using different simulated models to enhance target recognition.
HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)
2007-06-01
seeding for the scramjet- driven MHD demonstration test was accomplished by the injection of liquid NaK into the backplate of the UTRC pre-heater... NaK is a eutectic consisting of approximately 80% potassium and 20% sodium. It exists in liquid form at room temperature and has flow properties...quite similar to water. However, there are materials handling safety issues with use of NaK since it is highly caustic alkali metal and burns on
Variable properties of MHD third order fluid with peristalsis
Latif, T.; Alvi, N.; Hussain, Q.; Asghar, S.
This article addresses the impact of temperature dependent variable properties on peristaltic flow of third order fluid in a symmetric channel. The MHD fluid and viscous dissipation effects are taken into account. Assumptions of long wavelength and low Reynolds number are employed to model the problem. The governing nonlinear coupled equations are solved using perturbation method. Approximate solutions are obtained for the stream function, temperature and pressure gradient. The results are graphically analyzed with respect to various pertinent parameters.
Buoyancy induced MHD transient mass transfer flow with thermal radiation
N. Ahmed
2016-09-01
Full Text Available The problem of a transient MHD free convective mass transfer flow past an infinite vertical porous plate in presence of thermal radiation is studied. The fluid is considered to be a gray, absorbing-emitting radiating but non-scattered medium. Analytical solutions of the equations governing the flow problem are obtained. The effects of mass transfer, suction, radiation and the applied magnetic field on the flow and transport characteristics are discussed through graphs.
Numerical study of Cosmic Ray Diffusion in MHD turbulence
Beresnyak, A.; Yan, H.; Lazarian, A.
2010-01-01
We study diffusion of Cosmic Rays (CRs) in turbulent magnetic fields using test particle simulations. Electromagnetic fields are produced in direct numerical MHD simulations of turbulence and used as an input for particle tracing, particle feedback on turbulence being ignored. Statistical transport coefficients from the test particle runs are compared with earlier analytical predictions. We find qualitative correspondence between them in various aspects of CR diffusion. In the incompressible ...
The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models
Hesse, Michael; Birn, Joachim
2011-01-01
Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.
A three dimensional MHD model of the earth's magnetosphere
Wu, C. C.; Walker, R. J.; Dawson, J. M.
1981-01-01
The results of a global MHD calculation of the steady state solar wind interaction with a dipole magnetic field are presented. The computer code used, being much faster than previous codes, makes it possible to increase the number of grid points in the system by an order of magnitude. The resulting model qualitatively reproduces many of the observed features of the quiet time magnetosphere including the bow shock, magnetopause, and plasma sheet.
Intermittency in MHD turbulence and coronal nanoflares modelling
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
Extended MHD Modeling of Tearing-Driven Magnetic Relaxation
Sauppe, Joshua
2016-10-01
Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from / ne can counter the MHD effect from - in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at University of Wisconsin
MHD Modeling of Differential Rotation in Coronal Holes
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete
2004-01-01
The photosphere and the magnetic flux therein undergo differential rotation. Coronal holes appear to rotate almost rigidly. Magnetic reconnection has been invoked to reconcile these phenomena. Mechanism relevant to the formation of the slow solar wind. We have used our MHD model in spherical coordinates to study the effect of differential rotation on coronal holes. We have imposed a magnetic flux distribution similar to and applied differential rotation for the equivalent of 5 solar rotations.
Model problem of MHD flow in a lithium blanket
Cherepanov, V.Y.
1978-01-01
A model problem is considered for a feasibility study concerning controlled MHD flow in the blanket of a Tokamak nuclear reactor. The fundamental equations for the steady flow of an incompressible viscous fluid in a uniform transverse magnetic field are solved in rectangular coordinates, in the zero-induction approximation and with negligible induced currents. A numerical solution obtained for a set of appropriate boundary constraints establishes the conditions under which no stagnation zones will be formed.
Relativistic MHD with adaptive mesh refinement
Anderson, Matthew [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Liebling, Steven L [Department of Physics, Long Island University-C W Post Campus, Brookville, NY 11548 (United States); Neilsen, David [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)
2006-11-22
This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference convex ENO method (CENO) in 3 + 1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the {nabla} . B = 0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.
Linear MHD stability studies with the STARWALL code
Merkel, P
2015-01-01
The STARWALL/CAS3D/OPTIM code package is a powerful tool to study the linear MHD stability of 3D, ideal equilibria in the presence of multiply-connected ideal and/or resistive conducting structures, and their feedback stabilization by external currents. Robust feedback stabilization of resistive wall modes can be modelled with the OPTIM code. Resistive MHD studies are possible combining STARWALL with the linear, resistive 2D CASTOR code as well as nonlinear MHD simulations combining STARWALL with the JOREK code. In the present paper, a detailed description of the STARWALL code is given and some of its applications are presented to demonstrate the methods used. Conducting structures are treated in the thin wall approximation and depending on their complexity they are discretized by a spectral method or by triangular finite elements. As an example, a configuration is considered consisting of an ideal plasma surrounded by a vacuum domain containing a resistive wall and bounded by an external wall. Ideal linear M...
Measurements of conductivity nonuniformities and fluctuations in combustion MHD plasmas
Kowalik, R. M.
1980-03-01
Diagnostics for the characterization of electrical conductivity nonuniformities in combustion magnetohydrodynamic (MHD) plasmas were developed. An initial characterization of nonuniformities in the Stanford M-2 linear generator was obtained and recommendations were made concerning the use of the diagnostics in practical MHD generator configurations. A laser induced fluorescene (LIF) diagnostic for nonintrusive measurements of local conductivity fluctuations was developed. This diagnostic and other line of sight averaged optical nonuniformity diagnostics were successfully demonstrated in several experiments in the Standford M-2 combustion systems. Results were used to characterize the nonuniformities in the M-2 system and to compare and evaluate the diagnostics. Conductivity nonuniformities were found to be predominantly streamers which had relatively long length scales of the order of l m in the axial flow direction. Shortet transverse length scales of the order of 0.1 m were found perpendicular to the flow direction. A combination of LIF and plasma luminosity diagnostics is recommended for future characterizations of conductivity uniformities in combustion MHD plasmas.
MHD magnet technology development program summary, September 1982
1983-11-01
The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.
Spectral slope and Kolmogorov constant of MHD turbulence.
Beresnyak, A
2011-02-18
The spectral slope of strong MHD turbulence has recently been a matter of controversy. While the Goldreich-Sridhar model predicts a -5/3 slope, shallower slopes have been observed in numerics. We argue that earlier numerics were affected by driving due to a diffuse locality of energy transfer. Our highest-resolution simulation (3072(2)×1024) exhibited the asymptotic -5/3 scaling. We also discover that the dynamic alignment, proposed in models with -3/2 slope, saturates and cannot modify the asymptotic, high Reynolds number slope. From the observed -5/3 scaling we measure the Kolmogorov constant C(KA)=3.27±0.07 for Alfvénic turbulence and C(K)=4.2±0.2 for full MHD turbulence, which is higher than the hydrodynamic value of 1.64. This larger C(K) indicates inefficient energy transfer in MHD turbulence, which is in agreement with diffuse locality.
FEMHD: An adaptive finite element method for MHD and edge modelling
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
Some results of the study of the application of the MHD method to power engineering
Shelkov, Ye.M.; Pishchikov, S.I.; Pinkhasik, M.S.; Zakharko, Yu.A.
1977-10-01
Several stages in the development of experimental MHD units in the USSR are described and the characteristics of the units listed. The U-25 unit has been in operation since 1971, producing 20 to 25 MW burning natural gas in oxygen-enriched air with 1 mol. % potassium ionizing additive. Photographs are presented of the combustion chamber, MHD generator and MHD generator with top cover removed. The measurement and recording system is outlined.
A 3rd Order WENO GLM-MHD Scheme for Magnetic Reconnection
FENG Xueshang; ZHOU Yufen; HU Yanqi
2006-01-01
A new numerical scheme of 3rd order Weighted Essentially Non-Oscillatory (WENO)type for 2.5D mixed GLM-MHD in Cartesian coordinates is proposed. The MHD equations are modified by combining the arguments as by Dellar and Dedner et al to couple the divergence constraint with the evolution equations using a Generalized Lagrange Multiplier (GLM). Moreover, the magnetohydrodynamic part of the GLM-MHD system is still in conservation form. Meanwhile, this method is very easy to add to an existing code since the underlying MHD solver does not have to be modified. To show the validation and capacity of its application to MHD problem modelling,interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems are used to verify this new MHD code. The numerical tests for 2D Orszag and Tang's MHD vortex,interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems show that the third order WENO MHD solvers are robust and yield reliable results by the new mixed GLM or the mixed EGLM correction here even if it can not be shown that how the divergence errors are transported as well as damped as done for one dimensional ideal MHD by Dedner et al.
Young, Aaron J; Hargrove, Levi J; Kuiken, Todd A
2012-03-01
Pattern recognition of myoelectric signals for prosthesis control has been extensively studied in research settings and is close to clinical implementation. These systems are capable of intuitively controlling the next generation of dexterous prosthetic hands. However, pattern recognition systems perform poorly in the presence of electrode shift, defined as movement of surface electrodes with respect to the underlying muscles. This paper focused on investigating the optimal interelectrode distance, channel configuration, and electromyography feature sets for myoelectric pattern recognition in the presence of electrode shift. Increasing interelectrode distance from 2 to 4 cm improved pattern recognition system performance in terms of classification error and controllability (p pattern recognition control. Finally, we investigated different feature sets for pattern recognition control using a linear discriminant analysis classifier and found that an autoregressive set significantly (p < 0.01) reduced sensitivity to electrode shift compared to a traditional time-domain feature set.
Hermansen, Peter; MacKay, Scott; Wishart, David; Jie Chen
2016-08-01
Microfabricated interdigitated electrode chips have been designed for use in a unique gold-nanoparticle based biosensor system. The use of these electrodes will allow for simple, accurate, inexpensive, and portable biosensing, with potential applications in diagnostics, medical research, and environmental testing. To determine the optimal design for these electrodes, finite element analysis simulations were carried out using COMSOL Multiphysics software. The results of these simulations determined some of the optimal design parameters for microfabricating interdigitated electrodes as well as predicting the effects of different electrode materials. Finally, based on the results of these simulations two different kinds of interdigitated electrode chips were made using photolithography.
Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.
Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A
2011-04-01
Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.
Applications of a finite-volume algorithm for incompressible MHD problems
Vantieghem, S.; Sheyko, A.; Jackson, A.
