WorldWideScience

Sample records for mgs avionics system

  1. The MGS Avionics System Architecture: Exploring the Limits of Inheritance

    Science.gov (United States)

    Bunker, R.

    1994-01-01

    Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.

  2. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  3. Reconfigurable fault tolerant avionics system

    Science.gov (United States)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  4. Demonstration Advanced Avionics System (DAAS) function description

    Science.gov (United States)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  5. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous, avionic and robotic systems are used in a variety of applications including launch vehicles, robotic precursor platforms, etc. Most avionic innovations...

  6. Advanced Avionics Architecture and Technology Review. Executive Summary and Volume 1, Avionics Technology. Volume 2. Avionics Systems Engineering

    Science.gov (United States)

    1993-08-06

    JIAWG core avionics are described in the section below. The JIAWO architecture standard (187-01) describes an open. system architeture which provides...0.35 microns (pRm). Present technology is in the 0.8 npm to 0.5 pm range for aggressive producers. Since the area of a die is approximately proportional ...analog (D/A) converters. The I A/D converter is a device or circuit that examines an analog voltage or current and converts it to a proportional binary

  7. Customer Avionics Interface Development and Analysis (CAIDA): Software Developer for Avionics Systems

    Science.gov (United States)

    Mitchell, Sherry L.

    2018-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objective of the semester-long internship was to support day-to-day operations of CAIDA and help prepare for verification and validation of CAIDA software.

  8. Sail GTS ground system analysis: Avionics system engineering

    Science.gov (United States)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  9. Avionics System Architecture for the NASA Orion Vehicle

    Science.gov (United States)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of

  10. Investigation of an advanced fault tolerant integrated avionics system

    Science.gov (United States)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  11. Design and Realization of Avionics Integration Simulation System Based on RTX

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2016-01-01

    Full Text Available Aircraft avionics system becoming more and more complicated, it is too hard to test and verify real avionics systems. A design and realization method of avionics integration simulation system based on RTX was brought forward to resolve the problem. In this simulation system, computer software and hardware resources were utilized entirely. All kinds of aircraft avionics system HIL (hardware-in-loop simulations can be implemented in this platform. The simulation method provided the technical foundation of testing and verifying real avionics system. The research has recorded valuable data using the newly-developed method. The experiment results prove that the avionics integration simulation system was used well in some helicopter avionics HIL simulation experiment. The simulation experiment results provided the necessary judgment foundation for the helicopter real avionics system verification.

  12. A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    DEFF Research Database (Denmark)

    Han, Pujie; Zhai, Zhengjun; Nielsen, Brian

    2018-01-01

    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL...

  13. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Science.gov (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  14. The effect of requirements prioritization on avionics system conceptual design

    Science.gov (United States)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the

  15. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    Science.gov (United States)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  16. MATHEMATICAL MODELS OF PROCESSES AND SYSTEMS OF TECHNICAL OPERATION FOR ONBOARD COMPLEXES AND FUNCTIONAL SYSTEMS OF AVIONICS

    Directory of Open Access Journals (Sweden)

    Sergey Viktorovich Kuznetsov

    2017-01-01

    Full Text Available Modern aircraft are equipped with complicated systems and complexes of avionics. Aircraft and its avionics tech- nical operation process is observed as a process with changing of operation states. Mathematical models of avionics pro- cesses and systems of technical operation are represented as Markov chains, Markov and semi-Markov processes. The pur- pose is to develop the graph-models of avionics technical operation processes, describing their work in flight, as well as during maintenance on the ground in the various systems of technical operation. The graph-models of processes and sys- tems of on-board complexes and functional avionics systems in flight are proposed. They are based on the state tables. The models are specified for the various technical operation systems: the system with control of the reliability level, the system with parameters control and the system with resource control. The events, which cause the avionics complexes and func- tional systems change their technical state, are failures and faults of built-in test equipment. Avionics system of technical operation with reliability level control is applicable for objects with constant or slowly varying in time failure rate. Avion- ics system of technical operation with resource control is mainly used for objects with increasing over time failure rate. Avionics system of technical operation with parameters control is used for objects with increasing over time failure rate and with generalized parameters, which can provide forecasting and assign the borders of before-fail technical states. The pro- posed formal graphical approach avionics complexes and systems models designing is the basis for models and complex systems and facilities construction, both for a single aircraft and for an airline aircraft fleet, or even for the entire aircraft fleet of some specific type. The ultimate graph-models for avionics in various systems of technical operation permit the beginning of

  17. Avionics System Development for a Rotary Wing Unmanned Aerial Vehicle

    National Research Council Canada - National Science Library

    Greer, Daniel

    1998-01-01

    .... A helicopter with sufficient lift capability was selected and a lightweight aluminum structure was built to serve as both an avionics platform for the necessary equipment and also as a landing skid...

  18. Integrated Power, Avionics, and Software (IPAS) Flexible Systems Integration

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Power, Avionics, and Software (IPAS) facility is a flexible, multi-mission hardware and software design environment. This project will develop a...

  19. Semiautonomous Avionics-and-Sensors System for a UAV

    Science.gov (United States)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and

  20. Accelerated Adaptive MGS Phase Retrieval

    Science.gov (United States)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  1. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Substantial progress has been made by NASA in integrating flight avionics and ISHM with well-defined caution and warning system, however, the scope of ACAW alerting...

  2. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  3. Analysis of technology requirements and potential demand for general aviation avionics systems for operation in the 1980's

    Science.gov (United States)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    Avionics systems are identified which promise to reduce economic constraints and provide significant improvements in performance, operational capability and utility for general aviation aircraft in the 1980's.

  4. Avionics Systems Laboratory/Building 16. Historical Documentation

    Science.gov (United States)

    Slovinac, Patricia; Deming, Joan

    2011-01-01

    As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities that was conducted by NASA s Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Avionics Systems Laboratory (Building 16) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 16 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented in 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle program; the history of JSC in relation to the SSP; a narrative of the history of Building 16 and how it supported the SSP; and a physical description of the structure. In addition, photographs documenting the construction and historical use of Building 16 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are

  5. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  6. Avionics system design for requirements for the United States Coast Guard HH-65A Dolphin

    Science.gov (United States)

    Young, D. A.

    1984-01-01

    Aerospatiale Helicopter Corporation (AHC) was awarded a contract by the United States Coast Guard for a new Short Range Recovery (SRR) Helicopter on 14 June 1979. The award was based upon an overall evaluation of performance, cost, and technical suitability. In this last respect, the SRR helicopter was required to meet a wide variety of mission needs for which the integrated avionics system has a high importance. This paper illustrates the rationale for the avionics system requirements, the system architecture, its capabilities and reliability and its adaptability to a wide variety of military and commercial purposes.

  7. Digital avionics systems - Overview of FAA/NASA/industry-wide briefing

    Science.gov (United States)

    Larsen, William E.; Carro, Anthony

    1986-01-01

    The effects of incorporating digital technology into the design of aircraft on the airworthiness criteria and certification procedures for aircraft are investigated. FAA research programs aimed at providing data for the functional assessment of aircraft which use digital systems for avionics and flight control functions are discussed. The need to establish testing, assurance assessment, and configuration management technologies to insure the reliability of digital systems is discussed; consideration is given to design verification, system performance/robustness, and validation technology.

  8. Digital Systems Validation Handbook. Volume 2. Chapter 18. Avionic Data Bus Integration Technology

    Science.gov (United States)

    1993-11-01

    interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion software, which make up digital...1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error detection and...formulate all the significant behavior of a system. MULTIVERSION PROGRAMMING. N-version programming. N-VERSION PROGRAMMING. The independent coding of a

  9. NI Based System for Seu Testing of Memory Chips for Avionics

    Directory of Open Access Journals (Sweden)

    Boruzdina Anna

    2016-01-01

    Full Text Available This paper presents the results of implementation of National Instrument based system for Single Event Upset testing of memory chips into neutron generator experimental facility, which used for SEU tests for avionics purposes. Basic SEU testing algorithm with error correction and constant errors detection is presented. The issues of radiation shielding of NI based system are discussed and solved. The examples of experimental results show the applicability of the presented system for SEU memory testing under neutrons influence.

  10. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    Science.gov (United States)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  11. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    Science.gov (United States)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  12. Research on the Reliability Analysis of the Integrated Modular Avionics System Based on the AADL Error Model

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2018-01-01

    Full Text Available In recent years, the integrated modular avionics (IMA concept has been introduced to replace the traditional federated avionics. Different avionics functions are hosted in a shared IMA platform, and IMA adopts partition technologies to provide a logical isolation among different functions. The IMA architecture can provide more sophisticated and powerful avionics functionality; meanwhile, the failure propagation patterns in IMA are more complex. The feature of resource sharing introduces some unintended interconnections among different functions, which makes the failure propagation modes more complex. Therefore, this paper proposes an architecture analysis and design language- (AADL- based method to establish the reliability model of IMA platform. The single software and hardware error behavior in IMA system is modeled. The corresponding AADL error model of failure propagation among components, between software and hardware, is given. Finally, the display function of IMA platform is taken as an example to illustrate the effectiveness of the proposed method.

  13. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    Science.gov (United States)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  14. Loop thermosyphon thermal management of the avionics of an in-flight entertainment system

    International Nuclear Information System (INIS)

    Sarno, C.; Tantolin, C.; Hodot, R.; Maydanik, Yu.; Vershinin, S.

    2013-01-01

    A new generation of in-flight entertainment systems (IFEs) used on board commercial aircrafts is required to provide more and more services (audio, video, internet, multimedia, phone, etc.). But, unlike other avionics systems most of the IFE equipment and boxes are installed inside the cabin and they are not connected to the aircraft cooling system. The most critical equipment of the IFE system is a seat electronic box (SEB) installed under each passenger seat. Fans are necessary to face the increasing power dissipation. But this traditional approach has some drawbacks: extra cost multiplied by the seat number, reliability and maintenance. The objective of this work is to develop and evaluate an alternative completely passive cooling system (PCS) based on a two-phase technology including heat pipes and loop thermosyphons (LTSs) adequately integrated inside the seat structure and using the benefit of the seat frame as a heat sink. Previous works have been performed to evaluate these passive cooling systems which were based on loop heat pipe. This paper presents results of thermal tests of a passive cooling system of the SEB consisting of two LTSs and R141b as a working fluid. These tests have been carried out at different tilt angles and heat loads from 10 to 100 W. It has been shown that the cooled object temperature does not exceed the maximum given value in the range of tilt angles ±20° which is more wider than the range which is typical for ordinary evolution of passenger aircrafts. -- Highlights: ► A passive cooling system has been developed for avionics application. ► The system consists of loop thermosyphons and a passenger seat as a heat sink. ► Successful system tests have been run at heat loads to 100 W and angle tilts to 20°

  15. Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Atwell, William; Boeder, Paul

    2014-01-01

    NASA's future missions are focused on long-duration deep space missions for human exploration which offers no options for a quick emergency return to Earth. The combination of long mission duration with no quick emergency return option leads to unprecedented spacecraft system safety and reliability requirements. It is important that spacecraft avionics systems for human deep space missions are not susceptible to Single Event Effect (SEE) failures caused by space radiation (primarily the continuous galactic cosmic ray background and the occasional solar particle event) interactions with electronic components and systems. SEE effects are typically managed during the design, development, and test (DD&T) phase of spacecraft development by using heritage hardware (if possible) and through extensive component level testing, followed by system level failure analysis tasks that are both time consuming and costly. The ultimate product of the SEE DD&T program is a prediction of spacecraft avionics reliability in the flight environment produced using various nuclear reaction and transport codes in combination with the component and subsystem level radiation test data. Previous work by Koontz, et al.1 utilized FLUKA, a Monte Carlo nuclear reaction and transport code, to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data for a variety of spacecraft and space flight environments. However, FLUKA has a long run-time (on the order of days). CREME962, an easy to use deterministic code offering short run times, was also compared with FLUKA predictions and in-flight data. CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Thus, this paper will investigate the use of HZETRN 20103, a fast and easy to use deterministic transport code, similar to CREME96, that was developed at NASA Langley Research Center primarily for

  16. Next-generation avionics packaging and cooling 'test results from a prototype system'

    Science.gov (United States)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  17. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    Science.gov (United States)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  18. A knowledge-based flight status monitor for real-time application in digital avionics systems

    Science.gov (United States)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  19. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Ingham, John C. (Inventor); Laughter, Sean A. (Inventor); Kuhn, III, Theodore R. (Inventor); Adams, James K. (Inventor); Babel, III, Walter C. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  20. Formal Verification Method for Configuration of Integrated Modular Avionics System Using MARTE

    Directory of Open Access Journals (Sweden)

    Lisong Wang

    2018-01-01

    Full Text Available The configuration information of Integrated Modular Avionics (IMA system includes almost all details of whole system architecture, which is used to configure the hardware interfaces, operating system, and interactions among applications to make an IMA system work correctly and reliably. It is very important to ensure the correctness and integrity of the configuration in the IMA system design phase. In this paper, we focus on modelling and verification of configuration information of IMA/ARINC653 system based on MARTE (Modelling and Analysis for Real-time and Embedded Systems. Firstly, we define semantic mapping from key concepts of configuration (such as modules, partitions, memory, process, and communications to components of MARTE element and propose a method for model transformation between XML-formatted configuration information and MARTE models. Then we present a formal verification framework for ARINC653 system configuration based on theorem proof techniques, including construction of corresponding REAL theorems according to the semantics of those key components of configuration information and formal verification of theorems for the properties of IMA, such as time constraints, spatial isolation, and health monitoring. After that, a special issue of schedulability analysis of ARINC653 system is studied. We design a hierarchical scheduling strategy with consideration of characters of the ARINC653 system, and a scheduling analyzer MAST-2 is used to implement hierarchical schedule analysis. Lastly, we design a prototype tool, called Configuration Checker for ARINC653 (CC653, and two case studies show that the methods proposed in this paper are feasible and efficient.

  1. Autonomous safety and reliability features of the K-1 avionics system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, G.E.; Kohrs, D.; Bailey, R.; Lai, G. [Kistler Aerospace Corp., Kirkland, WA (United States)

    2004-03-01

    Kistler Aerospace Corporation is developing the K-1, a fully reusable, two-stage-to-orbit launch vehicle. Both stages return to the launch site using parachutes and airbags. Initial flight operations will occur from Woomera, Australia. K-1 guidance is performed autonomously. Each stage of the K- 1 employs a triplex, fault tolerant avionics architecture, including three fault tolerant computers and three radiation hardened Embedded GPS/INS units with a hardware voter. The K-1 has an Integrated Vehicle Health Management (IVHM) system on each stage residing in the three vehicle computers based on similar systems in commercial aircraft. During first-stage ascent, the IVHM system performs an Instantaneous Impact Prediction (IIP) calculation 25 times per second, initiating an abort in the event the vehicle is outside a predetermined safety corridor for at least three consecutive calculations. In this event, commands are issued to terminate thrust, separate the stages, dump all propellant in the first-stage, and initiate a normal landing sequence. The second-stage flight computer calculates its ability to reach orbit along its state vector, initiating an abort sequence similar to the first stage if it cannot. On a nominal mission, following separation, the second-stage also performs calculations to assure its impact point is within a safety corridor. The K-1's guidance and control design is being tested through simulation with hardware-in-the-loop at Draper Laboratory. Kistler's verification strategy assures reliable and safe operation of the K-1. (author)

  2. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Science.gov (United States)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  3. Avionics and Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Avionics and Software (A&S) project is to develop a reference avionics and software architecture that is based on standards and that can be...

  4. Determination of the maximum MGS mounting height : phase II detailed analysis with LS-DYNA.

    Science.gov (United States)

    2012-12-01

    Determination of the maximum Midwest Guardrail System (MGS) mounting height was performed in two phases. : Phase I concentrated on crash testing: two full-scale crash tests were performed on the MGS with top-rail mounting heights : of 34 in. (864 mm)...

  5. Flight Avionics Hardware Roadmap

    Science.gov (United States)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  6. THE UNMANNED MISSION AVIONICS TEST HELICIOPTER – A FLEXIBLE AND VERSATILE VTOL-UAS EXPERIMENTAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. H.-W. Schulz

    2012-09-01

    Full Text Available civil customers. These applications cover a wide spectrum from R&D programs for the military customer to special services for the civil customer. This paper focuses on the technical conversion of a commercially available VTOL-UAS to ESG's Unmanned Mission Avionics Test Helicopter (UMAT, its concept and operational capabilities. At the end of the paper, the current integration of a radar sensor is described as an example of the UMATs flexibility. The radar sensor is developed by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR. It is integrated by ESG together with the industrial partner SWISS UAV.

  7. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    Science.gov (United States)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  8. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November-2 December 1982. Volume 2

    Science.gov (United States)

    1982-11-01

    validation will result in sustainable avionics. 747 .l REFERENCES 1. Hitt, Ellis F., Webb, Jeff J., Lucius, Charles E., Bridgman, Michael S., Eldredge...There is * software requirement for cross compiler facilities for a t~rget computer system. The Project Manager for the effort has bezo assigned the

  9. Avionic Data Bus Integration Technology

    Science.gov (United States)

    1991-12-01

    address the hardware-software interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion ...the SCP. In 1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error... MULTIVERSION PROGRAMMING. N-version programming. 226 N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant computer programs that

  10. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  11. A survey on electromagnetic interferences on aircraft avionics systems and a GSM on board system overview

    Science.gov (United States)

    Vinto, Natale; Tropea, Mauro; Fazio, Peppino; Voznak, Miroslav

    2014-05-01

    Recent years have been characterized by an increase in the air traffic. More attention over micro-economic and macroeconomic indexes would be strategic to gather and enhance the safety of a flight and customer needing, for communicating by wireless handhelds on-board aircrafts. Thus, European Telecommunications Standards Institute (ETSI) proposed a GSM On Board (GSMOBA) system as a possible solution, allowing mobile terminals to communicate through GSM system on aircraft, avoiding electromagnetic interferences with radio components aboard. The main issues are directly related with interferences that could spring-out when mobile terminals attempt to connect to ground BTS, from the airplane. This kind of system is able to resolve the problem in terms of conformance of Effective Isotropic Radiated Power (EIRP) limits, defined outside the aircraft, by using an On board BTS (OBTS) and modeling the relevant key RF parameters on the air. The main purpose of this work is to illustrate the state-of-the-art of literature and previous studies about the problem, giving also a good detail of technical and normative references.

  12. Avionics Architecture for Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Avionics Architectures for Exploration (AAE) project is to develop a reference architecture that is based on standards and that can be scaled and...

  13. HH-65A Dolphin digital integrated avionics

    Science.gov (United States)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  14. Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems

    Science.gov (United States)

    Pond, Charles L.; Mcdermott, William A.; Lum, Ben T. F.

    1993-01-01

    Electrical actuator (ELA) power efficiency and requirements are examined for space system application. Requirements for Space Shuttle effector systems are presented, along with preliminary ELA trades and selection to form a preliminary ELA system baseline. Power and energy requirements for this baseline ELA system are applicable to the Space Shuttle and similar space vehicles.

  15. Developing A Generic Optical Avionic Network

    DEFF Research Database (Denmark)

    Zhang, Jiang; An, Yi; Berger, Michael Stübert

    2011-01-01

    We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility...... and support a wide range of avionic applications. Segregation can be made on different hierarchies according to system criticality and security requirements. The structure of each layer is discussed in detail. Two network configurations are presented, focusing on how to support different network services...... by such a network. Finally, three redundancy scenarios are discussed and compared....

  16. Projection display technology for avionics applications

    Science.gov (United States)

    Kalmanash, Michael H.; Tompkins, Richard D.

    2000-08-01

    Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.

  17. E VA Space Suit Power, Avionics, and Software Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in a reliable, robust, and low Size Weight and Power (SWAP) input device that will allow for EVA astronauts to navigate display menu systems. The...

  18. STOL terminal area operating systems (aircraft and onboard avionics, ATC, navigation aids)

    Science.gov (United States)

    Burrous, C.; Erzberger, H.; Johnson, N.; Neuman, F.

    1974-01-01

    Operational procedures and systems onboard the STOL aircraft which are required to enable the aircraft to perform acceptably in restricted airspace in all types of atmospheric conditions and weather are discussed. Results of simulation and flight investigations to establish operational criteria are presented.

  19. Non-functional Avionics Requirements

    Science.gov (United States)

    Paulitsch, Michael; Ruess, Harald; Sorea, Maria

    Embedded systems in aerospace become more and more integrated in order to reduce weight, volume/size, and power of hardware for more fuel-effi ciency. Such integration tendencies change architectural approaches of system ar chi tec tures, which subsequently change non-functional requirements for plat forms. This paper provides some insight into state-of-the-practice of non-func tional requirements for developing ultra-critical embedded systems in the aero space industry, including recent changes and trends. In particular, formal requi re ment capture and formal analysis of non-functional requirements of avionic systems - including hard-real time, fault-tolerance, reliability, and per for mance - are exemplified by means of recent developments in SAL and HiLiTE.

  20. Integrated Target Acquisition and Fire Control Systems: Avionics Panel Symposium Held in Ottawa, Canada on 7-10 October 1991 (Systemes Integres d’Acquisition d’Objectifs et de Conduite de Tir)

    Science.gov (United States)

    1992-02-01

    quality imagery and engagement3 witth rapid imagery indirect fire to maximize interpretation to provide the effect of long range timely information...blackwht Fig 8 Accumulated histogram We used an LSI Logic L64250 Histogram Hough Processor ( HtP ) chip to perform histogram equalization. This device...serving as main controllers of the basic transmitted via data link or inserted manually by avionic system to ensure the moding and monitoring the crew

  1. Power, Avionics and Software Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  2. Reference Specifications for SAVOIR Avionics Elements

    Science.gov (United States)

    Hult, Torbjorn; Lindskog, Martin; Roques, Remi; Planche, Luc; Brunjes, Bernhard; Dellandrea, Brice; Terraillon, Jean-Loup

    2012-08-01

    Space industry and Agencies have been recognizing already for quite some time the need to raise the level of standardisation in the spacecraft avionics systems in order to increase efficiency and reduce development cost and schedule. This also includes the aspect of increasing competition in global space business, which is a challenge that European space companies are facing at all stages of involvement in the international markets.A number of initiatives towards this vision are driven both by the industry and ESA’s R&D programmes. However, today an intensified coordination of these activities is required in order to achieve the necessary synergy and to ensure they converge towards the shared vision. It has been proposed to federate these initiatives under the common Space Avionics Open Interface Architecture (SAVOIR) initiative. Within this initiative, the approach based on reference architectures and building blocks plays a key role.Following the principles outlined above, the overall goal of the SAVOIR is to establish a streamlined onboard architecture in order to standardize the development of avionics systems for space programmes. This reflects the need to increase efficiency and cost-effectiveness in the development process as well as account the trend towards more functionality implemented by the onboard building blocks, i.e. HW and SW components, and more complexity for the overall space mission objectives.

  3. The single event upset environment for avionics at high latitude

    International Nuclear Information System (INIS)

    Sims, A.J.; Dyer, C.S.; Peerless, C.L.; Farren, J.

    1994-01-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end, it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight

  4. MGS Esmeralda: new large seed mungbean cultivar MGS Esmeralda: nova cultivar de mungo-verde de sementes grandes

    Directory of Open Access Journals (Sweden)

    Rogério Faria Vieira

    2008-06-01

    Full Text Available Mungbean cultivar MGS Esmeralda was developed by Asian Vegetable Research and Development Center (Shanhua, Taiwan, as a result of crossing between the lines VC 1973A and VC 2768A. In ten trials conducted in the State of Minas Gerais, Brazil, it produced 13.5% more grains than 'Ouro Verde MG-2' (control cultivar, and its highest yield was 2,550 kg ha-1. The cultivar MGS Esmeralda is more susceptible to lodging, and its pods mature more uniformly than Ouro Verde MG-2 pods. One hundred-seed mass of 'MGS Esmeralda' ranged between 5.5 and 6.8 g. Both cultivars are susceptible to powdery mildew and cercospora leaf spot.A cultivar de mungo-verde MGS Esmeralda foi criada pelo Asian Vegetable Research and Development Center, localizado em Shanhua, Formosa. Ela é resultado do cruzamento entre as linhagens VC 1973A e VC 2768A. Em dez ensaios conduzidos em Minas Gerais, ela produziu 13,5% mais grãos do que a cultivar Ouro Verde MG-2 (testemunha, e sua produtividade mais alta foi 2.550 kg ha-1. A cultivar MGS Esmeralda é mais suscetível ao acamamento do que a Ouro Verde MG-2, mas suas vagens amadurecem mais uniformemente. A massa de 100 grãos da 'MGS Esmeralda' varia de 5,5 a 6,8 g. Ambas as cultivares são suscetíveis ao oídio e à cercosporiose.

  5. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    Science.gov (United States)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  6. Towards a distributed information architecture for avionics data

    Science.gov (United States)

    Mattmann, Chris; Freeborn, Dana; Crichton, Dan

    2003-01-01

    Avionics data at the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL consists of distributed, unmanaged, and heterogeneous information that is hard for flight system design engineers to find and use on new NASA/JPL missions. The development of a systematic approach for capturing, accessing and sharing avionics data critical to the support of NASA/JPL missions and projects is required. We propose a general information architecture for managing the existing distributed avionics data sources and a method for querying and retrieving avionics data using the Object Oriented Data Technology (OODT) framework. OODT uses XML messaging infrastructure that profiles data products and their locations using the ISO-11179 data model for describing data products. Queries against a common data dictionary (which implements the ISO model) are translated to domain dependent source data models, and distributed data products are returned asynchronously through the OODT middleware. Further work will include the ability to 'plug and play' new manufacturer data sources, which are distributed at avionics component manufacturer locations throughout the United States.

  7. Micro-Scale Avionics Thermal Management

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  8. Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility

    Science.gov (United States)

    Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

    1994-01-01

    Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

  9. The Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.

  10. Conception et analyse d'un systeme d'optimisation de plans de vol pour les avions

    Science.gov (United States)

    Maazoun, Wissem

    The main objective of this thesis is to develop an optimization method for the preparation of flight plans for aircrafts. The flight plan minimizes all costs associated with the flight. We determine an optimal path for an airplane from a departure airport to a destination airport. The optimal path minimizes the sum of all costs, i.e. the cost of fuel added to the cost of time (wages, rental of the aircraft, arrival delays, etc.). The optimal trajectory is obtained by considering all possible trajectories on a 3D graph (longitude, latitude and altitude) where the altitude levels are separated by 2,000 feet, and by applying a shortest path algorithm. The main task was to accurately compute fuel consumption on each edge of the graph, making sure that each arc has a minimal cost and is covered in a realistic way from the point of view of control, i.e. in accordance with the rules of navigation. To compute the cost of an arc, we take into account weather conditions (temperature, pressure, wind components, etc.). The optimization of each arc is done via the evaluation of an optimum speed that takes all costs into account. Each arc of the graph typically includes several sub-phases of the flight, e.g. altitude change, speed change, and constant speed and altitude. In the initial climb and the final descent phases, the costs are determined by considering altitude changes at constant CAS (Calibrated Air Speed) or constant Mach number. CAS and Mach number are adjusted to minimize cost. The aerodynamic model used is the one proposed by Eurocontrol, which uses the BADA (Base of Aircraft Data) tables. This model is based on the total energy equation that determines the instantaneous fuel consumption. Calculations on each arc are done by solving a system of differential equations that systematically takes all costs into account. To compute the cost of an arc, we must know the time to go through it, which is generally unknown. To have well-posed boundary conditions, we use the

  11. Development of Avionics Installation Interface Standards. Revision.

    Science.gov (United States)

    1981-08-01

    Shakil Rockwell Collins William Rupp Bendix Air Transport, Avionics Division * D. T. Engen Bendix Air Transport, Avionics Division J. C. Hoelz Bendix...flow is specified in recognition of the situation in whichj 220 kilograms per hour per kilowatt air flow available in a civil configuration D-1

  12. A method of distributed avionics data processing based on SVM classifier

    Science.gov (United States)

    Guo, Hangyu; Wang, Jinyan; Kang, Minyang; Xu, Guojing

    2018-03-01

    Under the environment of system combat, in order to solve the problem on management and analysis of the massive heterogeneous data on multi-platform avionics system, this paper proposes a management solution which called avionics "resource cloud" based on big data technology, and designs an aided decision classifier based on SVM algorithm. We design an experiment with STK simulation, the result shows that this method has a high accuracy and a broad application prospect.

  13. Estimation of Airline Benefits from Avionics Upgrade under Preferential Merge Re-sequence Scheduling

    Science.gov (United States)

    Kotegawa, Tatsuya; Cayabyab, Charlene Anne; Almog, Noam

    2013-01-01

    Modernization of the airline fleet avionics is essential to fully enable future technologies and procedures for increasing national airspace system capacity. However in the current national airspace system, system-wide benefits gained by avionics upgrade are not fully directed to aircraft/airlines that upgrade, resulting in slow fleet modernization rate. Preferential merge re-sequence scheduling is a best-equipped-best-served concept designed to incentivize avionics upgrade among airlines by allowing aircraft with new avionics (high-equipped) to be re-sequenced ahead of aircraft without the upgrades (low-equipped) at enroute merge waypoints. The goal of this study is to investigate the potential benefits gained or lost by airlines under a high or low-equipped fleet scenario if preferential merge resequence scheduling is implemented.

  14. Avionics Design for Reliability

    Science.gov (United States)

    1976-03-01

    user and a supplier arfue to determine if a failure is, or is not to be ascribed to the equipment, some disputable cases are difficult to nettle ... combat action, or tampering by Government personnel, provided there is clear and c~nvincing evidence of such cause. In addition, the contrac- tor...satellite there in are described The OR of resulting module pest fail signals an bood preocoistr4 A K Geiqer MU S Navy. Electronic Systems indicates

  15. A critique of reliability prediction techniques for avionics applications

    Directory of Open Access Journals (Sweden)

    Guru Prasad PANDIAN

    2018-01-01

    Full Text Available Avionics (aeronautics and aerospace industries must rely on components and systems of demonstrated high reliability. For this, handbook-based methods have been traditionally used to design for reliability, develop test plans, and define maintenance requirements and sustainment logistics. However, these methods have been criticized as flawed and leading to inaccurate and misleading results. In its recent report on enhancing defense system reliability, the U.S. National Academy of Sciences has recently discredited these methods, judging the Military Handbook (MIL-HDBK-217 and its progeny as invalid and inaccurate. This paper discusses the issues that arise with the use of handbook-based methods in commercial and military avionics applications. Alternative approaches to reliability design (and its demonstration are also discussed, including similarity analysis, testing, physics-of-failure, and data analytics for prognostics and systems health management.

  16. Rocksalt MgS solar blind ultra-violet detectors

    Directory of Open Access Journals (Sweden)

    Ying-Hoi Lai

    2012-03-01

    Full Text Available Studies using in-situ Auger electron spectroscopy and reflection high energy electron diffraction, and ex-situ high resolution X-ray diffraction and electron backscatter diffraction reveal that a MgS thin film grown directly on a GaAs (100 substrate by molecular beam epitaxy adopts its most stable phase, the rocksalt structure, with a lattice constant of 5.20 Å. A Au/MgS/n+-GaAs (100 Schottky-barrier photodiode was fabricated and its room temperature photoresponse was measured to have a sharp fall-off edge at 235 nm with rejection of more than three orders at 400 nm and higher than five orders at 500 nm, promising for various solar-blind UV detection applications.

  17. Validating Avionics Conceptual Architectures with Executable Specifications

    Directory of Open Access Journals (Sweden)

    Nils Fischer

    2012-08-01

    Full Text Available Current avionics systems specifications, developed after conceptual design, have a high degree of uncertainty. Since specifications are not sufficiently validated in the early development process and no executable specification exists at aircraft level, system designers cannot evaluate the impact of their design decisions at aircraft or aircraft application level. At the end of the development process of complex systems, e. g. aircraft, an average of about 65 per cent of all specifications have to be changed because they are incorrect, incomplete or too vaguely described. In this paper, a model-based design methodology together with a virtual test environment is described that makes complex high level system specifications executable and testable during the very early levels of system design. An aircraft communication system and its system context is developed to demonstrate the proposed early validation methodology. Executable specifications for early conceptual system architectures enable system designers to couple functions, architecture elements, resources and performance parameters, often called non-functional parameters. An integrated executable specification at Early Conceptual Architecture Level is developed and used to determine the impact of different system architecture decisions on system behavior and overall performance.

  18. Avionics Simulation, Development and Software Engineering

    Science.gov (United States)

    2002-01-01

    During this reporting period, all technical responsibilities were accomplished as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14), the MSFC EXPRESS Project Office (FD31), and the Huntsville Boeing Company. Accomplishments included: performing special tasks; supporting Software Review Board (SRB), Avionics Test Bed (ATB), and EXPRESS Software Control Panel (ESCP) activities; participating in technical meetings; and coordinating issues between the Boeing Company and the MSFC Project Office.

