WorldWideScience

Sample records for mhd advanced test

  1. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  2. MHD generator performance analysis for the Advanced Power Train study

    Science.gov (United States)

    Pian, C. C. P.; Hals, F. A.

    1984-01-01

    Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.

  3. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    International Nuclear Information System (INIS)

    Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)

  4. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  5. US/USSR cooperative program in open-cycle MHD electrical power gneration. Joint test report No. 2: tests in the U-25B facility; MHD generator test No. 3

    International Nuclear Information System (INIS)

    Tempelmeyer, K.E.; Sokolov, Y.N.

    1979-04-01

    The third joint test with a Soviet U-25B MHD generator and a US superconducting magnet system (SCMS) was conducted in the Soviet U-25B Facility. The primary objectives of the 3rd test were: (1) to operate the facility and MHD channel over a wider range of test parameters, and (2) to study the performance of all components and systems of the flow train at increased mass flow rates of combustion products (up to 4 kg/s), at high magnetic-field induction (up to 5 T), and high values of the electrical field in the MHD generator. The third test has demonstrated that all components and systems of the U-25B facility performed reliably. The electric power generated by the MHD generaor reached a maximum of 575 kW during this test. The MHD generator was operated under electrical loading conditions for 9 hours, and the combustor for a total of approximately 14 hours. Very high Hall fields (2.1 kV/m) were produced in the MHD channel, with a total Hall voltage of 4.24 kV. A detailed description is given of (1) performance of all components and systems of the U-25B facility, (2) analysis of the thermal, gasdynamic, and electrical characteristics of the MHD generator, (3) results of plasma diagnostic studies, (4) studies of vibrational characteristics of the flow train, (5) fluctuation of electrodynamic and gasdynamic parameters, (6) interaction of the MHD generator with the superconducting magnet, and (7) an operational problem, which terminated the test

  6. A study of some recent advances in the concept and design of MHD generators

    International Nuclear Information System (INIS)

    Vakilian, M.

    1976-02-01

    Direct conversion of energy and high temperature working fluid making Magnetohydrodynamics (MHD) power plants potentially much more efficient than steam power stations. The study indicates an overall efficiency of 50% to 60%. This compares with most modern fossil-fuel plants at 40% efficiency. Advances in design and construction of experimental and commercial MHD plants developed in various countries are presented. Environmental effects and advantages of the MHD power plants over the more conventional fossil and nuclear plants are discussed

  7. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  8. Diagnostic development and support of MHD test facilities

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.

  9. Diagnostic development and support of MHD test facilities

    International Nuclear Information System (INIS)

    Shepard, W.S.; Cook, R.L.

    1990-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/ Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs

  10. MHD pilot industrial applications

    International Nuclear Information System (INIS)

    Freeman, M.; Riviere-Wekstein, G.

    1994-01-01

    MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun

  11. Preliminary project definition for long duration. Tests of coal fired MHD generators

    International Nuclear Information System (INIS)

    Van der Laken, R.A.

    1992-01-01

    In its final report the Faraday Working Group recommended the CEC amongst others to explore the possibility of a long duration test of a 'state-of-the-art', MHD-generator in order to remove uncertainties concerning the lifetime and availability of such a generator design. The duration of the test should be several thousands of hours, considerably more than the duration tests carried out until now. The scope of the present study is to prepare a project definition document for a long duration test of a coal fired, state-of-the-art MHD-generator

  12. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    International Nuclear Information System (INIS)

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-01-01

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed

  13. MHD Program Plan, FY 1992

    International Nuclear Information System (INIS)

    1991-10-01

    The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector

  14. MHD code using multi graphical processing units: SMAUG+

    Science.gov (United States)

    Gyenge, N.; Griffiths, M. K.; Erdélyi, R.

    2018-01-01

    This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.

  15. Tests and studies of USSR materials at the US coal burning MHD facility UTSI-2

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, G P; Romanov, A I; Rekov, A I; Spiridonov, E G; Barodina, T I; Vysotsky, D A

    1978-10-01

    In accordance with the overall program of the US--USSR cooperation in the field of MHD power generation tests of Soviet electrode materials were conducted at the coal burning MHD facility UTSI-2 of the University of Tennessee Space Institute. The main purposes of the tests are evaluation of electrode materials behavior in the channel of the MHD generator operating with combustion products of coal containing ionizing alkali seed, study of thermal and physical stability of materials in the presence of corrosive slag, study of electrophysical characteristics of electrode materials when they are subjected to the passage of current through the plasma-slag-electrode system. Tests were conducted on electrodes made of silicon carbide doped with titanium and LaCrO/sub 3/--Cr cermet. Results are reported on the phase and chemical composition and structure of these two materials, their thermophysical and electrophysical properties, and the electrode fabrication methods. The MHD facility UTSI-2, where the tests were conducted is one of few utilizing actual coal as the fuel. A description of this facility is given, and its main operating parameters and the methods used to conduct electrode tests with and without an applied current are described.

  16. Upgrade of MHD data acquisition system from ISX-B [Impurity Study Experiment] to ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Bell, J.D.; Pare, V.L.

    1987-01-01

    The data acquisition system assembled to study magnetohydrodynamic (MHD) activity on the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory (ORNL) is being revised for use on the Advanced Toroidal Facility (ATF). The new hardware and software architectures are based on ISX-B experience and will feature different modes of operation for storing various subsets of available data, a user interface that requires less routine activity than the earlier system, and continued support of calibration and testing measurement used on ISX-B. The new hardware organization and software components are described in detail. 2 refs., 5 figs., 1 tab

  17. MHD program plan, FY 1991

    Science.gov (United States)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  18. Outline of fiscal 1970 achievements in research on MHD power generation; 1970 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    Compiled are the results of studies conducted in fiscal 1970 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1000kW-class MHD power generator, modification is carried out involving the combustion system, seed collecting method, and power generation channel, and reviews through experiments are conducted about the analysis and control of the boundary layer structure. In the operation test of the MHD power generator designed for prolonged operation, a test operation for resistance to heat and seeds continues more than 100 hours using a cold wall type power generation channel constituted of water cooled ceramics, and the ceramics are analyzed for failure and loss. Studies are also conducted involving MHD power generator heat exchangers, seed collecting methods, electrode materials for MHD power generators, heat-resistant materials for MHD power generators, thermal performance rating for MHD power plants, etc. In the research and development of superconductive electromagnets, superconductive electromagnets are developed and tested for 1000kW-class MHD power generators, and studies are conducted on turbine type helium liquefiers, superinsulated superconductive electromagnetic field generators, etc. (NEDO)

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  20. NaK-nitrogen liquid metal MHD converter tests at 30 kw

    Science.gov (United States)

    Cerini, D. J.

    1974-01-01

    The feasibility of electrical power generation with an ambient temperature liquid-metal MHD separator cycle is demonstrated by tests in which a NaK-nitrogen LM-MHD converter was operated at nozzle inlet pressures ranging from 100 to 165 N/sq cm, NaK flow rates from 46 to 72 kg/sec, and nitrogen flow rates from 2.4 to 3.8 kg/sec. The generator was operated as an eight-phase linear induction generator, with two of the eight phases providing magnetic field compensation to minimized electrical end losses at the generator channel inlet and exit.

  1. MHD phenomena in advanced scenarios on ASDEX upgrade and the influence of localised electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Peeters, A.G.; Pinches, S.D.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    MHD instabilities in advanced tokamak scenarios on the one hand are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers. In particular fishbone oscillations driven by fast particles arising from neutral beam injection (NBI) are shown to trigger internal transport barriers in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour is explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive is shown to significantly affect the MHD stability of this type of discharges. (author)

  2. MHD phenomena in advanced scenarios on ASDEX Upgrade and the influence of localized electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    On the one hand, MHD instabilities in advanced tokamak scenarios are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers (ITBs). In particular, fishbone oscillations driven by fast particles arising from NBI are shown to trigger ITBs in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour could be explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand, MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive are shown to significantly affect the MHD stability of this type of discharge. (author)

  3. The fabrication of a vanadium-stainless steel test section for MHD testing of insulator coatings in flowing lithium

    International Nuclear Information System (INIS)

    Reed, C.B.; Mattas, R.F.; Smith, D.L.; Chung, H.; Tsai, H.-C.; Morgan, G.D.; Wille, G.W.; Young, C.

    1996-01-01

    To test the magnetohydrodynamic (MHD) pressure drop reduction performance of candidate insulator coatings for the ITER Vanadium/Lithium Breeding Blanket, a test section comprised of a V- 4Cr-4Ti liner inside a stainless steel pipe was designed and fabricated. Theoretically, the MHD pressure drop reduction benefit resulting, from an electrically insulating coating on a vanadium- lined pipe is identical to the benefit derived from an insulated pipe fabricated of vanadium alone. A duplex test section design consisting of a V alloy liner encased in a SS pressure boundary provided protection for vanadium from atmospheric contamination during operation at high temperature and obviated any potential problems with vanadium welding while also minimizing the amount of V alloy material required. From the MHD and insulator coating- point of view, the test section outer SS wall and inner V alloy liner can be modeled simply as a wall having a sandwich construction. Two 52.3 mm OD x 2.9 m long V-alloy tubes were fabricated by Century Tubes from 64 mm x 200 mm x 1245 mm extrusions produced by Teledyne Wah Chang. The test section's duplex structure was subsequently fabricated at Century Tubes by drawing down a SS pipe (2 inch schedule 10) over one of the 53.2 mm diameter V tubes

  4. Outline of fiscal 1969 achievements in research on MHD power generation; 1969 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    Compiled are the results of studies conducted in fiscal 1969 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1,000kW-class MHD power generator, the operation test continues from the preceding fiscal year using high-temperature air as oxidant, and the growth of boundary layer in the channel is determined. In the operation test of the MHD power generator designed for prolonged operation, insulation walls, electrode materials, and structures capable of prolonged operation are developed and tested. In the research of MHD power generator heat exchangers, studies are made about the bulkhead type and heat accumulator types (stationary type, rotary type, and falling-grain type). In addition, studies are conducted about seed collecting methods, MHD power generator electrode materials, heat-resisting insulators, and thermal performance rating. In the research and development of superconductive electromagnets, studies are conducted about superconductive electromagnets for 1kW MHD power generators, ferromagnetic superconductive electromagnets for 1,000kW-class MHD power generators, 45-kilogauss col type superconductive electromagnets, turbine type helium liquefier, high current density col type superconductive electromagnets, superinsulated magnetic field generators, etc. (NEDO)

  5. Diagnostic development and support of MHD test facilities: Technical progress report for the period January, February, March 1985

    International Nuclear Information System (INIS)

    Shepard, W.S.; Cook, R.L.

    1985-04-01

    Mississippi State University is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Additionally, technical support of the diagnostic needs of the national MHD research effort is being provided

  6. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  7. Technical surveys on MHD combustors. Surveys on incorporation of pressurized coal partial combustion furnaces; MHD combustor gijutsu chosa. Kaatsugata sekitan bubun nenshoro no donyu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The pressurized coal partial combustion (PCPC) furnace is surveyed/studied for its incorporation in MHD generation. The technical development of the atmospheric CPC has been basically completed, and the concept is demonstrated using a test system of commercial size. Many techniques developed for the atmospheric CPC are applicable to the PCPC system. These include structures of the CPC furnace walls, and slag handling and simulation techniques. Combination of PFBC with PCPC or IGCC can bring about many merits, e.g., enhanced efficiency and abated NOx emissions for the combined cycle power generation. These topping cycles, therefore, should be developed in the early stage. MHD power generation is one of the concepts that can enhance efficiency. In particular, the techniques for closed cycle MHD generation have notably advanced recently. The PCPC techniques are useful for coal combustors for MHD generation. Full-scale development works for the direct coal combustion gas turbine systems have been just started for the IGCC systems of the next generation, and the PCPC-related techniques are expected to serve as the central techniques for these turbine systems. (NEDO)

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  9. Substorm effects in MHD and test particle simulations of magnetotail dynamics

    International Nuclear Information System (INIS)

    Birn, J.; Hesse, M.

    1998-01-01

    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures

  10. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an initial-value problem. (author)

  11. An innovative method for ideal and resistive MHD stability analysis of tokamaks

    International Nuclear Information System (INIS)

    Tokuda, S.

    2001-01-01

    An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamaks is reported. A solution method for the two dimensional Newcomb equation, a dispersion relation for an unstable ideal MHD mode in tokamaks and a new scheme for solving resistive MHD inner layer equations as an initial value problem are reported. (author)

  12. Technical support for open-cycle MHD program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    The support program for open-cycle MHD at Argonne National Lab is developing the analytical tools needed to investigate the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and the high-temperature air preheater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system on either thermodynamic efficiency or with less confidence, cost of electrical power. Also, in support of the open-cycle program, considerable effort has gone into the formulation of a CDIF Test Plan and a National MHD Test Program.

  13. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  14. Diagnostics for a coal-fired MHD retrofit of an existing power station

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R L; Shepard, W S [Mississippi State Univ. (USA). Diagnostic Instrumentation and Analysis Lab.

    1990-01-01

    MHD flows represent one of the most severe environments encountered by gasdynamic diagnostics. Special state-of-the-art techniques and instrumentation systems are required to monitor and collect data for the MHD components, and these diagnostic systems must operate under very severe environmental and magnetic field conditions. The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University has developed, and is continuing to develop, advanced optical diagnostic techniques and instrumentation systems to provide nonintrusive, remote real-time measurements and to operate successfully in the industrial-like environment of a large-scale MHD retrofit power station. Such diagnostic instrumentation can provide the information to completely evaluate the performance of individual components, as well as, the entire power plant. It is essential to determine as much detail as possible about the various component operations in an MHD retrofit system so that a commercial plant design can be optimized quickly. This paper discusses the instrumentation systems which DIAL proposed for an MHD retrofit of an existing power station. Instruments which have been making measurements on the U.S. MHD test facilities for several years are presented, along with instruments which will be available within two years. Parameters to be measured along with location and frequency are discussed in detail. These parameters include electron density, electrical conductivity, K-atom density, gas temperature, gas velocity, temperature and velocity profiles, gas composition, and particle size, number, density and distrib00000

  15. Predesign of an experimental (5 to 10 MWt) disk MHD facility and prospects of commercial (1,000 MWt) MHD/steam systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    Experimental disk MHD facilities are predesigned, and commercial-scale (1,000 MWt) MHD/steam systems are investigated. The predesigns of the disk MHD facilities indicate that enthalpy extraction is 8.7% for a 10 MWt open cycle MHD generator, and increases to 37% for a 5 MWt closed cycle MHD generator. Commercial (1,000 MWt) MHD/steam systems are studied for 4 types. Of these types, the open cycle disk MHD generator shows the lowest efficiency of 42.8%, while the closed cycle disk MHD generator the highest efficiency of 50.0%. The open cycle linear generator, although showing an efficiency of 49.4%, may be the lowest-cost type, when the necessary heat source, heat exchangers and the like are taken into consideration. For the design of superconducting magnet, it is necessary to further investigate whether the one for the test facility is applicable to the commercial systems. (NEDO)

  16. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    International Nuclear Information System (INIS)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.; Nasiatka, J.R.; Kirillov, I.R.; Ogorodnikov, A.P.; Preslitski, G.V.; Goloubovitch, G.P.; Xu, Zeng Yu

    1996-01-01

    The Vanadium/Lithium system has been the recent focus of ANL's Blanket Technology Pro-ram, and for the last several years, ANL's Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne's Liquid Metal EXperiment (ALEX) from a 200 degrees C NaK facility to a 350 degrees C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10 3 to 10 5 in lithium at 350 degrees C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230 degrees C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000

  17. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  18. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  19. Summary of results of research on magneto hydrodynamic (MHD) generation in fiscal 1977; 1977 nendo denji ryutai (MHD) hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-08-01

    This is the summary of results of the research on MHD generation in fiscal 1977. In the experimental studies on MHD generators using a copper/iron magnet, the combustor of the Mark 7 generator was manufactured and installed, as were the supply systems of fuel, oxygen, air, seed, sulfur dioxide, cooling water, etc., respectively of the Mark 7 generator based on the design implemented in the previous year. In the studies on element technologies, various tests were performed, namely, immersion tests by K{sub 2}SO{sub 4} solution for electrode materials; tests of corrosion resistance, thermal shock resistance, and compatibility with electrode materials, for insulation wall materials; and material selection tests, based on a dynamic state, for consumption quantity and distribution, surface temperature and heat flow, measurement of arc spot generating critical current and electrode lowering voltage, etc.. In the research on the MHD generation system, examinations were carried out on the position of MHD generation as a total system, as well as on a system of a practical plant, MHD generation for peak load, superconducting magnet, etc. In addition, examinations were also conducted on the Mark 7 calculation, Mark 8 plan, surveys on overseas trend, etc. (NEDO)

  20. Results of tests and studies of American materials in the channel of the MHD facility U-02 (Phase III)

    International Nuclear Information System (INIS)

    Burenkov, D.K.; Borodina, T.I.; Vysotsky, D.A.; Zalkind, V.I.; Kirillov, V.V.; Romanov, A.I.; Telegin, G.P.; Strekalov, N.V.

    1978-10-01

    In accordance with the US--USSR Cooperative Program in MHD joint US--USSR tests were conducted in May 1978 at the U-02 facility of an MHD generator section consisting of U.S.-built electrode blocks and USSR-built insulating walls. The main purpose of the experiment was to conduct continuous 100-hour duration tests of materials and structures of electrode blocks; in particular, to study the behavior of ceramic electrodes and insulators in operating conditions of an MHD generator, the electro-physical and thermal characteristics of the working section as a whole and electrodes in particular, and to analyze the change in the phase composition and structure of materials during the test. The main thrust of the experiment was a study of electrode material behavior. Six varieties of electrodes based on doped lanthanum chromite were tested and investigated. The electrodes were made of fine grained, hot-pressed mass (the porosity of the ceramic was 2 to 3%). The interelectrode insulators were made of magnesial and magnesial-spinel ceramic also manufactured by the hot pressing method. Results are presented and discussed

  1. Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence

    Science.gov (United States)

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2017-11-01

    In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.

  2. Outline of fiscal 1967 achievements in research on MHD power generation; 1967 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-09-01

    Compiled are the results of studies conducted in fiscal 1967 on MHD (magnetohydrodynamic) power generation. In the test operation and modification of a 1,000kW-class MHD power generator at the Electrical Research Laboratory, a test is conducted using Faraday-type electrodes. It is then found that this configuration results in a maximum output of approximately 700kW, which is less than expected. In the experimental construction at the Hitachi, Ltd., of a machine capable of a long-term operation, an MHD power generator is built for a continuous operation of 100 hours with an maximum output of 2kW, and a 110-hour power generation is successfully achieved with a maximum output of 1.9kW. In the research and development of heat exchangers, tests are conducted for a bulkhead type heat exchanger, heat accumulator type heat exchanger, molten slag type heat exchanger, and a gas/liquid 2-phase flow type heat exchanger. In the study of heat-resisting insulators, materials based on zirconate, magnesia, thoria, zirconia, etc., are tested. In addition, studies are conducted on electrode materials, superconductive electromagnets (small superconductive electromagnets for MHD power generators, turbine type helium liquefiers, superconductive wires for 70-kilogauss electromagnets, etc.), and thermal performance rating. (NEDO)

  3. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  4. Proceedings of the workshop on nonlinear MHD and extended MHD

    International Nuclear Information System (INIS)

    1998-01-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  5. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. Several hundred megawatt MHD units

    International Nuclear Information System (INIS)

    Pishchikov, S.; Pinkhasik, D.; Sidorov, V.

    1978-01-01

    The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10 6 kJ/m 3 .h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually. (J.B.)

  7. Several hundred megawatt MHD units

    Energy Technology Data Exchange (ETDEWEB)

    Pishchikov, S; Pinkhasik, D; Sidorov, V

    1978-07-01

    The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10/sup 6/ kJ/m/sup 3/.h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually.

  8. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  9. Ideal MHD stability analysis of KSTAR target AT mode

    International Nuclear Information System (INIS)

    Yi, S.M.; Kim, J.H.; You, K.I.; Kim, J.Y.

    2009-01-01

    Full text: A main research objective of KSTAR (Korea Superconducting Tokamak Advanced Research) device is to demonstrate the steady-state operation capability of high-performance AT (Advanced Tokamak) mode. To meet this goal, it is critical for KSTAR to have a good MHD stability boundary, particularly against the high-beta ideal instabilities such as the external kink and the ballooning modes. To support this MHD stability KSTAR has been designed to have a strong plasma shape and a close interval between plasma and passive- plate wall. During the conceptual design phase of KSTAR, a preliminary study was performed to estimate the high beta MHD stability limit of KSTAR target AT mode using PEST and VACUUM codes and it was shown that the target AT mode can be stable up to β N ∼ 5 with a well-defined plasma pressure and current profiles. Recently, a new calculation has been performed to estimate the ideal stability limit in various KSTAR operating conditions using DCON code, and it has been observed that there is some difference between the new and old calculation results, particularly in the dependence of the maximum β N value on the toroidal mode number. Here, we thus present a more detailed analysis of the ideal MHD stability limit of KSTAR target AT mode using various codes, which include GATO as well as PEST and DCON, in the comparison of calculation results among the three codes. (author)

  10. Preliminary results of MHD stability in HL-1 tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Ma Tengcai; Xiao Zhenggui Cai Renfang

    1987-01-01

    In this paper, MHD activities of HL-1 tokamak plasma are studied with Fourier transform and correlatio analysis. The poloidal modes m = 1, 2, 3,4 and toroidal modes n of MHD magnetic fluctuation signals are detected. Methods for suppressing MHD instabilities are suggested and tested, after MHD instabilities are studied in HL-1. The effects of MHD characteristics in the beginning stage of discharge on the whole process of discharge are analyzed. The disruption, in HL-1 device could be divided into three kinds: internal disruption, minor disruption and major disruption. The result shows that HL-1 will have a better operation condition if internal disruption appears. In is end, the stable operation region of HL-1 tokamak is also given

  11. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  12. INCORPORATING AMBIPOLAR AND OHMIC DIFFUSION IN THE AMR MHD CODE RAMSES

    International Nuclear Information System (INIS)

    Masson, J.; Mulet-Marquis, C.; Chabrier, G.; Teyssier, R.; Hennebelle, P.

    2012-01-01

    We have implemented non-ideal magnetohydrodynamics (MHD) effects in the adaptive mesh refinement code RAMSES, namely, ambipolar diffusion and Ohmic dissipation, as additional source terms in the ideal MHD equations. We describe in details how we have discretized these terms using the adaptive Cartesian mesh, and how the time step is diminished with respect to the ideal case, in order to perform a stable time integration. We have performed a large suite of test runs, featuring the Barenblatt diffusion test, the Ohmic diffusion test, the C-shock test, and the Alfvén wave test. For the latter, we have performed a careful truncation error analysis to estimate the magnitude of the numerical diffusion induced by our Godunov scheme, allowing us to estimate the spatial resolution that is required to address non-ideal MHD effects reliably. We show that our scheme is second-order accurate, and is therefore ideally suited to study non-ideal MHD effects in the context of star formation and molecular cloud dynamics.

  13. Particle acceleration in regions of magnetic flux emergence: a statistical approach using test-particle- and MHD-simulations

    Science.gov (United States)

    Vlahos, Loukas; Archontis, Vasilis; Isliker, Heinz

    We consider 3D nonlinear MHD simulations of an emerging flux tube, from the convection zone into the corona, focusing on the coronal part of the simulations. We first analyze the statistical nature and spatial structure of the electric field, calculating histograms and making use of iso-contour visualizations. Then test-particle simulations are performed for electrons, in order to study heating and acceleration phenomena, as well as to determine HXR emission. This study is done by comparatively exploring quiet, turbulent explosive, and mildly explosive phases of the MHD simulations. Also, the importance of collisional and relativistic effects is assessed, and the role of the integration time is investigated. Particular aim of this project is to verify the quasi- linear assumptions made in standard transport models, and to identify possible transport effects that cannot be captured with the latter. In order to determine the relation of our results to Fermi acceleration and Fokker-Planck modeling, we determine the standard transport coefficients. After all, we find that the electric field of the MHD simulations must be downscaled in order to prevent an un-physically high degree of acceleration, and the value chosen for the scale factor strongly affects the results. In different MHD time-instances we find heating to take place, and acceleration that depends on the level of MHD turbulence. Also, acceleration appears to be a transient phenomenon, there is a kind of saturation effect, and the parallel dynamics clearly dominate the energetics. The HXR spectra are not yet really compatible with observations, we have though to further explore the scaling of the electric field and the integration times used.

  14. MHD PbLi experiments in MaPLE loop at UCLA

    International Nuclear Information System (INIS)

    Courtessole, C.; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-01-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  15. MHD PbLi experiments in MaPLE loop at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Courtessole, C., E-mail: cyril@fusion.ucla.edu; Smolentsev, S.; Sketchley, T.; Abdou, M.

    2016-11-01

    Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.

  16. Cryogenic aspects of the experience in operating the U-25 superconducting MHD magnet in conjunction with the MHD generator

    International Nuclear Information System (INIS)

    Niemann, R.C.; Mataya, K.F.; Smith, R.P.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Privalov, N.P.

    1978-01-01

    In order to facilitate the rapid development of MHD technology for the generation of electrical energy, the U.S. and U.S.S.R. are jointly conducting research within the framework of the Program of Scientific and Technical Cooperation. The Institute for High Temperature (IVTAN) of the U.S.S.R. has designed and fabricated a special MHD facility which uses as its base much of the equipment of the existing U-25 Facility. The new MHD fow train consisting of a combustor, magnet, channel, and diffuser is named U-25B. The U.S. has provided a superconducting magnet system for the U-25B MHD Facility. As a result of these joint efforts, a unique and broad range of experimental test conditions similar to those that will exist in operation of commercial MHD generators has been created. The United States Superconducting Magnet System (U.S. SCMS) was designed, fabricated, and delivered to the U-25B Facility by the Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy. The following description focuses on the cryogenic-related aspects of the magnet system commissioning and operation in the U.S.S.R

  17. Advanced optical diagnostics for a coal-fired MHD retrofit of an existing power station

    International Nuclear Information System (INIS)

    Shepard, W.S.; Cook, R.L.