2016-02-01
We present the theory, algorithms and implementation of a parallel finite-volume algorithm for the solution of the incompressible magnetohydrodynamic (MHD) equations using unstructured grids that are applicable for a wide variety of geometries. Our method implements a mixed Adams-Bashforth/Crank-Nicolson scheme for the nonlinear terms in the MHD equations and we prove that it is stable independent of the time step. To ensure that the solenoidal condition is met for the magnetic field, we use a method whereby a pseudo-pressure is introduced into the induction equation; since we are concerned with incompressible flows, the resulting Poisson equation for the pseudo-pressure is solved alongside the equivalent Poisson problem for the velocity field. We validate our code in a variety of geometries including periodic boxes, spheres, spherical shells, spheroids and ellipsoids; for the finite geometries we implement the so-called ferromagnetic or pseudo-vacuum boundary conditions appropriate for a surrounding medium with infinite magnetic permeability. This implies that the magnetic field must be purely perpendicular to the boundary. We present a number of comparisons against previous results and against analytical solutions, which verify the code's accuracy. This documents the code's reliability as a prelude to its use in more difficult problems. We finally present a new simple drifting solution for thermal convection in a spherical shell that successfully sustains a magnetic field of simple geometry. By dint of its rapid stabilization from the given initial conditions, we deem it suitable as a benchmark against which other self-consistent dynamo codes can be tested.
Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2017-04-01
Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.
Real-time control of multiple MHD instabilities on TCV by ECRH/ECCD
Sauter O.
2012-09-01
Full Text Available Highly localized deposition of ECRH/ECCD is particularly suited for MHD control, in particular when combined with real-time beam orientation and power control capabilities. The powerful (4.5MW and flexible (7 steerable launcher EC system on TCV has recently been complemented by an equally flexible digital real-time control system with the aim of developing and testing integrated MHD control methods [1]. Sawtooth pacing is one such method [2]. The crash time of stabilized sawteeth can be precisely controled by removing the EC power at a given time after the last sawtooth crash, causing the crash to occur at a short and reproducible time thereafter. This control strategy is combined with efficient neoclassical tearing mode (NTM preemption by depositing power at the mode rational surfaces only during a short time synchronized with the island-seeding sawtooth crash. If an NTM appears nevertheless, full power is applied to stabilize the mode. The real-time steerable launchers have also been employed to stabilize fully saturated NTMs and to investigate the precise requirements for deposition localization for full island stabilization. Finally, though ELM dynamics is markedly different, recent results show that ELM pacing is possible using a similar control technique as used for sawtooth pacing. In this case, edge EC power is removed after each ELM, and is reapplied after a programmable time interval. The ELM period can be real-time controlled by adjusting the length of this interval. While the overall trend conforms to the increase of ELM frequency with increasing power, this technique provides a means to significantly regularize the ELM cycle.
1980-07-01
representation and analysis for their observed current distributions. Simonsson won the young author’s award of the Electrochemical Society for his paper...and T. Katan, Proc. Symp. Energy Storage and Conversion, the Electrochemical Society 77-6, 770 (1977) The optimum thickness of porous electrodes is...Chloride Electrodes; Surface Morphology on Charging and Dis- charging," T. Katan, S. Szpak, and D. N. Bennion, The Electrochemical Society , 143rd National
Sensor employing internal reference electrode
2013-01-01
The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....
Das, Ipsita
2008-01-01
An analysis of MHD wave propagating in a gravitating and rotating medium permeated by non-uniform magnetic field has been done. It has been found that the Gradient of Magnetic Field when coupled with Rotation becomes capable to generate few instabilities (Temporal or Spatial) leading to the damping or amplification of MHD waves. The Jean's criterion is not sufficient for stability always. Rather, the waves will suffer instability unless their wave length (frequency) is less (greater) than certain critical values. Otherwise, those will smoothly propagate outward. Out of different scenarioes depending on the direction of the magnetic field, its gradient, rotation and wave propagation three important Special Cases have been discussed and different stability criteria have been derived. Finally, using the above theory we have obtained the stability/instability criteria for the waves moving parallel and perpendicular to the galactic plane in the Core and Periphery of the Central Region of Galaxy (C.R.G.) due to the...
Faria, Paula; Hallett, Mark; Miranda, Pedro Cavaleiro
2011-12-01
electrodes. Finally, the use of multiple small return electrodes may be more efficient than the use of a single large return electrode.
Ideal MHD beta-limits of poloidally asymmetric equilibria
Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.
1981-05-01
The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.
Achieving Fast Reconnection in Resistive MHD Models via Turbulent Means
Lapenta, Giovanni
2011-01-01
Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for the models of magnetic reconnection which are attepmted to be applied to astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both theoretical model and numerical evidence that magnetic reconnection gets fast in the approximation of resistive MHD. We consider the relation between the Lazarian & Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.
Unified Description of Tokamak Ideal MHD Instabilities（I）
石秉仁
2002-01-01
By using a coordinate system associated with magnetic surfaces,a unified eigenmode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation.Based on this equation having a general operator form,the eigen-mode equation governing the large-scale perturbation (such as the kink mode,the low-n ballooning mode and the Alfven mode) and small-scale perturbation(such as the high-n ballooning mode,the local mode) can be further deduced.In the first part of the present study,the small-scale perturbation is discussed in detail.
Unified Description of Tokamak Ideal MHD Instabilities (Ⅰ)
石秉仁
2002-01-01
By using a coordinate system associated with magnetic surfaces, a unified eigen mode equation for describing the tokamak ideal MHD instabilities is derived in the shear-Alfven approximation. Based on this equation having a general operator form, the eigen-mode equation governing the large-scale perturbation (such as the kink mode, the low-n ballooning mode and the Alfven mode) and small-scale perturbation (such as the high-n ballooning mode, the local mode)can be further deduced. In the first part of the present study, the small-scale perturbation is discussed in detail.
Equations of state for self-excited MHD generator studies
Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.
1980-02-26
We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.
Asymmetric and Moving-Frame Approaches to MHD Equations
Bin Tao CAO
2012-01-01
The magnetohydrodynamic (MHD) equations of incompressible viscous fluids with finite electrical conductivity describe the motion of viscous electrically conducting fluids in a magnetic field.In this paper,we find eight families of solutions of these equations by Xu's asymmetric and moving frame methods.A family of singular solutions may reflect basic characteristics of vortices.The other solutions are globally analytic with respect to the spacial variables.Our solutions may help engineers to develop more effective algorithms to find physical numeric solutions to practical models.
3D MHD simulation of polarized emission in SN 1006
Schneiter, E M; Reynoso, E M; Esquivel, A; De Colle, F
2015-01-01
We use three dimensional magnetohydrodynamic (MHD) simulations to model the supernova remnant SN 1006. From our numerical results, we have carried out a polarization study, obtaining synthetic maps of the polarized intensity, the Stokes parameter $Q$, and the polar-referenced angle, which can be compared with observational results. Synthetic maps were computed considering two possible particle acceleration mechanisms: quasi-parallel and quasi-perpendicular. The comparison of synthetic maps of the Stokes parameter $Q$ maps with observations proves to be a valuable tool to discern unambiguously which mechanism is taking place in the remnant of SN 1006, giving strong support to the quasi-parallel model.
Porting a Hall MHD Code to a Graphic Processing Unit
Dorelli, John C.
2011-01-01
We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.
Are "EIT Waves" Fast-Mode MHD Waves?
Wills-Davey, M J; Stenflo, J O
2007-01-01
We examine the nature of large-scale, coronal, propagating wave fronts (``EIT waves'') and find they are incongruous with solutions using fast-mode MHD plane-wave theory. Specifically, we consider the following properties: non-dispersive single pulse manifestions, observed velocities below the local Alfven speed, and different pulses which travel at any number of constant velocities, rather than at the ``predicted'' fast-mode speed. We discuss the possibility of a soliton-like explanation for these phenomena, and show how it is consistent with the above-mentioned aspects.
Uranium droplet nuclear reactor core with MHD generator
Anghaie, Samim; Kumar, Ratan
An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.
Using MHD Models for Context for Multispacecraft Missions
Reiff, P. H.; Sazykin, S. Y.; Webster, J.; Daou, A.; Welling, D. T.; Giles, B. L.; Pollock, C.
2016-12-01
The use of global MHD models such as BATS-R-US to provide context to data from widely spaced multispacecraft mission platforms is gaining in popularity and in effectiveness. Examples are shown, primarily from the Magnetospheric Multiscale Mission (MMS) program compared to BATS-R-US. We present several examples of large-scale magnetospheric configuration changes such as tail dipolarization events and reconfigurations after a sector boundary crossing which are made much more easily understood by placing the spacecraft in the model fields. In general, the models can reproduce the large-scale changes observed by the various spacecraft but sometimes miss small-scale or rapid time changes.
The analysis of the influence of the ferromagnetic rod in an annular magnetohydrodynamic (MHD pump
Bergoug Nassima
2012-01-01
Full Text Available This paper deals with the 2D modelisation of an annular induction magnetohydrodynamic (MHD pump using finite volume method in cylindrical coordinates and taking into consideration the saturation of the ferromagnetic material. The influence of the ferromagnetic rod on the different characteristics, in the channel of the MHD pump was studied in the paper.
Molander, A.; Eriksson, Sture; Pein, K. [Studsvik Nuclear, Nykoeping (Sweden)
2000-11-01
, suggestions of variations of the conventional platinum electrode is given. Interesting variations are platinum electrodes with flowing electrolyte or quasi reversible hydrogen electrode. Development of silver chloride electrodes for extended lifetime can be done with e g a diffusion barrier to limit dilution. Also completely new types of reference electrodes are treated, as e g metal/metal oxide electrodes. These can be interesting but more development is required. Finally a survey of the measurements in BWR-PWR and CANDU reactors published in literature is given. In BWRs, American power plants (with electrodes from GE), Swedish power plants (with electrodes from Studsvik), Siemens and Toshiba have published measurements of larger extent. In PWRs, above all Ringhals and Siemens perform measurements today, even if a number of measurements through the years are published.
A set-up for a biased electrode experiment in ADITYA Tokamak
Dhyani, Pravesh; Ghosh, Joydeep; Sathyanarayana, K.; Praveenlal, V. E.; Gautam, Pramila; Shah, Minsha; Tanna, R. L.; Kumar, Pintu; Chavda, C.; Patel, N. C.; Panchal, V.; Gupta, C. N.; Jadeja, K. A.; Bhatt, S. B.; Kumar, S.; Raju, D.; Atrey, P. K.; Joisa, S.; Chattopadhyay, P. K.; Saxena, Y. C.