  19. Observational evidence for composite grains in an AGB outflow: MgS in the extreme carbon star LL Pegasi

    NARCIS (Netherlands)

    Lombaert, R.; de Vries, B.L.; de Koter, A.; Decin, L.; Min, M.; Smolders, K.; Mutschke, H.; Waters, L.B.F.M.

    2012-01-01

    The broad 30 μm feature in carbon stars is commonly attributed to MgS dust particles. However, reproducing the 30 μm feature with homogeneous MgS grains would require much more sulfur relative to the solar abundance. Direct gas-phase condensation of MgS occurs at a low efficiency. Precipitation of

  20. Micro-Avionics Multi-Purpose Platform (MicroAMPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro-Avionics Multi-Purpose Platform (MicroAMPP) is a common avionics architecture supporting microsatellites, launch vehicles, and upper-stage carrier...

  1. MGS Radio Science Measurements of Atmospheric Dynamics on Mars

    Science.gov (United States)

    Hinson, D. P.

    2001-12-01

    The Sun-synchronous, polar orbit of Mars Global Surveyor (MGS) provides frequent opportunities for radio occultation sounding of the neutral atmosphere. The basic result of each experiment is a profile of pressure and temperature versus planetocentric radius and geopotential. More than 4000 profiles were obtained during the 687-day mapping phase of the mission, and additional observations are underway. These measurements allow detailed characterization of planetary-scale dynamics, including stationary planetary (or Rossby) waves and transient waves produced by instability. For example, both types of dynamics were observed near 67° S during midwinter of the southern hemisphere (Ls=134° --160° ). Planetary waves are the most prominent dynamical feature in this subset of data. At zonal wave number s=1, both the temperature and geopotential fields tilt westward with increasing height, as expected for vertically-propagating planetary waves forced at the surface. The wave-2 structure is more nearly barotropic. The amplitude in geopotential height at Ls=150° increases from ~200 m near the surface to ~700 m at 10 Pa. The corresponding meridional wind speed increases from ~5 m s-1 near the surface to ~20 m s-1 at 10 Pa. Traveling ``baroclinic'' waves also appear intermittently during this interval. The dominant mode has a period of ~2 sols, s=3, and a peak amplitude of ~7 K at 300 Pa. Stong zonal variations in eddy amplitude signal the presence of a possible ``storm zone'' at 150° --330° E longitude. This talk will include other examples of these phenomena as well as comparisons with computer simulations by a Martian general circulation model (MGCM).

  2. Integrated communication, navigation, and identification avionics: Impact analysis. Executive summary

    Science.gov (United States)

    Veatch, M. H.; McManus, J. C.

    1985-10-01

    This paper summarizes the approach and findings of research into reliability, supportability, and survivability prediction techniques for fault-tolerant avionics systems. Since no technique existed to analyze the fault tolerance of reconfigurable systems, a new method was developed and implemented in the Mission Reliability Model (MIREM). The supportability analysis was completed by using the Simulation of Operational Availability/Readiness (SOAR) model. Both the Computation of Vulnerable Area and Repair Time (COVART) model and FASTGEN, a survivability model, proved valuable for the survivability research. Sample results are presented and several recommendations are also given for each of the three areas investigated under this study: reliability supportablility and survivability.

  3. DISEÑO E IMPLEMENTACIÓN DEL SISTEMA DE COMUNICACIONES BASADO EN CAN PARA LA AVIÓNICA EN UN VEHÍCULO AÉREO AUTÓNOMO NO TRIPULADO DESIGN AND IMPLEMENTATION OF A COMMUNICATION SYSTEM BASED ON CAN FOR AVIONICS IN A ROBOT MINI-HELICOPTER

    Directory of Open Access Journals (Sweden)

    Jairo Miguel Vergara Díaz

    2007-07-01

    Full Text Available La necesidad de diseñar el sistema de comunicaciones para la aviónica de un mini helicóptero robot basada en la arquitectura distribuida CAN es la propuesta presentada. El sistema de comunicaciones involucra los aspectos de hardware y software necesarios para permitir el intercambio de datos sobre una red o bus de aviónica desde los sensores y/o hacia los actuadores con el computador central o computador de vuelo. La principal característica de la arquitectura es que permite escalabilidad en la agregación de nuevos dispositivos, garantizando los requerimientos temporales necesarios para la adquisición de datos. Se presentan resultados de intercambio de datos sobre la red de aviónica mostrando las frecuencias de operación alcanzadas.This paper presents the design of the internal communication system for avionics of a robot mini-helicopter based on the CAN distributed architecture. The communication system involves several hardware and software aspects related to data exchange on avionics bus from sensors and actuators with the flight computer. The main characteristic of the architecture is scalability in the addition of new devices, maintaining time requirements for data acquisition. Results of data exchange on the avionics network showing the reached operating update rates for each node are shown.

  4. Avionics Configuration Assessment for Flightdeck Interval Management: A Comparison of Avionics and Notification Methods

    Science.gov (United States)

    Latorella, Kara A.

    2015-01-01

    Flightdeck Interval Management is one of the NextGen operational concepts that FAA is sponsoring to realize requisite National Airspace System (NAS) efficiencies. Interval Management will reduce variability in temporal deviations at a position, and thereby reduce buffers typically applied by controllers - resulting in higher arrival rates, and more efficient operations. Ground software generates a strategic schedule of aircraft pairs. Air Traffic Control (ATC) provides an IM clearance with the IM spacing objective (i.e., the TTF, and at which point to achieve the appropriate spacing from this aircraft) to the IM aircraft. Pilots must dial FIM speeds into the speed window on the Mode Control Panel in a timely manner, and attend to deviations between actual speed and the instantaneous FIM profile speed. Here, the crew is assumed to be operating the aircraft with autothrottles on, with autopilot engaged, and the autoflight system in Vertical Navigation (VNAV) and Lateral Navigation (LNAV); and is responsible for safely flying the aircraft while maintaining situation awareness of their ability to follow FIM speed commands and to achieve the FIM spacing goal. The objective of this study is to examine whether three Notification Methods and four Avionics Conditions affect pilots' performance, ratings on constructs associated with performance (workload, situation awareness), or opinions on acceptability. Three Notification Methods (alternate visual and aural alerts that notified pilots to the onset of a speed target, conformance deviation from the required speed profile, and reminded them if they failed to enter the speed within 10 seconds) were examined. These Notification Methods were: VVV (visuals for all three events), VAV (visuals for all three events, plus an aural for speed conformance deviations), and AAA (visual indications and the same aural to indicate all three of these events). Avionics Conditions were defined by the instrumentation (and location) used to

  5. An electronic flight bag for NextGen avionics

    Science.gov (United States)

    Zelazo, D. Eyton

    2012-06-01

    The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.

  6. Optimal Management Of Renewable-Based Mgs An Intelligent Approach Through The Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mehdi Nafar

    2015-08-01

    Full Text Available Abstract- This article proposes a probabilistic frame built on Scenario fabrication to considerate the uncertainties in the finest action managing of Micro Grids MGs. The MG contains different recoverable energy resources such as Wind Turbine WT Micro Turbine MT Photovoltaic PV Fuel Cell FC and one battery as the storing device. The advised frame is based on scenario generation and Roulette wheel mechanism to produce different circumstances for handling the uncertainties of altered factors. It habits typical spreading role as a probability scattering function of random factors. The uncertainties which are measured in this paper are grid bid alterations cargo request calculating error and PV and WT yield power productions. It is well-intentioned to asset that solving the MG difficult for 24 hours of a day by considering diverse uncertainties and different constraints needs one powerful optimization method that can converge fast when it doesnt fall in local optimal topic. Simultaneously single Group Search Optimization GSO system is presented to vision the total search space globally. The GSO algorithm is instigated from group active of beasts. Also the GSO procedure one change is similarly planned for this algorithm. The planned context and way is applied o one test grid-connected MG as a typical grid.

  7. Software testability and its application to avionic software

    Science.gov (United States)

    Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffery E.

    1993-01-01

    Randomly generated black-box testing is an established yet controversial method of estimating software reliability. Unfortunately, as software applications have required higher reliabilities, practical difficulties with black-box testing have become increasingly problematic. These practical problems are particularly acute in life-critical avionics software, where requirements of 10 exp -7 failures per hour of system reliability can translate into a probability of failure (POF) of perhaps 10 exp -9 or less for each individual execution of the software. This paper describes the application of one type of testability analysis called 'sensitivity analysis' to B-737 avionics software; one application of sensitivity analysis is to quantify whether software testing is capable of detecting faults in a particular program and thus whether we can be confident that a tested program is not hiding faults. We so 80 by finding the testabilities of the individual statements of the program, and then use those statement testabilities to find the testabilities of the functions and modules. For the B-737 system we analyzed, we were able to isolate those functions that are more prone to hide errors during system/reliability testing.

  8. IXV avionics architecture: Design, qualification and mission results

    Science.gov (United States)

    Succa, Massimo; Boscolo, Ilario; Drocco, Alessandro; Malucchi, Giovanni; Dussy, Stephane

    2016-07-01

    The paper details the IXV avionics presenting the architecture and the constituting subsystems and equipment. It focuses on the novelties introduced, such as the Ethernet-based protocol for the experiment data acquisition system, and on the synergy with Ariane 5 and Vega equipment, pursued in order to comply with the design-to-cost requirement for the avionics system development. Emphasis is given to the adopted model philosophy in relation to OTS/COTS items heritage and identified activities necessary to extend the qualification level to be compliant with the IXV environment. Associated lessons learned are identified. Then, the paper provides the first results and interpretation from the flight recorders telemetry, covering the behavior of the Data Handling System, the quality of telemetry recording and real-time/delayed transmission, the performance of the batteries and the Power Protection and Distribution Unit, the ground segment coverage during visibility windows and the performance of the GNC sensors (IMU and GPS) and actuators. Finally, some preliminary tracks of the IXV follow on are given, introducing the objectives of the Innovative Space Vehicle and the necessary improvements to be developed in the frame of PRIDE.

  9. Enabling Wireless Avionics Intra-Communications

    Science.gov (United States)

    Torres, Omar; Nguyen, Truong; Mackenzie, Anne

    2016-01-01

    to model the propagation of a system in a "deployed" configuration versus a "stowed" configuration. The differences in relative field strength provide valuable information about the distribution of the field that can be used to engineer RF links with optimal radiated power and antenna configuration that accomplish the intended system reliability. Such modeling will be necessary in subsequent studies for managing multipath propagation characteristics inside a main cabin and to understand more complex environments, such as the inside wings, landing gear bays, cargo bays, avionics bays, etc. The results of the short research effort are described in the present document. The team puts forth a set of recommendations with the intention of informing the project and program leadership of the future work that, in the opinion of the EWAIC team, would assist the ECON team reach the intended goal of developing an all-wireless aircraft.

  10. New Technologies for Space Avionics, 1993

    Science.gov (United States)

    Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray

    1993-01-01

    The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.

  11. Application of industry-standard guidelines for the validation of avionics software

    Science.gov (United States)

    Hayhurst, Kelly J.; Shagnea, Anita M.

    1990-01-01

    The application of industry standards to the development of avionics software is discussed, focusing on verification and validation activities. It is pointed out that the procedures that guide the avionics software development and testing process are under increased scrutiny. The DO-178A guidelines, Software Considerations in Airborne Systems and Equipment Certification, are used by the FAA for certifying avionics software. To investigate the effectiveness of the DO-178A guidelines for improving the quality of avionics software, guidance and control software (GCS) is being developed according to the DO-178A development method. It is noted that, due to the extent of the data collection and configuration management procedures, any phase in the life cycle of a GCS implementation can be reconstructed. Hence, a fundamental development and testing platform has been established that is suitable for investigating the adequacy of various software development processes. In particular, the overall effectiveness and efficiency of the development method recommended by the DO-178A guidelines are being closely examined.

  12. A Novel synthesis of MgS and its application as electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Minjuan; Li, Xiang; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng

    2014-01-01

    Highlights: • Nanocrystallite MgS was synthesized by means of a reaction of MgH 2 of S via ball milling. • MgS was firstly investigated as anode material for lithium-ion batteries (LIBs). • MgS with acetylene black introduced by ball milling shows superior electrochemical property. • The mechanisms of the lithium insertion and extraction processes of MgS are discussed. • The work is considered helpful in developing new electrode material for LIBs. - Abstract: MgS was firstly investigated as an anode material for lithium-ion batteries (LIBs). A novel method for the synthesis of nano-sized MgS was conducted, i.e., by means of a reaction of MgH 2 of S via ball milling. Acetylene black (AB) was used as electron conductive agent and introduced by two approaches to the MgS anode material: the one is ball milling AB with the as-prepared MgS derived from MgH 2 and S; the other is pre-milling AB with S and then further milling the mixture with MgH 2 . X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM) and high resolution TEM analyses show that MgS/AB composites with MgS nanocrystallites embedded in the AB matrix are formed via either of the approaches. The MgS anode derived from MgH 2 and the pre-milled S/AB mixture shows high capacity. Capacity fading occurs mainly in the initial several cycles. A capacity of 630 mA h/g is retained after 80 cycles. The electrochemical property is much better than that of the MgS/AB derived from MgS and AB, due to the much homogenous microstructure of the former. The mechanism of the lithium insertion and extraction process of MgS is primarily discussed. The work is considered helpful in developing new synthesis method for MgS and new electrode material for LIBs

  13. Spacecraft Avionics Software Development Then and Now: Different but the Same

    Science.gov (United States)

    Mangieri, Mark L.; Garman, John (Jack); Vice, Jason

    2012-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.

  14. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    Science.gov (United States)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653

  15. Integrated Modular Avionics: The Challenges

    Science.gov (United States)

    Charrier, O.

    2009-05-01

    The need to reduce Space, Weight, and Power (SWaP) across the embedded market leads many Systems Suppliers to run multiple applications on the same processor. The concept seems deceptively simple. However, a lack of experience using this approach, may lead to many mistakes, resulting in unacceptable system performance and unacceptable costs. The objective of this paper is to review the challenges of controlling the execution of multiple applications on the same processor in a Safety or Mission Critical context and, based on return of experiences, point out some of the common mistakes and the limit of what an operating system can control. As no-one has an unlimited budget, the ability to develop and verify such system at reasonable cost, reduced risk, and re-use of the expended effort will be emphasized.

  16. Analysis of technology requirements and potential demand for general aviation avionics systems in the 1980's. [technology assessment and technological forecasting of the aircraft industry

    Science.gov (United States)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    The trend for the increasing need for aircraft-in-general as a major source of transportation in the United States is presented (military and commercial aircraft are excluded). Social, political, and economic factors that affect the aircraft industry are considered, and cost estimates are given. Aircraft equipment and navigation systems are discussed.

  17. Optimisation des trajectoires d'un systeme de gestion de vol d'avions pour la reduction des couts de vol

    Science.gov (United States)

    Sidibe, Souleymane

    The implementation and monitoring of operational flight plans is a major occupation for a crew of commercial flights. The purpose of this operation is to set the vertical and lateral trajectories followed by airplane during phases of flight: climb, cruise, descent, etc. These trajectories are subjected to conflicting economical constraints: minimization of flight time and minimization of fuel consumed and environmental constraints. In its task of mission planning, the crew is assisted by the Flight Management System (FMS) which is used to construct the path to follow and to predict the behaviour of the aircraft along the flight plan. The FMS considered in our research, particularly includes an optimization model of flight only by calculating the optimal speed profile that minimizes the overall cost of flight synthesized by a criterion of cost index following a steady cruising altitude. However, the model based solely on optimization of the speed profile is not sufficient. It is necessary to expand the current optimization for simultaneous optimization of the speed and altitude in order to determine an optimum cruise altitude that minimizes the overall cost when the path is flown with the optimal speed profile. Then, a new program was developed. The latter is based on the method of dynamic programming invented by Bellman to solve problems of optimal paths. In addition, the improvement passes through research new patterns of trajectories integrating ascendant cruises and using the lateral plane with the effect of the weather: wind and temperature. Finally, for better optimization, the program takes into account constraint of flight domain of aircrafts which utilize the FMS.

  18. Spacecraft guidance, navigation, and control requirements for an intelligent plug-n-play avionics (PAPA) architecture

    Science.gov (United States)

    Kulkarni, Nilesh; Krishnakumar, Kalmaje

    2005-01-01

    The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.

  19. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  20. A Model-based Avionic Prognostic Reasoner (MAPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Model-based Avionic Prognostic Reasoner (MAPR) presented in this paper is an innovative solution for non-intrusively monitoring the state of health (SoH) and...

  1. Avionics for Hibernation and Recovery on Planetary Surfaces

    Data.gov (United States)

    National Aeronautics and Space Administration — Landers and rovers endure on the Martian equator but experience avionics failures in the cryogenic temperatures of lunar nights and Martian winters. The greatest...

  2. Synchronous Modeling of Modular Avionics Architectures using the SIGNAL Language

    OpenAIRE

    Gamatié , Abdoulaye; Gautier , Thierry

    2002-01-01

    This document presents a study on the modeling of architecture components for avionics applications. We consider the avionics standard ARINC 653 specifications as basis, as well as the synchronous language SIGNAL to describe the modeling. A library of APEX object models (partition, process, communication and synchronization services, etc.) has been implemented. This should allow to describe distributed real-time applications using POLYCHRONY, so as to access formal tools and techniques for ar...

  3. New transformation mechanism for a zinc-blende to rocksalt phase transformation in MgS

    International Nuclear Information System (INIS)

    Durandurdu, Murat

    2009-01-01

    The stability of the zinc-blende structured MgS is studied using a constant pressure ab initio molecular dynamics technique. A phase transition into a rocksalt structure is observed through the simulation. The zinc-blende to rocksalt phase transformation proceeds via two rhombohedral intermediate phases within R3m (No:160) and R3-barm (No:166) symmetries and does not involve any bond breaking. This mechanism is different from the previously observed mechanism in molecular dynamics simulations. (fast track communication)

  4. Customer Avionics Interface Development and Analysis (CAIDA) Lab DEWESoft Display Creation

    Science.gov (United States)

    Coffey, Connor

    2015-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) Lab supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objectives of the year-long internship were to support day-to-day operations of the CAIDA Lab, create prelaunch and tracking displays for Orion's Exploration Flight Test 1 (EFT-1), and create a program to automate the creation of displays for SLS and MPCV to be used by CAIDA and the Record and Playback Subsystem (RPS).

  5. An assessment of General Aviation utilization of advanced avionics technology

    Science.gov (United States)

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  6. Electronic and structural properties of MgS and CaS

    International Nuclear Information System (INIS)

    Madu, C.A.; Onwuagba, B.N.

    2005-12-01

    The electronic and structural properties of MgS and CaS rocksalt structure are studied with the first principle full Potential Linearized Augmented Plane Wave (FP-LAPW) method. The exchange-correlation potential was calculated within the Generalized Gradient Approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE-GGA) scheme. The scalar relativistic approach was adopted for the valence states, whereas the core states are treated fully relativistically. Energy band structures, density of states and structural parameters of both compounds are presented and discussed in context with the available theoretical and experimental studies. Our results are good and show reasonable agreement with previous results even though sufficient experimental values are not available for more realistic comparison. (author)

  7. Direct imaging and new technologies to search for substellar companions around MGs cool dwarfs

    Directory of Open Access Journals (Sweden)

    Burningham B.

    2011-07-01

    Full Text Available We describe here our project based in a search for sub-stellar companions (brown dwarfs and exo-planets around young ultra-cool dwarfs (UCDs and characterise their properties. We will use current and future technology (high contrast imaging, high-precision Doppler determinations from the ground and space (VLT, ELT and JWST, to find companions to young objects. Members of young moving groups (MGs have clear advantages in this field. We compiled a catalogue of young UCD objects and studied their membership to five known young moving groups: Local Association (Pleiades moving group, 20–150 Myr, Ursa Mayor group (Sirius supercluster, 300 Myr, Hyades supercluster (600 Myr, IC 2391 supercluster (35 Myr and Castor moving group (200 Myr. To assess them as members we used different kinematic and spectroscopic criteria.

  8. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    Science.gov (United States)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  9. Deterministic bound for avionics switched networks according to networking features using network calculus

    Directory of Open Access Journals (Sweden)

    Feng HE

    2017-12-01

    Full Text Available The state of the art avionics system adopts switched networks for airborne communications. A major concern in the design of the networks is the end-to-end guarantee ability. Analytic methods have been developed to compute the worst-case delays according to the detailed configurations of flows and networks within avionics context, such as network calculus and trajectory approach. It still lacks a relevant method to make a rapid performance estimation according to some typically switched networking features, such as networking scale, bandwidth utilization and average flow rate. The goal of this paper is to establish a deterministic upper bound analysis method by using these networking features instead of the complete network configurations. Two deterministic upper bounds are proposed from network calculus perspective: one is for a basic estimation, and another just shows the benefits from grouping strategy. Besides, a mathematic expression for grouping ability is established based on the concept of network connecting degree, which illustrates the possibly minimal grouping benefit. For a fully connected network with 4 switches and 12 end systems, the grouping ability coming from grouping strategy is 15–20%, which just coincides with the statistical data (18–22% from the actual grouping advantage. Compared with the complete network calculus analysis method for individual flows, the effectiveness of the two deterministic upper bounds is no less than 38% even with remarkably varied packet lengths. Finally, the paper illustrates the design process for an industrial Avionics Full DupleX switched Ethernet (AFDX networking case according to the two deterministic upper bounds and shows that a better control for network connecting, when designing a switched network, can improve the worst-case delays dramatically. Keywords: Deterministic bound, Grouping ability, Network calculus, Networking features, Switched networks

  10. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  11. Linux OS integrated modular avionics application development framework with apex API of ARINC653 specification

    Directory of Open Access Journals (Sweden)

    Anna V. Korneenkova

    2017-01-01

    Full Text Available The framework is made to provide tools to develop the integrated modular avionics (IMA applications, which could be launched on the target platform LynxOs-178 without modifying their source code. The framework usage helps students to form skills for developing modern modules of the avionics. In addition, students obtain deeper knowledge for the development of competencies in the field of technical creativity by using of the framework.The article describes the architecture and implementation of the Linux OS framework for ARINC653 compliant OS application development.The proposed approach reduces ARINC-653 application development costs and gives a unified tool to implement OS vendor independent code that meets specification. To achieve import substitution free and open-source Linux OS is used as an environment for developing IMA applications.The proposed framework is applicable for using as the tool to develop IMA applications and as the tool for development of the following competencies: the ability to master techniques of using software to solve practical problems, the ability to develop components of hardware and software systems and databases, using modern tools and programming techniques, the ability to match hardware and software tools in the information and automated systems, the readiness to apply the fundamentals of informatics and programming to designing, constructing and testing of software products, the readiness to apply basic methods and tools of software development, knowledge of various technologies of software development.

  12. Electronics/avionics integrity - Definition, measurement and improvement

    Science.gov (United States)

    Kolarik, W.; Rasty, J.; Chen, M.; Kim, Y.

    The authors report on the results obtained from an extensive, three-fold research project: (1) to search the open quality and reliability literature for documented information relative to electronics/avionics integrity; (2) to interpret and evaluate the literature as to significant concepts, strategies, and tools appropriate for use in electronics/avionics product and process integrity efforts; and (3) to develop a list of critical findings and recommendations that will lead to significant progress in product integrity definition, measurement, modeling, and improvements. The research consisted of examining a broad range of trade journals, scientific journals, and technical reports, as well as face-to-face discussions with reliability professionals. Ten significant recommendations have been supported by the research work.

  13. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  14. Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer

    National Research Council Canada - National Science Library

    Hofer, Thomas W

    2006-01-01

    ... avionics curriculum does not yet exist that satisfies the needs of graduates who will serve as aeronautical engineers involved with the development, integration, testing, fielding, and supporting...

  15. Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications

    Science.gov (United States)

    Ivancic, William D.

    2007-01-01

    Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.

  16. Reliable avionics design for deep space

    Science.gov (United States)

    Johnson, Stephen B.

    The technical and organizational problems posed by the Space Exploration Initiative (SEI) are discussed, and some possible solutions are examined. It is pointed out that SEI poses a whole new set of challenging problems in the design of reliable systems. These missions and their corresponding systems are far more complex than current systems. The initiative requires a set of vehicles and systems which must have very high levels of autonomy, reliability, and operability for long periods of time. It is emphasized that to achieve these goals in the face of great complexity, new technologies and organizational techniques will be necessary. It is noted that the key to a good design is good people. Not only must good people be found, but they must be placed in positions appropriate to their skills. It is argued that the atomistic and autocratic paradigm of vertical organizations must be replaced with more team-oriented and democratic structures.

  17. Software Engineering and Its Application to Avionics

    Science.gov (United States)

    1988-01-01

    separate packages. These routines should be documented to include purpose, requirements, flowcharts ; emphasis should be placed on details of the interface...user interface should be easy to learn for the beginner (as are menu driven systems) yet it should not slow down the expert. A typical compromise is to...diagrams (DFDs). Other less used techniques were the State Machine approach and Petri Nets. Traditional mathematical flowcharts ae good for

  18. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    Science.gov (United States)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  19. CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed

    Science.gov (United States)

    Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto

    2013-08-01

    This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.

  20. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    Science.gov (United States)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  1. Rad-hard Smallsat / CubeSat Avionics Board, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — VORAGO will design a rad-hard Smallsat / CubeSat Avionics single board that has the necessary robustness needed for long duration missions in harsh mission...

  2. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    Science.gov (United States)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal

  3. Prognostic Health Management for Avionics System Power Supplies

    National Research Council Canada - National Science Library

    Orsagh, Rolf; Brown, Douglas; Roemer, Michael; Dabney, Thomas; Hess, Andrew

    2005-01-01

    This paper presents an integrated approach to switching mode power supply health management that implements techniques from engineering disciplines including statistical reliability modeling, damage...

  4. Digital Avionics Information System (DAIS): Development and Demonstration.

    Science.gov (United States)

    1981-09-01

    V) - >1 (a 4) cU C - 0 Va ’(1 ) 0 0A*4 (A4-. 4-) C (C (U~ LI) <: kn C V H 3 ) ACCA C 4-) eo V)C CC clO ca cy a: m2 cc co C )co 4) I--V( 0. 4- A a...Polling P 2 BCI Undefined Mode Coitriands P P 3 UCI MTU Shutdown Mode Lo"ands F 4 ULI Mude Commands With interrupts F(Note I) p 5 P7 Undefined Mode

  5. Impact of Advanced Avionics Technology on Ground Attack Weapon Systems.

    Science.gov (United States)

    1982-02-01

    notation, small letters will be used to denote electro-magnetic wave complex amplitudes in the input and output planes whilst capital letters will...de lordre de 20 mn 4 eat possible sans intervention humaine particuliare. Une redondance tras utile peut atre ajoutge sans addition notable de

  6. Mapping a product-service-system delivering defence avionics availability

    OpenAIRE

    Settanni, E.; Thenent, N.; Newnes, L.; Parry, G.; Goh, Y. M.

    2017-01-01

    Long-term support agreements such as availability-based contracts are often associated with the servitization of business models in such sectors as defence aerospace. In practice, there is no unambiguous way of linking availability and service outcomes from an operational perspective; rather, the focus tends to be placed almost exclusively on product-related metrics. To address this gap, this paper outlines a conceptual model of how advanced service outcomes should be delivered under an avail...

  7. Electromagnetic Effects of (Carbon) Composite Materials Upon Avionics Systems

    Science.gov (United States)

    1980-10-01

    travail. La tenue A Il’humiditd est en effet la preoccupation majcure des utilisateurs de plastiques arm~s, la manifestation essontielle du...Resizing The mass saving described in te.e previous piragraph would, if applied to an all-metal concept , result in an improved aircraft performance in terms...8217 - " -;" r 3-10 Fig.7 CFC, items for future concepts TITANIUM WING/FUSELAGE I’ I~ ATTACHM4ENT FITTING TORSION BOX: ~ ~ ~ ,- C.RC SKINS, SPARS it.\\~ U h

  8. Determination of the maximum MGS mounting height : phase I crash testing.

    Science.gov (United States)

    2012-03-09

    Post-and-rail guardrail systems encounter environmental conditions, such as severe frost heave or erosion, which : may drastically affect the post embedment depth and rail mounting height. In addition, guardrail systems may be designed : to accommoda...

  9. Constraints on the Within Season and Between Year Variability of the North Residual Cap from MGS-TES

    Science.gov (United States)

    Calvin, W. M.; Titus, T. N.; Mahoney, S. A.

    2003-01-01

    There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated ice deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and ice constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 ice deposits ("Swiss Cheese", "slab ice" etc.) b) the relationship of the ice deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual ice cap. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual ice cap exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with ice and rocky materials. Exploration of these properties is the subject of our current study.

  10. Game theoretic wireless resource allocation for H.264 MGS video transmission over cognitive radio networks

    Science.gov (United States)

    Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2015-03-01

    We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.

  11. Use of Field Programmable Gate Array Technology in Future Space Avionics

    Science.gov (United States)

    Ferguson, Roscoe C.; Tate, Robert

    2005-01-01

    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.

  12. Grading of meningeal solitary fibrous tumors/hemangiopericytomas: analysis of the prognostic value of the Marseille Grading System in a cohort of 132 patients.

    Science.gov (United States)

    Macagno, Nicolas; Vogels, Rob; Appay, Romain; Colin, Carole; Mokhtari, Karima; Küsters, Benno; Wesseling, Pieter; Figarella-Branger, Dominique; Flucke, Uta; Bouvier, Corinne

    2018-03-30

    The finding that meningeal solitary fibrous tumors (SFTs) and meningeal hemangiopericytomas (HPCs) are both characterized by NAB2-STAT6 gene fusion has pushed their inclusion in the WHO 2016 Classification of tumors of the central nervous system (CNS) as different manifestations of the same entity. Given that the clinical behavior of the CNS SFT/HPC spectrum ranges from benign to malignant, it is presently unclear whether the grading criteria are still adequate. Here, we present the results of a study that analyzed the prognostic value of an updated version of the Marseille Grading System (MGS) in a retrospectively assembled cohort of 132 primary meningeal SFTs/HPCs with nuclear overexpression of STAT6. The median patient follow-up was 64 months (range 4-274 months); 73 cases (55%) were MGS I, 50 cases (38%) MGS II and 9 cases (7%) were MGS III. Progression-free survival (PFS) and disease-specific survival (DSS) were investigated using univariate analysis: the prognostic factors for PFS included MGS, extent of surgery, radiotherapy, chemotherapy and mitotic activity ≥5/10 high-power field (HPF). Moreover, MGS, radiotherapy, mitotic activity ≥5/10 HPF, and necrosis were the prognostic factors measured for DSS. In multivariate analysis, extent of surgery, mitotic activity ≥5/10 HPF, MGS I and MGS III were the independent prognostic factors measured for PFS while necrosis, MGS III and radiotherapy were the independent prognostic factors for DSS. In conclusion, our results show that assessing the malignancy risk of SFT/HPC should not rely on one single criterion like mitotic activity. Therefore, MGS is useful as it combines the value of different criteria. In particular, the combination of a high mitotic activity and necrosis (MGS III) indicates a particularly poor prognosis. © 2018 International Society of Neuropathology.

  13. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    Science.gov (United States)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  14. The Size of Mars' Fluid Core From Mars k2 Love Number Obtained From Analysis of MGS Doppler Tracking.

    Science.gov (United States)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2002-12-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from analysis of MGS radio tracking. The observed k2 =0.164+-0.016 is large enough to rule out a solid iron core. The inferred core radius Rc (1600km

  15. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  16. Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems

    DEFF Research Database (Denmark)

    Meng, Lexuan

    manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...

  17. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Science.gov (United States)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  18. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  19. NextGen Avionics Roadmap, Version 1.2

    Science.gov (United States)

    2010-09-21

    addressed through other actions. 6. Work with the JPDO’s Interagency Portfolio and System Analysis ( IPSA ) division to refine benefits, risk...Meteorological Conditions IPSA Interagency Portfolio and System Analysis IRAC Intelligent Resilient Aircraft Control IVHM Integrated Vehicle Health

  20. Energy Sharing for Interconnected Microgrids with a Battery Storage System and Renewable Energy Sources Based on the Alternating Direction Method of Multipliers

    Directory of Open Access Journals (Sweden)

    Nian Liu

    2018-04-01

    Full Text Available In order to facilitate the local sharing of renewable energy, an energy sharing management method of multiple microgrids (MGs with a battery energy storage system (BESS and renewable energy sources (RESs is developed. First, a virtual entity named the energy sharing provider (ESP, which acts as an agent for MGs, is introduced to minimize the power loss cost. Second, a distributed optimal model and a two-level iterative algorithm for the MGs and ESP are proposed, which minimize the total operation cost including purchasing electricity cost, energy storage cost and power loss cost. Based on the energy sharing framework, considering the local objectives of MGs and the objective of ESP, the optimal scheduling can be achieved through the bidirectional interaction between MGs and ESP. During the optimization, the shared information between MGs and ESP is limited to expected exchange power, which protects the privacy of MGs and ESP. Finally, the effectiveness of the proposed model and algorithm in different scenarios is verified through a case study.

  1. A Real-Time Java Virtual Machine for Avionics (Preprint)

    National Research Council Canada - National Science Library

    Armbruster, Austin; Pla, Edward; Baker, Jason; Cunei, Antonio; Flack, Chapman; Pizlo, Filip; Vitek, Jan; Proch zka, Marek; Holmes, David

    2006-01-01

    ...) in the DARPA Program Composition for Embedded System (PCES) program. Within the scope of PCES, Purdue University and the Boeing Company collaborated on the development of Ovm, an open source implementation of the RTSJ virtual machine...

  2. Commercial Off-The-Shelf (COTS) Avionics Software Study

    National Research Council Canada - National Science Library

    Krodel, Jim

    2001-01-01

    .... The motivation is even a bit beyond monetary resources as the scarcity of highly trained personnel that can develop such systems has also provided fuel to the attractiveness of considering reuse...

  3. A Usability Survey of GPS Avionics Equipment: Some Preliminary Findings

    National Research Council Canada - National Science Library

    Joseph, Kurt

    1999-01-01

    The rapid introduction of Global Positioning System (GPS) receivers for airborne navigation has outpaced the capacity of international aviation authorities to resolve human factors issues that concern safe and efficient use of such devices...

  4. Modular, Plug and Play, Distributed Avionics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this SBIR effort was to prove the viability of an Ethernet version of the MicroSat Systems, Inc. (MSI) modular, plug and play (PnP) spacecraft...

  5. Avionics Integrity Issues Presented during NAECON (National Aerospace and Electronics Convention) 1984.

    Science.gov (United States)

    1984-12-01

    insistence on * reliability by our program offices combined with the Avionics Integrity Program. Second: competition based or rellabi]Jty. Tbird: some...typically 0 hinges unless they are wedge clamped]~ (wedge clamps give a very high L 2.0 I I-6.5 mechanical advantage such that theLi n ni boundary...aj &02Lt.e may have been diideten Soot IkeAe Ctot. The j4U AM1S uteA ame the 4A" AFM 64-1 det 4oit the Adue Usne 14we a6 4,en the CENT teatA woe

  6. NextGen Avionics Roadmap Version 2.0

    Science.gov (United States)

    2011-09-30

    Systems Analysis ( IPSA ) Division has defined multiple NextGen Operational (NGOps) Levels, projecting relative performance and risk based on differing...degrees of capability improvements, as shown in Figure 4. IPSA forecasts include the most likely performance NGOps level (i.e., NGOps 3-4), as well...in the near-term. Figures 5 through 9 de- pict the various programs and capabilities aligned with the various NGOps levels. Factors from the IPSA

  7. Development of Integrated Modular Avionics Application Based on Simulink and XtratuM

    Science.gov (United States)

    Fons-Albert, Borja; Usach-Molina, Hector; Vila-Carbo, Joan; Crespo-Lorente, Alfons

    2013-08-01

    This paper presents an integral approach for designing avionics applications that meets the requirements for software development and execution of this application domain. Software design follows the Model-Based design process and is performed in Simulink. This approach allows easy and quick testbench development and helps satisfying DO-178B requirements through the use of proper tools. The software execution platform is based on XtratuM, a minimal bare-metal hypervisor designed in our research group. XtratuM provides support for IMA-SP (Integrated Modular Avionics for Space) architectures. This approach allows the code generation of a Simulink model to be executed on top of Lithos as XtratuM partition. Lithos is a ARINC-653 compliant RTOS for XtratuM. The paper concentrates in how to smoothly port Simulink designs to XtratuM solving problems like application partitioning, automatic code generation, real-time tasking, interfacing, and others. This process is illustrated with an autopilot design test using a flight simulator.

  8. The Next Great Ship: NASA's Space Launch System

    Science.gov (United States)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  9. Analysis and Synthesis of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    like automotive electronics, real-time multimedia, avionics, medical equipment, and factory systems. The proposed analysis and synthesis techniques derive optimized implementations that fulfill the imposed design constraints. An important part of the implementation process is the synthesis...

  10. Lithographically-Scribed Planar Holographic Optical CDMA Devices and Systems

    National Research Council Canada - National Science Library

    Mossberg, Thomas

    2007-01-01

    .... The present Phase II effort has harnessed new fabrication tools to perfect disruptive HBR-based multiplexer products for DoD avionics, optical communications systems computer data communications and local area networks...

  11. Performance evaluation of microturbine generation system for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Salam, A.A.; Mohamed, A.; Hannan, M.A.; Shareef, H.; Wanik, M.Z.C. [Kebangsaan Malaysia Univ., Selangor (Malaysia). Dept. of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment

    2009-03-11

    A control system for microturbine generation system (MGS) units in microgrid applications was presented. A dynamic model of the microturbine and power electronics interface systems was used to determine converter control strategies for distributed generation operation. Back-to-back converters were used to interface the microturbine-based distributed generation system to the grid. The controllers were used to regulate the output voltage value at the reference bus voltage and the frequency of the whole grid. Reference values were predetermined in the control scheme in order to obtain the desired value of voltage amplitude and frequency. An investigation of system dynamics was conducted using simulations in both grid-connected and islanded modes. Results of the simulations demonstrated the ability of the MGS to improve electricity grid reliability. The model can be used to accurately simulate MGS dynamic performance for both grid- and islanded modes of operation. 10 refs., 17 figs.

  12. Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.

  13. Modeling and Simulation of Avionics Systems and Command, Control and Communications Systems

    Science.gov (United States)

    1980-01-01

    CONDITIONS: ALL BEGIN IN THINK STATE _ ~(2) - F6 w 4(3) NTm35 E(RT)98.246 4 (1 -4-0NT a25 E’(RT) 3.415 L0 1OO 200 300 400 500 600 700 800 900 NUMBER OF...vibrations ou acca - llretions, Li En offet. is vol tactique tel qua le pratique l’Armle de Terra Frangalse, consiste A4 valer au plus prls du sal (hauteur

  14. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    Science.gov (United States)

    Wray, Richard B.

    1991-01-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  15. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    Science.gov (United States)

    Wray, Richard B.

    1991-12-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  16. A Three-Stage Optimal Approach for Power System Economic Dispatch Considering Microgrids

    Directory of Open Access Journals (Sweden)

    Wei-Tzer Huang

    2016-11-01

    Full Text Available The inclusion of microgrids (MGs in power systems, especially distribution-substation-level MGs, significantly affects power systems because of the large volumes of import and export power flows. Consequently, power dispatch has become complicated, and finding an optimal solution is difficult. In this study, a three-stage optimal power dispatch model is proposed to solve such dispatch problems. In the proposed model, the entire power system is divided into two parts, namely, the main power grid and MGs. The optimal power dispatch problem is resolved on the basis of multi-area concepts. In stage I, the main power system economic dispatch (ED problem is solved by sensitive factors. In stage II, the optimal power dispatches of the local MGs are addressed via an improved direct search method. In stage III, the incremental linear models for the entire power system can be established on the basis of the solutions of the previous two stages and can be subjected to linear programming to determine the optimal reschedules from the original dispatch solutions. The proposed method is coded using Matlab and tested by utilizing an IEEE 14-bus test system to verify its feasibility and accuracy. Results demonstrated that the proposed approach can be used for the ED of power systems with MGs as virtual power plants.

  17. CAMEX-4 DC-8 INFORMATION COLLECTION AND TRANSMISSION SYSTEM V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Camex-4 DC-8 Information Collection and Transmission System (ICATS) is designed to: 1) interface and process avionics and environmental paramaters from the...

  18. The Nine-Step Minnesota Grading System for Eyebank Eyes With Age Related Macular Degeneration: A Systematic Approach to Study Disease Stages.

    Science.gov (United States)

    Olsen, Timothy W; Liao, Albert; Robinson, Hershonna S; Palejwala, Neal V; Sprehe, Nicholas

    2017-10-01

    To refine the Minnesota Grading System (MGS) using definitions from the Age-Related Eye Disease Studies (AREDS) into a nine-step grading scale (MGS-9). A nine-step grading scale descriptive analysis using three key phenotypic features (total drusen area, increased, and decreased pigmentation) of human eyebank eyes that were graded according to definitions from the AREDS criteria in order to harmonize studies of disease progression for research involving human tissue. From 2005 through February 2017, we have analyzed 1159 human eyes, procured from two eyebanks. Each macula was imaged using high-resolution, stereoscopic color fundus photography with both direct- and transillumination. Fundus images were digitally overlaid with a grading template and triangulated for foveal centration. We documented and stratified risk for each globe by applying the AREDS nine-step grading scale to the key clinical features from the MGS-9. We found a good distribution within the MGS categories (1-9) with few level eight globes. Eyes were processed within 12.1 ± 6.3, hours from the time of death through imaging, dissection, and freezing or fixation. Applying the MGS-9 to 331 pairs (662 eyes were simultaneously graded), 84% were within one-grading step and 93% within two steps of the fellow eye. We also document reticular pseudodrusen, basal laminar drusen, and pattern dystrophy. The MGS nine-step grading scale enables researchers using human tissue to refine the risk assessment of donor tissue. This analysis will harmonize results among researchers when grading human tissue using MGS criteria. Most importantly, the MGS-9 links directly to the known risk for progression from the AREDS.

  19. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  20. Modeling and characterization of VCSEL-based avionics full-duplex ethernet (AFDX) gigabit links

    Science.gov (United States)

    Ly, Khadijetou S.; Rissons, A.; Gambardella, E.; Bajon, D.; Mollier, J.-C.

    2008-02-01

    Low cost and intrinsic performances of 850 nm Vertical Cavity Surface Emitting Lasers (VCSELs) compared to Light Emitting Diodes make them very attractive for high speed and short distances data communication links through optical fibers. Weight saving and Electromagnetic Interference withstanding requirements have led to the need of a reliable solution to improve existing avionics high speed buses (e.g. AFDX) up to 1Gbps over 100m. To predict and optimize the performance of the link, the physical behavior of the VCSEL must be well understood. First, a theoretical study is performed through the rate equations adapted to VCSEL in large signal modulation. Averaged turn-on delays and oscillation effects are analytically computed and analyzed for different values of the on- and off state currents. This will affect the eye pattern, timing jitter and Bit Error Rate (BER) of the signal that must remain within IEEE 802.3 standard limits. In particular, the off-state current is minimized below the threshold to allow the highest possible Extinction Ratio. At this level, the spontaneous emission is dominating and leads to significant turn-on delay, turn-on jitter and bit pattern effects. Also, the transverse multimode behavior of VCSELs, caused by Spatial Hole Burning leads to some dispersion in the fiber and degradation of BER. VCSEL to Multimode Fiber coupling model is provided for prediction and optimization of modal dispersion. Lastly, turn-on delay measurements are performed on a real mock-up and results are compared with calculations.

  1. The Design, Development and Testing of Complex Avionics Systems: Conference Proceedings Held at the Avionics Panel Symposium in Las Vegas, Nevada on 27 April-1 May 1987

    Science.gov (United States)

    1987-12-01

    la d6finition, pour chaque variable, d’un type analogue aux dclarations de variables FORTRAN, A savoir - Zool en, tableau de boolsens, logique, r~el...reference. 11 est alars possible ds Ilutiliser (sass reserve d’une ergonomic soffisante) cosine one "documentation vivante " et representative du...ou cognitives sur son tableau de bord, sur sa mission. Il dispose aussi de connaissances plus dynamiques, plus fonctionnelles groupees de faqon

  2. The Age-Related Macular Degeneration Complex: Linking Epidemiology and Histopathology Using the Minnesota Grading System (The Inaugural Frederick C. Blodi Lecture).

    Science.gov (United States)

    Olsen, Timothy W; Bottini, Alexander R; Mendoza, Pia; Grossniklausk, Hans E

    2015-09-01

    To describe the histopathologic findings of the four stages of age-related macular degeneration (AMD) as defined by the Age-Related Eye Disease Study (AREDS) using the Minnesota grading system (MGS). There are no animal models for AMD. Eye banks enable access to human tissue with AMD. The level of AMD (grades 1 through 4) as defined by AREDS is determined ex vivo using the MGS. The AREDS has the largest collection to date of prospectively gathered data on the natural history of AMD. Since the MGS uses the same clinical criteria as AREDS, the addition of histopathologic findings of graded tissue confirms important pathophysiology at each stage of AMD. Four eye bank eyes were graded according to the MGS. Only the right eyes were dissected for phenotype grading. The fellow (left) eyes were fixed for histopathologic study. The eyes were serially sectioned (7 μm) through the macula. Individual slides were examined, and a two-dimensional reconstruction of the topography of the macula was created for each donor. Selected, unstained slides were used for immunohistochemical staining. In one donor, portions of tissue were obtained for transmission electron microscopic (TEM) processing. Donor 1 had a rare hard, nodular druse (MGS1). Donor 2 had intermediate confluent drusen (MGS2). Donor 3 had numerous intermediate drusen (MGS3) in the right eye. Histopathology of the fellow left showed basal laminar deposits (BLamD), soft drusen, and an area of occult choroidal neovascularization underlying the retinal pigment epithelium (RPE) with endothelial cells (CD31-positive). Donor 4 also had MGS 3 along with reticular pseudodrusen (RPD). Histologic and TEM examination demonstrated diffuse BLamD, thickening of Bruch's membrane, hard drusen, and focal nodules underlying the RPE that corresponded to the RPD. EM examination demonstrated both BLamD and electron-dense material located just external to the elastic layer of Bruch's membrane. Eye bank eyes graded using the MGS serve as an

  3. Systems Engineering and Integration (SE and I)

    Science.gov (United States)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  4. Core Logistics Capability Policy Applied to USAF Combat Aircraft Avionics Software: A Systems Engineering Analysis

    Science.gov (United States)

    2010-06-01

    cannot make a distinction between software maintenance and development” (Sharma, 2004). ISO /IEC 12207 Software Lifecycle Processes offers a guide to...synopsis of ISO /IEC 12207 , Raghu Singh of the Federal Aviation Administration states “Whenever a software product needs modifications, the development...Corporation. Singh, R. (1998). International Standard ISO /IEC 12207 Software Life Cycle Processes. Washington: Federal Aviation Administration. The Joint

  5. Software-Defined Avionics and Mission Systems in Future Vertical Lift Aircraft

    Science.gov (United States)

    2015-03-01

    Retrieved from IEEE Xplore website: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04702759 Kopetz, H., Ademaj, A., & Grillinger, P. (2005). The...routines, allowing time and space (memory) partitioning, health monitoring (error detection and reporting), and communications via “ports.” ( IEEE , 2008...decided to go with another emerging standard: IEEE 1394, better known by its 13 consumer-electronics trade name “Firewire.” This solution provided

  6. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy -Major Accomplishments and Lessons Learned

    Science.gov (United States)

    Orr, James K.

    2010-01-01

    This presentation has shown the accomplishments of the PASS project over three decades and highlighted the lessons learned. Over the entire time, our goal has been to continuously improve our process, implement automation for both quality and increased productivity, and identify and remove all defects due to prior execution of a flawed process in addition to improving our processes following identification of significant process escapes. Morale and workforce instability have been issues, most significantly during 1993 to 1998 (period of consolidation in aerospace industry). The PASS project has also consulted with others, including the Software Engineering Institute, so as to be an early evaluator, adopter, and adapter of state-of-the-art software engineering innovations.

  7. Enhancing Autonomy of Aerial Systems Via Integration of Visual Sensors into Their Avionics Suite

    Science.gov (United States)

    2016-09-01

    context of Singapore. a. Natural Environment • The lighting conditions of the POE range from full sunlight to minimal outdoor moonlight at night...possible route that visits all the cities exactly once before returning to the city of origin, a target-acquisition search path attempts to find the

  8. Flight Test Evaluation of AVOID I (Avionic Observation of Intruder Danger) Collision Avoidance System

    Science.gov (United States)

    1975-05-01

    memory registers A through G ( 2048 bit shift registers) for each of the basic altitude bands (1+26, 113 1+6) to store intruder responses. Since the 1...af EV 11z iIIV~ ~l~~ NADlC-75056-60_ _ _- 2 w< -I- LI- ~jw 0IU oo2 W I aJ W %L6fI9~~AVdI tVOV~ aN9Ao ccH % VdI I11813iA-di V GN Ed a3IV0 %AIII1IilV11W...tei mix ;;; c le z - Is’ %~~~~~~~~~~;s AJIiV1 VdI ~ %AIIV~ v~iO VIR 1ý 123 Lz NADC-7056-6 w, M w o ~2IV ONY Ed CIRNIGVNOO at p 00 CLt % 118I3iAVldSIC3

  9. DC Distribution Systems and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez

    2017-01-01

    summarized. Due to its attractive characteristics in terms of compliance with modern generation, storage and electronic load technologies, high reliability and current carrying capacity, as well as simple control, DC systems are already an indispensable part of power systems. Moreover, the existing......A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been...... challenges such as protection issues will be effectively resolved in the near future due to fast progress of semiconductor technology which is a key enabler cheap and reliable future DC solid-state protection systems. Therefore, it is the view of the author that more and more DC systems will appear...

  10. Formal validation of supervisory energy management systems for microgrids

    DEFF Research Database (Denmark)

    Sugumar, Gayathri; Selvamuthukumaran, R.; Dragicevic, T.

    2017-01-01

    techniques are available in the literature to monitor and control the energy flows among distributed RES in MGs, formal verification of those techniques was not proposed yet. The emphasis of this paper is to design and validate energy management system for a MG which consists of a solar photovoltaic (PV...

  11. Optimal sizing of energy storage system for microgrids

    Indian Academy of Sciences (India)

    Microgrids (MGs) are Low Voltage distribution networks comprising various distributed generators (DG), storage devices and controllable loads that can operate either interconnected or isolated from the main distribution grid as a controlled entity. Energy storage system (ESS) is a vital part of an MG. In this paper, a ...

  12. On Board Data Acquisition System with Intelligent Transducers for Unmanned Aerial Vehicles

    Science.gov (United States)

    Rochala, Zdzisław

    2012-02-01

    This report presents conclusions from research project no. ON50900363 conducted at the Mechatronics Department, Military University of Technology in the years 2007-2010. As the main object of the study involved the preparation of a concept and the implementation of an avionics data acquisition system intended for research during flight of unmanned aerial vehicles of the mini class, this article presents a design of an avionics system and describes equipment solutions of a distributed measurement system intended for data acquisition consisting of intelligent transducers. The data collected during a flight controlled by an operator confirmed proper operation of the individual components of the data acquisition system.

  13. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    Science.gov (United States)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  14. Energy storage systems impact on the short-term frequency stability of distributed autonomous microgrids, an analysis using aggregate models

    DEFF Research Database (Denmark)

    Serban, Ioan; Teodorescu, Remus; Marinescu, Corneliu

    2013-01-01

    This study analyses the integration impact of battery energy storage systems (BESSs) on the short-term frequency control in autonomous microgrids (MGs). Short-term frequency stability relates with the primary or speed control level, as defined in the regulations of the classical grids. The focus...

  15. Modular gamma systems

    International Nuclear Information System (INIS)

    Millegan, D.R.; Nixon, K.V.

    1982-01-01

    Nuclear safeguards requires sensitive, easily operated instruments for rapid inspection of personnel and vehicles to ensure that no uranium or plutonium is being diverted. Two portable gamma-ray detection systems have been developed. The Modular Gamma System (MGS) is very sensitive and two or more systems can be connected for even better performance. The multiunit configuration can be deployed by motor vehicle for search of large areas too extensive to search on foot. The Programmable Rate Monitor (PRM) is less sensitive but much smaller and therefore is more suitable for search of vehicles, personnel, or smaller areas. The PRM is programmable, which implements measurement and alarm algorithms for individual applications

  16. Design Methodologies for Secure Embedded Systems

    CERN Document Server

    Biedermann, Alexander

    2011-01-01

    Embedded systems have been almost invisibly pervading our daily lives for several decades. They facilitate smooth operations in avionics, automotive electronics, or telecommunication. New problems arise by the increasing employment, interconnection, and communication of embedded systems in heterogeneous environments: How secure are these embedded systems against attacks or breakdowns? Therefore, how can embedded systems be designed to be more secure? And how can embedded systems autonomically react to threats? Facing these questions, Sorin A. Huss is significantly involved in the exploration o

  17. Memory device sensitivity trends in aircraft's environment; Evolution de la sensibilite de composants memoires en altitude avion

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, T.; Fourtine, S. [Aerospatiale-Matra Airbus, 31 - Toulouse (France); Calvet, M.C. [Aerospatiale-Matra Lanceur, 78 - Les Mureaux (France)

    1999-07-01

    The authors present the SEU (single event upset) sensitivity of 31 SRAM (static random access memory) and 8 DRAM (dynamic random access memory) according to their technologies. 2 methods have been used to compute the SEU rate: the NCS (neutron cross section) method and the BGR (burst generation rate) method, the physics data required by both methods have been either found in scientific literature or directly measured. The use of new technologies implies a quicker time response through a dramatic reduction of chip size and of the amount of energy representing 1 bit. The reduction of size makes less particles are likely to interact with the chip but the reduction of the critical charge implies that these interactions are more likely to damage the chip. The SEU sensitivity is then parted between these 2 opposed trends. Results show that for technologies beyond 0,18 {mu}m these 2 trends balance roughly. Nevertheless the feedback experience shows that the number of errors is increasing. This is due to the fact that avionics requires more and more memory to perform numerical functions, the number of bits is increasing so is the risk of errors. As far as SEU is concerned, RAM devices are less and less sensitive comparatively for 1 bit, and DRAM seem to be less sensitive than SRAM. (A.C.)

  18. Outcomes of different Class II treatments : Comparisons using the American Board of Orthodontics Model Grading System.

    Science.gov (United States)

    Akinci Cansunar, Hatice; Uysal, Tancan

    2016-07-01

    The aim of this study was to evaluate the clinical outcomes of three different Class II treatment modalities followed by fixed orthodontic therapy, using the American Board of Orthodontics Model Grading System (ABO-MGS). As a retrospective study, files of patients treated at postgraduate orthodontic  clinics in different cities in Turkey was randomly selected. From 1684 posttreatment records, 669 patients were divided into three groups: 269 patients treated with extraction of two upper premolars, 198 patients treated with cervical headgear, and 202 patients treated with functional appliances. All the cases were evaluated by one researcher using ABO-MGS. The χ (2), Z test, and multivariate analysis of variance were used for statistical evaluation (p < 0.05). No significant differences were found among the groups in buccolingual inclination, overjet, occlusal relationship, and root angulation. However, there were significant differences in alignment, marginal ridge height, occlusal contact, interproximal contact measurements, and overall MGS average scores. The mean treatment time between the extraction and functional appliance groups was significantly different (p = 0.017). According to total ABO-MGS scores, headgear treatment had better results than functional appliances. The headgear group had better tooth alignment than the extraction group. Headgear treatment resulted in better occlusal contacts than the functional appliances and had lower average scores for interproximal contact measurements. Functional appliances had the worst average scores for marginal ridge height. Finally, the functional appliance group had the longest treatment times.

  19. Software engineering of a navigation and guidance system for commercial aircraft

    Science.gov (United States)

    Lachmann, S. G.; Mckinstry, R. G.

    1975-01-01

    The avionics experimental configuration of the considered system is briefly reviewed, taking into account the concept of an advanced air traffic management system, flight critical and noncritical functions, and display system characteristics. Cockpit displays and the navigation computer are examined. Attention is given to the functions performed in the navigation computer, major programs in the navigation computer, and questions of software development.

  20. Analysis and optimization of the battery energy storage systems for frequency control in autonomous microgrids, by means of hardware-in-the-loop simulations

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Marinescu, C.

    2012-01-01

    . The focus is on autonomous MGs that dynamically should perform similarly to the conventional power systems. During MG autonomous operation, the generators should accomplish the frequency control process, by means of their automatic generation control. However, RES-based generators have poor controllability...

  1. Wind Shear Systems Implementation Plan, Benefit/Cost Study.

    Science.gov (United States)

    1980-08-01

    not. Accordingly, the three self contained Wind Shear Systems currently being marketed by avionics manufacturers are considered to have lower relative... RESEARC { AND I’iVEIOPMEN1 The FAA research ni d development ffort has taken a threefold appro,,ch to the vind sh#ear problem. Ore. approach was to

  2. Information report presented in application of article 145 of the regulation by the commission of national defense and armed forces about the propulsion system of the second aircraft carrier; Rapport d'information depose en application de l'article 145 du reglement par la commission de la defense nationale et des forces armees sur le mode de propulsion du second porte-avions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    In the framework of the project of launching of a sister-ship to the Charles de Gaulle aircraft carrier, this report makes an objective analysis of the different possible propulsion systems that can be considered for this battle ship according to different criteria: 1 - two possible energy sources and four possible configurations of aircraft carrier considered: alternative between nuclear propulsion and conventional propulsion, the two nuclear ships eventualities, the hypothesis of an entirely French-made classical propulsion ship, the opportunity of a French-British cooperation for a conventional aircraft carrier project; 2 - decision criteria: operational need, cost, industrial and technological stakes, constraints linked with daily ship and crew life; 3 - propulsion systems alternative: conventional propulsion and reinforcement of the European defense policy, nuclear propulsion for an operational superiority and for a complementarity with the Charles de Gaulle. (J.S.)

  3. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  4. A Comparison of Bus Architectures for Safety-Critical Embedded Systems

    Science.gov (United States)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2003-01-01

    We describe and compare the architectures of four fault-tolerant, safety-critical buses with a view to deducing principles common to all of them, the main differences in their design choices, and the tradeoffs made. Two of the buses come from an avionics heritage, and two from automobiles, though all four strive for similar levels of reliability and assurance. The avionics buses considered are the Honeywell SAFEbus (the backplane data bus used in the Boeing 777 Airplane Information Management System) and the NASA SPIDER (an architecture being developed as a demonstrator for certification under the new DO-254 guidelines); the automobile buses considered are the TTTech Time-Triggered Architecture (TTA), recently adopted by Audi for automobile applications, and by Honeywell for avionics and aircraft control functions, and FlexRay, which is being developed by a consortium of BMW, DaimlerChrysler, Motorola, and Philips.

  5. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    Science.gov (United States)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  6. Real-time millimeter-wave imaging radiometer for avionic synthetic vision

    Science.gov (United States)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.

    1994-07-01

    ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.

  7. Occupational Field 66 (Avionics) Less MOS’s 6682, 6683 and 6689 Task Analysis.

    Science.gov (United States)

    1979-04-01

    EQUIPMENT ( SACE ) TECH 011 ACFT CRYPTOGRAPHIC SYS TECI-, IMA 018 ACFT INERTIAL NAVIGATION SYSTEM (INS) SACE TECH 019 ACFT SEARCH/TRACK (SIT) SACE TECH...020 SACE SYS TECH 021 ACFT DECEPTIVE ELECTRONIC COUNTERMEASURES IDECM) TECH 022 ELECTRONIC COUNTERMEASURES (ECM) MODULE REPAIR TECH 023 ACFT ECM TECH

  8. The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface

    Science.gov (United States)

    Blue, Randel

    2000-01-01

    The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.

  9. Accelerated tests for the soft error rate determination of single radiation particles in components of terrestrial and avionic electronic systems

    International Nuclear Information System (INIS)

    Flament, O.; Baggio, J.

    2010-01-01

    This paper describes the main features of the accelerated test procedures used to determine reliability data of microelectronics devices used in terrestrial environment.This paper focuses on the high energy particle test that could be performed through spallation neutron source or quasi-mono-energetic neutron or proton. Improvements of standards are illustrated with respect to the state of the art of knowledge in radiation effects and scaling down of microelectronics technologies. (authors)

  10. Highly-hermetic feedthrough fiber pigtailed circular TO-can electro-optic sensor for avionics applications

    Science.gov (United States)

    Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas

    2012-06-01

    Electro-optic sensors made of lasers or photodetectors assemblies can be associated with a window interface. In order to use these sensors in an avionics application, this interface has to be set on the periphery of the aircraft. This creates constraints on both the position/access of the associated electronics circuit card and the aircraft fuselage. Using an optical fiber to guide the light signal to a sensor being situated inside the aircraft where electronics circuit cards are deployed is an obvious solution that can be readily available. Fiber collimators that adapt to circular TO-can type window sensors do exist. However, they are bulky, add weight to the sensor and necessitate regular maintenance of the optical interface since both the sensor window and the collimator end-face are unprotected against contamination. Such maintenance can be complex since the access to the electronics circuit card, where the sensor is sitting, is usually difficult. This interface alignment can also be affected by vibrations and mechanical shocks, thus impacting sensor performances. As a solution to this problem, we propose a highly-hermetic feedthrough fiber pigtailed circular TO-can package. The optical element to optical fiber interface being set inside the hermetic package, there is no risk of contamination and thus, such a component does not require any maintenance. The footprint of these sensors being identical to their window counterparts, they offer drop-in replacement opportunities. Moreover, we have validated such packaged electro-optic sensors can be made to operate between -55 to 115°C, sustain 250 temperature cycles, 1500G mechanical shocks, 20Grms random vibrations without any performance degradations. Their water content is much smaller than the 0.5% limit set by MIL-STD-883, Method 1018. They have also been verified to offer a fiber pigtail strain relief resistance over 400g. Depending on the electronics elements inside these sensors, they can be made to have a

  11. Methode de conception dirigee par les modeles pour les systemes avioniques modulaires integres basee sur une approche de cosimulation

    Science.gov (United States)

    Bao, Lin

    In the aerospace industry, with the development of avionic systems becomes more and more complex, the integrated modular avionics (IMA) architecture was proposed to replace its predecessor - the federated architecture, in order to reduce the weight, power consumption and the dimension of the avionics equipment. The research work presented in this thesis, which is considered as a part of the research project AVIO509, aims to propose to the aviation industry a set of time-effective and cost-effective solutions for the development and the functional validation of IMA systems. The proposed methodologies mainly focus on two design flows that are based on: 1) the concept of model-driven engineering design and 2) a cosimulation platform. In the first design flow, the modeling language AADL is used to describe the IMA architecture. The environment OCARINA, a code generator initially designed for POK, was modified so that it can generate avionic applications from an AADL model for the simulator SIMA (an IMA simulator compliant to the ARINC653 standards). In the second design flow, Simulink is used to simulate the external world of IMA module thanks to the availability of avionic library that can offer lots of avionics sensors and actuators, and as well as its effectiveness in creating the Simulink models. The cosimulation platform is composed of two simulators: Simulink for the simulation of peripherals and SIMA for the simulation of IMA module, the latter is considered as an ideal alternative for the super expensive commercial development environment. In order to have a good portability, a SIMA partition is reserved as the role of " adapter " to synchronize the communication between these two simulators via the TCP/IP protocol. When the avionics applications are ported to the implementation platform (such as PikeOS) after the simulation, there is only the " adapter " to be modified because the internal communication and the system configuration are the same. An avionics

  12. Evaluating real-time Java for mission-critical large-scale embedded systems

    Science.gov (United States)

    Sharp, D. C.; Pla, E.; Luecke, K. R.; Hassan, R. J.

    2003-01-01

    This paper describes benchmarking results on an RT JVM. This paper extends previously published results by including additional tests, by being run on a recently available pre-release version of the first commercially supported RTSJ implementation, and by assessing results based on our experience with avionics systems in other languages.

  13. Automatic Generation of Safe Handlers for Multi-Task Systems

    OpenAIRE

    Rutten , Éric; Marchand , Hervé

    2004-01-01

    We are interested in the programming of real-time control systems, such as in robotic, automotive or avionic systems. They are designed with multiple tasks, each with multiple modes. It is complex to design task handlers that control the switching of activities in order to insure safety properties of the global system. We propose a model of tasks in terms of transition systems, designed especially with the purpose of applying existing discrete controller synthesis techniques. This provides us...

  14. General Aviation Avionics Statistics.

    Science.gov (United States)

    1980-12-01

    designed to produce standard errors on these variables at levels specified by the FAA. No controls were placed on the standard errors of the non-design...Transponder Encoding Requirement. and Mode CAutomatic (11as been deleted) Altitude Reporting Ca- pabili.,; Two-way Radio; VOR or TACAN Receiver. Remaining 42

  15. Software for Avionics.

    Science.gov (United States)

    1983-01-01

    fonctions gfinbrales et lea uti- litaires fournis en particulier grice 41 UNIX, sont intfigrfs aelon divers points de vue: - par leur accas 41 travers le...Are They Really A Problem? Proceedings, 2nd International Conference On Software Engineering, pp 91-68. Long acCA : IEEE Computer Society. Britton...CD The Hague. Nc KLEINSCIIMIDT, M. Dr Fa. LITEF. Poatfach 774. 7800 Freiburg i. Br., Ge KLEMM, R. Dr FGAN- FFM , D 5 307 Watchberg-Werthhoven. Ge KLENK

  16. Two new modified Gauss-Seidel methods for linear system with M-matrices

    Science.gov (United States)

    Zheng, Bing; Miao, Shu-Xin

    2009-12-01

    In 2002, H. Kotakemori et al. proposed the modified Gauss-Seidel (MGS) method for solving the linear system with the preconditioner [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner () J. Comput. Appl. Math. 145 (2002) 373-378]. Since this preconditioner is constructed by only the largest element on each row of the upper triangular part of the coefficient matrix, the preconditioning effect is not observed on the nth row. In the present paper, to deal with this drawback, we propose two new preconditioners. The convergence and comparison theorems of the modified Gauss-Seidel methods with these two preconditioners for solving the linear system are established. The convergence rates of the new proposed preconditioned methods are compared. In addition, numerical experiments are used to show the effectiveness of the new MGS methods.

  17. Optimización de trayectorias de aviones para minimizar la molestia acústica modelizada mediante lógica borrosa

    Directory of Open Access Journals (Sweden)

    X. Prats

    2007-04-01

    Full Text Available Resumen: El aumento sostenido del tráfico aéreo de las últimas décadas y el crecimiento de numerosas zonas urbanizadas alrededor de los aeropuertos hace que cada vez sea más importante tomar medidas para mitigar los ruidos generados por los aviones. Este trabajo presenta una estrategia para diseñar trayectorias de despegue o aterrizaje en un determinado aeropuerto y para un determinado modelo de aeronave utilizando la lógica borrosa y la optimización multicriterio. Palabras clave: control óptimo, optimización multiobjetivo, ruido, lógica borrosa, generación de trayectorias

  18. Advanced Concepts for Avionics/Weapon System Design, Development and Integration: Conference Proceedings of the Avionics Panel Symposium (45th) Held at Ottawa, Canada on 18-22 April 1983.

    Science.gov (United States)

    1983-10-01

    BIT A,, M 115V ACBB N 270V DC RETURN p 115V ACCA R IW DC POWER S INTERLOCK RETURN T STRUCTURE GROUND U FIBER OPTICS BUS V ADDRESS BIT A,, w...Ontario Kl A 0K2 Canada FGAN- FFM , D-5307 Wachtberg-Werthhoven Germany Concordia University, 7141 Sherbrooke St. W. Montreal, QueH4BlRG Canada

  19. An autonomous rendezvous and docking system using cruise missile technologies

    Science.gov (United States)

    Jones, Ruel Edwin

    1991-01-01

    In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.

  20. VEST: An Aspect-Based Composition Tool for Real-Time Systems

    Science.gov (United States)

    2003-01-01

    VEST: An Aspect-Based Composition Tool for Real - Time Systems * John A. Stankovic Ruiqing Zhu Ram Poornalingam Chenyang Lu Zhendong Yu Marty Humphrey...Composition Tool for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...it is obvious that designers of embedded real - time systems face many difficult problems. By working through various product scenarios with avionics

  1. Automated Cooperative Trajectories for a More Efficient and Responsive Air Transportation System

    Science.gov (United States)

    Hanson, Curt

    2015-01-01

    The NASA Automated Cooperative Trajectories project is developing a prototype avionics system that enables multi-vehicle cooperative control by integrating 1090 MHz ES ADS-B digital communications with onboard autopilot systems. This cooperative control capability will enable meta-aircraft operations for enhanced airspace utilization, as well as improved vehicle efficiency through wake surfing. This briefing describes the objectives and approach to a flight evaluation of this system planned for 2016.

  2. Health management and controls for Earth-to-orbit propulsion systems

    Science.gov (United States)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  3. Operations management system

    Science.gov (United States)

    Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.

    1990-01-01

    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.

  4. Mission Planning Systems for Tactical Aircraft (Pre-Flight and In- Flight) (Systemes de Planification des Missions pour Avions Tactiques (Avant Vol et en Vol)

    Science.gov (United States)

    1991-05-01

    NIilitary,%ircsTai R ite P I tti71gSI ’ --- -’I Uttotmmand. Conttrol. Cumin ITtcatituns anti IBegye Intelligence ACS Manetiver Control Ssisrnm (’A~IAL...has either been introduced recently or is high workload and stress on the unaided operator, and it is imminent. These are reviewed elsewhere in this

  5. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  6. Copilot: Monitoring Embedded Systems

    Science.gov (United States)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  7. Tanker Avionics/Aircrew Complement Evaluation (TAACE). Phase 0. Analysis and Mockup. Volume II. Summary of Data.

    Science.gov (United States)

    1980-05-01

    However, the TF-33s would greatly enhance the mission capabilities of the aircraft. The addition of winglets will increase range and decrease fuel...a sound and capable system. There are certainly some improvements that can be made. A better boom with better aerodynamic design would help

  8. Aircraft Trajectories Computation-Prediction-Control. Volume 1 (La Trajectoire de l’Avion Calcul-Prediction-Controle)

    Science.gov (United States)

    1990-03-01

    Vigilance and Performance in Automatized Systems. Org.: Prof A. Coblentz Laboratoire d’Anthropologie et d’Ecologie Humaine - Universit& Rene Descartes , PARIS...Humaine - Universit6 Ren6 Descartes , PARIS, September 1988 BOY G., CEP-Onera "Assistance A l’Opdrateur: Une Approche de l’Intelligence Artificielle...Appliqi6e, Universit6 Ren6 Descartes - Paris V "Effect of Monotony on Vigilance and Biomechanical Behaviour" In: Commission of European Communities

  9. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: adriane.acm@hotmail.com, E-mail: evaldocarlosjr@gmail.com [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  10. Effects of cosmic radiation on devices and embedded systems in aircrafts

    International Nuclear Information System (INIS)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L.

    2013-01-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  11. Intelligent Control for a DC Micro-Grid System

    DEFF Research Database (Denmark)

    Martino, Michele; Quiñones, Yamshid Farhat; Raboni, Pietro

    2012-01-01

    This paper presents the dynamic response of a DC–micro-grid (DC-MG) controlled in master-slave mode. The benefits of the micro-grids (MGs) are the low cost in terms of power electronics converters and the high reliability and quality, even in case of loss connection to the transmission system. A ...... the units, especially in case of variable weather conditions with different DC loads. Thus the voltage level of the system and the power flow are shown, out of a detailed description of the power electronic interfaces featuring the distributed generators (DGs).......This paper presents the dynamic response of a DC–micro-grid (DC-MG) controlled in master-slave mode. The benefits of the micro-grids (MGs) are the low cost in terms of power electronics converters and the high reliability and quality, even in case of loss connection to the transmission system. A DC......-MG in fact can survive in standalone mode if properly managed. The considered system is made by a photovoltaic array (PV), a wind turbine (WT), a gas engine (GE) and an energy storage system (ESS). The DC-MG behavior is analyzed in different scenarios to demonstrate the efficacy of the control for all...

  12. Integrated Test Bed Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The ITB's avionics system is composed of multiple high performance processors, embedded software, and data communication systems. The avionics embedded software is a...

  13. Health management and controls for earth to orbit propulsion systems

    Science.gov (United States)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  14. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November - 2 December 1982. Volume 10. Addendum.

    Science.gov (United States)

    1982-11-01

    represent only a software cast problem or pose a logistics problem as well. If the problem is purely one of software support costs, then the answer...design team during the requirements phase resulted in a 174-page Ada requirements document. This document restated the " Alevel " specifications in a mre...Instructions in addition to AN/UYK-20(V) J. AN/AYIC-14(V) Extended Arithmetic Unit (EAU) instructions added to MATH PAC. k. Page registers increased from 1 to 4

  15. Using software metrics and software reliability models to attain acceptable quality software for flight and ground support software for avionic systems

    Science.gov (United States)

    Lawrence, Stella

    1992-01-01

    This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.

  16. New technologies for space avionics

    Science.gov (United States)

    Aibel, David W.; Dingus, Peter; Lanciault, Mark; Hurdlebrink, Debra; Gurevich, Inna; Wenglar, Lydia

    1994-01-01

    This report reviews a 1994 effort that continued 1993 investigations into issues associated with the definition of requirements, with the practice concurrent engineering and rapid prototyping in the context of the development of a prototyping of a next-generation reaction jet driver controller. This report discusses lessons learned, the testing of the current prototype, the details of the current design, and the nature and performance of a mathematical model of the life cycle of a pilot operated valve solenoid.

  17. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    Science.gov (United States)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-01-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  18. Monitoring Distributed Real-Time Systems: A Survey and Future Directions

    Science.gov (United States)

    Goodloe, Alwyn E.; Pike, Lee

    2010-01-01

    Runtime monitors have been proposed as a means to increase the reliability of safety-critical systems. In particular, this report addresses runtime monitors for distributed hard real-time systems. This class of systems has had little attention from the monitoring community. The need for monitors is shown by discussing examples of avionic systems failure. We survey related work in the field of runtime monitoring. Several potential monitoring architectures for distributed real-time systems are presented along with a discussion of how they might be used to monitor properties of interest.

  19. MAS Bulletin. Papers Presented at Advisory Group for Aerospace Research and Development (AGARD) Symposium on Machine Intelligence for Aerospace Electronic Systems.

    Science.gov (United States)

    1991-08-01

    neural networks, and machine learning . This list ie not all 9. Future ESM Systems and the Potential for Neural Processing inclusive. This research could...U.S. CAPT James M. Skinner , USAF, Air Force Space Technology 17. Development of Tactical Doecisiont Akid. Center, and Prof. Georg* F. Luger...ntegrat11111ng Macine I~1e900enc Into the Co~pi to Aid t" Pilot 26. Integrated Communications, Navigatlion. Ideintiflocation Avionics Dr. Edward J

  20. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  1. An Assessment of Technical and Production Risks of Candidate Low-Cost Attitude/Heading Reference Systems(AHRS)

    Science.gov (United States)

    Yuchnovicz, Daniel; Burgess, Malcolm; Hammers, William

    1999-01-01

    This report provides an assessment of technical and production risks of candidate low-cost attitude/heading reference systems (AHRS) for use in the Advanced General Aviation Transport Experiments (AGATE) airplanes. A low-cost AHRS is a key component of modem "glass cockpit" flight displays for General Aviation (GA) aircraft. The technical capabilities of several candidate low-cost AHRS were examined and described along with the technical issues involved with using all solid-state components for attitude measurement. An economic model was developed which describes the expected profit, rate of return, and volume requirements for the manufacture of low-cost AHRS for GA aircraft in the 2000 to 2020 time frame. The model is the result of interviews with GA airframe manufacturers, avionics manufacturers and historical analysis of avionics of similar complexity. The model shows that a manufacturer will break even after three years of AHRS production, realizing an 18 percent rate of return (23 percent profit) on an investment of $3.5M over the 20 year period. A start-up production estimate showed costs of $6-12M for a new company to build and certify an AHRS from scratch, considered to be a high-risk proposition, versus $0.25-0.75M for an experienced avionics manufacturer to manufacture a design under license, a low-risk proposition.

  2. Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems

    Science.gov (United States)

    Zhao, Lei

    Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that

  3. Analysis of Security Protocols in Embedded Systems

    DEFF Research Database (Denmark)

    Bruni, Alessandro

    Embedded real-time systems have been adopted in a wide range of safety-critical applications—including automotive, avionics, and train control systems—where the focus has long been on safety (i.e., protecting the external world from the potential damage caused by the system) rather than security (i.......e., protecting the system from the external world). With increased connectivity of these systems to external networks the attack surface has grown, and consequently there is a need for securing the system from external attacks. Introducing security protocols in safety critical systems requires careful...... in this direction is to extend saturation-based techniques so that enough state information can be modelled and analysed. Finally, we present a methodology for proving the same security properties in the computational model, by means of typing protocol implementations....

  4. User type certification for advanced flight control systems

    Science.gov (United States)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  5. Digital systems from logic gates to processors

    CERN Document Server

    Deschamps, Jean-Pierre; Terés, Lluís

    2017-01-01

    This textbook for a one-semester course in Digital Systems Design describes the basic methods used to develop “traditional” Digital Systems, based on the use of logic gates and flip flops, as well as more advanced techniques that enable the design of very large circuits, based on Hardware Description Languages and Synthesis tools. It was originally designed to accompany a MOOC (Massive Open Online Course) created at the Autonomous University of Barcelona (UAB), currently available on the Coursera platform. Readers will learn what a digital system is and how it can be developed, preparing them for steps toward other technical disciplines, such as Computer Architecture, Robotics, Bionics, Avionics and others. In particular, students will learn to design digital systems of medium complexity, describe digital systems using high level hardware description languages, and understand the operation of computers at their most basic level. All concepts introduced are reinforced by plentiful illustrations, examples, ...

  6. A Control Strategy for Flywheel Energy Storage System for Frequency Stability Improvement in Islanded Microgrid

    Directory of Open Access Journals (Sweden)

    A. A. Khodadoost Arani

    2017-03-01

    Full Text Available The Micro-Grid (MG stability is a significant issue that must be maintained in all operational modes. Usually, two control strategies can be applied to MG; V/f control and PQ control strategies. MGs with V/f control strategy should have some Distributed Generators (DGs which have fast responses versus load changes. The Flywheel Energy Storage System (FESS has this characteristic. The FESS, which converts the mechanical energy to electrical form, can generate electrical power or absorb the additional power in power systems or MGs. In this paper, the FESS structure modeled in detail and two control strategies (V/f and PQ control are applied for this application. In addition, in order to improve the MG frequency and voltage stability, two complementary controllers are proposed for the V/f control strategy; conventional PI and Fuzzy Controllers. A typical low voltage network, including FESS is simulated for four distinct scenarios in the MATLAB/ Simulink environment. It is shown that fuzzy controller has better performance than conventional PI controller in islanded microgrid.

  7. FAILSAFE Health Management for Embedded Systems

    Science.gov (United States)

    Horvath, Gregory A.; Wagner, David A.; Wen, Hui Ying; Barry, Matthew

    2010-01-01

    The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems.

  8. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  9. Spacesuit Data Display and Management System

    Science.gov (United States)

    Hall, David G.; Sells, Aaron; Shah, Hemal

    2009-01-01

    A prototype embedded avionics system has been designed for the next generation of NASA extra-vehicular-activity (EVA) spacesuits. The system performs biomedical and other sensor monitoring, image capture, data display, and data transmission. An existing NASA Phase I and II award winning design for an embedded computing system (ZIN vMetrics - BioWATCH) has been modified. The unit has a reliable, compact form factor with flexible packaging options. These innovations are significant, because current state-of-the-art EVA spacesuits do not provide capability for data displays or embedded data acquisition and management. The Phase 1 effort achieved Technology Readiness Level 4 (high fidelity breadboard demonstration). The breadboard uses a commercial-grade field-programmable gate array (FPGA) with embedded processor core that can be upgraded to a space-rated device for future revisions.

  10. 77 FR 67557 - Special Conditions: ATR-GIE Avions de Transport Regional, Models ATR42-500 and ATR72-212A...

    Science.gov (United States)

    2012-11-13

    ..., Models ATR42-500 and ATR72-212A Airplanes; Aircraft Electronic System Security Protection From... exploited by unauthorized access to airplane systems, data buses, and servers. Therefore, these special... ATR42-500 and ATR72-212A airplanes. 1. Airplane Electronic System Security Protection from Unauthorized...

  11. A Cost Effective System Design Approach for Critical Space Systems

    Science.gov (United States)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically

  12. INTEGRATED ON-BOARD COMPUTING SYSTEMS: PRESENT SITUATION REVIEW AND DEVELOPMENT PROSPECTS ANALYSIS IN THE AVIATION INSTRUMENT-MAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    P. P. Paramonov

    2013-03-01

    Full Text Available The article deals with present situation review and analysis of development prospects for integrated on-board computing systems, used in the aviation instrument-making industry. The main attention is paid to the projects carried out in the framework of an integrated modular avionics. Hierarchical levels of module design, crates (onboard systems and aviation complexes are considered in detail. Examples of the existing products of our country and from abroad and their brief technical characteristics are given and voluminous bibliography on the subject matter as well.

  13. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  14. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  15. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  16. Adapting the SpaceCube v2.0 Data Processing System for Mission-Unique Application Requirements

    Science.gov (United States)

    Petrick, David; Gill, Nat; Hasouneh, Munther; Stone, Robert; Winternitz, Luke; Thomas, Luke; Davis, Milton; Sparacino, Pietro; Flatley, Thomas

    2015-01-01

    The SpaceCube (sup TM) v2.0 system is a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. This paper provides an overview of the design architecture, flexibility, and the advantages of the modular SpaceCube v2.0 high performance data processing system for space applications. The current state of the proven SpaceCube technology is based on nine years of engineering and operations. Five systems have been successfully operated in space starting in 2008 with four more to be delivered for launch vehicle integration in 2015. The SpaceCube v2.0 system is also baselined as the avionics solution for five additional flight projects and is always a top consideration as the core avionics for new instruments or spacecraft control. This paper will highlight how this multipurpose system is currently being used to solve design challenges of three independent applications. The SpaceCube hardware adapts to new system requirements by allowing for application-unique interface cards that are utilized by reconfiguring the underlying programmable elements on the core processor card. We will show how this system is being used to improve on a heritage NASA GPS technology, enable a cutting-edge LiDAR instrument, and serve as a typical command and data handling (C&DH) computer for a space robotics technology demonstration.

  17. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    Science.gov (United States)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  18. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  19. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  20. Iodine Hall Thruster Propellant Feed System for a CubeSat

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven

    2014-01-01

    The components required for an in-space iodine vapor-fed Hall effect thruster propellant management system are described. A laboratory apparatus was assembled and used to produce iodine vapor and control the flow through the application of heating to the propellant reservoir and through the adjustment of the opening in a proportional flow control valve. Changing of the reservoir temperature altered the flowrate on the timescale of minutes while adjustment of the proportional flow control valve changed the flowrate immediately without an overshoot or undershoot in flowrate with the requisite recovery time associated with thermal control systems. The flowrates tested spanned a range from 0-1.5 mg/s of iodine, which is sufficient to feed a 200-W Hall effect thruster.

  1. Amelioration de l'implementation des volets dans un modele de dynamique et controle de vol de l'avion L1011-500

    Science.gov (United States)

    Saafi, Kais

    The aerodynamic model of the aircraft L1011-500 was designed and simulated in Matlab and Simulink by Bombardier to serve the Esterline-CMC Electronics Company in its goals to improve the Flight Management System FMS. In this model implemented in FLSIM by CMC-Electronics Esterline, a longitudinal instability appears during the approach phase and when flaps have a higher or equal angle to 4 degrees. The global project at LARCASE consisted in the improvement of the L1011-500 aerodynamic model stability under Matlab / Simulink and mainly for flaps angles situated between 4 degrees and 22 degrees. The L1011-500 global model was finalized in order to visualize and analyze its dynamic behavior. When the global model of the aircraft L1011-500 was generated, corrections were added to the lift coefficient (CL), the drag coefficient (CD) and the pitching moment coefficient (CM) to ensure the trim of the aircraft. The obtained results are compared with the flight tests data delivered by CMC Electronics-Esterline to validate our numerical studies.

  2. Optimal Scheduling of a Battery-Based Energy Storage System for a Microgrid with High Penetration of Renewable Sources

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Hernández, Adriana Carolina Luna; Anvari-Moghaddam, Amjad

    2017-01-01

    A new scheduling method is proposed to manage efficiently the integration of renewable sources in microgrids (MGs) with energy storage systems (ESSs). The purpose of this work is to take into account the main stress factors influencing the ageing mechanisms of a battery energy storage system (BESS......) in order to make an optimal dispatch of resources in the microgrid and enhance the storage system lifetime while minimizing the cost of electric consumption. The load demand and generation profiles are derived from the analysis of consumption and renewable production (solar photovoltaic sources and wind...... turbines) of the Western Denmark electric grid. Thus, the proposed microgrid is mainly fed by renewable sources and few electricity is coming from the main grid (which helps operating costs minimization). In this respect, a cost analysis is performed to find the optimal hourly power output of the BESS...

  3. A method for predicting errors when interacting with finite state systems. How implicit learning shapes the user's knowledge of a system

    International Nuclear Information System (INIS)

    Javaux, Denis

    2002-01-01

    This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced

  4. Global system data bus using the Digital Autonomous Terminal Access Communication protocol

    Science.gov (United States)

    Holmes, David C. E.

    1986-01-01

    Modern digital avionic systems with distributed processing require networking to connect the many elements. Digital Autonomous Terminal Access Communication (DATAC) is one of many such networks. DATAC has been implemented on the Transport Systems Research Vehicle (TSRV), a Boeing 737 aircraft operated by the National Aeronautics and Space Administration's Advanced Transport Operating Systems Program Office (ATOPS). This paper presents the TSRV implementation of the DATAC bus, a description of the DATAC system, a synchronization mechanism, details of data flow throughout the system, and a discussion of the modes available with DATAC. Numerous flight tests have been conducted using DATAC as the only means of communication between systems with outstanding results. DATAC is now an integral part of the TSRV and is expected to satisfy near term as well as future requirements for growth and flexibility.

  5. Modeling and Design of Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Teich

    2006-06-01

    Full Text Available Automotive, avionic, or body-area networks are systems that consist of several communicating control units specialized for certain purposes. Typically, different constraints regarding fault tolerance, availability and also flexibility are imposed on these systems. In this article, we will present a novel framework for increasing fault tolerance and flexibility by solving the problem of hardware/software codesign online. Based on field-programmable gate arrays (FPGAs in combination with CPUs, we allow migrating tasks implemented in hardware or software from one node to another. Moreover, if not enough hardware/software resources are available, the migration of functionality from hardware to software or vice versa is provided. Supporting such flexibility through services integrated in a distributed operating system for networked embedded systems is a substantial step towards self-adaptive systems. Beside the formal definition of methods and concepts, we describe in detail a first implementation of a reconfigurable networked embedded system running automotive applications.

  6. Early Communication System (ECOMM) for ISS

    Science.gov (United States)

    Gaylor, Kent; Tu, Kwei

    1999-01-01

    The International Space Station (ISS) Early Communications System (ECOMM) was a Johnson Space Center (JSC) Avionic Systems Division (ASD) in-house developed communication system to provide early communications between the ISS and the Mission Control Center-Houston (MCC-H). This system allows for low rate commands (link rate of 6 kbps) to be transmitted through the Tracking and Data Relay Satellite System (TDRSS) from MCC-H to the ISS using TDRSS's S-band Single Access Forward (SSA/) link service. This system also allows for low rate telemetry (link rate of 20.48 kbps) to be transmitted from ISS to MCC-H through the TDRSS using TDRSS's S-band Single Access Return (SSAR) link service. In addition this system supports a JSC developed Onboard Communications Adapter (OCA) that allows for a two-way data exchange of 128 kbps between MCC-H and the ISS through TDRSS. This OCA data can be digital video/audio (two-way videoconference), and/or file transfers, and/or "white board". The key components of the system, the data formats used by the system to insure compatibility with the future ISS S-Band System, as well as how other vehicles may be able to use this system for their needs are discussed in this paper.

  7. Fiber optic systems for mobile platforms IV; Proceedings of the Meeting, San Jose, CA, Sept. 18, 1990

    International Nuclear Information System (INIS)

    Lewis, N.E.; Moore, E.L.

    1991-01-01

    The present conference on fiber-optic (FO) systems discusses topics in shipboard, automotive, spacecraft, and aeronautical FO applications. Attention is given to an FO interferometric ellipsoidal shell hydrophone, an FO backbone for a submarine combat system, EM environmental effects on shipboard FO installations, and recent developments in polymeric FO systems for automotive use. Also discussed are a wavelength-multiplexed FO position encoder for aircraft control systems, a code-division multiple-access system for integrated modular avionics, fly-by-light systems for commercial aircraft, FO temperature sensors for aerospace applications, a hybrid FO/electrical network for launch vehicles, the effects of ionizing radiation on FO systems, and FO systems in liquid propellant rocket environments

  8. Fiber optic systems for mobile platforms IV; Proceedings of the Meeting, San Jose, CA, Sept. 18, 1990

    Science.gov (United States)

    Lewis, Norris E.; Moore, Emery L.

    The present conference on fiber-optic (FO) systems discusses topics in shipboard, automotive, spacecraft, and aeronautical FO applications. Attention is given to an FO interferometric ellipsoidal shell hydrophone, an FO backbone for a submarine combat system, EM environmental effects on shipboard FO installations, and recent developments in polymeric FO systems for automotive use. Also discussed are a wavelength-multiplexed FO position encoder for aircraft control systems, a code-division multiple-access system for integrated modular avionics, fly-by-light systems for commercial aircraft, FO temperature sensors for aerospace applications, a hybrid FO/electrical network for launch vehicles, the effects of ionizing radiation on FO systems, and FO systems in liquid propellant rocket environments.

  9. Fiber optic systems for mobile platforms IV; Proceedings of the Meeting, San Jose, CA, Sept. 18, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.E.; Moore, E.L.

    1991-01-01

    The present conference on fiber-optic (FO) systems discusses topics in shipboard, automotive, spacecraft, and aeronautical FO applications. Attention is given to an FO interferometric ellipsoidal shell hydrophone, an FO backbone for a submarine combat system, EM environmental effects on shipboard FO installations, and recent developments in polymeric FO systems for automotive use. Also discussed are a wavelength-multiplexed FO position encoder for aircraft control systems, a code-division multiple-access system for integrated modular avionics, fly-by-light systems for commercial aircraft, FO temperature sensors for aerospace applications, a hybrid FO/electrical network for launch vehicles, the effects of ionizing radiation on FO systems, and FO systems in liquid propellant rocket environments.

  10. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    Science.gov (United States)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  11. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    Science.gov (United States)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  12. Flat Surface Damage Detection System (FSDDS)

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  13. Practice-Oriented Formal Methods to Support the Software Development of Industrial Control Systems

    CERN Document Server

    AUTHOR|(CDS)2088632; Blanco Viñuela, Enrique

    Formal specification and verification methods provide ways to describe requirements precisely and to check whether the requirements are satisfied by the design or the implementation. In other words, they can prevent development faults and therefore improve the quality of the developed systems. These methods are part of the state-of-the-practice in application domains with high criticality, such as avionics, railway or nuclear industry. The situation is different in the industrial control systems domain. As the criticality of the systems is much lower, formal methods are rarely used. The two main obstacles to using formal methods in systems with low- or medium-criticality are performance and usability. Overcoming these obstacles often needs deep knowledge and high effort. Model checking, one of the main formal verification techniques, is computationally difficult, therefore the analysis of non-trivial systems requires special considerations. Furthermore, the mainly academic tools implementing different model c...

  14. CESAR cost-efficient methods and processes for safety-relevant embedded systems

    CERN Document Server

    Wahl, Thomas

    2013-01-01

    The book summarizes the findings and contributions of the European ARTEMIS project, CESAR, for improving and enabling interoperability of methods, tools, and processes to meet the demands in embedded systems development across four domains - avionics, automotive, automation, and rail. The contributions give insight to an improved engineering and safety process life-cycle for the development of safety critical systems. They present new concept of engineering tools integration platform to improve the development of safety critical embedded systems and illustrate capacity of this framework for end-user instantiation to specific domain needs and processes. They also advance state-of-the-art in component-based development as well as component and system validation and verification, with tool support. And finally they describe industry relevant evaluated processes and methods especially designed for the embedded systems sector as well as easy adoptable common interoperability principles for software tool integratio...

  15. Assessment of redundant systems with imperfect coverage by means of binary decision diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Albert F. [Northrop Grumman Corporation, 1840 Century Park East, Los Angeles, CA 90067-2199 (United States)], E-mail: Al.Myers@ngc.com; Rauzy, Antoine [IML/CNRS, 163, Avenue de Luminy, 13288 Marseille Cedex 09 (France)], E-mail: arauzy@iml.univ-mrs.fr

    2008-07-15

    In this article, we study the assessment of the reliability of redundant systems with imperfect fault coverage. We term fault coverage as the ability of a system to isolate and correctly accommodate failures of redundant elements. For highly reliable systems, such as avionic and space systems, fault coverage is in general imperfect and has a significant impact on system reliability. We review here the different models of imperfect fault coverage. We propose efficient algorithms to assess them separately (as k-out-of-n selectors). We show how to implement these algorithms into a binary decision diagrams engine. Finally, we report experimental results on real life test cases that show on the one hand the importance of imperfect coverage and on the other hand the efficiency of the proposed approach.

  16. General Aviation Activity and Avionics Survey 1984

    Science.gov (United States)

    1985-10-01

    1-r- 0sn r-C) 1-n4 A rW IniC lol o oo i.VA Cd )’ a .3 -- - I, CdA xd j Cd ’Am. " ’ Ai I-W wU g t 8 weR at lz at w betl wg at i w~ a w~ at ix 8 OM I0at...S ’ TABLE D-1. SDR AIRCRAFT GROUP NAME - FAA MANUFACTURER/MODEL CODES (CONTINUED) SDR FAA SDR FAA SDR FAA PIPER 600 106001... PIPER PAlS 101828 PIPER PA31T 103128 PIPER 600 106010 PIPER PAl8 101832 PIPER PA32 103206 PIPER 600 106012 PIPER PAlS 101834 PIPER PA32 103207 PIPER 600

  17. Avionics Reliability, Its Techniques and Related Disciplines.

    Science.gov (United States)

    1979-10-01

    CENTRALCENTIE DESE DONNEESTDFNTO uv UV EVENTULFLUX ACTNFNS MAINSLIN CORPEancheE3 15-12 A M *1 = Z ]3i 04 1 CD- Le~ ..s2 At 15-13 PILOTES FORMES DE SqLt PARCS...the manufacturing process to incorporate the design changes, and, possibly, retrofit those units already fielded. This not only costs money , but also...initial studies but is useful to control counterfeiting , substitution, unauthorized change, and any lapse of compliance with the military specification

  18. General Aviation Activity and Avionics Survey 1982.

    Science.gov (United States)

    1983-12-01

    is F- C- i I.. <Z< 04K 4 K 4 K mm <.1 -.5 9.JO M 5 I. .J0 - AI. C 1.-’ 01- 1 0 0 -. t- 0 t- a 00 o 0 o0 mo0 w 0 is owe ao Ewa wm wo iso - 24 .0 4%~ 4...0540 41531 PCKARDV1650 49001 FRNKLN4AC50 27002 LYC 0540 41532 PWA 6T02 dT12 FRNKLN4AC0 27003 LYC 0540 41533 PWA JT12 52042 FRNKLN4AC10 27004 LYC 0540

  19. General Aviation Activity and Avionics Survey

    Science.gov (United States)

    1988-11-01

    0 us 4 U 0 ZN i s-~w-w 0 0 09 .j 04 1-. -w N 0I.. 0m Mo N 4% NO N 0 - 0 N MD N 0n0- 0- 0 -0. * 4. M - o* V* 0 0* v0 2j Ge 4cJ 0- ON l 0M M4t 4 0 isO ...0540 41530 RROYCETYNE 54510 FRNKLN4AC150 27002 LYC 0540 41531 RROYCEVIPER 10201 FRNKLN4ACISO 27003 LYC 0540 41533 FRNKLN4ACI5O 27004 LYC 0540 41534

  20. General Aviation Activity and Avionics Survey 1981.

    Science.gov (United States)

    1982-12-01

    iso Is188.1 185- SUMk TAM 2-1 19 118 1976 I0 191 YEAR L. TU DAMWD UNU RKVZSWT A 96X CONVID&NCU INIUL FOR T23 IVŕ - 1661 TRUB UM SIM APPUNIX D. Tot...LYC 0320 41500 NT4CNCCULNACO 2002 LTC 0320 4150 ARSRCMF9731 ’?fB7 FRNKLN4AC150 27003 LVC 0320 41509 ARSkCHW1731 01518 FRNILN4ACISO 27003 LTC 0320 4150

  1. Energy Management System Based on Fuzzy fractional order PID Controller for Transient Stability Improvement in Microgrids with Energy Storage

    DEFF Research Database (Denmark)

    Moafi, Milad; Marzband, Mousa; Savaghebi, Mehdi

    2016-01-01

    in the islanded Microgrid (MG). To increase performance for a wide range of power system operating conditions, an energy management systems (EMS) is proposed based on a fuzzy fractional order PID (FFOPID) controller. It is able to analyze and simulate the dynamic behavior in grid connected MGs. This controller...... is proposed in the MG encompassing distributed generation resources with “plug and play” ability. The performance of FFOPID controller is verified for frequency control purposes and to support internal bus voltage in both islanded and grid connected operating modes in accordance with the failure time. Energy...... combined with a PID-controller (termed as FLPID) and Fuzzy fractional order PID (termed as FFOPID) are implemented according to the characteristics and limitations of overloading and state of charge (SOC). The obtained results show good performance of FFOPID controllers by improving the transient stability...

  2. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Science.gov (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  3. An advanced real time energy management system for microgrids

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Youssef, Tarek; Gualous, Hamid; Mohammed, Osama

    2016-01-01

    This paper presents an advanced Real-Time Energy Management System (RT-EMS) for Microgrid (MG) systems. The proposed strategy of RT-EMS capitalizes on the power of Genetic Algorithms (GAs) to minimize the energy cost and carbon dioxide emissions while maximizing the power of the available renewable energy resources. MATLAB-dSPACE Real-Time Interface Libraries (MLIB/MTRACE) are used as new tools to run the optimization code in Real-Time Operation (RTO). The communication system is developed based on ZigBee communication network which is designed to work in harsh radio environment where the control system is developed based on Advanced Lead-Lag Compensator (ALLC) which its parameters are tuned online to achieve fast convergence and good tracking response. The proposed RT-EMS along with its control and communication systems is experimentally tested to validate the results obtained from the optimization algorithm in a real MG testbed. The simulation and experimental results using real-world data highlight the effectiveness of the proposed RT-EMS for MGs applications. - Highlights: • Real-time energy management system of a typical MG is developed, and analyzed. • RT-EMS considered the nonlinear cost function and emission constraints. • MLIB/MTRACE libraries in dSPACE are used as new tools to run the optimization code. • The communication system is developed based on a Zigbee communication network. • Control system parameters are tuned online to achieve good tracking response.

  4. Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    ), and more especially during interconnection with other MGs, creating dc MG clusters. This paper develops a small signal model for dc MGs from the control point of view, in order to study stability analysis and investigate effects of CPLs and line impedances between the MGs on stability of these systems....... This model can be also used to synthesis and study dynamics of control loops in dc MGs and also dc MG clusters. An active stabilization method is proposed to be implemented as a dc active power filter (APF) inside the MGs in order to not only increase damping of dc MGs at the presence of CPLs but also...... to improve their stability while connecting to the other MGs. Simulation results are provided to evaluate the developed models and demonstrate the effectiveness of proposed active stabilization technique....

  5. Safer Systems: A NextGen Aviation Safety Strategic Goal

    Science.gov (United States)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  6. 新一代航空电子总线系统结构研究%A Preliminary Study on Architecture of Data Bus System of New Generation Avionics

    Institute of Scientific and Technical Information of China (English)

    赵永库

    2005-01-01

    航空电子总线系统结构是航空电子系统的神经中枢,直接决定着航空电子综合化程度的高低和性能的优劣.本文通过对航空电子数据总线结构现状和发展要求的分析,提出了新一代航空电子总线系统的设计原则和体系结构,并论述了其核心技术综合模块化航空电子系统的通用模块和综合核心处理机的组成.

  7. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November-2 December 1982. Volume 3. Embedded Computer Resources Governing Documents.

    Science.gov (United States)

    1982-11-01

    1. Validation of computer resource requirements, including soft - ware, risk analyses, planning, preliminary design, security where applicable (DoD...Technology Base Program for soft - ware basic research, exploratory development, advanced devel- opment, and technology demonstrations addressing critical... chancres including agement Procedures (O/S CMP). The basic alose iact of Cr other clu configuration management approach con- tained in the CRISP will be

  8. Systems

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Papers in this session describe the concept of mined geologic disposal system and methods for ensuring that the system, when developed, will meet all technical requirements. Also presented in the session are analyses of system parameters, such as cost and nuclear criticality potential, as well as a technical analysis of a requirement that the system permit retrieval of the waste for some period of time. The final paper discusses studies under way to investigate technical alternatives or complements to the mined geologic disposal system. Titles of the presented papers are: (1) Waste Isolation System; (2) Waste Isolation Economics; (3) BWIP Technical Baseline; (4) Criticality Considerations in Geologic Disposal of High-Level Waste; (5) Retrieving Nuclear Wastes from Repository; (6) NWTS Programs for the Evaluation of Technical Alternatives or Complements to Mined Geologic Repositories - Purpose and Objectives

  9. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa

    2000-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  10. System driven technology selection for future European launch systems

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  11. Efficient implementation of real-time programs under the VAX/VMS operating system

    Science.gov (United States)

    Johnson, S. C.

    1985-01-01

    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.

  12. An aspect-oriented approach for designing safety-critical systems

    Science.gov (United States)

    Petrov, Z.; Zaykov, P. G.; Cardoso, J. P.; Coutinho, J. G. F.; Diniz, P. C.; Luk, W.

    The development of avionics systems is typically a tedious and cumbersome process. In addition to the required functions, developers must consider various and often conflicting non-functional requirements such as safety, performance, and energy efficiency. Certainly, an integrated approach with a seamless design flow that is capable of requirements modelling and supporting refinement down to an actual implementation in a traceable way, may lead to a significant acceleration of development cycles. This paper presents an aspect-oriented approach supported by a tool chain that deals with functional and non-functional requirements in an integrated manner. It also discusses how the approach can be applied to development of safety-critical systems and provides experimental results.

  13. The R-Shell approach - Using scheduling agents in complex distributed real-time systems

    Science.gov (United States)

    Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre

    1993-01-01

    Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.

  14. Specification and Verification of Distributed Embedded Systems: A Traffic Intersection Product Family

    Directory of Open Access Journals (Sweden)

    José Meseguer

    2010-09-01

    Full Text Available Distributed embedded systems (DESs are no longer the exception; they are the rule in many application areas such as avionics, the automotive industry, traffic systems, sensor networks, and medical devices. Formal DES specification and verification is challenging due to state space explosion and the need to support real-time features. This paper reports on an extensive industry-based case study involving a DES product family for a pedestrian and car 4-way traffic intersection in which autonomous devices communicate by asynchronous message passing without a centralized controller. All the safety requirements and a liveness requirement informally specified in the requirements document have been formally verified using Real-Time Maude and its model checking features.

  15. Panoramic, large-screen, 3-D flight display system design

    Science.gov (United States)

    Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.

    1995-01-01

    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.

  16. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    Science.gov (United States)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  17. Landing Site Studies Using High Resolution MGS Crater Counts and Phobos-2 Termoskan Data

    Science.gov (United States)

    Hartmann, Willian K.; Berman, Daniel C.; Betts, Bruce H.

    1999-06-01

    We have examined a number of potential landing sites to study effects associated with impact crater populations. We used Mars Global Surveyor high resolution MOC images, and emphasized "ground truth" by calibrating with the MOC images of Viking 1 and Pathfinder sites. An interesting result is that most of Mars (all surfaces with model ages older than 100 My) have small crater populations in saturation equilibrium below diameters D approx. = 60 meters (and down to the smallest resolvable, countable sizes, approx. = 15 m). This may have consequences for preservation of surface bedrock exposures accessible to rovers. In the lunar maria, a similar saturation equilibrium is reached for crater diameters below about 300 meters, and this has produced a regolith depth of about 10-20 meters in those areas. Assuming linear scaling, we infer that saturation at D approx. = 60 m would produce gardening and Martian regolith, or fragmental layers, about 2 to 4 meters deep over all but extremely young surfaces (such as the very fresh thin surface flows in southern Elysium Planitia, which have model ages around 10 My or less). This result may explain the global production of ubiquitous dust and fragmental material on Mars. Removal of fines may leave the boulders that have been seen at all three of the first landing sites. Accumulation of the fines elsewhere produces dunes. Due to these effects, it may be difficult to set down rovers in areas where bedrock is well preserved at depths of centimeters, unless we find cliff sides or areas of deflation where wind has exposed clean surfaces (among residual boulders?) We have also surveyed the PHOBOS 2 Termoskan data to look for regions of thermal anomalies that might produce interesting landing sites. For landing site selection, two of the more interesting types of features are thermally distinct ejecta blankets and thermally distinct channels and valleys. Martian "thermal features" such as these that correlate closely with nonaeolian geologic features are extremely rare, presumably due to reworking of the surface as discussed above, and due to aeolian processes. Thermally distinct ejecta blankets are excellent potential future locations for landers, as well as remote sensing, because they represent relatively dust free exposures of material excavated from depth. However, few, if any meet the current constraints on elevation for Mars '01. Thermally distinct channels, which tend to have fretted morphologies, and are higher in inertia than their surroundings, offer a unique history and probable surface presence of material from various stratigraphic layers and, locations, views of the surrounding walls, and possible areas of past standing water, flowing water, or increased amounts of diffusing water. Any presence of water (e.g., diffusing may have enhanced duricrust formation in the channels, thus increasing the thermal inertias (flowing water may alternatively have enhanced rock deposition, which also could explain the inertia enhancements instead of crust formation). Some of the thermally distinct channels do meet the elevation criteria for '01. We are looking particularly at the relatively flat areas at the northern end of Hydraotes Chaos (eastern end of Valles Marineris), near the beginnings of Tiu and Simud Valles, which appear to meet most all of the current '01 landing criteria. For thermally distinct channels, valleys, and ejecta blankets, we have searched and continue to search for MOC images that may help clarify their characteristics and assist with potential landing site characterization.

  18. Maximizing commonality between military and general aviation fly-by-light helicopter system designs

    Science.gov (United States)

    Enns, Russell; Mossman, David C.

    1995-05-01

    In the face of shrinking defense budgets, survival of the United States rotorcraft industry is becoming increasingly dependent on increased sales in a highly competitive civil helicopter market. As a result, only the most competitive rotorcraft manufacturers are likely to survive. A key ingredient in improving our competitive position is the ability to produce more versatile, high performance, high quality, and low cost of ownership helicopters. Fiber optic technology offers a path of achieving these objectives. Also, adopting common components and architectures for different helicopter models (while maintaining each models' uniqueness) will further decrease design and production costs. Funds saved (or generated) by exploiting this commonality can be applied to R&D used to further improve the product. In this paper, we define a fiber optics based avionics architecture which provides the pilot a fly-by-light / digital flight control system which can be implemented in both civilian and military helicopters. We then discuss the advantages of such an architecture.

  19. Compilation and synthesis for embedded reconfigurable systems an aspect-oriented approach

    CERN Document Server

    Diniz, Pedro; Coutinho, José; Petrov, Zlatko

    2013-01-01

    This book provides techniques to tackle the design challenges raised by the increasing diversity and complexity of emerging, heterogeneous architectures for embedded systems. It describes an approach based on techniques from software engineering called aspect-oriented programming, which allow designers to control today’s sophisticated design tool chains, while maintaining a single application source code.  Readers are introduced to the basic concepts of an aspect-oriented, domain specific language that enables control of a wide range of compilation and synthesis tools in the partitioning and mapping of an application to a heterogeneous (and possibly multi-core) target architecture.  Several examples are presented that illustrate the benefits of the approach developed for applications from avionics and digital signal processing. Using the aspect-oriented programming techniques presented in this book, developers can reuse extensive sections of their designs, while preserving the original application source-...

  20. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics for SmallSats

    Science.gov (United States)

    Nguyen, Hanson Cao; Fraction, James

    2018-01-01

    In today's budgetary environment, there is significant interest within the National Aeronautics and Space Administration (NASA) to enable small robotic science missions that can be executed faster and cheaper than previous larger missions. To help achieve this, focus has shifted from using exclusively radiation-tolerant or radiation-hardened parts to using more commercial-off-the-shelf (COTS) components for NASA small satellite missions that can last at least one year in orbit. However, there are some portions of a spacecraft's avionics, such as the Command and Data Handling (C&DH) subsystem and the Power System Electronics (PSE) that need to have a higher level of reliability that goes beyond what is attainable with currently available COTS parts. While there are a number of COTS components that can withstand a total ionizing dose (TID) of tens or hundreds of kilorads, there is still a great deal of concern about tolerance to and mitigation of single-event effects (SEE).

  1. SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Swarnalatha

    2013-01-01

    Full Text Available Risk analysis of urban aquatic systems due to heavy metals turns significant due to their peculiar properties viz. persis tence, non-degradab ility, toxicity, and accumulation. Akkulam Veli (AV, an urba n tropical lake in south India is subjected to various environmental stresses due to multiple waste discharge, sand mining, developmental activities, tour ism related activitie s etc. Hence, a comprehensive approach is adopted for risk assessment using modified degree of contamination factor, toxicity units based on numerical sediment quality guidelines (SQGs, and potentialecological risk indices. The study revealed the presence of toxic metals such as Cr, C d, Pb and As and the lake is rated under ‘low ecological risk’ category.

  2. Status of NASA's Space Launch System

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing

  3. Dhaksha, the Unmanned Aircraft System in its New Avatar-Automated Aerial Inspection of INDIA'S Tallest Tower

    Science.gov (United States)

    Kumar, K. S.; Rasheed, A. Mohamed; Krishna Kumar, R.; Giridharan, M.; Ganesh

    2013-08-01

    DHAKSHA, the unmanned aircraft system (UAS), developed after several years of research by Division of Avionics, Department of Aerospace Engineering, MIT Campus of Anna University has recently proved its capabilities during May 2012 Technology demonstration called UAVforge organised by Defence Research Project Agency, Department of Defence, USA. Team Dhaksha with its most stable design outperformed all the other contestants competing against some of the best engineers from prestigi ous institutions across the globe like Middlesex University from UK, NTU and NUS from Singapore, Tudelft Technical University, Netherlands and other UAV industry participants in the world's toughest UAV challenge. This has opened up an opportunity for Indian UAVs making a presence in the international scenario as well. In furtherance to the above effort at Fort Stewart military base at Georgia,USA, with suitable payloads, the Dhaksha team deployed the UAV in a religious temple festival during November 2012 at Thiruvannamalai District for Tamil Nadu Police to avail the instant aerial imagery services over the crowd of 10 lakhs pilgrims and also about the investigation of the structural strength of the India's tallest structure, the 300 m RCC tower during January 2013. The developed system consists of a custom-built Rotary Wing model with on-board navigation, guidance and control systems (NGC) and ground control station (GCS), for mission planning, remote access, manual overrides and imagery related computations. The mission is to fulfill the competition requirements by using an UAS capable of providing complete solution for the stated problem. In this work the effort to produce multirotor unmanned aerial systems (UAS) for civilian applications at the MIT, Avionics Laboratory is presented

  4. DHAKSHA,THE UNMANNED AIRCRAFT SYSTEM IN ITS NEW AVATAR-AUTOMATED AERIAL INSPECTION OF INDIA'S TALLEST TOWER

    Directory of Open Access Journals (Sweden)

    K. S. Kumar

    2013-08-01

    Full Text Available DHAKSHA, the unmanned aircraft system (UAS, developed after several years of research by Division of Avionics, Department of Aerospace Engineering, MIT Campus of Anna University has recently proved its capabilities during May 2012 Technology demonstration called UAVforge organised by Defence Research Project Agency, Department of Defence, USA. Team Dhaksha with its most stable design outperformed all the other contestants competing against some of the best engineers from prestigi ous institutions across the globe like Middlesex University from UK, NTU and NUS from Singapore, Tudelft Technical University, Netherlands and other UAV industry participants in the world's toughest UAV challenge. This has opened up an opportunity for Indian UAVs making a presence in the international scenario as well. In furtherance to the above effort at Fort Stewart military base at Georgia,USA, with suitable payloads, the Dhaksha team deployed the UAV in a religious temple festival during November 2012 at Thiruvannamalai District for Tamil Nadu Police to avail the instant aerial imagery services over the crowd of 10 lakhs pilgrims and also about the investigation of the structural strength of the India's tallest structure, the 300 m RCC tower during January 2013. The developed system consists of a custom-built Rotary Wing model with on-board navigation, guidance and control systems (NGC and ground control station (GCS, for mission planning, remote access, manual overrides and imagery related computations. The mission is to fulfill the competition requirements by using an UAS capable of providing complete solution for the stated problem. In this work the effort to produce multirotor unmanned aerial systems (UAS for civilian applications at the MIT, Avionics Laboratory is presented

  5. Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System

    Directory of Open Access Journals (Sweden)

    Van-Hai Bui

    2017-07-01

    Full Text Available In distributed operation, each unit is operated by its local controller instead of using a centralized controller, which allows the action to be based on local information rather than global information. Most of the distributed solutions have implemented the consensus method, however, convergence time of the consensus method is quite long, while diffusion strategy includes a stochastic gradient term and can reach convergence much faster compared with consensus method. Therefore, in this paper, a diffusion strategy-based distributed operation of microgrids (MGs is proposed using multiagent system for both normal and emergency operation modes. In normal operation, the MG system is operated by a central controller instead of the distributed controller to minimize the operation cost. If any event (fault occurs in the system, MG system can be divided into two parts to isolate the faulty region. In this case, the MG system is changed to emergency operation mode. The normal part is rescheduled by the central controller while the isolated part schedules its resources in a distributed manner. The isolated part carries out distributed communication using diffusion between neighboring agents for optimal operation of this part. The proposed method enables peer-to-peer communication among the agents without the necessity of a centralized controller, and simultaneously performs resource optimization. Simulation results show that the system can be operated in an economic way in both normal operation and emergency operation modes.

  6. Design for validation: An approach to systems validation

    Science.gov (United States)

    Carter, William C.; Dunham, Janet R.; Laprie, Jean-Claude; Williams, Thomas; Howden, William; Smith, Brian; Lewis, Carl M. (Editor)

    1989-01-01

    Every complex system built is validated in some manner. Computer validation begins with review of the system design. As systems became too complicated for one person to review, validation began to rely on the application of adhoc methods by many individuals. As the cost of the changes mounted and the expense of failure increased, more organized procedures became essential. Attempts at devising and carrying out those procedures showed that validation is indeed a difficult technical problem. The successful transformation of the validation process into a systematic series of formally sound, integrated steps is necessary if the liability inherent in the future digita-system-based avionic and space systems is to be minimized. A suggested framework and timetable for the transformtion are presented. Basic working definitions of two pivotal ideas (validation and system life-cyle) are provided and show how the two concepts interact. Many examples are given of past and present validation activities by NASA and others. A conceptual framework is presented for the validation process. Finally, important areas are listed for ongoing development of the validation process at NASA Langley Research Center.

  7. Hierarchical Control for Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed in this p......DC microgrids (MGs) have gained research interest during the recent years because of many potential advantages as compared to the ac system. To ensure reliable operation of a low-voltage dc MG as well as its intelligent operation with the other DC MGs, a hierarchical control is proposed...

  8. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  9. Orion Ammonia Boiler System Preflight Test Preparations

    Science.gov (United States)

    Levitt, Julia L.

    2017-01-01

    The Environmental Controls and Life Support Systems (ECLSS) branch at Kennedy Space Center (KSC) is currently undergoing preparations for ground testing of the Orion Multi-Purpose Crew Vehicle (MPCV) to prepare its subsystems for EM-1 (Exploration Mission-1). EM-1, Orions second unmanned flight, is a three-week long lunar mission during which the vehicle will complete a 6-day retrograde lunar orbit before returning to Earth. This paper focuses on the work done during the authors 16-week internship with the Mechanical Engineering Branch of KSCs Engineering Directorate. The authors project involved assisting with the preparations for testing the Orion MPCVs ammonia boiler system. The purpose of the ammonia boiler system is to keep the spacecraft sufficiently cool during the reentry portion of its mission, from service module (SM) separation to post-landing. This system is critical for keeping both the spacecraft (avionics and electronics) and crew alive during reentry, thus a successful test of the system is essential to the success of EM-1. XXXX The author was able to draft a detailed outline of the procedure for the ammonia system functional test. More work will need to be done on the vehicle power-up and power-down portions of the procedure, but the ammonia system testing portion of the procedure is thorough and includes vehicle test configurations, vehicle commands, and GSE. The author was able to compile a substantial list of questions regarding the ammonia system functional test with the help of her mentors. A significant number of these questions were answered in the teleconferences with Lockheed Martin.

  10. Integration of topological modification within the modeling of multi-physics systems: Application to a Pogo-stick

    Science.gov (United States)

    Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed

    2018-05-01

    The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.

  11. A study of compositional verification based IMA integration method

    Science.gov (United States)

    Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

    2018-03-01

    The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

  12. Architectural considerations in the certification of modular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bate, Iain; Kelly, Tim

    2003-09-01

    Modular system architectures, such as integrated modular avionics (IMA) in the aerospace sector, offer potential benefits of improved flexibility in function allocation, reduced development costs and improved maintainability. However, they require a new certification approach. The traditional approach to certification is to prepare monolithic safety cases as bespoke developments for a specific system in a fixed configuration. However, this nullifies the benefits of flexibility and reduced rework claimed of IMA-based systems and will necessitate the development of new safety cases for all possible (current and future) configurations of the architecture. This paper discusses a modular approach to safety case construction, whereby the safety case is partitioned into separable arguments of safety corresponding with the components of the system architecture. Such an approach relies upon properties of the IMA system architecture (such as segregation and location independence) having been established. The paper describes how such properties can be assessed to show that they are met and trade-offs performed during architecture definition reusing information and techniques from the safety argument process.

  13. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  14. Flight critical system design guidelines and validation methods

    Science.gov (United States)

    Holt, H. M.; Lupton, A. O.; Holden, D. G.

    1984-01-01

    Efforts being expended at NASA-Langley to define a validation methodology, techniques for comparing advanced systems concepts, and design guidelines for characterizing fault tolerant digital avionics are described with an emphasis on the capabilities of AIRLAB, an environmentally controlled laboratory. AIRLAB has VAX 11/750 and 11/780 computers with an aggregate of 22 Mb memory and over 650 Mb storage, interconnected at 256 kbaud. An additional computer is programmed to emulate digital devices. Ongoing work is easily accessed at user stations by either chronological or key word indexing. The CARE III program aids in analyzing the capabilities of test systems to recover from faults. An additional code, the semi-Markov unreliability program (SURE) generates upper and lower reliability bounds. The AIRLAB facility is mainly dedicated to research on designs of digital flight-critical systems which must have acceptable reliability before incorporation into aircraft control systems. The digital systems would be too costly to submit to a full battery of flight tests and must be initially examined with the AIRLAB simulation capabilities.

  15. A sensor monitoring system for telemedicine, safety and security applications

    Science.gov (United States)

    Vlissidis, Nikolaos; Leonidas, Filippos; Giovanis, Christos; Marinos, Dimitrios; Aidinis, Konstantinos; Vassilopoulos, Christos; Pagiatakis, Gerasimos; Schmitt, Nikolaus; Pistner, Thomas; Klaue, Jirka

    2017-02-01

    A sensor system capable of medical, safety and security monitoring in avionic and other environments (e.g. homes) is examined. For application inside an aircraft cabin, the system relies on an optical cellular network that connects each seat to a server and uses a set of database applications to process data related to passengers' health, safety and security status. Health monitoring typically encompasses electrocardiogram, pulse oximetry and blood pressure, body temperature and respiration rate while safety and security monitoring is related to the standard flight attendance duties, such as cabin preparation for take-off, landing, flight in regions of turbulence, etc. In contrast to previous related works, this article focuses on the system's modules (medical and safety sensors and associated hardware), the database applications used for the overall control of the monitoring function and the potential use of the system for security applications. Further tests involving medical, safety and security sensing performed in an real A340 mock-up set-up are also described and reference is made to the possible use of the sensing system in alternative environments and applications, such as health monitoring within other means of transport (e.g. trains or small passenger sea vessels) as well as for remotely located home users, over a wired Ethernet network or the Internet.

  16. Cabin fuselage structural design with engine installation and control system

    Science.gov (United States)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  17. Architectural considerations in the certification of modular systems

    International Nuclear Information System (INIS)

    Bate, Iain; Kelly, Tim

    2003-01-01

    Modular system architectures, such as integrated modular avionics (IMA) in the aerospace sector, offer potential benefits of improved flexibility in function allocation, reduced development costs and improved maintainability. However, they require a new certification approach. The traditional approach to certification is to prepare monolithic safety cases as bespoke developments for a specific system in a fixed configuration. However, this nullifies the benefits of flexibility and reduced rework claimed of IMA-based systems and will necessitate the development of new safety cases for all possible (current and future) configurations of the architecture. This paper discusses a modular approach to safety case construction, whereby the safety case is partitioned into separable arguments of safety corresponding with the components of the system architecture. Such an approach relies upon properties of the IMA system architecture (such as segregation and location independence) having been established. The paper describes how such properties can be assessed to show that they are met and trade-offs performed during architecture definition reusing information and techniques from the safety argument process

  18. Signal and image processing systems performance evaluation, simulation, and modeling; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Nasr, Hatem N.; Bazakos, Michael E.

    The various aspects of the evaluation and modeling problems in algorithms, sensors, and systems are addressed. Consideration is given to a generic modular imaging IR signal processor, real-time architecture based on the image-processing module family, application of the Proto Ware simulation testbed to the design and evaluation of advanced avionics, development of a fire-and-forget imaging infrared seeker missile simulation, an adaptive morphological filter for image processing, laboratory development of a nonlinear optical tracking filter, a dynamic end-to-end model testbed for IR detection algorithms, wind tunnel model aircraft attitude and motion analysis, an information-theoretic approach to optimal quantization, parametric analysis of target/decoy performance, neural networks for automated target recognition parameters adaptation, performance evaluation of a texture-based segmentation algorithm, evaluation of image tracker algorithms, and multisensor fusion methodologies. (No individual items are abstracted in this volume)

  19. Recent progress in OLED and flexible displays and their potential for application to aerospace and military display systems

    Science.gov (United States)

    Sarma, Kalluri

    2015-05-01

    Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.

  20. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  1. Verification and Validation of Flight-Critical Systems

    Science.gov (United States)

    Brat, Guillaume

    2010-01-01

    For the first time in many years, the NASA budget presented to congress calls for a focused effort on the verification and validation (V&V) of complex systems. This is mostly motivated by the results of the VVFCS (V&V of Flight-Critical Systems) study, which should materialize as a a concrete effort under the Aviation Safety program. This talk will present the results of the study, from requirements coming out of discussions with the FAA and the Joint Planning and Development Office (JPDO) to technical plan addressing the issue, and its proposed current and future V&V research agenda, which will be addressed by NASA Ames, Langley, and Dryden as well as external partners through NASA Research Announcements (NRA) calls. This agenda calls for pushing V&V earlier in the life cycle and take advantage of formal methods to increase safety and reduce cost of V&V. I will present the on-going research work (especially the four main technical areas: Safety Assurance, Distributed Systems, Authority and Autonomy, and Software-Intensive Systems), possible extensions, and how VVFCS plans on grounding the research in realistic examples, including an intended V&V test-bench based on an Integrated Modular Avionics (IMA) architecture and hosted by Dryden.

  2. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  3. Dual-Use Aspects of System Health Management

    Science.gov (United States)

    Owens, P. R.; Jambor, B. J.; Eger, G. W.; Clark, W. A.

    1994-01-01

    System Health Management functionality is an essential part of any space launch system. Health management functionality is an integral part of mission reliability, since it is needed to verify the reliability before the mission starts. Health Management is also a key factor in life cycle cost reduction and in increasing system availability. The degree of coverage needed by the system and the degree of coverage made available at a reasonable cost are critical parameters of a successful design. These problems are not unique to the launch vehicle world. In particular, the Intelligent Vehicle Highway System, commercial aircraft systems, train systems, and many types of industrial production facilities require various degrees of system health management. In all of these applications, too, the designers must balance the benefits and costs of health management in order to optimize costs. The importance of an integrated system is emphasized. That is, we present the case for considering health management as an integral part of system design, rather than functionality to be added on at the end of the design process. The importance of maintaining the system viewpoint is discussed in making hardware and software tradeoffs and in arriving at design decisions. We describe an approach to determine the parameters to be monitored in any system health management application. This approach is based on Design of Experiments (DOE), prototyping, failure modes and effects analyses, cost modeling and discrete event simulation. The various computer-based tools that facilitate the approach are discussed. The approach described originally was used to develop a fault tolerant avionics architecture for launch vehicles that incorporated health management as an integral part of the system. Finally, we discuss generalizing the technique to apply it to other domains. Several illustrations are presented.

  4. Détermination des performances aéro-thermo-propulsives des avions civils par une analyse exergétique de solutions haute-fidélité CFD-RANS

    OpenAIRE

    Arntz , A.

    2014-01-01

    A new exergy-based formulation is derived for the assessment of the aerothermopropulsive performance of civil aircraft. The choice of exergy is motivated by its ability to provide a well-established and consistent framework for the design of aerospace vehicles. The output of the derivation process is an exergy balance between the exergy supplied by a propulsion system or by heat transfer, the mechanical equilibrium of the aircraft, and the exergy outflow and destruction within the control vol...

  5. Avionics Interface Data Summaries: A-10A, EF-111A, F-4E, F-4G, F-15A, F- 16A, F-111A, F-111E, F-111F, RF-4C

    Science.gov (United States)

    1979-10-01

    producing an error signal "nc:t•:.; that a" invalid verd has beer -eceived. h.2.2 f•rLn•5-Irt1 M4ole - When operating in the transmitting mode, the...ES Gose 0 kint SCALE FACTOR: J * I RESOLUTIOiN: (TBOo1) Electrical Chrarte-i’stics (Continued on next page) SOURCE: Aux1li:ry Flight Reference System

  6. Summary: Experimental validation of real-time fault-tolerant systems

    Science.gov (United States)

    Iyer, R. K.; Choi, G. S.

    1992-01-01

    Testing and validation of real-time systems is always difficult to perform since neither the error generation process nor the fault propagation problem is easy to comprehend. There is no better substitute to results based on actual measurements and experimentation. Such results are essential for developing a rational basis for evaluation and validation of real-time systems. However, with physical experimentation, controllability and observability are limited to external instrumentation that can be hooked-up to the system under test. And this process is quite a difficult, if not impossible, task for a complex system. Also, to set up such experiments for measurements, physical hardware must exist. On the other hand, a simulation approach allows flexibility that is unequaled by any other existing method for system evaluation. A simulation methodology for system evaluation was successfully developed and implemented and the environment was demonstrated using existing real-time avionic systems. The research was oriented toward evaluating the impact of permanent and transient faults in aircraft control computers. Results were obtained for the Bendix BDX 930 system and Hamilton Standard EEC131 jet engine controller. The studies showed that simulated fault injection is valuable, in the design stage, to evaluate the susceptibility of computing sytems to different types of failures.

  7. Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids

    Directory of Open Access Journals (Sweden)

    Raji Atia

    2016-03-01

    Full Text Available This paper considers the contribution of independent owners (IOs operating within microgrids (MGs toward green power generation in deregulated energy markets. An optimization scheme is introduced for sizing distributed renewable generation (DRG and a distributed energy storage system (DESS based on a novel energy management system (EMS that accounts for demand response (DR, DESS dispatch and performance degradation, dynamic pricing environments, power distribution loss and irregular renewable generation. The proposed EMS utilizes an iterative Newton-Raphson linear programming algorithm that schedules resources in order to minimize the objective function, to deal with the complicated nonlinear nature of the problem and to enable efficient long-term assessments. The EMS is used to evaluate candidate solutions that are generated by a genetic algorithm (GA to determine the optimal combination of DRG and DESS. A case study for IEEE 34-bus distribution MG in Okinawa, Japan, is used for testing the algorithm and analyzing the potential for IO/MG investments and their strategies.

  8. An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-02-01

    Full Text Available Battery energy storage systems (BESSs with proportional-integral (PI control methods have been widely studied in microgrids (MGs. However, the performance of PI control methods might be unsatisfactory for BESSs due to the nonlinear characteristics of the system. To overcome this problem, an energy-based (EB control method is applied to control the converter of a BESS in this study. The EB method is a robust nonlinear control method based on passivity theory with good performance in both transient and steady states. The detailed design process of the EB method in the BESS by adopting an interconnection and damping assignment (IDA strategy is described. The design process comprises three steps: the construction of the port-controlled Hamiltonian model, the determination of the equilibrium point and the solution of the undetermined matrix. In addition, integral action is combined to eliminate the steady state error generated by the model mismatch. To establish the correctness and validity of the proposed method, we implement several case simulation studies based on a test MG system and compare the control performance of the EB and PI methods carefully. The case simulation results demonstrate that the EB method has better tracking and anti-disturbance performance compared with the classic PI method. Moreover, the proposed EB method shows stronger robustness to the uncertainty of system parameters.

  9. Computer-based systems for nuclear power stations

    International Nuclear Information System (INIS)

    Humble, P.J.; Welbourne, D.; Belcher, G.

    1995-01-01

    The published intentions of vendors are for extensive touch-screen control and computer-based protection. The software features needed for acceptance in the UK are indicated. The defence in depth needed is analyzed. Current practice in aircraft flight control systems and the software methods available are discussed. Software partitioning and mathematically formal methods are appropriate for the structures and simple logic needed for nuclear power applications. The potential for claims of diversity and independence between two computer-based subsystems of a protection system is discussed. Features needed to meet a single failure criterion applied to software are discussed. Conclusions are given on the main factors which a design should allow for. The work reported was done for the Health and Safety Executive of the UK (HSE), and acknowledgement is given to them, to NNC Ltd and to GEC-Marconi Avionics Ltd for permission to publish. The opinions and recommendations expressed are those of the authors and do not necessarily reflect those of HSE. (Author)

  10. Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations

    DEFF Research Database (Denmark)

    Marzband, Mousa; Azarinejadian, Fatemeh; Savaghebi, Mehdi

    2018-01-01

    This paper presents a smart Transactive energy (TE) framework in which home microgrids (H-MGs) can collaborate with each other in a multiple H-MG system by forming coalitions for gaining competitiveness in the market. Profit allocation due to coalition between H-MGs is an important issue...

  11. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Clift, Corey; Thomas, Andrew; Chang Zheng; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Adamovics, John [Department of Chemistry, Rider University, Lawrenceville, NJ 08648 (United States); Das, Indra [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)], E-mail: cclift@montefiore.org

    2010-03-07

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (S{sub c,p}), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT film was used for independent verification. Measurements of S{sub c,p} made with PRESAGE and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE. The advantages of the PRESAGE (registered) system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  12. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE/optical-CT 3D dosimetry system

    International Nuclear Information System (INIS)

    Clift, Corey; Thomas, Andrew; Chang Zheng; Oldham, Mark; Adamovics, John; Das, Indra

    2010-01-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (S c,p ), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT film was used for independent verification. Measurements of S c,p made with PRESAGE and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE. The advantages of the PRESAGE (registered) system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  13. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/ optical-CT 3D dosimetry system

    Science.gov (United States)

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-03-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  14. Validation of Flight Critical Control Systems

    Science.gov (United States)

    1991-12-01

    1985. [8] Avizienis, A., and Lyu, M., "On the Effectiveness of Multiversion Software in Digital Avionics", AIAA Computers in Aerospace VI Conference...Experimentation and Modelling. NASA CR-165036, 1982. [12] Eckhardt, D. E.; and Lee, L. D.: A Theoretical Basis for the Analysis of Multiversion

  15. Future Standardization of Space Telecommunications Radio System with Core Flight System

    Science.gov (United States)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and

  16. Architecture Level Safety Analyses for Safety-Critical Systems

    Directory of Open Access Journals (Sweden)

    K. S. Kushal

    2017-01-01

    Full Text Available The dependency of complex embedded Safety-Critical Systems across Avionics and Aerospace domains on their underlying software and hardware components has gradually increased with progression in time. Such application domain systems are developed based on a complex integrated architecture, which is modular in nature. Engineering practices assured with system safety standards to manage the failure, faulty, and unsafe operational conditions are very much necessary. System safety analyses involve the analysis of complex software architecture of the system, a major aspect in leading to fatal consequences in the behaviour of Safety-Critical Systems, and provide high reliability and dependability factors during their development. In this paper, we propose an architecture fault modeling and the safety analyses approach that will aid in identifying and eliminating the design flaws. The formal foundations of SAE Architecture Analysis & Design Language (AADL augmented with the Error Model Annex (EMV are discussed. The fault propagation, failure behaviour, and the composite behaviour of the design flaws/failures are considered for architecture safety analysis. The illustration of the proposed approach is validated by implementing the Speed Control Unit of Power-Boat Autopilot (PBA system. The Error Model Annex (EMV is guided with the pattern of consideration and inclusion of probable failure scenarios and propagation of fault conditions in the Speed Control Unit of Power-Boat Autopilot (PBA. This helps in validating the system architecture with the detection of the error event in the model and its impact in the operational environment. This also provides an insight of the certification impact that these exceptional conditions pose at various criticality levels and design assurance levels and its implications in verifying and validating the designs.

  17. Computing Systems Configuration for Highly Integrated Guidance and Control Systems

    Science.gov (United States)

    1988-06-01

    de tableau de bord d’aeronef pour 1’entrainement des equipages); du logiciel LANST concu pour la simulation ae reseau locaux; des ...avioniques a bord d’un aeronef. -3- 225433 C.CEDOCAR titre fr. (Materiel de traitement de donnees pour spatlonef la normae 1750 A ISA Ge l’US Air Force...Instruments pour le traitement a bord des avions tactiques des donnees fournies par les differents capteurs. Une architecture reoondante pour les

  18. A Concept of Operations for an Integrated Vehicle Health Assurance System

    Science.gov (United States)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  19. Comparison of the balance accelerometer measure and balance error scoring system in adolescent concussions in sports.

    Science.gov (United States)

    Furman, Gabriel R; Lin, Chia-Cheng; Bellanca, Jennica L; Marchetti, Gregory F; Collins, Michael W; Whitney, Susan L

    2013-06-01

    High-technology methods demonstrate that balance problems may persist up to 30 days after a concussion, whereas with low-technology methods such as the Balance Error Scoring System (BESS), performance becomes normal after only 3 days based on previously published studies in collegiate and high school athletes. To compare the National Institutes of Health's Balance Accelerometer Measure (BAM) with the BESS regarding the ability to detect differences in postural sway between adolescents with sports concussions and age-matched controls. Cohort study (diagnosis); Level of evidence, 2. Forty-three patients with concussions and 27 control participants were tested with the standard BAM protocol, while sway was quantified using the normalized path length (mG/s) of pelvic accelerations in the anterior-posterior direction. The BESS was scored by experts using video recordings. The BAM was not able to discriminate between healthy and concussed adolescents, whereas the BESS, especially the tandem stance conditions, was good at discriminating between healthy and concussed adolescents. A total BESS score of 21 or more errors optimally identified patients in the acute concussion group versus healthy participants at 60% sensitivity and 82% specificity. The BAM is not as effective as the BESS in identifying abnormal postural control in adolescents with sports concussions. The BESS, a simple and economical method of assessing postural control, was effective in discriminating between young adults with acute concussions and young healthy people, suggesting that the test has value in the assessment of acute concussions.

  20. Data Acquistion Controllers and Computers that can Endure, Operate and Survive Cryogenic Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and future NASA exploration flight missions require Avionics systems, Computers, Controllers and Data processing units that are capable of enduring extreme...

  1. Aging Methodologies and Prognostic Health Management for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the ageing mechanisms of electronic components critical avionics systems such as the GPS and INAV are of critical importance. Electrolytic capacitors...

  2. Improved Design of Radiation Hardened, Wide-Temperature Analog and Mixed-Signal Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration projects require avionic systems, components, and controllers that are capable of operating in the extreme temperature and radiation...

  3. Towards self-sustainable power systems

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Danzi, Pietro; Stefanovic, Cedomir

    2017-01-01

    We propose use of a “modemless” communication solution, termed power talk, tailored for optimization and monitoring, i.e., upper layer control in low voltage DC MicroGrids (MGs). Specifically, the exchange of the information required for the upper control among control agents is achieved by modul......We propose use of a “modemless” communication solution, termed power talk, tailored for optimization and monitoring, i.e., upper layer control in low voltage DC MicroGrids (MGs). Specifically, the exchange of the information required for the upper control among control agents is achieved...... of minimizing the cost of the generation. The simulation results prove the feasibility of power talk as enabler of fully self-sustainable DC MicroGrids....

  4. 40° image intensifier tubes in an integrated helmet system

    Science.gov (United States)

    Schreyer, Herbert; Boehm, Hans-Dieter V.; Svedevall, B.

    1993-12-01

    EUROCOPTER has been under contract to the French and German ministries of defence for five years to develop the TIGER, a second generation anti-tank helicopter. A piloting thermal imager has been installed on a steerable platform in the helicopter nose in order to achieve the possibility of flying round the clock. In addition to this sensor, which is sensitive at a wavelength of 10 micrometers , the German side has proposed using an Integrated Helmet System in the PAH 2. This helmet, manufactured by GEC-Marconi Avionics, incorporates two cathode ray tubes (CRT) and two image intensifier tubes which allow the pilot to use an additional sensor in the visible and near infrared spectrum. The electronic part will be built by Teldix. EUROCOPTER DEUTSCHLAND has received the first demonstrator of this helmet for testing in the EUROCOPTER Visionics Laboratory. Later, the C-prototype will be integrated into a BK 117 helicopter (AVT Avionik Versuchstrager). This new helmet has a field of view of 40 degree(s), and exit pupil of 15 mm and improved possibilities of adjusting the optical part. Laboratory tests have been carried out to test important parameters like optical resolution under low light level conditions, field of view, eye relief or exit pupil. The CRT channels have been tested for resolution, distortion, vignetting and homogeneity. The requirements and the properties of the helmet, test procedures and the results of these tests are presented in the paper.

  5. Telemetry System Utilization for Stress Monitoring of Pilots During Training

    Directory of Open Access Journals (Sweden)

    Luboš Socha

    2016-10-01

    Full Text Available Air transport development brings an increased focus on the safety of piloting. The safety conditions can be assessed by mental workload. Psychic discomfort or excessive stress on pilots can negatively influence the course of flights. Therefore it appears convenient to monitor such parameters, which represent the mental wellbeing, or discomfort of a pilot. Since physiological measurements can provide a good information about mental workload or stress, this work primarily focuses on the observation of the change in heart rate, as it is an indicator of stress during the training of pilots, using the designed modular telemetry system. Another aim of this study is to evaluate the influence of a change in the avionic data visualization. This can have an unfavorable effect on the piloting of an airplane. This work, based on the evaluation of heart rate shows, that the switch from analog visualization to glass cockpit creates increased levels of stress in pilots, which was proved for all examined subjects except one. Significant level of correlation in the heart beat rate change in subjects in the course of training was also discovered.

  6. Distribution of Aerially Applied Malathion-S{sup 35} in a Forest Ecosystem; Distribution du malathion- {sup 35}S pulverise par avion dans un ensemble ecologique forestier; Raspredelenie malationa, mechennogo S35 i raspylyaemogo s vozdukha dlya izucheniya ehkologicheskoj sistemy lesnykh massivov; Distribucion en un sistema ecologico forestal de malation- 35S pulverizado desde el aire

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Jr., R. H.; Peterle, T. J. [Ohio Co-Operative Wildlife Research Unit, Columbus, OH (United States)

    1963-09-15

    -distribution detection device. Soil samples and monitoring of marked stakes allowed sub-surface distribution studies. Samples of water from the intermittent streams, insects, mammals, reptiles and birds indicated the initial and subsequent distribution of the insecticide and its metabolites in the ecosystem. Population studies of the faunal system continued throughout the summers of 1961-62 and a limited amount of survey data will be collected in the summer of 1963. Preliminary results indicate that the insect populations returned to normal in about three weeks and there was no detectable effect on the densities of the vertebrate animals on the sprayed area. (author) [French] La distribution de malathion (0,0-dimethyl dithiophosphate de diethyl mercaptosuccinate) dans une zone forestiere du centre-est de l'Ohio a ete etudiee au cours de l'ete 1962. Cet insecticide a gamme d'utilisations etendue a ete choisi comme sujet d'etude a cause de son emploi croissant dans la lutte contre de nombreux insectes nuisibles aux forets de feuillus et de coniferes des Etats-Unis. La concomitance du besoin d'une connaissance plus complete de l'ecologie d'une zone forestiere et de la necessite d'une comprehension plus approfondie des effets d'un insecticide sur la faune a donne une occasion unique d'etudier les problemes simultanement grace a l'utilisation d'un insecticide marque avec un radioisotope. On a choisi {sup 35}S a cause de sa faible energie beta (0,167 MeV) et de sa periode (87,1 j). Des etudes preliminaires portant sur des parcelles de quatre ares, au cours de l'ete 1961, ont permis aux auteurs de fixer des doses d'application en fonction du rayonnement total et ont permis aussi la mise au point de techniques de preparation d'echantillons. Une etude de la faune de deux secteurs de huit hectares, dans deux bassins differents, a ete faite au cours de l'ete 1961. En mai 1962, un de ces secteurs a ete traite a raison de 2,25 kg par hectare de malathion commercial dans une formule comprenant du

  7. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    Science.gov (United States)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing

  8. Treatment of dispersed iron-bearing raw materials and modeling of the protection systems against air-pollution

    Directory of Open Access Journals (Sweden)

    Zoran Anđić

    2016-12-01

    Full Text Available Based on the analysis of the non-standard iron-bearing raw materials treatment process and the results of real composition measurements of the flue gas, the study of hazards by identification of harmful substances that occur in the accident, as well as the modeling of the system of protection against air-pollution due to the cancellation of work the bag filter was carried out. Applying the model (Aloha software package provides an overview of possible developments of events and zones of propagation of the precipitated particulate matter through the share of cadmium (Cd in them. In the case of malfunction of filter system, emissions of particulate matter enormously exceed the permitted values. In the conditions of the simulated accident, particle velocity of flue gases was amounted E≈738mg/s or 2657g/h of dust. The propagation of the precipitated particulate matter in the lower layer of the atmosphere, downwind, given trough the share of Cd in them, is 100m from the source of pollution for the characteristic density of 5mg/m2×day and 140m for the characteristic density of 2mg/m2×day, in the stable state of the atmosphere, i.e. 870m and 1100m, respectively, in the neutral state of the atmosphere.

  9. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    Science.gov (United States)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  10. Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hierarchical Interactive Architecture

    DEFF Research Database (Denmark)

    Marzband, Mousa; Parhizi, Narges; Savaghebi, Mehdi

    2016-01-01

    In this paper, a comprehensive real-time interactive EMS framework for the utility and multiple electrically-coupled MGs is proposed. A hierarchical bi-level control scheme-BLCS with primary and secondary level controllers is applied in this regard. The proposed hierarchical architecture consists...... are treated as uncertainties in the proposed structure. In order to handle the uncertainties, Taguchi0s orthogonal array testing-TOAT approach is utilized. Then, the shortage or surplus of the MGs power should be submitted to a central EMS-CEMS in the secondary-level. In order to validate the proposed control...

  11. A Strategy for Reforming Avionics Acquisition and Support

    Science.gov (United States)

    1988-07-01

    are observable: " Some problems manifest symptoms in one operating mode but not in another. The pilot directly controls some radar operating modes by...for each flight. Their removals occurred in the flight controls , inertial navigation, head-up display, radar, and instru- ments. Although removals...accrue a comparable amount of service time. 6Automatic stations can test 50 LRU types although the Air Force has chosen to test only 37 of them at the

  12. General Aviation Activity and Avionics Survey. Calendar Year 1989

    Science.gov (United States)

    1989-01-01

    gasoline, 76 million gallons were 100 octane gasoline, 237 million gallons were 100 octane low lead gasoline, and 11 million gallons were automobile ...0 CQI vH 0z Cl0) c 0 0 p. 0l 2: HRM -0 0 P4 E-4 E-4E- HD a. E-0H4 4 AH H H OH) ID IDIDa) Q a4 ) cn H l OH~ a) L) UI H 0~~~ H- 44 O 0 wwHwC. 4 H U la

  13. Avionics for Scaled Remotely Operated Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of UAVs has increased exponentially since 1995, and this growth is expected to continue. Many of these applications require extensive Research and...

  14. Advanced Avionics and the Military Aircraft Man/Machine Interface.

    Science.gov (United States)

    1982-07-01

    technItrqtiJ pour d V,’II ’] ITIOU V eau Ut retentis,ement phys1i0l,ZiqUe. iettpor~ CeLt (qUC OUS Seron, trnenes ioarfoi, a evcquer cet aspect te’chnique... traitement en plusleurs 6tapes -L’acquisition du signal acoustique, et sa num~risation apr~s passage dans un banc de filtres on obtient ainsi un sonagraune

  15. Avionics for Scaled Remotely Operated Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of UAS's in the military and the commercial field has grown tremendously over the last few years and is set to explode over next several. An...

  16. SWIFT-nanoLV Avionics Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increased demand for and utility of nano- and micro-satellites, the demand for responsive, low-cost access to space has also increased. To meet this demand,...

  17. Low-Voltage Ride-Through Operation of Power Converters in Grid-Interactive Microgrids by Using Negative-Sequence Droop Control

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Savaghebi, Mehdi

    2017-01-01

    of the utility grid during grid faults. In this paper, a LVRT control strategy based on positive/negative sequence droop control is proposed for grid-interactive MGs to ride-through voltage sags with not only inductive/resistive, but also complex line impedance. By using the proposed control strategy, MGs can......Due to the increasing penetration level of microgrids (MGs), it becomes a critical issue for MGs to help sustaining power system stability. Therefore, ancillary services, such as the low-voltage ride-through (LVRT) capability should be incorporated in MGs in order to guarantee stable operation...... support the grid voltage, make profits, and also ride-through the voltage dip during the whole fault period. A two layer hierarchical control strategy is proposed in this paper. The primary controller consists of voltage and current inner loops, a conventional droop control and a virtual impedance loop...

  18. Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  19. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  20. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  1. Interfacing An Intelligent Decision-Maker To A Real-Time Control System

    Science.gov (United States)

    Evers, D. C.; Smith, D. M.; Staros, C. J.

    1984-06-01

    This paper discusses some of the practical aspects of implementing expert systems in a real-time environment. There is a conflict between the needs of a process control system and the computational load imposed by intelligent decision-making software. The computation required to manage a real-time control problem is primarily concerned with routine calculations which must be executed in real time. On most current hardware, non-trivial AI software should not be forced to operate under real-time constraints. In order for the system to work efficiently, the two processes must be separated by a well-defined interface. Although the precise nature of the task separation will vary with the application, the definition of the interface will need to follow certain fundamental principles in order to provide functional separation. This interface was successfully implemented in the expert scheduling software currently running the automated chemical processing facility at Lockheed-Georgia. Potential applications of this concept in the areas of airborne avionics and robotics will be discussed.

  2. Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System

    Science.gov (United States)

    Santiago, Walter

    2004-01-01

    NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.

  3. Advanced information processing system: The Army Fault-Tolerant Architecture detailed design overview

    Science.gov (United States)

    Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven

    1994-01-01

    The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.

  4. TECHNICAL MAINTENANCE EFFICIENCY OF THE AIRCRAFT MAINTENANCE-FREE ON-BOARD SYSTEM BETWEEN SCHEDULED MAINTENANCES

    Directory of Open Access Journals (Sweden)

    A. M. Bronnikov

    2017-01-01

    Full Text Available The avionics concept of the maintenance-free on-board equipment implies the absence of necessity to maintain onboard systems between scheduled maintenance, preserving the required operational and technical characteristics; it should be achieved by automatic diagnosis of the technical condition and the application of active means of ensuring a failsafe design, allowing to change the structure of the system to maintain its functions in case of failure. It is supposed that such equipment will reduce substantially and in the limit eliminate traditional maintenance of aircraft between scheduled maintenance, ensuring maximum readiness for use, along with improving safety. The paper proposes a methodology for evaluating the efficiency of maintenance-free between scheduled maintenance aircraft system with homogeneous redundancy. The excessive redundant elements allow the system to accumulate failures which are repaired during the routine maintenance. If the number of failures of any reserve is approaching a critical value, the recovery of the on-board system (elimination of all failures is carried out between scheduled maintenance by conducting rescue and recovery operations. It is believed that service work leads to the elimination of all failures and completely updates the on-board system. The process of system operational status changes is described with the discrete-continuous model in the flight time. The average losses in the sorties and the average cost of operation are used as integrated efficiency indicators of system operation. For example, the evaluation of the operation efficiency of formalized on-board system with homogeneous redundancy demonstrates the efficiency of the proposed methodology and the possibility of its use while analyzing the efficiency of the maintenance-free operation equipment between scheduled periods. As well as a comparative analysis of maintenance-free operation efficiency of the on-board system with excessive

  5. Long-Term (3 Year) Effects of a Single Thermal Pulsation System Treatment on Meibomian Gland Function and Dry Eye Symptoms.

    Science.gov (United States)

    Greiner, Jack V

    2016-03-01

    The present study examined the long-term (3 years) effects of a single (12 min) thermal pulsation system (TPS) treatment on symptomatic patients with evaporative dry eye disease (DED) secondary to meibomian gland dysfunction (MGD). In this prospective, cohort, observational, single-center study design, signs (meibomian gland secretion [MGS] scores and tear film breakup time [TBUT]) and symptoms (Ocular Surface Disease Index [OSDI] and Standard Patient Evaluation of Eye Dryness [SPEED] questionnaires) were determined in 20 patients (40 eyes) with MGD and dry eye symptoms at baseline (BL), 1 month, and 3 years post-TPS treatment using LipiFlow. Meibomian gland secretion scores increased from BL (4.5±0.8) to 1 month (12.0±1.1, P≤0.001). Improvement persisted at 3 years (18.4±1.4) relative to BL (P≤0.001). Meibomian gland secretion scores in all regions of the lower eyelid were improved over BL at 1 month (nasal [P≤0.001], central [P≤0.001], temporal [P≤0.01]) and 3 years (nasal [P≤0.001], central [P≤0.001], temporal [P≤0.001]). TBUT increased from BL (4.1±0.4) to 1 month (7.9±1.4, P≤0.05) but was not significantly different than BL at 3 years (4.5±0.6, P>0.05). The OSDI scores decreased from BL (26.0±4.6) to 1 month (14.7±4.3, P≤0.001) but returned to BL levels at 3 years (22.5±5.4, P>0.05). The SPEED scores decreased from BL (13.4±1.0) to 1 month (6.5±1.3, P≤0.001), and this improvement persisted at 3 years (9.5±1.6, P≤0.001). Thermal pulsation may be a uniquely efficacious treatment option for DED secondary to MGD in that a single 12-min procedure is associated with significant improvement in MGS and SPEED scores for up to 3 years.

  6. Therapeutic Effects of "Ibuprofen, Diphenhydramine and Aluminium MgS" on Recurrent Aphthous Stomatitis: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Katayoun Borhan-Mojabi

    2014-04-01

    Full Text Available Recurrent aphthous stomatitis (RAS is the most common and painful oral inflammatory lesion with an unknown etiology. This study aims to determine the therapeutic effects of ibuprofen, diphenhydramine and aluminum magnesium simethicone (AlMgS syrup on reducing oral aphthous ulcer pain.Thirty-one patients with RAS participated in this double-blind clinical trial. Subjects were randomly divided into two groups. The control group (n=14 received drug mixture as drug A (diphenhydramine and AlMgS and the case group (n=17 received drug B (ibuprofen, diphenhydramine and AlMgS. Drugs were topically applied on ulcers by the patients three times a day for 3 days. Patients were re-examined for the symptoms on the fourth day following their first visits using VAS (Visual Analogue Scale tool. Statistical analysis was performed using paired t-test, independent t-test and chi-square test.The mean of pain reduction was 3.17±2 (P<0.001 and 3.82±1.79 (P<0.001 in the case and control group, respectively. The difference in pain reduction between both groups was not statistically significant. In addition, no significant difference was detected between the two groups regarding the duration of pain or burning sensation (P=0.57.The results of this study demonstrate that in comparison with diphenhydramine and AlMgS syrup, the studied mixture did not effectively reduce the level of pain, duration and burning sensation.

  7. Advancing the practice of systems engineering at JPL

    Science.gov (United States)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  8. NextGen Technologies on the FAA's Standard Terminal Automation Replacement System

    Science.gov (United States)

    Witzberger, Kevin; Swenson, Harry; Martin, Lynne; Lin, Melody; Cheng, Jinn-Hwei

    2014-01-01

    This paper describes the integration, evaluation, and results from a high-fidelity human-in-the-loop (HITL) simulation of key NASA Air Traffic Management Technology Demonstration - 1 (ATD- 1) technologies implemented in an enhanced version of the FAA's Standard Terminal Automation Replacement System (STARS) platform. These ATD-1 technologies include: (1) a NASA enhanced version of the FAA's Time-Based Flow Management, (2) a NASA ground-based automation technology known as controller-managed spacing (CMS), and (3) a NASA advanced avionics airborne technology known as flight-deck interval management (FIM). These ATD-1 technologies have been extensively tested in large-scale HITL simulations using general-purpose workstations to study air transportation technologies. These general purpose workstations perform multiple functions and are collectively referred to as the Multi-Aircraft Control System (MACS). Researchers at NASA Ames Research Center and Raytheon collaborated to augment the STARS platform by including CMS and FIM advisory tools to validate the feasibility of integrating these automation enhancements into the current FAA automation infrastructure. NASA Ames acquired three STARS terminal controller workstations, and then integrated the ATD-1 technologies. HITL simulations were conducted to evaluate the ATD-1 technologies when using the STARS platform. These results were compared with the results obtained when the ATD-1 technologies were tested in the MACS environment. Results collected from the numerical data show acceptably minor differences, and, together with the subjective controller questionnaires showing a trend towards preferring STARS, validate the ATD-1/STARS integration.

  9. Analysis of Eye-Tracking Data with Regards to the Complexity of Flight Deck Information Automation and Management - Inattentional Blindness, System State Awareness, and EFB Usage

    Science.gov (United States)

    Dill, Evan T.; Young, Steven D.

    2015-01-01

    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB).

  10. Checkpointing for graceful degradation in distributed embedded systems

    Science.gov (United States)

    Sababha, Belal Hussein

    real-time embedded systems. As a case study, the BCS protocol was used to checkpoint the avionics of an unmanned aerial vehicle. Faults were injected during run-time causing one of the system's stability control tasks to fail. The system was able to recover in a very short time by restarting the affected task on a different processor with a correct state with a time delay that did not cause any instability.

  11. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  12. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  13. Estimating dependability of programmable systems using bayesian belief nets

    International Nuclear Information System (INIS)

    Gran, Bjoern Axel; Dahll, Gustav

    2000-05-01

    The research programme at the Halden Project on software safety assessment is augmented through a joint project with Kongsberg Defence and Aerospace AS and Det Norske Veritas. The objective of this project is to investigate the possibility to combine the Bayesian Belief Net (BBN) methodology with a software safety standard. The report discusses software safety standards in general, with respect to how they can be used to measure software safety. The possibility to transfer the requirements of a software safety standard into a BBN is also investigated. The aim is to utilise the BBN methodology and associated tools, by transferring the software safety measurement into a probabilistic quantity. In this way software can be included in a total probabilistic safety analysis. This project was performed by applying the method for an evaluation of a real, safety related programmable system which was developed according to the avionic standard DO-178B. The test case, the standard, and the BBN methodology are shortly described. This is followed by a description of the construction of the BBN used in this project. This includes the topology of the BBN, the elicitation of probabilities and the making of observations. Based on this a variety of computations are made using the SERENE methodology and the HUGIN tool. Observations and conclusions are made on the basis of the findings from this process. This report should be considered as a progress report in a more long-term activity on the use of BBNs as support for safety assessment of programmable systems. (Author). 23 refs., 9 figs., tabs

  14. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    Science.gov (United States)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  15. Rapid enumeration of low numbers of moulds in tea based drinks using an automated system.

    Science.gov (United States)

    Tanaka, Kouichi; Yamaguchi, Nobuyasu; Baba, Takashi; Amano, Norihide; Nasu, Masao

    2011-01-31

    Aseptically prepared cold drinks based on tea have become popular worldwide. Contamination of these drinks with harmful microbes is a potential health problem because such drinks are kept free from preservatives to maximize aroma and flavour. Heat-tolerant conidia and ascospores of fungi can survive pasteurization, and need to be detected as quickly as possible. We were able to rapidly and accurately detect low numbers of conidia and ascospores in tea-based drinks using fluorescent staining followed by an automated counting system. Conidia or ascospores were inoculated into green tea and oolong tea, and samples were immediately filtered through nitrocellulose membranes (pore size: 0.8 μm) to concentrate fungal propagules. These were transferred onto potato dextrose agar and incubated for 23 h at 28 °C. Fungi germinating on the membranes were fluorescently stained for 30 min. The stained mycelia were counted selectively within 90s using an automated counting system (MGS-10LD; Chuo Electric Works, Osaka, Japan). Very low numbers (1 CFU/100ml) of conidia or ascospores could be rapidly counted, in contrast to traditional labour intensive techniques. All tested mould strains were detected within 24h while conventional plate counting required 72 h for colony enumeration. Counts of slow-growing fungi (Cladosporium cladosporioides) obtained by automated counting and by conventional plate counting were close (r(2) = 0.986). Our combination of methods enables counting of both fast- and slow-growing fungi, and should be useful for microbiological quality control of tea-based and also other drinks. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Real-Time Control System for Improved Precision and Throughput in an Ultrafast Carbon Fiber Placement Robot Using a SoC FPGA Extended Processing Platform

    Directory of Open Access Journals (Sweden)

    Gilberto Ochoa-Ruiz

    2017-01-01

    Full Text Available We present an architecture for accelerating the processing and execution of control commands in an ultrafast fiber placement robot. The system consists of a robotic arm designed by Coriolis Composites whose purpose is to move along a surface, on which composite fibers are deposed, via an independently controlled head. In first system implementation, the control commands were sent via Profibus by a PLC, limiting the reaction time and thus the precision of the fiber placement and the maximum throughput. Therefore, a custom real-time solution was imperative in order to ameliorate the performance and to meet the stringent requirements of the target industry (avionics, aeronautical systems. The solution presented in this paper is based on the use of a SoC FPGA processing platform running a real-time operating system (FreeRTOS, which has enabled an improved comamnd retrieval mechanism. The system’s placement precision was improved by a factor of 20 (from 1 mm to 0.05 mm, while the maximum achievable throughput was 1 m/s, compared to the average 30 cm/s provided by the original solution, enabling fabricating more complex and larger pieces in a significant fraction of the time.

  17. Demonstration of a high speed hybrid electrical and optical sensing system for next generation launcher applications

    Science.gov (United States)

    Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny

    2017-09-01

    The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all

  18. System for synthetic vision and augmented reality in future flight decks

    Science.gov (United States)

    Behringer, Reinhold; Tam, Clement K.; McGee, Joshua H.; Sundareswaran, Venkataraman; Vassiliou, Marius S.

    2000-06-01

    Rockwell Science Center is investigating novel human-computer interface techniques for enhancing the situational awareness in future flight decks. One aspect is to provide intuitive displays which provide the vital information and the spatial awareness by augmenting the real world with an overlay of relevant information registered to the real world. Such Augmented Reality (AR) techniques can be employed during bad weather scenarios to permit flying in Visual Flight Rules (VFR) in conditions which would normally require Instrumental Flight Rules (IFR). These systems could easily be implemented on heads-up displays (HUD). The advantage of AR systems vs. purely synthetic vision (SV) systems is that the pilot can relate the information overlay to real objects in the world, whereas SV systems provide a constant virtual view, where inconsistencies can hardly be detected. The development of components for such a system led to a demonstrator implemented on a PC. A camera grabs video images which are overlaid with registered information, Orientation of the camera is obtained from an inclinometer and a magnetometer, position is acquired from GPS. In a possible implementation in an airplane, the on-board attitude information can be used for obtaining correct registration. If visibility is sufficient, computer vision modules can be used to fine-tune the registration by matching visual clues with database features. Such technology would be especially useful for landing approaches. The current demonstrator provides a frame-rate of 15 fps, using a live video feed as background and an overlay of avionics symbology in the foreground. In addition, terrain rendering from a 1 arc sec. digital elevation model database can be overlaid to provide synthetic vision in case of limited visibility. For true outdoor testing (on ground level), the system has been implemented on a wearable computer.

  19. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    Science.gov (United States)

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    safety and operational challenges of national airspace access by unmanned aircraft systems, or UAS. In the process, the project will work with other key stakeholders to define necessary deliverables and products to help enable such access. Within the project, NASA is focusing on five sub-projects. These five focus areas include assurance of safe separation of unmanned aircraft from manned aircraft when flying in the national airspace; safety-critical command and control systems and radio frequencies to enable safe operation of UAS; human factors issues for ground control stations; airworthiness certification standards for UAS avionics and integrated tests and evaluation designed to determine the viability of emerging UAS technology. Five Focus Areas of the UAS Integration in the NAS Project Separation Assurance Provide an assessment of how planned Next Generation Air Transportation System (NextGen) separation assurance systems, with different functional allocations, perform for UAS in mixed operations with manned aircraft Assess the applicability to UAS and the performance of NASA NextGen separation assurance systems in flight tests with realistic latencies and uncertain trajectories Assess functional allocations ranging from today's ground-based, controller-provided aircraft separation to fully autonomous airborne self-separation Communications Develop data and rationale to obtain appropriate frequency spectrum allocations to enable safe and efficient operation of UAS in the NAS Develop and validate candidate secure safety-critical command and control system/subsystem test equipment for UAS that complies with UAS international/national frequency regulations, standards and recommended practices and minimum operational and aviation system performance standards for UAS Perform analysis to support recommendations for integration of safety-critical command and control systems and air traffic control communications to ensure safe and efficient operation of UAS in the NAS

  20. NASA's Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  1. Aircraft Icing Weather Data Reporting and Dissemination System

    Science.gov (United States)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  2. A REST-ful interpretation for embedded modular systems based on open architecture

    Science.gov (United States)

    Lyke, James

    2016-05-01

    The much-anticipated revolution of the "Internet of things" (IoT) is expected to generate one trillion internet devices within the next 15 years, mostly in the form of simple wireless sensor devices. While this revolution promises to transform silicon markets and drive a number of disruptive changes in society, it is also the case that the protocols, complexity, and security issues of extremely large dynamic, co-mingled networks is still poorly understood. Furthermore, embedded system developers, to include military and aerospace users, have largely ignored the potential (good and bound) of the cloudlike, possibly intermingling networks having variable structure to how future systems might be engineered. In this paper, we consider a new interpretation of IoT inspired modular architecture strategies involving the representational state transfer (REST) model, in which dynamic networks with variable structure employ stateless application programming interface (API) concepts. The power of the method, which extends concepts originally developed for space plug-and-play avionics, is that it allows for the fluid co-mingling of hardware and software in networks whose structure can overlap and evolve. Paradoxically, these systems may have the most stringent determinism and fault-tolerant needs. In this paper we review how RESTful APIs can potentially be used to design, create, test, and deploy systems rapidly while addressing security and referential integrity even when the nodes of many systems might physically co-mingle. We will also explore ways to take advantage of the RESTful paradigm for fault tolerance and what extensions might be necessary to deal with high-performance and determinism.

  3. America's Next Great Ship: Space Launch System Core Stage Transitioning from Design to Manufacturing

    Science.gov (United States)

    Birkenstock, Benjamin; Kauer, Roy

    2014-01-01

    The Space Launch System (SLS) Program is essential to achieving the Nation's and NASA's goal of human exploration and scientific investigation of the solar system. As a multi-element program with emphasis on safety, affordability, and sustainability, SLS is becoming America's next great ship of exploration. The SLS Core Stage includes avionics, main propulsion system, pressure vessels, thrust vector control, and structures. Boeing manufactures and assembles the SLS core stage at the Michoud Assembly Facility (MAF) in New Orleans, LA, a historical production center for Saturn V and Space Shuttle programs. As the transition from design to manufacturing progresses, the importance of a well-executed manufacturing, assembly, and operation (MA&O) plan is crucial to meeting performance objectives. Boeing employs classic techniques such as critical path analysis and facility requirements definition as well as innovative approaches such as Constraint Based Scheduling (CBS) and Cirtical Chain Project Management (CCPM) theory to provide a comprehensive suite of project management tools to manage the health of the baseline plan on both a macro (overall project) and micro level (factory areas). These tools coordinate data from multiple business systems and provide a robust network to support Material & Capacity Requirements Planning (MRP/CRP) and priorities. Coupled with these tools and a highly skilled workforce, Boeing is orchestrating the parallel buildup of five major sub assemblies throughout the factory. Boeing and NASA are transforming MAF to host state of the art processes, equipment and tooling, the most prominent of which is the Vertical Assembly Center (VAC), the largest weld tool in the world. In concert, a global supply chain is delivering a range of structural elements and component parts necessary to enable an on-time delivery of the integrated Core Stage. SLS is on plan to launch humanity into the next phase of space exploration.

  4. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  5. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    Science.gov (United States)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  6. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    Science.gov (United States)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  7. 78 FR 65153 - Special Conditions: Learjet Model 45 Series Airplanes; Aircraft Electronic System Security...

    Science.gov (United States)

    2013-10-31

    ... design feature associated with the architecture and connectivity capabilities of the airplanes' computer... the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete... passengers and two crew members. The proposed Learjet Model 45 avionics architecture is new and novel for...

  8. Declines in arrestin and rhodopsin in the macula with progression of age-related macular degeneration.

    Science.gov (United States)

    Ethen, Cheryl M; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2005-03-01

    Biochemical analysis of age-related macular degeneration (AMD) at distinct stages of the disease will help further understanding of the molecular events associated with disease progression. This study was conducted to determine the ability of a new grading system for eye bank eyes, the Minnesota Grading System (MGS), to discern distinct stages of AMD so that retinal region-specific changes in rod photoreceptor protein expression from donors could be determined. Donor eyes were assigned to a specific level of AMD by using the MGS. Expression of the rod photoreceptor proteins rhodopsin and arrestin was evaluated by Western immunoblot analysis in the macular and peripheral regions of the neurosensory retina from donors at different stages of AMD. A significant linear decline in both arrestin and rhodopsin content correlated with progressive MGS levels in the macula. In contrast, the peripheral region showed no significant correlation between MGS level and the content of either protein. The statistically significant relationship between decreasing macular rod photoreceptor proteins and progressive MGS levels of AMD demonstrates the utility of the clinically based MGS to correspond with specific protein changes found at known, progressive stages of degeneration. Future biochemical analysis of clinically characterized donor eyes will further understanding of the pathobiochemistry of AMD.

  9. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  10. SLS Block 1-B and Exploration Upper Stage Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred

    2018-01-01

    The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with

  11. Predictive Software Cost Model Study. Volume I. Final Technical Report.

    Science.gov (United States)

    1980-06-01

    development phase to identify computer resources necessary to support computer programs after transfer of program manangement responsibility and system... classical model development with refinements specifically applicable to avionics systems. The refinements are the result of the Phase I literature search

  12. Towards Prognostics for Electronics Components

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is...

  13. Internet-based information system of digital geological data providing

    Science.gov (United States)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements

  14. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M. [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Chemistry and Biology, Rider University, Lawrenceville, New Jersey 08648 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  15. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    International Nuclear Information System (INIS)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M.

    2009-01-01

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm 2 ) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to ∼2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  16. Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2016-01-01

    Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.

  17. Detection of intermittent resistive faults in electronic systems based on the mixed-signal boundary-scan standard

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Ebrahimi, Hassan

    2015-01-01

    In avionics, like glide computers, the problem of No Faults Found (NFF) is a very serious and extremely costly affair. The rare occurrences and short bursts of these faults are the most difficult ones to detect and diagnose in the testing arena. Several techniques are now being developed in ICs by

  18. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  19. Developpements numeriques recents realises en aeroelasticite chez Dassault Aviation pour la conception des avions de combat modernes et des avions d’affaires

    Science.gov (United States)

    2003-03-01

    Cost through Advanced Modelling and Virtual Simulation [La reduction des couts et des delais d’acquisition des vehicules militaires par la modelisation...sont les 6quations de restitution, par le mod~e, des frdquences et des amortissements des modes adrodlastiques mesurds h une prdcision F- donnde. Afin... amortissements mesurds h 37800 Pa et 60000 Pa (points nettemnent inferieurs A la vitesse critique). Comme le montre ce diagramme, le calcul, recal6 h

  20. NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities

    Science.gov (United States)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer

  1. Radiation Mitigation Methods for Reprogrammable FPGA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the needs of NASA is the development of avionic systems and components that have the capability to operate in extreme radiation and temperature environments...

  2. NAMMA DC-8 NAVIGATION AND HOUSEKEEPING (ICATS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA DC-8 Information Collection and Transmission System (ICATS) is designed to: 1) interface and process avionics and environmental paramaters from the...

  3. DIAGNOSTIC/PROGNOSTIC EXPERIMENTS FOR CAPACITOR DEGRADATION AND HEALTH MONITORING IN DC-DC CONVERTERS

    Data.gov (United States)

    National Aeronautics and Space Administration — Studying and analyzing the ageing mechanisms of electronic components avionics in systems such as the GPS and INAV are of critical importance. In DC-DC power...

  4. National Skills Standards Development Program: Organization and Operation of Technical Committees To Develop National Skill Standards for Competency in the Electronics Industry. The Third Party Summative Evaluation of the Electronic Industries Foundation Project. Phase I & II. Final Report.

    Science.gov (United States)

    Losh, Charles

    The Electronics Industries Foundation was awarded a project to develop national entry-level standards and a certification system. Ten specialties were included: automotive electronics, avionics, biomedical electronics, business machines, consumer products electronics, general electronics, industrial electronics, instrumentation, microcomputer, and…

  5. Next generation space interconnect research and development in space communications

    Science.gov (United States)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  6. 100TH T-38C Delivery Ceremony (Defense Acquisition Review Journal)

    National Research Council Canada - National Science Library

    Ott, David D; Davis, James B

    2002-01-01

    In 2000, the United States Air Force T-38 Avionics Upgrade System Program Office began to pursue Lean initiatives to reduce out-year program cost and delivery risk at the Boeing T-38C Upgrade facility...

  7. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the vehicle, avionics and atmosphere (if crewed) within a defined temperature range. Since water is non-toxic and good...

  8. Understanding and Improvement of an Experiment Measuring Chemical Reaction Rates by Monitoring Volume Change of a Gas: On the Reaction between HCl(aq) and Mg(s)

    International Nuclear Information System (INIS)

    Bang, Jeong Ah; Yoon, Hee Sook; Jeong, Dae Hong; Choi, Won Ho

    2006-01-01

    In this study we analyzed and improved an experiment measuring chemical reaction rates introduced in the high school science textbooks through an understanding of the phenomena observed in carrying out the experiment. For this purpose, the contents of textbooks related to the experiment were analyzed, and the problems observed in carrying out the experiment were addressed through experimental analysis. When the experiment was carried out by the method of aquatic transposition presented in textbooks, the observed volume change of H 2 gas was delayed and chemical reaction rate was increased in the early stage of reaction period. To resolve these problems, an improved method for measuring the reaction rates was suggested. In the improved experiment the reaction rate was measured to be constant on time, which was interpreted in terms of the concentration of H + and the surface area of magnesium

  9. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  10. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    Science.gov (United States)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  11. 4-Meter Gait Speed Test in Chronic Obstructive Pulmonary Disease: INTERRATER RELIABILITY USING A STOPWATCH.

    Science.gov (United States)

    Bisca, Gianna Waldrich; Fava, Lucas Rodrigues; Morita, Andrea Akemi; Machado, Felipe Vilaça Cavallari; Pitta, Fabio; Hernandes, Nidia Aparecida

    2017-12-14

    4-meter gait speed (4MGS) is increasingly used to assess functional performance in patients with chronic obstructive pulmonary disease. However, the current literature lacks information regarding some technical standards for this test. Therefore, the purpose of this study was to compare and to evaluate the interrater reliability between a stopwatch and video recording used as timing systems for the 4MGS in patients with chronic obstructive pulmonary disease, as well as to verify the interrater reliability between 2 observers measuring the 4MGS time using a manual stopwatch. Fifty-one patients performed the 4MGS using 4 different protocols (random order): walking at the usual and maximum speed in a 4-meter course and walking at the same 2 speeds on an 8-m course using a 2-m acceleration zone, a 4-meter timing area, and a 2-m deceleration zone. Gait speed was measured simultaneously using a stopwatch and a video recording. In a subanalysis (n = 24), 2 independent observers timed the 4MGS using a stopwatch. There was no significant difference in comparison between the 2 timing methods (P > .05 for all), and the reliability between video recording and stopwatch was excellent in all 4MGS studied protocols (intraclass correlation coefficient ≥ 0.91). Moreover, when comparing gait speed measured by 2 observers using a stopwatch, no significant difference was found among all proposed protocols (P > .05 for all), and there was also excellent reliability between the 2 independent observers (intraclass correlation coefficient ≥ 0.94). The stopwatch, a low-cost and feasible tool, is reliable as a timing device for the 4MGS in patients with chronic obstructive pulmonary disease.

  12. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  13. The Use of Human Modeling of EVA Tasks as a Systems Engineering Tool

    Science.gov (United States)

    Dischinger, H. Charles, Jr.; Schmidt, Henry J.; Kross, Dennis A. (Technical Monitor)

    2001-01-01

    Computer-generated human models have been used in aerospace design for a decade. They have come to be highly reliable for worksite analysis of certain types of EVA tasks. In many design environments, this analysis comes after the structural design is largely complete. However, the use of these models as a development tool is gaining acceptance within organizations that practice good systems engineering processes. The design of the United States Propulsion Module for the International Space Station provides an example of this application. The Propulsion Module will provide augmentation to the propulsion capability supplied by the Russian Service Module Zvezda. It is a late addition to the set of modules provided by the United States to the ISS Program, and as a result, faces design challenges that result from the level of immaturity of its integration into the Station. Among these are heat dissipation and physical envelopes. Since the rest of the Station was designed to maximize the use of the cooling system, little margin is available for the addition of another module. The Propulsion Module will attach at the forward end of the Station, and will be between the Orbiter and the rest of ISS. Since cargo must be removed from the Payload Bay and transferred to Station by the Canadarm, there is a potential for protrusions from the module, such as thruster booms, to interfere with robotic operations. These and similar engineering issues must be addressed as part of the development. In the implementation of good system design, all design solutions should be analyzed for compatibility with all affected subsystems. Human modeling has been used in this project to provide rapid input to system trades of design concepts. For example, the placement of radiators and avionics components for optimization of heat dissipation had to be examined for feasibility of EVA translation paths and worksite development. Likewise, the location of and mechanism for the retraction of thruster

  14. An Evaluation of an Ada Implementation of the Rete Algorithm for Embedded Flight Processors

    Science.gov (United States)

    1990-12-01

    computers was desired. The VAX VMS operating system has many built-in methods for determining program performance (including VAX PCA), but these methods... overviev , of the target environment-- the MIL-STD-1750A VHSIC Avionic Modular Processor ( VA.IP, running under the Ada Avionics Real-Time Software (AARTS... computers . Mil-STD-1750A, the Air Force’s standard flight computer architecture, however, places severe constraints on applications software processing

  15. Man-machine interface requirements - advanced technology

    Science.gov (United States)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  16. Embedded Systems

    Indian Academy of Sciences (India)

    Embedded system, micro-con- troller ... Embedded systems differ from general purpose computers in many ... Low cost: As embedded systems are extensively used in con- .... operating systems for the desktop computers where scheduling.

  17. Thermal systems; Systemes thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)

    2005-07-01

    This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of

  18. Evaluation of System Architectures for the Army Aviation Ground Power Unit

    Science.gov (United States)

    2014-12-01

    air cycle machine fed by APU compressor bleed air to provide avionics cooling, so the AGPU was required to provide pneumatic power simultaneous with...broad categories of compressors : positive displacement and aerodynamic. Of the positive displacement compressors , reciprocating, rotary screw , and... compressor the single stage piston and the rot:aiy screw compressors are best suited. The rotmy screw machines m·e close tolerance complicated machines

  19. Supervisory Control for Real Time Reactive Power Flow Optimization in Islanded Microgrids

    DEFF Research Database (Denmark)

    Milczarek, Adam; Vasquez, Juan Carlos; Malinowski, Mariusz

    2013-01-01

    -line measurements. Similarly to any process system, MG hierarchical control is divided into three levels. However, an additional control algorithm is required to manage power transmission between sources and loads, maximizing efficiency and minimizing transmission losses. This real-time optimization problem......A microgrid (MG) is a local energy system consisting of a number of energy sources, energy storage units and loads that operate connected to the main electrical grid or autonomously. MGs include wind, solar or other renewable energy sources. MGs provide flexibility, reduce the main electricity grid...... dependence and contribute to change the large centralized production paradigm to local and distributed generation. However, such energy systems require complex management, advanced control and optimization. Interest on MGs hierarchical control has increased due to the availability of cheap on...

  20. Relationship between the electronic structure and the glide in the hexagonal close packed metals

    International Nuclear Information System (INIS)

    Legrand, B.; Le Hazif, R.

    1983-06-01

    In all hexagonal close-packed metals (HCP), deformation is performed by slip on a mean glide system (MGS) and on several secondary systems. There are no reliable predictions of the MGS choice. In this paper is shown the role played by the electronic structure on the choice of glide system in HCP metals. MGS is basal for all normal metals and is a function of the electron number in HCP transition metals. The different SFE's were calculated using appropriate total energy models, for different metals. Thus pseudopotentials were used (or empirical pair potentials) for normal metals, and a tight-binding model for transition metals. The most important results are the following: prismatic SFE (PSFE) is smaller than basal SFE (BSFE) for Y, Ti, Zr, Hf, Ru and Os; BSFE is smaller than PSFE for Co and all normal metals; BSFE and PSFe and about the same for RE and Tc

  1. Data Systems vs. Information Systems

    OpenAIRE

    Amatayakul, Margret K.

    1982-01-01

    This paper examines the current status of “hospital information systems” with respect to the distinction between data systems and information systems. It is proposed that the systems currently existing are incomplete data dystems resulting in ineffective information systems.

  2. Power Electronics for Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Blaabjerg, Frede

    2016-01-01

    A microgrid (MG) is a stand-alone or grid-connected hybrid renewable system that uses distributed renewable and nonrenewable energy sources and energy storage systems (ESSs) to supply power to local loads. The system is ordinarily based on power electronics, with interface converters allowing...... a continuous supply of power in the presence of variable RES production. This chapter describes some specific features of DC MGs in terms of power architecture, control, and protection. It also reviews several uncommon power electronic interfaces. Regarding control, operation without critical communication...... are explained in this chapter. The chapter concludes with a review of power electronic intensive protection solutions for DC MGs....

  3. SHARP's systems engineering challenge: rectifying integrated product team requirements with performance issues in an evolutionary spiral development acquisition

    Science.gov (United States)

    Kuehl, C. Stephen

    2003-08-01

    Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics

  4. EXPERT SYSTEMS

    OpenAIRE

    Georgiana Marin; Mihai Catalin Andrei

    2011-01-01

    In recent decades IT and computer systems have evolved rapidly in economic informatics field. The goal is to create user friendly information systems that respond promptly and accurately to requests. Informatics systems evolved into decision assisted systems, and such systems are converted, based on gained experience, in expert systems for creative problem solving that an organization is facing. Expert systems are aimed at rebuilding human reasoning on the expertise obtained from experts, sto...

  5. Civil mini-RPA's for the 1980's: Avionics design considerations. [remotely piloted vehicles

    Science.gov (United States)

    Karmarkar, J. S.

    1975-01-01

    A number of remote sensing or surveillance tasks (e.g., fire fighting, crop monitoring) in the civilian sector of our society may be performed in a cost effective manner by use of small remotely piloted aircraft (RPA). This study was conducted to determine equipment (and the associated technology) that is available, and that could be applied to the mini-RPA and to examine the potential applications of the mini-RPA with special emphasis on the wild fire surveillance mission. The operational considerations of using the mini-RPA as affected by government regulatory agencies were investigated. These led to equipment requirements (e.g., infra-red sensors) over and above those for the performance of the mission. A computer technology survey and forecast was performed. Key subsystems were identified, and a distributed microcomputer configuration, that was functionally modular, was recommended. Areas for further NASA research and development activity were also identified.

  6. 76 FR 70044 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes

    Science.gov (United States)

    2011-11-10

    ... was discovered that the LH [left-hand] elevator lower stop assembly was broken at the level of the... post-flight inspection, it was discovered that the LH [left-hand] elevator lower stop assembly was... to be jammed. During the post-flight inspection, it was discovered that the LH elevator lower stop...

  7. Rugged and compact mid-infrared solid-state laser for avionics applications

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-11-01

    Full Text Available In order to demonstrate the feasibility of a helicopter-based application using advanced laser technology, the authors have developed a rugged and compact mid-infrared solid-state laser. The requirement for the laser was to simultaneously emit at 2...

  8. Intelligent, reusable software for plug and play space avionics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space processing and hardening technologies and products e.g (Proton 200K), to research and develop reusable software...

  9. Automated Data Base Implementation Requirements for the Avionics Planning Baseline - Army

    Science.gov (United States)

    1983-07-01

    PJRQT PJRSG .... PRJR owns PJRQTR Item EFT A32 A26 In record EFR Item ESFT A36 A40 In record ESFR Item EQPOC ALCPOC A20 In record EQR Iten EPHONE LPHONE...USING EF DUPLICATES ARE NOT ALLOWED WITHIN EQSEG. EF TYPE CHARACTER 4. EFT TYPE CHARACTER 32. EG TYPE CHARACTER 4. RECORD NAME IS ESFR LOCATION MODE... ESFR MANDATORY AUTOMATIC LINKED TO OWNER ASCENDING KEY IS ESF DUPLICATES NOT SET SELECTION THRU LOCATION MODE OF OWNER. SET NAME IS ESEQ MODE CHAIN

  10. Evaluation de differentes strategies de demantelement de la carcasse d'un avion

    Science.gov (United States)

    Sainte-Beuve, Damien

    At the time when sustainable development of our environment and our society become more and more considered, the issue of the end of life of aircraft arises. With the tightening of regulations and policies to reduce operating costs, aircraft are increasingly removed from service before the end of their operational life. However, the regulations do not only affect the operational life of the aircraft. In the future, there are great chances that the aircraft end of life will be also regulated as the car end of life. Nowadays some deserts serve as a tomb for airplanes skeletons, but what will happen in a few years? Recycling the skeleton is not an operation with very high added value, such as reselling used parts, however intelligent sorting and facing the market can increase the gain. At the level of the aircraft life cycle, recycling its materials reduces its overall impact, and also helps to reduce pollution and land use, even if the main impacts generated by planes are created during the use phase. Similarly, if the recyclability of the aircraft is studied at the source, that is to say in its design, this will help to reduce the use of non-recyclable materials and dangerous compound. The greatest difficulty for recycling aircraft skeletons is that different materials are mixed and attached to each other. Through a thermodynamic study we showed what concentrations of alloying elements in a molten bath could be reduced. By using the Gibbs free energy, we evaluated some of the reactions taking place in a molten bath of aluminum during the injection of oxygen, boron, and chlorine. We focused on the reactions forming dual elements compounds, such as lithium oxide or magnesium chloride. We have shown that the six elements able to react when these reactions occurs are the lithium, the magnesium, the nickel, the titanium, the vanadium and the zirconium. It is necessary to remember that the impurities for alloys used in the aerospace industry are lower and especially those of iron and silicon. The major problem of recycling of aluminum alloys is that some attachments are made from steels, and are not separated from aluminum. Iron binds too easily with aluminum and removing it is expensive and complicated. The separation of these disturbing parts can be performed before or after shredding parts. Present sorting pathways already permit at a certain scale, to make this type of sorting. Adding some type of sorting, such as the LIBS or the use of dry ice blasting can help to increase the purity of the alloys obtained. On the other hand, the number of different aircraft being relatively small, it is possible to develop specific methods to recycle specific aircraft and this according to the technologies available at the end of life of the aircraft. In this context we have studied the wing of a Canadair Regional Jet 200. After characterizing more than 80% by weight of the wing, we looked at determining areas to maximize the alloys recycled in a close loop. We developed a method to create homogenous areas with the data we collected. We have shown that the removal of certain parts, sometimes massive such as landing gear support can reduce the final impurity. In addition, the more massive they are, the more their withdrawal is interesting because while improving the quality of the whole mix, the parts removed are recoverable their self. Unfortunately, for the final work to provide a real gain it is necessary that the data is of high quality, and numerous. This rule is even truer if we apply an algorithm to create homogeneous areas. This algorithm takes into account the market demands, to create areas satisfying this demand. With three-dimensional data, the algorithm is able to take into account the actual average concentration of elements present, and all the parts left during the dismantling of the plane. Due to the complexity of assemblies, neither the post-milling nor the pre-shredding treatment is perfect. This is why it is interesting and productive to combine them. Sorting pre-shredding can save and facilitate the post-shredding.

  11. Cold Regions Logistic Supportability Testing of Electronic, Avionic and Communications Equipment.

    Science.gov (United States)

    1985-06-20

    Comment : 2. Have all data collected been reviewed for correctness and completeness? YES NO . Comment : 3. Were the facilities, test equipment...insufficient test planning? YES NO . Comment : 5. Were the test results compromised in any way due to test performance procedures? YES NO . Comment : 6. Were the...test results compromised in any way due to test control pro- cedures? YES NO Comment : 7. Were the test results compromised in any way due to data

  12. Validation of the Operating and Support Cost Model for Avionics Automatic Test Equipment (OSCATE).

    Science.gov (United States)

    1980-06-01

    AFLCR 65-1 (56) DOD 4140 -32 (74) CODES DATA LISTED BY. ALC code, Division Code, Equipment Specialist Code, NSN DATA ORDERING SEQUENCEs This data is...PAJ6A 4140 -01-043-5035 .... IL0UERft1TfR 1002 1 319.55 22720 1 0 0 1003 0 14.55 0 0 0 10.00 0 0 1004 0 0 32.454 16.42 0 0 0 0 0 0 0 127 1101 PAJHA 4920...5320 480 CONTINUE 5330 60 To 150 5340 5350C *...*~****.*.s*..** 5360C *****eOUTPUT OPTION 7 5370C e**ss*** sae ******* 5380 500 PRINT 510 5390 510

  13. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    Science.gov (United States)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  14. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding.

  15. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  16. Acquisition Management: Source Selection Procedures for the C-5 Avionics Modernization Program

    National Research Council Canada - National Science Library

    Granetto, Paul J; Neville, Douglas P; Mathews, Amy L; Thompson, Lashonda M; Burger, Michael T; Anderson, Lamar; Hepler, Michael T; Borrero, Karen M; Hart, Erin S

    2006-01-01

    ... (Acquisition, Technology, and Logistics) commissioned a study to review acquisition-related actions taken by the former Principal Deputy Assistant Secretary of the Air Force for Acquisition and Management (Principal Deputy...

  17. Suicide plane crash against nuclear power plants; Avion suicide contre centrales nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Richard, A

    2002-12-01

    Cea (French atomic energy commission) and EDF (Electricity of France) are reassessing their safety standards concerning suicide plane attacks against nuclear facilities. The general idea is to study the non-linear behaviour of reinforced concrete in case of mechanical impact. American studies carried out in 1988 show that a F-14 phantom crashing into a 3,6 meter thick wall at a speed of 774 km/h penetrates only the first 5 cm of the wall. More recent studies performed in Germany and based on computerized simulations show that the reactor containment can sustain impacts from a F15 plane or even from a 747-Boeing but contiguous buildings like the one which houses spent fuels might be more easily damaged because of their metal roofing. (A.C.)

  18. Multibody Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens

    1999-01-01

    Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system....

  19. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  20. Multi-Functional Distributed Secondary Control for Autonomous Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad

    Microgrids (MGs)--the building blocks of the smart grid-- are local grids comprise different technologies such as power electronics converters, distributed renewable and non-renewable energy sources, energy storage systems, and telecommunications which can operate either in islanded mode or conne......Microgrids (MGs)--the building blocks of the smart grid-- are local grids comprise different technologies such as power electronics converters, distributed renewable and non-renewable energy sources, energy storage systems, and telecommunications which can operate either in islanded mode...

  1. Mountain Search and Rescue with Remotely Piloted Aircraft Systems

    Science.gov (United States)

    Silvagni, Mario; Tonoli, Andrea; Zenerino, Enrico; Chiaberge, Marcello

    2016-04-01

    Remotely Piloted Aircraft Systems (RPAS) also known as Unmanned Aerial Systems (UAS) are nowadays becoming more and more popular in several applications. Even though a complete regulation is not yet available all over the world, researches, tests and some real case applications are wide spreading. These technologies can bring many benefits also to the mountain operations especially in emergencies and harsh environmental conditions, such as Search and Rescue (SAR) and avalanche rescue missions. In fact, during last decade, the number of people practicing winter sports in backcountry environment is increased and one of the greatest hazards for recreationists and professionals are avalanches. Often these accidents have severe consequences leading, mostly, to asphyxia-related death, which is confirmed by the hard drop of survival probability after ten minutes from the burying. Therefore, it is essential to minimize the time of burial. Modern avalanche beacon (ARTVA) interface guides the rescuer during the search phase reducing its time. Even if modern avalanche beacons are valid and reliable, the seeking range influences the rescue time. Furthermore, the environment and morphologic conditions of avalanches usually complicates the rescues. The recursive methodology of this kind of searching offers the opportunity to use automatic device like drones (RPAS). These systems allow performing all the required tasks autonomously, with high accuracy and without exposing the rescuers to additional risks due to secondary avalanches. The availability of highly integrated electronics and subsystems specifically meant for the applications, better batteries, miniaturized payload and, in general, affordable prices, has led to the availability of small RPAS with very good performances that can give interesting application opportunities in unconventional environments. The present work is one of the outcome from the experience made by the authors in RPAS fields and in Mechatronics

  2. Coupling component systems towards systems of systems

    OpenAIRE

    Autran , Frédéric; Auzelle , Jean-Philippe; Cattan , Denise; Garnier , Jean-Luc; Luzeaux , Dominique; Mayer , Frédérique; Peyrichon , Marc; Ruault , Jean-René

    2008-01-01

    International audience; Systems of systems (SoS) are a hot topic in our "fully connected global world". Our aim is not to provide another definition of what SoS are, but rather to focus on the adequacy of reusing standard system architecting techniques within this approach in order to improve performance, fault detection and safety issues in large-scale coupled systems that definitely qualify as SoS, whatever the definition is. A key issue will be to secure the availability of the services pr...

  3. Systems effectiveness

    CERN Document Server

    Habayeb, A R

    1987-01-01

    Highlights three principal applications of system effectiveness: hardware system evaluation, organizational development and evaluation, and conflict analysis. The text emphasizes the commonality of the system effectiveness discipline. The first part of the work presents a framework for system effectiveness, partitioning and hierarchy of hardware systems. The second part covers the structure, hierarchy, states, functions and activities of organizations. Contains an extended Appendix on mathematical concepts and also several project suggestions.

  4. Auxiliary systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1981-01-01

    Systems included under the heading ''Reactor Auxillary Systems'' are those immediately involved with the reactor operation. These include the systems for dosing and letdown of reactor coolant, as well as for the chemical dosing, purification and treatment of the reactor coolant and the cooling system in the controlled area. The ancillary systems are mainly responsible for liquid and gaseous treatment and the waste treatment for final storage. (orig.)

  5. Mass gatherings: A one-stop opportunity to complement global disease surveillance

    Directory of Open Access Journals (Sweden)

    Habida Elachola

    2016-01-01

    Full Text Available Emerging infections including those resulting from the bioterrorist use of infectious agents have indicated the need for global health surveillance. This paper reviews multiple surveillance opportunities presented by mass gatherings (MGs that align with fundamental questions in epidemiology (why, what, who, where, when and how. Some MGs bring together large, diverse population groups coming from countries with high prevalence of communicable diseases and disparate surveillance capacities. MGs have the potential to exacerbate the transmission dynamics of infectious diseases due to various factors including the high population density and rigor of events, increase in number of people with underlying diseases that predisposes them to disease acquisition, mixing of people from countries or regions with and without efficient disease control efforts, and varying endemicity or existence of communicable diseases in home countries. MGs also have the potential to increase the opportunities for mechanical and even heat-related injuries, morbidity or deaths from accidents, alcohol use, deliberate terrorist attacks with biological agents and/or with explosives and from exacerbation of pre-existing conditions. Responding to these wider range of events may require the use of novel bio-surveillance systems designed to collect data from different sources including electronic and non-electronic medical records from emergency departments and hospitalisations, laboratories, medical examiners, emergency call centres, veterinary, food processors, drinking water systems and even other non-traditional sources such as over-the-counter drug sales and crowd photographs. Well-structured, interoperable real-time surveillance and reporting systems should be integral to MG planning. The increase in magnitude of participants exceeding millions and diversity of people attending MGs can be proactively used to conduct active surveillance of communicable and non

  6. A Novel Decentralized Economic Operation in Islanded AC Microgrids

    Directory of Open Access Journals (Sweden)

    Hua Han

    2017-06-01

    Full Text Available Droop schemes are usually applied to the control of distributed generators (DGs in microgrids (MGs to realize proportional power sharing. The objective might, however, not suit MGs well for economic reasons. Addressing that issue, this paper proposes an alternative droop scheme for reducing the total active generation costs (TAGC. Optimal economic operation, DGs’ capacity limitations and system stability are fully considered basing on DGs’ generation costs. The proposed scheme utilizes the frequency as a carrier to realize the decentralized economic operation of MGs without communication links. Moreover, a fitting method is applied to balance DGs’ synchronous operation and economy. The effectiveness and performance of the proposed scheme are verified through simulations and experiments.

  7. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi

    2017-01-01

    In the low-voltage (LV) ac microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to distributed generators (DGs). At the same time, LV dc MG using virtual impedance as droop control is emerging without adequate...... power flow studies. In this paper, power flow analyses for both ac and dc MGs are formulated and implemented. The mathematical models for both types of MGs considering the concept of virtual impedance are used to be in conformity with the practical control of the DGs. As a result, calculation accuracy...... is improved for both ac and dc MG power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation of the impact to the system of internal control parameters...

  8. Meckel-Gruber Syndrome: Autopsy Based Approach to Diagnosis

    Directory of Open Access Journals (Sweden)

    Asaranti Kar

    2016-01-01

    Full Text Available Meckel-Gruber syndrome (MGS is a rare lethal congenital malformation affecting 1 in 13,250-140,000 live births. The classical diagnostic triad comprises multicystic dysplastic kidneys, occipital encephalocele, and postaxial polydactyly. It can variably be associated with other malformations such as cleft lip and palate, pulmonary hypoplasia, hepatic fibrosis, and anomalies of central nervous system. A 20 weeks fetus was diagnosed as MGS with classical features along with many other congenital abnormalities such as microcephaly, microphthalmia, hypertelorism, cleft lip and palate, neonatal teeth, and the right side club foot which were detected only after doing autopsy. This case is reported because of its rarity emphasizing the importance of neonatal autopsy in every case of fetal death, especially where the antenatal diagnosis has not been made previously. A systematic approach to accurate diagnosis of MGS based on autopsy will be described here which can allow recurrence risk counseling and proper management in future pregnancies.

  9. Bitcoin System

    Directory of Open Access Journals (Sweden)

    Jan Lánský

    2017-06-01

    Full Text Available Cryptocurrency systems are purely digital and decentralized systems that use cryptographic principles to confirm transactions. Bitcoin is the first and also the most widespread cryptocurrency. The aim of this article is to introduce Bitcoin system using a language understandable also to readers without computer science education. This article captures the Bitcoin system from three perspectives: internal structure, network and users. Emphasis is placed on brief and clear definitions (system components and their mutual relationships. A new system view of the stated terms constitutes author’s own contribution.

  10. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  11. New opportunity for enzymatic modification of fats and oils with industrial potentials

    DEFF Research Database (Denmark)

    Guo, Zheng; Xu, Xuebing

    2005-01-01

    Novozym 435 (Candida antarctica lipase)-catalyzed glycerolysis of commercial oils and fats to produce monoglycerides (MGs) was investigated using a tetraammonium-based ionic liquid (IL) as a reaction medium. A 90% yield of MGs and nearly 100% conversion of triglycerides in this ionic liquid were...... achieved, markedly higher than in normal solvents. The amphiphilic structure of cocosalkyl pentaethoxi methyl ammonium methosulfate (CPMA·MS) was suggested to be capable of creating a compatible system for glycerol, oils and fats, as well as inducing the shift of reaction equilibrium to the formation of MG...

  12. JOSHUA system

    International Nuclear Information System (INIS)

    Honeck, H.C.

    1975-04-01

    A major computational system called JOSHUA has been under development at the Savannah River Laboratory since 1968. The JOSHUA System has two major parts: the Operating System and the Application System. The Operating System has been in production use since 1970 and provides data management, terminal, and job execution facilities. The Application System uses these facilities in solving problems in reactor physics and engineering. Features of the Application System are the two-dimensional lattice physics and three-dimensional transient reactor physics capabilities, which have been in use since 1971 and 1974, respectively. The capabilities of the JOSHUA System are summarized, and statistics on size, use, and development effort are provided. (U.S.)

  13. Systems thinking.

    Science.gov (United States)

    Cabrera, Derek; Colosi, Laura; Lobdell, Claire

    2008-08-01

    Evaluation is one of many fields where "systems thinking" is popular and is said to hold great promise. However, there is disagreement about what constitutes systems thinking. Its meaning is ambiguous, and systems scholars have made diverse and divergent attempts to describe it. Alternative origins include: von Bertalanffy, Aristotle, Lao Tsu or multiple aperiodic "waves." Some scholars describe it as synonymous with systems sciences (i.e., nonlinear dynamics, complexity, chaos). Others view it as taxonomy-a laundry list of systems approaches. Within so much noise, it is often difficult for evaluators to find the systems thinking signal. Recent work in systems thinking describes it as an emergent property of four simple conceptual patterns (rules). For an evaluator to become a "systems thinker", he or she need not spend years learning many methods or nonlinear sciences. Instead, with some practice, one can learn to apply these four simple rules to existing evaluation knowledge with transformative results.

  14. Cognitive Systems

    DEFF Research Database (Denmark)

    The tutorial will discuss the definition of cognitive systems as the possibilities to extend the current systems engineering paradigm in order to perceive, learn, reason and interact robustly in open-ended changing environments. I will also address cognitive systems in a historical perspective...... to be modeled within a limited set of predefined specifications. There will inevitably be a need for robust decisions and behaviors in novel situations that include handling of conflicts and ambiguities based on the capability and knowledge of the artificial cognitive system. Further, there is a need...... in cognitive systems include e.g. personalized information systems, sensor network systems, social dynamics system and Web2.0, and cognitive components analysis. I will use example from our own research and link to other research activities....

  15. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  16. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  17. Expert systems

    International Nuclear Information System (INIS)

    Haldy, P.A.

    1988-01-01

    The definitions of the terms 'artificial intelligence' and 'expert systems', the methodology, areas of employment and limits of expert systems are discussed. The operation of an expert system is described, especially the presentation and organization of knowledge as well as interference and control. Methods and tools for expert system development are presented and their application in nuclear energy are briefly addressed. 7 figs., 2 tabs., 6 refs

  18. Expert System

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas Troels; Cattani, Gian Luca

    2016-01-01

    An expert system is a computer system for inferring knowledge from a knowledge base, typically by using a set of inference rules. When the concept of expert systems was introduced at Stanford University in the early 1970s, the knowledge base was an unstructured set of facts. Today the knowledge b...... for the application of expert systems, but also raises issues regarding privacy and legal liability....

  19. Retrofitting Systems

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report gives an overview of the different retrofitting possibilities that are available today. The report looks at both external and internal systems for external wall constructions, roof constructions, floor constructions and foundations. All systems are described in detail in respect to use...... and methods, and the efficiency of the different systems are discussed....

  20. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    Directory of Open Access Journals (Sweden)

    Annette Filges

    2015-09-01

    Full Text Available Within the framework of IAGOS-ERI (In-service Aircraft for a Global Observing System – European Research Infrastructure, a cavity ring-down spectroscopy (CRDS-based measurement system for the autonomous measurement of the greenhouse gases (GHGs CO2 and CH4, as well as CO and water vapour was designed, tested and qualified for deployment on commercial airliners. The design meets requirements regarding physical dimensions (size, weight, performance (long-term stability, low maintenance, robustness, full automation and safety issues (fire-prevention regulations. The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc. mounted into a frame suitable for integration in the avionics bay of the Airbus A330 and A340 series. To enable robust and automated operation of the IAGOS-core GHG package over 6-month deployment periods, numerous technical issues had to be addressed. An inlet system was designed to eliminate sampling of larger aerosols, ice particles and water droplets, and to provide additional positive ram-pressure to ensure operation throughout an aircraft altitude operating range up to 12.5 km without an upstream sampling pump. Furthermore, no sample drying is required as the simultaneously measured water vapour mole fraction is used to correct for dilution and spectroscopic effects. This also enables measurements of water vapour throughout the atmosphere. To allow for trace gas measurements to be fully traceable to World Meteorological Organization scales, a two-standard calibration system has been designed and tested, which periodically provides calibration gas to the instrument during flight and on ground for each 6-month deployment period. The first of the IAGOS-core GHG packages is scheduled for integration in 2015. The aim is to have five systems operational within 4 yr, providing regular, long-term GHG observations covering major parts of the globe. This paper presents results from recent test

  1. The IAGOS GHG package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    Science.gov (United States)

    Gerbig, C.; Filges, A.; Franke, H.; Klaus, C.; Chen, H.

    2012-12-01

    A cavity ring-down spectroscopy (CRDS) based measurement system for greenhouse gases was designed, tested, and qualified for deployment on commercial airliners within the IAGOS-ERI (In-service Aircraft for a Global Observing System - European Research Infrastructure) project. The design meets requirements regarding physical dimensions (size, weight), performance (long term stability, low maintenance, robustness, full automation) and safety issues (fire prevention regulations). The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc.) integrated in a frame suitable for integration in the avionics bay of the Airbus A-340. The first of the IAGOS GHG packages is scheduled for integration in early 2013. The aim is to have seven systems operational within four years, providing for long-term GHG observations with near-global coverage. To enable robust and automated operation of the IAGOS GHG package over six-month deployment periods, numerous technical issues had to be addressed. An inlet system, designed as virtual impactor to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides additional positive ram-pressure. In combination with a lowered sample flow of 0.1 slpm, this ensures a fully controlled sample pressure in the cavity of 140 torr throughout the aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump. Furthermore, no sample drying is required, as the simultaneously measured water vapor mole fraction is used to correct for dilution and spectroscopic effects. This also enables the collection of science-quality water vapor measurements throughout the atmosphere. To allow for trace gas measurements to be fully traceable to WMO scales, a two-standard calibration system has been designed and tested that periodically provides calibration gas to the instrument during flight and on ground. A targeted six-month deployment cycle followed by maintenance of the package

  2. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-01-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time

  3. Multifunction system

    International Nuclear Information System (INIS)

    Wauthier, J.; Fiori, R.

    1990-01-01

    The development, the characteristics and the applications of a multifunction system are presented. The system is used on the RBES laboratory pipes, at Marcoule. The system was developed in order to allow, without time loss, the modification of the circuit function by replacing only one component. The following elements form the multifunction system: a fixed base, which is part of the tube, a removable piece, which is inserted into the base, a cover plate and its locking system. The material, chosen among commercial trade marks, required small modifications in order to be used in the circuit [fr

  4. Operating systems

    CERN Document Server

    Tsichritzis, Dionysios C; Rheinboldt, Werner

    1974-01-01

    Operating Systems deals with the fundamental concepts and principles that govern the behavior of operating systems. Many issues regarding the structure of operating systems, including the problems of managing processes, processors, and memory, are examined. Various aspects of operating systems are also discussed, from input-output and files to security, protection, reliability, design methods, performance evaluation, and implementation methods.Comprised of 10 chapters, this volume begins with an overview of what constitutes an operating system, followed by a discussion on the definition and pr

  5. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  6. Systems integration.

    Science.gov (United States)

    Siemieniuch, C E; Sinclair, M A

    2006-01-01

    The paper presents a view of systems integration, from an ergonomics/human factors perspective, emphasising the process of systems integration as is carried out by humans. The first section discusses some of the fundamental issues in systems integration, such as the significance of systems boundaries, systems lifecycle and systems entropy, issues arising from complexity, the implications of systems immortality, and so on. The next section outlines various generic processes for executing systems integration, to act as guides for practitioners. These address both the design of the system to be integrated and the preparation of the wider system in which the integration will occur. Then the next section outlines some of the human-specific issues that would need to be addressed in such processes; for example, indeterminacy and incompleteness, the prediction of human reliability, workload issues, extended situation awareness, and knowledge lifecycle management. For all of these, suggestions and further readings are proposed. Finally, the conclusions section reiterates in condensed form the major issues arising from the above.

  7. Ternary systems

    International Nuclear Information System (INIS)

    Kagan, D.N.; Hubberstey, P.; Barker, M.G.

    1985-01-01

    The paper reviews the experimental and theoretical studies carried out on multicomponent alkali metal systems. Solid-liquid phase equilibria studies are mainly concerned with the systems Na-K-Rb and Na-K-Cs, and data on the liquidus temperatures in these systems are presented. The thermodynamic properties of the ternary Na-K-Cs eutectic system have been determined experimentally, and the enthalpy, heat capacity and excess functions of the alloy are given. An analysis of calculational methods used in determining thermodynamic functions of ternary liquid metals systems is described. Finally, data are tabulated for the density, compressibility, saturated vapour pressure, viscosity and thermal conductivity of the ternary Na-K-Cs eutectic system. (UK)

  8. Recommender systems

    CERN Document Server

    Kembellec, Gérald; Saleh, Imad

    2014-01-01

    Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies. If development was originally intended for the performance of information systems, the issues are now massively moved on logical optimization of the customer relationship, with the main objective to maximize potential sales. On the transdisciplinary approach, engines and recommender systems brings together contributions linking information science and communications, marketing, sociology, mathematics and computing. It deals with the understan

  9. Material Systems

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael

    2009-01-01

    This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...... approaches the subject through the construction of a logic-driven system aiming to explore the possibilities of a material system that fulfills spatial, structural and performative requirements concurrently and how these are negotiated in situations where they might be conflicting....

  10. Systems Engineering

    OpenAIRE

    Vaughan, William W.

    2016-01-01

    The term “systems engineering” when entered into the Google search page, produces a significant number of results, evidence that systems engineering is recognized as being important for the success of essentially all products. Since most readers of this item will be rather well versed in documents concerning systems engineering, I have elected to share some of the points made on this subject in a document developed by the European Cooperation for Space Standardization (ECSS), a component of t...

  11. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  12. Intelligent systems

    CERN Document Server

    Irwin, J David

    2011-01-01

    Technology has now progressed to the point that intelligent systems are replacing humans in the decision making processes as well as aiding in the solution of very complex problems. In many cases intelligent systems are already outperforming human activities. Artificial neural networks are not only capable of learning how to classify patterns, such images or sequence of events, but they can also effectively model complex nonlinear systems. Their ability to classify sequences of events is probably more popular in industrial applications where there is an inherent need to model nonlinear system

  13. Systemic darwinism.

    Science.gov (United States)

    Winther, Rasmus Grønfeldt

    2008-08-19

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a "compositional paradigm" according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality.

  14. Caste System

    OpenAIRE

    Hoff, Karla

    2016-01-01

    In standard economics, individuals are rational actors and economic forces undermine institutions that impose large inefficiencies. The persistence of the caste system is evidence of the need for psychologically more realistic models of decision-making in economics. The caste system divides South Asian society into hereditary groups whose lowest ranks are represented as innately polluted. ...

  15. Recommender systems

    OpenAIRE

    Lu L.; Medo M.; Yeung C.H.; Zhang Y.-C.; Zhang Z.-K.; Zhou T.

    2012-01-01

    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article...

  16. GEOMASS system

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu

    2009-03-01

    As a part of the research and development regarding characterisation of deep geological environment, the GEOMASS (GEOLOGICAL MODELLING ANALYSIS AND SIMULATION SOFTWARE) system has been developed by the Japan Atomic Energy Agency in order to carry out geological and hydrogeological modelling and groundwater flow simulation and so on. The GEOMASS system integrates a commercial geological interpretation system (EarthVision), which is used for geological modelling and visualisation, with a proprietary code for groundwater flow (FracAffinity). This integrated system allows users to make rapid improvement of models as data increases. Also, it is possible to perform more realistic groundwater flow simulation due to the capability of modelling the rock mass as a continuum with discrete hydro-structural features in the rock mass. This paper consists of 'Overview of GEOMASS system', FracAffinity Theoretical Background' and 'FracAffinity User Guide' and is edited as a GEOMASS system manual. 'Overview of GEOMASS system' describes the outline of this system. 'FracAffinity Theoretical Background' describes the information of technical background of FracAffinity software. FracAffinity User Guide' describes the structure of the FracAffinity input files, the usage of FracAffinity Interface and flow-solver. Updating of the FracAffinity has been continued as needed and FracAffinity version3.3 is the latest version at present (July 2008). (author)

  17. Systems integration (automation system). System integration (automation system)

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K; Komori, T; Fukuma, Y; Oikawa, M [Nippon Steal Corp., Tokyo (Japan)

    1991-09-26

    This paper introduces business activities on an automation systems integration (SI) started by a company in July,1988, and describes the SI concepts. The business activities include, with the CIM (unified production carried out on computers) and AMENITY (living environment) as the mainstays, a single responsibility construction ranging from consultation on structuring optimal systems for processing and assembling industries and intelligent buildings to system design, installation and after-sales services. With an SI standing on users {prime} position taken most importantly, the business starts from a planning and consultation under close coordination. On the conceptual basis of structuring optimal systems using the ompany {prime}s affluent know-hows and tools and adapting and applying with multi-vendors, open networks, centralized and distributed systems, the business is promoted with the accumulated technologies capable of realizing artificial intelligence and neural networks in its background, and supported with highly valuable business results in the past. 10 figs., 1 tab.

  18. Creative Systems

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette; Beim, Anne

    2007-01-01

    Opsamling af diskussioner på konferencen og udstillingen Creative Systems i september/oktober 2007. Konferencen og Udstillingen Creative Systems sætter fokus på systemer som en positiv drivkraft i den kreative skabelsesproces. CINARK inviterede fire internationale kapaciteter, som indenfor hver...... deres felt har beskæftiget sig med udviklingen af systemer. Kieran Timberlake, markant amerikansk tegnestue; Mark West, Professor på University of Manitoba, Canada, og pioner indenfor anvendelse af tekstilforskalling til betonstøbninger; Matilda McQuaid, Arkitekturhistoriker og kurator på udstillingen...... om Extreme Textiles på amerikanske Cooper Hewit Design Museum, samt Professor Ludger Hovestadt, ved ETH, Zürich der fokuserer på udvikling og anvendelse af logaritmiske systemtilgange. Udstillingen diskuterede ud fra deres meget forskellige arbejder, det kreative potentiale i anvendelsen af systemer...

  19. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  20. Upgraded RECOVER system - CASDAC system

    International Nuclear Information System (INIS)

    Yamamoto, Yoichi; Koyama, Kinji

    1992-03-01

    The CASDAC (Containment And Surveillance Data Authenticated Communication) system has been developed by JAERI for nuclear safeguards and physical protection of nuclear material. This system was designed and constructed as an upgraded RECOVER system, design concept of which was based on the original RECOVER system and also the TRANSEAVER system. Both of them were developed several years ago as a remote monitoring system for continual verification of security and safeguards status of nuclear material. The system consists of two subsystems, one of them is a Grand Command Center (GCC) subsystem and the other is a facility subsystem. Communication between the two subsystems is controlled through the international telephone line network. Therefore all communication data are encrypted to prevent access by an unauthorized person who may intend to make a falsification, or tapping. The facility subsystem has an appropriate measure that ensure data security and reliable operation under unattended mode of operator. The software of this system is designed so as to be easily used in other different types of computers. This report describes the outline of the CASDAC system and the results of its performance test. This work has been carried out in the framework of Japan Support Programme for Agency Safeguards (JASPAS) as a project, JA-1. (author)

  1. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Sirus Mohammadi. Articles written in Sadhana. Volume 39 Issue 4 August 2014 pp 819-841. Optimal sizing of energy storage system for microgrids · Babak Mozafari Sirus Mohammadi · More Details Abstract Fulltext PDF. Microgrids (MGs) are Low Voltage distribution networks comprising various ...

  2. Reactive Power Management in Islanded Microgrid – Proportional Power Sharing in Hierarchical Droop Control

    DEFF Research Database (Denmark)

    Milczarek, Adam; Malinowski, Mariusz; Guerrero, Josep M.

    2015-01-01

    A microgrid (MG) is a local energy system consisting a number of energy sources (e.g. wind turbine or solar panels among others), energy storage units and loads that operate connected to the main electrical grid or autonomously. MGs provide flexibility, reduce the main electricity grid dependence...

  3. Watchdog System

    DEFF Research Database (Denmark)

    Madsen, Tanja Kidholm Osmann; Bahnsen, Chris Holmberg; Jensen, Morten Bornø

    This deliverable is part of WP4. Overall WP4 is motivated by the need for automatic systems that can ease the task of annotating massive amounts of traffic data. Concretely this deliverable is related to WP4.2 - the watchdog system. The idea with the watchdog is to develop a system that can remov...... huge chunks of video data where no events/interactions of interest are occurring and hence let a user focus on manually annotation of only the interesting stuff....

  4. Dynamical systems

    CERN Document Server

    Sternberg, Shlomo

    2010-01-01

    Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the

  5. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  6. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  7. Imaging system

    International Nuclear Information System (INIS)

    Froggatt, R.J.

    1981-01-01

    The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)

  8. Kaonic systems

    Directory of Open Access Journals (Sweden)

    Oset E.

    2012-12-01

    Full Text Available I make a short review of the situation of the kaonic systems, with novel information supporting the two Λ(1405 states from the K-d → nπΣ reaction. A review is made of the K¯$ar K$NN system with recent calculations converging to smaller bindings and larger widths. Novel systems involving two kaons and one nucleon or three kaons are also reported and finally a short discussion is made of the analogous state DNN for which recent studies find a large binding and a small width.

  9. The systems integration modeling system

    International Nuclear Information System (INIS)

    Danker, W.J.; Williams, J.R.

    1990-01-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  10. ring system

    African Journals Online (AJOL)

    1,3,2-DIAZABORACYCLOALKANE. RING SYSTEM. Negussie Retta" and Robert H. Neilson. 'Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Department of Chemistry, Texas Christian University.

  11. Septic Systems

    Science.gov (United States)

    The web site provides guidance and technical assistance for homeowners, government officials, industry professionals, and EPA partners about how to properly develop and manage individual onsite and community cluster systems that treat domestic wastewater.

  12. Respiratory system

    Science.gov (United States)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  13. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  14. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  15. Bricks / Systems

    DEFF Research Database (Denmark)

    At first glance, this book may appear eclectic. It contains writings from architectural practice in a language and structure based on subjective views and experiences, combined with research contributions based on systematic design investigations of discrete computational systems. Discussions range......, and it aims to illustrate and identify new modes of working in architecture, particularly with regards to brickwork and other complex systems of modular assemblies, whether physical or digital....

  16. Expert Systems

    OpenAIRE

    Lucas, P.J.F.

    2005-01-01

    Expert systems mimic the problem-solving activity of human experts in specialized domains by capturing and representing expert knowledge. Expert systems include a knowledge base, an inference engine that derives conclusions from the knowledge, and a user interface. Knowledge may be stored as if-then rules, orusing other formalisms such as frames and predicate logic. Uncertain knowledge may be represented using certainty factors, Bayesian networks, Dempster-Shafer belief functions, or fuzzy se...

  17. Nanorobotic Systems

    Directory of Open Access Journals (Sweden)

    Lixin Dong

    2008-11-01

    Full Text Available Two strategies towards the realization of nanotechnology have been presented, i.e., top-down and bottom up. The former one is mainly based on nanofabrication and includes technologies such as nano-lithography, nano-imprint, and etching. Presently, they are still 2D fabrication processes with low resolution. The later one is an assembly-based technique. At present, it includes such items as self-assembly, dip-pen lithography, and directed self-assembly. These techniques can generate regular nano patterns in large scales. To fabricate 3D complex nano devices there are still no effective ways by so far. Here we show our effort on the development of a nano laboratory, a prototype nanomanufacturing system, based on nanorobotic manipulations. In which, we take a hybrid strategy as shown in Fig. 1. In this system, nano fabrication and nano assembly can be performed in an arbitrary order to construct nano building blocks and finally nano devices. The most important feature in this system is that the products can be fed back into the system to shrink the system part by part leading to nanorobots. Property characterization can be performed in each intermediate process. Due to the nanorobotic manipulation system, dynamic measurement can be performed rather than conventional static observations.

  18. Fleet retrofit report

    Science.gov (United States)

    1973-01-01

    Flight tests are evaluated of an avionics system which aids the pilot in making two-segment approaches for noise abatement. The implications are discussed of equipping United's fleet of Boeing 727-200 aircraft with two-segment avionics for use down to Category 2 weather operating minima. The experience is reported of incorporating two-segment approach avionics systems on two different aircraft. The cost of installing dual two-segment approach systems is estimated to be $37,015 per aircraft, including parts, labor, and spares. This is based on the assumption that incremental out-of-service and training costs could be minimized by incorporating the system at airframe overhaul cycle and including training in regular recurrent training. Accelerating the modification schedule could add up to 50 percent to the modification costs. Recurring costs of maintenance of the installation are estimated to be of about the same magnitude as the potential recurrent financial benefits due to fuel savings.

  19. The pathogenic persona of community-associated oral streptococci.

    Science.gov (United States)

    Whitmore, Sarah E; Lamont, Richard J

    2011-07-01

    The mitis group streptococci (MGS) are widespread in the oral cavity and are traditionally associated with oral health. However, these organisms have many attributes that contribute to the development of pathogenic oral communities. MGS adhere rapidly to saliva-coated tooth surfaces, thereby providing an attachment substratum for more overtly pathogenic organisms such as Porphyromonas gingivalis, and the two species assemble into heterotypic communities. Close physical association facilitates physiologic support, and pathogens such as Aggregatibacter actinomycetemcomitans display resource partitioning to favour carbon sources generated by streptococcal metabolism. MGS exchange information with community members through a number of interspecies signalling systems including AI-2 and contact dependent mechanisms. Signal transduction systems induced in P. gingivalis are based on protein dephosphorylation mediated by the tyrosine phosphatase Ltp1, and converge on a LuxR-family transcriptional regulator, CdhR. Phenotypic responses in P. gingivalis include regulation of hemin uptake systems and gingipain activity, processes that are intimately linked to the virulence of the organism. Furthermore, communities of S. gordonii with P. gingivalis or with A. actinomycetemcomitans are more pathogenic in animal models than the constituent species alone. We propose that MGS should be considered accessory pathogens, organisms whose pathogenic potential only becomes evident in the context of a heterotypic microbial community. © 2011 Blackwell Publishing Ltd.

  20. Fiscal system analysis - contractual systems

    International Nuclear Information System (INIS)

    Kaiser, M.J.

    2006-01-01

    Production sharing contracts are one of the most popular forms of contractual system used in petroleum agreements around the world, but the manner in which the fiscal terms and contract parameters impact system measures is complicated and not well understood. The purpose of this paper is to quantify the influence of private and market uncertainty in contractual fiscal systems. A meta-modelling approach is employed that couples the results of a simulation model with regression analysis to construct numerical functionals that quantify the fiscal regime. Relationships are derived that specify how the present value, rate of return, and take statistics vary as a function of the system parameters. The deepwater Girassol field development in Angola is taken as a case study. (author)

  1. Reactor system

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Naoshi.

    1990-01-01

    The represent invention concerns a reactor system with improved water injection means to a pressure vessel of a BWR type reactor. A steam pump is connected to a heat removing system pipeline, a high pressure water injection system pipeline and a low pressure water injection system pipeline for injecting water into the pressure vessel. A pump actuation pipeline is disposed being branched from a main steam pump or a steam relieaf pipeline system, through which steams are supplied to actuate the steam pump and supply cooling water into the pressure vessel thereby cooling the reactor core. The steam pump converts the heat energy into the kinetic energy and elevates the pressure of water to a level higher than the pressure of the steams supplied by way of a pressure-elevating diffuser. Cooling water can be supplied to the pressure vessel by the pressure elevation. This can surely inject cooling water into the pressure vessel upon loss of coolant accident or in a case if reactor scram is necessary, without using an additional power source. (I.N.)

  2. ARAC system

    International Nuclear Information System (INIS)

    Kelly, M.F.; Wyman, R.H.

    1975-01-01

    In spite of the remarkable safety record of the nuclear industry as a whole, recent public concern over the potential impact of the industry's accelerated growth has prompted ERDA to expand its emergency response procedures. The Atmospheric Release Advisory Capability, ARAC, is a computer communications system designed to enhance the existing emergency response capability of ERDA nuclear facilities. ARAC will add at least two new functions to this capability: centralized, real-time data acquisition and storage, and simulation of the long range atmospheric transport of hazardous materials. To perform these functions, ARAC employs four major sub-systems or facilities: the site facility, the central facility, the global weather center and the regional model. The system has been under development for the past two years at the Lawrence Livermore Laboratory of the University of California

  3. An expert system environment for the Generic VHSIC Spaceborne Computer (GVSC)

    Science.gov (United States)

    Cockerham, Ann; Labhart, Jay; Rowe, Michael; Skinner, James

    The authors describe a Phase II Phillips Laboratory Small Business Innovative Research (SBIR) program being performed to implement a flexible and general-purpose inference environment for embedded space and avionics applications. This inference environment is being developed in Ada and takes special advantage of the target architecture, the GVSC. The GVSC implements the MIL-STD-1750A ISA and contains enhancements to allow access of up to 8 MBytes of memory. The inference environment makes use of the Merit Enhanced Traversal Engine (METE) algorithm, which employs the latest inference and knowledge representation strategies to optimize both run-time speed and memory utilization.

  4. Microbiology System

    Science.gov (United States)

    1992-01-01

    Technology originating in a NASA-sponsored study of the measurement of microbial growth in zero gravity led to the development of Biomerieux Vitek, Inc.'s VITEK system. VITEK provides a physician with accurate diagnostic information and identifies the most effective medication. Test cards are employed to identify organisms and determine susceptibility to antibiotics. A photo-optical scanner scans the card and monitors changes in the growth of cells contained within the card. There are two configurations - VITEK and VITEK JR as well as VIDAS, a companion system that detects bacteria, viruses, etc. from patient specimens. The company was originally created by McDonnell Douglas, the NASA contractor.

  5. Spin systems

    CERN Document Server

    Caspers, W J

    1989-01-01

    This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy

  6. Distributed systems

    CERN Document Server

    Van Steen, Maarten

    2017-01-01

    For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A separation has been made between basic material and more specific subjects. The latter have been organized into boxed sections, which may be skipped on first reading. To assist in understanding the more algorithmic parts, example programs in Python have been included. The examples in the book leave out many details for readability, but the complete code is available through the book's Website, hosted at www.distributed-systems.net.

  7. Next Generation Reliable Transport Networks

    DEFF Research Database (Denmark)

    Zhang, Jiang

    the wavelength and fiber assignment problem is proposed and implemented for avionic optical transport networks. Simulation results give out resource consumptions and prove the efficiency of the proposed mechanisms. Finally, a Home Environment Service Knowledge Management system is proposed. Through ontology...... technologies, a knowledge base is constructed to represent the whole information of a home environment. By applying the reasoner tool, the proposed system manages to keep the consistency in a home environment and helps all software configure and update procedures across multiple vendors....... of criticality and security, there are certain physical or logical segregation requirements between the avionic systems. Such segregations can be implemented on the proposed avionic networks with different hierarchies. In order to fulfill the segregation requirements, a tailored heuristic approach for solving...

  8. Immune System

    Science.gov (United States)

    ... of the Immune System Print en español El sistema inmunitario Whether you're stomping through the showers ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on TeensHealth® is for ...

  9. Operating Systems

    Indian Academy of Sciences (India)

    areas in which this type is useful are multimedia, virtual reality, and advanced scientific projects such as undersea exploration and planetary rovers. Because of the expanded uses for soft real-time functionality, it is finding its way into most current operating systems, including major versions of Unix and Windows NT OS.

  10. Barrier Systems

    NARCIS (Netherlands)

    Heteren, S. van

    2015-01-01

    Barrier-system dynamics are a function of antecedent topography and substrate lithology, Relative sea-level (RSL) changes, sediment availability and type, climate, vegetation type and cover, and various aero- and hydrodynamic processes during fair-weather conditions and extreme events. Global change

  11. Systems Science

    Science.gov (United States)

    Christakis, Alexander; Hammond, Debora; Jackson, Michael; Laszlo, Alexander; Mitroff, Ian; Snowden, Dave; Troncale, Len; Carr-Chellman, Alison; Spector, J. Michael; Wilson, Brent

    2013-01-01

    Scholars representing the field of systems science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Alexander Christakis, Debora Hammond, Michael Jackson, Alexander Laszlo, Ian Mitroff, Dave…

  12. Transport system

    NARCIS (Netherlands)

    Drenth, K.F.

    1999-01-01

    The transport system comprises at least one road surface (2) and at least one vehicle (4) on wheels (6). The road surface (2) has a substantially bowl-shaped cross section and the vehicle (4) is designed so that the wheels (6) run directly on the road surface (2) while the road surface (2) acts as a

  13. Quorum Systems

    DEFF Research Database (Denmark)

    Wattenhofer, Roger; Förster, Klaus-Tycho

    2016-01-01

    What happens if a single server is no longer powerful enough to service all your customers? The obvious choice is to add more servers and to use the majority approach (e.g. Paxos, Chapter 2) to guarantee consistency. However, even if you buy one million servers, a client still has to access more ...... study the theory behind overlapping sets, known as quorum systems....

  14. System Dynamics

    Science.gov (United States)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  15. System Description:

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Poswolsky, Adam

    2009-01-01

    Delphin is a functional programming language [Adam Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings and dependent types. In European Symposium on Programming (ESOP), 2008] utilizing dependent higher-order datatypes. Delphin's two-level type-system cleanly separates...

  16. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  17. Bioenergy systems

    International Nuclear Information System (INIS)

    Mitchell, C.P.

    1997-01-01

    The objective of this paper is to demonstrate that a bioenergy system has to be considered as an integrated process in which each stage or step interacts with other steps in the overall process. There are a number of stages in the supply and conversion of woody biomass for energy. Each step in the chain has implications for the next step and for overall system efficiency. The resource can take many forms and will have varying physical and chemical characteristics which will influence the efficiency and cost of conversion. The point in the supply chain at which size and moisture content is reduced and the manner in which it is done is influential in determining feedstock delivered cost and overall system costs. To illustrate the interactions within the overall system, the influence of the nature, size and moisture content of delivered feedstocks on costs of generating electricity via thermal conversion processes is examined using a model developed to investigate the inter-relationships between the stages in the supply chain. (author)

  18. Urogenital system

    International Nuclear Information System (INIS)

    Hamm, B.; Asbach, P.; Beyersdorff, D.; Hein, P.; Zaspel, U.

    2007-01-01

    The book is focussed on the radiological diagnostics of diseases in the urogential system. The description of the specific diseases, the identification by modern imaging techniques, the interpretation of examinatory results and therapeutic options are systematically treated in 4 chapters: kidney and adrenal glands, urinary tract, male genitals, female genitals

  19. Mirror systems.

    Science.gov (United States)

    Fogassi, Leonardo; Ferrari, Pier Francesco

    2011-01-01

    Mirror neurons are a class of visuomotor neurons, discovered in the monkey premotor cortex and in an anatomically connected area of the inferior parietal lobule, that activate both during action execution and action observation. They constitute a circuit dedicated to match actions made by others with the internal motor representations of the observer. It has been proposed that this matching system enables individuals to understand others' behavior and motor intentions. Here we will describe the main features of mirror neurons in monkeys. Then we will present evidence of the presence of a mirror system in humans and of its involvement in several social-cognitive functions, such as imitation, intention, and emotion understanding. This system may have several implications at a cognitive level and could be linked to specific social deficits in humans such as autism. Recent investigations addressed the issue of the plasticity of the mirror neuron system in both monkeys and humans, suggesting also their possible use in rehabilitation. WIREs Cogn Sci 2011 2 22-38 DOI: 10.1002/wcs.89 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Systemic Planning

    DEFF Research Database (Denmark)

    Leleur, Steen

    This book presents principles and methodology for planning in a complex world. It sets out a so-called systemic approach to planning, among other things, by applying “hard” and “soft” methodologies and methods in combination. The book is written for Ph.D and graduate students in engineering...