    1990-01-01

    The retrofit concept involves integrating a magnetohydrodynamic (MHD) power generation facility with an existing commercial steam power plant. The MHD power train will be 250 MW t and represents a 5:1 scale-up of existing developmental, proof-of-concept (POC) facilities. The program provides a cost effective way to demonstrate the effectiveness, reliability, and operability of the technology and a basis for future commercialization. An aspect of the program must be to accumulate information on component performance and scale-up relations to enable a smooth transition to commercial plant designs. Special state-of-the-art optical diagnostic instrumentation systems are required for this modern energy conversion technology. In-situ measurements with such systems provide a clearer understanding of the processes involved in the ash/seed-laden MHD gas stream, fundamental scale-up data, performance monitors, and a basis for improved control strategies and control instruments. The types of instrumentation, the measurement locations and frequency, and the benefits for the retrofit program are discussed

  18. PIXIE3D: An efficient, fully implicit, parallel, 3D extended MHD code for fusion plasma modeling

    International Nuclear Information System (INIS)

    Chacon, L.

    2007-01-01

    PIXIE3D is a modern, parallel, state-of-the-art extended MHD code that employs fully implicit methods for efficiency and accuracy. It features a general geometry formulation, and is therefore suitable for the study of many magnetic fusion configurations of interest. PIXIE3D advances the state of the art in extended MHD modeling in two fundamental ways. Firstly, it employs a novel conservative finite volume scheme which is remarkably robust and stable, and demands very small physical and/or numerical dissipation. This is a fundamental requirement when one wants to study fusion plasmas with realistic conductivities. Secondly, PIXIE3D features fully-implicit time stepping, employing Newton-Krylov methods for inverting the associated nonlinear systems. These methods have been shown to be scalable and efficient when preconditioned properly. Novel preconditioned ideas (so-called physics based), which were prototypes in the context of reduced MHD, have been adapted for 3D primitive-variable resistive MHD in PIXIE3D, and are currently being extended to Hall MHD. PIXIE3D is fully parallel, employing PETSc for parallelism. PIXIE3D has been thoroughly benchmarked against linear theory and against other available extended MHD codes on nonlinear test problems (such as the GEM reconnection challenge). We are currently in the process of extending such comparisons to fusion-relevant problems in realistic geometries. In this talk, we will describe both the spatial discretization approach and the preconditioning strategy employed for extended MHD in PIXIE3D. We will report on recent benchmarking studies between PIXIE3D and other 3D extended MHD codes, and will demonstrate its usefulness in a variety of fusion-relevant configurations such as Tokamaks and Reversed Field Pinches. (Author)

  19. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  20. MHD Advanced Power Train Phase I, Final Report, Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    A. R. Jones

    1985-08-01

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  1. Analyses of MHD instabilities

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    1985-01-01

    In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)

  2. Further analysis of MHD acceleration for a hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.

    1995-01-01

    A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation

  3. Interim report on research and development of magnetohydrodynamic (MHD) power generation. General remarks; Denji ryutai (MHD) hatsuden kenkyu kaihatsu chukan hokokusho. Soron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-08-01

    This report covers the MHD power generation research and development project which has been under way for 7 years since fiscal 1966, and contains guidelines to follow in the next 3 years during which studies will continue toward the consummation of the project. Subjected to research and development under this project are the development of superconductive magnets and helium refrigeration/liquefaction equipment, clarification of the power generation characteristics of the 1,000kW-class MHD (magnetohydrodynamic) power generator and of a test machine designed for a long-term operation, etc. Since they contain many basic studies, the efforts are being exerted primarily by the Electrotechnical Laboratory. In the research and development of MHD power generation characteristics, a power generation experiment is conducted through oxygen combustion in a hot wall channel, with the combustor and insulation against the Hall voltage improved. In this test, a maximum output of 1,182kW is achieved under the conditions of a flow rate of 2.9kg/s, a thermal input of 24.6MW, and a flux density of 3.2T. Since there are some problems to solve in connection with the stability of MHD power generation characteristics, durability of the MHD power generation channel, characteristics of heat exchanger system, measures for NOx reduction, etc., some more deliberation is necessary before taking the next research and development step. (NEDO)

  4. MHD channel performance for potential early commercial MHD power plants

    International Nuclear Information System (INIS)

    Swallom, D.W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation

  5. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  6. Engineering design and development of lead lithium loop for thermo-fluid MHD studies

    International Nuclear Information System (INIS)

    Kumar, M.; Patel, Anita; Jaiswal, A.; Ranjan, A.; Mohanta, D.; Sahu, S.; Saraswat, A.; Rao, T.S.; Mehta, V.; Bhattacharyay, R.; Rajendra Kumar, E.

    2017-01-01

    In the frame of the design and development of LLCB TBM, number of R and D activities is in progress in the area of Pb-Li technology development. Molten Pb-Li is used as a tritium breeder and also as a coolant for the internals of the TBM structure. In presence of strong plasma confining toroidal magnetic field, motion of electrically conducting Pb-Li leads to Magneto Hydro Dynamic (MHD) phenomena, as a consequence of which the flow profile of Pb-Li is significantly modified inside the Pb-Li channels of TBM. This causes additional pressure drop inside TBM and affects the heat transfer from internal structure. The detail studies of these MHD effects are of prime importance for successful design of LLCB TBM and its performance evaluation. Although, various numerical MHD codes have been developed, validated in simple flow configuration and are being used to study MHD phenomena in LLCB TBM, experimental validation of these codes in TBM relevant complex flow geometry is yet to be performed. A Pb-Li MHD experimental loop is, therefore, being developed at IPR to perform thermo-fluid MHD experiments in various LLCB TBM relevant flow configuration. MHD experiments are planned with different test sections instrumented with potential pins, thermo couples, etc. under a uniform magnetic field of ∼1.4 T. The obtained experimental data will be analyzed to understand the MHD phenomena in TBM like flow configuration and also for validation of MHD codes. This paper describes the detailed process as well as engineering design of the Pb-Li MHD loop and its major components along with the plan of MHD experiments in various test mock ups. (author)

  7. Results of tests and studies of American materials in the channel of the MHD facility U-02 (Phase III). [LaCrO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Burenkov, D.K.; Borodina, T.I.; Vysotsky, D.A.; Zalkind, V.I.; Kirillov, V.V.; Romanov, A.I.; Telegin, G.P.; Strekalov, N.V.

    1978-10-01

    In accordance with the US--USSR Cooperative Program in MHD joint US--USSR tests were conducted in May 1978 at the U-02 facility of an MHD generator section consisting of U.S.-built electrode blocks and USSR-built insulating walls. The main purpose of the experiment was to conduct continuous 100-hour duration tests of materials and structures of electrode blocks; in particular, to study the behavior of ceramic electrodes and insulators in operating conditions of an MHD generator, the electro-physical and thermal characteristics of the working section as a whole and electrodes in particular, and to analyze the change in the phase composition and structure of materials during the test. The main thrust of the experiment was a study of electrode material behavior. Six varieties of electrodes based on doped lanthanum chromite were tested and investigated. The electrodes were made of fine grained, hot-pressed mass (the porosity of the ceramic was 2 to 3%). The interelectrode insulators were made of magnesial and magnesial-spinel ceramic also manufactured by the hot pressing method. Results are presented and discussed.

  8. MHD-flow in slotted channels with conducting walls

    International Nuclear Information System (INIS)

    Evtushenko, I.A.; Kirillov, I.R.; Reed, C.B.

    1994-07-01

    A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a open-quotes one-electrode movable probeclose quotes for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data

  9. Development, characterization and evaluation of materials for open cycle MHD. Quarterly report, June 1979

    International Nuclear Information System (INIS)

    Bates, J.L.; Marchant, D.D.

    1979-10-01

    The objectives of this program are to develop, test, characterize, and evaluate materials for open-cycle, coal-fired MHD power generators. The specific immediate goals emphasize electrode and insulator materials, including: (1) testing and evaluation of the enhanced effects of alkali seed on materials in a dc electric field; (2) development and testing of improved electrodes and insulators with controlled microstructures, compositions and properties; and (3) characterization and evaluation of materials relating to both the US MHD Program and the US-USSR Cooperative Program for MHD power generators. Progress is reported

  10. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  11. HPC parallel programming model for gyrokinetic MHD simulation

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Yamada, Yusuke; Tokuda, Shinji; Ishii, Yasutomo; Yagi, Masatoshi

    2011-01-01

    The 3-dimensional gyrokinetic PIC (particle-in-cell) code for MHD simulation, Gpic-MHD, was installed on SR16000 (“Plasma Simulator”), which is a scalar cluster system consisting of 8,192 logical cores. The Gpic-MHD code advances particle and field quantities in time. In order to distribute calculations over large number of logical cores, the total simulation domain in cylindrical geometry was broken up into N DD-r × N DD-z (number of radial decomposition times number of axial decomposition) small domains including approximately the same number of particles. The axial direction was uniformly decomposed, while the radial direction was non-uniformly decomposed. N RP replicas (copies) of each decomposed domain were used (“particle decomposition”). The hybrid parallelization model of multi-threads and multi-processes was employed: threads were parallelized by the auto-parallelization and N DD-r × N DD-z × N RP processes were parallelized by MPI (message-passing interface). The parallelization performance of Gpic-MHD was investigated for the medium size system of N r × N θ × N z = 1025 × 128 × 128 mesh with 4.196 or 8.192 billion particles. The highest speed for the fixed number of logical cores was obtained for two threads, the maximum number of N DD-z , and optimum combination of N DD-r and N RP . The observed optimum speeds demonstrated good scaling up to 8,192 logical cores. (author)

  12. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  13. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    International Nuclear Information System (INIS)

    Munipalli, Ramakanth; Huang, P.-Y.; Chandler, C.; Rowell, C.; Ni, M.-J.; Morley, N.; Smolentsev, S.; Abdou, M.

    2008-01-01

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as 'canonical',) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  14. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  15. Electrode materials for an open-cycle MHD generator channel

    International Nuclear Information System (INIS)

    Telegin, G.P.; Romanov, A.I.; Akopov, F.A.; Gokhshtejn, Ya.P.; Rekov, A.I.

    1983-01-01

    The results of investigations, technological developments and tests of high temperature materials for MHD electrodes on the base of zirconium dioxide, stabilized with oxides of calcium, yttrium, neodymium, and dioxide of cerium, chromites, tamping masses from stabilized dioxide of zirconium, cermets are considered. It is established that binary and ternary solutions on the base of zirconium dioxide and alloyed chromites are the perspective materials for the MHD electrodes on pure fuel

  16. Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment

    Science.gov (United States)

    1980-04-01

    An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.

  17. MHD Generating system

    Science.gov (United States)

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  18. Characteristics of laminar MHD fluid hammer in pipe

    International Nuclear Information System (INIS)

    Huang, Z.Y.; Liu, Y.J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  19. MHD diffuser model test program

    Energy Technology Data Exchange (ETDEWEB)

    Idzorek, J J

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.

  20. MHD diffuser model test program

    International Nuclear Information System (INIS)

    Idzorek, J.J.

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment

  1. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  3. The Toshiba Blow-Down MHD Test Facility, and Experiments on Non-Equilibrium Ionization

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Ogiwara, H.; Shioda, S.; Miyata, M.; Goto, M.; Kasahara, E.

    1968-01-01

    The Toshiba blow-down MHD test facility, which was constructed in 1966 and has operated successfully in many experiments, is described. Operating conditions achieved are: the working gas is helium seeded with potassium, the maximum mass flow being 80 g/sec, the maximum seed fraction 0.1%; the gas static lies between temperature 1200 and 1700°K, the static pressure between 2.0 ∼ 1.2 atm, the velocity of gas in the generator channel between 1000 and 200 m/sec; the duration is up to 30 sec; the magnetic field is 2.7 T; the impurity of working gas is below 150 ppm. (author)

  4. A coupled systems code-CFD MHD solver for fusion blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.

    2015-10-15

    Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.

  5. Ceramics and M.H.D

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr

  6. MHD instabilities in heliotron/torsatron

    International Nuclear Information System (INIS)

    Wakatani, Masahiro; Nakamura, Yuji; Ichiguchi, Katsuji

    1992-01-01

    Recent theoretical results on MHD instabilities in heliotron/torsatron are reviewed. By comparing the results with experimental data in Heliotron E, Heliotron DR and ATF, it is pointed out that resistive interchange modes are the most crucial instabilities, since the magnetic hill occupies a substantial region of the plasma column. Development of three-dimensional MHD equilibrium codes has made significant progress. By applying the local stability criteria shown by D 1 (ideal MHD mode) and D R (resistive MHD mode) to the equilibria given by the three-dimensional codes such as BETA and VMEC, stability thresholds for the low n ideal modes or the low n resistive modes may be estimated with resonable accuracy, where n is a toroidal mode number. (orig.)

  7. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  8. Linear ideal MHD stability calculations for ITER

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1988-01-01

    A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs

  9. Technical support for open-cycle MHD program. Progress report, July--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E D [ed.

    1979-06-01

    The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and high-temperature air heater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system relative to either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request in support of the needs and requirements of the DOE/MHD Division.

  10. Elms: MHD Instabilities at the transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Huysmans, G.T.A

    2005-07-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER.

  11. Elms: MHD Instabilities at the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.

    2005-01-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER

  12. Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.L.; Marchant, D.D.

    1986-09-01

    Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.

  13. United States Superconducting MHD Magnet Technology Development Program

    International Nuclear Information System (INIS)

    Dawson, A.M.; Marston, P.G.; Thome, R.J.; Iwasa, Y.; Tarrh, J.M.

    1981-01-01

    A three-faceted program supported by the U.S. Dep of Energy is described. These facets include basic technology development, technology transfer and construction by industry of magnets for the national MHD program. The program includes the maintenance of a large component test facility; investigation of superconductor stability and structural behavior; measurements of materials' properties at low temperatures; structural design optimization; analytical code development; cryogenic systems and power supply design. The technology transfer program is designed to bring results of technology development and design and construction effort to the entire superconducting magnet community. The magnet procurement program is responsible for developing conceptual designs of magnets needed for the national MHD program, for issuing requests for quotation, selecting vendors and supervising design, construction, installation and test of these systems. 9 refs

  14. Summary report for ITER task - T68: MHD facility preparation for Li/V blanket option

    International Nuclear Information System (INIS)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1995-08-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To enable experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, the room-temperature ALEX (Argonne's Liquid Metal EXperiment) NaK facility was upgraded to a 300 degrees C lithium system. The objective of this upgrade was to modify the existing facility to the minimum extent necessary, consistent with providing a safe, flexible, and easy to operate MHD test facility which uses lithium at ITER-relevant temperatures, Hartmann numbers, and interaction parameters. The facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups. The system design description for this lithium upgrade of the ALEX facility is given in this document

  15. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  16. MHD saga in the gases

    International Nuclear Information System (INIS)

    Petit, J.P.

    1995-01-01

    Jean-Pierre PETIT, one of the best MHD specialists, is telling this technology story and he is insisting on its military consequences. Civil MHD is only one iceberg emerged part, including a lot of leader technologies, interesting he defense. 3 notes

  17. Principal characteristics of SFC type MHD generator

    International Nuclear Information System (INIS)

    Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki

    1988-01-01

    This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator. (author)

  18. Joint U. S. --U. S. S. R. test of U. S. MHD electrode systems in U. S. S. R. U-02 MHD facility (phase I). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hosler, W R [ed.

    1976-01-01

    The first (Phase I) joint U.S.-U.S.S.R. test of U.S. electrode materials was carried out in Moscow between September 25 and October 8, 1975 in the Soviet U-02 MHD facility. The test procedure followed closely a predetermined work plan designed to test five different zirconia based materials and the cathode and anode electrode wall modules under MHD operating conditions. The materials which were selected were 88Zr0/sub 2/-12Y/sub 2/0/sub 3/, 82Zr0/sub 2/-18Ce02, 50Zr0/sub 2/-50Ce0/sub 2/, 25Zr0/sub 2/-75Ce0/sub 2/ and 20Zr0/sub 2/-78Ce0/sub 2/-2Ta/sub 2/0/sub 5/. The electrode modules were constructed by Westinghouse Research and Development Laboratory. Each of the five electrode materials had four different current densities established between the anode and cathode during the experiment which lasted a total of 127 hours. There were four main phases in the test schedule: (1) start-up of the channel over a specific heating period. No seed (K/sub 2/C0/sub 3/) introduction - 18 hours. (2) Electrical tests at operating temperature to investigate electro-physical characteristics of the channel and electrodes - 6 hours. (3) Operating life test - 94 hours. (4) Shut-down of the channel over a specific cool down period - 9 hours. All except six electrode pairs performed satisfactorily during the entire test. These were the pairs which were designated to carry maximum or near maximum current density. Five pairs failed early in the life test and the sixth pair failed in the last several hours. Failure was not due to the electrode materials, however, but due to lead-out melting caused by joule heating in the platinum wires. The U-02 facility is described and the operational parameters are given for each phase of the test. The electrode and insulating walls are described and the appropriate parameters that are used to predict the performance of the module are given.

  19. Generation of compressible modes in MHD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)

    2005-05-01

    Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)

  20. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  1. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  2. MHD stability, operational limits and disruptions

    International Nuclear Information System (INIS)

    1999-01-01

    The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and

  3. Finite-element semi-discretization of linearized compressible and resistive MHD

    International Nuclear Information System (INIS)

    Kerner, W.; Jakoby, A.; Lerbinger, K.

    1985-08-01

    The full resistive MHD equations are linearized around an equilibrium with cylindrical symmetry and solved numerically as an initial-value problem. The semi-discretization using cubic and quadratic finite elements for the spatial discretization and a fully implicit time advance yields very accurate results even for small values of the resistivity. In the application different phenomena such as waves, resistive instabilities and overstable modes are addressed. (orig.)

  4. A nonlinear resistive MHD-code in cylindrical geometry

    International Nuclear Information System (INIS)

    Jakoby, A.

    1987-11-01

    A computer code has been developed which solves the full compressible resistive magnetohydrodynamic (MHD) equations in cylindrical geometry. The variables are expanded in Fourier series in the poloidal and axial directions while finite differences are used in the radial direction. The time advance is accomplished by using a semi-implicit predictor-corrector-scheme. Applications to the ideal m=1 ideal kink saturation in the nonlinear regime and the subsequent decay of the singular current layer due to resistivity are presented. (orig.)

  5. MHD seed recovery and regeneration, Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.

  6. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    Science.gov (United States)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  7. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    International Nuclear Information System (INIS)

    Koide, Y.

    2008-01-01

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  8. MHD magnet technology development program summary, September 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  9. MHD magnet technology development program summary, September 1982

    International Nuclear Information System (INIS)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references

  10. Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models

    Science.gov (United States)

    Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.

    2015-12-01

    Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.

  11. MHD power generation for the synthetic-fuels industry

    International Nuclear Information System (INIS)

    Jones, M.S. Jr.

    1982-01-01

    The integration of open cycle MHD with various processes for the recovery of hydrocarbons for heavy oil deposits, oil sands, and oil shales are examined along with its use in producing medium Btu gas, synthetic natural gas and solvent refined coal. The major features of the MHD cycle which are of interest are: (a) the ability to produce hydrogen through the shift reaction by introducing H 2 O into the substoichiometric combustion product flow exiting the MHD diffuser, (b) the use of high temperature waste heat in the MHD exhaust, and (c) the ability of the seed in the MHD flow to remove sulfur from the combustion products. Therefore the use of the MHD cycle allows coal to be used in an environmentally acceptable manner in place of hydrocarbons which are now used to produce process heat and hydrogen. The appropriate plant sizes are in the range of 25 to 50 MWe and the required MHD generator enthalpy extraction efficiencies are low. Sale of electricity produced, over and above that used in the process, can provide a revenue stream which can improve the economics of the hydrocarbon processing. This, coupled with the replacement of coal for hydrocarbons in certain phases of the process, should improve the overall economics, while not requiring a high level of performance by the MHD components. Therefore, this area should be an early target of opportunity for the commercialization of MHD

  12. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  13. Modeling and analysis of the disk MHD generator component of a gas core reactor/MHD Rankine cycle space power system

    International Nuclear Information System (INIS)

    Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.

    1990-01-01

    A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed

  14. Liquid metal MHD research and development in Israel

    International Nuclear Information System (INIS)

    Branover, H.

    1993-01-01

    The study of liquid metal MHD in Israel commenced in 1973. Initially it was concentrated mainly on laminar flows influenced by external magnetic fields. In 1978 a liquid metal MHD energy conversion program was started. This program was developed at the Center for MHD Studies at Ben-Gurion University in Beer-Sheva, with the participation of specialists from the Technion, the Hebrew University of Jerusalem, Israel Atomic Energy Commission, and others. The program was sponsored initially by the Israel Ministry of Energy and Infrastructure, and later by the Ministry of Industry and Trade. Since 1980, Solmecs, a private commercial company has become a major factor in the development of liquid metal MHD in Israel. From the very beginning the program was based on broad international cooperation. A number of overseas institutions and individuals became participants in the program. Through extensive research and evaluation of a number of concepts of liquid metal MHD power generation systems, It was established that the most promising concept, demanding a relatively short period of development, is the gravitational system using heavy metals (lead, lead alloys) as the magneto-hydrodynamic fluid and steam or gases as thermodynamic fluids. This concept was chosen for further development and industrial application, and the program related to such systems was named the Etgar Program. The main directions of research and development activities have been defined as follows: investigations of physical phenomena, development of universal numerical code for parametric studies, optimization and design of the system, material studies, development of engineering components, building and testing of integrated small-scale Etgar type systems, economic evaluation of the system and comparison with conventional technologies, development of moderate scale industrial demonstration plant. At this time 6 items have been fully implemented and activities on the last item were started. (author)

  15. Neoclassical MHD descriptions of tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Kim, Y.B.; Sundaram, A.K.

    1988-01-01

    Considerable progress has been made in extending neoclassical MHD theory and in exploring the linear instabilities, nonlinear behavior and turbulence models it implies for tokamak plasmas. The areas highlighted in this paper include: extension of the neoclassical MHD equations to include temperature-gradient and heat flow effects; the free energy and entropy evolution implied by this more complete description; a proper ballooning mode formalism analysis of the linear instabilities; a new rippling mode type instability; numerical simulation of the linear instabilities which exhibit a smooth transition from resistive ballooning modes at high collisionality to neoclassical MHD modes at low collisionality; numerical simulation of the nonlinear growth of a single helicity tearing mode; and a Direct-Interaction-Approximation model of neoclassical MHD turbulence and the anomalous transport it induces which substantially improves upon previous mixing length model estimates. 34 refs., 2 figs

  16. MHD stability of JET high performance discharges. Comparison of MHD calculations with experimental observations

    International Nuclear Information System (INIS)

    Huysmans, G.

    1998-03-01

    One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption

  17. Numerical study of the axisymmetric ideal MHD stability of Extrap

    International Nuclear Information System (INIS)

    Benda, M.

    1993-04-01

    A numerical study of the free-boundary axisymmetric (n=0) ideal magnetohydrodynamical (MHD) motions of the Extrap device is presented. The dependence of stability on current profiles in the plasma and currents in the external conductors is investigated. Results are shown for linear growth-rates and nonlinear saturation amplitudes and their dependence on plasma radius as well as on the conducting shell radius. A method combined of two different algorithms has been developed and tested. The interior region of the plasma is simulated by means of a Lagrangian Finite Element Method (FEM) for ideal magnetohydrodynamics, The method is based on a nonlinear radiation principle for the Lagrangian description of ideal MHD. The Boundary Element Method (BEM) is used together with the Lagrangian FEM to simulate nonlinear motion of an ideal MHD plasma behaviour in a vacuum region under the influence of external magnetic fields. 31 refs

  18. Experimental identification of nonlinear coupling between (intermediate, small)-scale microturbulence and an MHD mode in the core of a superconducting tokamak

    Science.gov (United States)

    Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team

    2018-01-01

    In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.

  19. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  20. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on

  1. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  2. Overview of liquid-metal MHD

    International Nuclear Information System (INIS)

    Dunn, P.F.

    1978-01-01

    The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser

  3. Electricity from MHD, 1968. Vol. IV. Open-Cycle MHD. Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation held by the IAEA at Warsaw, 24-30 July 1968. The meeting was attended by some 300 participants from 21 countries and three international organizations. In contrast to the Symposium held two years ago, much more emphasis was placed on the economic aspects of using MHD generators in large-scale power generation. Among closed- cycle systems, the prospects of linking an ultra-high-temperature reactor with an MHD generator were explored, and the advantages gained by having a liquid-metal generator as a 'topper' in a conventional steam generating plant were presented. Comments were made about the disproportionate effect of end and boundary conditions in experimental MHD generators on the main plasma parameters, and estimates were made of the interrelationship to be expected in real generators. The estimates will have to await confirmation until results are obtained on large-scale prototype MHD systems. Progress in materials research, in design and construction of auxiliary equipment such as heat exchangers, supercooled magnets (which are- now commercially available), etc., is accompanied by sophisticated ideas of plant design. The Proceedings are complemented by three Round Table Discussions in which chosen experts from various countries discuss the outlook for closed-cycle gas, closed-cycle liquid-metal and open-cycle MHD, and give their views as to the most fruitful course to follow to achieve economic full-scale power generation. Contents: (Vol. I) 1. Closed-Cycle MHD with Gaseous Working Fluids: (a) Diagnostics (3 papers); (b) Steady-state non-equilibrium ionization (8 papers); (c) Transient non-equilibrium ionization (7 papers); (d) Pre-ionization and gas discharge (4 papers); (e) Fields and flow in MHD channels (10 papers); (0 Instabilities (8 papers); (g) Generator design and performance studies (6 papers); (Vol. II) (h) Shock waves (6 papers); (i) Power generation experiments (13 papers

  4. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  5. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  6. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  7. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.