2014-10-01
An experimental set-up to investigate the effect of a biased electrode introduced in the edge region on ADITYA tokamak discharges is presented. A specially designed double-bellow mechanical assembly is fabricated for controlling the electrode location as well as its exposed length inside the plasma. The cylindrical molybdenum electrode is powered by a capacitor-bank based pulsed power supply (PPS) using a semiconductor controlled rectifier (SCR) as a switch with forced commutation. A Langmuir probe array for radial profile measurements of plasma potential and density is fabricated and installed. Standard results of improvement of global confinement have been obtained using a biased electrode. In addition to that, in this paper we show for the first time that the same biasing system can be used to avoid disruptions through stabilisation of magnetohydrodynamic (MHD) modes. Real time disruption control experiments have also been carried out by triggering the bias-voltage on the electrode automatically when the Mirnov probe signal exceeds a preset threshold value using a uniquely designed electronic comparator circuit. Most of the results related to the improved confinement and disruption mitigation are obtained in case of the electrode tip being kept at ~3 cm inside the last closed flux surface (LCFS) with an exposed length of ~20 mm in typical discharges of ADITYA tokamak.
李莉; 刘悦; 许欣洋; 夏新念
2012-01-01
A cylindrical model of linear MHD instabilities in tokamaks is presented. In the model, the cylindrical plasma is surrounded by a vacuum which is divided into inner and outer vacuum areas by a conducting wall. Linearized resistivity MHD equations with plasma viscosity are adopted to describe our model, and the equations are solved numerically as an initial value problem. Some of the results are used as benchmark tests for the code, and then a series of equilibrium current profiles are used to simulate the bootstrap current profiles in actual experiments with a bump on tail. Thus the effects of these kinds of profiles on MHD instabilities in tokamaks are revealed. From the analysis of the numerical results, it is found that more plasma can be confined when the center of the current bump is closer to the plasma surface, and a higher and narrower current bump has a better stabilizing effect on the MHD instabilities.
Technical support for open-cycle MHD program. Progress report, April-June 1978
Bomkamp, D H [ed.
1979-07-01
The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The project activities currently include modeling of the combustor, MHD channel, slag separator and the high temperature air heater. In addition, these models are combined into a complete system model which is presently capable of carrying out optimizations of the entire system on either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request to support the needs and requirements of the DOE/MHD Division.
Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry
Furukawa, M
2016-01-01
Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.
Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation
Xu, Siyao; Lazarian, A
2015-01-01
We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1997-05-06
Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Composite carbon foam electrode
Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)
1997-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
1992-02-01
This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.
Mikhelson, Konstantin N
2013-01-01
Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I
Jacobsen, Torben; Broers, G. H. J.
1977-01-01
SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed......The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...
On the characterization of magnetic reconnection in global MHD simulations
T. V. Laitinen
2006-11-01
Full Text Available The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency.
MHD Wind Models in X-Ray Binaries and AGN
Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis
2017-08-01
Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.
Intensity contrast from MHD simulations and from HINODE observations
Afram, N; Solanki, S K; Schuessler, M; Lagg, A; Voegler, A
2010-01-01
Changes in the solar surface area covered by small-scale magnetic elements are thought to cause long-term changes in the solar spectral irradiance, which are important for determining the impact on Earth's climate. To study the effect of small-scale magnetic elements on total and spectral irradiance, we derive their contrasts from 3-D MHD simulations of the solar atmosphere. Such calculations are necessary since measurements of small-scale flux tube contrasts are confined to a few wavelengths and suffer from scattered light and instrument defocus, even for space observations. To test the contrast calculations, we compare rms contrasts from simulations with those obtained with the broad-band filter imager mounted on the Solar Optical Telescope (SOT) onboard the Hinode satellite and also analyse centre-to-limb variations (CLV). The 3-D MHD simulations include the interaction between convection and magnetic flux tubes. They have been run with non-grey radiative transfer using the MURaM code. Simulations have an ...
AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP
Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2016-01-20
For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.
MHD and Gyro-kinetic Stability of JET Pedestals
Saarelma, S; Dickinson, D; Frassinetti, L; Leyland, M J; Roach, C M; contributors, EFDA-JET
2013-01-01
The pedestal profile measurements in high triangularity JET plasmas show that with low fuelling the pedestal width decreases during the ELM cycle and with high fuelling it stays constant. In the low fuelling case the pedestal pressure gradient keeps increasing until the ELM crash and in the low fuelling case it reaches a saturation during the ELM cycle. An edge stability analysis using MHD and gyro-kinetic codes finds that at the end of the ELM cycle both JET plasmas become limited by finite-n peeling-ballooning modes and during the ELM cycle the steep pressure gradient region of the pedestal is both infinite-n ideal MHD ballooning mode and kinetic ballooning mode stable due to high bootstrap current. This indicates that during the ELM cycle the pedestal pressure gradient is not limited by kinetic ballooning modes. Any pedestal model based on pressure gradient being limited by kinetic ballooning modes needs to amended when predicting pedestals with high bootstrap current. Unstable micro-tearing modes are foun...
MHD simulation studies of z-pinch shear flow stabilization
Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.
2003-10-01
The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.
Coupled simulation of kinetic pedestal growth and MHD ELM crash
Park, G [Courant Institute of Mathematical Sciences, New York University (United States); Cummings, J [California Institute of Technology (United States); Chang, C S [Courant Institute of Mathematical Sciences, New York University (United States); Podhorszki, N [Univ. California at Davis (United States); Klasky, S [ORNL (United States); Ku, S [Courant Institute of Mathematical Sciences, New York University (United States); Pankin, A [Lehigh Univ. (United States); Samtaney, R [Princeton Plasma Physics Laboratory (United States); Shoshani, A [LBNL (United States); Snyder, P [General Atomics (United States); Strauss, H [Courant Institute of Mathematical Sciences, New York University (United States); Sugiyama, L [MIT (United States)
2007-07-15
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
Sunspot Modeling: From Simplified Models to Radiative MHD Simulations
Rolf Schlichenmaier
2011-09-01
Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.
Vientos estelares MHD en campos magnéticos difusivos
Rotstein, N.
This article generalizes the analytic class of magnetohydrodynamic (MHD) solutions introduced by Low and Tsinganos (1986) for rotating, axisymmetric, steady stellar outflows embedded in partially open magnetic fields. The goal of this work is to analyze the case of finite conductivity plasmas, that is, diffusive fields, partially because the traditional infinite conductivity treatment (see, for example, Trussoni & Tsinganos, 1993; Rotstein & Ferro Fontán, 1995) leads to a vanishing equatorial velocity of the wind. This treatment introduces a new class of solutions basically because now surfaces of constant mass flux do not necessarily coincide with surfaces of constant magnetic flux. Say in other words, under the finite conductivity assumption velocity field is not necessarily parallel to magnetic field up to a rigid rotation of each individual flux surface, that is, magnetic and velocity fields are now decoupled. Nevertheless, the inclusion of diffusive fields and rotation still poses a mathematical formidable problem. For this reason some idealizations are needed in order to keep the treatment in an amenable level. But unlike the infinite conductivity analysis we can not, in this case, prescribe the magnetic field configuration, but to autoconsistently solve it as an unknown of the problem. On the other hand, we do not need now to fix the location of any singular ``point" (corresponding to the surfaces where the flow matches the velocity of three MHD modes) because magnetic and velocity fields are precisely decoupled. In a first step, some simple although plausible flux distributions are analyzed, as well as the thermodynamics of the problem.
Kinetic effects of energetic particles on resistive MHD stability.
Takahashi, R; Brennan, D P; Kim, C C
2009-04-03
We show that the kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode in tokamaks (e.g., JET, JT-60U, and DIII-D), where the fraction of energetic particle beta(frac) is high. Using model equilibria based on DIII-D experimental reconstructions, the nonideal MHD linear stability of cases unstable to the 2/1 mode is investigated including a deltaf particle-in-cell model for the energetic particles coupled to the nonlinear 3D resistive MHD code NIMROD [C. C. Kim et al., Phys. Plasmas 15, 072507 (2008)10.1063/1.2949704]. It is observed that energetic particles have significant damping and stabilizing effects at experimentally relevant beta, beta(frac), and S, and excite a real frequency of the 2/1 mode. Extrapolation of the results is discussed for implications to JET and ITER, where the effects are projected to be significant.
An unsplit, cell-centered Godunov method for ideal MHD
Crockett, Robert K.; Colella, Phillip; Fisher, Robert T.; Klein, Richard I.; McKee, Christopher F.
2003-08-29
We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.
An Unsplit, Cell-Centered Godunov Method for Ideal MHD
Fisher, R; Crockett, R; Colella, P; Klein, R; McKee, C
2003-10-16
We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella, with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We apply the method to a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, and low-beta flux tubes. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.
Initial Active MHD Spectroscopy Experiments on Alcator C-MOD
Schmittdiel, D. A.; Snipes, J. A.; Granetz, R. S.; Parker, R. R.; Wolfe, S. M.; Fasoli, A.
2002-11-01
The Active MHD Spectroscopy system is a new diagnostic on C-MOD that will be used to study low frequency MHD modes and TAE's present at high B_tor, n_e, and Te ˜= T_i. The present system consists of two antennas, power amplifiers, and an impedance matching network. Each antenna is 15 × 25 cm with five turns, an inductance of ˜10 μH, and is covered by boron nitride tiles. The two antennas are placed at the same toroidal location, symmetrically above and below the midplane. Each antenna is driven by a ˜1 kW power amplifier in the range of 1 kHz - 1 MHz with an expected antenna current ˜10 A, which will produce a vacuum field of ˜0.5 G at the q = 1.5 surface. This diagnostic is designed to excite high n ( ˜20) stable TAE's and initial results regarding their frequency, mode structure, and damping rate will be presented. Evolution of these modes could also provide information on the q profile to compare with MSE measurements, which will be important for planned lower hybrid current drive operation in 2003.
MHD Simulation of the Inner-Heliospheric Magnetic Field
Wiengarten, T; Fichtner, H; Cameron, R; Jiang, J; Kissmann, R; Scherer, K; 10.1029/2012JA018089
2013-01-01
Maps of the radial magnetic field at a heliocentric distance of ten solar radii are used as boundary conditions in the MHD code CRONOS to simulate a 3D inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modelling using observational data of sunspot groups coupled with a current sheet source surface model. Amongst several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earths orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-helio...
Two-fluid MHD Regime of Drift Wave Instability
Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong
2015-11-01
Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.
Flow stabilization of the ideal MHD resistive wall mode^1
Smith, S. P.; Jardin, S. C.; Freidberg, J. P.; Guazzotto, L.
2009-05-01
We demonstrate for the first time in a numerical calculation that for a typical circular cylindrical equilibrium, the ideal MHD resistive wall mode (RWM) can be completely stabilized by bulk equilibrium plasma flow, V, for a window of wall locations without introducing additional dissipation into the system. The stabilization is due to a resonance between the RWM and the Doppler shifted ideal MHD sound continuum. Our numerical approach introduces^2 u=φξ+ iV .∇ξ and the perturbed wall current^3 as variables, such that the eigenvalue, φ, only appears linearly in the linearized stability equations, which allows for the use of standard eigenvalue solvers. The wall current is related to the plasma displacement at the boundary by a Green's function. With the introduction of the resistive wall, we find that it is essential that the finite element grid be highly localized around the resonance radius where the parallel displacement, ξ, becomes singular. We present numerical convergence studies demonstrating that this singular behavior can be approached in a limiting sense. We also report on progress toward extending this calculation to an axisymmetric toroidal geometry. ^1Work supported by a DOE FES fellowship through ORISE and ORAU. ^2L.Guazzotto, J.P Freidberg, and R. Betti, Phys.Plasmas 15, 072503 (2008). ^3S.P. Smith and S. C. Jardin, Phys. Plasmas 15, 080701 (2008).
Fully implicit adaptive mesh refinement algorithm for reduced MHD
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Reference Electrodes in Metal Corrosion
S. Szabó
2010-01-01
Full Text Available With especial regard to hydrogen electrode, the theoretical fundamentals of electrode potential, the most important reference electrodes and the electrode potential measurement have been discussed. In the case of the hydrogen electrode, it have been emphasised that there is no equilibrium between the hydrogen molecule (H2 and the hydrogen (H+, hydronium (H3O+ ion in the absence of a suitable catalyst. Taking into account the practical aspects as well, the theorectical basis of working of hydrogen, copper-copper sulphate, mercury-mercurous halide, silver-silver halide, metal-metal oxide, metal-metal sulphate and “Thalamid” electrodes, has been discussed.
Virtual electrodes for high-density electrode arrays
Cela, Carlos Jose; Lazzi, Gianluca
2017-05-23
The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.
Xie, Lianghai; Li, Lei; Zhang, Yiteng; Feng, Yongyong; Wang, Xinyue; Zhang, Aibing; Kong, Linggao
2015-08-01
Lunar minimagnetosphere formed by the interaction between the solar wind and a local crustal field often has a scale size comparable to the ion inertia length, in which the Hall effect is very important. In this paper, the general characteristics of lunar minimagnetosphere are investigated by three-dimensional Hall MHD simulations. It is found that the solar wind ions can penetrate across the magnetopause to reduce the density depletion and cause the merging of the shock and magnetopause, but the electrons are still blocked at the boundary. Besides, asymmetric convection occurs, resulting in the magnetic field piles up on one side while the plasma gathers on the other side. The size of the minimagnetosphere is determined by both the solar zenith angle and the magnetosonic Mach number, while the Hall effect is determined by the ratio of the pressure balance distance to the ion inertia length. When the ratio gets small, the shock may disappear. Finally, we present a global Hall MHD simulation for comparison with the observation from Chang'E-2 satellite on 11 October 2010 and confirm that Chang'E-2 flew across compression regions of two separate minimagnetospheres.
Submicron electrode gaps fabricated by gold electrodeposition at interdigitated electrodes
Megen, M.J.J; Olthuis, W.; Berg, van den A.
2014-01-01
Electrodes with submicron gaps are desired for achieving high amplification redox cycling sensors. In this contribution we report the use of electrodeposition of gold in order to decrease the inter-electrode spacing at interdigitated electrodes. Using this method submicron spacings can be obtained w
Jacobsen, Torben; Broers, G. H. J.
1977-01-01
for the oxygen electrode reaction is estimatedfrom thermodynamic data and reasonable agreement with the experimentalresults is found. It is concluded that the main contribution to the Peltierentropy arises from the transition from gaseous to liquid state, whereas thetransfer entropies of the ionic species...
M. A. Lopez-Gordo
2014-07-01
Full Text Available Electroencephalography (EEG emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications.
Mercury film electrodes: developments, trends and potentialities for electroanalysis.
Economou, A; Fielden, P R
2003-03-01
In this article, the field of mercury film electrodes (MFE's) as electroanalytical devices is reviewed. Special emphasis is placed on the area of new materials as substrates for the mercury coating and the mercury plating process as well as on the developments related to the electrode modification used to achieve an increase in either the selectivity and/or the sensitivity of the analysis. Other topics discussed are microelectrodes, disposable electrodes and some novel, innovative or less well explored applications of electroanalytical methods using MFE's. The future prospects, potential uses and alternatives for MFE's in electroanalysis are finally discussed.
Kang, L.; Matsuo, T. [Kyoto University (Japan). Dept. of Electrical Engineering; Inui, Y. [Toyohashi University of Technology (Japan). Dept. of Electrical and Electronic Engineering; Ishikawa, M. [University of Tsukuba (Japan). Inst. of Engineering Mechanics and Systems; Umoto, J. [Fukuyama University (Japan)
2000-09-01
Performance analyses of a commercial scale closed-cycle MHD disk generator are performed. A large scale MHD generator, superconducting magnet, inversion system and synchronous generator are designed. The MHD generator is operated with Ar-Cs plasma and connected to the ac power infinite bus through line-commutated inverters, while the synchronous generator is operated in parallel. The thermal input is 1000 MW, and the power output is 400 and 200 MW, from the MHD and synchronous generators. Fault analyses have found that rather large fluctuations within the MHD generator are induced by faults of the inverter and power transmission line, but control of the inverters can recover the MHD generation system to normal operation within 0.15 s. The feature of behavior of the MHD generator is the same with or without the parallel operation of the synchronous generator. The interaction between the MHD and the synchronous generators is small, and this feature is much different from the open-cycle MHD generation system, since the variation of output current of the closed-cycle disk MHD generator is much smaller compared with open-cycle MHD generators. (author)
Electroanalysis with carbon paste electrodes
Svancara, Ivan; Walcarius, Alain; Vytras, Karel
2011-01-01
Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera
Ion-selective electrode reviews
Thomas, J D R
1985-01-01
Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.
Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations
Jiang, Yan-Fei
I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal
Site Selection for Hvdc Ground Electrodes
Freire, P. F.; Pereira, S. Y.
2014-12-01
High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the
Electroformed Electrodes for Electrical-Discharge Machining
Werner, A.; Cassidenti, M.
1984-01-01
Copper electrodes replace graphite electrodes in many instances of electrical-discharge machining (EDM) of complex shapes. Copper electrodes wear longer and cause less contamination of EDM dielectric fluid than do graphite electrodes.
Analysis on MHD Stability of Free Surface Jet flow in a Gradient Magnetic Fields
许增裕; 康伟山; 潘传杰
2004-01-01
The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.
A Numerical Study of Resistivity and Hall Effects for a Compressible MHD Model
Yee, H. C.; Sjogreen, B.
2005-01-01
The effect of resistive, Hall, and viscous terms on the flow structure compared with compressible ideal MHD is studied numerically for a one-fluid non-ideal MHD model. The goal of the present study is to shed some light on the emerging area of non-ideal MHD modeling and simulation. Numerical experiments are performed on a hypersonic blunt body flow with future application to plasma aerodynamics flow control in reentry vehicles. Numerical experiments are also performed on a magnetized time-developing mixing layer with possible application to magnetic/turbulence mixing.
2012-02-28
Engineering, 2010. 8 Roth, T., “ Modeling and Numerical Simulations of Pulse Detonation Engines with MHD Thrust Augmentation”, M.S. thesis, Department of...throat, at time 2.3ms. Results are shown for the PDE (blow-down model ) with and without MHD generation in the region between 0.4 and 0.8m from the...down model ) for different values of the exit- to-throat area ratio and for different altitudes, without MHD generation and without the presence of the
MHD Simulations of Core Collapse Supernovae with Cosmos++
Akiyama, Shizuka
2010-01-01
We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core--collapse supernovae. We have initialized a non--rotating 15 solar mass progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post--collapse environment is expected to be only ~ 200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. (2003) and Obergaulinger et al. (2009).
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Poynting Flux-Conserving Boundary Conditions for Global MHD Models
Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Lyon, J.; Merkin, V. G.; Wiltberger, M. J.
2014-12-01
Poynting Flux-conserving boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the low-altitude (or inner) boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. This method involves the mapping of both the potential from the ionosphere and the perpendicular magnetic field from the inner magnetosphere to the ghost cells of the computational domain. The single fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method. The comparisons of simulations using the standard hardwall boundary conditions of the LFM model and the flux-conserving boundary conditions show that the method reported here improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the field-aligned DC Poynting flux just above the boundary is very nearly equal to the ionospheric Joule heating, as it should be if electromagnetic energy is conserved.
Non-Radial Oscillations in an Axisymmetric MHD Incompressible Fluid
A. Satya Narayanan
2000-09-01
It is well known from Helioseismology that the Sun exhibits oscillations on a global scale, most of which are non-radial in nature. These oscillations help us to get a clear picture of the internal structure of the Sun as has been demonstrated by the theoretical and observational (such as GONG) studies. In this study we formulate the linearised equations of motion for non-radial oscillations by perturbing the MHD equilibrium solution for an axisymmetric incompressible fluid. The fluid motion and the magnetic field are expressed as scalars , , and , respectively. In deriving the exact solution for the equilibrium state, we neglect the contribution due to meridional circulation. The perturbed quantities *, *, *, * are written in terms of orthogonal polynomials. A special case of the above formulation and its stability is discussed.
The SOL width and the MHD interchange instability in tokamaks
Kerner, W. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O. [Kurchatov institute, Moscow (Russian Federation)
1994-07-01
Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.
Newest insights from MHD numerical modeling of Pulsar Wind Nebulae
Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.
2016-06-01
Numerical MHD models are considered very successful in accounting for many of the observed properties of Pulsar Wind Nebulae (PWNe), especially those concerning the high energy emission morphology and the inner nebula dynamics. Although PWNe are known to be among the most powerful accelerators in nature, producing particles up to PeV energies, the mechanisms responsible of such an efficient acceleration are still a deep mystery. Indeed, these processes take place in one of the most hostile environment for particle acceleration: the relativistic and highly magnetized termination shock of the pulsar wind. The newest results from numerical simulations of the Crab Nebula, the PWN prototype, will be presented, with special attention to the problem of particle acceleration. In particular it will be shown how a multi-wavelengths analysis of the wisps properties can be used to constrain the particle acceleration mechanisms working at the Crab's termination shock, by identifying the particle acceleration site at the shock front.
Viscous, resistive MHD stability computed by spectral techniques
Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.
1983-01-01
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.