    1996-01-01

    We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules. Final Report

    International Nuclear Information System (INIS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions

  9. Performance of the CNEN MHD Blow-Down Loop Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, E.; Brown, R.; Gasparotto, M.; Gay, P.; Toschi, R. [Laboratorio Conversione Diretta, CNEN, Frascati (Italy)

    1968-11-15

    The CNEN facility has been designed, manufactured and used for alkali-seeded noble gas MHD energy conversion research, as the major experimental effort during the first five-year CNEN Research Programme on MHD. The main specifications and the general arrangement with information on preliminary commissioning tests of some components were given at the Salzburg Symposium. Since then the facility has been successfully commissioned and from March 1967 has been working on MHD experiments. Efforts were made to reduce any adverse effects on the experimental MHD results that were due to inherent limitations of an experimental apparatus (particularly under open-circuit conditions). Great emphasis was placed on problems of caesium vaporization and the mixing with helium, the purity level of the mixture, measurements and the control system. The insulation of the plasma from ground was carefully treated, increasing the ratio between insulator resistance and typical plasma resistance as much as possible. Fluidynamic tests at room and high temperatures have shown that stability in the gas parameters (temperature, pressure and mass flow) can be maintained within few per cent for tens of seconds after a transient, giving a behaviour similar to a continuously running system. The high- temperature, alumina pebble-bed heater has successfully operated, bringing the helium-caesium mixtures up to 2000 Degree-Sign K and up to 4 atm abs pressure, and undergoing seven thermal cycles, for a total of more than 2000 hours operation at top temperature. Preheated generator ducts using alumina as insulator and tantalum for electrodes performed satisfactorily, very much attention having been given in the design to reduction of thermal shocks and to obviating possible paths for caesium leakage and short-circuiting of electrode leads. The pulsed liquid nitrogen precooled magnet has been run for about 50 pulses at high field ( Asymptotically-Equal-To 4.5 tesla) with an operating time of about 10

  10. Priority pollutant analysis of MHD-derived combustion products

    Science.gov (United States)

    Parks, Katherine D.

    An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.

  11. Experimental rigs for MHD studies

    International Nuclear Information System (INIS)

    Venkataramani, N.; Jayakumar, R.; Iyer, D.R.; Dixit, N.S.

    1976-01-01

    An MHD experimental rig is a miniature MHD installation consisting of basic equipments necessary for specific investigations. Some of the experimental rigs used in the investigations being carried out at the Bhabha Atomic Research Centre, Bombay (India) are dealt with. The experiments included diagnostics and evaluation of materials in seeded combustion plasmas and argon plasmas. The design specifications, schematics and some of the results of the investigations are also mentioned. (author)

  12. Divergence-free MHD Simulations with the HERACLES Code

    Directory of Open Access Journals (Sweden)

    Vides J.

    2013-12-01

    Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.

  13. Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Gardiner, Thomas Anthony

    2010-01-01

    This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.

  14. Consideration of ultra-high temperature nuclear heat sources for MHD conversion systems

    International Nuclear Information System (INIS)

    Holman, R.R.; Tobin, J.M.; Young, W.E.

    1975-01-01

    The nuclear technology reactors developed and tested in the Nuclear Engine Rocket Vehicle Application (NERVA) program operated with fuel exit gas temperatures in excess of 2600 K. This experience provided a significant ultra-high temperature technology base and design insight for commercial power applications. Design approaches to accommodate fission product retention and other key prevailing requirements are examined in view of the basic overriding functional requirements, and some interesting reconsiderations are suggested. Predicted overall system performance potentials for a 2000 K MHD conversion system and reactor parameter requirements are compared and related to existing technology status. Needed verification and development efforts are suggested. A reconsideration of basic design approaches is suggested that could open the door for immediate development of ultrahigh temperature nuclear heat sources for advanced energy systems

  15. The design of a heat transfer liquid metal MHD experiment for ALEX [Argonne Liquid-Metal Experiment

    International Nuclear Information System (INIS)

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Lavine, A.S.

    1988-01-01

    An experiment to study heat transfer in liquid metal MHD flow, under conditions relevant to coolant channels for tokamak first wall and high heat flux devices, is described. The experimental configuration is a rectangular duct in a transverse magnetic field, heated on one wall parallel to the field. The specific objective of the experiment is to resolve important issues related to the presence and heat transfer characteristics of wall jets and flow instabilities in MHD flows in rectangular duct with electrically conducting walls. Available analytical tools for MHD thermal hydraulics have been used in the design of the test article and its instrumentation. Proposed tests will cover a wide range of Peclet and Hartmann numbers and interaction parameters. 14 refs., 3 figs., 1 tab

  16. MHD (Magnetohydrodynamics) recovery and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  17. Axisymmetric MHD stable sloshing ion distributions

    International Nuclear Information System (INIS)

    Berk, H.L.; Dominguez, N.; Roslyakov, G.V.

    1986-07-01

    The MHD stability of a sloshing ion distribution is investigated in a symmetric mirror cell. Fokker-Planck calculations show that stable configurations are possible for ion injection energies that are at least 150 times greater than the electron temperture. Special axial magnetic field profiles are suggested to optimize the favorable MHD properties

  18. Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes

    Directory of Open Access Journals (Sweden)

    R. Erdélyi

    2002-01-01

    Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.

  19. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    Science.gov (United States)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K

  20. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  1. Review of central power magnetohydrodynamics at the University of Tennessee Space Institute and its relation to the world effort in MHD

    International Nuclear Information System (INIS)

    Dicks, J.B.

    1975-01-01

    The first generation of electrical plants powered by MHD generators performs at 50 to 55 percent thermal efficiencies, while later versions of these plants perform at efficiencies up to 75 percent. There are three types of MHD energy conversion: (1) the open-cycle system utilizes the fossil fuel as its heat source, the resulting combustion gas being the working fluid; (2) the closed-cycle generator usually refers to the closed-cycle plasma generator which requires an external heating source to heat a noble gas as the working fluid; and (3) there is the liquid-metal generator which is also closed-cycle, but utilizes a two-phase mixture. The open-cycle system is the most promising, the most advanced, and is emphasized in this paper; the Univ. of Tennessee Space Institute has focused its attention on directly coal-fired MHD generators and has succeeded in demonstrating successful operation. A review of MHD research in the USSR indicates that all three types of generators are being tested, but emphasis is also placed there on the open-cycle system. Its most important facility is the U-25 at the Institute of High Temperatures; this generator was expected to be delivering 20 MW by the end of 1975. The cost savings to the U. S. through the development of MHD power generation is discussed. It is concluded that from its development, the sulfur dioxide pollution in high-sulfur coals is reduced by 120 times, nitrogen oxides by many times, particulate matter by 10 times and finally, thermal pollution is reduced by more than 50 percent even without the use of cooling towers. The cost of this development is placed at $410 million in 10 years

  2. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    International Nuclear Information System (INIS)

    HUMPHREYS, D.A.; FERRON, J.R.; JOHNSON, R.D; LEUER, J.A.; PENAFLOR, B.G.; WALKER, M.L.; WELANDER, A.S.; KHAYRUTDINOV, R.R; DOKOUKA, V.; EDGELL, D.H.; FRANSSON, C.M.

    2004-03-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance

  3. Resistive MHD Stability Analysis in Near Real-time

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  4. Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers

    Science.gov (United States)

    Grabbe, Crockett L.; Cairns, Iver H.

    1995-01-01

    modified phenomenological model proposed recently. The similarities and differences between these results are illustrated using plots of X and a(s) predicted for the Earth's bow shock. The plots show that the new analytic solutions agree very well with the exact numerical MHD solutions and that these MHD solutions should replace the corresponding phenomenological relations in comparisons with data. Furthermore, significant differences exist between the standoff distances predicted at low M(A) using the MHD models versus those predicted by the new modified phenomenological model. These differences should be amenable to observational testing.

  5. MHD Integrated Topping Cycle Project. Thirteenth quarterly technical progress report, August 1, 1990--October 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number_sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  6. Astrophysics days and MHD

    International Nuclear Information System (INIS)

    Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien

    2001-05-01

    This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number

  7. Problems in nonlinear resistive MHD

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-01-01

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1

  8. Closed cycle MHD specialist meeting. Progress report, 1971--1972

    International Nuclear Information System (INIS)

    Rietjens, L.H.

    1972-04-01

    Abstracts of the conference papers on closed cycle MHD research are presented. The general areas of discussion are the following: results on closed cycle experiments; plasma properties, and instabilities and stabilization in nonequilibrium plasmas; loss mechanisms, current distributions, electrode effects, boundary layers, and gas dynamic effects; and design concepts of large MHD generators, and nuclear MHD power plants. (GRA)

  9. Report of commission for investigating MHD on a visit to U.S. Part 2. Report on each place of visit; Hobei MHD chosadan hokokusho. 2. Homonsakibetsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-01-01

    The members of MHD project examination subcommittee made an investigative tour of the U.S. on the state of development of MHD generation. This report of the 2nd part explains opinions and the present status of the R and D on MHD generation by each of the 19 institutions visited. The U.S. research on MHD generation is under the leadership of DOE, whereby the budget for the development is so large as nearly one hundred million dollars have been provided for several years. The purpose is the effective use of domestic coal. General Electric is of the opinion that a combined gas turbine system will be put to practical use earlier because MHD takes time for practicability despite its highest efficiency in coal-utilized power generation. Yet, GE thinks MHD will be more attractive in the future. Reynolds Metal is considering application of MHD generation to the electro-chemical industry at present. According to Reynolds, combined supply of electric output and heat of MHD can reduce the use of calorie per ton of aluminum from 240 MBTU to 100. Montana Power is promoting practicability through a combined plan with DOE-built MHD generation. (NEDO)

  10. Experimental investigation of rotating-drum separators for liquid-metal MHD applications

    International Nuclear Information System (INIS)

    Lenzo, C.S.; Dauzvardis, P.V.; Hantman, R.G.

    1978-01-01

    For the past several years, Argonne National Laboratory has been active in the development of closed-cycle two-phase-flow MHD power systems. One of the key components in such systems is an effective and efficient gas-liquid separator-diffuser. On the basis of an assessment of present technology, it was decided to study the characteristics of a rotating drum type of separator, and a multitask research and development program was initiated within the overall liquid-metal MHD research program. The first task, now completed, centered on the investigation of single-phase flow (liquid) deposited by a flow nozzle on the inner surface of freely-rotating cylinders or drums of 423 mm and 282 mm diam. The tests were designed to study the recovery of energy in the liquid layer deposited on the drum; the torque transmitted to the drum by the liquid as the result of shear stress between the liquid and the drum surface; the characteristics of the liquid layer; and the effects of drum size, nozzle shape and orientation, and nozzle velocity. The test results showed that a stable liquid film was formed on the drum and that the kinetic energy of the liquid layer was high enough to be potentially useful in two-phase-flow MHD power systems

  11. MHD power plants - a reality of the 80's

    International Nuclear Information System (INIS)

    Pishchikov, S.

    1981-01-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas. (B.S.)

  12. MHD power plants - a reality of the 80's

    Energy Technology Data Exchange (ETDEWEB)

    Pishchikov, S

    1981-02-01

    A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas.

  13. Results from a large-scale MHD propulsion experiment

    International Nuclear Information System (INIS)

    Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.

    1992-01-01

    This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible

  14. Ideal MHD Stability Characteristics of Advanced Operating Regimes in Spherical Torus Plasmas and the Role of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    Kessel, C.E.; Manickam, J.; Menard, J.E.; Jardin, S.C.; Kaye, S.M.

    1999-01-01

    The ARIES reactor study group has found an economically attractive ST-based reactor configuration with: A = 1.6, κ = 3.4, delta = 0.65, β = 50%, β N = 7.3, f BS = 0.95, R 0 = 3.2 meters, B t0 = 2.08 Tesla, and I P = 28.5 MA which yields a cost of electricity of approximately 80mils/kWh. MHD stability analysis finds that a broad pressure profile is optimal for wall-stabilizing the pressure driven kink modes typical of such configurations, and that wall stabilization is crucial to achieving the high β needed for an economical power plant. The 6MW high-harmonic fast wave system presently being installed on NSTX should allow real-time control of the plasma β, and in combination with NBI may permit experimental investigations of the effect of pressure profile peaking on MHD stability in the near-term. In the longer term, ejection of ions through resonant interaction with HHFW might be used to induce a controllable edge radial electric field with potentially interesting effects on edge MHD and confinement

  15. Global and kinetic MHD simulation by the Gpic-MHD code

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Yamada, Yusuke; Kajiwara, Kenji; Lee, Wei-li; Tokuda, Shinji; Yagi, Masatoshi

    2011-01-01

    In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vortex equation and the generalized ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential A z . Particle information is mainly used to estimate second order moments in the generalized ohm's law. Because the lower order moments of the charge density and the longitudinal current density are not used explicitly to determine φ and A z , the numerical noise induced by the discreteness of particle quantities reduces drastically. Another advantage of the algorithm is that the longitudinal induced electric field, E Tz =-∂A z /∂t, is explicitly estimated by the generalized ohm's law and used in the equations of motion. The particle velocities along the magnetic field are used (v z -formulation) instead of generalized momentums (p z -formulation), hence there is no problem of 'cancellation', which appear when estimating A z from the Ampere's law in the p z -formulation. The successful simulation of the collisionless internal kink mode by new Gpic-MHD with the realistic values of the large-scale and high-beta, revealed the usefulness of the new algorithm. (author)

  16. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)

  17. Investigations of MHD activity in ASDEX discharges

    International Nuclear Information System (INIS)

    Stambaugh, R.; Gernhardt, J.; Klueber, O.; Wagner, F.

    1984-06-01

    This report makes a strong attempt to relate some specific observations of MHD activity in ADEX discharges to observations made on the Doublet III and PDX tokamaks and to theoretical work on high β MHD modes at GA and PPPL. Three topics are discussed. The first topic is the detailed analysis of the time history of MHD activity in a β discharge. The β limit discharge in ASDEX is identified as a discharge in which, during constant neutral beam power, β reaches a maximum and then decreases, often to a lower steady level if the heating pulse is long enough. During the L phase of this discharge, the MHD activity observed in the B coils is both a continuous and bursting coupled m >= 1 mode of the 'fishbone' type. When β is rising in the H phase, this mode disappears; only ELMs are present. At βsub(max), a different mode appears, the m=2, n=1 tearing mode, which grows rapidly as β decreases. The second topic is the very new observation of the fishbone-like mode in a discharge heated by combined neutral beam and ion cyclotron heating power. The mode characteristics are modulated by sawtooth oscillations in a manner consistent with the importance of q(0) in the stability of this mode. The third topic is the search for ELM precursors in discharges designed to have no other competing and complicating MHD activity. In these cases nonaxisymmetric precursors to the Hsub(α) spike were observed. Hence, it appears that an MHD mode, rather than an energy balance problem, must be the origin of the ELM. (orig./GG)

  18. Combined Global MHD and Test-Particle Simulation of a Radiation Belt Storm: Comparing Depletion, Recovery and Enhancement with in Situ Measurements

    Science.gov (United States)

    Sorathia, K.; Ukhorskiy, A. Y.; Merkin, V. G.; Wiltberger, M. J.; Lyon, J.; Claudepierre, S. G.; Fennell, J. F.

    2017-12-01

    During geomagnetic storms the intensities of radiation belt electrons exhibit dramatic variability. In the main phase electron intensities exhibit deep depletion over a broad region of the outer belt. The intensities then increase during the recovery phase, often to levels that significantly exceed their pre-storm values. In this study we analyze the depletion, recovery and enhancement of radiation belt intensities during the 2013 St. Patrick's geomagnetic storm. We simulate the dynamics of high-energy electrons using our newly-developed test-particle radiation belt model (CHIMP) based on a hybrid guiding-center/Lorentz integrator and electromagnetic fields derived from high-resolution global MHD (LFM) simulations. Our approach differs from previous work in that we use MHD flow information to identify and seed test-particles into regions of strong convection in the magnetotail. We address two science questions: 1) what are the relative roles of magnetopause losses, transport-driven atmospheric precipitation, and adiabatic cooling in the radiation belt depletion during the storm main phase? and 2) to what extent can enhanced convection/mesoscale injections account for the radiation belt buildup during the recovery phase? Our analysis is based on long-term model simulation and the comparison of our model results with electron intensity measurements from the MAGEIS experiment of the Van Allen Probes mission.

  19. Development, characterization and evaluation of materials for open cycle MHD. Quarterly report for the period ending June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.L.; Marchant, D.D.; Daniel, J.L.

    1978-10-01

    The objectives of this program are directed toward the development and characterization of high temperature ceramics for open-cycle, coal-fired MHD power generators. The current activities are directed to electrode and insulator materials, and include (1) determination of the effects of alkali seed on the behavior of ceramics in a dc electric field; (2) development and testing of improved high temperature ceramic electrodes and insulators with controlled composition, microstructure, and properties; and (3) characterization and evaluation of materials utilized in channels being tested for MHD power generator development. Research is reported on (1) evaluation of metal electrodes from 250 hour MHD test, (2) characterization and properties of USSR MgO insulating wall material, (3) thermal diffusivity/thermal conductivity of electrode and insulator materials, (4) coprecipitation of ceramic powders, (5) properties of yttria chromites, and (6) rare earth hafnates. (WHK)

  20. Analyses of the Photospheric Magnetic Dynamics in Solar Active Region 11117 Using an Advanced CESE-MHD Model

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL (United States); Wu, Shi T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL (United States); Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, AL (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China)

    2016-05-10

    In this study, the photospheric vector magnetograms obtained by Helioseismic and Magnetic Imager on-board the Solar Dynamics Observatory are used as boundary conditions for a CESE-MHD model to investigate some photosphere characteristics around the time of a confined flare in solar active region NOAA AR 11117. We report our attempt of characterizing a more realistic solar atmosphere by including a plasma with temperature stratified from the photosphere to the corona in the CESE-MHD model. The resulted photospheric transverse flow is comparable to the apparent movements of the magnetic flux features that demonstrates shearing and rotations. We calculated the relevant parameters such as the magnetic energy flux and helicity flux, and with analysis of these parameters, we find that magnetic non-potentiality is transported across the photosphere into the corona in the simulated time interval, which might provide a favorable condition for producing the flare.

  1. Achievement report on contract research. Large-scale project - Results of 1st-phase research and development of MHD power generation system; Plant system no hyoka. Ogata project dai 1 ki MHD hatsuden system kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    Described in detail involving the results of component development, assessment, and the indication of problems are the power generation channel, superconductive magnets and a helium refrigeration and liquefaction unit, seeds collector, heat exchanger, combustor, etc. Described involving the result and effect of power generation system research and development and the indication of problems is the research on Mark V and Mark VI operation tests. Described in relation to thermal performance calculation, economic effectiveness calculation, and environmental conservation involving an MHD (magnetohydrodynamic) power plant are the combustion of heavy oil, combustion of natural gas, plant having a 1,000MW power generator as its base load, control of NOx and sulfur in MHD power generation, etc. As for planning for the next stage, the configuration of a 10MW MHD power generation plant, its equipment, construction cost, and preliminary element research, etc., are described. Furthermore, propositions are presented concerning future plans and the prospect of commercial MHD power generators, technological ripple effects due to MHD power generation research and development, and research and development in the future. (NEDO)

  2. PHYSICAL PERFORMANCE AND BODY COMPOSITION IN MAINTENANCE HEMODIALYSIS (MHD PATIENTS

    Directory of Open Access Journals (Sweden)

    M Zhang

    2012-06-01

    Conclusions: These findings indicate that adult MHD pts had a higher % body fat. Measures of physical performance were markedly reduced in MHD pts as compared to Normals. Physical performance in MHD, measured especially by 6-MW, correlated negatively with some measures of body composition, particularly with LBMI.

  3. Free-boundary perturbed MHD equilibria

    International Nuclear Information System (INIS)

    Nührenberg, C

    2012-01-01

    The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].

  4. ORMEC: a three-dimensional MHD spectral inverse equilibrium code

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Hogan, J.T.

    1986-02-01

    The Oak Ridge Moments Equilibrium Code (ORMEC) is an efficient computer code that has been developed to calculate three-dimensional MHD equilibria using the inverse spectral method. The fixed boundary formulation, which is based on a variational principle for the spectral coefficients (moments) of the cylindrical coordinates R and Z, is described and compared with the finite difference code BETA developed by Bauer, Betancourt, and Garabedian. Calculations for the Heliotron, Wendelstein VIIA, and Advanced Toroidal Facility (ATF) configurations are performed to establish the accuracy and mesh convergence properties for the spectral method. 16 refs., 13 figs

  5. An MHD Dynamo Experiment.

    Science.gov (United States)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  6. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    Science.gov (United States)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd

  7. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  8. Design and fabrication of a 50 MWt prototypical MHD coal-fired combustor

    International Nuclear Information System (INIS)

    Albright, J.; Braswell, R.; Listvinsky, G.; McAllister, M.; Myrick, S.; Ono, D.; Thom, H.

    1992-01-01

    A prototypical 50 MWt coal-fired combustor has been designed and fabricated as part of the Magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) Program. This is a DOE-funded program to develop a prototypical MHD power train to be tested at the Component Development and Integration Facility (CDIF) in Butte, Montana. The prototypical combustor is an outgrowth of the 50 MWt workhorse combustor which has previously been tested at the CDIF. In addition to meeting established performance criteria of the existing 50 MWt workhorse combustor, the prototypical combustor design is required to be scaleable for use at the 250 MWt retrofit level. This paper presents an overview of the mechanical design of the prototypical combustor and a description of its fabrication. Fabrication of the 50 MWt prototypical coal-fired combustor was completed in February 1992 and hot-fire testing is scheduled to begin in May 1992

  9. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    Science.gov (United States)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  10. Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe

    International Nuclear Information System (INIS)

    Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko

    2007-01-01

    Experimental studies of MHD turbulent pipe flow of Flibe simulant fluid have been conducted as a part of US-Japan JUPITER-II collaboration. Flibe is considered as a promising candidate for coolant and tritium breeder in some fusion reactor design concepts because of its low electrical conductivity compared to liquid metals. This reduces the MHD pressure drop to a negligible level; however, turbulence can be significantly suppressed by MHD effects in fusion reactor magnetic field conditions. Heat transfer in the Flibe coolant is characterized by its high Prandtl number. In order to achieve sufficient heat transfer and to prevent localized heat concentration in a high Prandtl number coolant, high turbulence is essential. Even though accurate prediction of the MHD effects on heat transfer for high Prandtl number fluids in the fusion environment is very important, reliable data is not available. In these experiments, an aqueous solution of potassium hydroxide is used as a simulant fluid for Flibe. This paper presents the experimental results obtained by flow field measurement using particle image velocimetry (PIV) technique. The PIV measurements provide 2-dimensional 2-velocity component information on the MHD flow field. The test section is a circular pipe with 89 mm inner diameter and 7.0 m in length, which is 79 times pipe diameter. This relatively large diameter pipe is selected in order to maximize the MHD effects measured by Hartmann number (Ha=BL(sigma/mu)1/2), and to allow better resolution of the flow in the near-wall region. The test section is placed under maximum 2 Tesla magnetic fields for 1.4m of the axial length. The hydrodynamic developing length under the magnetic field is expected to be 1.2 m. In order to apply PIV technique in the magnetic field condition, special optical devices and visualization sections were created. PIV measurements are performed for Re = 11600 with variable Hartmann numbers. The turbulence statistics of the MHD turbulent flow

  11. MHD power generation research, development and engineering. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Progress is reported on the following tasks: characterization of coal for open-cycle MHD power generation systems; compressive creep and strength studies of MHD preheater materials; preparation of coals for utilization in direct coal-fired MHD generation; characterization of volatile matter in coal; MHD materials evaluation; operability of the Moderate Temperature Slag Flow Facility; slag-seed equilibria and separations related to the MHD system; thermionic emission of coal and electrode materials; MHD instrumentation, consolidated inversion simulator, and data acquisition; combined MHD-steam plant cycle analysis and control; and slag physical properties - electrical and thermal conductivity. (WHK)

  12. Magnus: A New Resistive MHD Code with Heat Flow Terms

    Science.gov (United States)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  13. Method of operating a MHD power plant

    International Nuclear Information System (INIS)

    Wysk, S.R.

    1982-01-01

    A fossil fuel is burned substoichiometrically in the combustor of a mhd power plant to produce a high temperature, fuelrich product gas. The product gas is passed through a mhd channel to generate electricity. A reducing agent, preferably natural gas or hydrocarbon, is injected into the fuelrich product gas leaving the mhd generator; and the resulting mixture is held at a temperature in the range of 950 to 1500 0 C for about 1 second to permit the reducing agent to decompose a portion of the nitrogen oxides formed in the combustor. The fuel-rich product gas then passes thru an afterburner wherein combustion is completed and any excess reducing agent is consumed

  14. Pseudo-MHD ballooning modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.

    1996-08-01

    The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant open-quotes pseudo-MHDclose quotes model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for α > s 2 (2 7/3 /9) (r p /R 0 ) or-d√Β/dr > (2 1/6 /3)(s/ R 0q ), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas

  15. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  16. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  17. An approach to verification and validation of MHD codes for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Badia, S. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat (India); Bühler, L. [Karlsruhe Institute of Technology (Germany); Chen, L. [University of Chinese Academy of Sciences, Beijing (China); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui (China); Jin, H.-G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Krasnov, D. [Technische Universität Ilmenau (Germany); Lee, D.-W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mas de les Valls, E. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Mistrangelo, C. [Karlsruhe Institute of Technology (Germany); Munipalli, R. [HyPerComp, Westlake Village (United States); Ni, M.-J. [University of Chinese Academy of Sciences, Beijing (China); Pashkevich, D. [St. Petersburg State Polytechnical University (Russian Federation); Patel, A. [Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Pulugundla, G. [University of California, Los Angeles (United States); Satyamurthy, P. [Bhabha Atomic Research Center (India); Snegirev, A. [St. Petersburg State Polytechnical University (Russian Federation); Sviridov, V. [Moscow Power Engineering Institute (Russian Federation); Swain, P. [Bhabha Atomic Research Center (India); and others

    2015-11-15

    Highlights: • Review of status of MHD codes for fusion applications. • Selection of five benchmark problems. • Guidance for verification and validation of MHD codes for fusion applications. - Abstract: We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.

  18. A flowsheet model of a coal-fired MHD/steam combined electricity generating cycle, using the access computer model

    International Nuclear Information System (INIS)

    Davison, J.E.; Eldershaw, C.E.

    1992-01-01

    This document forms the final report on a study of a coal-fired magnetohydrodynamic (MHD)/steam electric power generation system carried out by British Coal Corporation for the Commission of the European Communities. The study objective was to provide mass and energy balances and overall plant efficiency predictions for MHD to assist the Commission in their evaluation of advanced power generation technologies. In early 1990 the British Coal Corporation completed a study for the Commission in which a computer flowsheet modelling package was used to predict the performance of a conceptual air blown MHD plant. Since that study was carried out increasing emphasis has been placed on the possible need to reduce CO 2 emissions to counter the so-called greenhouse effect. Air blown MHD could greatly reduce CO 2 emissions per KWh by virtue of its high thermal efficiency. However, if even greater reductions in CO 2 emissions were required the CO 2 produced by coal combustion may have to be disposed of, for example into the deep ocean or underground caverns. To achieve this at minimum cost a concentrated CO 2 flue gas would be required. This could be achieved in an MHD plant by using a mixture of high purity oxygen and recycled CO 2 flue gas in the combustor. To assess this plant concept the European Commission awarded British Coal a contract to produce performance predictions using the access computer program

  19. Construction and initial operation of MHD PbLi facility at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu; Li, F.-C.; Morley, N.; Ueki, Y.; Abdou, M.; Sketchley, T.