MHD Remote Numerical Simulations: Evolution of Coronal Mass Ejections
Hernandez-Cervantes, L; Gonzalez-Ponce, A R
2008-01-01
Coronal mass ejections (CMEs) are solar eruptions into interplanetary space of as much as a few billion tons of plasma, with embedded magnetic fields from the Sun's corona. These perturbations play a very important role in solar--terrestrial relations, in particular in the spaceweather. In this work we present some preliminary results of the software development at the Universidad Nacional Autonoma de Mexico to perform Remote MHD Numerical Simulations. This is done to study the evolution of the CMEs in the interplanetary medium through a Web-based interface and the results are store into a database. The new astrophysical computational tool is called the Mexican Virtual Solar Observatory (MVSO) and is aimed to create theoretical models that may be helpful in the interpretation of observational solar data.
New tests for a singularity of ideal MHD
Kerr, R M; Kerr, Robert M.; Brandenburg, Axel
2000-01-01
Analysis using new calculations with 3 times the resolution of the earlier linked magnetic flux tubes confirms the transition from singular to saturated growth rate reported by Grauer and Marliani \\cite{GrauerMar99} for the incompressible cases is confirmed. However, all of the secondary tests point to a transition back to stronger growth rate at a different location at late times. Similar problems in ideal hydrodynamics are discussed, pointing out that initial negative results eventually led to better initial conditions that did show evidence for a singularity of Euler. Whether singular or near-singular growth in ideal MHD is eventually shown, this study could have bearing on fast magnetic reconnection, high energy particle production and coronal heating.
3D MHD disruptions simulations of tokamaks plasmas
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D; Abdelhamid, H M; Morrison, P J
2016-01-01
A comprehensive study of a reduced version of Lust's equations, the extended magnetohydrodynamic (XMHD) model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality, is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way energy conservation along with four families of Casimir invariants are naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Observations of nonequilibrium electrical discharge in an MHD disk generator
Harada, N.; Yamasaki, H.; Shioda, S.
1986-04-01
Discharge phenomena (nonequilibrium) in an MHD disk generator with potassium-seeded argon as a working gas have been investigated experimentally using a shock tube facility. A detailed study of high-speed photographs shows that an unsteady motion of a strongly constricted discharge occurs, particularly in the disk entrance region, characterized by a negative Hall potential. Responding to a suitable external load resistance, the negative Hall potential is reduced due to the development of a stable region against the ionization instability under full seed ionization; thus, a substantial increase of power output can be achieved. Under this condition, a uniform discharge is observed downstream and the strongly inhomogeneous and unsteady discharge is confined to a narrow region at the entrance. For smaller load resistances, intense spiral arcs with enhanced fluctuations are observed. 18 references.
Modeling parameter influences on MHD swirl combustion nozzle design
Lilley, D. G.; Gupta, A. K.; Busnaina, A. A.
1982-01-01
Attention is given to a research project which has the goal to develop a two-stage slagging gasifier-combustor in the form of a high-intensity combustor, taking into account a suitable aerodynamic design of the second stage nozzle which will prevent the separation of the boundary layer as the flow turns from axial to radial direction. The specific objectives of the present investigation are to test the effect of various second-stage nozzle geometries, flow rates, swirl number, and distribution in the first and second stages upon the corresponding flowfield in the second stage. Special emphasis is given to the avoidance of boundary layer separation as the flow turns from axial to radial direction into the MHD disk generator.
Generation of sheet currents by high frequency fast MHD waves
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.
Numerical study for MHD peristaltic flow in a rotating frame.
Hayat, T; Zahir, Hina; Tanveer, Anum; Alsaedi, A
2016-12-01
The aim of present investigation is to model and analyze the magnetohydrodynamic (MHD) peristaltic transport of Prandtl fluid in a channel with flexible walls. The whole system consisting of fluid and channel are in a rotating frame of reference with uniform angular velocity. Viscous dissipation in thermal equation is not ignored. The channel boundaries satisfy the convective conditions in terms of temperature. The arising complicated problems are reduced in solvable form using large wavelength and small Reynolds number assumptions. Numerical solution for axial and secondary velocities, temperature and heat transfer coefficient are presented. Main emphasis is given to the outcome of rotation and material parameters of Prandtl fluid on the physical quantities of interest.
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D.; Tassi, E.; Abdelhamid, H. M.; Morrison, P. J.
2017-01-01
A comprehensive study of the extended magnetohydrodynamic model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way, the energy conservation along with four families of Casimir invariants is naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular, normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Comparisons of Cosmological MHD Galaxy Cluster Simulations to Radio Observations
Xu, Hao; Murgia, Matteo; Li, Hui; Collins, David C; Norman, Michael L; Cen, Renyue; Feretti, Luigina; Giovannini, Gabriele
2012-01-01
Radio observations of galaxy clusters show that there are $\\mu$G magnetic fields permeating the intra-cluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic VLA observations of simulated galaxy clusters to radio observations of Faraday Rotation Measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement (AMR) magneto-hydrodynamic (MHD) simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al. (2010, 2011), we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both $|RM|$ and the dispersion of RM (...
Hamiltonian and action formalisms for two-dimensional gyroviscous MHD
Morrison, P J; Acevedo, R
2014-01-01
A general procedure for constructing action principles for continuum models via a generalization of Hamilton's principle of mechanics is described. Through the procedure, an action principle for a gyroviscous magnetohydrodynamics (MHD) model is constructed. The model is shown to agree with a reduced version of Braginskii's fluid equations. The construction reveals the origin of the gyromap, a device used to derive previous gyrofluid models. Also, a systematic reduction procedure is presented for obtaining the Hamiltonian structure in terms of the noncanonical Poisson bracket. The construction procedure yields a class of Casimir invariants, which are then used to variational principles for equilibrium equations with flow and gyroviscosity. The procedure for obtaining reduced fluid models with gyroviscosity is also described.
Solution of MHD problems with mixed-type boundary conditions
Antimirov, M.IA.
1985-06-01
The introduction of artificial anisotropy of the dynamic viscosity in one of the subregions in which the solution is sought is utilized to derive an approximation method for MHD problems with mixed-type boundary conditions. The method is demonstrated through two problems: slow rotation of a disk and motion of a finite-width infinitely long plate in an infinite volume of a conducting fluid. The velocity and magnetic field solutions are obtained in the form of integrals of Bessel functions, and the torque is found. It is shown that when the Hartmann number approaches infinity the torque of a convex body of revolution in a longitudinal magnetic field is equal to that of a disk lying at the centerline section of the body.
Hybrid Method for Tokamak MHD Equilibrium Configuration Reconstruction
HE Hong-Da; DONG Jia-Qi; ZHANG Jin-Hua; JIANG Hai-Bin
2007-01-01
A hybrid method for tokamak MHD equilibrium configuration reconstruction is proposed and employed in the modified EFIT code. This method uses the free boundary tokamak equilibrium configuration reconstruction algorithm with one boundary point fixed. The results show that the position of the fixed point has explicit effects on the reconstructed divertor configurations. In particular, the separatrix of the reconstructed divertor configuration precisely passes the required position when the hybrid method is used in the reconstruction. The profiles of plasma parameters such as pressure and safety factor for reconstructed HL-2A tokamak configurations with the hybrid and the free boundary methods are compared. The possibility for applications of the method to swing the separatrix strike point on the divertor target plate is discussed.
Electrode models in electrical impedance tomography
WANG M.
2005-01-01
This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration .in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.
MHD models compared with Artemis observations at -60 Re
Gencturk Akay, Iklim; Sibeck, David; Angelopoulos, Vassilis; Kaymaz, Zerefsan; Kuznetsova, Maria
2016-07-01
The distant magnetotail has been one of the least studied magnetic regions of the Earth's magnetosphere compared to the other near Earth both dayside and nightside magnetospheric regions owing to the limited number of spacecraft observations. Since 2011, ARTEMIS spacecraft give an excellent opportunity to study the magnetotail at lunar distances in terms of data quality and parameter space. This also gives opportunities to improve the magnetotail models at -60 Re and encourages the modelling studies of the distant magnetotail. Using ARTEMIS data in distant magnetotail, we create magnetic field and plasma flow vector maps in different planes and separated with IMF orientation to understand the magnetotail dynamics at this distance. For this study, we use CCMC's Run-on-Request resources of the MHD models; specifically SWMF-BATS-R-US, OpenGGCM, and LFM and perform the similar analysis with the models. Our main purpose in this study is to measure the performance of the MHD models at -60 Re distant magnetotail by comparing the model results with Artemis observations. In the literature, such a comprehensive comparative study is lacking in the distant tail. Preliminary results show that in general all three models underestimate the magnetic field structure while overestimating the flow speed. In the cross-sectional view, LFM seems to produce the better agreement with the observations. A clear dipolar magnetic field structure is seen with dawn-dusk asymmetry in all models owing to slight positive IMF By but the effect was found to be exaggerated. All models show tailward flows at this distance of the magnetotail, most possibly owing to the magnetic reconnection at the near Earth tail distances. A detailed comparison of several tail characteristics from the models will be presented and discussions will be given with respect to the observations from Artemis at this distance.
MHD Flow Visualization of Magnetopause and Polar Cusps Vortices
Collado-Vega, Y. M.; Kessel, R. L.; Shao, X.; Boller, R. A.
2007-01-01
Detailed analysis of Wind, Geotail, and Cluster data shows how magnetopause boundary and polar cusps vortices associated with high speed streams can be a carrier of energy flux to the Earth's magnetosphere. For our analysis time interval, March 29 . - April 5 2002, the Interplanetary Magnetic Field (IMF) is primarily northward and MHD simulations of vortices along the flanks within nine hours of the time interval suggest that a Kelvin Helmholtz (KH) instability is likely present. Vortices were classified by solar wind input provided by the Wind satellite located 70-80 RE upstream from Earth. We present statistics for a total of 304 vortices found near the ecliptic plane on the magnetopause flanks, 273 with northward IMF and 31 with southward IMF. The vortices generated under northward IMF were more driven into the dawnside than into the duskside, being substantially more ordered on the duskside. Most of the vortices were large in scale, up to 10 RE, and with a rotation axis closely aligned with the Z(sub GSE) direction. They rotated preferentially clockwise on the dawnside, and. counter-clockwise on the duskside. Those generated under southward IMF were less ordered, fewer in number, and also smaller in diameter. Significant vortex activity occurred on the nightside region of the magnetosphere for these southward cases in contrast to the northward IMF cases on which most of the activity was driven onto the magnetopause flanks. Magnetopause crossings seen by the Geotail spacecraft for the time interval were analyzed and compared with the MHD simulation to validate our results. Vortices over the polar cusps are also being analyzed and the simulation results will be compared to the multi-point measurements of the four Cluster satellites.
Relativistic HD and MHD modelling for AGN jets
Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.
2013-12-01
Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Realistic radiative MHD simulation of a solar flare
Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.
2017-08-01
We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".
Ion-selective electrode reviews
Thomas, J D R
1983-01-01
Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.
Electrocatalysts for oxygen electrodes
Yeager, E.B. (Case Western Reserve Univ., Cleveland, OH (United States))
1991-10-01
The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.
Scaling laws of coronal loops compared to a 3D MHD model of an Active Region
Bourdin, Philippe-A; Peter, Hardi
2016-01-01
Context. The structure and heating of coronal loops are investigated since decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and the coronal heating. Aims. We test such scaling laws against a large-scale 3D MHD model of the Solar corona, which became feasible with nowadays high-performance computing. Methods. We drive an active region simulation a with photospheric observations and found strong similarities to the observed coronal loops in X-rays and EUV wavelength. A 3D reconstruction of stereoscopic observations showed that our model loops have a realistic spatial structure. We compare scaling laws to our model data extracted along an ensemble of field lines. Finally, we fit a new scaling law that represents well hot loops and also cooler structures, which was not possible before only based on observations. Results. Our model data gives some support for scaling laws that were established for hot and EUV-emissive coronal loops. For the RTV scali...
Real time MHD mode control using ECCD in KSTAR: Plan and requirements
Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L. [National Fusion Research Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea, Republic of); Namkung, W.; Park, H.; Cho, M. H. [Department of Physics, POSTECH, Hyoja-dong, Nam-gu, Pohang, Gyeongangbuk-do (Korea, Republic of); Kim, M. H.; Kim, K. J.; Na, Y. S. [Department of Nuclear Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul (Korea, Republic of); Hosea, J.; Ellis, R. [Princeton Plasma Physics Laboratory, Princeton (United States)
2014-02-12
For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.
Composite electrodes for lithium batteries.
Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.
1999-02-03
The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.
Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.
2017-06-01
Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.
Blanket-relevant liquid metal MHD channel flows: Data base and optimization simulation development
Evtushenko, I.A.; Kirillov, I.R.; Sidorenkov, S.I. [D.V. Efremov Inst. of Electrophysical Apparatus, St Petersburg (Russian Federation)
1995-12-31
The problems of generalization and integration of test, theoretical and design data relevant to liquid metal (LM) blanket are discussed in present work. First results on MHD data base and LM blanket optimization codes are presented.
MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980
Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.
1981-03-01
The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).
Technical support for open-cycle MHD program. Progress report, January-June 1979
Bomkamp, D. H. [ed.
1980-07-01
The support program for open-cycle MHD at the Argonne National Laboratory consists of developing the analytical tools needed for investigation of the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and, also, on the integration of these analytical models into a model of the entire power-producing system. The present project activities include modeling of the combustor, generator, seed deposition, and formation and decomposition of NO. Parametric studies were performed to evaluate the performance of the U-25B generator and to support the design of the US U-25B generator. Refinements and improvements to the MHD systems code and executive program are described.
MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction
Romanova M. M.
2014-01-01
Full Text Available We review recent axisymmetric and three-dimensional (3D magnetohydrodynamic (MHD numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.
Variational approach to low-frequency kinetic-MHD in the current coupling scheme
Burby, Joshua W.; Tronci, Cesare
2017-04-01
Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which obeys a kinetic equation. In this work we apply Hamilton’s variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling schemes, in which energetic particle dynamics are expressed in either guiding center or gyrocenter coordinates. When guiding center theory is used to model the hot particles, we show how energy conservation requires corrections to the standard magnetization term. On the other hand, charge and momentum conservation in gyrokinetic-MHD lead to extra terms in the usual definition of the hot current density as well as modifications to conventional gyrocenter dynamics. All these new features arise naturally from the underlying variational structure of the proposed models.
Lie group analysis of viscoelastic MHD aligned flow and heat transfer
Asif Ali; Ahmer Mehmood; Muhammad R. Mohyuddin; Keren Wang; Yunming Chen
2005-01-01
Exact solutions for an incompressible, viscoelastic, electrically conducting MHD aligned fluid are obtained for velocity components and temperature profiles. Lie Group method is applied to obtain the solution and the symmetries used are of translational type.
Momentum Transport in DIII-D Discharges with and Without Magnetohydrodynamics (MHD) Activity
REN Qilong; J.M.PARK; J.S.DEGRASSIE; M.S.CHU; L.L.LAO; H.St.JOHN; R.LAHAYE; Y.M.JEON; ZHANG Cheng; ZHOU Deng; LI Guoqiang
2009-01-01
Two phases of a DIII-D discharge with and without magnetohydrodynamics(MHD)activity are analysed using ONETWO code.The toroidal momentum flux is extracted from experimental data and compared with the predictions by neoclassical theory,Gyro-Landau fluid transport model (GLF23) and Multi-Mode model(MMM95). It iS found that without MHD activities GLF23 and MMM95 provide a reasonable description while with MHD activity no model alone can fully describe the experimental momentum flux.For the phase with MHD activity a simple model of resonant magnetic drag is tested and it cannot fully explain the plasma slowing down observed in experiment.
Variational approach to low-frequency kinetic-MHD in the current coupling scheme
Burby, J W
2016-01-01
Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which is described by a kinetic equation. When the Vlasov description is adopted for the energetic particles, different Vlasov-MHD models have been shown to lack an exact energy balance, which was recently recovered by the introduction of non-inertial force terms in the kinetic equation. These force terms arise from fundamental approaches based on Hamiltonian and variational methods. In this work we apply Hamilton's variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling hybrid schemes, in which energetic particle dynamics are expressed in either guiding-center or gyrocenter coordinates.
Free-boundary ideal MHD stability of W7-X divertor equilibria
Nührenberg, C.
2016-07-01
Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.
Variational approach to low-frequency kinetic-MHD in the current-coupling scheme
Tronci, Cesare; Burby, Joshua
2016-10-01
Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which is described by a kinetic equation. When the Vlasov description is adopted for the energetic particles, different Vlasov-MHD models have been shown to lack an exact energy balance, unless non-inertial force terms are inserted in the kinetic equation. These force terms arise from fundamental approaches based on Hamiltonian and variational methods. In this work we apply Hamilton's variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling hybrid schemes, in which energetic particle dynamics are expressed in either guiding-center or gyrocenter coordinates. Financial support by the Leverhulme Trust Research Project Grant No. 2014-112 is greatly acknowledged.
Dellinger, T. C.; Hnat, J. G.; Marston, C. H.
1979-01-01
A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.
Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu
2016-12-01
Numerical and experimental investigation results on the magnetohydrodynamics (MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity (V), the chute width (W) and the inlet film thickness (d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field, especially small radial magnetic fields (Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB125003 and 2013GB114002), National Natural Science Foundation of China (No. 11105044)
Ali, Farhad; Saqib, Muhammad; Khan, Ilyas; Sheikh, Nadeem Ahmad; Jan, Syed Aftab Alam
2017-02-01
This paper carries out an exact analysis of the MHD free convection flow of a Walters'-B fluid over an oscillating isothermal vertical plate embedded in a porous medium. Exact solutions are produced for velocity, temperature and concentration with the aid of the Laplace transform technique. Similarly, at the wall, the corresponding shear stress is also calculated from the velocity expression. The obtained results confirm an excellent agreement with previously published work. The influence of various pertinent parameters is plotted and illustrated graphically. Finally, the numerical results for the skin friction are exhibited in tabular form.
Exact solutions for MHD flow of couple stress fluid with heat transfer
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
The MHD simulations of 3D magnetic reconnection near null point of magnetic configurations
Bulanov, S.V. [Institute of General Physics, Russian Academy of Sciences, Moscow (Russian Federation); Echkina, E.Yu; Inovenkov, I.N.; Pichushkin, V.V. [Moscow State University, Moscow (Russian Federation); Pegoraro, F. [Dipartimento di Fisica dell' Universit' a di Pisa and INFM (Italy)
2000-07-01
We investigate 3D plasma flow in the vicinities of critical points of magnetic configurations. The study is based on the analysis of exact self-similar solution of the MHD equations and 3D computer simulations. Both the analytical solution and 3D MHD simulations demonstrate appearance of singular distribution of the electric current density near the magnetic field separatrix surfaces of the form of the current and vortex sheets. (author)
Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.
1981-01-01
A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.
MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components
ZHANG Xiujie; XU Zengyu; PAN Chuanjie
2008-01-01
Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)
TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh
Schnack, D.D.; Lottati, I.; Mikic, Z. [Science Applications International Corp., San Diego, CA (United States)] [and others
1995-07-01
The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.
Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power
Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.
1991-01-01
The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.
MHD Shock Conditions for Accreting Plasma onto Kerr Black Holes - I
Takahashi, Masaaki; Rilett, Darrell; Fukumura, Keigo; Tsuruta, Sachiko
2002-01-01
We extend the work by Appl and Camenzind (1988) for special relativistic magnetohydrodynamic (MHD) jets, to fully general relativistic studies of the standing shock formation for accreting MHD plasma in a rotating, stationary and axisymmetric black hole magnetosphere. All the postshock physical quantities are expressed in terms of the relativistic compression ratio, which can be obtained in terms of preshock quantities. Then, the downstream state of a shocked plasma is determined by the upstr...
Expected IPS variations due to a disturbance described by a 3-D MHD model
Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.
1988-01-01
The variations of interplanetary scintillation due to a disturbance described by a three-dimensional, time-dependent, MHD model of the interplanetary medium are calculated. The resulting simulated IPS maps are compared with observations of real disturbances and it is found that there is some qualitative agreement. It is concluded that the MHD model with a more realistic choice of input conditions would probably provide a useful description of many interplanetary disturbances.
Toward 3D MHD modeling of neoclassical tearing mode suppression by ECCD
Westerhof E.
2012-09-01
Full Text Available We propose a framework to extend the magnetohydrodynamic (MHD equations to include electron cyclotron current drive (ECCD and discuss previous models proposed by Giruzzi et al. [2] and by Hegna and Callen [3]. To model neoclassical tearing mode (NTM instabilities and study the growth of magnetic islands as NTMs evolve, we employ the nonlinear reduced-MHD simulation JOREK. We present tearing-mode growth-rate calculations from JOREK simulations.