    2013-06-15

    Highlights: • New MHD PbLi loop has been constructed and tested at UCLA. • Pressure diagnostics system has been developed and successfully tested. • Ultrasound Doppler velocimeter is tested as velocity diagnostics. • Experiments on pressure drop reduction have been performed. • Experiments on MHD flow in a duct with SiC flow channel insert are underway. -- Abstract: A magnetohydrodynamic flow facility MaPLE (Magnetohydrodynamic PbLi Experiment) that utilizes molten eutectic alloy lead–lithium (PbLi) as working fluid has been constructed and tested at University of California, Los Angeles. The loop operation parameters are: maximum magnetic field 1.8 T, PbLi temperature up to 350 °C, maximum PbLi flow rate with/without a magnetic field 15/50 l/min, maximum pressure head 0.15 MPa. The paper describes the loop itself and its major components, basic operation procedures, experience of handling PbLi, initial loop testing, flow diagnostics and current and near-future experiments. The obtained test results of the loop and its components have demonstrated that the new facility is fully functioning and ready for experimental studies of magnetohydrodynamic, heat and mass transfer phenomena in PbLi flows and also can be used in mock up testing in conditions relevant to fusion applications.

  20. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  1. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  2. A MHD channel study for the ETF conceptual design

    Science.gov (United States)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  3. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  4. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  5. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    International Nuclear Information System (INIS)

    Myrabo, L.N.; Rosa, R.J.

    2004-01-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant 'Mercury' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a 'tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off and landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic 'mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond 'idle' power, or virtually 'disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely 'green' and independent of Earth's limited fossil fuel reserves

  6. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    Science.gov (United States)

    Myrabo, L. N.; Rosa, R. J.

    2004-03-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.

  7. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  8. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  9. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    Science.gov (United States)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  10. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)

  11. The Stellar IMF from Isothermal MHD Turbulence

    Science.gov (United States)

    Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke

    2018-02-01

    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.

  12. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  13. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    NARCIS (Netherlands)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an 'intuitive' description based on the energy principle that is very misleading for

  14. Studies of MHD stability using data mining technique in helical plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd

    2010-01-01

    Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)

  15. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    International Nuclear Information System (INIS)

    Scholz, R.; Greeff, J. de; Vinche, C.

    1998-01-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 (Ω m) -1 at 20 deg. C to 550 (Ω m) -1 at 1000 deg.C. The irradiation reduced only slightly the magnitude of σ indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  16. Magnetohydrodynamic (MHD) considerations for liquid metal blanket and a SiC/SiC composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R.; Greeff, J. de; Vinche, C. [Commission Europeenne Community, JRC, Vatican City State, Holy See (Italy)

    1998-07-01

    The electrical conductivity was measured on SiC/SiC composite specimens, in the as-received conditions and after neutron irradiation, for temperatures between 20 deg. C and 1000 deg. C. The tests were aimed at estimating the magnitude of MHD effects in liquid metal blankets and a SiC/SiC composites structure. The electrical conductivity of the unirradiated samples increased continuously with temperature and ranged from 330 ({omega} m){sup -1} at 20 deg. C to 550 ({omega} m){sup -1} at 1000 deg.C. The irradiation reduced only slightly the magnitude of {sigma} indicating the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blankets. (authors)

  17. MHD equilibrium of heliotron J plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya

    2004-01-01

    MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)

  18. A performance analysis for MHD power cycles operating at maximum power density

    International Nuclear Information System (INIS)

    Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi

    1996-01-01

    An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)

  19. Study of MHD problems in liquid metal blankets of fusion reactors

    International Nuclear Information System (INIS)

    Michael, I.

    1984-12-01

    This study describes in a concise form the state of knowledge regarding MHD problems to be expected in case of use of liquid metal in the blankets of fusion reactors with magnetic confinement. MHD pressure losses and MHD friction coefficients in the straight channel, in bent sections and in case of variation of the channel cross section play a major role because the high MHD flow resistances call for high pumping powers. Influencing the velocity profile transverse to the main flow direction of the liquid metal by application of an external, strong magnetic field bears consequences on the release and transport of corrosion products in the liquid metal circuit and on the heat transfer. Possibilities of reducing the MHD effects are discussed. However, it becomes obvious that an account of the lack of experimental results there are still major gaps in the knowledge of MHD effects occurring in strong magnetic fields. These gaps can be greatly reduced by implementation of an experimental program as proposed in this report. (orig.) [de

  20. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  1. On nonlinear MHD-stability of toroidal magnetized plasma

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.; Pastukhov, V.P.

    1994-01-01

    The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs

  2. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  3. Study on MHD instabilities in the CECI plasma device using Fourier probes

    International Nuclear Information System (INIS)

    Rosal, A.C.; Aso, Y.; Ueda, M.

    1991-01-01

    A magnetic diagnostics called Fourier analyser aiming to study MHD instabilities by Fourier series expansion of poloidal magnetic field for m ≤ 3 modes was developed and tested. The diagnostics will be used in the RFP (reversed field pinch) type toroidal plasma device. (M.C.K.)

  4. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  5. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  6. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  7. MHD stability analyses of a tokamak plasma by time-dependent codes

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi

    1982-07-01

    The MHD properties of a tokamak plasma are investigated by using time evolutional codes. As for the ideal MHD modes we have analyzed the external modes including the positional instability. Linear and nonlinear ideal MHD codes have been developed. Effects of the toroidicity and conducting shell on the external kink mode are studied minutely by the linear code. A new rezoning algorithm is devised and it is successfully applied to express numerically the axisymmetric plasma perturbation in a cylindrical geometry. As for the resistive MHD modes we have developed nonlinear codes on the basis of the reduced set of the resistive MHD equations. By using the codes we have studied the major disruption processes and properties of the low n resistive modes. We have found that the effects of toroidicity and finite poloidal beta are very important. Considering the above conclusion we propose a new scenario of the initiation of the major disruption. (author)

  8. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  9. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  10. Modeling the dynamics of a storm-time acceleration event: combining MHD effects with wave-particle interactions

    Science.gov (United States)

    Elkington, S. R.; Alam, S. S.; Chan, A. A.; Albert, J.; Jaynes, A. N.; Baker, D. N.; Wiltberger, M. J.

    2017-12-01

    Global simulations of radiation belt dynamics are often undertaken using either a transport formalism (e.g. Fokker-Plank), or via test particle simulations in model electric and magnetic fields. While transport formalisms offer computational efficiency and the ability to deal with a wide range of wave-particle interactions, they typically rely on simplified background fields, and often are limited to empirically-specified stochastic (diffusive) wave-particle interactions. On the other hand, test particle simulations may be carried out in global MHD simulations that include realistic physical effects such as magnetopause shadowing, convection, and substorm injections, but lack the ability to handle physics outside the MHD approximation in the realm of higher frequency (kHz) wave populations.In this work we introduce a comprehensive simulation framework combining global MHD/test particle techniques to provide realistic background fields and radial transport processes, with a Stochastic Differential Equation (SDE) method for addressing high frequency wave-particle interactions. We examine the March 17, 2013 storm-time acceleration period, an NSF-GEM focus challenge event, and use the framework to examine the relative importance of physical effects such as magnetopause shadowing, diffusive and advective transport processes, and wave-particle interactions through the various phases of the storm.

  11. Present state of research and development of MHD power generation

    International Nuclear Information System (INIS)

    Ikeda, Shigeru

    1978-01-01

    MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)

  12. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  13. HIDENEK: an implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1993-05-01

    An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite suitable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frequency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical kink of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of plasma particles. (author)

  14. Semi-implicit method for three-dimensional compressible MHD simulation

    International Nuclear Information System (INIS)

    Harned, D.S.; Kerner, W.

    1984-03-01

    A semi-implicit method for solving the full compressible MHD equations in three dimensions is presented. The method is unconditionally stable with respect to the fast compressional modes. The time step is instead limited by the slower shear Alfven motion. The computing time required for one time step is essentially the same as for explicit methods. Linear stability limits are derived and verified by three-dimensional tests on linear waves in slab geometry. (orig.)

  15. Variation in excess oxidant factor in combustion products of MHD generator. [Natural gas fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasik, M S; Mironov, V D; Zakharko, Yu A; Plavinskii, A I

    1977-12-01

    Methods and difficulties associated with determining the excess oxidant factor for natural gas-fired MHD generators are discussed. The measurement of this factor is noted to be essential for the optimization of the combustion chamber and operation of MHD generators. A gas analyzer of electrochemical type is considered as a quick - response sensor capable of analyzing the composition of the combustion products and thus determining accurately the excess oxidant factor. The principle of operation of this sensor is discussed and the dependence of the electrochemical sensor emf on excess oxidant factor is shown. Three types of sensors are illustrated and tables of test results are provided.

  16. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    Science.gov (United States)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  17. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  18. Bifurcation theory for toroidal MHD instabilities

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1992-01-01

    Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found

  19. MHD turbulent dynamo in astrophysics: Theory and numerical simulation

    Science.gov (United States)

    Chou, Hongsong

    2001-10-01

    This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).

  20. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Drake, R. P.; Remington, B. A.

    2000-01-01

    We demonstrate that two systems described by the equations of the ideal magnetohydrodynamics (MHD) evolve similarly, if the initial conditions are geometrically similar and certain scaling relations hold. The thermodynamic properties of the gas must be such that the internal energy density is proportional to the pressure. The presence of the shocks is allowed. We discuss the applicability conditions of the ideal MHD and demonstrate that they are satisfied with a large margin both in a number of astrophysical objects, and in properly designed simulation experiments with high-power lasers. This allows one to perform laboratory experiments whose results can be used for quantitative interpretation of various effects of astrophysical MHD. (c) 2000 The American Astronomical Society

  1. Conversion software for ANSYS APDL 2 FLUENT MHD magnetic file

    International Nuclear Information System (INIS)

    Ghita, G.; Ionescu, S.; Prisecaru, I.

    2016-01-01

    The present paper describes the improvements made to the conversion software for ANSYS APDL 2 FLUENT MHD Magnetic File which is able to extract the data from ANSYS APDL file and write down a file containing the magnetic field data in FLUENT magneto hydro dynamics (MHD) format. The MHD module has some features for the uniform and non uniform magnetic field but it is limited for sinusoidal or pulsed, square wave, having a fixed duty cycle of 50%. The present software, ANSYS APDL 2 FLUENT MHD Magnetic File, suffered major modifications in comparison with the last one. The most important improvement consists in a new graphical interface, which has 3D graphical interface for the input file but also for the output file. Another improvement has been made for processing time, the new version is two times faster comparing with the old one. (authors)

  2. Concept for a high performance MHD airbreathing-IEC fusion rocket

    International Nuclear Information System (INIS)

    Froning, H.D. Jr.; Miley, G.H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-01-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion

  3. Concept for a high performance MHD airbreathing-IEC fusion rocket

    Science.gov (United States)

    Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .

  4. Outline of fast analyzer for MHD equilibrium 'FAME'

    International Nuclear Information System (INIS)

    Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto.

    1994-03-01

    The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author)

  5. Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD

    KAUST Repository

    Gao, Song

    2013-05-01

    The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.

  6. Study of MHD stability beta limit in LHD by hierarchy integrated simulation code

    International Nuclear Information System (INIS)

    Sato, M.; Watanabe, K.Y.; Nakamura, Y.

    2008-10-01

    The beta limit by the ideal MHD instabilities (so-called 'MHD stability beta limit') for helical plasmas is studied by a hierarchy integrated simulation code. A numerical model for the effect of the MHD instabilities is introduced such that the pressure profile is flattened around the rational surface due to the MHD instabilities. The width of the flattening of the pressure gradient is determined from the width of the eigenmode structure of the MHD instabilities. It is assumed that there is the upper limit of the mode number of the MHD instabilities which directly affect the pressure gradient. The upper limit of the mode number is determined using a recent high beta experiment in the Large Helical Device (LHD). The flattening of the pressure gradient is calculated by the transport module in a hierarchy integrated code. The achievable volume averaged beta value in the LHD is expected to be beyond 6%. (author)

  7. Extended MHD modeling of nonlinear instabilities in fusion and space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States)

    2017-11-15

    A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements of the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.

  8. Route analysis for MHD equilibria

    International Nuclear Information System (INIS)

    Kikuchi, Fumio; Aizawa, Tatsuhiko

    1982-01-01

    In Tokamak facilities which are promising in nuclear fusion reactor development, the plasma in the core is often described by MHD approximation. Specifically, since an axisymmetric torus is approximately assumed as the first wall (shell) shape in actual Tokamak facilities, the Grad-Shafranov equation to be satisfied by an axisymmetric equilibrium solution for ideal MHD fluid must be solved, and the characteristics of its solution must be clarified. This paper shows the outline of the numerical calculation which employs both the incremental method taking the particular incremental nodal point values as the control parameters and the interaction method in accordance with Newton method at the same time, the analysis objective being a non-linear eigenvalue problem dealing the boundary of plasma region with surrounding vacuum region as the free boundary. Next, the detailed route analysis of the equilibrium solution is performed, utilizing the above numerical calculation technique, to clarify the effect of shell shape on the behaviour of the equilibrium solution. As the shape of the shell, a rectangular section torus, which have a notch depression at a part of the shell inner boundary, is considered. In the paper, the fundamental MHD equation and its approximate solution by the finite element method, the behaviour of plasma equilibrium solution in a shell having a notch, and the effect of notch shapes on plasma behaviour are described. This analysis verifies the effectiveness of the calculation method. (Wakatsuki, Y.)

  9. Magnetohydrodynamic (MHD) simulation of solar prominence formation

    International Nuclear Information System (INIS)

    Bao, J.

    1987-01-01

    Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode

  10. Energetic particle effects on global MHD modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  11. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  12. NUMERICAL SIMULATION OF EXCITATION AND PROPAGATION OF HELIOSEISMIC MHD WAVES: EFFECTS OF INCLINED MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Parchevsky, K. V.; Kosovichev, A. G.

    2009-01-01

    Investigation of propagation, conversion, and scattering of MHD waves in the Sun is very important for understanding the mechanisms of observed oscillations and waves in sunspots and active regions. We have developed a three-dimensional linear MHD numerical model to investigate the influence of the magnetic field on excitation and properties of the MHD waves. The results show that surface gravity waves (f-modes) are affected by the background magnetic field more than acoustic-type waves (p-modes). Comparison of our simulations with the time-distance helioseismology results from Solar and Heliospheric Observatory/MDI shows that the amplitude of travel time variations with azimuth around sunspots caused by the inclined magnetic field does not exceed 25% of the observed amplitude even for strong fields of 1400-1900 G. This can be an indication that other effects (e.g., background flows and nonuniform distribution of the magnetic field) can contribute to the observed azimuthal travel time variations. The azimuthal travel time variations caused by the wave interaction with the magnetic field are similar for simulated and observed travel times for strong fields of 1400-1900 G if Doppler velocities are taken at the height of 300 km above the photosphere where the plasma parameter β << 1. For the photospheric level the travel times are systematically smaller by approximately 0.12 minutes than for the height of 300 km above the photosphere for all studied ranges of the magnetic field strength and inclination angles. Numerical MHD wave modeling and new data from the HMI instrument of the Solar Dynamics Observatory will substantially advance our knowledge of the wave interaction with strong magnetic fields on the Sun and improve the local helioseismology diagnostics.

  13. Ideal MHD stability and characteristics of edge localized modes on CFETR

    Science.gov (United States)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  14. Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Mostinskii, I.L.

    1977-01-01

    Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K 2 CO 3 on the heat exchange surface are also included

  15. Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)

    2010-09-01

    One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.

  16. Stabilities of MHD rotational discontinuities

    International Nuclear Information System (INIS)

    Wang, S.

    1984-11-01

    In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)

  17. MHD stability of tandem mirrors

    International Nuclear Information System (INIS)

    Poulsen, P.; Molvik, A.; Shearer, J.

    1982-01-01

    The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration

  18. Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, Akihiro; Nakajima, Noriyoshi

    2007-01-01

    This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)

  19. Safety and reliability in superconducting MHD magnets

    International Nuclear Information System (INIS)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included

  20. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    International Nuclear Information System (INIS)

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  1. Stability of a two-volume MRxMHD model in slab geometry

    Science.gov (United States)

    Tuen, Li Huey

    Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for

  2. A simplified MHD model of capillary Z-Pinch compared with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)

    2016-11-15

    The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    2001-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  4. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  5. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size

  6. Stability analysis of resistive MHD modes via a new numerical matching technique

    International Nuclear Information System (INIS)

    Furukawa, M.; Tokuda, S.; Zheng, L.-J.

    2009-01-01

    Full text: Asymptotic matching technique is one of the principal methods for calculating linear stability of resistive magnetohydrodynamics (MHD) modes such as tearing modes. In applying the asymptotic method, the plasma region is divided into two regions: a thin inner layer around the mode-resonant surface and ideal MHD regions except for the layer. If we try to solve this asymptotic matching problem numerically, we meet practical difficulties. Firstly, the inertia-less ideal MHD equation or the Newcomb equation has a regular singular point at the mode-resonant surface, leading to the so-called big and small solutions. Since the big solution is not square-integrable, it needs sophisticated treatment. Even if such a treatment is applied, the matching data or the ratio of small solution to the big one, has been revealed to be sensitive to local MHD equilibrium accuracy and grid structure at the mode-resonant surface by numerical experiments. Secondly, one of the independent solutions in the inner layer, which should be matched onto the ideal MHD solution, is not square-integrable. The response formalism has been adopted to resolve this problem. In the present paper, we propose a new method for computing the linear stability of resistive MHD modes via matching technique, where the plasma region is divided into ideal MHD regions and an inner region with finite width. The matching technique using an inner region with finite width was recently developed for ideal MHD modes in cylindrical geometry, and good performance was shown. Our method extends this idea to resistive MHD modes. In the inner region, the low-beta reduced MHD equations are solved, and the solution is matched onto the solution of the Newcomb equation by using boundary conditions such that the parallel electric field vanishes properly as approaching the computational boundaries. If we use the inner region with finite width, the practical difficulties raised above can be avoided from the beginning. Figure

  7. MHD repowering of a 250 MWe unit of the TVA Allen Steam Plant

    International Nuclear Information System (INIS)

    Chapman, J.N.; Attig, R.C.

    1992-01-01

    In this paper coal fired MHD repowering is considered for the TVA Allen Steam Plant. The performance of the repowered plant is presented. Cost comparisons are made of the cost of repowering with MHD versus the cost of meeting similar standards by installing scrubbers and selective catalytic NO x reduction (SCNR). For repowering of a single 250 MW e unit, the costs favor scrubbing and SCNR. If one considers a single repowering of all three 250 MW e units by a single MHD topping cycle and boiler, MHD repowering is more economical. Environmental emissions from the repowered plant are estimated

  8. Experimental investigation of MHD effects in a manifold of a downstream circular pipe

    International Nuclear Information System (INIS)

    Xu Zengyu; Pan Chuanjie; Wei Wenhao; Chen Xiaoqiong; Zhang Yanxu

    2001-01-01

    The velocity distribution in the mid-plane of the cross section of a main pipe in the region of a junction is investigated. The result confirms that the MHD-flow near the junction is strongly affected by the junction itself. This holds even if the bypass pipe is closed. The MHD pressure drops are also measured, and a three-dimensional (3D) factor of MHD pressure drop due to manifold effects is obtained with theoretical analysis and comparing with experimental data. The factor is directly proportional to Hartmann number Ha. Two dimensional MHD pressure drop is also discussed

  9. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    International Nuclear Information System (INIS)

    He, Qingyun; Chen, Hongli; Feng, Jingchao

    2015-01-01

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  10. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao

    2015-12-15

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  11. Multimegawatt space nuclear power open-cycle MHD-facility

    International Nuclear Information System (INIS)

    Pavshuk, V.A.; Panchenko, V.P.

    2008-01-01

    Paper presents the results of the efforts to calculate the characteristics, the layout and the engineering design of the open cycle space power propulsion on the basis of the high-temperature nuclear reactor for a nuclear rocket engine and the Faraday 20 MW capacity MHD-generator. The IVG-1 heterogeneous channel-vessel reactor ensuring in the course of the experiments hydrogen heating up to 3100 K, up to 5 MPa pressure at the reactor core outlet, up to 5 kg/s flowsheet, up to 220 MW thermal power served as a reactor is considered. One determined the MHD-generator basic parameters, namely: the portion of Cs dope was equal to 20%, the outlet stagnation pressure - 2 MPa, the electric conductivity - ≅30 S/m, the Mach number - ≅0.7, the magnetic field induction - 6 T, the capacity - 20 MW, the specific power removal - ∼4 MJ/kg. Paper describes the design of the MHD-facility with the working fluid momentless discharge and its basic characteristics [ru

  12. ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM

    International Nuclear Information System (INIS)

    HUMPHREYS, DA; FERRON, JR; GAROFALO, AM; HYATT, AW; JERNIGAN, TC; JOHNSON, RD; LAHAYE, RJ; LEUER, JA; OKABAYASHI, M; PENAFLOR, BG; SCOVILLE, JT; STRAIT, EJ; WALKER, ML; WHYTE, DG

    2002-01-01

    A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response

  13. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    International Nuclear Information System (INIS)

    Mellet, N.; Maget, P.; Meshcheriakov, D.; Lütjens, H.

    2013-01-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value. (paper)

  14. Spectrum of resistive MHD modes in cylindrical plasmas

    International Nuclear Information System (INIS)

    Ryu, C.M.; Grimm, R.C.

    1983-07-01

    A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfven and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfven spectrum. The stabilizing effect of favorable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed

  15. Studies of energetic-ion-driven MHD instabilities in helical plasmas with low magnetic shear

    International Nuclear Information System (INIS)

    Yamamoto, S.; Ascasibar, E.; Jimenez-Gomez, R.

    2012-11-01

    We discuss the features of energetic-ion-driven MHD instabilities such as Alfvén eigenmodes (AEs) in three-dimensional magnetic configuration with low magnetic shear and low toroidal field period number (N p ) that are characteristic of advanced helical plasmas. Comparison of experimental and numerical studies in Heliotron J with those in TJ-II indicates that the most unstable AE is global AE (GAE) in low magnetic shear configuration in spite of the iota and the helicity-induced AE (HAE) is also the most unstable AE in the high iota configuration. (author)

  16. MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.

    1982-01-01

    The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.

  17. Compact torus theory: MHD equilibrium and stability

    International Nuclear Information System (INIS)

    Barnes, D.C.; Seyler, C.E.; Anderson, D.V.

    1979-01-01

    Field reversed theta pinches have demonstrated the production and confinement of compact toroidal configurations with surprisingly good MHD stability. In these observations, the plasma is either lost by diffusion or by the loss of the applied field or is disrupted by an n = 2 (where n is the toroidal mode number) rotating instability only after 30 to 100 MHD times, when the configuration begins to rotate rigidly above a critical speed. These experiments have led one to investigate the equilibrium, stability, and rotation of a very elongated, toroidally axisymmetric configuration with no toroidal field. Many of the above observations are explained by recent results of these investigations which are summarized

  18. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  19. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  20. Development program for MHD power generation. Interim technical report June 1974

    International Nuclear Information System (INIS)

    1974-06-01

    A total of 33,000 kilowatt hours of accumulated operating experience has been built up on the Mark VI MHD generator experiment. A total absence of arcing during the last 68 hours indicates that this major determinant of long-duration reliability has been brought under control, and a new Avco-designed burner has been put in service which has made possible, on a routine basis, power-levels in the Mark VI of from 400 to 500 kilowatts. A metal tubular air preheater and compressor have been ordered for the purpose of reducing the hourly consumption of liquid oxidizer, thus allowing more hours of operation between refills. Testing of the high-temperature air heater has also yielded highly satisfactory results. To date, air preheat temperatures of 3000 0 F and higher have been reached in continuous cyclic operation for more than 600 hours. Alumina cored brick is the heater matrix and the mode of operation corresponds to separate firing. Air preheat temperature strongly influences the overall efficiency of an MHD plant and an efficiency of between 55-60 percent is possible with the performance obtained to date. Detailed analysis of the radiation cooling and kinetics of the MHD generator exhaust gas in the radiant section of the downstream boiler, have shown that the level of NO/sub x/ can be reduced to a fraction of the corresponding EPA standard in a furnace of reasonable size

  1. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  2. High pressure MHD coal combustors investigation, phase 2

    Science.gov (United States)

    Iwata, H.; Hamberg, R.

    1981-05-01

    A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.

  3. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  4. Evolution of the MHD sheet pinch

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Montgomery, D.

    1979-01-01

    A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table

  5. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel [Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Müller, Ewald, E-mail: tomasz.rembiasz@uv.es [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2017-06-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.

  6. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  7. Statistical Theory of the Ideal MHD Geodynamo

    Science.gov (United States)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  8. MHD mode evolutions prior to minor and major disruptions in SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dhongde, Jasraj; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Bhandarkar, Manisha

    2017-01-15

    Highlights: • Observation of different regimes of MHD phenomena in SST-1 plasma. • MHD mode (m/n = 1/1, m/n = 2/1) evolutions prior to minor and major disruptions in SST-1 plasma. • MHD mode characteristics such as mode frequency, mode number, island width etc. in different regimes. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak (R{sub 0} = 1.1 m, a = 0.2 m, B{sub T} = 1.5T, Ip ∼ 110 kA) in operation at the Institute for Plasma Research, India. SST-1 uniquely experiments large aspect ratio (∼5.5) plasma in different operation regimes. In these experiments, repeatable characteristic MHD phenomena have been consistently observed. As the large aspect ratio plasma pulse progresses, these MHD phenomena display minor-major disruptions ably indicated in Mirnov oscillations, Mirnov oscillations with saw teeth and locked modes etc. Even though somewhat similar observations have been found in some other machines, these observations are found for the first time in large aspect ratio plasma of SST-1. This paper elaborates the magnetic field perturbations and mode evolutions due to MHD activities from Mirnov coils (poloidal and toroidal), Soft X-ray diagnostics, ECE diagnostics etc. This work further, for the first time reports quantitatively different regimes of MHD phenomena observed in SST-1 plasma, their details of mode evolutions characteristics as well as the subsequently observed minor, major disruptions supported with the physical explanations. This study will help developing disruption mitigation and avoidance scenarios for having better confinement plasma experiments.

  9. MHD simulation of Columbia HBT

    International Nuclear Information System (INIS)

    Li, X.L.

    1987-01-01

    The plasma of Columbia High Beta Tokamak (HBT) is studied numerically by using the two dimensional resistive MHD model. The main object of this work is to understand the high beta formation process of HBT plasma and to compare the simulation with the experiments. 21 refs., 48 figs., 2 tabs

  10. Numerical computation of MHD equilibria

    International Nuclear Information System (INIS)

    Atanasiu, C.V.

    1982-10-01

    A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)

  11. Ion temperature increase during MHD events on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Ejiri, A.; Shiraiwa, S.; Takase, Y.; Yamada, T.; Nagashima, Y.; Kasahara, H.; Iijima, D.; Kobori, Y.; Nishi, T.; Taniguchi, T.; Aramasu, M.; Ohara, S.; Ushigome, M.; Yamagishi, K.

    2003-01-01

    Various types of MHD events including internal reconnection events are studied on the TST-2 spherical tokamak. In weak MHD events no positive current spike was observed, but in strong MHD events with positive current spikes, a rapid and significant impurity ion temperature increase was observed. The decrease in the poloidal magnetic energy is the most probable energy source for ion heating. The plasma current shows a stepwise change. The magnitude of this step correlates with the temperature increase and is found to be a good indicator of the strength of each event. (author)

  12. MHD pressure drop of imperfect insulation of liquid metal flow

    International Nuclear Information System (INIS)

    Horiike, H.; Nishiura, R.; Inoue, S.; Miyazaki, K.

    2000-01-01

    An experiment was performed to study magnetohydrodynamic (MHD) pressure gradient in the case of an imperfect electric insulation coating when using NaK loop. Test channels with uniform defects in their coating were made by painting inner surface with acrylic lacquer insulation. It was found that the exponent to B -- which is 1 for insulated walls, and 2 for conducting ones, was very sensitive to crack fractions lower than 25%. The pressure gradient was found to increase almost linearly with the fraction

  13. The Statistical Mechanics of Ideal MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  14. Report on evaluation concerning R and D of magneto hydrodynamic (MHD) generation. Introduction; Denji ryutai (MHD) hatsuden no kenkyu kaihatsu ni kansuru hyoka hokokusho. Soron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    Evaluation was conducted concerning R and D on magneto hydrodynamic (MHD) generation, with proposals made for the future R and D. As a result of the experimental operation and studies of the Mark 7 machine for MHD generation, a cold wall type generation channel was found promising in the long-term durability under MHD generation conditions. In addition, R and D was conducted on the exhaust gas control system that fulfilled an environmental standard, seed recovery method, grasp of seed coagulation state, etc. The R and D on element technologies were carried out along with the R and D of the Mark 7 and played a role in the backup of its experiment. MHD generation presents a large number of attractive characteristics, with its development expected in the future. However, it seems too early to immediately move on to the next step. Examinations should be made on such matters as comparisons with various kinds of new power generation systems using coal, trends in foreign countries particularly the U-500 project of the Soviet Union, the ideal system for more efficient development, and possibility of international cooperation. (NEDO)

  15. Linear MHD stability analysis of post-disruption plasmas in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany); Huijsmans, G. T. A. [ITER Organization (France); Aleynikov, P. [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany)

    2016-05-15

    Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.

  16. Nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.

    1975-01-01

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  17. Role of MHD activity in LH-assisted discharges in the PBX-M tokamak

    International Nuclear Information System (INIS)

    Talvard, M.; Bell, R.E.; Bernabei, S.; Kaye, S.; Okabayashi, M.; Sesnic, S.; von Goeler, S.

    1995-01-01

    A data base for the 1993 run period of PBX-M has been documented (i) to investigate whether it was possible to forecast the development of MHD instabilities often observed in LH assisted discharges and (ii) to detail the origin, the nature and the effects of those instabilities. The deposition radius of the RF current, the plasma internal inductance and the LH power are used to separate MHD active and quiescent regimes prior the MHD onset. 1/1, 2/1, 3/1 global modes driven by the m = 2, n = 1 component are observed in discharges with LHCD. The destabilization is attributed to an increase of the current density gradient within the q = 2 surface. MHD fluctuations reduce the soft x-ray and hard x-ray intensities mainly around the RF current deposition radius. Minor disruptions with large inversion radii and mode locking are analyzed. Pi possible precursor to the MHD is evidenced on the hard x-ray horizontal profiles. A resonance between fast trapped electrons and turbulent waves present in the background plasma is proposed to support the observations

  18. On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

    Directory of Open Access Journals (Sweden)

    L.-N. Hau

    2007-09-01

    Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

  19. Pulsed power sources based on MHD generators (A state-of-art review)

    International Nuclear Information System (INIS)

    Das, A.K.; Venkatramani, N.; Rohatgi, V.K.

    1986-01-01

    pulsed Power sources are finding increased applications in powering plasma experiments, CTF devices, investigations of structure of earth's crust or self-contained compact power supplies for military applications. This report reviews the development of magnetohydrodynamic (MHD) power systems for pulsed power applications. The major critical components, which are analysed in detail, include the combustor, high energy fuel development, high field magnet, high power density channel and power conditioning unit. The report concludes that the MHD research has now reached a stage, where it is possible to design and achieve requisite performance from short duration high power compact MHD generators. (author)

  20. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    Science.gov (United States)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  1. An improvement of SiC insulator performances for MHD generator channels

    International Nuclear Information System (INIS)

    Okuo, T.; Ookouchi, T.; Aoki, Y.

    1988-01-01

    A water cooled ceramic-metal bonded wall element has been developed for a coal combustion MHD generator channels. It was shown to have excellent characters of stability under high heat flux and thermal shock conditions and good electrical insulation performance in the splash test stand and the small scale MHD simulation channel of ETL COM Fired Facility. Temperature of the compliant and brazed layer rises significantly with heat flux, and cause troubles such as oxidation, corrosion and deterioration of strength of the compliant material. Not only an application for the ceramics-metal bonding with high reliability, but also an improvement of allowable heat flux is possible. New compliant material made of grooved copper and a high reliable metallizing and brazing method were developed. It will make possible raising the limitation of allowable heat flux up to 1,000 W/cm 2 . Through this research, the compatibility of the grooved copper compliant structure was proved and a design concept obtained to construct a highly efficient, water cooled SiC insulator

  2. Ceramic component for M.H.D electrode

    International Nuclear Information System (INIS)

    Marchant, D.D.; Bates, J.L.

    1980-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hfsub(x)Insub(y)Asub(z)O 2 where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a rare earth or yttrium. The rare earth may be Yb, Tb, Pr or Ce. The component is suitable for use in the fabrication of MHD electrodes or as the current lead-out portion of a composite electrode with other ceramic components. An MHD electrode comprises a cap of a known ceramic, e.g. stabilised zirconium or hafnium oxide or terbium stabilised hafnium, a current lead-out ceramic according to the invention, and a copper frame. (author)

  3. SCMS-1, Superconducting Magnet System for an MHD generator

    International Nuclear Information System (INIS)

    Zenkevich, V.B.; Kirenin, I.A.; Tovma, V.A.

    1977-01-01

    The research and development effort connected with the building of the superconducting magnet systems for MHD generators at the Institute for High Temperatures of the U.S.S.R. Academy of Sciences included the designing, fabrication and testing of the superconducting magnet system for an MHD generator (SCMS-1), producing a magnetic field up to 4 Tesla in a warm bore tube 300 mm in diameter and 1000 mm long (the nonuniformity of the magnetic field in the warm bore did not exceed +-5%. The superconducting magnet system is described. The design selected consisted of a dipole, saddle-form coil, wound around a tube. The cooling of the coils is of the external type with helium access to each layer of the winding. For winding of the superconducting magnet system a 49-strand cable was used consisting of 42 composition conductors, having a diameter of 0.3 mm each, containing six superconducting strands with a niobium-titanium alloy base (the superconducting strands were 70 microns in diameter), and seven copper conductors of the same diameter as the composite conductors. The cable is made monolithic with high purity indium and insulated with lavsan fiber. The cable diameter with insulation is 3.5 mm

  4. Development of a potential based code for MHD analysis of LLCB TBM

    International Nuclear Information System (INIS)

    Bhuyan, P.J.; Goswami, K.S.

    2010-01-01

    A two dimensional solver is developed for MHD flows with low magnetic Reynolds' number based on the electrostatic potential formulation for the Lorentz forces and current densities which will be used to calculate the MHD pressure drop inside the channels of liquid breeder based Test Blanket Modules (TBMs). The flow geometry is assumed to be rectangular and perpendicular to the flow direction, with flow and electrostatic potential variations along the flow direction neglected. A structured, non-uniform, collocated grid is used in the calculation, where the velocity (u), pressure (p) and electrostatic potential (φ) are calculated at the cell centers, whereas the current densities are calculated at the cell faces. Special relaxation techniques are employed in calculating the electrostatic potential for ensuring the divergence-free condition for current density. The code is benchmarked over a square channel for various Hartmann numbers up to 25,000 with and without insulation coatings by (i) comparing the pressure drop with the approximate analytical results found in literature and (ii) comparing the pressure drop with the ones obtained in our previous calculations based on the induction formulation for the electromagnetic part. Finally the code is used to determine the MHD pressure drop in case of LLCB TBM. The code gives similar results as obtained by us in our previous calculations based on the induction formulation. However, the convergence is much faster in case of potential based code.

  5. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    International Nuclear Information System (INIS)

    Froning, H. D. Jr; Yang, Yang; Momota, H.; Burton, E.; Miley, G. H.; Luo, Nie

    2005-01-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines

  6. MHD dynamo action in space plasmas

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1984-05-01

    Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)

  7. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  8. Study on closed cycle MHD generation systems; Closed cycle MHD hatsuden system no kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The closed cycle noble gas MHD generation systems are surveyed and studied. The concept of closed cycle noble gas MHD generation is confirmed to extract high enthalpy, and now going into the engineering demonstration stage from the basic research stage. These systems have various characteristics. The highest working temperature is around 1,700 degrees C, which is close to that associated with the existing techniques. Use of helium or argon gas as the working fluid makes the system relatively free of various problems, e.g., corrosion. It can attain a much higher efficiency than the combined cycle involving gas turbine. It suffers less heat loss in the passages, is suitable for small- to medium-capacity power generation systems, and copes with varying load. The compact power generation passages decrease required size of the superconducting magnet. The technical problems to be solved include optimization of power generation conditions, demonstration of durability of the power generation passages, injection/recovery of the seed material, treatment of the working gas to remove molecular impurities, and development of heat exchangers serviceable at high temperature produced by direct combustion of coal. The conceptual designs of the triple combined system are completed. (NEDO)

  9. Investigation of MHD instabilities and control in KSTAR preparing for high beta operation

    Science.gov (United States)

    Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Park, J. K.; Kim, J.; Hahn, S. H.; Ahn, J.-W.; Yoon, S. W.; Lee, K. D.; Choi, M. J.; Yun, G. S.; Park, H. K.; You, K.-I.; Bae, Y. S.; Oh, Y. K.; Kim, W.-C.; Kwak, J. G.

    2013-08-01

    Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied

  10. Investigation of MHD instabilities and control in KSTAR preparing for high beta operation

    International Nuclear Information System (INIS)

    Park, Y.S.; Sabbagh, S.A.; Bialek, J.M.; Berkery, J.W.; Lee, S.G.; Ko, W.H.; Bak, J.G.; Jeon, Y.M.; Kim, J.; Hahn, S.H.; Yoon, S.W.; Lee, K.D.; You, K.-I.; Bae, Y.S.; Oh, Y.K.; Park, J.K.; Ahn, J.-W.; Choi, M.J.; Yun, G.S.; Park, H.K.

    2013-01-01

    Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with W tot = 340 kJ, β N = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce W tot . In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H–L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of β N by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2

  11. Calculation of magnetic field and electromagnetic forces in MHD superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.; Moisio, M.F.

    1992-01-01

    The realization of a superconducting prototype magnet for MHD energy conversion is under development in Italy. Electromechanical industries and University research groups are involved in the project. The paper deals with analytical methods developed at the Department of Electrical Engineering of Padova University for calculating magnetic field and electromagnetic forces in MHD superconducting magnets and utilized in the preliminary design of the prototype

  12. Numerical modeling of first experiments on PbLi MHD flows in a rectangular duct with foam-based SiC flow channel insert

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)

    2016-10-15

    Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical

  13. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  14. Solar furnace experiments for thermophysical properties studies of rare-earth oxide MHD materials

    International Nuclear Information System (INIS)

    Coutures, J.P.

    1978-01-01

    Some high temperature work performed with solar furnaces on rare earth oxides is reviewed. Emphasis is on the thermophysical properties (refractoriness, vaporization behavior) and the nature of solid solution on materials which could be used as electrodes for the MHD process. As new sources of energy are being developed due to the world energy crisis, MHD conversion could be useful. The development of MHD systems requires new efforts to develop and optimize materials properties. These materials must have good mechanical and electrical properties (if possible, pure electronic conduction with good emission). Because of the high temperature in MHD generators, the materials for electrodes must have good refractoriness and also must resist vaporization and corrosion at high temperature (T approx. 2000 0 C). Rare-earth oxides are the basic components for most of the MHD electrode materials and it is important to know their thermophysical properties (solidification point phase transitions, heat of fusion and of phase transition, vapor pressure). Because of the high temperature range and the nature of the atmosphere in which these experiments must be performed, special equipment adapted to solar furnaces was developed

  15. Recent progress on MHD-induced loss of D-D fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Budny, R.V.; Cheng, C.Z.; Fredrickson, E.D.; Herrmann, H.; Mynick, H.E.; Schivell, J.

    1993-08-01

    This paper reviews the recent progress made toward understanding the MHD-induced loss of D-D fusion products which has been seen on TFTR since 1988. These measurements have been made using the ''lost alpha'' diagnostic, which is described briefly. The largest MHD- induced loss occurs with coherent 3/2 or 2/1 MHD activity (kink/tearing modes), which can cause up to ∼3--5 times the first-orbit loss at I∼1.6--1.8 MA, roughly a ∼20--30% global los of D-D fusion products. Modeling of these MHD-induced losses has progressed to the point where the basic loss mechanism can be accounted for qualitatively, but the experimental results can not yet be understood quantitatively. Several alpha loss codes are being developed to improve the quantitative comparison between experiment and theory

  16. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    Science.gov (United States)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  17. Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report

    International Nuclear Information System (INIS)

    Anghaie, S.; Saraph, G.

    1995-01-01

    A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses

  18. MARS: Mirror Advanced Reactor Study

    International Nuclear Information System (INIS)

    Logan, B.G.

    1984-01-01

    A recently completed two-year study of a commercial tandem mirror reactor design [Mirror Advanced Reactor Study (MARS)] is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted

  19. Regular shock refraction in planar ideal MHD

    International Nuclear Information System (INIS)

    Delmont, P; Keppens, R

    2010-01-01

    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.

  20. Direct measurements of damping rates and stability limits for low frequency MHD modes and Alfven Eigenmodes in the JET tokamak

    International Nuclear Information System (INIS)

    Fasoli, A.F.; Testa, D.; Jaun, A.; Sharapov, S.; Gormezano, C.

    2001-01-01

    The linear stability properties of global modes that can be driven by resonant energetic particles or by the bulk plasma are studied using an external excitation method based on the JET saddle coil antennas. Low toroidal mode number, stable plasma modes are driven by the saddle coils and detected by magnetic probes to measure their structure, frequency and damping rate, both in the Alfven Eigenmode (AE) frequency range and in the low frequency Magneto-Hydro-Dynamic (MHD) range. For AEs, the dominant damping mechanisms are identified for different plasma conditions of relevance for reactors. Spectra and damping rates of low frequency MHD modes that are localized at the foot of the internal transport barrier and can affect the plasma performance in advanced tokamak scenarios have been directly measured for the first time. This gives the possibility of monitoring in real time the approach to the instability boundary. (author)

  1. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  2. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  3. Neoclassical MHD equilibria with ohmic current

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.

    1989-01-01

    MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)

  4. Resistive MHD studies of TFTR discharges

    International Nuclear Information System (INIS)

    Hughes, M.H.; Phillips, M.W.; Sabbagh, S.A.; Budny, R.V.

    1991-01-01

    MHD instabilities, thought to be resistive in character, are frequently observed in the supershot operating regime of TFTR (var-epsilon β p ≤ 0.7). These instabilities are always accompanied by substantial degradation of the confinement. Similarly of interest are recent experiments at much larger β p (var-epsilon β p ≤ 1.6), achieved through ramping the current during the beam heating phase of the discharge. In this latter regime the confinement can exceed three times the corresponding L-mode value and the β value normalized to I/aB can be as large as 4.7. Representative discharges from each of these operating regimes have been analyzed using a linear resistive MHD stability code with equilibrium pressure and q profiles obtained initially from the TRANSP analysis code. The main difference between the two types of discharge, as far as stability is concerned is shown to be the shape of the current density profile. The sensitivity to the assumed parameters is discussed. 1 ref

  5. Future Transient Testing of Advanced Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by

  6. Future Transient Testing of Advanced Fuels

    International Nuclear Information System (INIS)

    Carmack, Jon

    2009-01-01

    The transient in-reactor fuels testing workshop was held on May 4-5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat energie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric - Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  7. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  8. Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator

    Science.gov (United States)

    Bents, D. J.

    1982-01-01

    A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  9. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  10. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  11. Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge

    International Nuclear Information System (INIS)

    Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1994-01-01

    We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes

  12. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Science.gov (United States)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  13. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  14. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    Energy Technology Data Exchange (ETDEWEB)

    Anninos, Peter; Lau, Cheuk [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States); Bryant, Colton [Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Holgado, A. Miguel [Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 (United States); Nemergut, Daniel [Operations and Engineering Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  15. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    International Nuclear Information System (INIS)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Nemergut, Daniel

    2017-01-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  16. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  17. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  18. Test Concept for Advanced Oxidation Techniques

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  19. Numerical analysis of liquid metal MHD flows through circular pipes based on a fully developed modeling

    International Nuclear Information System (INIS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2013-01-01

    Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2

  20. Verification tests for CANDU advanced fuel

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1997-07-01

    For the development of a CANDU advanced fuel, the CANFLEX-NU fuel bundles were tested under reactor operating conditions at the CANDU-Hot test loop. This report describes test results and test methods in the performance verification tests for the CANFLEX-NU bundle design. The main items described in the report are as follows. - Fuel bundle cross-flow test - Endurance fretting/vibration test - Freon CHF test - Production of technical document. (author). 25 refs., 45 tabs., 46 figs

  1. 3D nonlinear MHD simulations of ultra-low q plasmas

    International Nuclear Information System (INIS)

    Bonfiglio, D.; Cappello, S.; Piovan, R.; Zanotto, L.; Zuin, M.

    2008-01-01

    Magnetohydrodynamic (MHD) phenomena occurring in the ultra-low safety factor (ULq) configuration are investigated by means of 3D nonlinear MHD simulations. The ULq configuration, a screw pinch characterized by the edge safety factor q edge in the interval 0 edge edge values which are about the major rational numbers, suggesting plasma self-organization. Similar behaviour is observed in experimental ULq discharges, like those recently obtained exploiting the flexibility of the RFX-mod device. The transition of q edge from a major rational number to the next one occurs together with the development of a kink deformation of the plasma column, whose stabilization yields a nearly axisymmetric state with a rather flat q profile. Numerical simulations also show that it is possible to sustain either of the two conditions, namely, the saturated kink helical configuration and the axisymmetric one, by forcing q edge at a suitable value. Finally, the effects of this MHD phenomenology on the confinement properties of ULq plasmas are discussed.

  2. Coal-fired magnetohydrodynamic (MHD) electric power generation

    International Nuclear Information System (INIS)

    Sens, P.F.

    1992-01-01

    Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract

  3. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design. [Engineering Test Facility

    Science.gov (United States)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  4. Advanced Stirling Convertor (ASC-E2) Characterization Testing

    Science.gov (United States)

    Williams, Zachary D.; Oriti, Salvatore M.

    2012-01-01

    Testing has been conducted on Advanced Stirling Convertors (ASCs)-E2 at NASA Glenn Research Center in support of the Advanced Stirling Radioisotope Generator (ASRG) project. This testing has been conducted to understand sensitivities of convertor parameters due to environmental and operational changes during operation of the ASRG in missions to space. This paper summarizes test results and explains the operation of the ASRG during space missions

  5. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    International Nuclear Information System (INIS)

    Toi, K.

    2002-01-01

    MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)

  6. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  7. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  8. Calculation code NIRVANA for free boundary MHD equilibrium

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Suzuki, Yasuo; Kameari, Akihisa

    1975-03-01

    The calculation method and code of solving the free boundary problem for MHD equilibrium has been developed. Usage of the code ''NIRVANA'' is described. The toroidal plasma current density determined as a function of the flux function PSI is substituted by a group of the ring currents, whereby the equation of MHD equilibrium is transformed into an integral equation. Either of the two iterative methods is chosen to solve the integral equation, depending on the assumptions made of the plasma surface points. Calculation of the magnetic field configurations is possible when the plasma surface coincides self-consistently with the magnetic flux including the separatrix points. The code is usable in calculation of the circular or non-circular shell-less Tokamak equilibrium. (auth.)

  9. Numerical Simulation of 3D Viscous MHD Flows

    National Research Council Canada - National Science Library

    Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M

    2003-01-01

    .... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...

  10. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  11. Temperature oscillating regimes in Tore Supra diagnosed by MHD activity

    International Nuclear Information System (INIS)

    Maget, P.; Imbeaux, F.; Giruzzi, G.; Udintsev, V.S.; Huysmans, G.T.A.; Segui, J.-L.; Goniche, M.; Moreau, Ph.; Sabot, R.; Garbet, X.

    2006-01-01

    This paper describes what we can learn on the regimes of spontaneous electron temperature oscillations discovered in Tore Supra from the analysis of MHD activity. Since the first observations of this oscillating behaviour of plasma equilibrium, and its interpretation as a predator-prey system involving lower hybrid waves power deposition and electron confinement, analysis of MHD modes has confirmed the reality of safety factor profile oscillations. This points towards the importance of rational values of the safety factor in the transition to transport barriers in reversed magnetic shear plasmas

  12. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  13. Present state of the theory of a MHD-dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Soward, A M; Roberts, P H

    1976-01-01

    A review is given of the state of the theory of a MHD-dynamo, that is, the theory of self-excited magnetic fields in homogeneous moving liquids. A description is given of two basic approaches-the turbulent dynamos of Steinbeck, Krause and Redler and the high-conductivity dynamo of Braginski, and a look is also taken at the relation between these dynamos. Finally a look is taken at the results of recent studies of the total problem of a MHD-dynamo, that is, at the results of recent attempts to solve the electro- and hydrodynamic equations and to obtain self-excited fields. 6 figs., 122 ref. (SJR)

  14. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  15. Effects of global MHD instability on operational high beta-regime in LHD

    International Nuclear Information System (INIS)

    Watanabe, K.Y.; Sakakibara, S.; Narushima, Y.; Funaba, H.; Narihara, K.; Tanaka, K.; Toi, K.; Ohdachi, S.; Kaneko, O.; Yamada, H.; Nakajima, N.; Yamada, I.; Kawahata, K.; Tokuzawa, T.; Komori, A.; Yamaguchi, T.; Suzuki, Y.; Cooper, W.A.; Murakami, S.

    2005-01-01

    In the Large Helical device (LHD), the operational highest averaged beta value has been expanded from 3.2% to 4% in last two years by increasing the heating capability and exploring a new magnetic configuration with a high aspect ratio. Although the MHD stability properties are considered to be unfavourable in the new high aspect configuration, the heating efficiency due to neutral beams and the transport properties are expected to be favourable in a high beta range. In order to make clear the effect of the global ideal MHD unstable mode on the operational regimes in helical systems, specially the beta gradients in the peripheral region and the beta value, the MHD analysis and the transport analysis are done in a high beta range up to 4% in LHD. In a high beta range of more than 3%, the maxima of the observed thermal pressure gradients in the peripheral region are marginally stable to a global ideal MHD instability. Though a gradual degradation of the local transport in the region has been observed as beta increases, a disruptive degradation of the local transport does not appear in the beta range up to 4%. (author)

  16. Chemical Recovery of Energy in a Combined MHD-Steam Power Station; Recuperation Chimique d'Energie dans une Centrale Combinee MHD-Vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Carrasse, J. [Societe Alsthom, Paris (France)

    1966-12-15

    This paper studies the energetic and chemical aspects of the operation of a combined MHD-steam power station using the combustion gases from a fossil fuel in an open circuit with potassium seeding. It describes a process for the recovery of energy by endothermal chemical gasification of the fuel. The author first recalls briefly the thermal and chemical conditions to be met throughout the length of the gas flow and points out that it is vital to ensure as much recycling of energy as possible from below to above the MHD generator, at the expense of the conventional power station located further on in the system. The paper then describes the various processes intended to ensure the thermal operating conditions required, including preheating of the air, oxygen enrichment etc. The last part of the paper, which goes into greater detail while taking the foregoing considerations into account, explains the principle and various feasible methods of application of a process at present under study and experimentation. In this process some of the heat energy of the gases discharged from the MHD duct is recycled, partly in chemical form and partly as a limited amount of gas preheat. For this purpose the fuel, mixed with oxidizing agents such as water vapour or carbon dioxide, is gasified, at about 950 Degree-Sign C and after a series of collectively endothermal reactions, into a gas composed mainly of carbon monoxide, hydrogen, nitrogen and excess water vapour and carbon dioxide. It is thus possible to avoid the employment of very high temperature heat exchangers working with seeded gas. The paper stresses the extraction of seeding material, which is simple and can here take place to a great extent in liquid form (fused salts) due to the fact that operation is in the temperature range around 1000 Degree-Sign C. Consideration is finally given to the use after treatment (cooling, extraction of seeding material, absorption of excess H{sub 2}O and CO{sub 2}, compression and re

  17. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    International Nuclear Information System (INIS)

    White, R.B.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked

  18. The CHEASE code for toroidal MHD equilibria

    International Nuclear Information System (INIS)

    Luetjens, H.

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs

  19. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  20. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  1. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  2. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  3. Localized MHD activity near transport barriers in JT-60U and TFTR

    International Nuclear Information System (INIS)

    Manickam, J.

    2001-01-01

    Localized MHD activity observed in JT-60U and TFTR near transport barriers with their associated large pressure gradients is investigated. Stability analysis of equilibria modeling the experiments supports an identification of this MHD as being due to an ideal MHD n=1 instability. The appearance of the instability depends on the local pressure gradient, local shear in the q profile and the proximity of rational surfaces where q∼m/n and m and n are the poloidal and toroidal mode numbers respectively. The mode width is shown to depend on the local value of q, and is larger when q is smaller. In addition the role of the edge current density in coupling the internal mode to the plasma edge and of the energetic particles which can drive fishbone like modes is investigated. (author)

  4. Convective heat transfer in MHD channels and its influence on channel performance

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Doss, E.D.

    1980-01-01

    The limitations of the integral boundary layer methods and the potential of the differential boundary layer method in analyzing MHD channel flows are assessed. The sensitivity of results from the integral method to the parametrization of boundary layer profiles and calculation of wall heat transfer is established. A mixing-length type turbulence model for flow on rough walls is developed and validated by comparison with experimental data. The turbulence model is used in a quasi-three-dimensional boundary layer model to evaluate the influence of wall roughness and pressure gradients on the flow characteristics and performance of MHD channels. The behaviors of skin friction and Stanton number calculated from the analytical model are found to differ considerably from the empirical correlations valid for non-MHD flows without pressure gradients

  5. Towards Integrated Pulse Detonation Propulsion and MHD Power

    Science.gov (United States)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  6. Generalized similarity method in unsteady two-dimensional MHD ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.

  7. An attempt at MHD mode control by feedback modulation of L.H. driven current

    International Nuclear Information System (INIS)

    Parlange, F.; Vallet, J.C

    1986-01-01

    MHD activity in Tokamak discharges with lower hybrid current drive has distinct features which can be used to stabilize tearing modes. A way of reducing the m=2 tearing mode was recently proposed, consisting in driving more current at the 0 point of the islands than at the X point, by means of amplitude modulated lower hybrid waves. The way it was tested in Petula is presented here

  8. On the stability of dissipative MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-04-01

    The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)

  9. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  10. Advanced microwave/millimeter-wave imaging technology

    International Nuclear Information System (INIS)

    Shen, Zuowei; Yang, Lu; Luhmann, N.C. Jr.

    2007-01-01

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources. (author)

  11. GRADSPMHD: A parallel MHD code based on the SPH formalism

    Science.gov (United States)

    Vanaverbeke, S.; Keppens, R.; Poedts, S.

    2014-03-01

    We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a

  12. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  13. Qualification of MHD effects in dual-coolant DEMO blanket and approaches to their modelling

    International Nuclear Information System (INIS)

    Mas de les Valls, E.; Batet, L.; Medina, V. de; Fradera, J.; Sedano, L.A.

    2011-01-01

    Design refinements of vertical insulated banana-shaped liquid metal channels are being considered as a progress of conceptual design of dual-coolant liquid metal blankets (DEMO specifications). Among them: (a) optimised channel geometry and (b) improvements on flow channel inserts. Progress of channel conceptual design is conducted in parallel with underlying physics of MHD models in diverse aspects: (1) MHD models, (2) MHD turbulence, (3) LM buoyancy effects, (4) three-dimensional flows, and (5) LM/FCI/wall electrical and thermal coupling; in order to progress on common liquid metal flow characterisation, pressure drop and three-dimensional flows. The analyses are assumed as extension of those previous carried out for the DCLL blankets for new design refinements. At the present stage of the conceptual design progress, a preliminary thermofluid MHD study is of crucial interest for further design improvements and future detailed modelling. The paper overviews the ongoing modelling studies, making model refinements explicit, and anticipates some modelling results.

  14. Variational Integration for Ideal MHD with Built-in Advection Equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-05

    Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  15. Modeling of flow-dominated MHD instabilities at WiPPAL using NIMROD

    Science.gov (United States)

    Flanagan, K.; McCollam, K. J.; Milhone, J.; Mirnov, V. V.; Nornberg, M. D.; Peterson, E. E.; Siller, R.; Forest, C. B.

    2017-10-01

    Using the NIMROD (non-ideal MHD with rotation - open discussion) code developed at UW-Madison, we model two different flow scenarios to study the onset of MHD instabilities in flow-dominated plasmas in the Big Red Ball (BRB) and the Plasma Couette Experiment (PCX). Both flows rely on volumetric current drive, where a large current is drawn through the plasma across a weak magnetic field, injecting J × B torque across the whole volume. The first scenario uses a vertical applied magnetic field and a mostly radial injected current to create Couette-like flows which may excite the magnetorotational instability (MRI). In the other scenario, a quadrupolar field is applied to create counter-rotating von Karman-like flow that demonstrates a dynamo-like instability. For both scenarios, the differences between Hall and MHD Ohm's laws are explored. The implementation of BRB geometry in NIMROD, details of the observed flows, and instability results are shown. This work was funded by DoE and NSF.

  16. Modeling of Low Frequency MHD Induced Beam Ion Transport In NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Medley, S.S.

    2004-01-01

    Beam ion transport in the presence of low frequency MHD activity in National Spherical Tokamak Experiment (NSTX) plasma is modeled numerically and analyzed theoretically in order to understand basic underlying physical mechanisms responsible for the observed fast ion redistribution and losses. Numerical modeling of the beam ions flux into the NPA in NSTX shows that after the onset of low frequency MHD activity high energy part of beam ion distribution, E b > 40keV, is redistributed radially due to stochastic diffusion. Such diffusion is caused by high order harmonics of the transit frequency resonance overlap in the phase space. Large drift orbit radial width induces such high order resonances. Characteristic confinement time is deduced from the measured NPA energy spectrum and is typically ∼ 4msec. Considered MHD activity may induce losses on the order of 10% at the internal magnetic field perturbation (delta)B/B = Ο (10 -3 ), which is comparable to the prompt orbit losses

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    Science.gov (United States)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  18. Numerical resolution of a bi-temperature MHD model with a general Ohm's law: Roe solver - Front-tracking - Nonlinear transport equations with discontinuous coefficients. Simulation of a Plasma Opening Switch

    International Nuclear Information System (INIS)

    Brassier, Stephane

    1998-01-01

    The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr

  19. Experimental Evaluation of MHD Generators Operating at High Hall Coefficients

    International Nuclear Information System (INIS)

    Barthelemy, R.R.; Stephan, B.G.; Cooper, R.F.

    1966-01-01

    The experimental evaluation of such open-cycle MHD generator operation, particularly at large values of the Hall parameter and Mach number, is scarce. A flexible combustion-driven MHD generator test facility is being constructed to investigate various generator-operating parameters, generator configurations and designs, and component materials. The plasma source is a combustion chamber in which toluene, or another suitable fuel, is burned with gaseous oxygen diluted with nitrogen. Potassium hydroxide seed is injected with the fuel to produce the necessary plasma conductivity. The gas stream is accelerated in a supersonic nozzle and then flows through the channel. The Hall channel is constructed of water-cooled Inconel rings suitably grooved for the zirconia electrode material. The rings are insulated from each other with Teflon spacers which are shielded from the high temperature gas by a layer of alumina refractory. The channel consists of 54 water-cooled rings assembled in three independent sections. Provisions for instrumentation consist of 15 points for static pressure measurement along the nozzle, channel and diffuser; 20 thermocouple measurements; 3 split rings for transverse current measurements; a voltmeter panel for all 54 electrodes; and all necessary fluid and electrical monitoring instruments. The channel is followed by a diffuser in which some of the dynamic pressure of the gas stream is recovered. The magnet is an iron core design with coils wound of hollow conductor to permit of water-cooling for high power operation. The magnet can operate at field strengths of up to 23 kG. Details of the test programme planned for the generator (commissioning at the end of 1966) are given. (author)

  20. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D.; Kaye, S.M.; LeBlanc, B.P.; Roquemore, A.L.

    2004-01-01

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E ∼ 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and

  1. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  2. Nonlinear MHD Waves in a Prominence Foot

    Science.gov (United States)

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-01

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  3. NONLINEAR MHD WAVES IN A PROMINENCE FOOT

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2015-11-10

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  4. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  5. Plasma Diagnostics by Microwave Interferometry in MHD Channels with the Aid of an Open Waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Muenkel, J. [Rheinische-Westfalische Technische Hochschule Aachen, Federal Republic of Germany (Germany)

    1966-10-15

    Plasma diagnostics of a novel kind, using microwave interferometry, is described. Use is made of an open non-conventional waveguide in the test path of the microwave bridge. Guiding the microwave has several advantages over free transmission of the test h.f. beam between two horn antennas if there are small plasma streams bounded by ceramics and metals as in the case of MHD channels. There are less unknown and uncontrolled disturbances of the electromagnetic waves introduced by the boundaries. On the other hand most guiding structures disturb the homogeneity of the streaming plasma (cf. arrangements with Lecher wires, dielectric rods, etc.); the waveguide used here does not do so. This waveguide, a so-called groove guide, consists of two parallel metal plates or bands with a shallow axially-directed groove in each. The plasma stream to be tested flows between these plates in a direction perpendicular to the direction of propagation of the microwaves. The groove guide has properties similar to the ideal parallel-plate guide with infinite side wards extension, but the energy flow is concentrated in the middle region by the grooves. An approximate analysis, the transverse resonance analysis, has been used to calculate the field distribution and propagation characteristics of the guide. Because of the cross-sectional dimensions of the MHD channel in question (height 16 mm) and the wavelength (4 mm) chosen, considering the expected electron density, the groove guide had to be built for use in an oversized quasi-optical technique. The transition from rectangular (hollow pipe) guide to the open guide is done in two steps. With a good knowledge of the groove guide data and an appropriate theory of propagation of electromagnetic waves in ionized media, measuring phase shift and additional damping of the microwaves by introduction of the ionized gas allows the electron density and collision frequency, two of the most important plasma parameters, to be evaluated. The system

  6. 3D MHD simulations of pellet injection and disruptions in tokamak plasmas

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

    2001-01-01

    Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center. Magnetic reconnection can produce a reverse shear q profile. Ballooning instability caused by pellets is also reduced by high field side injection. Studies are also reported of the current quench phase of disruptions, which can cause 3D halo currents and runaway electrons. (author)

  7. 3D MHD simulations of pellet injection and disruptions in tokamak plasmas

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

    1999-01-01

    Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center. Magnetic reconnection can produce a reverse shear q profile. Ballooning instability caused by pellets is also reduced by high field side injection. Studies are also reported of the current quench phase of disruptions, which can cause 3D halo currents and runaway electrons. (author)

  8. The effects of imperfect insulator coatings on MHD and heat transfer in rectangular duct

    International Nuclear Information System (INIS)

    Ying, A.Y.; Gaizer, A.A.

    1994-01-01

    In self cooled liquid metal blankets, the use of an insulator coating to reduce the flow of the eddy current to the structure leads to a significant reduction in MHD pressure drop. Furthermore, this insulating layer alters the velocity structure by reducing the potential difference between the side wall and boundary layer. The questions which arise are: (1) How the imperfections in the insulator coating affect the velocity profiles and their consequent impacts on heat transfer performance?; and, (2) How much crack can lead to an unacceptable MHD pressure drop? The dynamics of the crack healing in an insulator coating duct is one of the important subjects requiring study. The purpose of this work is to present numerical simulations of fully developed MHD flow and developing heat transfer characteristics in imperfectly insulated ducts, and to quantify the influences of crack locations, sizes and resistivities on 2-D MHD pressure drops. Comparisons of finite element solutions of pressure drops in partially insulated ducts with analytical solutions obtained from a circuit analogy show excellent agreement. In addition, the remarkable side layer velocity profile observed in a laminar MHD flow of a conducting duct gradually diminishes as the resistance of the insulating layer increases. The average side wall Nusselt number drops by a factor of 2 as the duct becomes fully insulated

  9. Coal-fired MHD combustor development project: Phase 3D

    Science.gov (United States)

    1985-05-01

    This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.

  10. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  11. Sawtooth oscillations as MHD relaxation process in a plasma

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Inoue, Nobuyuki; Ogawa, Yuichi

    1992-01-01

    The sawtooth oscillation in a tokamak plasma is a spontaneous relaxation process accompanying global instabilities which behave to reduce the internal magnetic energy. This phenomenon has a similarity to the MHD relaxation processes in Reversed Field Pinch (RFP) and Ultra Low Q (ULQ) plasmas. The self-stabilizing effect of instabilities with m (poloidal mode number) = 1 results in an increase in the central safety factor q(0). Nonlinear dynamics of m = 1 instabilities has been discussed both for global and local modes. The latter appears when a pitch minimum exists in the plasma, and is relevant to the compound sawtooth oscillation. The MHD relaxation is a restructuring process of the plasma current profile that is competitive with the resistive diffusion. (author)

  12. FLIP-MHD: A particle-in-cell mehtod for magnetohydrodynamics

    International Nuclear Information System (INIS)

    Brackbill, J.U.

    1990-01-01

    A particle-in-cell (PIC) method, FLIP is extended to magnetohydrodynamic (MHD) flow in two dimensions. Particles are used to reduce computational diffusion of the magnetic field. FLIP is an extension of ''classical'' PIC, where particles have mass, but every other property of the fluid is stored on a grid. In FLIP, particles have every property of the fluid, so that they provide a complete Lagrangian description not only to resolve contact discontinuities but also to reduce computational diffusion of linear and angular momentum. The interactions among the particles are calculated on a grid, for convenience and economy. The present study extends FLIP to MHD, by including information about the magnetic field among the attributes of the particles. 6 refs

  13. 2-D skin-current toroidal-MHD-equilibrium code

    International Nuclear Information System (INIS)

    Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.

    1982-09-01

    A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented

  14. Test particles dynamics in the JOREK 3D non-linear MHD code and application to electron transport in a disruption simulation

    Science.gov (United States)

    Sommariva, C.; Nardon, E.; Beyer, P.; Hoelzl, M.; Huijsmans, G. T. A.; van Vugt, D.; Contributors, JET

    2018-01-01

    In order to contribute to the understanding of runaway electron generation mechanisms during tokamak disruptions, a test particle tracker is introduced in the JOREK 3D non-linear MHD code, able to compute both full and guiding center relativistic orbits. Tests of the module show good conservation of the invariants of motion and consistency between full orbit and guiding center solutions. A first application is presented where test electron confinement properties are investigated in a massive gas injection-triggered disruption simulation in JET-like geometry. It is found that electron populations initialised before the thermal quench (TQ) are typically not fully deconfined in spite of the global stochasticity of the magnetic field during the TQ. The fraction of ‘survivors’ decreases from a few tens down to a few tenths of percent as the electron energy varies from 1 keV to 10 MeV. The underlying mechanism for electron ‘survival’ is the prompt reformation of closed magnetic surfaces at the plasma core and, to a smaller extent, the subsequent reappearance of a magnetic surface at the edge. It is also found that electrons are less deconfined at 10 MeV than at 1 MeV, which appears consistent with a phase averaging effect due to orbit shifts at high energy.

  15. Advanced Test Reactor probabilistic risk assessment

    International Nuclear Information System (INIS)

    Atkinson, S.A.; Eide, S.A.; Khericha, S.T.; Thatcher, T.A.

    1993-01-01

    This report discusses Level 1 probabilistic risk assessment (PRA) incorporating a full-scope external events analysis which has been completed for the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory

  16. Implementation of a 3-D nonlinear MHD [magnetohydrodynamics] calculation on the Intel hypercube

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Hicks, H.R.; Lawkins, W.F.

    1987-01-01

    The optimization of numerical schemes and increasing computer capabilities in the last ten years have improved the efficiency of 3-D nonlinear resistive MHD calculations by about two to three orders of magnitude. However, we are still very limited in performing these types of calculations. Hypercubes have a large number of processors with only local memory and bidirectional links among neighbors. The Intel Hypercube at Oak Ridge has 64 processors with 0.5 megabytes of memory per processor. The multiplicity of processors opens new possibilities for the treatment of such computations. The constraint on time and resources favored the approach of using the existing RSF code which solves as an initial value problem the reduced set of MHD equations for a periodic cylindrical geometry. This code includes minimal physics and geometry, but contains the basic three dimensionality and nonlinear structure of the equations. The code solves the reduced set of MHD equations by Fourier expansion in two angular coordinates and finite differences in the radial one. Due to the continuing interest in these calculations and the likelihood that future supercomputers will take greater advantage of parallelism, the present study was initiated by the ORNL Exploratory Studies Committee and funded entirely by Laboratory Discretionary Funds. The objectives of the study were: to ascertain the suitability of MHD calculation for parallel computation, to design and implement a parallel algorithm to perform the computations, and to evaluate the hypercube, and in particular, ORNL's Intel iPSC, for use in MHD computations

  17. MHD instability studies in ISX-B

    International Nuclear Information System (INIS)

    Pare, V.K.; Dunlap, J.L.; Navarro, A.P.; Burris, R.D.

    1979-01-01

    MHD instabilities in Ohmically and beam heated ISX-B plasmas have been studied using collimated x-ray and Mirnov loop diagnostics. The diagnostic systems will be described and the instability signals will be illustrated for a variety of discharges. The latter will include those observed in connection with low and high β operation, density clamping, pellet injection, and deliberate introduction of toroidal field ripple

  18. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  19. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  20. Real-time simulation of MHD/steam power plants by digital parallel processors

    International Nuclear Information System (INIS)

    Johnson, R.M.; Rudberg, D.A.

    1981-01-01

    Attention is given to a large FORTRAN coded program which simulates the dynamic response of the MHD/steam plant on either a SEL 32/55 or VAX 11/780 computer. The code realizes a detailed first-principle model of the plant. Quite recently, in addition to the VAX 11/780, an AD-10 has been installed for usage as a real-time simulation facility. The parallel processor AD-10 is capable of simulating the MHD/steam plant at several times real-time rates. This is desirable in order to develop rapidly a large data base of varied plant operating conditions. The combined-cycle MHD/steam plant model is discussed, taking into account a number of disadvantages. The disadvantages can be overcome with the aid of an array processor used as an adjunct to the unit processor. The conversion of some computations for real-time simulation is considered

  1. Study of MHD events initiated by pellet injection into T-10 plasmas

    International Nuclear Information System (INIS)

    Kuteev, B.; Khimchenko, L.; Krylov, S.; Pavlov, Y.; Pustovitov, V.; Sarychev, D.; Sergeev, V.; Skokov, V.; Timokhin, V.

    2005-01-01

    There are several events which might be responsible for ultra fast transport of heat and particles during pellet ablation stage in a tokamak. Those are jumps of transport coefficients, plasma drifts in the pellet vicinity and MHD events with time scale significantly shorter than the pellet ablation time. The role of the latter is still not very well understood due to a lack of studies. This paper is devoted to detailed study of the effects during the pellet ablation phase (∼ one millisecond) with main objective to determine the relation between pellet (material Li, C., KCl, size and velocity) and plasma parameters ( q-value a the pellet position, plasma density and temperature) which initiate microsecond MHD events in plasma. The pellets were injected into both into Ohmic and ECE heated plasmas (up to 3 MW) in the T-10 tokamak at various stages of the plasma discharge, in a wide range from the very beginning up to the post-disruption stage. It is observed that at some conditions a pellet ablates in the plasma without accompanying MHD events. This occurs at the highest plasma densities even if a pellet penetrates through q=1 magnetic surface. The ablation rate corresponds to NGSM in this case. Small scale events may occur near rational magnetic surfaces and the ablation rate fluctuations may be explained by reconnection. Both increase of the longitudinal heat flow due to plasma conventional from higher temperature region and growth of the electric field generation supra-thermal electrons may be responsible for the enhanced ablation. Large scale MHD events envelop a region inside q<3. It is observed that the MHD-cooled area is not poloidally symmetric. Mechanisms of the phenomena observed and their consequences on tokamak operation are discussed. (Author)

  2. Modelling of diamagnetic stabilization of ideal MHD eigenmodes associated with the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.; Sharapov, S.; Mikhailovskii, A.; Kerner, W.

    2001-01-01

    A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal MHD code MISHKA-1 in order to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency, ω *i , on linear ideal MHD eigenmodes in tokamaks with shaped plasma cross-section. The MISHKA-D code gives a self-consistent computation of both stable and unstable eigenmodes with eigenvalues [γ] ≅ ω *i in plasmas with strong radial variation in the ion diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the analytically obtained ω *i -spectrum and stability limits of the internal kink mode, n/m=1/1, used as a benchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport barrier just inside the separatrix are studied for H-mode plasma with the ω *i -effect included. The ion diamagnetic stabilization of the ballooning modes is found to be most effective for narrow edge pedestals. For low enough plasma density the ω *i - stabilization can lead to a second zone of ballooning stability, in which all the ballooning modes are stable for any value of the pressure gradient. For internal transport barriers typical of JET optimised shear discharges, the stabilizing influence of ion diamagnetic frequency on the n=1 global pressure driven disruptive mode is studied. A strong radial variation of ω *i is found to significantly decrease the stabilizing ω *i - effect on the n=1 mode, in comparison with the case of constant ω *i estimated at the foot of the internal transport barrier. (author)

  3. Report on studies on closed cycle MHD power generation; Closed cycle MHD hatsuden kento hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-04-01

    Summarized herein are results of the studies on closed cycle MHD (CCMHD) power generation by the study committee. The studied system is based on the MHD gas turbine combined Brayton cycle of about 500,000 kW in output power, firing natural gas as the fuel, and the conceptual design works therefor are completed. The major findings are: the overall plant efficiency: 54.2% at the power transmission side, plot area required per unit power output: 0.04 m{sup 2}/KW, unit construction cost: 251,000 yen/KW, and unit power generation cost: 10.2 yen/KWh. This system will be more operable than the gas turbine combined cycle with steam system, because start-up time, output change rate, optimum load and so on are constrained not on the power generator side but on the gas turbine side. The expected environmental effects include the exhaust gas NOX concentration being equivalent with that associated with the conventional power generator of 2-stage combustion system, quantity of combustion gases to be treated being approximately 40% of that associated with the gas turbine combined cycle, and reduced CO2 gas emissions, resulting from enhanced power generation efficiency. It is expected that the CCMHD system can exhibit higher efficiency than the high-temperature gas turbine combined cycle system. (NEDO)

  4. MHD stability limits in the TCV Tokamak

    International Nuclear Information System (INIS)

    Reimerdes, H.

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation κ and triangularity δ, with high κ, and low δ leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The observed decrease

  5. Design of an Open-Cycle, Vortex MHD Generator

    Energy Technology Data Exchange (ETDEWEB)

    Thalimer, J. R.; Kurtzrock, R. C.; Simons, W. H.; Bienstock, D. [Pittsburgh Coal Research Center, US Bureau Of Mines, Pittsburgh, PA (United States); Hughes, W. F. [Carnegie-Mellon University, Pittsburgh, PA (United States)

    1968-11-15

    The US Bureau of Mines has built a vortex MHD generator which combines the combustor-nozzle-duct combination into one integral unit. The vortex MHD generator consists of a cyclone burner, 7.5 in. diameter, 21 in. in length, with the inner wall used as one electrode together with a coaxial centre electrode. Power is obtained by impressing an axial field of 3000 G from an air solenoid magnet. Electrical output is expected to be one kilowatt. For the initial runs natural gas will be burned in oxygen-enriched, preheated air with a subsequent change to coal as a fuel. A theoretical analysis has been completed which predicts the velocity profiles and the electrical output characteristics of the generator. This analysis assumes variations in the radial and axial directions for all variables, steady state inviscid flow, constant electrical conductivity and a small magnetic Reynolds number. (author)

  6. Studies on the crossed flow type MHD turbines

    International Nuclear Information System (INIS)

    Hori, Toshihiro; Katsurai, Makoto

    1981-01-01

    The studies on crossed flow type MHD turbines were performed to improve its characteristics. Two-dimensional models were considered for the analytical studies. To compensate the edge effect of magnetic field, the magnetic field gradient by tapering was considered. An iron-core structure and an air-core structure were investigated. It was found that the ideal characteristics can be obtained when there is the tapered length more than one wave length. Various methods for the improvement of magnetic field were studied in the case of practical crossed flow type MHD turbines. The methods were the adjustment with an iron-core, and the adoption of a curved channel. It can be expected to obtain the internal efficiency of more than 70 percent, when the number of pole-pairs is more than 10 and the radius of curvature of a few times of rotor radius is given to a curved channel. (Kato, T.)

  7. Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma

    Science.gov (United States)

    Alipour, Ramin; Ghanbari, Mohamad R.

    2018-04-01

    Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.

  8. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  9. Modelling of advanced tokamak physics scenarios in ALCATOR C-Mod

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Porkolab, M.; Ramos, J.

    2001-01-01

    Advanced tokamak modes of operation in Alcator C-Mod have been investigated using a simulation model which combines an MHD equilibrium and current profile control calculation with an ideal MHD stability analysis. Stable access to high β t operating modes with reversed shear current density profiles has been demonstrated using 2.4-3.0 MW of off-axis lower hybrid current drive (LHCD). Here β t =2μ 0 (p)/B 2 0 is the volume averaged toroidal plasma beta. Current profile control at the β-limit and beyond has also been demonstrated. The effects of LH power level as well as changes in the profiles of density and temperature on shear reversal radius have been quantified and are discussed. (author)

  10. Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, I.A., E-mail: corpuskula@gmail.com; Sviridov, E.V.; Sviridov, V.G.; Razuvanov, N.G.

    2016-11-15

    Highlights: • Local and averaged heat transfer coefficient are measured. • Free convection influence on MHD-flow is investigated. • The region with the free convection effect of MHD-heat transfer is found. • Temperature low-frequency fluctuations of abnormally high amplitude are detected. • Analysis of the MHD-heat transfer experimental data is performed. - Abstract: The article is devoted to the results of experimental investigation of heat transfer for a downward mercury flow in a vertical round tube in the presence of a transverse magnetic with non-uniform heat flux along the tube circumference.

  11. Observation of SOL Current Correlated with MHD Activity in NBI-heated DIII-D Tokamak Discharges

    International Nuclear Information System (INIS)

    Takahashi, H.; Fredrickson, E.D.; Schaffer, M.J.; Austin, M.E.; Evans, T.E.; Lao, L.L.; Watkins, J.G.

    2004-01-01

    This work investigates the potential roles played by the scrape-off-layer current (SOLC) in MHD activity of tokamak plasmas, including effects on stability. SOLCs are found during MHD activity that are: (1) slowly growing after a mode-locking-like event, (2) oscillating in the several kHz range and phase-locked with magnetic and electron temperature oscillations, (3) rapidly growing with a sub-ms time scale during a thermal collapse and a current quench, and (4) spiky in temporal behavior and correlated with spiky features in Da signals commonly identified with the edge localized mode (ELM). These SOLCs are found to be an integral part of the MHD activity, with a propensity to flow in a toroidally non-axisymmetric pattern and with magnitude potentially large enough to play a role in the MHD stability. Candidate mechanisms that can drive these SOLCs are identified: (a) toroidally non-axisymmetric thermoelectric potential, (b) electromotive force (EMF) from MHD activity, and (c) flux swing, both toroidal and poloidal, of the plasma column. An effect is found, stemming from the shear in the field line pitch angle, that mitigates the efficacy of a toroidally non-axisymmetric SOLC to generate a toroidally non-axisymmetric error field. Other potential magnetic consequences of the SOLC are identified: (i) its error field can introduce complications in feedback control schemes for stabilizing MHD activity and (ii) its toroidally non-axisymmetric field can be falsely identified as an axisymmetric field by the tokamak control logic and in equilibrium reconstruction. The radial profile of a SOLC observed during a quiescent discharge period is determined, and found to possess polarity reversals as a function of radial distance

  12. Some effects of MHD activity on impurity transport in the PBX tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Fonck, R.J.; Hulse, R.A.; LeBlanc, B.

    1985-10-01

    The effects of MHD activity on intrinsic impurity transport are studied in ohmic discharges of the Princeton Beta Experiment (PBX) by measuring of the Z/sub eff/ profile from visible bremsstrahlung radiation and the spectral line intensities from ultraviolet spectroscopy. A diffusive/convective transport model, including an internal disruption model, is used to simulate the data. The Z/sub eff/ profile with no MHD activity is fitted with a strong inward convection, characterized by a peaking parameter c/sub v/ (= -a 2 v/2rD) = 11 (3.5, +4.5). At the onset of MHD activity (a large m = 1 n = 1 oscillation followed by sawteeth), this strongly peaked profile is flattened and subsequently reaches a new quasi-equilibrium shape. This profile is characterized by reduced convection [c/sub v/ = 3.6 (-1.1, +1.6), D = 1.4 (-0.7, +5.6) x 10 4 cm 2 /s], in addition to the particle redistribution which accompanies the sawtooth internal disruptions. 10 figs

  13. CASTOR: Normal-mode analysis of resistive MHD plasmas

    NARCIS (Netherlands)

    Kerner, W.; Goedbloed, J. P.; Huysmans, G. T. A.; Poedts, S.; Schwarz, E.

    1998-01-01

    The CASTOR (complex Alfven spectrum of toroidal plasmas) code computes the entire spectrum of normal-modes in resistive MHD for general tokamak configurations. The applied Galerkin method, in conjunction with a Fourier finite-element discretisation, leads to a large scale eigenvalue problem A (x)

  14. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    Science.gov (United States)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not

  15. Quantum chaos theory and the spectrum of ideal-MHD instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Dewar, Robert L.; Carolin, Nuehrenberg; Tatsuno, Tomoya

    2004-01-01

    In a fully 3-D system such as a stellarator, the toroidal mode number n ceases to be a good quantum number - all ns within a given mode family being coupled. It is found that the discrete spectrum of unstable ideal MHD (magnetohydrodynamic) instabilities ceases to exist unless MHD is modified (regularized) by introducing a short-perpendicular-wavelength cutoff. Attempts to use ray tracing to estimate the regularized MHD spectrum fail due to the occurrence of chaotic ray trajectories. In quantum chaos theory, strong chaos in the semiclassical limit leads to eigenvalue statistics the same as those of a suitable ensemble of random matrices. For instance, the probability distribution function for the separation between neighboring eigenvalues is as derived from random matrix theory and goes to zero at zero separation. This contrasts with the Poissonian distribution found in separable systems, showing that a signature of quantum chaos is level repulsion. In order to determine whether eigenvalues of the regularized MHD problem obey the same statistics as those of the Schroedinger equation in both the separable 1-D case and the chaotic 3-D cases, we have assembled data sets of ideal MHD eigenvalues for a Suydam-unstable cylindrical (1-D) equilibrium using Mathematica and a Mercier-unstable (3-D) equilibrium using the CAS3D code. In the 1-D case, we find that the unregularized Suydam-approximation spectrum has an anomalous peak at zero eigenvalue separation. On the other hand, regularization by restricting the domain of κsub(perpendicular) recovers the expected Poissonian distribution. In the 3-D case we find strong evidence of level repulsion within mode families, but mixing mode families produces Poissonian statistics. (author)

  16. MHD simulations of DC helicity injection for current drive in tokamaks

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1994-12-01

    MHD computations of DC helicity injection in tokamak-like configurations show current drive with no ''loop voltage'' in a resistive, pressureless plasma. The self-consistently generated current profiles are unstable to resistive modes that partially relax the profile through the MHD dynamo mechanism. The current driven by the fluctuations leads to closed contours of average poloidal flux. However, the 1% fluctuation level is large enough to produce a region of stochastic magnetic field. A limited Lundquist number (S) scan from 2.5 x 10 3 to 4 x 10 4 indicates that both the fluctuation level and relaxation increase with S

  17. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  18. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  19. Investigations on application of multigrid method to MHD equilibrium analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro

    2000-01-01

    The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)

  20. Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry

    Science.gov (United States)

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.

    2001-01-01

    In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.

  1. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    Science.gov (United States)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  2. Observation of voltage fluctuations in a superconducting magnet during MHD power generation

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the ANL 5.0 T MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25B Facility at the High Temperature Institute (IVTAN) Moscow, USSR. Various other thermodynamic and electrical parameters of the U-25B flow train have been recorded, and statistical analysis concerning correlations between the phenomena with a view of discerning causal interdependence is in progress. Voltage fluctuations observed at the magnet terminals are analyzed with special emphasis on magnet stability

  3. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2017-05-01

    Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.

  4. A hybrid LLR-MHD model of kink perturbations in EXTRAP

    International Nuclear Information System (INIS)

    Lehnert, B.

    1987-07-01

    In high-beta systems, such as Extrap and other Z-pinch configurations, kinetic large Larmor radius (LLR) phenomena introduce strong phase-mixing and dispersive effects and a corresponding 'kinetic damping' which cannot be treated in terms of MHD theory. In this paper a first attempt is made to include these effects by proposing a hybrid LLR-MHD model in which the kinetic phenomena enter as constraints on the possible forms of the plasma perturbations. The latter then become restricted to a limited class which can be treated in terms of MHD theory. The present model does not claim to produce stability conditions which are exact in all details, but should merely provide a picture of the general relationship between the basic plasma parameters in a state of marginal stability. For kink perturbations in Extrap stability relations have thus been obtained between the pinch and conductor currents, the pinch radius and the axial conductor distance, and the number of contained ion Larmor radii. These relations appear to be consistent with so far obtained experimental data. A short discussion on the effects of a superimposed axial magnetic field has been included. At this stage only experiments can verify whether or not the present simple model becomes relevant to Extrap stability. (author)

  5. Direct numerical simulation of MHD flow with electrically conducting wall

    International Nuclear Information System (INIS)

    Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.

    2006-01-01

    The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget

  6. Accuracy of MHD simulations: Effects of simulation initialization in GUMICS-4

    Science.gov (United States)

    Lakka, Antti; Pulkkinen, Tuija; Dimmock, Andrew; Osmane, Adnane; Palmroth, Minna; Honkonen, Ilja

    2016-04-01

    We conducted a study aimed at revealing how different global magnetohydrodynamic (MHD) simulation initialization methods affect the dynamics in different parts of the Earth's magnetosphere-ionosphere system. While such magnetosphere-ionosphere coupling codes have been used for more than two decades, their testing still requires significant work to identify the optimal numerical representation of the physical processes. We used the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4), the only European global MHD simulation being developed by the Finnish Meteorological Institute. GUMICS-4 was put to a test that included two stages: 1) a 10 day Omni data interval was simulated and the results were validated by comparing both the bow shock and the magnetopause spatial positions predicted by the simulation to actual measurements and 2) the validated 10 day simulation run was used as a reference in a comparison of five 3 + 12 hour (3 hour synthetic initialisation + 12 hour actual simulation) simulation runs. The 12 hour input was not only identical in each simulation case but it also represented a subset of the 10 day input thus enabling quantifying the effects of different synthetic initialisations on the magnetosphere-ionosphere system. The used synthetic initialisation data sets were created using stepwise, linear and sinusoidal functions. Switching the used input from the synthetic to real Omni data was immediate. The results show that the magnetosphere forms in each case within an hour after the switch to real data. However, local dissimilarities are found in the magnetospheric dynamics after formation depending on the used initialisation method. This is evident especially in the inner parts of the lobe.

  7. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  8. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  9. Boundary modulation effects on MHD instabilities in Heliotrons

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.; Nakamura, Y.

    2005-01-01

    In three-dimensional configurations, the confinement region is surrounded by the stochastic magnetic field lines related to magnetic islands or separatrix, leading to the fact that the plasma-vacuum boundary is not so definite compared with tokamaks that the various modulations of the plasma-vacuum boundary will be induced around the stochastic region by a large Shafranov shift of the whole plasma, in especially high-β operations. To examine such the modulation effects of the plasma boundary on MHD instabilities, high-β plasmas allowing a large Shafranov shift are considered in the inward-shifted LHD configurations with the vacuum magnetic axis R ax of 3.6m, for which previous theoretical analyses indicate that pressure-driven modes are significantly more unstable compared with experimental observations. It is shown that the boundary modulation due to a free motion of the equilibrium plasma has not only significant stabilizing effects on ideal MHD instabilities, but also characteristics consistent to experimental observations. (author)

  10. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  11. A Fast MHD Code for Gravitationally Stratified Media using ...

    Indian Academy of Sciences (India)

    namic (MHD) algorithms are important for numerical modelling of highly .... include OpenMP-style pragma-based programming, e.g., developed by PGI, HMPP, .... Thus, the formula (10) returns the one-dimensional index for a field point. A.

  12. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D

  13. Design of MHD generator systems

    International Nuclear Information System (INIS)

    Buende, R.; Raeder, J.

    1975-01-01

    By assessment of the influence of the combustion efficiency on the electric output of the MHD generator, it can be shown that the construction and efficiency of the generator strongly depend on these parameters. The solutions of this system of equations are discussed. Following a derivation of criteria and boundary conditions of the design and a determination of the specific construction costs of individual system components, it is shown how the single design parameters influence the operational characteristics of such a system, especially the output, efficiency and energy production costs. (GG/LH) [de

  14. MHD induced fast-ion losses on ASDEX Upgrade

    International Nuclear Information System (INIS)

    GarcIa-Munoz, M.; Fahrbach, H.-U.; Bobkov, V.; Bruedgam, M.; Guenter, S.; Igochine, V.; Lauber, Ph.; Mantsinen, M.J.; Maraschek, M.; Poli, E.; Sassenberg, K.; Tardini, G.; Zohm, H.; Pinches, S.D.; Gobbin, M.; Marrelli, L.; Martin, P.; Piovesan, P.

    2009-01-01

    A detailed knowledge of the interplay between MHD instabilities and energetic particles has been gained from direct measurements of fast-ion losses (FILs). Time-resolved energy and pitch angle measurements of FIL caused by neoclassical tearing modes (NTMs) and toroidicity-induced Alfven eigenmodes (TAEs) have been obtained using a scintillator based FIL detector. The study of FIL due to TAEs has revealed the existence of a new core-localized MHD fluctuation, the Sierpes mode. The Sierpes mode is a non-pure Alfvenic fluctuation which appears in the acoustic branch, dominating the transport of fast-ions in ICRF heated discharges. The internal structure of both TAEs and Sierpes mode has been reconstructed by means of highly resolved multichord soft x-ray measurements. A spatial overlapping of their eigenfunctions leads to a FIL coupling, showing the strong influence that a core-localized fast-ion driven MHD instability may have on the fast-ion transport. We have identified the FIL mechanisms due to NTMs as well as due to TAEs. Drift islands formed by fast-ions in particle phase space are responsible for the loss of NBI fast-ions due to NTMs. In ICRF heated plasmas, a resonance condition fulfilled by the characteristic trapped fast-ion orbit frequencies leads to a phase matching between fast-ion orbit and NTM or TAE magnetic fluctuation. The banana tips of a resonant trapped fast-ion bounce radially due to an E x B drift in the TAE case. The NTM radial bounce of the fast-ion banana tips is caused by the radial component of the perturbed magnetic field lines.

  15. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    Science.gov (United States)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  16. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  17. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  18. Two dimensional analysis of MHD generator by means of equivalent circuit

    International Nuclear Information System (INIS)

    Yoshida, Masaharu; Umoto, Juro

    1975-01-01

    The authors report on the method analyzing generally the MHD generator by means of the equivalent circuit including the negative resistance. At first, they divide the duct space into many space elements, and for each space element they derive the fundamental equivalent four-terminal circuit which satisfies the two-dimensional Ohm's law. Next, they make an attempt to apply the equivalent circuits to the typical MHD generators such as diagonal, Faraday and Hall generators considering the boundary layer in the duct and the wall leakage current. Using their analysis, the current density, Joul's heat, generated and output electrical powers, electrical efficiency etc. in the generator can be fairly easily calculated. (auth.)

  19. Nonlinear MHD dynamics of tokamak plasmas on multiple time scales

    International Nuclear Information System (INIS)

    Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.

    2003-01-01

    Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)

  20. MHD Hele-Shaw flow of Rivlin-Ericksen fluid

    International Nuclear Information System (INIS)

    Ghosh, B.C.; Sengupta, P.R.

    1995-01-01

    In this paper, an attempt has been made to study the MHD Hele-Shaw flow of Rivlin-Ericksen visco-elastic fluid assuming the pressure gradient to be proportional to exp (-nt). The velocity components are obtained and the effect of visco-elasticity is discussed on velocity components. (author). 8 refs

  1. Physics of Compact Advanced Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Brooks, A.; Fredrickson, E.; Fu, G.-Y.; Hirshman, S.; Hudson, S.; Ku, L.-P.; Lazarus, E.; Mikkelsen, D.; Monticello, D.; Neilson, G.H.; Pomphrey, N.; Reiman, A.; Spong, D.; Strickler, D.; Boozer, A.; Cooper, W.A.; Goldston, R.; Hatcher, R.; Isaev, M.; Kessel, C.; Lewandowski, J.; Lyon, J.; Merkel, P.; Mynick, H.; Nelson, B.E.; Nuehrenberg, C.; Redi, M.; Reiersen, W.; Rutherford, P.; Sanchez, R.; Schmidt, J.; White, R.B.

    2001-01-01

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties

  2. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  3. Methodology to assess the effects of magnetohydrodynamic electromagnetic pulse (MHD-EMP) on power systems

    International Nuclear Information System (INIS)

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.

    1985-01-01

    This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig

  4. On performance of Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Paul T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shadid, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Department of Mathematics and Statistics,; Tsuji, Paul H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Here, this study explores the performance and scaling of a GMRES Krylov method employed as a smoother for an algebraic multigrid (AMG) preconditioned Newton- Krylov solution approach applied to a fully-implicit variational multiscale (VMS) nite element (FE) resistive magnetohydrodynamics (MHD) formulation. In this context a Newton iteration is used for the nonlinear system and a Krylov (GMRES) method is employed for the linear subsystems. The efficiency of this approach is critically dependent on the scalability and performance of the AMG preconditioner for the linear solutions and the performance of the smoothers play a critical role. Krylov smoothers are considered in an attempt to reduce the time and memory requirements of existing robust smoothers based on additive Schwarz domain decomposition (DD) with incomplete LU factorization solves on each subdomain. Three time dependent resistive MHD test cases are considered to evaluate the method. The results demonstrate that the GMRES smoother can be faster due to a decrease in the preconditioner setup time and a reduction in outer GMRESR solver iterations, and requires less memory (typically 35% less memory for global GMRES smoother) than the DD ILU smoother.

  5. Status report on the Indian MHD programme

    International Nuclear Information System (INIS)

    Ambasankaran, C.

    1978-03-01

    MHD programme in India, which has been started recently as a collaborative effort by the Bhabha Atomic Research Centre and Bharat Heavy Electricals Ltd., with the technical consultation provided by the High Temperature Institute, Moscow, is described. The basic considerations which led to the launching of this project and the details of the experimental plant for R and D work are spelt out. (K.B.)

  6. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops ...

    Indian Academy of Sciences (India)

    The standing slow magneto-acoustic oscillations in cooling coronal loops ... turbation and, eventually, reduces the MHD equations to a 1D system modelling ..... where the function Q is expanded in power series with respect to ǫ, i.e.,. Q = Q0 + ...

  7. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology .... dimensional MHD boundary layer on the body with time varying temperature. ... flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with.

  8. Recent Progress in MHD Stability Calculations of Compact Stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Cooper, W.A.; Nuehrenberg, C.; Sanchez, R.; Ware, A.; Hirshman, S.P.; Spong, D.A.

    2000-01-01

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length

  9. Advanced In-Pile Instrumentation for Materials Testing Reactors

    Science.gov (United States)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  10. Advanced Demonstration and Test Reactor Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Gehin, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Grandy, Christopher [Argonne National Lab. (ANL), Argonne, IL (United States); Qualls, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Croson, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy

  11. Advanced Demonstration and Test Reactor Options Study

    International Nuclear Information System (INIS)

    Petti, David Andrew; Hill, R.; Gehin, J.; Gougar, Hans David; Strydom, Gerhard; Heidet, F.; Kinsey, J.; Grandy, Christopher; Qualls, A.; Brown, Nicholas; Powers, J.; Hoffman, E.; Croson, D.

    2017-01-01

    Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power's share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercialization of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy's (DOE's) broader commitment to pursuing an 'all of the above' clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate 'advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy'. Advanced reactors are

  12. The on-line data acquisition system for the MHD facility of Frascati

    International Nuclear Information System (INIS)

    Di Bartolomeo, M.; Papalia, B.; Gay, P.; Panaccione, L.

    1975-01-01

    An on-line data acquisition system for the MHD facility of the Laboratorio Conversione Diretta at Frascati is described. After a brief description of the MHD facility and of the measurement requirements, the criteria a,d the configuration of the minicomputer-based data acquisition system chosen are presented. Then the general philosophy and the flow-charts of the software implemented are shown, with particular emphasis to the real-time requirements of the measurement system. At last it is illustrated an off-line program, running on a large computer, that elaborates the output data of the data acquisition system

  13. Prediction of transverse asymmetries in MHD ducts with zero net Hall current

    International Nuclear Information System (INIS)

    Swean, T.F. Jr.; Oliver, D.A.; Maxwell, C.D.; Demetriades, S.T.

    1981-01-01

    A new class of fluid-electrical asymmetries in MHD generator channel flow are predicted. It is shown that the existence of interelectrode asymmetries is not confined to generators in which there exists a nonzero net axial current, but rather they are induced even in the case of the Faraday generators. Also demonstrated is the impact of these asymmetries upon the generator and diffuser flow. It is concluded that in MHD generators, the net axial current in the cross plane is identically zero, while at any given point in the plane, the local Hall current density is in general nonzero

  14. Internal Short-Circuiting Phenomena In An Open-Cycle MHD Generator

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y.; Ishibashi, E. [Hitachi Research Laboratory, Hitachi-shi, Ibaraki-ken (Japan); Kasahara, T.; Kazawa, Y. [Hitachi Works, Hitachi Ltd., Hitachi-shi, Ibaraki-ken (Japan)

    1968-11-15

    The influence of internal electrical leakage due to circulating currents flowing through velocity boundary layers and due to metallic elements in insulating walls (peg walls) is experimentally investigated. For this purpose a combustion-driven MHD generator is utilized. The active part of the generator test section is 60 cm in length with a constant cross-section of 3 x 12 cm{sup 2}. At typical operating conditions about 70 g/s of diesel light oil is burned with oxygen-enriched air, resulting in a thermal input of 3 MW, a fluid velocity of 500 to 700 m/s and a gas temperature of 2700 to 2900 Degree-Sign K at the channel inlet. KOH is used as the seed material. The magnetic field can be raised up to 1.95 Teslas. In the range of lower magnetic fields (B < 0.8T) it is shown that an observed open-circuit voltage agrees well with the theoretical value OBh which is defined in a one-dimensional MHD model. In other words, the circulating currents scarcely affect the open-circuit voltage. The theoretical basis for this fact is obtained by the use of a simple model. Experimental results obtained in several runs using three sets of insulating walls show that thermal boundary layers at water-cooled metals are more conductive than expected and that the open- circuit voltage decreases because of leakage currents flowing through metal pegs, when the internal resistance of the generator is relatively large. Also, it is shown that an alumina coating is effective in reducing the leakage currents. (author)

  15. Arc damage characteristics of inter-anode insulators in MHD generator

    International Nuclear Information System (INIS)

    Kato, Ken; Takano, Kiyonami

    1990-01-01

    The inter-anode arc caused by a Hall field is driven by a magnetic field into the anode-wall in an MHD generator, which limits the lifetime and performance of the generator. The arc damage to inter-anode insulators of an MHD generator has been studied experimentally, in order to obtain basic data for the design of the inter-anode insulation. The experiment was conducted using a pair of electrodes with an insulator between them. Arc currents was supplied from a DC power source and magnetic field was applied perpendicular to the arc current. Experimental parameters are the insulator thickness, arc current, magnetic field and insulator materials. Quartz glass, boron nitride, magnesia, alumina, silicon carbide, silicon nitride etc. were tested and evaluated. The following conclusions are evident from the experiments. Boron nitride and quartz glass are the most promising inter-anode insulators. Boron nitride has a higher arc voltage and longer cutting time than quartz glass, and it is the best material. Cutting time is approximately proportional to the -0.4 th power of the magnetic field. Loss of insulator is approximately proportional to the 0.7 th power of the arc current. The arc voltage increases linearly with the inter anode gap length. It also increases with magnetic field, but decreases with increase of arc current. An equation which approximates to such relations of arc voltage versus inter-anode gap length, arc current and magnetic field has been obtained. The standard deviation of the error of this equation is 12 % for boron nitride and 15 % for quartz glass. (author)

  16. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1982 reported. This year is the final year of this research; therefore, reexamination was made from the practical standpoint on the R and D of coal fired MHD generation, evaluating the present technological level as well as clarifying the development procedures, with proposals made as to the R and D from now on. The present technological level in the practicability is still in the basic stage, where the essential problem is the development of combustors, air heaters and generation channels in particular. An examination was conducted for the problems, procedures and period of the development for each component equipment, with the results provided as materials for studying the path to the experimental plant of 100 MW heat input. In the method of proceeding with the R and D in the future, it was decided as essential, in order to enter the stage of the experimental plant from the element technology development, that R and D is carried out on the unestablished component technology, making sure that no excessive risk is taken in scaling up to the next stage. (NEDO)

  17. An MHD heat source based on intermetallic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sadjian, H.; Zavitsanos, P. (General Sciences, Inc., Souderton, PA (United States)); Marston, C.H. (Villanova Univ., PA (United States))

    1991-05-06

    The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.

  18. Hopes for commercial use of MHD

    International Nuclear Information System (INIS)

    1968-01-01

    Magnetohydrodynamics (MHD) is the study of the motion of fluids and gases in magnetic fields. After 25 years of theoretical and experimental work, it seems commercially promising for a new type of power station, where heat would be converted directly into electricity by generators without moving parts. Nuclear reactors would be well suited as the heat sources. At an Agency symposium in Warsaw in July it was felt that international cooperation is essential to develop the technique for industrial use. (author)

  19. Characteristics of MHD stability of high beta plasmas in LHD

    International Nuclear Information System (INIS)

    Sato, M.; Nakajima, N.; Watanabe, K.Y.; Todo, Y.; Suzuki, Y.

    2012-11-01

    In order to understand characteristics of the MHD stability of high beta plasmas obtained in the LHD experiments, full MHD simulations have been performed for the first time. Since there is a magnetic hill in a plasma peripheral region, the ballooning modes extending into the plasma peripheral region with a chaotic magnetic field are destabilized. However, in the nonlinear phase, the core region comes under the in influence of the instabilities and the central pressure decreases. There is a tendency that modes are suppressed as the beta value and/or magnetic Reynolds number increase, which is consistent with a result that high beta plasmas enter the second stable region of the ideal ballooning modes as beta increases and remaining destabilized ballooning modes are considered to be resistive type. (author)

  20. MHD marking using the MSE polarimeter optics in ILW JET plasmas

    CERN Document Server

    Reyes Cortes, S.; Alves, D.; Baruzzo, M.; Bernardo, J.; Buratti, P.; Coelho, R.; Challis, C.; Chapman, I.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Joffrin, E.

    2016-01-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  1. Kinetic analysis of MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from β = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with β, these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-β-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties

  2. Creating Synthetic Coronal Observational Data From MHD Models: The Forward Technique

    Science.gov (United States)

    Rachmeler, Laurel A.; Gibson, Sarah E.; Dove, James; Kucera, Therese Ann

    2010-01-01

    We present a generalized forward code for creating simulated corona) observables off the limb from numerical and analytical MHD models. This generalized forward model is capable of creating emission maps in various wavelengths for instruments such as SXT, EIT, EIS, and coronagraphs, as well as spectropolari metric images and line profiles. The inputs to our code can be analytic models (of which four come with the code) or 2.5D and 3D numerical datacubes. We present some examples of the observable data created with our code as well as its functional capabilities. This code is currently available for beta-testing (contact authors), with the ultimate goal of release as a SolarSoft package

  3. Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy

    Science.gov (United States)

    Lebiga, O.; Santos-Lima, R.; Yan, H.

    2018-05-01

    The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.

  4. New Developments in Modeling MHD Systems on High Performance Computing Architectures

    Science.gov (United States)

    Germaschewski, K.; Raeder, J.; Larson, D. J.; Bhattacharjee, A.

    2009-04-01

    Modeling the wide range of time and length scales present even in fluid models of plasmas like MHD and X-MHD (Extended MHD including two fluid effects like Hall term, electron inertia, electron pressure gradient) is challenging even on state-of-the-art supercomputers. In the last years, HPC capacity has continued to grow exponentially, but at the expense of making the computer systems more and more difficult to program in order to get maximum performance. In this paper, we will present a new approach to managing the complexity caused by the need to write efficient codes: Separating the numerical description of the problem, in our case a discretized right hand side (r.h.s.), from the actual implementation of efficiently evaluating it. An automatic code generator is used to describe the r.h.s. in a quasi-symbolic form while leaving the translation into efficient and parallelized code to a computer program itself. We implemented this approach for OpenGGCM (Open General Geospace Circulation Model), a model of the Earth's magnetosphere, which was accelerated by a factor of three on regular x86 architecture and a factor of 25 on the Cell BE architecture (commonly known for its deployment in Sony's PlayStation 3).

  5. MHD activity and energy loss during beta saturation and collapse at high beta poloidal in PBX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Sesnic, S.; Bol, K.

    1987-10-01

    High-β experiments, in medium to high-q tokamak plasmas, exhibit a temporal β saturation and collapse. This behavior has been attributed to ballooning, ideal kink, or tearing modes. In PBX, a unique diagnostic capability allowed studies of the relation between MHD and energy loss for neutral-beam-heated (<6 MW), mildly indented (10 to 15%), nearly steady I/sub p/ discharges that approached the Troyon-Gruber limit. Under these conditions, correlations between MHD activity and energy losses have shown that the latter can be almost fully accounted for by various long wavelength MHD instabilities and that there is no need to invoke high-n ballooning modes in PBX. 6 refs., 4 figs

  6. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    Science.gov (United States)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  7. Combined effects of radiation and chemical reaction on MHD flow ...

    African Journals Online (AJOL)

    (2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate ... boundary layer flow of heat and mass transfer over a moving vertical plate with suction. ... flow considering free convection over a porous plate.

  8. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    Science.gov (United States)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  9. Survey of linear MHD stability in tokamak configurations

    International Nuclear Information System (INIS)

    Wakatani, M.

    1977-01-01

    The results found by MHD stability studies for both low-beta and high-beta tokamaks are reviewed. The stability against kink-ballooning modes in equilibria surrounded by vacuum or a layer of force free currents is considered. Internal kink modes and the relation to interchange modes, which should be considered after external kink modes are suppressed, are surveyed

  10. Theoretical parameters of powerful radio galaxies. II. Generation of MHD turbulence by collisionless shock waves

    International Nuclear Information System (INIS)

    Baryshev, Yu.V.; Morozov, V.N.

    1988-01-01

    It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases

  11. Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Sudo, Shigeru; Zushi, Hideki; Kondo, Katsumi

    1993-01-01

    Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E are studied. The peaked density profile produced by pellet injection increases the stored energy by 20-30% compared to the gas puffed plasmas which obey the empirical stellarator/heliotron scaling in a moderate density range. In contrast to confinement, the peaked pressure profile tends to destabilize the plasma. By limiter insertion, MHD instability occurs (seems to locate near ι/2π=1) even in case of low β (β 0 ≤1%, where β 0 is the central β value) plasmas. On the other hand, the mode of m/n=3/2 at ι/2π=2/3, seems to be a key parameter to the major MHD instability in case of high β (β 0 ≥2%) plasmas. (author)

  12. Effect of Surface Roughness on MHD Couple Stress Squeeze-Film Characteristics between a Sphere and a Porous Plane Surface

    Directory of Open Access Journals (Sweden)

    M. Rajashekar

    2012-01-01

    Full Text Available The combined effects of couple stress and surface roughness on the MHD squeeze-film lubrication between a sphere and a porous plane surface are analyzed, based upon the thin-film magnetohydrodynamic (MHD theory. Using Stoke’s theory to account for the couple stresses due to the microstructure additives and the Christensen’s stochastic method developed for hydrodynamic lubrication of rough surfaces derives the stochastic MHD Reynolds-type equation. The expressions for the mean MHD squeeze-film pressure, mean load-carrying capacity, and mean squeeze-film time are obtained. The results indicate that the couple stress fluid in the film region enhances the mean MHD squeeze-film pressure, load-carrying capacity, and squeeze-film time. The effect of roughness parameter is to increase (decrease the load-carrying capacity and lengthen the response time for azimuthal (radial roughness patterns as compared to the smooth case. Also, the effect of porous parameter is to decrease the load-carrying capacity and increase the squeeze-film time as compared to the solid case.

  13. Microstructural evolution and rheological properties of AA6063 alloy produced by semisolid processing (SIMA and MHD)

    International Nuclear Information System (INIS)

    Bustos, O.; Leiva, R.; Sanchez, C.; Ordonez, S.; Carvajal, L.; Mannheim, R.

    2007-01-01

    In this work the rheological behaviour and the microstructural evolution of alloy AA6063 submitted to two different processing routes were studied: cold deformation and partial fusion (SIMA process) and magneto hydrodynamic stirring during its solidification (MHD process). The microstructural evolution during the isothermal holding was studied to verify if the Ost wald ripening mechanisms, classic growth and coalescence, are applicable to alloys made by these processing routes. The rheological properties were evaluated using a compression rheometer with parallel plates and digital capture of position and time data. Compression tests were made in short cylinders extracted from ingots that showed: a dendritic microstructure typical of as cast material, a typical microstructure of cold deformed material and a microstructure of materials obtained by MHD process. It was found that a globular microstructure has a typical behaviour of a fluid when being formed in semisolid state, contrary to the behaviour of the as cast dendritic microstructure. In addition, the mechanisms that operate in the microstructural evolution during the isothermal holdings were verified, through metallographic analysis. (Author) 29 refs

  14. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  15. MHD stability of the ITER pedestal and SOL plasma and its influence on the heat flux width

    NARCIS (Netherlands)

    Loarte, A.; Liu, F.; Huijsmans, G.T.A.; Kukushkin, A.S.; Pitts, R.A.

    2015-01-01

    Proceedings of the 21st International Conference on Plasma-Surface Interactions in Controlled Fusion Devices Kanazawa, Japan May 26-30, 2014 MHD stability of ITER plasmas has been analyzed for QDT = 10 edge and SOL plasma conditions, showing that the SOL plasma is MHD stable down to pressure

  16. Relativistic MHD simulations of stellar core collapse and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A; Gabler, Michael [Departamento de AstronomIa y Astrofisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain); Cerda-Duran, Pablo; Mueller, Ewald [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Stergioulas, Nikolaos, E-mail: j.antonio.font@uv.es [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2011-02-01

    We present results from simulations of magneto-rotational stellar core collapse along with Alfven oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. We further compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.

  17. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    Science.gov (United States)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the

  18. MHD simulations of molybdenum X-pinches

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.; Stepnevski, V.

    2002-01-01

    One investigates into compression of molybdenum X-pinches applying numerical MHD-models with parabolic and conical initial geometry. The second model describing plasma axial motion in greater detail offers a real geometry of a discharge and is applicable to loads characterized by higher masses in contrast to the first one. Both models enabled to describe all basic phases of compression including origination of a minidiode, occurrence of a narrow neck, microexplosion of a hot point and origination of shock waves followed by sausage instability [ru

  19. Hawaiian Electric Advanced Inverter Test Plan - Result Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson; Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    2016-10-14

    This presentation is intended to share the results of lab testing of five PV inverters with the Hawaiian Electric Companies and other stakeholders and interested parties. The tests included baseline testing of advanced inverter grid support functions, as well as distribution circuit-level tests to examine the impact of the PV inverters on simulated distribution feeders using power hardware-in-the-loop (PHIL) techniques. hardware-in-the-loop (PHIL) techniques.

  20. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    Science.gov (United States)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  1. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  2. Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification

    International Nuclear Information System (INIS)

    Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.

    1981-01-01

    This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs

  3. Solving free-plasma-boundary problems with the SIESTA MHD code

    Science.gov (United States)

    Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.

    2017-10-01

    SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.

  4. MHD activity triggered by monster sawtooth crashes on Tore Supra

    International Nuclear Information System (INIS)

    Maget, P; Artaud, J-F; Eriksson, L-G; Huysmans, G; Lazaros, A; Moreau, P; Ottaviani, M; Segui, J-L; Zwingmann, W

    2005-01-01

    The crash of monster sawteeth in Tore Supra ion cyclotron resonance heated plasmas is observed to trigger long-lived magneto hydrodynamic (MHD) activity, dominated by a (m = 3, n = 2) magnetic perturbation at the edge. This phenomenon is reminiscent of the triggering of neoclassical tearing modes, although in Tore Supra the MHD activity decays and eventually vanishes. It can be explained by the linear destabilization of the (3, 2) mode as the current sheet developed in the non-linear stage of the internal kink relaxation gets closer to q = 3/2. However, the lifetime of the (3, 2) island is longer than the period of linear instability. We find that the neoclassical drive is essential for explaining the observed lifetime and width of the island, although the overall dynamics is controlled by the relaxation of the current profile on a resistive time scale

  5. Racial Differences in Mathematics Test Scores for Advanced Mathematics Students

    Science.gov (United States)

    Minor, Elizabeth Covay

    2016-01-01

    Research on achievement gaps has found that achievement gaps are larger for students who take advanced mathematics courses compared to students who do not. Focusing on the advanced mathematics student achievement gap, this study found that African American advanced mathematics students have significantly lower test scores and are less likely to be…

  6. Research report on a study in MHD power generators - end effects

    International Nuclear Information System (INIS)

    Mittal, M.L.

    In MHD devices, there are significant losses due to end effects, boundary layers and instabilities. The present investigations concern the estimation of losses due to end effects. The basic equations and boundary conditions for the analysis of end effects are derived. Using a sinusoidal and exponential termination, at the entrance region of a rectangular MHD channel with continuous electrodes, the end effect phenomenon is analysed. The normal current density on the electrode walls, is examined and the effects of the Hall currents on end losses is discussed. The end effects with diverging electrode walls are also investigated. The normal current distribution on the electrodes and the efficiency are calculated for two different velocity profiles - one with viscosity and the other with source velocity. (K.M.)

  7. Flare-induced MHD disturbances in the corona--Moreton waves and type II shocks

    International Nuclear Information System (INIS)

    Uchida, Y.

    1972-01-01

    The propagation in the corona of the magnetohydrodynamic (MHD) disturbance possibly emitted at the explosive stage in the initial phase of a flare is considered. The behavior of the MHD fast-mode wavefront, whose source is located at the flare, is calculated by using eiconal-characteristic method in the High Altitude Observatory (HAO) realistic models of coronal magnetic field and density for the days of some particular flare events. It is shown as the result that the peculiar behavior of Moreton' s surface wave and the peculiar appearance in the shape and position of the type II burst sources can be consistently understood by considering the refraction, focussing, and fermation of shocks of MHD fast-mode disturbance in the actual distribution of Alfven velocity in the corona. Based on some comparison of the positions of low-Alfven-velocity regions in the corona with observed positions of type II burst sources, it is proposed that the type II burst sources may be identified with such low-Alfven-velocity regions ''illuminated'' by thus enhanced shocks. (U.S.)

  8. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    Science.gov (United States)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  9. Simulation of the MHD stabilities of the experiment on HL-2A tokamak by GATO code

    International Nuclear Information System (INIS)

    Pan Wei; Chen Liaoyuan; Dong Jiaqi; Shen Yong; Zhang Jinhua

    2009-01-01

    The ideal two-dimensional MHD stabilities code, GATO, has been successfully immigrated to the high-performance computing system of HL-2A and used to the simulation study of the ideal MHD stabilities of the plasmas produced by one of the pellets injection experiments on HL-2A tokamak. The EFIT code was used to reconstruct the equilibrium configures firstly and the GATO was used to compute their MHD stabilities secondly whose source data were obtained by the NO.4050 discharge of the experiments on HL-2A, and finally by analyzing these results the preliminary conclusion was devised that the confinement performance of the plasma was improved because of the stabilization effect of the anti-sheared configures created by the pellets injection. (authors)

  10. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  11. Utility Advanced Turbine Systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  12. Vacuum-to-air interface for the advanced test accelerator beam director

    International Nuclear Information System (INIS)

    Cruz, G.E.; Edwards, W.F.; Kavanagh, D.P.; Addis, R.B.; Weiss, W.C.; Livenspargar, C.M.

    1986-01-01

    A vacuum-to-air transition was created to facilitate the Lawrence Livermore National Laboratory's Advanced Test Accelerator (ATA) electron beam 1-Hz pulse rate. It is necessary that a pulsed particle beam go from a region at 10 -6 torr through a 1-cm-diam maximum aperture into a region at 760 torr. This must be accomplished without the use of windows or solid barriers. Two tests will be conducted on the vacuum-to-air interface. The first determines pressure profiles through 1.0-mm- and 10.0-mm-diam orifices. The second test employs an expendable foil and foil advancement mechanism. In this paper, the experimental results of the orifice test are presented and the analytical results are compared with the empirical results. The foil advancement test will be documented after the test is completed. The mechanism serves both as an orifice and as a fast-acting vacuum valve. In operation, the electron beam penetrates the thin foil, thereby creating an aperture of minimum geometry. During the balance of the pulse cycle, after the beam duration, the foil is advanced to seal the opening and recover the almost negligible loss in vacuum

  13. Evaluation of the Effects of Ketoconazole and Voriconazole on the Pharmacokinetics of Oxcarbazepine and Its Main Metabolite MHD in Rats by UPLC-MS-MS.

    Science.gov (United States)

    Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu

    2016-03-01

    Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun

    2014-10-15

    In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.

  15. Transient flows in rectangular MHD ducts under the influence of suddenly changing applied magnetic fields

    International Nuclear Information System (INIS)

    Kobayashi, Junichi

    1979-01-01

    The study on the transient flow characteristics in MHD ducts under orthogonal magnetic field is divided into handling two problems: the problem of changing pressure gradient in a uniform orthogonal magnetic field and the problem in which the orthogonal magnetic field itself changes with time. The former has been investigated by many persons, but the latter has not been investigated so often as the former because of its difficulty of handling. In addition, if it is intended to grasp properly the transient flow characteristics in actual MHD ducts, it will be also important that the effects of the electric conductivity of side walls and aspect ratio are clarified. In other words, this paper deals with the problem in which a uniform orthogonal magnetic field is suddenly applied in such manner as Heaviside's step function to or removed from the conductive fluids flowing in sufficiently long rectangular MHD ducts. First, the MHD fundamental equations are described, then they are normalized to give boundary conditions and initial conditions. Next, the transient flow and the derived magnetic field characteristics are numerically analyzed by the difference calculus, and thus the effects of conductor, insulated wall, aspect ratio, Hartmann number, magnetic Prandtl number and others on the above characteristics are clarified. (Wakatsuki, Y.)

  16. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-02-01

    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  17. Some Fluid Dynamic Effects in Large-Scale MHD Generators

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J. C.R. [University of Warwick, Coventry (United Kingdom)

    1966-10-15

    At the present time we are unable to carry out a complete analysis of the fluid dynamics and electrodynamics of an MHD generator. However, various aspects of the behaviour of an MHD generator may be examined by the use of simplified models, for example: (1) one-dimensional gas dynamics (Louis et al. 1964); (2) the current distribution can be found if the velocity is assumed constant across the duct (Witalis, 1965); (3) the skin friction and heat transfer to the walls can be calculated by boundary layer analysis if the flow is assumed to be laminar (Kerrebrock, 1961), and (4) a complete description of the velocity and current distribution across the duct can be given if the flow is assumed to be uniform, laminar, incompressible and not varying in the flow direction (Hunt and Stewartson, 1965). Taken together, these and other models will enable us to describe most of the effects in an MHD generator. In this paper another simplification is considered in which the electromagnetic forces are assumed to be much larger than the inertial forces. The ratio of these two forces is measured by the parameter, S = aB{sup 2}{sub 0}d/pU, where o is the conductivity, B{sub 0} the magnetic field, d the width of the duct, p the density and U the mean velocity. Thus S >> 1. We also assume that the magnetic Reynolds number is very much less than one. In the largest experimental generators now being built S {approx} 2 . Thus, though the results of this model are not immediately applicable, they should indicate the effects of increasing the magnetic field strength and the size of MHD generators. When S >> 1, one can can consider the duct to be divided into 2 regions: (1) a core region where electromagnetic forces are balanced by the pressure gradient and where inertial as well as viscous forces are negligible, and (2) boundary layers on the walls where again inertial forces are negligible but where the viscous, electromagnetic and pressure forces are of the same order. We show how it is

  18. MHD power conversion employing liquid metals

    International Nuclear Information System (INIS)

    Houben, J.W.M.A.; Massee, P.

    1969-02-01

    The work performed in the field of MHD generation of electricity by means of liquid metals is described. It is shown that the study of two-phase flows is essential in this topic of research; two-phase flows are therefore described. Two types of generators which can be utilized with liquid metals have been studied. The results of this study are described. A short survey of the prospects of other liquid metal systems which emerge from a study of the literature is given. Finally, conclusions are drawn concerning possibilities for further investigation

  19. The application of finite element method for mhd viscous flow over a porous stretching sheet

    International Nuclear Information System (INIS)

    Mahmood, R.; Sajid, M.

    2007-01-01

    This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a porous stretching sheet. The similarity solution of the problem is obtained using finite element method. The physical quantities of interest like the fluid velocity and skin friction coefficient is obtained and discussed under the influence of suction parameter and Hartman number. It is evident from the results that MHD can be used to control the boundary layer thickness. (author)

  20. 3-D resistive MHD calculations for tokamak plasmas: beyond the simple reduced set of equations

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.; Masden, B.F.

    1983-01-01

    Numerical studies of the resistive stability of tokamak plasmas in cylindrical geometry have been performed using: (1) the full set of resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of the reduced set of resistive MHD equations including diamagnetic and electron temperature effects. In particular, the nonlinear interaction of tearing modes of many helicities has been investigated. The numerical results confirm many of the features uncovered previously using the simple reduced equations. (author)

  1. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    Science.gov (United States)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  2. NON-IDEAL MHD EFFECTS AND MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION

    International Nuclear Information System (INIS)

    Li Zhiyun; Krasnopolsky, Ruben; Shang Hsien

    2011-01-01

    Dense, star-forming cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk (RSD) during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through two-dimensional (axisymmetric) simulations, the question of whether realistic levels of non-ideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable an RSD to form. We find that ambipolar diffusion (AD), the dominant non-ideal MHD effect over most of the density range relevant to disk formation, does not enable disk formation, at least in two dimensions. The reason is that AD allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for an RSD to form, either by itself or in combination with AD. The Hall effect, the least explored of these three non-ideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form an RSD. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.

  3. RFX: New tools for real-time MHD control

    International Nuclear Information System (INIS)

    Gnesotto, F.; Luchetta, A.; Marchiori, G.

    2005-01-01

    RFX has been recently modified to improve its capability of controlling different MHD phenomena by means of fast, feedback controlled amplifiers and distributed radial field inductors. The paper, after summarizing the principal results obtained in the past by means of active control of magnetic fields in RFX, describes the recent modifications to the machine and the improvements to the power supplies and to the magnetic diagnostics. The old thick shell has been replaced by a much thinner shell, whose electromagnetic time constants are much shorter than pulse duration, and a system of 192 radial field coils has been added, covering the whole torus surface. Then the paper describes the models used to design the new real-time control system of RFX and gives some preliminary results obtained, with the same techniques, on the EXTRAP-T2R device. The basic choices about the technologies adopted for the new RFX control system are discussed with reference to the general problem of real-time control of MHD instabilities in magnetic fusion devices. Finally, the paper defines the main objectives of the RFX scientific programme aimed at exploiting these new tools. (author)

  4. Observation of finite-β MHD phenomena in Tokamaks

    International Nuclear Information System (INIS)

    McGuire, K.M.

    1985-01-01

    Stable high beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of qsub(o) and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded

  5. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author).

  6. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    International Nuclear Information System (INIS)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh

    1995-07-01

    This is the '94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author)

  7. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  8. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  9. Modified NASA-Lewis chemical equilibrium code for MHD applications

    Science.gov (United States)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  10. MHD simulation of high wavenumber ballooning-like modes in LHD

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2008-10-01

    Dynamical growths of high-wavenumber ballooning modes are studied through full-3D nonlinear MHD simulations of the Large Helical Device. The growths of the ballooning modes are identified by studying the growth rates and the radial profiles of the Fourier coefficients of fluctuation variables. The mechanisms to weaken the growth of instability, such as the local fattening of the pressure and the energy release to the parallel kinetic energy, are found being insufficient to suppress the high-wavenumber ballooning modes. Consequently, the mean pressure profile is totally modified when the evolutions of the ballooning modes are saturated. The numerical results reveal that we need some mechanisms which do not originate from an ideal MHD to achieve a mild, saturated behaviors beyond the growths of unstable high ballooning modes in the helical device. The parallel heat conductivity is proposed as one of possible non-ideal mechanisms. (author)

  11. Impulsive relaxation process in MHD driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, H.; Hayashi, T.; Sato, T.

    1997-01-01

    Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)

  12. Irradiation facilitates at the advanced test reactor

    International Nuclear Information System (INIS)

    Grover, Blaine S.

    2006-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC - formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950's with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens. The paper has the following contents: ATR description and capabilities; ATR operations, quality and safety requirements; Static capsule experiments; Lead experiments; Irradiation test vehicle; In-pile loop experiments; Gas test loop; Future testing; Support facilities at RTC; Conclusions. To summarize, the ATR has a long history in fuel and material irradiations, and will be fulfilling a critical role in the future fuel and material testing necessary to develop the next generation reactor systems and advanced fuel cycles. The

  13. Space potential fluctuations during MHD activities in the Compact Helical System (CHS)

    International Nuclear Information System (INIS)

    Iguchi, H.; Fujisawa, A.; Crowley, T.P.

    1998-02-01

    Local space potential fluctuations have been measured during MHD activities in a low-beta NBI heated plasma in the Compact Helical System (CHS) by the use of a heavy ion beam probe (HIBP). Two types of MHD modes with accompanying potential oscillations are observed. One appears in periodic bursts with relatively low frequency (< 40 kHz) and large amplitude (20-40 volts), and is localized around the q=2 surface (average minor radius ρ ∼ 0.7). The other appears in continuous and coherent oscillation with higher frequency (105-125 kHz) and smaller amplitude (∼5 volts). This oscillation also has spatial structure. Possible interpretation for the space potential oscillations is presented. (author)

  14. Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

    Science.gov (United States)

    Badia, Santiago; Martín, Alberto F.; Planas, Ramon

    2014-10-01

    The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the different physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix, and consider an LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknowns, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation of this type of preconditioners.

  15. Superconducting dipole magnet for the UTSI MHD facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Niemann, R.C.; Turner, L.R.

    1978-01-01

    The Argonne National Laboratory is designing and will build a large superconducting dipole magnet system for use in the Coal Fired Flow MHD Research Facility at the University of Tennessee Space Institute (UTSI). Presented in detail are the conceptual design of the magnet geometry, conductor design, cryostability evaluation, magnetic pressure computation, structural design, cryostat design, the cryogenics system design, and magnet instrumentations and control

  16. Report on the phase II R and D program of magneto-hydro-dynamics (MHD) electrical power generation. Prompt report by Electrotechnical Laboratory; Denji ryutai (MHD) hatsuden no dainiki kenkyu kaihatsu ni kansuru hokokusho. Densoken kenkyu sokuho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-28

    This report summarizes results of the phase II R and D program of MHD electrical power generation (FY 1976 - 1983), which has been now completed. The phase II R and D efforts were concentrated on development of the durable power generation channels, where the designs and manufacture of the Mark II system were started, and the elementary techniques were simultaneously studied for, e.g., phenomena occurring around the electrodes, seed condensation and its effects on the electrode phenomena, and electrode and insulator materials for the power generation channels. The power generation channel was tested for its durability for a total of 430 hours, after it was incorporated in the Mark II system. The MHD power generation can incorporate direct combustion of coal, and will hold a dominant position in coal-fired power generation, which is expected to grow in the future. For this reason, the basic research schedules were revised in March, 1983, and the Mark II system was operated by firing a mixed fuel of kerosene and finely divided coal in a kerosene combustor, in line with the revised project, to understand the basic power generation characteristics with the combustion gases containing coal slag. (NEDO)

  17. Saturated ideal modes in advanced tokamak regimes in MAST

    International Nuclear Information System (INIS)

    Chapman, I.T.; Hua, M.-D.; Pinches, S.D.; Akers, R.J.; Field, A.R.; Hastie, R.J.; Michael, C.A.; Graves, J.P.

    2010-01-01

    MAST plasmas with a safety factor above unity and a profile with either weakly reversed shear or broad low-shear regions, regularly exhibit long-lived saturated ideal magnetohydrodynamic (MHD) instabilities. The toroidal rotation is flattened in the presence of such perturbations and the fast ion losses are enhanced. These ideal modes, distinguished as such by the notable lack of islands or signs of reconnection, are driven unstable as the safety factor approaches unity. This could be of significance for advanced scenarios, or hybrid scenarios which aim to keep the safety factor just above rational surfaces associated with deleterious resistive MHD instabilities, especially in spherical tokamaks which are more susceptible to such ideal internal modes. The role of rotation, fast ions and ion diamagnetic effects in determining the marginal mode stability is discussed, as well as the role of instabilities with higher toroidal mode numbers as the safety factor evolves to lower values.

  18. Building virtual pentesting labs for advanced penetration testing

    CERN Document Server

    Cardwell, Kevin

    2014-01-01

    Written in an easy-to-follow approach using hands-on examples, this book helps you create virtual environments for advanced penetration testing, enabling you to build a multi-layered architecture to include firewalls, IDS/IPS, web application firewalls, and endpoint protection, which is essential in the penetration testing world. If you are a penetration tester, security consultant, security test engineer, or analyst who wants to practice and perfect penetration testing skills by building virtual pen testing labs in varying industry scenarios, this is the book for you. This book is ideal if yo

  19. Effect of chemical reaction on unsteady MHD free convective two ...

    African Journals Online (AJOL)

    The effect of flow parameters on the coefficient of skin friction, Nusselt number and Sherwood number are also tabulated and discussed appropriately. It was observed that the increase in chemical reaction coefficient/parameter suppresses both velocity and concentration profiles. Keywords: Chemical Reaction, MHD, ...

  20. Enhanced in-pile instrumentation at the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T.; Chase, B. M.; Palmer, J.; Condie, K. G.; Davis, K. L. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2011-07-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)