Selimovic, Asmira; Johnson, Alicia S; Kiss, István Z; Martin, R Scott
2011-04-01
A new method of fabricating electrodes for microchip devices that involves the use of Teflon molds and a commercially available epoxy to embed electrodes of various sizes and compositions is described. The resulting epoxy base can be polished to generate a fresh electrode and sealed against poly(dimethylsiloxane) (PDMS)-based fluidic structures. Microchip-based flow injection analysis was used to characterize the epoxy-embedded electrodes. It was shown that gold electrodes can be amalgamated with liquid mercury and the resulting mercury/gold electrode is used to selectively detect glutathione from lysed red blood cells. The ability to encapsulate multiple electrode materials of differing compositions enabled the integration of microchip electrophoresis with electrochemical detection. Finally, a unique feature of this approach is that the electrode connection is made from the bottom of the epoxy base. This enables the creation of three-dimensional gold pillar electrodes (65 μm in diameter and 27 μm in height) that can be integrated within a fluidic network. As compared with the use of a flat electrode of a similar diameter, the use of the pillar electrode led to improvements in both the sensitivity (72.1 pA/μM for the pillar versus 4.2 pA/μM for the flat electrode) and limit of detection (20 nM for the pillar versus 600 nM for the flat electrode), with catechol being the test analyte. These epoxy-embedded electrodes hold promise for the creation of inexpensive microfluidic devices that can be used to electrochemically detect biologically important analytes in a manner where the electrodes can be polished and a fresh electrode surface is generated as desired.
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field
N. V. Erkaev
2002-01-01
Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.
Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM
Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou
2015-11-15
Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.
Simulation of three-dimensional nonideal MHD flow at high magnetic Reynolds number
无
2010-01-01
A conservative TVD scheme is adopted to solve the equations governing the three-dimensional flow of a nonideal compressible conducting fluid in a magnetic field.The eight-wave equations for magnetohydrodynamics(MHD) are proved to be a non-strict hyperbolic system,therefore it is difficult to develop its eigenstructure.Powell developed a new set of equations which cannot be numerically simulated by conservative TVD scheme directly due to its non-conservative form.A conservative TVD scheme augmented with a new set of eigenvectors is proposed in the paper.To validate this scheme,1-D MHD shock tube,unsteady MHD Rayleigh problem and steady MHD Hartmann problem for different flow conditions are simulated.The simulated results are in good agreement with the existing analytical results.So this scheme can be used to effectively simulate high-conductivity fluids such as cosmic MHD problem and hypersonic MHD flow over a blunt body,etc.
A CLASS OF TWO-STEP TVD MACCORMACK TYPE NUMERICAL SCHEME FOR MHD EQUATIONS
FENG Xueshang; WEI Fengsi; ZHONG Dingkun
2003-01-01
In this paper, a new numerical scheme of Total Variation Diminishing (TVD) MacCormack type for MagnetoHydroDynamic (MHD) equations is proposed by taking into account of the characteristics such as convergence, stability, resolution. This new scheme is established by solving the MHD equations with a TVD modified MacCormack scheme for the purpose of developing a scheme of quick convergence as well as of TVD property. To show the validation, simplicity and practicability of the scheme for modelling MHD problems, a self-similar Cauchy problem with the discontinuous initial data consisting of constant states, and the collision of two fast MHD shocks, and two-dimensional Orszag and Tang's MHD vortex problem are discussed with the numerical results conforming to the existing results obtained by the Roe type TVD, the high-order Godunov scheme,and Weighted Essentially Non-Oscillatory (WENO) scheme. The numerical tests show that this two-step TVD MacCormack numerical scheme for MHD system is of robust operation in the presence of very strong waves, thin shock fronts, thin contact and slip surface discontinuities.
Bhola Jha
2014-06-01
Full Text Available Electrical discharge machining (EDM is one of the earliest non-traditional machining processes, based on thermoelectric energy between the workpiece and an electrode. In this process, the material is removed electro thermally by a series of successive discrete discharges between two electrically conductive objects, i.e., the electrode and the workpiece. The performance of the process, to a large extent, depends on the material, design and manufacturing method of the electrodes. Electrode design and method of its manufacturing also affect on the cost of electrode. Researchers have explored a number of ways to improve electrode design and devised various ways of manufacturing. The paper reports a review on the research relating to EDM electrode design and its manufacturing for improving and optimizing performance measures and reducing time and cost of manufacturing. The final part of the paper discusses these developments and outlines the trends for future research work.
Electrodeposition of uranium and thorium onto small platinum electrodes
Reichenberger, Michael A., E-mail: mar89@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States); Ito, Takashi [Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401 (United States); Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States)
2016-03-11
Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be −0.62 V to −0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.
Electrodeposition of uranium and thorium onto small platinum electrodes
Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.
2016-03-01
Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.
Chaplin, Vernon; Bellan, Paul
2013-10-01
We are studying MHD-driven jets relevant to astrophysical jets and fusion plasmas. Previous experiments at Caltech have focused on plasmas created by breaking down neutral gas using high voltage. The Paschen breakdown criterion governing this process sets an undesirable lower limit for the jet density. To overcome this constraint, we have developed a pre-ionization system powered by a pulsed, battery-powered, 3 kW 13.56 MHz RF amplifier. Pre-ionization of plasma in a tube behind the jet experiment's center electrode is expected to enable the formation of lower density, hotter, faster jets. Thus far, argon jets have been created with v >30 km/s, twice as fast as was previously achievable. The expansion of the RF plasma into the chamber prior to the discharge of the main capacitor bank involves surprisingly complex dynamics. There are two phases: initially plasma expansion along the background magnetic field is inhibited and the primary source of emission away from the RF antenna appears to be neutral atoms excited by fast electrons or photons from the RF source. At a later time, either before or after RF turn-off depending on the magnetic field configuration, a relatively high density (ne >1018 m-3) , cold (Te < 0.5 eV) cloud of plasma emerges from the source tube.
Gas sensor with multiple internal reference electrodes and sensing electrodes
2016-01-01
The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...... electrolyte, at least two sensing electrodes (SEs) in solid contact with the electrolyte, and at least two internal reference electrodes (IREs) in solid contact with the electrolyte, wherein each IRE comprises a composite material, comprising a binary mixture of a metal and a metal oxide dispersed to form...
Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials
Minghui Luo
2017-01-01
Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.
Recovery Of Electrodic Powder From Spent Lithium Ion Batteries (LIBs
Shin S.M.
2015-06-01
Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in cobalt (Co and lithium (Li from spent lithium ion battery. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent lithium ion batteries (LIBs were heated over the range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, and atomic absorption spectroscopy (AA and furthermore image of the powder was taken by scanning electron microscopy (SEM. It was finally found that cobalt and lithium were mainly recovered to about 49 wt.% and 4 wt.% in electrodic powder, respectively.
Gold electrodes from recordable CDs
Angnes; Richter; Augelli; Kume
2000-11-01
Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.
Transparent Electrodes for Efficient Optoelectronics
Morales-Masis, Monica
2017-03-30
With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.
Electrodynamic Arrays Having Nanomaterial Electrodes
Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)
2013-01-01
An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
Jointed Holder For Welding Electrodes
Gilbert, Jeffrey L.
1991-01-01
Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.
Hooper, E.B. [ed.; Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Fenstermacher, M.E.; Foote, J.H.; Hoshino, K. [and others
1994-01-01
The MTX experiment was proposed in 1986 to apply high frequency microwaves generated by a free-electron laser (FEL) to electron cyclotron resonance heating (ECRH) in a high field, high density tokamak. As the absorption of microwaves at the electron cyclotron resonance requires high frequencies, the opportunity of applying a free-electron laser has appeal as the device is not limited to frequencies in the microwave or long millimeter wavelength regions, in contrast to many other sources. In addition, the FEL is inherently a high power source of microwaves, which would permit single units of 10 MW or more, optimum for reactors. Finally, it was recognized early in the study of the application of the FEL based on the induction linear accelerator, that the nonlinear effects associated with the intense pulses of microwaves naturally generated would offer several unique opportunities to apply ECRH to current drive, MHD control, and other plasma effects. It was consequently decided to adapt the induction accelerator based FEL to heating and controlling the tokamak, and to conduct experiments on the associated physics. To this end, the Alcator C tokamak was moved from the Massachusetts Institute of Technology (MIT) to the Lawrence Livermore National Laboratory where it was installed in Building 431 and operated from March, 1989, until the conclusion of the experiment in October, 1992. The FEL, based on the ETA-11 accelerator and IMP wiggler was brought into operation by the LLNL Electron Beam Group and power injected into the tokamak during an experimental run in the Fall, 1989. Following an upgrade by the MTX group, a second experimental run was made lasting from the Winter, 1992 through the end of the experiment. Significant contributions to the ECRH experiments were made by the Japan Atomic Energy Research Institute (JAERI).
Ion-selective electrode reviews
Thomas, J D R
1982-01-01
Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d
Electrodes for Semiconductor Gas Sensors.
Lee, Sung Pil
2017-03-25
The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.
System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134
Annen, K.D.
1981-08-01
The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.
Inkjet printing of carbon black electrodes for dielectric elastomer actuators
Schlatter, Samuel; Rosset, Samuel; Shea, Herbert
2017-04-01
Inkjet printing is an appealing technique to print electrodes for Dielectric Elastomer Actuators (DEAs). Here we present the preparation and ink-jet printing of a carbon black electrode mixture and characterise its properties. Carbon black has been used extensively in the past because it is very compliant; however, it has a high resistance and can be very dirty to work with. In this paper we show that carbon black remains an appropriate electrode material, and when inkjet printed can be used to fabricate devices meeting today's demanding requirements. DEAs are becoming thinner to decrease actuation voltages and are shrinking in size to match the scale of the devices in the biomedical field, tuneable optics, and microfluidics. Inkjet printing addresses both of these problems. Firstly, Inkjet printing is a non-contact technique and can print on very thin freestanding membranes. Secondly, the high precision of inkjet printers makes it possible to print complex electrode geometries in the millimetre scale. We demonstrate the advantages of inkjet printing and carbon black electrodes by conducting a full characterisation of the printed electrodes. The printed carbon black electrodes have resistances as low as 13kΩ/□, an elastic modulus of approximately 1MPa, and a cyclic resistance swing which increases by 7% over 1500 cycles at 50% stretch. We also demonstrate a DEA with printed carbon black electrodes with a diametral stretch of 8.8% at an electric field of approximately 94V/μm. Finally a qualitative test is conducted to show that the printed carbon black electrode is extremely hardwearing.
A heuristic model for MRI turbulent stresses in Hall MHD
Lingam, M
2016-01-01
Although the Shakura-Sunyaev $\\alpha$ viscosity prescription has been highly successful in characterizing myriad astrophysical environments, it has proven to be partly inadequate in modelling turbulent stresses driven by the MRI. Hence, we adopt the approach employed by \\citet{GIO03}, but in the context of Hall magnetohydrodynamics (MHD), to study MRI turbulence. We utilize the exact evolution equations for the stresses, and the non-linear terms are closed through the invocation of dimensional analysis and physical considerations. We demonstrate that the inclusion of the Hall term leads to non-trivial results, including the modification of the Reynolds and Maxwell stresses, as well as the (asymptotic) non-equipartition between the kinetic and magnetic energies; the latter issue is also addressed via the analysis of non-linear waves. The asymptotic ratio of the kinetic and magnetic energies is shown to be \\emph{independent} of the choice of initial conditions, but it is governed by the \\emph{Hall parameter}. W...
Two-dimensional MHD model of the Jovian magnetodisk
Kislov, R. A.; Malova, H. V.; Vasko, I. Y.
2015-09-01
A self-consistent stationary axially symmetric MHD model of the Jovian magnetodisk is constructed. This model is a generalization of the models of plane current sheets that have been proposed earlier in order to describe the structure of the current sheet in the magnetotail of the Earth [1, 2]. The model takes centrifugal force, which is induced by the corotation electric field, and the azimuthal magnetic field into account. The configurations of the magnetic field lines for the isothermic (plasma temperature assumed to be constant) and the isentropic (plasma entropy assumed to be constant) models of the magnetodisk are determined. The dependence of the thickness of the magnetodisk on the distance to Jupiter is obtained. The thickness of the magnetodisk and the magnetic field distribution in the isothermic and isentropic models are similar. The inclusion of a low background plasma pressure results in a considerable reduction in the thickness of the magnetodisk. This effect may be attributed to the fact that centrifugal force prevails over the pressure gradient at large distances from the planet. The mechanism of unipolar induction and the related large-scale current system are analyzed. The direct and return Birkeland currents are determined in the approximation of a weak azimuthal magnetic field. The modeling results agree with theoretical estimates from other studies and experimental data.
MHD modeling of coronal loops: the transition region throat
Guarrasi, M; Orlando, S; Mignone, A; Klimchuk, J A
2014-01-01
The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. We study the area response with a time-dependent 2D MHD loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. We find that the area can change substantially with the quasi-steady heating rate, e.g. by ~40% at 0.5 MK as the loop temperature varies between 1 and 4 MK, and, therefore, affects the interpretation of DEM(T) curves.
Computer controlled MHD power consolidation and pulse-generation system
Johnson, R.
The major goal of this project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility will be established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a magnetohydrodynamic (MHD) Faraday connected generator which may be viewed as a multi-terminal d.c. source. This consolidation/inversion process is referred to subsequently as Pulse-Amplitude-Synthesis-and-Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible Phase 2 prototype system. This report covers the initial six months portion of the project and includes discussions on the following areas: (1) selection of a control computer with software tool kit for development of the PASC controller contract requirement; (2) problem formulation considerations for simulation of the PASC technique on digital computers; (3) initial simulation results for the PASC transformer, including simulation results obtained using SPICE and the INTEG program; (4) a survey of available gate-turn-off (GTO's), power semiconductors, power field effect transistors (PFET's), and fiber optics signal cabling and transducers.
A MHD-turbulence model for solar corona
Romeou, Z.; Velli, M.; Einaudi, G.
2009-02-01
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.
Review of free-surface MHD experiments and modeling.
Molokov, S.; Reed, C. B.
2000-06-02
This review paper was prepared to survey the present status of analytical and experimental work in the area of free surface MHD and thus provide a well informed starting point for further work by the Advanced Limiter-diverter Plasma-facing Systems (ALPS) program. ALPS were initiated to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/diverter systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2}, elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies.
MHD biconvective flow of Powell Eyring nanofluid over stretched surface
Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum
2017-06-01
The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.
Physics of the Solar Chromosphere: Beyond the Ideal MHD Description
Leake, James
2015-08-01
The solar chromosphere is the dynamic, physically complex, layer that lies between the visible solar surface and the magnetically dominated corona. Despite being a moderator of the amount of mass, magnetic field, and energy, that is transferred into the solar corona and the heliosphere and beyond, there are still important open questions regarding the chromosphere. Recent advancements in both observation and theoretical descriptions of the chromosphere have created new ideas about how the chromosphere controls the transfer of the above quantities from the Sun's interior into the heliosphere. Open questions still remain, such as, how is the chromosphere heated, and how do chromospheric events such as spicules, jets, reconnection, and wave propagation and dissipation contribute to the mass and energy balance in the solar atmosphere. Central to these questions are extensions to the standard magneto-hydro-dynamic (MHD) model of the Sun, such as non-local-thermodynamic-equilibrium radiation, and multi-fluid physics. In this talk, we summarize the importance of these extensions and look for the necessary developments to answer open questions about the chromosphere.
Current systems of coronal loops in 3D MHD simulations
Warnecke, Jörn; Bingert, Sven; Peter, Hardi
2016-01-01
We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...
Ionospheric conductance distribution and MHD wave structure: observation and model
F. Budnik
Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.
Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.
Wall functions for numerical modeling of laminar MHD flows
Widlund, O
2003-01-01
general wall function treatment is presented for the numerical modeling of laminar magnetohydrodynamic (MHD) flows. The wall function expressions are derived analytically from the steady-state momentum and electric potential equations, making use only of local variables of the numerical solution. No assumptions are made regarding the orientation of the magnetic field relative to the wall, nor of the magnitude of the Hartmann number, or the wall conductivity. The wall functions are used for defining implicit boundary conditions for velocity and electric potential, and for computing mass flow and electrical currents in near wall-cells. The wall function treatment was validated in a finite volume formulation, and compared with an analytic solution for a fully developed channel flow in a transverse magnetic field. For the case with insulating walls, a uniform 20 x 20 grid, and Hartmann numbers Ha = [10,30,100], the accuracy of pressure drop and wall shear stress predictions was [1.1%,1.6%,0.5%], respectively. Com...
Magnetosheath Turbulence at MHD Scales: A Statistical Study
Huang, Shiyong; Sahraoui, Fouad; Hadid, Lina; Yuan, Zhigang
2015-04-01
Turbulence is ubiquitous in space plasmas, such as terrestrial magnetotail and magnetosheath, solar wind, or the interstellar medium. In the solar wind, it is well established that at MHD scales, the magnetic energy spectra generally follow the so-called Kolmogorov's spectrum f-5/3. In the magnetosheath, Alexandrova et al. [2006] observed a Kolmogorov-like inertial range in the frequency range f < fci. In this study, we used three years data from the Cluster mission to statistically investigate the existence of the Kolmogorov inertial range in the whole magnetosheath, including flanks and subsolar regions. Statistical results show that most spectra are shallower than the Kolmogorov one, and have a scaling ~ f-1recalling the energy containing scales of solarwind turbulence. These spectra were found to be populated by uncorrelated fluctuations. The Kolmogorov scaling is observed only away from the bock shock and in the flanks region. These results suggest that random-like fluctuations are generated behind the shock, which reach a fully developed turbulence state only after some time corresponding to their propagation (or advection) away from the shock. At kinetic scales no dependence of the turbulence scaling on the location in the magnetosheath was found.
Acceleration and collimation of relativistic MHD disk winds
Porth, O
2009-01-01
We perform axisymmetric relativistic magnetohydrodynamic (MHD) simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100x200 inner disk radii. In general, we obtain collimated beams of mildly relativistic speed and mass-weighted half-opening angles of 3-7 degrees. When we increase the outflow Poynting flux by injecting an additional disk toroidal field into the inlet, Lorentz factors up to 6 are reached. These flows gain super-magnetosonic speed and remain Poynting flux dominated. The light surface of...
MHD stability of configurations with distorted toroidal coils
Cooper, W.A.; Ardela, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1997-06-01
We have investigated the local ideal MHD stability properties of a compact tokamak/torsatron configuration that models the proposed EPEIUS device. The {beta} limits imposed by the Mercier criterion and ballooning modes approach 1% in 50 kA peaked toroidal current and in current-free cases. A sequence at {beta}=6.75% is demonstrated to become marginally stable to local modes when the 180 kA toroidal current prescribed becomes sufficiently hollow that the maximum value of the inverse rotational transform q{sub max} exceeds 5 and the minimum value q{sub min} near the plasma edge approaches 2. The stabilisation mechanism is associated with the shape of the flux surface average of the parallel current density {sigma}>. A {sigma}> profile that increases in magnitude radially exercises a strong stabilizing influence on the energy principle. In the outer half of the plasma volume, the Mercier criterion (and to a lesser extent the ballooning eigenvalue) displays very local unstable spikes that align with rational values of 1/(qL). We interpret this as a potential for pressure-driven island formation rather than a strict stability limit. This phenomenon requires more detailed investigation using equilibrium codes that can study magnetic island structures. Global internal and external mode stability properties must also be examined, particularly for hollow current profile cases where the large toroidal plasma current concentrated near the plasma edge could destabilize external modes. (author) 1 fig., 5 refs.
Review of free-surface MHD experiments and modeling.
Molokov, S.; Reed, C. B.
2000-06-02
This review paper was prepared to survey the present status of analytical and experimental work in the area of free surface MHD and thus provide a well informed starting point for further work by the Advanced Limiter-diverter Plasma-facing Systems (ALPS) program. ALPS were initiated to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/diverter systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2}, elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies.
Relativistic MHD Simulations of Poynting Flux-Driven Jets
Guan, Xiaoyue; Li, Shengtai
2013-01-01
Relativistic, magnetized jets are observed to propagate to very large distances in many Active Galactic Nuclei (AGN). We use 3D relativistic MHD (RMHD) simulations to study the propagation of Poynting flux-driven jets in AGN. These jets are assumed already being launched from the vicinity ($\\sim 10^3$ gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al. (2006) and we follow the propagation of these jets to ~ parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When $\\alpha$, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to non-axisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability...
Global 3D MHD Simulations of Waves in Accretion Discs
Romanova M.M.
2013-04-01
Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
Extended MHD Turbulence and Its Applications to the Solar Wind
Abdelhamid, Hamdi M.; Lingam, Manasvi; Mahajan, Swadesh M.
2016-10-01
Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfvénic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal (k\\lt 1/{λ }i), Hall (1/{λ }i\\lt k\\lt 1/{λ }e), and electron inertia (k\\gt 1/{λ }e) regimes; k is the wavenumber and {λ }s=c/{ω }{ps} is the skin depth of species “s.” In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of -11/3 and -13/3 are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approximately -4 in this regime. It is thus plausible that these spectra may constitute a part of the (extended) inertial range, as opposed to the standard “dissipation” range paradigm.
Extended MHD turbulence and its applications to the solar wind
Abdelhamid, Hamdi M; Mahajan, Swadesh M
2016-01-01
Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfv\\'enic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal $\\left(k 1/\\lambda_e\\right)$ regimes; $k$ is the wavenumber and $\\lambda_s = c/\\omega_{p s}$ is the skin depth of species `$s$'. In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of $-11/3$ and $-13/3$ are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approxima...
Computer controlled MHD power consolidation and pulse generation system
Johnson, R.; Marcotte, K.; Donnelly, M.
1990-01-01
The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.
New aspects of plasma sheet dynamics - MHD and kinetic theory
H. Wiechen
Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 R_{E} tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.
Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection