WorldWideScience

Sample records for mgo sulfur ash

  1. Durability of incinerator ash waste encapsulated in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs

  2. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  3. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  4. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  5. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  6. Initial fate of fine ash and sulfur from large volcanic eruptions

    Directory of Open Access Journals (Sweden)

    S. Self

    2009-11-01

    Full Text Available Large volcanic eruptions emit huge amounts of sulfur and fine ash into the stratosphere. These products cause an impact on radiative processes, temperature and wind patterns. In simulations with a General Circulation Model including detailed aerosol microphysics, the relation between the impact of sulfur and fine ash is determined for different eruption strengths and locations, one in the tropics and one in high Northern latitudes. Fine ash with effective radii between 1 μm and 15 μm has a lifetime of several days only. Nevertheless, the strong absorption of shortwave and long-wave radiation causes additional heating and cooling of ±20 K/day and impacts the evolution of the volcanic cloud. Depending on the location of the volcanic eruption, transport direction changes due to the presence of fine ash, vortices develop and temperature anomalies at ground increase. The results show substantial impact on the local scale but only minor impact on the evolution of sulfate in the stratosphere in the month after the simulated eruptions.

  7. Reactive Uptake of Sulfur Dioxide and Ozone on Volcanic Glass and Ash at Ambient Temperature

    Science.gov (United States)

    Maters, Elena C.; Delmelle, Pierre; Rossi, Michel J.; Ayris, Paul M.

    2017-09-01

    The atmospheric impacts of volcanic ash from explosive eruptions are rarely considered alongside those of volcanogenic gases/aerosols. While airborne particles provide solid surfaces for chemical reactions with trace gases in the atmosphere, the reactivity of airborne ash has seldom been investigated. Here we determine the total uptake capacity (NiM) and initial uptake coefficient (γM) for sulfur dioxide (SO2) and ozone (O3) on a compositional array of volcanic ash and glass powders at 25°C in a Knudsen flow reactor. The measured ranges of NiSO2 and γSO2 (1011-1013 molecules cm-2 and 10-3-10-2) and NiO3 and γO3 (1012-1013 molecules cm-2 and 10-3-10-2) are comparable to values reported for mineral dust. Differences in ash and glass reactivity toward SO2 and O3 may relate to varying abundances of, respectively, basic and reducing sites on these materials. The typically lower SO2 and O3 uptake on ash compared to glass likely results from prior exposure of ash surfaces to acidic and oxidizing conditions within the volcanic eruption plume/cloud. While sequential uptake experiments overall suggest that these gases do not compete for reactive surface sites, SO2 uptake forming adsorbed S(IV) species may enhance the capacity for subsequent O3 uptake via redox reaction forming adsorbed S(VI) species. Our findings imply that ash emissions may represent a hitherto neglected sink for atmospheric SO2 and O3.

  8. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  9. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A.G. [Laboratório de Catálise Química e Materiais (CATAMA), Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Av. Gen. Rodrigo Otávio Jordão Ramos, 6200, 69077-000 Manaus, AM (Brazil); Braga, Valdeilson S. [Laboratório de Catálise, Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Professor José Seabra de Lemos, 316, Recanto dos Pássaros, 47808-021 Barreira, BA (Brazil); Barros, Ivoneide de C.L., E-mail: iclbarros@gmail.com [Laboratório de Catálise Química e Materiais (CATAMA), Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Av. Gen. Rodrigo Otávio Jordão Ramos, 6200, 69077-000 Manaus, AM (Brazil)

    2015-11-15

    Graphical abstract: - Highlights: • Adsorbents based in RHA modified with niobium were prepared by impregnation. • The impregnation modified the particle size and topology of RHA particles. • The adsorbents were applied in sulfur removal in model liquid fuels. • The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% niobium oxide. • The adsorbent show great selectivity in adsorption experiments. - Abstract: Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb{sub 2}O{sub 5} at a dosage of 10 g L{sup −1}, after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  10. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    International Nuclear Information System (INIS)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A.G.; Braga, Valdeilson S.; Barros, Ivoneide de C.L.

    2015-01-01

    Graphical abstract: - Highlights: • Adsorbents based in RHA modified with niobium were prepared by impregnation. • The impregnation modified the particle size and topology of RHA particles. • The adsorbents were applied in sulfur removal in model liquid fuels. • The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% niobium oxide. • The adsorbent show great selectivity in adsorption experiments. - Abstract: Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb 2 O 5 at a dosage of 10 g L −1 , after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  11. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  12. Study on the technology of decreasing ash and sulfur in coking coal concentrate by deep-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, A.; Li, P.; Chen, S. [Hefei Design and Research Institute of Coal Industry, Hefei (China)

    2007-06-15

    Middling fractions of coking coal, a rare resource in China, were analysed for their embedded minerals both in kind and distribution. Observation with a microscope shows that most are clay minerals of very small particle size. The embedded minerals can be liberated from middling by grinding. Clean coal can be obtained from ground middling by the flocculation-flotation process. The yield of clean coal could thus be increased and its ash and sulfur content decreased. 3 refs., 2 figs., 4 tabs.

  13. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  14. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  15. Physicochemical study of bagasse and bagasse ash from the sugar industries of NWFP, pakistan and its recycling in cement manufacturing

    International Nuclear Information System (INIS)

    Ali, K.; Amin, N.U.; Shah, M.T.

    2009-01-01

    Bagasse and bagasse ash, obtained from the local sugar mills of North West Frontier Province (NWFP), Pakistan, were analyzed for both physical and chemical parameters. Among the physical parameters, the moisture, ash contents, volatile matter, loss on ignition, and calorific value have been determined while the chemical constituents such as SiO/sub 2/, AI/sub 2/O/sub 3/ Fe/sub 2/O/sub 3/ CaO, MgO, Na/sub 2/O, K/sub 2/O, carbon and sulfur were also determined in both baggase and baggase ash. The physicochemical characterization of baggase ash suggests that it can be used as a part of the cement admixture, which could be cost effective and environmentally sustainable. (author)

  16. Effect of Fly Ash Fortification in the Manufacture Process of Making Concrete towards Characteristics of Concrete in Sulfuric Acid Solution

    Directory of Open Access Journals (Sweden)

    Asep Handaya Saputra

    2015-12-01

    Full Text Available Fly ash is a silica or alumino silica material that can be used as a constituent of cement in the concrete manufacturing process. Utilization of fly ash aims to improve durability and minimize the reduction of concrete’s compressive strength exposed to an acidic environment, which can be achieved through the pozzolanic reaction of fly ash with Ca(OH within concrete. The reduced content of Ca(OH through pozzolanic reaction will minimize the tendency of ettringite formation (compounds that cause deterioration and decrease the compressive strength of concrete. In order to determine the relation between fly ash replenishment into concrete with concrete’s characteristics (compressive strength and durability under acidic environment, the research is conducted by varying the fly ash composition ranging from 0%, 5%, 25%, 50%, up to 75%, and the concentration of H22SO solution as an immersion medium ranging from 0%, 5%, 10%, up to 15% (v/v. The research is carried out by immersing the concrete samples for 4 days in H4 solution with various concentrations. Characterization of concrete’s durability and compressive strength is reviewed from the concrete’s weight loss percentage and reduction of concrete’s compressive strength percentage after immersion. Based on the research results, for each variation of H2SO concentration used, the minimum concrete’s weight loss percentage (maximum durability and the minimum reduction of concrete’s compressive strength percentage is found in the use of fly ash by 75%. For each concentration variations of H42SO solution as an immersion medium ranging from 5%, 10%, up to 15% (v/v, the minimum concrete’s weight loss percentage was 0.47%, 0.87%, 1.28% (respectively, whilst the minimum reduction of concrete’s compressive strength percentage was 5.71%, 14.29%, 17.14% (respectively. It was concluded that the use of fly ash can improve the durability and minimize the reduction of compressive strength of concrete

  17. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  18. Scientific Council on problems on new processes in the coking industry. [Effect on coke consumption of moisture, sulfur and ash; substitution possibility

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, B.S.

    1981-07-01

    This paper presents a report on the Coking Section of the Scientific Council held on November 20, 1980 in Moscow. The following problems were discussed: indexes characterizing blast furnace coke (for furnaces with a volume of 5580 M/sup 3/); replacing metallurgical coke with other types of fuels; use of brown coal; liners of coke ovens. Papers delivered during the session are summarized. Reducing moisture content in blast furnace coke permits its consumption to be reduced by 2%. Reducing sulfur content in blast furnace coke by 0.1% permits its consumption to be reduced from 10 to 15 kg for 1 t of pig iron. Increase in ash content of coke by 1% causes coke consumption increase ranging from 1.5 to 2.0%. About 10 Mmt of coke class with grains above 25 mm in USSR is used for purposes other than blast furnaces. Possibilities of substituting coke with lean coal are evaluated (particularly from Kuzbass). A method for briquetting a mixture of black and brown coal is proposed. Briquets are a suitable fuel in metallurgy. A new type of liner, which consists of at least 92% silicon dioxide, is described. Physical and mechanical properties of the liners are discussed.

  19. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, P.; Silsbee, M.R.; Roy, D.M.

    1999-08-01

    The study describes the preparation and characterization of an environmentally friendly cement with performance characteristics similar to those of Portland cement, from a lime kiln bag house dust, a low-calcium fly ash, and a scrubber sludge. Promising preliminary results show the formation of relatively low-temperature phases calcium sulfoaluminate (4CaO{center{underscore}dot}3Al{sub 2}O{sub 3}{center{underscore}dot}SO{sub 3}) and dicalcium silicate (2CaO{center{underscore}dot}SiO{sub 2}) at {approximately} 1,250 C if nodulized raw means used for clinker preparation and at 1,175 C if powdered raw meal is used as compared to the {approximately} 1,500 C sintering temperature required for Portland cement. Phases of the developed cements were predicted using modified Bogue calculations. Isothermal calorimetric measurements indicate the hydration properties of the cements are comparable to ordinary Portland cement. Mechanical properties and microstructural evaluations also were carried out.

  20. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.

    Science.gov (United States)

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-11-01

    An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.

  1. Mechanism of Enhancing Extraction of Vanadium from Stone Coal by Roasting with MgO

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2017-02-01

    Full Text Available In this paper, the extraction of vanadium from stone coal by roasting with MgO and leaching with sulfuric acid has been investigated, and the mechanism analysis of stone coal roasting with MgO was studied. The results indicated that under the conditions that the mass fraction of the particles with grain size of 0–0.074 mm in raw ore was 75%, the roasting temperature was 500 °C, the roasting time was 1 h, MgO addition was 3 wt %, the sulfuric acid concentration was 20 vol %, the liquid-to-solid ratio was 1.5 mL/g, the leaching temperature was 95 °C, and leaching time was 2 h, resulting in a vanadium leaching efficiency of 86.63%, which increased by 7.73% compared with that of blank roasting. The mechanism analysis showed that the degree of calcite decomposition was low and, thus, magnesium vanadate was more easily formed than calcium vanadate below 500 °C. Moreover, magnesium vanadate was easier to dissolve than calcium vanadate during the sulfuric acid leaching process. Thus, the vanadium leaching efficiency was enhanced by using MgO as a roasting additive below 500 °C. Additionally, at high temperature the formation of tremolite would consume calcium oxide produced from the decomposition of calcite, thus, the formation of calcium vanadate was hindered, and V2O5 would react with MgO to form magnesium vanadate. Therefore, the vanadium leaching efficiency of roasting with MgO was higher than that of blank roasting at high temperature.

  2. Triple oxygen and sulfur isotope analyses of sulfate extracted from voluminous volcanic ashes in the Oligocene John Day Formation: insight into dry climate conditions and ozone contribution to supereruptions

    Science.gov (United States)

    Workman, J.; Bindeman, I. N.; Martin, E.; Retallack, G.; Palandri, J. L.; Weldon, N.

    2014-12-01

    Large volume pyroclastic silicic eruptions emit hundreds of megatons of SO2 into the troposphere and stratosphere that is oxidized into sulfuric acid (H2SO4) by a variety of reactions with mass independent oxygen signatures (MIF), Δ17O>0. Sulfuric acid is then preserved as gypsum in parental volcanic deposits. Diagenic effects are mass dependent and can dilute, but otherwise do not affect MIF ratios. Pleistocene Yellowstone and Bishop tuffs and modern volcanic eruptions preserved under arid climate conditions in North American playa lakes, preserve small amounts of volcanic sulfate as gypsum. This gypsum's Δ17O>0, in combination with isotopic variations of δ18O, δ33S and δ34S is distinct from sedimentary sulfate and reveals its original MIF sulfate isotopic signal and the effect of super eruptions on the atmosphere, and ozone consumption in particular. We use linear algebraic equations to resolve volcanic versus sedimentary (MIF=0) sources. We have found that many large volume ignimbrites have very high initial Δ17O in volcanic sulfate that can only be acquired from reaction with stratospheric ozone. We here investigate nine thick (>2 m) ash beds ranging in age from ~33-23 Ma in the John Day Formation of central Oregon, including massive 28.6 Ma Picture Gorge tuff of newly identified Crooked River supercaldera. The 28.6 Ma Picture Gorge tuff (PGT) has the highest measured Δ17O of 3.5‰, and other tuffs (Tin Roof, Biotite, Deep Creek) have +1.3 to 3.4‰ Δ17O excesses. Sulfate from modern smaller tropospheric eruptions studied for comparison have a resolvable 0.4‰ range consistent with liquid-phase based H2O2 oxidation. The PGT is coeval with the ignimbrite flare-up in western N. America, the 28-29 Ma eruption of the 5000 km3 Fish Canyon tuff and the 28 Ma Never Summer Field eruption in Nebraska-Colorado that have the highest measured Δ17O of 6‰ (Bao et al. 2003). We speculate on the climatic/atmospheric effects of these multiple ~28 Ma supereruptions

  3. High-MgO Vitric Ash in Upper Kulanaokuaiki Tephra, Kilauea Volcano, Hawai`i: A Preliminary Description

    Science.gov (United States)

    Rose, T. R.; Fiske, R. S.; Swanson, D.

    2011-12-01

    Small, well-formed Pele's tears containing anomalously high values of MgO were recently discovered in outcrops of the upper Kulanaokuaiki Tephra at and near the base of Uwekahuna Bluff, the western wall of Kilauea Caldera. Electron microprobe analyses of more than 60 high-MgO tears, which are 1-3 mm in diameter, show that most contain 11 to 12 wt. % MgO with a few approaching 13 % MgO. Separate microprobe analyses for sulfur and chlorine of 20 grains revealed no appreciable amounts of either, indicating the magma was largely degassed. Polished-section studies employing an analytical scanning electron microscope show most tears are composed of pure microvesicular glass with scattered skeletal olivine crystals and rare chromite. The abundance of skeletal olivine appears to increase with decreasing MgO content of the glass. These tears contain among the highest known MgO values of any material erupted subaerially from Kilauea. The high-MgO tears occur in a 1-6 cm thick layer of medium-coarse lithic-crystal-vitric ash. The top of this layer consists of 2-3 mm of very fine lithic-crystal ash. The lithics and many of the olivine crystals in this layer are highly oxidized. This deposit is at the top of a sequence of several lithic beds that are interspersed with thinner vitric units totaling about 75 cm in thickness. It is overlain by 9-13 cm of medium pumice lapilli and coarse vitric ash at the top of the "Bluff base" and "mid-Bluff" tephra sections described by Fiske et al. (2009). This high-MgO glass layer has been found thus far in only one other locality, a 2 m-deep soils study pit within Kipuka Puaulu, 3.5 km northwest of the caldera. Based upon stratigraphic relationships and preliminary microprobe data, a few other likely exposures of the high-MgO deposit have been identified north and west of the caldera. The high-MgO vitric ash in the upper Kulanaokuaiki Tephra has a primitive composition that suggests little if any shallow level storage of magma. Instead, the

  4. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    1998-11-01

    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  5. Single-crystalline MgAl2O4 spinel nanotubes using a reactive and removable MgO nanowire template

    International Nuclear Information System (INIS)

    Fan Hongjin; Knez, Mato; Scholz, Roland; Nielsch, Kornelius; Pippel, Eckhard; Hesse, Dietrich; Goesele, Ulrich; Zacharias, Margit

    2006-01-01

    Using MgO nanowires as a reactive template, we fabricated for the first time single-crystal MgAl 2 O 4 spinel nanotubes through an interfacial solid-state reaction of MgO-Al 2 O 3 core-shell nanowires. Single-crystal MgO nanowires are coated with a conformal thin layer of amorphous Al 2 O 3 via atomic layer deposition. Subsequent annealing at 700 deg. C activates the interfacial reaction between MgO and Al 2 O 3 , transforming the alumina shell into a spinel shell. Finally, after etching away the remaining MgO core in ammonia sulfuric solution, MgAl 2 O 4 spinel nanotubes are obtained. As a transition from conventional planar spinel layers via thin-film interface reactions, our result might open a window for the fabrication of a wide variety of MgO-based spinel one-dimensional nanostructures

  6. FLY ASH RECYCLE IN DRY SCRUBBING

    Science.gov (United States)

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  7. Adsorption of SO{sub 2} on Li atoms deposited on MgO (1 0 0) surface: DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Eid, Kh.M., E-mail: Kheid98@hotmail.com [Physics Department, Faculty of Education, Ain Shams University, Cairo 11757 (Egypt); Ammar, H.Y. [Department of Physics, Faculty of Science, Najran University, Najran 1988 (Saudi Arabia)

    2011-05-01

    The adsorption of sulfur dioxide molecule (SO{sub 2}) on Li atom deposited on the surfaces of metal oxide MgO (1 0 0) on both anionic and defect (F{sub s}-center) sites located on various geometrical defects (terrace, edge and corner) has been studied using density functional theory (DFT) in combination with embedded cluster model. The adsorption energy (E{sub ads}) of SO{sub 2} molecule (S-atom down as well as O-atom down) in different positions on both of O{sup -2} and F{sub s} sites is considered. The spin density (SD) distribution due to the presence of Li atom is discussed. The geometrical optimizations have been done for the additive materials and MgO substrate surfaces (terrace, edge and corner). The oxygen vacancy formation energies have been evaluated for MgO substrate surfaces. The ionization potential (IP) for defect free and defect containing of the MgO surfaces has been calculated. The adsorption properties of SO{sub 2} are analyzed in terms of the E{sub ads}, the electron donation (basicity), the elongation of S-O bond length and the atomic charges on adsorbed materials. The presence of the Li atom increases the catalytic effect of the anionic O{sup -2} site of MgO substrate surfaces (converted from physisorption to chemisorption). On the other hand, the presence of the Li atom decreases the catalytic effect of the F{sub s}-site of MgO substrate surfaces. Generally, the SO{sub 2} molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing F{sub s}-center.

  8. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  9. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Flensborg, Julie Pauline; Shoulaifar, Tooran Khazraie

    2014-01-01

    The release of chlorine (Cl) and sulfur (S) during biomass torrefaction and pyrolysis has been investigated via experiments in two laboratory-scale reactors: a rotating reactor and a fixed bed reactor. Six biomasses with different chemical compositions covering a wide range of ash content and ash...... reporting that biomasses with a lower chlorine content release a higher fraction of chlorine during the pyrolysis process. A significant sulfur release (about 60%) was observed from the six biomasses investigated at 350 degrees C. The initial sulfur content in the biomass did not influence the fraction...

  10. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  11. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  12. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  13. MgO nanoparticles as antibacterial agent: preparation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Xing, E-mail: tangzhenxing@126.com [Department of Food Science, Anqing, Vocational and Technical College, Anqing, Anhui (China); Lv, Bin-Feng [Date Palm Research Center, King Faisal University, (Saudi Arabia)

    2014-07-15

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  14. MgO nanoparticles as antibacterial agent: preparation and activity

    International Nuclear Information System (INIS)

    Tang, Zhen-Xing; Lv, Bin-Feng

    2014-01-01

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  15. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  16. Study of solid state interactions in the systems ZnFe2O4 - CaO, ZnFe2O4 - MgO and zinc cake with CaO and MgO

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2013-01-01

    Full Text Available The solid state interactions of CaO and MgO with synthetic and industrial ZnFe2O4 (in zinc cake have been studied using chemical, XRD analysis and Mössbauer spectroscopy. The exchange reactions in the systems ZnFe2O4 - CaO and ZnFe2O4 - MgO have been investigated in the range of 850-1200ºC and duration up to 180 min. It has been established that Ca2+ and Mg2+ ions exchange Zn2+ in ferrite partially and the solubility of zinc in a 7% sulfuric acid solution increases. The possibilities for utilization of the obtained results in zinc hydrometallurgy have been discussed.

  17. The UZPI ash content monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.P.; Bezverkhii, E.A.; Mozhaev, L.G.

    1987-07-01

    This paper describes the results of industrial trials (in coal preparation plants) to establish the accuracy of the UZPI device which determines coal ash content using X-ray detection. It is designed to monitor ash content in the 4-40% range in coal with a grain size of 0-100 mm and a coal layer thickness of 50-150 mm (depending on the ash content and grain size). The ash frequently contains oxides, and although variations in magnesium, aluminium, silicon and sulfur oxides have virtually no effect on accuracy of the UZPI, changes in the levels of calcium oxides and particularly iron oxides have a considerable influence on measurement accuracy (caused by changes in their gamma ray scattering cross section values and atomic numbers). The overall sensitivity to ash content in coal varies from 1.6 to 2.4% abs./% while that to iron oxides in ash is 0.4% abs./%. Concludes that this device is suitable for use in coal preparation plants on thin layers of coal, but its efficiency is affected by external influences, e.g. fluctuations in conveyor loading.

  18. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  19. WIPP Magnesium Oxide (MgO) - Planned Change Request

    Science.gov (United States)

    On April 10, 2006, the DOE submitted a planned change request pertaining to the amount of MgO emplaced in the WIPP repository. MgO is an engineered barrier that DOE included as part of the original WIPP Certification Decision.

  20. Theoretical Limiting Potentials in Mg/O2 Batteries

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2016-01-01

    A rechargeable battery based on a multivalent Mg/O2 couple is an attractive chemistry due to its high theoretical energy density and potential for low cost. Nevertheless, metal-air batteries based on alkaline earth anodes have received limited attention and generally exhibit modest performance....... In addition, many fundamental aspects of this system remain poorly understood, such as the reaction mechanisms associated with discharge and charging. The present study aims to close this knowledge gap and thereby accelerate the development of Mg/O2 batteries by employing first-principles calculations...... by the presence of large thermodynamic overvoltages. In contrast, MgO2-based cells are predicted to be much more efficient: superoxide-terminated facets on MgO2 crystallites enable low overvoltages and round-trip efficiencies approaching 90%. These data suggest that the performance of Mg/O2 batteries can...

  1. Intrinsic Conductivity in Magnesium-Oxygen Battery Discharge Products: MgO and MgO2

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2017-01-01

    Nonaqueous magnesium–oxygen (or “Mg-air”) batteries are attractive next generation energy storage devices due to their high theoretical energy densities, projected low cost, and potential for rechargeability. Prior experiments identified magnesium oxide, MgO, and magnesium peroxide, MgO2...

  2. MgO by injection CVD

    International Nuclear Information System (INIS)

    Abrutis, A.; Kubilius, V.; Teiserkis, A.; Bigelyte, V.; Vengalis, B.; Jukna, A.; Butkute, R.

    1997-01-01

    Epitaxial YBa 2 Cu 3 O 7 layers with 45 in-plane orientation have been grown by injection CVD on MgO substrates polished off-axis to within 1.4-1.9 of the [100] direction. This new single-source CVD process is based on computer-controlled injection of precise microdoses of a metal-organic precursor solution into a CVD reactor. A wide range of solution compositions was tested to investigate compositional effects on phase purity, surface morphology, texturing and superconducting properties of the prepared films. The highest quality films with pure 45 texture had a smooth surface, zero resistance T c (R=0) of 88-89 K, and critical current density J c (77 K) above 10 6 A/cm 2 . (orig.) and critical current density J c (77 K) above 10 6 A/cm 2 . (orig.)

  3. Catalytic effect of lignite ash on steam gasification of oil sand coke

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Palmer, A.

    1986-06-16

    Steam gasification of Suncor and Syncrude cokes was carried out in the presence of ash obtained after burning Onakawana lignite. Catalytic effects of the ash were evident at 930 C whereas at 830 C little effect was observed. These observations were attributed to the combined actions of Ca- and Fe-containing species in the ash, in which the former neutralized the sulfur in the cokes to prevent poisoning of Fe oxides. 5 tabs., 5 figs., 15 refs.

  4. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  5. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  6. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  7. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  8. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  9. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  10. The investigation of radiation induced defects in MgO

    International Nuclear Information System (INIS)

    Puetz, M.

    1990-05-01

    In this paper Frenkel defects were induced in MgO by 3 MeV electrons at low temperature. These defects were investigated by measurements of the optical absorption, by investigating the lattice parameters and Huang diffuse scattering. (WL)

  11. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  12. Sulfur sources in protein supplements for ruminants

    Directory of Open Access Journals (Sweden)

    Cássio José da Silva

    2014-10-01

    Full Text Available The present study evaluates the efficiency of different sulfur sources for ruminant nutrition. The fiber digestibility and the amino acid profile were analyzed in the duodenal digesta of crossbred steers fed Brachiaria dictyoneurahay. The sources utilized were elemental sulfur (ES70S, elemental sulfur (ES98S; calcium sulfate in hydrated (HCS, CaSO4.2H2O, and anhydrous (ACS, CaSO4, forms; and ammonium sulfate (AS, (NH42SO4, keeping a nitrogen:sulfur ratio of 11:1. The iso-protein supplements had 50% of protein in the total dry matter (DM. Five Holstein × Zebu steers, which were fistulated in the rumen and abomasum, were distributed in a 5 × 5 Latin square. The different sulfur sources in the supplement did not affect any of the evaluated nutritional factors, such as intake of hay dry matter and protein supplement, crude protein (CP, neutral detergent fiber corrected for ash and protein (NDFap, organic matter (OM, non-fibrous carbohydrate (NFC, ether extract (EE, total digestible nutrients (TDN, NDFap and CP digestibility coefficients, ruminal pH, and ruminal ammonia concentration. The concentrations of amino acids available in the abomasal digesta did not differ significantly in the tested diets. The sulfur sources evaluated in the present study are suitable as supplement for cattle, and their employment may be important to avoid environmental contaminations.

  13. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  14. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  15. Evidence of Ash Tree (Fraxinus spp. Specific Associations with Soil Bacterial Community Structure and Functional Capacity

    Directory of Open Access Journals (Sweden)

    Michael P. Ricketts

    2018-04-01

    Full Text Available The spread of the invasive emerald ash borer (EAB across North America has had enormous impacts on temperate forest ecosystems. The selective removal of ash trees (Fraxinus spp. has resulted in abnormally large inputs of coarse woody debris and altered forest tree community composition, ultimately affecting a variety of ecosystem processes. The goal of this study was to determine if the presence of ash trees influences soil bacterial communities and/or functions to better understand the impacts of EAB on forest successional dynamics and biogeochemical cycling. Using 16S rRNA amplicon sequencing of soil DNA collected from ash and non-ash plots in central Ohio during the early stages of EAB infestation, we found that bacterial communities in plots with ash differed from those without ash. These differences were largely driven by Acidobacteria, which had a greater relative abundance in non-ash plots. Functional genes required for sulfur cycling, phosphorus cycling, and carbohydrate metabolism (specifically those which breakdown complex sugars to glucose were estimated to be more abundant in non-ash plots, while nitrogen cycling gene abundance did not differ. This ash-soil microbiome association implies that EAB-induced ash decline may promote belowground successional shifts, altering carbon and nutrient cycling and changing soil properties beyond the effects of litter additions caused by ash mortality.

  16. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  17. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  18. Ash Utilisation 2012. Ashes in a Sustainable Society. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Conference themes: Risk assessment, Fly ash- Road construction, Recycling and Greenhouse gases, Storage of ashes, Fertilizer, Metal Mining, Support and Barriers, Construction Material, Civil Engineering, and MSWI bottom ash.

  19. Characteristics of alkali activated material (geopolymer) in sulfuric acid solution

    Science.gov (United States)

    Simatupang, Partogi H.

    2017-09-01

    Alkali Activated Material (AAM) or Geopolymer is a solid material which made by mixing rich silica alumina material with alkaline activator. AAM is a well known candidate to replace cement based material. Many researches have claimed that AAM has better durability compared to cement based material in agressive environment. However, there was rare paper presented the direct comparison of material characteristics between Class F fly ash based AAM and Class C fly ash based AAM in such aggresive environment. Because of that, this paper present material characteristics of Class F fly ash based AAM and Class C fly ash based AAM if the materials were immersed in 10% sulfuric acid solution for 65 days. Material characteristics evaluated were (1) weight loss, (2) mineral of the material which evaluated by XRD (X-Ray Diffraction), (3) morphology and oxide compounds of material which evaluated by SEM/EDXA (Scanning Electron Microscopic/Energy Dispersive X-Ray Analyzer) and (4) compound bond which evaluated by FTIR (Fourier Transform Infra Red) Spectroscopy Testing. Alkali Activated Material used were Class F fly ash based AAM Mortar and Class C fly ash based AAM Mortar. The result is a quite difference of material characteristics between Class F fly ash based AAM and Class C fly ash based AAM.

  20. Hydrolytic stability of heavy metal compounds in fly ash of a heat power plant

    International Nuclear Information System (INIS)

    Suslova, E.P.; Pertsikov, I.Z.

    1991-01-01

    Ash and slag from solid fuels are utilized widely in building materials and road surfaces, and in agriculture for soil acidulation. For all these uses it is important to know the amount and form of heavy metal compounds contained in ash and their likely behavior when ash and slag wastes are utilized. Studying the behavior of heavy metals in ash residues at contact with water media is important also because, for most trace elements, the authors lack experimental data that would enable us to predict their behavior after prolonged storage and industrial utilization. The present paper describes a study of lixiviation (at various pH in static conditions) of heavy metals form fly ash obtained by burning Azeisk coal. Homogenized ash selected from electric filter sections 1-4 was used, which has the following composition (%): SiO 2 59.8; Al 2 O 3 ; Fe 23 O 3 7.1; CaO 4.1; MgO 1.3; other 2.8. In a neutral medium, Ni, Cu, Zn, Pb, and Mn lixiviation was slight, amounting to 0.01-0.4%. During coal combustion, these elements apparently form compounds that are slightly soluble in water, although it is also possible that ash retains high adsorptivity for heavy metals. As a result, in these conditions the reverse process of sorption of heavy metals from the solution by fly ash is also possible, which would reduce the heavy metal concentration in the solution

  1. Multifunctional MgO Layer in Perovskite Solar Cells.

    Science.gov (United States)

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Use of porous MgO in pyrochemical applications

    International Nuclear Information System (INIS)

    Maiya, P.S.; Sweeney, S.M.; Carroll, L.A.; Dusek, J.T.

    1994-11-01

    Pyrochemical methods for the extraction of transuranic elements from light water reactor spent fuel require a reduction step in which the oxide fuel is reduced to metals by Li in molten LiCl. The Li 2 O formed is electrolytically reduced to metal in a cell that uses a carbon (or inert) anode and a Li cathode to recycle the salt and minimize the waste. Use of a carbon anode causes carbon dust that interferes with the process. Moreover, current efficiency is reduced as a result of oxidation of Li to Li 2 O by CO 2 . A porous MgO shroud around the anode was found to obviate these problems. Porous MgO crucibles and rectangular bar specimens were fabricated from MgO powders (electrically fused MgO, reagent grade MgO were mixed in appropriate combinations with a binder and lubricant). Particle size, force applied to the powders during cold pressing, and sintering temperature were varied to achieve a total porosity of >45% (mostly open porosity) and to control pore size and pore distribution. Mercury intrusion porosimetry was used to determine the pore size and pore size distribution. Flexural strength is observed to be proportional to the square root of pore size, which is consistent with fracture mechanics

  3. Soluble salts addition modifies MgO hydration

    International Nuclear Information System (INIS)

    Santos, A.M.; Pandolfelli, V.C.; Salomao, R.

    2012-01-01

    Magnesium oxide (MgO) show great technological interest on refractories due to its high refractoriness, basic slag corrosion resistance and competitive cost. However, the hydration reaction of MgO produces magnesium hydroxide. This reaction generates a significant volumetric expansion that can lead to material breakdown inhibiting its use in refractory castables. This reaction can be affected by several factors such as magnesia source, purity, calcination temperature, pH, CaO/SiO 2 ratio and agitation speed. In the present work, soluble salts (CaCl 2 and MgCl 2 ) were used in MgO aqueous suspensions (caustic and sinter). The results were evaluated by means of techniques of degree of hydration (termogravimetric), Scanning electron microscopy, apparent volumetric expansion and x-ray Diffraction which showed that the degree of hydration was noticeably less to sinter aqueous and the expansive effects were less with the addition of CaCl 2 . (author)

  4. MgO monolayer epitaxy on Ni (100)

    Science.gov (United States)

    Sarpi, B.; Putero, M.; Hemeryck, A.; Vizzini, S.

    2017-11-01

    The growth of two-dimensional oxide films with accurate control of their structural and electronic properties is considered challenging for engineering nanotechnological applications. We address here the particular case of MgO ultrathin films grown on Ni (100), a system for which neither crystallization nor extended surface ordering has been established previously in the monolayer range. Using Scanning Tunneling Microscopy and Auger Electron Spectroscopy, we report on experiments showing MgO monolayer (ML) epitaxy on a ferromagnetic nickel surface, down to the limit of atomic thickness. Alternate steps of Mg ML deposition, O2 gas exposure, and ultrahigh vacuum thermal treatment enable the production of a textured film of ordered MgO nano-domains. This study could open interesting prospects for controlled epitaxy of ultrathin oxide films with a high magneto-resistance ratio on ferromagnetic substrates, enabling improvement in high-efficiency spintronics and magnetic tunnel junction devices.

  5. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  6. Recovery of vanadium, and nickel from fly ash produced from heavy oil-fired electrical power station

    International Nuclear Information System (INIS)

    Stas, J.; Dahdouh, A.; Al-Chayah, O.

    2006-05-01

    After some preliminary tests, two leaching stages of fly ash to recover vanadium, molybdenum and nickel were selected. A first stage alkaline leaching of fly ash to recover vanadium and molybdenum followed by a second stage sulfuric acid leaching of the residual ash to recover nickel. The impact of some operational parameters (L/S, leaching temperature, mixing time, and agent leaching concentrations) on the recovery of V, Ni was investigated. Conditions of precipitation of V and Mo from alkaline medium and Ni from sulfuric acid solution were established. (author)

  7. Protecting black ash from the emerald ash borer

    Science.gov (United States)

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  8. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  9. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  11. Estimates for diffusion barriers and atomic potentials in MGO

    International Nuclear Information System (INIS)

    Skala, L.; Kenkre, V.M.

    1991-01-01

    In this paper, as part of a program of investigation of microwave sintering, self-consistent CNDO/2 calculations are presented for diffusion barriers and potentials for the motion of interstitial atoms and vacancies in MgO. Clusters of 30 atoms are used in the calculations. Activation energies, diffusion barriers, shape of the potentials and electron densities are obtained

  12. Thermically stimulated exoelectronic emissions and thermoluminescence of MgO

    International Nuclear Information System (INIS)

    Chubaci, J.F.D.

    1987-01-01

    In this work, studies were performed on the following topics: i) thermically stimulated exoelectronic emission (TSEE) in pure MgO single crystals ion implanted, submitted to thermal treatment with fast on slow cooling and water adsorption; ii) ultraviolet light effect on TSEE; iii) thermoluminescent emission; iv) crystallization of FeCoB amorphous alloys. (A.C.A.S.) [pt

  13. Lithium ion implantation effects in MgO (100)

    NARCIS (Netherlands)

    van Huis, MA; Fedorov, AV; van Veen, A; Labohm, F; Schut, H; Mijnarends, PE; Kooi, BJ; De Hosson, JTM; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    Single crystals of MgO (100) were implanted with 10(16) (6)Li ions cm(-2) at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical

  14. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  15. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  16. Death of spruce needles due to air-borne ash

    Energy Technology Data Exchange (ETDEWEB)

    Maran, B

    1959-01-01

    This paper discusses the damage caused by the deposition of ash, with a high content of sulfur dioxide, on spruce trees. The data in this paper covers the source of the pollution, the effects of weather on the transport of the pollution, and the type of damage caused by the pollution. Other types of trees included in the data are pine, larch, and 5 broadleaf species.

  17. Biological and chemical interactions excelerating the removal of impurities from fly ashes

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2002-03-01

    Full Text Available The mesophilic bacteria were isolated from the deposit of fly ash in Chalmová (Slovakia and identified using the BBL identification system. Bacillus cereus was the dominant species in this deposit of aluminosilicate minerals. Under laboratory conditions , Bacillus cereus accelerated the extraction of major and trace impurities in fly ash during bioleaching processes. This process was dependent on bacterial adhesion and production of organic acids. The effect of organic acids produced by bacteria was detected especially in sites where impregnated metals were found in the aluminosilicate structure. Amorphous spherical aluminosilicate particles in allotriomorphic aluminosilicate grains represent a main mineral component of fly-ash in which also elements such as Fe, Ti, Mn, As are bound. The rate of mobilization of Al, Si and Ti from coal fly ash under biochemically relevant conditions in vitro was previously shown to depend on the quantity of the ash microspheres. The qualitative EDS analyse of leachates confirmed the extraction of toxic elements (As and Mn from the initial sample of fly ash.Heterotrophic bacteria of Bacillus genus are capable to remove impurities from deposited fly-ash. A long-term deposition of energy fly-ash causes chemical and mineralogical changes as a result of weathering processes. Depending on the composition of coal concentrate containing SiO2, Al2O3, Fe2O3, CaO, MgO and other oxides, fly ash can provide a useful preliminary batch for the preparation of glass-ceramics or zeolite after extracting of bacterially dissolved elements from it. The mobility of major impurities (Ca and Fe and heavy metals, caused by biochemical leaching of fly ash, suggests the possibility of the development of an alternative way of this raw material treatment. The advantage of bioleaching is relatively low cost and the subsequent low demand for energy compared with conventional technologies.

  18. First international ash marketing and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A total of 42 papers were presented in sessions with the following headings: production and disposal of ash - an international review; environmental, health, safety, and legal aspects of ash handling; marketing of ash; development of new uses for ash; cementitious use of ash; ash in manufactured products; and geotechnical uses of ash.

  19. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  20. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2011-01-01

    The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 .5H 2 O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(- A)-S-H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C-S-H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.

  1. Characterization of ashes of elephant grass (Pennisetum purpureum) for potential added in mass red ceramic

    International Nuclear Information System (INIS)

    Silva, A.M.F.D.; Sales, K.A.; Monteiro, S.N.; Vieira, C.M.F.

    2012-01-01

    This work is in characterizing ash from biomass grass (Pennisetum purpureums) for incorporation into red ceramic masses. The ashes of elephant grass were generated from burning this dry biomass in an industrial furnace of red ceramic. The morphology of the material generated was observed by an optical microscope. The chemical composition was determined by fluorescence X-ray spectrometry, and the identification of phases by X-ray diffraction. The particle size distribution was obtained by sieving. Thermogravimetric analyzes were also conducted. The results indicate that these ashes are constituted of high quantities of SiO 2 , MgO, CaO and K 2 O, totaling approximately 75% of composition of matter. They have a particle size of 0.7 to 2.2mm featuring. The residue as a kind of coarse particles. Therefore, the results of this study can support future research to the addition of this residue in structural ceramics products (red ceramic)

  2. Method for the treatment of mining gangue containing sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Minnick, L J; Smith, C L; Webster, W C

    1976-07-01

    Mining gangue is often heaped up on large, open-air dumps. By means of extraction and oxidation of the sulfuric elements contained, the environment is being negatively influenced, due to the sulfuric acids occuring. The method described converts the gangue into an ecologically agreeable material which can be used even in road construction. This is achieved by mixing the gangue with lime, a pozzolane active material and water, and by hardening the gangue at atmospheric pressure for several days. This method can be very cost-effective if fly ash is used as pozzolane-active material.

  3. Bulk and surface properties of magnesium peroxide MgO2

    Science.gov (United States)

    Esch, Tobit R.; Bredow, Thomas

    2016-12-01

    Magnesium peroxide has been identified in Mg/air batteries as an intermediate in the oxygen reduction reaction (ORR) [1]. It is assumed that MgO2 is involved in the solid-electrolyte interphase on the cathode surface. Therefore its structure and stability play a crucial role in the performance of Mg/air batteries. In this work we present a theoretical study of the bulk and low-index surface properties of MgO2. All methods give a good account of the experimental lattice parameters for MgO2 and MgO bulk. The reaction energies, enthalpies and free energies for MgO2 formation from MgO are compared among the different DFT methods and with the local MP2 method. A pronounced dependence from the applied functional is found. At variance with a previous theoretical study but in agreement with recent experiments we find that the MgO2 formation reaction is endothermic (HSE06-D3BJ: ΔH = 51.9 kJ/mol). The stability of low-index surfaces MgO2 (001) (Es = 0.96 J/m2) and (011) (Es = 1.98 J/m2) is calculated and compared to the surface energy of MgO (001). The formation energy of neutral oxygen vacancies in the topmost layer of the MgO2 (001) surface is calculated and compared with defect formation energies for MgO (001).

  4. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  5. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  6. Salt-soda sinter process for recovering aluminum from fly ash

    Science.gov (United States)

    McDowell, W.J.; Seeley, F.G.

    A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

  7. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol.

    Science.gov (United States)

    Jiang, Nanzhe; Jin, Hailian; Jeong, Eun-Young; Park, Sang-Eon

    2010-01-01

    Side chain alkylation of toluene with methanol was studied over mesoporous zeolite supported MgO catalysts. MgO were supported onto the carbon templated mesoporous silicalite-1 by direct synthesis route under microwave conditions. This direct synthesis route yields the majority of MgO highly dispersed into the mesopores of the silicalite-1 crystals. The vapor phase alkylation of toluene with methanol was performed over these catalysts under vapor phase conditions at atmospheric pressure. Mesoporous silicalite-1 supported MgO catalysts gave improved yields towards side chain alkylated products compared to the bulk MgO. The higher activity exhibited by 5% MgO supported on mesoporous silicalite compared to the one with 1% MgO can be attributed to the large number of weak basic sites observed from the CO2 TPD.

  8. Beneficial use of off-specification fly ashes to increase the shear strength and stiffness of expansive soil-rubber (ESR) mixtures.

    Science.gov (United States)

    2011-07-01

    The use of off-specification fly ashes to increase the shear strength and stiffness of an expansive soil-rubber (ESR) mixture is investigated systematically in this study. The off-specification fly ashes used include a high-sulfur content and a high-...

  9. Mechanism research on coupling effect between dew point corrosion and ash deposition

    International Nuclear Information System (INIS)

    Wang, Yun-Gang; Zhao, Qin-Xin; Zhang, Zhi-Xiang; Zhang, Zhi-Chao; Tao, Wen-Quan

    2013-01-01

    In order to study the coupling mechanism between ash deposition and dew point corrosion, five kinds of tube materials frequently used as anti-dew point corrosion materials were selected as research objects. Dew point corrosion and ash deposition experiments were performed with a new type experimental device in a Chinese thermal power plant. The microstructures of the materials and the composition of ash deposition were analyzed by X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS). The results showed that the ash deposition layer could be divided into non-condensation zone, the main condensation zone and the secondary condensation zone. The acid vapor condensed in the main condensation zone rather than directly on the tube wall surface. The dew point corrosion mainly is oxygen corrosion under the condition of the viscosity ash deposition, and the corrosion products are composed of the ash and acid reaction products in the outer layer, iron sulfate in the middle layer, and iron oxide in the inner layer. The innermost layer is the main corrosion layer. With the increase of the tube wall temperature, the ash deposition changes from the viscosity ash deposition to the dry loose ash deposition, the ash deposition rate decreases dramatically and dew point corrosion is alleviated efficiently. The sulfuric dew point corrosion resistance of the five test materials is as follows: 316L > ND > Corten>20G > 20 steel. -- Highlights: ► Dew point corrosion and ash deposition tests of five materials were performed. ► Acid vapor condensed in the ash deposit rather than directly on the tube surface. ► Dew point corrosion resistance is as follow: 316L > ND > Corten>20G > 20 steel. ► Dew point corrosion mainly is oxygen corrosion under viscosity ash deposition

  10. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  11. Facing slag glass and slag glass ceramic produced from thermal power plant ash

    Energy Technology Data Exchange (ETDEWEB)

    Buruchenko, A.E.; Kolesnikov, A.A.; Lukoyanov, A.G.

    1990-10-01

    Evaluates properties of fly ash and slags from the Krasnoyarsk coal-fired power plants and their utilization for glass and ceramic glass production. Composition of a mixture of fly ash and slag was: silica 40-55%, aluminium oxides 10-40%, ferric trioxide 6-14%, calcium oxides 20-35%, magnesium oxides 3-6%, potassium oxides 0.3-1.5%, sodium oxides 0.2-05%, sulfur trioxide 0.9-5.0%. The analyzed fly ash and slags from the Krasnoyarsk plant were an economic waste material for glass production. Properties of sand, clay and other materials used in glass production and properties of glass and ceramic glass produced on the basis of fly ash and slags are analyzed. Economic aspects of fly ash and slag utilization are also evaluated. 3 refs.

  12. AMOC studies of positronium in fine MgO powder

    International Nuclear Information System (INIS)

    Waeyenberge, B. van; Dauwe, C.

    2001-01-01

    A first set of AMOC spectra on fine powdered MgO were measured at the Stuttgart relativistic positron beam facility. A special AMOC spectrometer was set up in order to determine the long lifetimes of ortho-positronium in the powder cavities. The spectra were taken on pellets of pressed powder in air and in an oxygen atmosphere to ensure ortho- to para-positronium conversion. An analysis of the data is made in the light of previous lifetime measurements on MgO. Here the lifetime spectrum was fitted with an age dependent lifetime describing the slow thermalisation of epithermal ortho-positronium between the powder grains. Based on the lifetime spectrum of the integrated AMOC spectra the data could not discriminate between a 5-component model and a model including slow positronium thermalisation. On the other hand, analysis of the age dependent line shape parameter shows better variances for a thermalisation model. (orig.)

  13. AMOC studies of positronium in fine MgO powder

    Energy Technology Data Exchange (ETDEWEB)

    Waeyenberge, B. van; Dauwe, C. [Ghent Univ. (Belgium). Dept. of Subatomic and Radiation Physics; Stoll, H. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany)

    2001-07-01

    A first set of AMOC spectra on fine powdered MgO were measured at the Stuttgart relativistic positron beam facility. A special AMOC spectrometer was set up in order to determine the long lifetimes of ortho-positronium in the powder cavities. The spectra were taken on pellets of pressed powder in air and in an oxygen atmosphere to ensure ortho- to para-positronium conversion. An analysis of the data is made in the light of previous lifetime measurements on MgO. Here the lifetime spectrum was fitted with an age dependent lifetime describing the slow thermalisation of epithermal ortho-positronium between the powder grains. Based on the lifetime spectrum of the integrated AMOC spectra the data could not discriminate between a 5-component model and a model including slow positronium thermalisation. On the other hand, analysis of the age dependent line shape parameter shows better variances for a thermalisation model. (orig.)

  14. Flexible MgO Barrier Magnetic Tunnel Junctions.

    Science.gov (United States)

    Loong, Li Ming; Lee, Wonho; Qiu, Xuepeng; Yang, Ping; Kawai, Hiroyo; Saeys, Mark; Ahn, Jong-Hyun; Yang, Hyunsoo

    2016-07-01

    Flexible MgO barrier magnetic tunnel junction (MTJ) devices are fabricated using a transfer printing process. The flexible MTJ devices yield significantly enhanced tunneling magnetoresistance of ≈300% and improved abruptness of switching, as residual strain in the MTJ structure is released during the transfer process. This approach could be useful for flexible electronic systems that require high-performance memory components. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  16. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Science.gov (United States)

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  17. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  18. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  19. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  20. Action of sulfurous oxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J

    1873-01-01

    In order to ascertain which trees best withstand the action of sulfurous oxide, and are, therefore, best suited for planting in neighborhoods where this gas is given off, young trees of various kinds growing in the open ground, were exposed under glass shades to air containing quantities of sulfurous oxide, varying from 1/10,000 to 1/70,000, under circumstances most favorable to its action, viz., in direct sunlight and after having been watered. The sensitiveness of the leaves was carefully noticed, and also the power which the trees possessed of compensating for injury by the reproduction of leaves; this was found to vary considerably in different trees, as did also the resisting power in the first case. Alder, sycamore, ash, and especially maple, are recommended for growth where exposed to smoke containing sulfurous oxide; next follow birch, hornbeam, and oak, and last, beech. The pines did not give constant results, but in nature they suffer more than other trees, and this is owing to the fact that, although their sensitiveness at first is less than that of other trees, their power of restoring lost leaves is much less.

  1. Experimental study of influence characteristics of flue gas fly ash on acid dew point

    Science.gov (United States)

    Song, Jinhui; Li, Jiahu; Wang, Shuai; Yuan, Hui; Ren, Zhongqiang

    2017-12-01

    The long-term operation experience of a large number of utility boilers shows that the measured value of acid dew point is generally lower than estimated value. This is because the influence of CaO and MgO on acid dew point in flue gas fly ash is not considered in the estimation formula of acid dew point. On the basis of previous studies, the experimental device for acid dew point measurement was designed and constructed, and the acid dew point under different smoke conditions was measured. The results show that the CaO and MgO in the flue gas fly ash have an obvious influence on the acid dew point, and the content of the fly ash is negatively correlated with the temperature of acid dew point At the same time, the concentration of H2SO4 in flue gas is different, and the acid dew point of flue gas is different, and positively correlated with the acid dew point.

  2. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  3. Electronic, magnetic and optical properties of B, C, N and F doped MgO monolayer

    Science.gov (United States)

    Moghadam, A. Dashti; Maskane, P.; Esfandiari, S.

    2018-06-01

    MgO as one of the alkaline earth oxides has various applications in industry. In this work, we aim to investigate the electronic, optical and magnetic properties of MgO monolayers. Furthermore, monolayer structures with substituted B, N, C and F atoms instead of O atom are studied. These results indicate that MgO layer has possessed potential application in optoelectronic and spintronic nano-devices.

  4. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

    OpenAIRE

    Nemade, K. R.; Waghuley, S. A.

    2014-01-01

    Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with a...

  5. Removal of uranium from simulated fly ash by chloride volatilization method

    International Nuclear Information System (INIS)

    Nobuaki, Sato; Yoshikatsu, Tochigi; Toshiki, Fukui; Takeo, Fujino

    2003-01-01

    Fly ash is generated from LWR nuclear power plant as a low-level waste, which is contaminated with a small amount of radioactive materials, composed mainly of uranium oxide. The constituents of the fly ash are similar to those of the ore; the major components of the ash are oxides of silicon, aluminum, sodium, magnesium, zinc, iron sodium and uranium. In this study, removal of uranium from the simulated fly ash, of which composition was U 3 O 8 : 10, CaO:25, SiO 2 : 25, Al 2 O 3 : 20, MgO: 10, ZnO:5, Fe 2 O 3 : 3 and Na 2 CO 3 : 2 wt%, by chloride volatilization method was examined. The simulated fly ash was chlorinated by the same manner as the dry way processing for the ore; namely, the ash was heated in a flow of chlorine in the presence of carbon at high temperatures. In the case of volatilization of uranium from U 3 O 8 and a simulated fly ash by chlorination using chlorine and carbon, it was seen that uranium of both samples showed similar volatilization behaviour: The volatilization ratio of uranium (VU) increased with increasing temperature from 800 to 1100 C. The VU value attained 99.9% at 1100 C. Iron, silicon and zinc showed similar behaviour to uranium, namely, they vaporized completely. The volatilization ratio of aluminum, magnesium and sodium were still high in a range 80-90%. The volatilization ratio of calcium was ∼40% under the same chlorination condition, though it changed to chloride. For recovery of uranium from fly ash by chlorination using chlorine in the presence of carbon, high volatilization ratio of uranium can be achieved at high temperatures. Volatilization ratio of other components also increases, which decreases the amount of decontaminated residue resulting in the reducing of decontamination effect. Selection of heating condition is important. (author)

  6. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  7. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  8. Influence of orimulsion ashes on germinating power of seeds of cultured plants

    International Nuclear Information System (INIS)

    Jankevicius, K.; Juskenas, R.; Klimantaviciute, M. G.; Salkauskas, M.

    1998-01-01

    Investigation on dissolution of orimulsion ashes, which contain MgSO 4 6H 2 0, and Ca 0.17 V 2 O 5 as well as nickel and iron, in water and acidic and basic water solution was fulfilled. Exothermic solubility in water reaches 18 % and such a saturated green or yellow solution (pH - 2,7) contains 0,3 mol/l of vanadium and 0,1 mol/l nickel. 4 % sodium hydroxide solution convert orimulsion ashes to gel, but 20 % sulfuric acid dissolve up to - 20 (a brown solution). Small quantities of water convert orimulsion ashes to a solid substance. The non-soluble part of orimulsion ashes consists of Fe 3 O 4 and Fe 2 O 3 which can be used as cheep pigments for paints. The bio testing method was used to estimate the toxic effects of orimulsion ashes from Elektrenai Electric Power Plant in Lithuania. It was established that 0,005% aqueous solution of orimulsion ashes stimulates the sprouting of wheat, rye and vetch seeds. Therefore, it is supposed that orimulsion ashes may be used as additives to fertilizers containing microelements. It was found that 0,5 % aqueous solution of orimulsion ashes inhibits the sprouting of wheat, rye and vetch seeds. (author)

  9. The Melting Curve and Premelting of MgO

    OpenAIRE

    Cohen, R. E.; Weitz, J. S.

    1996-01-01

    The melting curve for MgO was obtained using molecular dynamics and a non-empirical, many-body potential. We also studied premelting effects by computing the dynamical structure factor in the crystal on approach to melting. The melting curve simulations were performed with periodic boundary conditions with cells up to 512 atoms using the ab-initio Variational Induced Breathing (VIB) model. The melting curve was obtained by computing $% \\Delta H_m$ and $\\Delta V_m$ and integrating the Clapeyro...

  10. Positronium deuteride and hydride in MgO crystals

    OpenAIRE

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1996-01-01

    Low-temperature positron lifetime and Doppler broadening measurements were made in MgO crystals containing D− or H− ions in order to investigate the temperature dependence of the positron trapping by D− and H− ions and elucidate the possible formation of PsD (PsH) states. Positrons are trapped at D− and H− ions once the oxygen vacancies, which are more effective positron traps, are eliminated by annealing the crystals at high temperatures in a reducing atmosphere. From the temperature depende...

  11. Sulfur content measurement in coal by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Thinova, L.

    2001-01-01

    X-ray fluorescence, using backscattering, was employed in the determination of sulfur content and ash content measurement in coal. The results of the methods are given to illustrate the differences between the chemical analysis and X-ray fluorescence method.

  12. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    Directory of Open Access Journals (Sweden)

    M. Abdulwahab

    Full Text Available The microstructural study via scanning electron microscope (SEM and thermal study via differential scanning calorimetric (DSC study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM. The microstructure obtained reveals a dark ceramic (reinforcer and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%. These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively. Keywords: Microstructural analysis, Melon shell ash, Stir casting, X-ray fluorescent, Reinforcement, Composite

  14. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  15. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  17. The neutron transmission of single crystal MgO filters

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Hilleke, R.O.

    1989-01-01

    We have measured and analyzed the wavelength dependence of the transmission probability of a beam of neutrons passing through a single crystal MgO filter at 77 K. The 12.7 cm filter transmits 70% or more of the incident beam at wavelengths greater than about 1.8 A. At shorter wavelengths the transmission probability drops sharply, with 50% transmission occurring at about 1.2 A, and 1% transmission for the range 0.1-0.4 A. We have determined that cooling the filter to 77 K improves the transmission of >1 A neutrons, while further cooling to 25 K shows little additional improvement, and no improvement for short wavelengths. We have identified the wavelengths of the sharp dips in the transmission found in this region caused by Bragg scattering in MgO. We also show how these peaks may be used to calibrate the wavelength scale of time-of-flight measurements taken on instruments using similar filters. (orig.)

  18. Stabilization of Reactive MgO Surfaces by Ni Doping

    Science.gov (United States)

    Mazheika, Aliaksei; Levchenko, Sergey V.

    Ni-MgO solid solutions are promising materials for catalytic reduction of CO2 and dry reforming of CH4. To explain the catalytic activity, an ab initio study of Ni-substitutional defects in MgO (NiMg) has been performed. At first, the validation of the theory level was done. We compared results of CCSD(T) embedded-cluster calculations of NiMg formation energies and adsorption energies of CO, CO2 and H2 on them to the HSE(α) hybrid DFT functional with the fraction of the exact exchange α varied between 0 and 1. HSE(0.3) was found to be the best compromise in this study. Our periodic HSE(0.3) calculations show that NiMg defects are most stable at corner sites, followed by steps, and are least stable at (001) terraces. Thus, Ni-doping stabilizes stepped MgO surfaces. The dissociative adsorption of H2 on the terrace is found to be endothermic (+ 1 . 1 eV), whereas on (110) surface with NiMg it is highly exothermic (- 1 . 6 eV). Adsorbed CO2 is also significantly stabilized (- 0 . 6 vs. - 2 . 2 eV). These findings explain recent microcalorimetry measurements of H2 and CO2 adsorption at doped Ni-MgO samples. partially supported by UniCat (Deutsche Forschungsgemeinschaft).

  19. Removal of COD and color loads in bleached kraft pulp effluents by bottom ashes from boilers.

    Science.gov (United States)

    Van Tran, A

    2008-07-01

    The effectiveness of the bottom ashes from biomass and coal-fired boilers in removing chemical oxygen demand (COD) and colorloads in effluents of a kraft pulp bleachery plant is investigated. The effluents tested are those of the sulfuric acid treatment (A stage) of a hardwood kraft pulp, and of the first acidic (chlorine or chlorine dioxide) and second alkaline (extraction) stages in the chlorine and elemental chlorine-free (ECF) bleaching lines of hardwood and softwood kraft pulps. The coal-fired boiler's bottom ashes are unable to remove either COD or color load in the bleached kraft pulp effluents. However, the bottom ashes of the biomass boiler are effective in removing COD and color loads of the acidic and alkaline effluents irrespective of the bleaching process or wood species. In particular, these ashes increase the pH of all the effluents examined.

  20. Electron microscopy and phase analysis of fly ash from pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Maenami, Hiroki; Isu, Norifumi; Ishida, Emile H.; Mitsuda, Takeshi

    2004-01-01

    The characterization of the typical fly ashes from pressurized fluidized bed combustion system (PFBC) in Japan and Europe was carried out by electron microscopy and phase analysis using energy-dispersive X-ray spectroscopy (EDX). The purity of limestone as in-bed sulfur removal sorbent influences the desulfurization reaction. The high-purity limestone yielded both hydroxyl ellestadite and anhydrite in Japanese PFBC ashes, while dolomite-rich limestone yielded anhydrite in European PFBC ashes. When the high-purity limestone was used, hydroxyl ellestadite particles were observed as the independent particles or the rim around limestone particles. The Al 2 O 3 content in the glassy phase was inversely proportional to the CaO content in the glassy phase, suggesting that the glassy phases were formed from metakaoline and calcite as end members. Since hydroxyl ellestadite, glassy phase and metakaoline are reactive under hydrothermal conditions, PFBC ashes are expected to be used as raw materials for autoclaved products

  1. An improved ashing procedure for biologic sample

    Energy Technology Data Exchange (ETDEWEB)

    Zongmei, Wu [Zhejiang Province Enviromental Radiation Monitoring Centre (China)

    1992-07-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches.

  2. An improved ashing procedure for biologic sample

    International Nuclear Information System (INIS)

    Wu Zongmei

    1992-01-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches

  3. Low cost porous MgO substrates for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Søgaard, Martin; Clemens, F.

    2016-01-01

    This paper delineates the fabrication of porous magnesium oxide (MgO) ceramics with high porosity and gas permeability by warm pressing using pre-calcined MgO powder and fugitive pore former (combination of graphite and polymethyl methacrylate). Effect of pore former on the microstructure...

  4. Technical Report on the Impact of MgO on Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Schultz, R.L.

    2000-01-01

    The purpose of this study was to determine the effect(s) of removing MgO from DWPF frits to assess the impact on liquidus temperature and the durability of the glass product. Removal of MgO from the frit was hypothesized to lead to a decrease in liquidus temperature and thereby allow increased waste loading

  5. Effect of stabilizer on optical and structural properties of MgO thin ...

    Indian Academy of Sciences (India)

    and are not easy to handle due to high moisture sensitivity. Metal salts include ... diethanolamine (DEA), triethanolamine (TEA) and acety- lacetone .... SEM analysis. Figure 9 shows SEM micrographs of MgO films prepared by three different sols. SEM micrographs of MgO thin films confirm difference between porosity of.

  6. Microstructure of pulsed-laser deposited PZT on polished and annealed MGO substrates

    NARCIS (Netherlands)

    King, S.L.; Coccia, L.G.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    Thin films of Lead-Zirconate-Titanate (PZT) have been grown by pulsed-laser-deposition (PLD) onto polished MgO substrates both with and without pre-annealing. The surface morphology of polished MgO substrates, which are widely used for deposition, is examined by AFM. Commercially available,

  7. Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA.

    Science.gov (United States)

    Carrión, Víctor J; van der Voort, Menno; Arrebola, Eva; Gutiérrez-Barranquero, José A; de Vicente, Antonio; Raaijmakers, Jos M; Cazorla, Francisco M

    2014-02-21

    The antimetabolite mangotoxin is a key factor in virulence of Pseudomonas syringae pv. syringae strains which cause apical necrosis of mango trees. Previous studies showed that mangotoxin biosynthesis is governed by the mbo operon. Random mutagenesis led to the identification of two other gene clusters that affect mangotoxin biosynthesis. These are the gacS/gacA genes and mgo operon which harbors the four genes mgoBCAD. The current study shows that disruption of the nonribosomal peptide synthetase (NRPS) gene mgoA resulted in loss of mangotoxin production and reduced virulence on tomato leaves. Transcriptional analyses by qPCR and promoter reporter fusions revealed that mbo expression is regulated by both gacS/gacA and mgo genes. Also, expression of the mgo operon was shown to be regulated by gacS/gacA. Heterologous expression under the native promoter of the mbo operon resulted in mangotoxin production in non-producing P. syringae strains, but not in other Pseudomonas species. Also introduction of the mbo and mgo operons in nonproducing P. protegens Pf-5 did not confer mangotoxin production but did enhance transcription of the mbo promoter. From the data obtained in this study, we conclude that both mbo and mgo operons are under the control of the gacS/gacA two-component system and that the MgoA product acts as a positive regulator of mangotoxin biosynthesis.

  8. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  9. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  10. Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation

    International Nuclear Information System (INIS)

    Wang, D.D.; Chen, Z.Q.; Li, C.Y.; Li, X.F.; Cao, C.Y.; Tang, Z.

    2012-01-01

    High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.

  11. Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.D. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Chen, Z.Q., E-mail: chenzq@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Li, C.Y.; Li, X.F. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Cao, C.Y.; Tang, Z. [Department of Electronic and Engineering, East China Normal University, Shanghai 200241 (China)

    2012-07-15

    High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 Degree-Sign C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 Degree-Sign C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 Degree-Sign C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 Degree-Sign C. However, after 1400 Degree-Sign C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.

  12. Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation

    Science.gov (United States)

    Wang, D. D.; Chen, Z. Q.; Li, C. Y.; Li, X. F.; Cao, C. Y.; Tang, Z.

    2012-07-01

    High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.

  13. Point defects and magnetic properties of neutron irradiated MgO single crystal

    Directory of Open Access Journals (Sweden)

    Mengxiong Cao

    2017-05-01

    Full Text Available (100-oriented MgO single crystals were irradiated to introduce point defects with different neutron doses ranging from 1.0×1016 to 1.0×1020 cm-2. The point defect configurations were studied with X-ray diffuse scattering and UV-Vis absorption spectra. The isointensity profiles of X-ray diffuse scattering caused by the cubic and double-force point defects in MgO were theoretically calculated based on the Huang scattering theory. The magnetic properties at different temperature were measured with superconducting quantum interference device (SQUID. The reciprocal space mappings (RSMs of irradiated MgO revealed notable diffuse scattering. The UV-Vis spectra indicated the presence of O Frenkel defects in irradiated MgO. Neutron-irradiated MgO was diamagnetic at room temperature and became ferromagnetic at low temperature due to O Frenkel defects induced by neutron-irradiation.

  14. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi; Vella, Angela; Dé conihout, Bernard; Al-Kassab, Talaat

    2011-01-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  15. Epitaxial growth of tungsten layers on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Pengyuan; Ozsdolay, Brian D.; Gall, Daniel, E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Smooth single crystal W(001) layers were grown on MgO(001) substrates by magnetron sputtering at 900 °C. X-ray diffraction ω–2θ scans, ω-rocking curves, pole figures, and reciprocal space maps indicate a 45°-rotated epitaxial relationship: (001){sub W}‖(001){sub MgO} and [010]{sub W}‖[110]{sub MgO}, and a relaxed lattice constant of 3.167 ± 0.001 nm. A residual in-plane biaxial compressive strain is primarily attributed to differential thermal contraction after growth and decreases from −0.012 ± 0.001 to −0.001 ± 0.001 with increasing layer thickness d = 4.8–390 nm, suggesting relaxation during cooling by misfit dislocation growth through threading dislocation glide. The in-plane x-ray coherence length increases from 3.4 to 33.6 nm for d = 4.8–390 nm, while the out-of-plane x-ray coherence length is identical to the layer thickness for d ≤ 20 nm, but is smaller than d for d ≥ 49.7 nm, indicating local strain variations along the film growth direction. X-ray reflectivity analyses indicate that the root-mean-square surface roughness increases from 0.50 ± 0.05 to 0.95 ± 0.05 nm for d = 4.8–19.9 nm, suggesting a roughness exponent of 0.38, but remains relatively constant for d > 20 nm with a roughness of 1.00 ± 0.05 nm at d = 47.9 nm.

  16. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  17. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  18. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash

    Directory of Open Access Journals (Sweden)

    Tigue April Anne S.

    2018-01-01

    Full Text Available A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS, sodium hydroxide (SH, and sodium aluminate (SA were explored. The influence of amount of fly ash (15% and 25%, addition of volcanic ash (0% and 12.5%, and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30 were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS. To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.

  19. Quantification of the degree of reaction of fly ash

    International Nuclear Information System (INIS)

    Ben Haha, M.; De Weerdt, K.; Lothenbach, B.

    2010-01-01

    The quantification of the fly ash (FA) in FA blended cements is an important parameter to understand the effect of the fly ash on the hydration of OPC and on the microstructural development. The FA reaction in two different blended OPC-FA systems was studied using a selective dissolution technique based on EDTA/NaOH, diluted NaOH solution, the portlandite content and by backscattered electron image analysis. The amount of FA determined by selective dissolution using EDTA/NaOH is found to be associated with a significant possible error as different assumptions lead to large differences in the estimate of FA reacted. In addition, at longer hydration times, the reaction of the FA is underestimated by this method due to the presence of non-dissolved hydrates and MgO rich particles. The dissolution of FA in diluted NaOH solution agreed during the first days well with the dissolution as observed by image analysis. At 28 days and longer, the formation of hydrates in the diluted solutions leads to an underestimation. Image analysis appears to give consistent results and to be most reliable technique studied.

  20. Spectroscopic, thermal, and electrical properties of MgO/ polyvinyl pyrrolidone/ polyvinyl alcohol nanocomposites

    Science.gov (United States)

    Mohammed, Gh.; El Sayed, Adel M.; Morsi, W. M.

    2018-04-01

    In this study, we aimed to control the optical and electrical properties of polyvinyl alcohol (PVA) in order to broaden its industrial and technological applications, which we achieved by blending PVA with polyvinyl pyrrolidone (PVP) and adding sol-gel prepared MgO nanopowder. The blended film and nanocomposite films were prepared using the solution casting technique. X-ray diffraction analyses showed that the crystallite size was ∼18.4 nm for MgO and the highest degree of crystallinity (XC) in the films was about 24.34% at 1.0 wt% MgO. High resolution transmission electron microscopy determined the nanoribbon morphology of MgO. Scanning electron microscopy (SEM) indicated the uniform distribution of the MgO nanoribbons on the surfaces of the PVA/PVP films. SEM and Fourier transform infrared spectroscopy also confirmed the interaction between the blend and MgO fillers. The effects of the additives on the glass transition (Tg) and melting (Tm) temperatures were evaluated by differential thermal analysis and differential scanning calorimetry. The appearance of one melting point confirmed the miscibility of the two polymers. According to ultraviolet-visible-near infrared spectroscopy measurements, the optical properties and optical constants of PVA could be adjusted by the addition of PVP and MgO, where the optical band gap (Eg) determined for PVA increased with the PVP content, whereas it decreased to 4.8 eV as the MgO content increased. The DC conductivity (σdc) of the films increased whereas the activation energy (Ea) decreased after the addition of MgO, possibly because the nanoribbon shape fixed the preferred conducting pathways. In addition, MgO could break the H-bond in sbnd OH groups of the blends to allow the free movement of the molecular chains.

  1. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  2. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  3. Interatomic forces and bonding mechanisms in MgO clusters

    International Nuclear Information System (INIS)

    Wright, N.F.; Painter, G.S.

    1990-01-01

    We report results from a first-principles local spin density quantum mechanical study of the energetics and elastic properties of a series of magnesium-oxygen clusters of various morphologies. The role of quantum effects, e.g. covalency, in the bonding character of diatomic MgO is determined by comparison of classical and quantum restoring force curves. The dependence of binding properties on geometry and metal to oxygen ratio is determined by comparison of binding energy curves for a series of clusters. Results show that while gross features of the binding curves may be represented by simple interatomic potentials, details require the many body corrections of a full quantum treatment. 6 refs., 5 figs

  4. Metastable self-trapping of positrons in MgO

    Science.gov (United States)

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1997-01-01

    Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.

  5. Positronium deuteride and hydride in MgO crystals

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1996-01-01

    Low-temperature positron lifetime and Doppler broadening measurements were made in MgO crystals containing D - or H - ions in order to investigate the temperature dependence of the positron trapping by D - and H - ions and elucidate the possible formation of PsD (PsH) states. Positrons are trapped at D - and H - ions once the oxygen vacancies, which are more effective positron traps, are eliminated by annealing the crystals at high temperatures in a reducing atmosphere. From the temperature dependence of the annihilation parameters the positron trapping coefficients for D - and H - centers were shown to increase with temperature between 100-300 K. The lifetime of the PsD (PsH) state is (650±30) ps and temperature independent. The dissociation rate of the PsD (PsH) state into D (H) and Ps is also temperature independent. No isotopic effect was observed. (author)

  6. Lithium ion implantation effects in MgO(100)

    International Nuclear Information System (INIS)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E.; Kooi, B.J.; Hosson, J.T.M. de

    2001-01-01

    Single crystals of MgO(100) were implanted with 10 16 6 Li ions cm -2 at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted 6 Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of 6 Li starts at an annealing temperature of 1200K. (orig.)

  7. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  8. Coal ash monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C G; Wormald, M R

    1978-10-02

    The monitoring equipment is used to determine the remainder from combustion (ash slack) of coal in wagons designed for power stations. Next to the rails, a neutron source (252 Cf, 241 Am/Be) is situated, which irradiates the coal with neutrons at a known dose, which produces the reaction 27 Al (n ..gamma..) Al 28. The aluminium content is a measure of the remainder. The 1.78 MeV energy is measured downstream of the rail with a detector. The neutron source can only act in the working position of a loaded wagon.

  9. Modified sulfur cement solidification of low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  10. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  11. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  12. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  13. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  14. CULTURA ORGANIZACIONAL: UM ESTUDO DE CASO NA EMPRESA MGO

    Directory of Open Access Journals (Sweden)

    Vagner Luís Wentz

    2012-07-01

    Full Text Available O tema cultura tem sido objeto de estudo há muitos anos, e as literaturas existentes apontam uma grande diversidade de conceitos, o que torna as organizações grandes fontes de pesquisa. A MGO, uma multinacional fabricante de produtos agrícolas, convive constantemente com mudanças de seus procedimentos, de suas tarefas do cotidiano e de comportamentos por parte de seus colaboradores, uma relação entre “novatos” e “veteranos” que, em alguns casos, é geradora de conflitos, o que pode vir a prejudicar a imagem da companhia. Diante disso, este estudo tem como objetivo geral analisar a cultura organizacional a partir da percepção das lideranças de uma unidade da empresa MGO situada em Montenegro/RS. Esta pesquisa se classifica, quanto aos procedimentos, como bibliográfica e estudo de caso; quanto aos objetivos, como descritiva; e quanto ao problema, esta pesquisa é classificada como qualitativa. A partir da análise dos dados coletados através de entrevistas semiestruturadas com as lideranças de departamentos diferentes, análise de documentos, observação participante e aplicação do teste para identificação da tipologia de cultura, pode-se identificar a cultura da organização e sugerir algumas melhorias que podem ajudar na harmonia do clima da organização. Palavras-chave: Cultura. Clima. Organização.

  15. Impact of co-combustion of petroleum coke and coal on fly ash quality: Case study of a Western Kentucky power plant

    International Nuclear Information System (INIS)

    Hower, James C.; Thomas, Gerald A.; Mardon, Sarah M.; Trimble, Alan S.

    2005-01-01

    Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal

  16. Emerald ash borer flight potential

    Science.gov (United States)

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  17. Prospects for ash pond reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Shyyam, A.K.; Shukla, K.S.; Agrawal, D. (National Thermal Power Corporation Ltd., New Delhi (India))

    1993-01-01

    A typical modern coal fired station in India burns 0.7 t/MWh of coal and consequently generates ash at 0.245 t/MWh. The physical nature of ash, low available concentrations of certain plant nutrients and the presence of phytotoxic trace elements render fly ash marginally adequate for plant growth. As fly ash itself was thought to be an inappropriate growth medium for plants, regulators decided that a soil cover is mandatory. There is ample data to suggest that the attributes of fly ash detrimental to plant growth can be ameliorated, allowing the establishment of vegetation directly on fly ash surfaces. The natural revegetation of fly ash disposal sites has been reported in the world. The natural vegetation pioneered by Cynodon at different stages of ecological succession and comprising of species such as [ital Calotropis gigantea], [ital Lippia nodiflora], [ital Ipomea, cornea], [ital Xanthium parviflorum] has been noted at one of the NTPC projects, in Badarpur Thermal Power Station. Since natural reclamation is a time-consuming process, experimental trials of growing some species over the temporary ash lagoon directly (without soil cover) were carried out at Ramagundam Super Thermal Power Project (RSTPP) of NTPC, in South India to achieve faster results than the natural process. 6 refs., 8 figs.

  18. Emerald ash borer life cycle

    Science.gov (United States)

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Toby R. Petrice; Houping Liu

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was discovered in southeastern Michigan and nearby Ontario in June of 2002. EAB was identified as the cause of extensive ash (Fraxinus spp.) mortality in approximately 2,500 mi2, and...

  19. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  20. Plant growth on 'fly ash'

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R; Hodgson, D R; Townsend, W N; Wood, J W

    1958-04-12

    Plants were grown in plot and pot experiments to assess the toxicity of the fly ash. It was found that plants grouped into three classes: tolerant, moderately tolerant, and sensitive. Boron was found to be a major compoent of the toxic principle of fly ash.

  1. Emerald ash borer biological control

    Science.gov (United States)

    Leah Bauer; Juli Gould; Jian Duan; Mike. Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  2. Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  3. Pulsed laser deposition of YBCO films on ISD MgO buffered metal tapes

    CERN Document Server

    Ma, B; Koritala, R E; Fisher, B L; Markowitz, A R; Erck, R A; Baurceanu, R; Dorris, S E; Miller, D J; Balachandran, U

    2003-01-01

    Biaxially textured magnesium oxide (MgO) films deposited by inclined-substrate deposition (ISD) are desirable for rapid production of high-quality template layers for YBCO-coated conductors. High-quality YBCO films were grown on ISD MgO buffered metallic substrates by pulsed laser deposition (PLD). Columnar grains with a roof-tile surface structure were observed in the ISD MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD MgO films are tilted at an angle from the substrate normal. A small full-width at half maximum (FWHM) of approx 9deg was observed in the phi-scan for ISD MgO films deposited at an inclination angle of 55deg . In-plane texture in the ISD MgO films developed in the first approx 0.5 mu m from the substrate surface, and then stabilized with further increases in film thickness. Yttria-stabilized zirconia and ceria buffer layers were deposited on the ISD MgO grown on metallic substrates prior to the deposition of YBCO by PLD. YBCO films with the c-axis parallel to the...

  4. Synthesis of Doped and non-Doped Nano MgO Ceramic Membranes

    Directory of Open Access Journals (Sweden)

    Shiraz Labib

    2013-12-01

    Full Text Available Doped and non-doped MgO coated thin films on alumina substrates were prepared using a chelating sol-gel method under controlled conditions to prepare nanomaterials with unprecedented properties. The effect of doping of ZnO on thermal, surface and structural properties was investigated using DTA-TG, BET and XRD respectively. Also microstructural studies and coating thickness measurements of MgO thin film were conducted using SEM. An increase in the thermal stability of MgO with increasing ZnO doping percent was observed. The increase of ZnO doping percent showed a marked decrease in the average particle size of MgO powder as a result of the replacement of some Mg2+ by Zn2+ which has similar ionic radius as Mg2+. This decrease in particle size of MgO was also related to the decrease of the degree of MgO crystalinity. The increase of ZnO doping also showed a marked decrease in coating thickness values of the prepared membranes. This decrease was related to the  mechanism of ZnO doping into a MgO crystal lattice.

  5. Influence of different ions doping on the antibacterial properties of MgO nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Yuanyuan; Wang, Wei, E-mail: weiwang@hust.edu.cn; Tan, Fatang; Cai, Yuncheng; Lu, Junwen; Qiao, Xueliang

    2013-11-01

    Compared with other inorganic antibacterial agents, magnesium oxide (MgO) nanopowders exhibit a unique antibacterial mechanism and various advantages in applications, having attracted extensive attention. In this study, MgO nanopowders doped with different ions (Li{sup +}, Zn{sup 2+} and Ti{sup 4+}) were synthesized by a sol–gel method, respectively. The structures and morphologies of the as-obtained precursors and nanopowders were characterized and confirmed by X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The influence of three metal ions doping on the antibacterial properties of MgO nanopowders was also investigated by their bactericidal activity against Escherichia coli (E. coli, ATCC 25922) using the broth microdilution method and the agar method. The results show that Li-doped MgO exhibits better antibacterial activity, Zn-doped and Ti-doped MgO display poorer antibacterial activity than pure MgO. It can be concluded that the influence of different ions doping on the antibacterial properties of MgO mainly lies on oxygen vacancies and basicity of nanopowders.

  6. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  7. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  8. Biological removal of sulfur from coal flotation concentrate by culture isolated from coal washery plant tailing dump

    Energy Technology Data Exchange (ETDEWEB)

    Jorjani, E. [Azad University, Tehran (Iran). Mining Engineering Dept.

    2005-10-15

    A combination of flotation and microbial leaching processes was used to achieve acceptable level of sulfur and ash in Tabas coal sample of Iran. Representative sample of the minus 500 micron size fraction was subjected to flotation separation for the removal of ash and sulfur. The final concentrate with recovery, combustion value and sulfur content of 86.03, 86.45 and 1.35% respectively was achieved at pH 8 and following reagent dosage and operating conditions: collector: diesel oil (1200 g/ton), frother: MIBC (5%) + pine oil (95%) with concentration of 120 (g/ton), depressant: sodium silicate (1000 g/ton), particle size: {lt} 500 {mu} m and pulp density: 7%. Because of fine distribution of sulfur on Tabas coal macerals and lithotypes, high percentage of total sulfur (79.9%) is distributed in flotation concentrate and only 20.1% is yielded in the tails. So microbial leaching using a species isolated from coal washery plant tailing dump was used in batch system to remove sulfur from flotation concentrate. The conditions were optimized for the maximum removal of sulfur. These conditions were found to be pH of 2, particle size less than 0.18 mm; pulp density: 8%, temperature: 30 {sup o}C, shaking rate: 150 rpm conditions. Total sulfur and ash content was reduced by bioleaching from 13.55 and 1.35 in flotation concentrate to 9.47 and 0.55 in the final leached concentrate, a reduction of 35 and 61.9% respectively. Sterilization of coal adversely affects the sulfur reduction. The results suggest that the isolated culture is sufficiently effective for depyritization of Tabas coal flotation concentrate in stirred system.

  9. The effect of impurities on the electronic properties of MgO

    Energy Technology Data Exchange (ETDEWEB)

    Jalili, Seifollah [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: sjalili@nano.ipm.ac.ir; Majidi, Roya [Department of Physics, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2008-10-01

    The effect of impurities on the electronic properties of MgO is investigated using the full potential linearized augmented plane-wave plus local-orbitals method based on density functional theory. The electronic band structures and density of states of MgO in the presence of Ca, Li, and Na impurities were calculated. It is found that increasing the amount of Ca impurity decreases the energy band gap and increases the width of the upper part of the valence band. Some of the considered impurities (Li and Na) change the electronic properties of MgO extensively.

  10. The effect of impurities on the electronic properties of MgO

    International Nuclear Information System (INIS)

    Jalili, Seifollah; Majidi, Roya

    2008-01-01

    The effect of impurities on the electronic properties of MgO is investigated using the full potential linearized augmented plane-wave plus local-orbitals method based on density functional theory. The electronic band structures and density of states of MgO in the presence of Ca, Li, and Na impurities were calculated. It is found that increasing the amount of Ca impurity decreases the energy band gap and increases the width of the upper part of the valence band. Some of the considered impurities (Li and Na) change the electronic properties of MgO extensively

  11. Incipient plasticity and indentation response of MgO surfaces using molecular dynamics

    Science.gov (United States)

    Tran, Anh-Son; Hong, Zheng-Han; Chen, Ming-Yuan; Fang, Te-Hua

    2018-05-01

    The mechanical characteristics of magnesium oxide (MgO) based on nanoindentation are studied using molecular dynamics (MD) simulation. The effects of indenting speed and temperature on the structural deformation and loading-unloading curve are investigated. Results show that the strained surface of the MgO expands to produce a greater relaxation of atoms in the surroundings of the indent. The dislocation propagation and pile-up for MgO occur more significantly with the increasing temperature from 300 K to 973 K. In addition, with increasing temperature, the high strained atoms with a great perturbation appearing at the groove location.

  12. Ash and Steam, Soufriere Hills Volcano, Monserrat

    Science.gov (United States)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  13. Disposal of fly ash

    International Nuclear Information System (INIS)

    Singh, B.; Foley, C.

    1991-01-01

    Theoretical arguments and pilot plant results have shown that the transport of fly-furnace ash from the power station to the disposal area as a high concentration slurry is technically viable and economically attractive. Further, lack of free water, when transported as a high concentration slurry, offers significant advantages in environmental management and rehabilitation of the disposal site. This paper gives a basis for the above observations and discusses the plans to exploit the above advantages at the Stanwell Power Station. (4 x 350 MWe). This will be operated by the Queensland Electricity Commission. The first unit is to come into operation in 1992 and other units are to follow progressively on a yearly basis

  14. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  15. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  16. Sulfate resistance of fly ash-based geopolymer mortar

    Science.gov (United States)

    Saloma, Iqbal, Maulid Muhammad; Aqil, Ibnu

    2017-09-01

    This paper presents sulfuric acid attack of fly ash-based geopolymer mortar. Precursor used in this study was fly ash, and activator used was NaOH and Na2SiO3. The ratio of activator/precursor, ratio of Na2SiO3/NaOH, and ratio of fine aggregate/precursor is 0.42, 2.00, and 2.00, respectively. The molar concentration of NaOH which was used were 8, 10, 12, 14, and 16 M. This study used cube specimen with 5 cm x 5 cm x 5 cm. The results showed that the higher the molar concentration of NaOH, the lower the weight loss. Maximum percentage of weight loss is 3.54% occured for the specimen with molar concentration of NaOH 8 M. The compressive strength for all specimens decreased due to the longer duration of immersion in sulfuric acid solution. However, this percentage of decreasing for compressive strength will be as lower as increasing the molar concentration of NaOH used. The maximum percentage of decreasing is 35.49% for specimen with NaOH 8 M with 90 days of immersion.

  17. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  18. Measuring ash content of coal

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1980-01-01

    An apparatus for measuring the ash content of coal is claimed. It comprises a means for irradiating a known quantity of coal in a transport container with a known dose of neutrons, a means for detecting γ-rays having a predetermined energy emitted by the irradiated coal, the γ-rays being indicative of the presence of an ash-forming element in the coal, a means for producing a signal related to the intensity of the γ-ray emission and a means responsive to the signal to provide an indication of the concentration of the ash-forming element in the coal

  19. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Analysis of isothermal sintering of zinc-titanate doped with MgO

    Directory of Open Access Journals (Sweden)

    Obradović N.

    2007-01-01

    Full Text Available The aim of this work was analysis of isothermal sintering of zinc titanate ceramics doped with MgO obtained by mechanical activation. Mixtures of ZnO, TiO2 and MgO (0, 1.25 and 2.5% were mechanically activated 15 minutes in a planetary ball mill. The powders obtained were pressed under different pressures and the results were fitted with a phenomenological compacting equation. Isothermal sintering was performed in air for 120 minutes at four different temperatures. Structural characterization of ZnO-TiO2-MgO system after milling was performed at room temperature using XRPD measurements. DTA measurements showed different activation energies for pure and doped ZnO-TiO2 systems. Thus addition of MgO stabilizes the crystal structure of zinc titanate.

  1. Tuning the properties of an MgO layer for spin-polarized electron transport

    Science.gov (United States)

    Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua

    2014-08-01

    The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.

  2. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    Science.gov (United States)

    Kumar, Danith; Yadav, L. S. Reddy; Lingaraju, K.; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.; Naika, H. Raja; Chikkahanumantharayappa, Nagaraju, G.

    2015-06-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm-1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV -Vis spectrum was found to be in the range 5.40-5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  3. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Danith; Chikkahanumantharayappa [Dept. of Physics, Vivekananda First grade College, Bangalore - 560055 (India); Yadav, L. S. Reddy; Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Dept of Chemistry, Siddaganga Institute of Technology, Tumkur, Karnataka-572103 (India); Lingaraju, K.; Naika, H. Raja [Dept. of Environmental Science, Tumkur University, Tumkur, Karnataka-572103 (India); Manjunath, K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Karnataka-562112 (India); Suresh, D. [Dept. of Chemistry, Tumkur University, Tumkur, Karnataka-572103 (India); Prasad, Daruka [Dept. of Physics, BMS Institute of Technology, Bangalore-560064 (India); Nagabhushana, H. [CNR Rao Center for Advanced Materials, Tumkur University, Tumkur, Karnataka-572103 (India); Sharma, S. C. [Chattisgarh Swami Vivekananda Technological University, Bhilai, Chattisgarh-490009 (India)

    2015-06-24

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  4. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    International Nuclear Information System (INIS)

    Kumar, Danith; Chikkahanumantharayappa; Yadav, L. S. Reddy; Nagaraju, G.; Lingaraju, K.; Naika, H. Raja; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.

    2015-01-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm −1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation

  5. Effect of Cs and Li atom adsorption on MgO: Secondary emission and work function

    International Nuclear Information System (INIS)

    Bagraev, N.T.; Borisov, V.L.

    1980-01-01

    Adsorption of Cs and Li atoms on the surface of single crystal magnesium oxide films has been investigated using Auger, LEED and contact difference techniques. A decreased work function for a single crystal MgO film grown on the Mo (100) face was observed to be accompanied by an increased secondary electron emission yield shown to be due to a larger escape depth for secondary electrons. LEED showed well ordered layers of adsorbed Cs on the MgO film surface. A model to explain the behaviour of Cs atoms on the film surface is proposed. It is shown that the stability of the Cs coating is not dependent on a prolonged bombardment of the film by incident electron beams of high current density. Depositing and implanting of thin single crystal MgO films with Li were found to result in an increased secondary electron emission yield, with Li adsorption on the MgO film surface being disordered. (orig.)

  6. Strengthening and toughening of poly(L-lactide) composites by surface modified MgO whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Qin, Xiaopeng; Li, Cairong [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Liu, Mingxian; Ding, Shan [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-03-30

    Highlights: • The grafted PLLA chain on the surface of g-MgO whisker was ruled out by FTIR spectroscopy and TG/DTG analyses. • The excellent dispersion of g-MgO whiskers and the strong interfacial adhesion of g-MgO whiskers/PLLA composite were proved by FSEM. • Comparing to MgO particles and MgO whiskers, fibrous-like g-MgO whiskers are the most effective reinforcing and toughening fillers for PLLA. - Abstract: To improve both the strength and toughness of poly(L-lactide) (PLLA), fibrous-like MgO whiskers with diameters of 0.15–1 μm and lengths of 15–110 μm were prepared, and subsequently surface modified with L-lactide to obtain grafted MgO whiskers (g-MgO whiskers). The structures and properties of MgO whiskers and g-MgO whiskers were studied. Then, a series of MgO whiskers/PLLA and g-MgO whiskers/PLLA composites were prepared by solution casting method, for comparison, MgO particles/PLLA composite was prepared too. The resulting composites were evaluated in terms of hydrophilicity, crystallinity, dispersion of whiskers, interfacial adhesion and mechanical performance by means of polarized optical microscopy (POM), contact angle measurement, field emission scanning electron microscope (FSEM), transmission electron microscopy (TEM) and tensile testing. The results revealed that the crystallization rate and hydrophilicity of PLLA were improved by the introduction of MgO whiskers and g-MgO whiskers. The g-MgO whiskers can disperse more uniformly in and show stronger interfacial adhesion with the matrix than MgO whiskers as a result of the surface modification. Due to the bridge effect of the whiskers and the excellent interfacial adhesion between g-MgO whiskers and PLLA, g-MgO whiskers/PLLA composites exhibited remarkably higher strength, modulus and toughness compared to the pristine PLLA, MgO particles/PLLA and MgO whiskers/PLLA composites.

  7. Lithium ion implantation effects in MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Labohm, F.; Schut, H.; Mijnarends, P.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Kooi, B.J.; Hosson, J.T.M. de [Rijksuniversiteit Groningen (Netherlands). Materials Science Centre

    2001-07-01

    Single crystals of MgO(100) were implanted with 10{sup 16} {sup 6}Li ions cm{sup -2} at an energy of 30 keV. After ion implantation the samples were annealed isochronally in air at temperatures up to 1200K. After implantation and after each annealing step, the defect evolution was monitored with optical absorption spectroscopy and depth-sensitive Doppler Broadening positron beam analysis (PBA). A strong increase in the S-parameter is observed in the implantation layer at a depth of approximately 100 nm. The high value of the S-parameter is ascribed to positron annihilation in small lithium precipitates. The results of 2D-ACAR and X-TEM analysis show evidence of the presence of lithium precipitates. The depth distribution of the implanted {sup 6}Li atoms was monitored with neutron depth profiling (NDP). It was observed that detrapping and diffusion of {sup 6}Li starts at an annealing temperature of 1200K. (orig.)

  8. Getting sulfur on target

    Energy Technology Data Exchange (ETDEWEB)

    Halbert, T.R.; Brignac, G.B. [ExxonMobil Process Research Labs. (United States); Greeley, J.P.; Demmin, R.A.; Roundtree, E.M. [ExxonMobil Research and Engineering Co. (United States)

    2000-06-01

    The paper focuses on how the required reductions in sulfur levels in motor vehicle fuel may be achieved over about the next five years. It is said that broadly there are two possible approaches, they are: (a) to hydrotreat the feed to the FCC unit and (b) to treat the naphtha produced by the FCC unit. The difficulties associated with these processes are mentioned. The article is presented under the sub-headings of (i) technology options for cat naphtha desulfurisation; (ii) optimising fractionator design via improved VLE models; (iii) commercial experience with ICN SCANfining; (iv) mercaptan predictive models and (v) process improvements. It was concluded that the individual needs of the refiner can be addressed by ExxonMobil Research and Engineering (EMRE) and the necessary reductions in sulfur levels can be achieved.

  9. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO(1 0 0) and MgO(1 1 0)

    International Nuclear Information System (INIS)

    Falub, C.V.; Mijnarends, P.E.; Eijt, S.W.H.; Huis, M.A. van; Veen, A. van; Schut, H.

    2002-01-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -2 6 Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations

  10. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    Science.gov (United States)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  11. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO(1 0 0) and MgO(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Falub, C.V. E-mail: c.falub@iri.tudelft.nl; Mijnarends, P.E.; Eijt, S.W.H.; Huis, M.A. van; Veen, A. van; Schut, H

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10{sup 16} cm{sup -2} {sup 6}Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  12. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO( 1 0 0 ) and MgO( 1 1 0 )

    Science.gov (United States)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W. H.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -26Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  13. Arsenic and mercury partitioning in fly ash at a Kentucky power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tanaporn Sakulpitakphon; James C. Hower; Alan S. Trimble; William H. Schram; Gerald A. Thomas [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2003-08-01

    Coal and fly ash samples were collected from a 500-MW unit at a Kentucky power plant, with the objective of studying the distribution of arsenic, mercury, and other trace elements in fly ash. The coal feed was low-sulfur, high volatile A bituminous central West Virginia coal. The plant produced a relatively low-carbon fly ash. In contrast to power plants with high-mercury feed coal, the fly ashes from the lower-mercury feed coal had low mercury values, generally not exceeding 0.01 ppm Hg. Mercury capture by fly ash varies with both the amount and type of carbon and the collection temperature; mercury capture is more efficient at lower temperatures. Arsenic in the feed coal and in the flue gas is of concern to the utility, because of the potential for catalyst poisoning in the selective catalytic reduction system (in the planning stage at the time of the sampling). Arsenic is captured in the fly ash, increasing in concentration in the more-distant (from the boiler) reaches of the electrostatic precipitator system. 16 refs., 2 figs., 5 tabs.

  14. Size Determination of Y2O3 Crystallites in MgO Composite Using Mie Scattering

    Science.gov (United States)

    2017-11-07

    embedded in a magnesium oxide (MgO) polycrystalline matrix. The calculation takes into account the volume fraction of Y2O3 in MgO, the average...release; distribution is unlimited. v Acknowledgments We gratefully acknowledge the financial support from the US Army Research Laboratory (ARL... principle , and the percent of theoretical density (TD) was calculated based on a TD of the mixture being 3.616 g/cm3. Table 1 Sample preparation

  15. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    NARCIS (Netherlands)

    van Huis, M.A.; van Veen, A.; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; de Hosson, J.T.M.

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10(16) Cd ions cm(-2) and 210 keV, 1 x 10(16) Se ions cm(-2) in single crystals of MgO(001) and subsequent thermal annealing at a temperature of 1300 K, The structural properties and the orientation relationship between

  16. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  17. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  18. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements.

    Science.gov (United States)

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-02-16

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO₃ (48.5%), SiO₂ (21.1%), Al₂O₃ (13.8%), SO₃ (10.06%), Fe₂O₃ (2.25%) and others (4.29%). SA fly ash consists of Al₂O₃ (19.7%), SiO₂ (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al₂O₃ (15%), SiO₂ (25.4%), Zn (20.6%), SO₃ (10.9%), Fe₂O₃ (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7-14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements.

  19. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  20. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  1. Ash Stabilization Campaign Blend Plan

    International Nuclear Information System (INIS)

    Winstead, M.L.

    1995-01-01

    This Stabilization Blend Plan documents the material to be processed and the processing order for the FY95 Ash Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing ash. The source of the ash is from Rocky Flats and the 232-Z incinerator at the Plutonium Finishing Plant (PFP). The ash is currently being stored in Room 235B and Vault 174 in building 234-5Z. The sludge is to be thermally stabilized in a glovebox in room 230A of the 234-5Z building and material handling for the process will be done in room 230B of the same building. The campaign is scheduled for approximately 12--16 weeks. A total of roughly 4 kg of Pu will be processed

  2. UTYLIZATION METHODS OF SLAGS AND ASH FROM WASTE INCINERATION PLANTS

    Directory of Open Access Journals (Sweden)

    Janusz Mikuła

    2017-06-01

    Full Text Available The paper presents modern management methods, solidification and immobilization of ash and slag from waste incineration plants. The innovative technologies for solving this kind of problem were described. Results focused on the most promising technologies of solidification, among others geopolymerization processes. The paper presents examples of the results of solidified ash and slag in the geopolymer matrix. The studies showed that the leachable of heavy metals from the geopolymer matrix containing ashes from the incineration of municipal waste qualifies them for storage in landfills for non-hazardous and inert. Moreover, these studies demonstrated practically 100% effectiveness for immobilization of the elements: bar (Ba, cadmium (Cd, zinc (Zn, mercury (Hg, nickel (Ni, lead (Pb. In the case of chromium III (Cr+3 97% level of effectiveness of the immobilization was achieved. In order to immobilize chromium VI (Cr+6 introduced additions of sulfur compounds. The study confirmed the low efficiency of the immobilization of: arsenic (As, selenium (Se and molybdenum (Mo.

  3. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

    Science.gov (United States)

    Peng, G. S.; Wang, Y.; Fan, Z.

    2018-06-01

    Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

  4. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

    Science.gov (United States)

    Peng, G. S.; Wang, Y.; Fan, Z.

    2018-04-01

    Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

  5. Stabilization of arsenic and lead by magnesium oxide (MgO) in different seawater concentrations.

    Science.gov (United States)

    Kameda, Kentaro; Hashimoto, Yohey; Ok, Yong Sik

    2018-02-01

    Ongoing sea level rise will have a major impact on mobility and migration of contaminants by changing a number of natural phenomena that alter geochemistry and hydrology of subsurface environment. In-situ immobilization techniques may be a promising remediation strategy for mitigating contaminant mobility induced by sea level rise. This study investigated the reaction mechanisms of magnesium oxide (MgO) with aqueous Pb and As under freshwater and seawater using XAFS spectroscopy. Initial concentrations of Pb and As in freshwater strongly controlled the characteristics of the reaction product of MgO. Our study revealed that i) the removal of aqueous Pb and As by MgO was increased by the elevation of seawater concentration, and ii) the removal of As was attributed primarily to (inner-sphere) surface adsorption on MgO, independent on seawater concentrations, and iii) the retention mechanism of Pb was dependent on seawater concentrations where formations of Pb oxides and adsorption on the MgO surface were predominant in solutions with low and high salinity, respectively. The release of As fixed with MgO significantly increased in seawater compared to freshwater, although the amount of As desorbed accounted for <0.2% of total As. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of MgO nanocrystals for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongji [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Qiu, Guojun [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping; Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2015-05-25

    Highlights: • MgO nanocrystals were prepared using DC arc plasma jet CVD method. • The growth time does not exceed 10 min in process of the synthesis. • The samples were found to consist of cubic MgO nanobelts and nanosheets. • Nanocrystals contain contacts, rough edges, vacancies, and doping defects. • The samples exhibited excellent electrochemical biosensing properties. - Abstract: MgO nanocrystals were prepared using a simple direct current arc plasma jet chemical vapor deposition method. Magnesium nitrate was used as source material and Mo film was used as a substrate and catalyst. The high-temperature plasma produced ensured rapid synthesis of the MgO nanocrystals. The as-prepared nanocrystals were characterized by field-emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, energy-dispersive spectroscopy, Fourier transform infrared spectrometry, ultraviolet–visible spectrophotometry, and photoluminescence measurements. The as-synthesized samples were found to consist of cubic MgO nanobelts and nanosheets with large surface areas and low coordination oxide ions, and contained numerous contacts, rough edges, vacancies, and doping defects. The nanostructures exhibited excellent electrochemical sensing properties with high-sensing sensitivity toward ascorbic acid. Their high electrocatalytic activity was attributed to the effect of defects and the surface electron transfer ability of the one-dimensional MgO nanobelts.

  7. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  8. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Sri [Department of Mining Engineering, Moslem University of Indonesia, Jln. Urip Sumoharjo, Makassar (Indonesia); Oschmann, Wolfgang [Institute of Geosciece, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany); Bechtel, Achim; Sachsenhofer, Reinhard F. [Department of Applied Geoscience and Geophysics, University of Leoben, Peter-Tunner-Str.5, A-8700 Leoben (Austria); Anggayana, Komang [Department of Mining Engineering, Bandung Institute of Technology, Jln. Ganesa 10, I-40132 Bandung (Indonesia); Puettmann, Wilhelm [Institute of Atmospheric and Environmental Sciences, Dapartment of Analytical Enviromental Chemistry, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany)

    2010-03-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (< 1%) and pyrite contents. The ash, mineral, total sulfur, iron (Fe) and pyrite contents of most of the coal samples from the Sebulu and Centra Busang coal mines are high and positively related in these samples. Low contents of ash, mineral, total sulfur, iron (Fe) and pyrite have been found only in sample TNT-32 from Centra Busang coal mine. Pyrite was the only sulfur form that we could recognize under reflected light microscope (oil immersion). Pyrite occurred in the coal as framboidal, euhedral, massive, anhedral and epigenetic pyrite in cleats/fractures. High concentration of pyrite argues for the availability of iron (Fe) in the coal samples. Most coal samples from the Embalut coal mine show lower sulfur (< 1 wt.%) and pyrite contents as found within Centra Busang and Sebulu coals. One exception is the coal sample KTD-38 from Embalut mine with total sulfur content of 1.41 wt.%. The rich ash, mineral, sulfur and pyrite contents of coals in the Kutai Basin (especially Centra Busang and Sebulu coals) can be related to the volcanic activity (Nyaan volcanic) during Tertiary whereby aeolian material was transported to the mire during or after the peatification process. Moreover, the adjacent early Tertiary deep marine sediment, mafic igneous rocks and melange in the center of Kalimantan Island might have provided mineral to the coal by uplift and erosion. The inorganic matter in the mire might also originate from the ground and surface water from the highland of central Kalimantan. (author)

  9. Sugar Dehydration without Sulfuric Acid: No More Choking Fumes in the Classroom!

    Science.gov (United States)

    Silverstein, Todd P.; Zhang, Yi

    1998-06-01

    Sugar is a common reagent often used in colorful classroom demonstrations. It produces a growing column of black ash when dehydrated by concentrated sulfuric acid, and it produces a brilliant purple flame when combusted with potassium chlorate. Unfortunately, both of these reactions also produce copious quantities of noxious fumes which make them problematic as lecture demonstrations. We have modified and combined these two reactions. Our demonstration uses no sulfuric acid, yields relatively little smoke, and produces an exciting and unpredictable growing column of black carbon.

  10. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  11. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  12. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  13. The reaction of acid mine drainage with fly ash from coal combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    The placement of alkaline fly ash in abandoned, reclaimed or active surface coal mines is intended to reduce the amount of acid mine drainage (AMD) produced at such sites by neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion. A continuing concern with this application is the potential release of trace elements from the fly ash when it is placed in contact with AMD. To investigate the possible release of antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, lead, nickel, selenium, and zinc from fly ash, a series of column leaching tests were conducted. A one kg fly ash sample, placed in a 5-cm by 1 m acrylic columns, was leached at a nominal rate of 250 mL/d for between 30 and 60 days. The leachant solutions were deionized water, and dilute solutions of sulfuric acid and ferric chloride. Leaching tests have been completed on 28 fly ash samples. leachate data, analyzed as the mass extracted with respect to the concentration in the solid, indicate that the release of trace elements is variable, with only barium and zinc extracted at greater than 50 pct of the amount present in the original sample. As a comparison, water quality changes have been monitored at three sites where fly ash grout was injected after reclamation to control AMD. When compared before and after grouting, small increases in pH and decreases in acidity at discharge points were observed. Concentrations of trace metals were found to be comparable in treated and untreated areas. When grouted and ungrouted areas were compared, the effect of the fly ash was shown to be localized in the areas of injection. These studies indicated that when fly ash is used as a reagent to control of AMD, the release of trace elements is relatively small

  14. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  15. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  16. Improved CO_2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO

    International Nuclear Information System (INIS)

    Farah Diana Mohd Daud; Kumaravel Vignesh; Srimala Sreekantan; Abdul Rahman Mohamed

    2016-01-01

    Calcium oxide (CaO) sorbents incorporated with magnesium oxide (MgO) were synthesized using a co-precipitation route. The sorbents were prepared with different MgO concentrations (from 5 wt% to 30 wt%). The as-prepared sorbents were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and BET surface area analysis techniques. The sintering effect of CaO sorbents was decreased after the incorporation of MgO. The sorbents with 5 wt% and 10 wt% of MgO retained their CO_2 adsorption capacity over multiple cycles. Most importantly, CaO with 10 wt% MgO showed constant CO_2 adsorption capacity over 30 carbonation cycles. The results revealed that CaO with 10 wt% MgO is sufficient to produce sorbents with high surface area, good structural stability and enhanced CO_2 adsorption capacity. (authors)

  17. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  18. Low-temperature atomic layer deposition of MgO thin films on Si

    International Nuclear Information System (INIS)

    Vangelista, S; Mantovan, R; Lamperti, A; Tallarida, G; Kutrzeba-Kotowska, B; Spiga, S; Fanciulli, M

    2013-01-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80–350 °C by using bis(cyclopentadienyl)magnesium and H 2 O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO 2 /Si substrates at a constant growth rate of ∼0.12 nm cycle −1 . The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C–V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6–11 nm thickness range, allow determining a dielectric constant (κ) ∼ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10 −5 –10 −6  Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C–V and I–V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition. (paper)

  19. Morphology of the ash corrosion products on the P92 steel

    International Nuclear Information System (INIS)

    Hernas, A.; Imosa, M.

    2004-01-01

    The P92 steel, owing to its high mechanical strength at an elevated temperature, is one of the new steel types intended for the components of modern boilers in the power engineering industry. Currently, attempts are being undertaken to use the P92 steel for the components of boiler units in municipal waste incineration plants. Therefore, it is important that an analysis be made of the P92 steel resistance to the high-temperature chlorine - sulfur corrosion impact, the latter being the main factor which limits durability of boilers in waste incineration plants. The present article presents the investigation of P92 steel corrosion resistance under the conditions of high-temperature chlorine- sulfur corrosion in an atmosphere of flue gas with ashes. The analyses were conducted by means of laboratory tests in an atmosphere containing sulfur and chlorine compounds. The morphology of corrosion products was determined by scanning microscopy and X-ray analysis methods. (author)

  20. Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production

    Science.gov (United States)

    2012-01-01

    Background Mangotoxin is an antimetabolite toxin that is produced by strains of Pseudomonas syringae pv. syringae; mangotoxin-producing strains are primarily isolated from mango tissues with symptoms of bacterial apical necrosis. The toxin is an oligopeptide that inhibits ornithine N-acetyl transferase (OAT), a key enzyme in the biosynthetic pathway of the essential amino acids ornithine and arginine. The involvement of a putative nonribosomal peptide synthetase gene (mgoA) in mangotoxin production and virulence has been reported. Results In the present study, we performed a RT-PCR analysis, insertional inactivation mutagenesis, a promoter expression analysis and terminator localisation to study the gene cluster containing the mgoA gene. Additionally, we evaluated the importance of mgoC, mgoA and mgoD in mangotoxin production. A sequence analysis revealed an operon-like organisation. A promoter sequence was located upstream of the mgoB gene and was found to drive lacZ transcription. Two terminators were located downstream of the mgoD gene. RT-PCR experiments indicated that the four genes (mgoBCAD) constitute a transcriptional unit. This operon is similar in genetic organisation to those in the three other P. syringae pathovars for which complete genomes are available (P. syringae pv. syringae B728a, P. syringae pv. tomato DC3000 and P. syringae pv. phaseolicola 1448A). Interestingly, none of these three reference strains is capable of producing mangotoxin. Additionally, extract complementation resulted in a recovery of mangotoxin production when the defective mutant was complemented with wild-type extracts. Conclusions The results of this study confirm that mgoB, mgoC, mgoA and mgoD function as a transcriptional unit and operon. While this operon is composed of four genes, only the last three are directly involved in mangotoxin production. PMID:22251433

  1. Sulfur problems in Swedish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, O

    1959-01-01

    The present paper deals with some aspects of the sulfur situation in Swedish agriculture with special emphasis on the importance of and relationships among various sources of sulfur supply. An inventory of the sulfur content of Swedish soils and hay crops includes 649 soil samples and a corresponding number of hay samples from 59 locations. In a special investigation the samples were found to be representative of normal Swedish farm land. It is concluded that the amount of sulfur compounds in the air is the primary factor which determines the amount of sulfur added to the soil from the atmosphere. Compared with values obtained in other countries, the amount of sulfur added by the precipitation in Sweden is very low. The distribution in air and precipitation of sulfur from an industrial source was studied in a special investigation. An initial reason for the present study was the damage to vegetation caused by smoke from an industrial source. It was concluded that the average conditions in the vicinity of the industrial source with respect to smoke constituents in the air and precipitation were unfavorable only to the plants directly within a very narrow region. Relationships among the sulfur contents of air, of precipitation, of soils and of plants have been subject to special investigations. In the final general discussion and conclusions it is pointed out that the results from these investigations indicate evident differences in the sulfur status of Swedish soils. The present trend toward the use of more highly concentrated fertilizers poor in sulfur may be expected to cause a considerable change in the sulfur situation in Swedish agriculture. 167 references, 40 figures, 44 tables.

  2. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  3. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  4. The role of sacrificial fugitives in thermoplastic extrusion feedstocks onproperties of MgO supports for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Kwok, Kawai; Søgaard, Martin

    2015-01-01

    2014AbstractThree different compositions of MgO compounds were investigated for use in oxygen transport membranes. Porous MgO supports were extruded using different kind (size, morphology and chemistry) of pore formers: A flaky graphite, a spherical graphite and ideal spheres of PMMA. The influence...... of the pore former on microstructure, gas permeation and the mechanical properties for various sintering temperatures were investigated.The gas permeation behavior of the MgO supports was highly dependent on pore neck size and total open porosity. MgO substrate, with 20% spherical graphite as a pore former...

  5. Influences of arc current on composition and properties of MgO thin films prepared by cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Zhu Daoyun; Zheng Changxi; Wang Mingdong; Liu Yi; Chen Dihu; He Zhenhui; Wen Lishi; Cheung, W.Y.

    2010-01-01

    MgO thin films with high optical transmittances (more than 90%) were prepared by cathodic vacuum arc deposition technique. With the increase of arc current from 40 to 80 A, the deposition pressure decreases and the film thickness increases; the atomic ratio of Mg/O in MgO thin films (obtained by RBS) increases from 0.97 to 1.17, giving that deposited at 50 A most close to the stoichiometric composition of the bulk MgO; the grains of MgO thin films grow gradually as shown in SEM images. XRD patterns show that MgO (1 1 0) orientation is predominant for films prepared at the arc currents ranged from 50 to 70 A. The MgO (1 0 0) orientation is much enhanced and comparable to that of MgO (1 1 0) for films prepared at the arc current of 80 A. The secondary electron emission coefficient of MgO thin film increases with arc current ranged from 50 to 70 A.

  6. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  7. A novel approach for arsenic adsorbents regeneration using MgO.

    Science.gov (United States)

    Tresintsi, Sofia; Simeonidis, Konstantinos; Katsikini, Maria; Paloura, Eleni C; Bantsis, Georgios; Mitrakas, Manassis

    2014-01-30

    An integrated procedure for the regeneration of iron oxy-hydroxide arsenic adsorbents by granulated MgO is proposed in this study. A continuous recirculation configuration, with a NaOH solution flowing sequentially through the saturated adsorbent (leaching step) and the MgO (adsorption step) column beds, was optimized by utilizing the high arsenic adsorption efficiency of MgO at strong alkaline environments. Experimental results indicated that the total amount of leached arsenic was captured by MgO whereas the regenerated iron oxy-hydroxide recovered around 80% of its removal capacity upon reuse. The improved adsorption capacity of MgO for As(V), which is maximized at pH 10, is explained by the intermediate hydration to Mg(OH)2 and the following As(V) oxy-anions adsorption on its surface through the formation of monodentate inner sphere complexes, as it is deduced from the AsK-edge X-ray absorption fine structure (EXAFS) analysis. In addition to the economical-benefits, corresponding tests proved that the solid wastes of this process, namely spent MgO/Mg(OH)2, can be environmentally safely disposed as stable additives in cement products, while the alkaline solution is completely detoxified and can be recycled to the regeneration task. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Silicothermic reduction of MgO using diode laser: Experimental and kinetic study

    Directory of Open Access Journals (Sweden)

    M.S. Mahmoud

    2017-12-01

    Full Text Available As a step toward realizing magnesium civilization, which needs a sustainable Mg production process, the reduction of MgO to Mg has been investigated. Direct diode laser (DDL produces high power and continuous beam in tiny spots. The laser with energy density up to 83*105 W/cm2 is focused on MgO/Si target inside the vacuum chamber, creating the high temperature zone, which stimulates the Mg production reaction. The vapor is collected on the copper plate; and then, analyzed chemically in terms of Mg production efficiency. The largest reduction and energy efficiencies in Ar atmosphere were 41% and 15.3 mg kJ−1, while in the vacuum, 13.5% and 15.8 mg kJ−1 were attainable. The reactions of MgO and Si have been investigated. Calculations revealed that the MgO reduction with Si proceeds as heterogeneous reaction. The rate of reaction of Si with MgO is faster than the rate of MgO evaporation and Mg vapor deposition.

  9. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    Science.gov (United States)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  10. Synthesis and characterization of isolated iron oxide nanoparticle dispersed in MgO matrix

    International Nuclear Information System (INIS)

    Choa, Y.-H.; Yang, J.-K.; Yang, W.-J.; Auh, K.-H.

    2003-01-01

    γ-Fe 2 O 3 /MgO nanocomposite powders, which can be used for biomedical, magnetic and the catalytic applications, were fabricated by means of spray pyrolysis using an ultrasonic atomizer. The liquid source was prepared using Fe and Mg nitrates dissolved in pure water. The liquid was atomized using an ultrasonic atomizer and carried into a pre-heated chamber (500-800 deg. C) by air carrier gas. The mist was then decomposed into γ-Fe 2 O 3 and MgO nanopowders. The entire operation was performed at 1 atm. The γ-Fe 2 O 3 /MgO powder was found to be perfectly crystallized at 800 deg. C. The particle size of γ-Fe 2 O 3 /MgO nanocomposite powders prepared at 800 deg. C was about 10 nm for γ-Fe 2 O 3 and MgO, which were calculated by XRD using Scherrer's formula and measured by TEM observation. The samples indicate the presence of superparamagnetic properties and a blocking temperature (T B ) of 125 K

  11. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  12. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  13. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    Science.gov (United States)

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  14. evaluation of atomic absorption spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    cistvr

    1Department of Agricultural and Food Science and 2Department of ... used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and ..... fact that more preparation steps were involved in the Ashing procedure and thus.

  15. Ash content of lignites - radiometric analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.; Thuemmel, H.W.

    1986-01-01

    The quality of lignites is governed by the ash content varying in dependence upon the geologic conditions. Setup and function of the radiometric devices being used for ash content analysis in the GDR are briefly described

  16. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  17. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Science.gov (United States)

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi. Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  18. Composition and microstructure of a furnace ash deposit from a coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Fessler, R R

    1980-07-01

    An exploratory study of the structure and composition of furnace-ash deposits was carried out using optical metallography, electron microprobe analysis, scanning electron microscopy, and energy-dispersive X-ray analysis. The results of these analyses were supplemented by studies of particulate melting temperature using hot-stage microscopy to measure melting temperature, and energy-dispersive X-ray analyses to measure composition of melted particles. It was found that the general structure of the ash deposit was a matrix of glassy, spherical particles having a wide range of composition in which unfused particles containing iron oxide and calcium oxide were dispersed. At the imprint of the tube surface a considerable concentration of calcium, sulphur and iron was found. Near the fused outer surface of the deposit, the glassy materials had melted into a porous, glassy slag containing spherical globules of iron oxide combined with other materials. There were no systematic compositional gradients from the tube surface to the fused outer layer except for the sulfur layer found only at the tube surface. However, there were significant differences in composition from particle to particle and these differences were similar to those found in the coal mineral matter as isolated by low-temperature ashing. Single particles of low-temperature ash were found having low fusion temperatures, in the range of fusion temperatures for particles in furnance has. Thus, the glassy spheres found in furnace deposits could originate from single coal particles, without the need of interactions among coal particles or ash particles.

  19. Cementitious Spray Dryer Ash-Tire Fiber Material for Maximizing Waste Diversion

    Directory of Open Access Journals (Sweden)

    Charles E. Riley

    2011-01-01

    Full Text Available Spray dryer absorber (SDA material, also known as spray dryer ash, is a byproduct of coal combustion and flue gas scrubbing processes that has self-cementing properties similar to those of class C fly ash. SDA material does not usually meet the existing standards for use as a pozzolan in Portland cement concrete due to its characteristically high sulfur content, and thus unlike fly ash, it is rarely put to beneficial use. This paper presents the results of a study with the objective of developing beneficial uses for SDA material in building materials when combined with tire fiber reinforcement originating from a recycling process. Specifically, spray dryer ash was investigated for use as the primary or even the sole binding component in a mortar or concrete. This study differs from previous research in that it focuses on very high contents of spray dryer ash (80 to 100 percent in a hardened product. The overarching objective is to divert products that are normally sent to landfills and provide benefit to society in beneficial applications.

  20. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    2011-01-01

    Full Text Available Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.

  1. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  2. Multi-particle assembled porous nanostructured MgO: its application in fluoride removal

    International Nuclear Information System (INIS)

    Gangaiah, Vijayakumar; Chandrappa, Gujjarahalli Thimanna; Siddaramanna, Ashoka

    2014-01-01

    In this article, a simple and economical route based on ethylene glycol mediated process was developed to synthesize one-dimensional (1D) multiparticle assembled nanostructured MgO using magnesium acetate and urea as reactants. Porous multiparticle chain-like MgO has been synthesized by the calcination of a solvothermally derived single nanostructured precursor. The prepared products were characterized by an x-ray diffraction (XRD) pattern, thermogravimetry, scanning/transmission electron microscopy (SEM/TEM) and N 2 adsorption (BET). As a proof of concept, the porous multiparticle chain-like MgO has been applied in a water treatment for isolated and rural communities, and it has exhibited an excellent adsorption capability to remove fluoride in waste water. In addition, this method could be generalized to prepare other 1D nanostructures with great potential for various attractive applications. (paper)

  3. Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy

    Science.gov (United States)

    Kumar, Nitesh; Sanyal, D.; Sundaresan, A.

    2009-08-01

    Positron annihilation spectroscopy has been used to explore the nature of defects and to estimate the defect concentrations in ferromagnetic MgO nanoparticles. Our experimental results show that Mg vacancies or Mg vacancy concentration are present approximately at the concentration of 3.4 × 10 16 cm -3 in the nano-crystalline MgO which is twice the value that obtained for bulk sample. This is in correlation with the decrease of the intensity of blue luminescence and the saturation magnetic moment with increasing particle size. These results clearly demonstrate that the origin of magnetic moment and thus the ferromagnetism in MgO nanoparticles is due to Mg related vacancies at the surface of the particles.

  4. Low-pressure Environmental TEM (ETEM) studies of Au assisted MgO nanorod growth

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Damsgaard, Christian Danvad; Hansen, Thomas Willum

    2012-01-01

    where they become inactive for CO oxidation. Here, we present an environmental transmission electron microscopy (ETEM) study of shape changes of Au nanoparticles supported on MgO in a controlled gas atmosphere, in order to elucidate the mobility of surface species and the configuration of the Au...... and interface structure of supported nanoparticles in a controlled environment [7]. This allows for a deeper understanding of the dynamic response of the surface and interface to changes in gas composition, pressure and temperature. Additionally, an Ultra High Vacuum (UHV) TEM has been used in order to have...... a higher degree of control of the initial state and probe the low-pressure regime. This combination is a powerful toolbox for charactering the behavior of the mobility of atomic species at the MgO surface leading to the formation of nanorods. Figure 1 shows Au particles on MgO cubes being irradiated...

  5. Dislocations and Plastic Deformation in MgO Crystals: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Amodeo

    2018-05-01

    Full Text Available This review paper focuses on dislocations and plastic deformation in magnesium oxide crystals. MgO is an archetype ionic ceramic with refractory properties which is of interest in several fields of applications such as ceramic materials fabrication, nano-scale engineering and Earth sciences. In its bulk single crystal shape, MgO can deform up to few percent plastic strain due to dislocation plasticity processes that strongly depend on external parameters such as pressure, temperature, strain rate, or crystal size. This review describes how a combined approach of macro-mechanical tests, multi-scale modeling, nano-mechanical tests, and high pressure experiments and simulations have progressively helped to improve our understanding of MgO mechanical behavior and elementary dislocation-based processes under stress.

  6. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  7. Grain boundaries at the surface of consolidated MgO nanocrystals and acid-base functionality.

    Science.gov (United States)

    Vingurt, Dima; Fuks, David; Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2013-09-21

    The increase of the surface basicity-acidity of MgO material by factors of 1.8-3.0 due to consolidation of its nanocrystals was demonstrated by the indicator titration. It was shown that the parallel increase of surface acidity and basicity is attributed to the formation of grain boundaries (GB) after MgO aerogel densification. A simple model predicting the increase of surface acidity-basicity of MgO that correlates with the results of direct measurements was proposed. The model is based on the study of the fine atomic structure at GB surface areas in consolidated MgO nanocrystals in the framework of Density Functional Theory. It is found that the displacements of coordinatively unsaturated surface ions near the GB are significant at the distances ~3-4 atomic layers from the geometrical contact plane between nanocrystals. The detailed analysis of atomic positions inside GB demonstrated the coordination deficiency of surface atoms at the GB areas leading to the formation of stretched bonds and to creation of low coordinated surface ions due to splitting of coordination numbers of surface atoms belonging to GB areas. Density of states for electrons shows the existence of additional states in the band gap close to the bottom of the conduction band. The adsorption energy of CO2 molecules atop oxygen atoms exposed at surface GB areas is of the same order of magnitude as that reported for oxygen atoms at crystallographic edges and corners of MgO crystals. It provides additional options for bonding of molecules at the surface of nanocrystalline MgO increasing the adsorption capacity and catalytic activity.

  8. Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass.

    Science.gov (United States)

    Ribeiro, João Peres; Vicente, Estela Domingos; Alves, Célia; Querol, Xavier; Amato, Fulvio; Tarelho, Luís A C

    2017-04-01

    Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO 2 , MgO and K 2 O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.

  9. Sulfur polymer cement, a solidification and stabilization agent for radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Darnell, R.G.

    1993-01-01

    Sulfur polymer cement (SPC) is made by reacting 95% sulfur with 2.5 % dicyclopentadiene and 2.5% cyclopentadiene oligomers, to produce a product that is much better than unmodified sulfur. SPC is being tested as a solidifying and stabilizing agent for low-level radioactive and hazardous wastes. Heavy loadings (5 wt%) of eight toxic metals were combined individually with SPC and 7 wt% sodium sulfide nonahydrate. The leach rates for mercury, lead, chromium and silver oxides were reduced by six orders of magnitude, while those of arsenic and barium were reduced by four. SPC is good for stabilizing incinerator ash. Ion-exchange resins can be stabilized with SPC after heat treatment with asbestos or diatomite at 220-250 deg C. 19 refs

  10. Reliability enhancement due to in-situ post-oxidation of sputtered MgO barrier in double MgO barrier magnetic tunnel junction

    Directory of Open Access Journals (Sweden)

    Chikako Yoshida

    2017-06-01

    Full Text Available We have investigated the effects of in-situ post-oxidation (PO of a sputtered MgO barrier in a double-MgO-barrier magnetic tunnel junction (MTJ and found that the short error rate was significantly reduced, the magnetoresistance (MR ratio was increased approximately 18%, and the endurance lifetime was extend. In addition, we found that the distribution of breakdown number (a measure of endurance exhibits trimodal characteristics, which indicates competition between extrinsic and intrinsic failures. This improvement in reliability might be related to the suppression of Fe and Co diffusion to the MgO barrier, as revealed by electron energy-loss spectroscopy (EELS analysis.

  11. Discharge characteristics of plasma display panels with Si-doped MgO protective layers

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Sanjay K., E-mail: sanjayk.ram@gmail.co [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Barik, U K [Samtel Color Limited, Ghaziabad-201009 (India); Sarkar, Surajit; Biswas, Paramananda [Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Singh, Vandana [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Dwivedi, H K [Samtel Color Limited, Ghaziabad-201009 (India); Kumar, Satyendra [Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016 (India)

    2009-10-01

    We report on our study of the influence of varying concentrations of Si doping on the secondary electron emission (SEE) yield of MgO thin films prepared by electron beam evaporation technique. The series of Si-doped MgO films were microstructurally characterized with various tools like X-ray diffraction, scanning electron microscopy and atomic force microscopy. The optimization of the concentration of Si doping is seen to enhance the SEE yield. We discuss the correlation of SEE yield in the context of different deposition and measurement conditions and crystalline orientation.

  12. Preparation of nanocrystalline MgO by surfactant assisted precipitation method

    International Nuclear Information System (INIS)

    Rezaei, Mehran; Khajenoori, Majid; Nematollahi, Behzad

    2011-01-01

    Highlights: → Nanocrystalline magnesium oxide with high surface area. → MgO prepared with surfactant showed different morphologies compared with the sample prepared without surfactant. → MgO prepared with surfactant showed a plate-like shape. → Refluxing temperature and time and the surfactant to metal molar ratio affect the textural properties of MgO. -- Abstract: Nanocrystalline magnesium oxide with high surface area was prepared by a simple precipitation method using pluronic P123 triblock copolymer (Poly (ethylene glycol)-block, Poly (propylene glycol)-block, Poly (ethylene glycol)) as surfactant and under refluxing conditions. The prepared samples were characterized by X-ray diffraction (XRD), N 2 adsorption (BET) and scanning and transmission electron microscopies (SEM and TEM). The obtained results revealed that the refluxing time and temperature and the molar ratio of surfactant to metal affect the structural properties of MgO, because of the changes in the rate and extent of P123 adsorption on the prepared samples. The results showed that the addition of surfactant is effective to prepare magnesium oxide with high surface area and affects the morphology of the prepared samples. With increasing the P123/MgO molar ratio to 0.05 the pore size distribution was shifted to larger size. The sample prepared with addition of surfactant showed a plate-like shape which was completely different with the morphology of the sample prepared without surfactant. The formation of nanoplate-like MgO was related to higher surface density of Mg ions on the (0 0 1) plane than that on the other planes of the Mg(OH) 2 crystal. The (0 0 1) plane would be blocked preferentially by the adsorbed P123 molecules during the growing process of Mg(OH) 2 nanoentities and the growth on the (0 0 1) plane would be markedly restricted, and the consequence is the generation of nanoplate-like MgO. In addition, increase in refluxing temperature and time increased the specific surface area

  13. Insulator at the ultrathin limit: MgO on Ag(001).

    Science.gov (United States)

    Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D

    2001-12-31

    The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.

  14. Preparation of nanocrystalline MgO by surfactant assisted precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Mehran, E-mail: rezaei@kashanu.ac.ir [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Khajenoori, Majid; Nematollahi, Behzad [Catalyst and Advanced Materials Research Laboratory, Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2011-10-15

    Highlights: {yields} Nanocrystalline magnesium oxide with high surface area. {yields} MgO prepared with surfactant showed different morphologies compared with the sample prepared without surfactant. {yields} MgO prepared with surfactant showed a plate-like shape. {yields} Refluxing temperature and time and the surfactant to metal molar ratio affect the textural properties of MgO. -- Abstract: Nanocrystalline magnesium oxide with high surface area was prepared by a simple precipitation method using pluronic P123 triblock copolymer (Poly (ethylene glycol)-block, Poly (propylene glycol)-block, Poly (ethylene glycol)) as surfactant and under refluxing conditions. The prepared samples were characterized by X-ray diffraction (XRD), N{sub 2} adsorption (BET) and scanning and transmission electron microscopies (SEM and TEM). The obtained results revealed that the refluxing time and temperature and the molar ratio of surfactant to metal affect the structural properties of MgO, because of the changes in the rate and extent of P123 adsorption on the prepared samples. The results showed that the addition of surfactant is effective to prepare magnesium oxide with high surface area and affects the morphology of the prepared samples. With increasing the P123/MgO molar ratio to 0.05 the pore size distribution was shifted to larger size. The sample prepared with addition of surfactant showed a plate-like shape which was completely different with the morphology of the sample prepared without surfactant. The formation of nanoplate-like MgO was related to higher surface density of Mg ions on the (0 0 1) plane than that on the other planes of the Mg(OH){sub 2} crystal. The (0 0 1) plane would be blocked preferentially by the adsorbed P123 molecules during the growing process of Mg(OH){sub 2} nanoentities and the growth on the (0 0 1) plane would be markedly restricted, and the consequence is the generation of nanoplate-like MgO. In addition, increase in refluxing temperature and time

  15. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  16. Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Changtao; Li, Shuyuan [China Univ. of Petroleum, Beijing (China); Song, He [Research Institute of Petroleum Engineering of CNPC, Tianjin (China)

    2014-07-15

    Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and MgSO{sub 4} at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, S{sub 1}, N{sub 1}S{sub 1}, O{sub 1}S{sub 1} and O{sub 2}S{sub 1}, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the S{sub 1} class species was dominant. The most abundant S{sub 1} class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without MgSO{sub 4}. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and MgSO{sub 4} are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

  17. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    Livingston, R.J.; Brendel, G.F.; Bruzek, D.A.

    1991-01-01

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC 50 ). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  18. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  19. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  20. Ash and heavy metals in fluidized-bed combustion of wood wastes; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T; Aittoniemi, P [IVO Power Engineering, Vantaa (Finland); Kauppinen, E; Latva-Somppi, J; Kurkela, J [VTT Chemical Technology, Espoo (Finland); Partanen, J [IVO Technology Centre, Vantaa (Finland)

    1997-10-01

    Ash formation and deposition mechanisms during co-combustion of pulp mill sludge and bark in industrial bubbling fluidized bed (BFB) combustor have been studied. Similar fuels were used in a bench-scale BFB for co-combustion of sludge and bark pellets and comparative studies with separate combustion of these fuels. Results indicated that in industrial scale unit significant fraction of ash had vaporization. About 14 mass-% of the total fly ash was found in the particle size below 0.2 {mu}m. The vaporized species consisted of potassium (K), sulfur (S), chlorine (Cl) and also of minor quantities of sodium (Na). In the benchscale similar vaporization fractions during co-combustion were measured, about 11 mass-%. During the combustion of bark this ratio, about 20 mass-%, was higher than during sludge combustion. The vaporized ash fraction was in the case of dried sludge combustion about 7 mass-%, but with wet sludge the vaporization rate was remarkably lower, about 1-2 mass-%. An increase in the bed temperature increased also ash vaporization. Test run period without combustion at elevated temperatures produced very low quantities of vaporized ash. The vaporized species in bench-scale test during bark pellet combustion were K, S and Cl, for sludge combustion also Na was clearly detected. No condensation of the vaporized species in bed area or furnace walls was observed. Bed defluidization was studied in the bench-scale unit. During bark pellet combustion the bed-agglomeration proceeded via small ash particle, below 2 {mu}m, coating on sand particle surface and consequent bonding between the ash layers. In the case of sludge combustion the accumulation of large ash particles and sintering of these porous agglomerates was observed to cause bed coarsening and defluidization. (orig.)

  1. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar; Vovusha, Hakkim; Sanyal, Biplab

    2016-01-01

    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable

  2. Tailoring the microstructure of porous MgO supports for asymmetric oxygen separation membranes: Optimization of thermoplastic feedstock systems

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Clemens, F.; Glasscock, Julie

    2014-01-01

    Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock...

  3. Ethanol-to-Butadiene Conversion over SiO2-MgO Catalysts: Synthesis-Structure-Performance Relationships

    NARCIS (Netherlands)

    Angelici, C.

    2015-01-01

    The work presented in this PhD Thesis provides new insights into the underlying reasons that make SiO2-MgO materials excellent catalysts for the ethanol-to-butadiene Lebedev process. In particular, the preparation technique of choice affects the structural properties of the resulting SiO2-MgO

  4. Tunable reactivity of supported single metal atoms by impurity engineering of the MgO(001) support.

    Science.gov (United States)

    Pašti, Igor A; Johansson, Börje; Skorodumova, Natalia V

    2018-02-28

    Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much more strongly when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.

  5. F + centre generation in MgO crystals at high density of excitation by accelerated electrons of subthreshold energy

    Science.gov (United States)

    Annenkov, Y. M.; Surzhikov, A. P.; Surzhikov, V. P.; Pogrebnjak, A. D.

    1981-07-01

    Optical absorption spectra and the angular distribution of annihilated positrons in MgO crystals irradiated by subtreshold superdense electron pulses are measured. The experimental results obtained show the effective contribution of the creation mechanism of non-impact radiation defects in MgO crystals at the highest electron irradiation densities.

  6. On the conductive properties of MgO films grown on ultrathin hexagonal close-packed Co(0001) layer

    International Nuclear Information System (INIS)

    Gladczuk, L.; Aleszkiewicz, M.

    2013-01-01

    Here we present a scanning tunneling microscopy study of electrical conductivity of (110)-oriented MgO ultrathin films grown on hexagonal close-packed Co(0001) surface by molecular beam epitaxy, being a good candidate for tunneling barrier for future-generation spintronic devices. Three-dimensional growth of the tunneling barrier, expected for compressive strains emerging at the Co/MgO interface, is demonstrated by reflection high-energy electron diffraction and atomic force microscopy. The 5 eV height of the full barrier of MgO is reached at a layer thickness of 4 nm. Thinner MgO layers exhibit randomly distributed spots of the high conductance on the tunneling current map. The current–voltage curves indicate the existence of vacancies in MgO crystal lattice, lowering the resistivity of the tunneling barrier. - Highlights: • Conductivity of MgO barrier in MgO/hexagonal close-packed-Co bilayer • Conductivity strongly varies with MgO thickness • MgO barrier exhibits randomly distributed spots of particularly high conductance • Tunneling current–voltage curves indicate the existence of vacancies in MgO lattice

  7. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  8. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  9. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Francisco Grau

    2015-10-01

    Full Text Available Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS, and Scanning Electron Microscope (SEM, and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  10. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  11. Effects of Wood Ash on Soil Fungi

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla

    ), copper (Cu) and nickel (Ni), is a major environmental concern. This work is part of the project ASHBACK (www.ashback.dk) which addresses the potentials and possible problems in re-distributing wood ash to the forest. The aim of this thesis was to determine the effects of biomass ash application...... in a Norway spruce forest where different amounts of wood ash were spread on the soil to study the effects on ectomycorrhizal (ECM) fungi, bioaccumulation of metals in sporocarps, and microbial communities. Laboratory microcosm experiments were run in parallel to the field studies, to compare the effects...... of wood ash with factorial additions of lime and Cd to disentangle the pH and Cd effects of wood ash amendments using community trait distributions. Barley yield, P content, and Cd content were not affected by biomass ashes. Some arbuscular mycorrhizal (AM) fungal species were reduced when biomass ashes...

  12. Risk to ash from emerald ash borer: can biological control prevent the loss of ash stands?

    Science.gov (United States)

    Jian J. Duan; Roy G. Van Driesche; Leah S. Bauer; Daniel M. Kashian; Daniel A. Herms

    2015-01-01

    Ash trees (Fraxinus spp.) are an important components of both natural forests and urban plantings in the United States and Canada (Federal Register, 2003; Nowak et al., 2003). There are approximately 16 species of Fraxinus native to North America (Harlow et al., 1996; USGS, 2014), each adapted to different ecological niches across...

  13. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  14. In-situ observations of Eyjafjallajökull ash particles by hot-air balloon

    Science.gov (United States)

    Petäjä, T.; Laakso, L.; Grönholm, T.; Launiainen, S.; Evele-Peltoniemi, I.; Virkkula, A.; Leskinen, A.; Backman, J.; Manninen, H. E.; Sipilä, M.; Haapanala, S.; Hämeri, K.; Vanhala, E.; Tuomi, T.; Paatero, J.; Aurela, M.; Hakola, H.; Makkonen, U.; Hellén, H.; Hillamo, R.; Vira, J.; Prank, M.; Sofiev, M.; Siitari-Kauppi, M.; Laaksonen, A.; lehtinen, K. E. J.; Kulmala, M.; Viisanen, Y.; Kerminen, V.-M.

    2012-03-01

    The volcanic ash cloud from Eyjafjallajökull volcanic eruption seriously distracted aviation in Europe. Due to the flight ban, there were only few in-situ measurements of the properties and dispersion of the ash cloud. In this study we show in-situ observations onboard a hot air balloon conducted in Central Finland together with regional dispersion modelling with SILAM-model during the eruption. The modeled and measured mass concentrations were in a qualitative agreement but the exact elevation of the layer was slightly distorted. Some of this discrepancy can be attributed to the uncertainty in the initial emission height and strength. The observed maximum mass concentration varied between 12 and 18 μg m -3 assuming a density of 2 g m -3, whereas the gravimetric analysis of the integrated column showed a maximum of 45 μg m -3 during the first two descents through the ash plume. Ion chromatography data indicated that a large fraction of the mass was insoluble to water, which is in qualitative agreement with single particle X-ray analysis. A majority of the super-micron particles contained Si, Al, Fe, K, Na, Ca, Ti, S, Zn and Cr, which are indicative for basalt-type rock material. The number concentration profiles indicated that there was secondary production of particles possibly from volcano-emitted sulfur dioxide oxidized to sulfuric acid during the transport.

  15. Sulfur, selenium, tellurium and polonium

    International Nuclear Information System (INIS)

    Berry, F.J.

    1987-01-01

    This chapter on the coordination compounds of sulfur, selenium, tellurium and polonium starts with an introduction to the bonding, valence and geometry of the elements. Complexes of the group VIB elements are discussed with particular reference to the halo and pseudohalide complexes, oxo acid complexes, oxygen and nitrogen donor complexes and sulfur and selenium donor complexes. There is a section on the biological properties of the complexes discussed. (UK)

  16. New uses of sulfur - update

    Energy Technology Data Exchange (ETDEWEB)

    Almond, K.P.

    1995-07-01

    An update to an extensive bibliography on alternate uses of sulfur was presented. Alberta Sulphur Research Ltd., previously compiled a bibliography in volume 24 of this quarterly bulletin. This update provides an additional 44 new publications. The information regarding current research focusses on topics regarding the use of sulfur in oil and gas applications, mining and metallurgy, concretes and other structural materials, waste management, rubber and textile products, asphalts and other paving and highway applications.

  17. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    Heiderscheit, J.

    1992-01-01

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO 2 ) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  18. Resputtering effect during MgO buffer layer deposition by magnetron sputtering for superconducting coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Shaozhu; Shi, Kai; Deng, Shutong; Han, Zhenghe [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Feng, Feng, E-mail: feng.feng@sz.tsinghua.edu.cn; Lu, Hongyuan [Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Qu, Timing; Zhu, Yuping [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Huang, Rongxia [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-07-15

    In this study, MgO thin films were deposited by radio-frequency magnetron sputtering. The film thickness in the deposition area directly facing the target center obviously decreased compared with that in other areas. This reduction in thickness could be attributed to the resputtering effect resulting from bombardment by energetic particles mainly comprising oxygen atoms and negative oxygen ions. The influences of deposition position and sputtering pressure on the deposition rate were investigated. Resputtering altered the orientation of the MgO film from (111) to (001) when the film was deposited on a single crystal yttria-stabilized zirconia substrate. The density distribution of energetic particles was calculated on the basis of the measured thicknesses of the MgO films deposited at different positions. The divergence angle of the energetic particle flux was estimated to be approximately 15°. The energetic particle flux might be similar to the assisting ion flux in the ion beam assisted deposition process and could affect the orientation of the MgO film growth.

  19. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Ma, Mingzhen, E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Xinyu; Wang, Baoan; Liu, Riping [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2014-03-25

    Highlights: • MgO nanoflakes with different morphologies were synthesized by a simple low-temperature hydrothermal process. • EDTA and KCl additives have a great effect on the morphology of the products. • Quasi-circular MgO nanoflakes exhibited higher catalytic activity on the thermal decomposition of ammonium perchlorate. -- Abstract: The nanostructures of quasi-circular and hexagonal magnesium oxide (MgO) flakes were successfully prepared by a simple low-temperature hydrothermal reaction. The morphologies were confirmed by field-emission scanning electron microscopy and transmission electron microscopy. Powder X-ray diffraction analysis showed that the nanostructures consisted of cubic-phase MgO. When ethylenediaminetetraacetic acid and potassium chloride were added to the reaction system, the shapes of the synthesized products were found to transform from hexagonal to quasi-circular nanoflakes for different time scales. Fourier-transform infrared spectroscopy indicated numerous hydroxyl radicals on the surface. Quasi-circular magnesia nanoflakes exhibited relatively high catalyst activity for the thermal decomposition of ammonium perchlorate. The mechanism of enhanced catalyst activity was also discussed.

  20. MgO magnetic tunnel junctions of enduring F-type upon annealing

    International Nuclear Information System (INIS)

    Schleicher, F; Halisdemir, U; Urbain, E; Gallart, M; Boukari, S; Beaurepaire, E; Gilliot, P; Bowen, M; Lacour, D; Montaigne, F; Hehn, M

    2015-01-01

    The authors performed magnetotransport experiments to determine whether annealing alters the oxygen vacancy-mediated tunnelling potential landscape of the central portion of a MgO ultrathin film within sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Using the Î rel method reveals a temperature-dependent tunnelling barrier height for a non-annealed barrier that arises from single oxygen vacancies (F centres) and is qualitatively identical to that found for its partly and fully annealed counterparts. Thus these MTJs with F centres remain of F-type upon annealing. This explicitly confirms that the large tunnel-magnetoresistance (TMR) increase upon annealing results mainly from structural modifications of MgO and CoFeB and not from vacancy pairing within the barrier. Photoluminescence spectra performed on both annealed and non-annealed thin MgO films grown on CoFeB electrodes support this conclusion. This work should promote renewed scrutiny over the precise impact of annealing on tunnelling magnetotransport across MgO. (paper)

  1. Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunxi Hai

    2017-06-01

    Full Text Available This study focus on specifying the roles of solvent ethylene glycol (EG and polymers for synthesis of uniformly distributed magnesium oxide (MgO nanoparticles with average crystallite size of around 50 nm through a modified polyol method. Based on different characterization results, it was concluded that, Mg2+ ions was precipitated by the −OH and CO32− ions decomposed from urea in ethylene glycol (EG medium (CO(NH22 → NH3 + HNCO, HNCO + H2O → NH3 + CO2, thus forming well crystallized Mg5(CO34(OH2 (H2O4 precursor which could be converted to MgO by calcination. Surface protectors PEG and PVP have no obvious influences on cyrtsal structure, morphology and size uniformity of as-prepared precursors and target MgO nanoparticles. In comparison with polymers PEG and PVP, solvent EG plays an important role in controlling the morphology and diameter uniformity of MgO nanoparticles.

  2. MgO as a non-pyrolyzable pore former in porous membrane supports

    DEFF Research Database (Denmark)

    Haugen, A. B.; Geffroy, A.; Kaiser, Andreas

    2018-01-01

    the performance of oxygen transport membranes or other membranes relying on gas transport to the active membrane surface. Thermoplastic feedstocks for extrusion of tubular 3Y-TZP supports were prepared with four different amounts of pyrolyzable pore formers and/or MgO as non-pyrolyzable pore former. The Mg...

  3. Preparation of MgO Catalytic Support in Shaped Mesoporous High Surface Area Form

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Šolcová, Olga; Zdražil, Miroslav

    2004-01-01

    Roč. 76, 1-3 (2004), s. 137-149 ISSN 1387-1811 R&D Projects: GA AV ČR IAA4072306 Institutional research plan: CEZ:AV0Z4072921 Keywords : MgO support * sigh Surface area * texture Subject RIV: CC - Organic Chemistry Impact factor: 2.093, year: 2004

  4. Optical features of C, N, Mn implanted MgO films

    International Nuclear Information System (INIS)

    Dorosinets, V.A.; Dobrinets, I.A.; Wieck, A.

    2013-01-01

    Optical absorption and Raman spectra investigations of C/ N/ Mn implanted MgO films have been investigated. The spectra reveal a surface modification and a dependence of the defect formation mechanism on the ion type and the annealing regime. (authors)

  5. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles

    International Nuclear Information System (INIS)

    Azzaza, S.; El-Hilo, M.; Narayanan, S.; Judith Vijaya, J.; Mamouni, N.; Benyoussef, A.; El Kenz, A.; Bououdina, M.

    2014-01-01

    Structural, optical and room temperature magnetic properties of Mn-doped MgO nanoparticles with Mn fractions (5–50 at.%), were investigated. The as-prepared pure MgO, with grain size of about 15 nm, exhibits two magnetization components, one is diamagnetic and another is superparamagnetic. After removing the diamagnetic contribution, the magnetization curve exhibits superparamagnetic behavior which may be attributed to vacancy defects. As the Mn content increases, the lattice parameter decreases, the ferromagnetism appears and the emission bands were considerably blue shifted. First principle electronic structure calculations reveal the decrease of both the gap and the Curie temperature with increasing Mn concentration. The obtained results suggest that both Mn doping and oxygen vacancies play an important role in the development of room temperature ferromagnetism. - Graphical abstract: The measured room temperature magnetization curve for the Mn doped MgO with 5 at.%, 10 at.% and 20 at.%. - Highlights: • Combination of experimental and calculation methods. • Decrease of both the gap and the Curie temperature with increasing Mn content. • Ferromagnetism in MgO originate from interactions between defects

  6. Mg/O2 Battery Based on the Magnesium-Aluminum Chloride Complex (MACC) Electrolyte

    DEFF Research Database (Denmark)

    Vardar, Galin; Smith, Jeffrey G.; Thomson, Travis

    2016-01-01

    Mg/O2 cells employing a MgCl2/AlCl3/DME (MACC/DME) electrolyte are cycled and compared to cells with modified Grignard electrolytes, showing that performance of magnesium/oxygen batteries depends strongly on electrolyte composition. Discharge capacity is far greater for MACC/DME-based cells, whil...

  7. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki; Kirino, Fumiyoshi

    2011-01-01

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110) fcc single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within ±0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  8. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110){sub fcc} single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within {+-}0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  9. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: Moussavi@modares.ac.ir [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mahmoudi, Maryam [Department of Environmental Health, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2009-09-15

    In the present investigation, a porous MgO powder was synthesized and tested for the removal of dyes from aqueous solution. The size of the MgO particles was in the range of 38-44 nm, with an average specific surface area of 153.7 m{sup 2}/g. Adsorption of reactive blue 19 and reactive red 198 was conducted to model azo and anthraquinone dyes at various MgO dosages, dye concentrations, solution pHs and contact times in a batch reactor. Experimental results indicate that the prepared MgO powder can remove more than 98% of both dyes under optimum operational conditions of a dosage of 0.2 g, pH 8 and a contact time of 5 min for initial dye concentrations of 50-300 mg/L. The isotherm evaluations revealed that the Langmuir model attained better fits to the experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacities were 166.7 and 123.5 mg of dye per gram of adsorbent for RB 19 and RR 198, respectively. In addition, adsorption kinetic data followed a pseudo-second-order rate for both tested dyes.

  10. Damage accumulation in MgO irradiated with MeV Au ions at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bachiller-Perea, Diana, E-mail: dianabachillerperea@gmail.com [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, 91405, Orsay Cedex (France); Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, 28049, Madrid (Spain); Dpto. de Física Aplicada, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid (Spain); Debelle, Aurélien, E-mail: aurelien.debelle@u-psud.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, 91405, Orsay Cedex (France); Thomé, Lionel [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, 91405, Orsay Cedex (France); Behar, Moni [Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970, Porto Alegre, RS (Brazil)

    2016-09-15

    The damage accumulation process in MgO single crystals under medium-energy heavy ion irradiation (1.2 MeV Au) at fluences up to 4 × 10{sup 14} cm{sup −2} has been studied at three different temperatures: 573, 773, and 1073 K. Disorder depth profiles have been determined through the use of the Rutherford backscattering spectrometry in channeling configuration (RBS/C). The analysis of the RBS/C data reveals two steps in the MgO damage process, irrespective of the temperature. However, we find that for increasing irradiation temperature, the damage level decreases and the fluence at which the second step takes place increases. A shift of the damage peak at increasing fluence is observed for the three temperatures, although the position of the peak depends on the temperature. These results can be explained by an enhanced defect mobility which facilitates defect migration and may favor defect annealing. X-ray diffraction reciprocal space maps confirm the results obtained with the RBS/C technique. - Highlights: • High-temperature MeV-ion irradiated MgO exhibits a two-step damage process. • The occurrence of the second step is delayed with increasing temperature. • The damage level decreases with increasing temperature. • A shift of the damage peak is observed with increasing fluence. • A high defect mobility at high temperatures in MgO is clearly evidenced.

  11. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  12. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Directory of Open Access Journals (Sweden)

    F. Prata

    2017-09-01

    Full Text Available The separation of volcanic ash and sulfur dioxide (SO2 gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21–28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  13. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Science.gov (United States)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  14. Durability of conventional concretes containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    Science.gov (United States)

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  16. Radiochemical studies on Bikini ashes

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, T

    1954-01-01

    Decay characteristics of the ashes which were brought back by the crew of the Fukuryu Maru No. 5 were: untreated ash I = ct/sup -1/ /sup 81/, water soluble part t/sup -2/ /sup 71/, insoluble part t/sup -1/ /sup 68/. Radioactive species separated by chemical method with carrier or collector were: nuclide, activity of nuclide (counts/min)/activity of original sample (counts/min), and the date of separation, /sup 89/Sr 6000/80 X 10/sup 4/, April 24; /sup 95/Zr, 280/80 x 10/sup 4/, -; /sup 111/Ag, 200/200 x 10/sup 4/, April 14; /sup 103/Ru, 2.300/25 x 10/sup 4/, etc.

  17. The Ashes of Marci Shore

    Directory of Open Access Journals (Sweden)

    Zbigniew Kopeć

    2013-01-01

    Full Text Available The article discusses Marci Shore’s social and historical thought, as presented in her books: Caviar and Ashes: A Warsaw Generation’s Life and Death in Marxism, 1918-1968 (2006, The Taste of Ashes (2013, and her essays recently published in Polish translation. The author follows the American historian, presenting her concept of modernity, but focuses on the main theme of her research: the contribution of Jewish writers, poets, artists, and intellectuals to the creation of Marxism. The author acknowledges the great value of Marci Shore’s writings, but argues that her panorama of the 20th century would be fuller if her discussion included a reflection on the religious attitude of many Jewish thinkers to Marxism and the USSR. This topic was discussed by Nikolai Berdyaev and Polish thinkers who published in pre-war social journals.

  18. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    Science.gov (United States)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  19. Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study

    International Nuclear Information System (INIS)

    Dayananda, Desagani; Sarva, Venkateswara R.; Prasad, Sivankutty V.; Arunachalam, Jayaraman; Parameswaran, Padmanabhan; Ghosh, Narendra N.

    2015-01-01

    Highlights: • Simple and cost effective preparation of MgO nanoparticles loaded mesoporous Al 2 O 3 . • Adsorbents possess high surface area and mesoporous structure. • Higher fluoride removal capacity of MgO loaded Al 2 O 3 than that of pure Al 2 O 3 . • Faster fluoride adsorption kinetics of MgO loaded Al 2 O 3 from water. - Abstract: MgO nanoparticle loaded mesoporous alumina has been synthesized using a simple aqueous solution based cost effective method for removal of fluoride from water. Wide angle powder X-ray diffraction, nitrogen adsorption desorption analysis, transmission electron microscopy techniques and energy dispersive X-ray spectroscopy were used to characterize the synthesized adsorbents. Synthesized adsorbents possess high surface area with mesoporous structure. The adsorbents have been thoroughly investigated for the adsorption of F − using batch adsorption method. MgO nanoparticle loading on mesoporous Al 2 O 3 enhances the F − adsorption capacity of Al 2 O 3 from 56% to 90% (initial F − concentration = 10 mg L −1 ). Kinetic study revealed that adsorption kinetics follows the pseudo-second order model, suggesting the chemisorption mechanism. The F − adsorption isotherm data was explained by both Langmuir and Freundlich model. The maximum adsorption capacity of 40MgO@Al 2 O 3 was 37.35 mg g −1 . It was also observed that, when the solutions having F − concentration of 5 mg L −1 and 10 mg L −1 was treated with 40MgO@Al 2 O 3 , the F − concentration in treated water became <1 mg L −1 , which is well below the recommendation of WHO

  20. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  1. Microstructure of epitaxial SrRuO 3 thin films on MgO substrates

    Science.gov (United States)

    Ai, Wan Yong; Zhu, Jun; Zhang, Ying; Li, Yan Rong; Liu, Xing Zhao; Wei, Xian Hua; Li, Jin Long; Zheng, Liang; Qin, Wen Feng; Liang, Zhu

    2006-09-01

    SrRuO 3 thin films have been grown on singular (1 0 0) MgO substrates using pulsed laser deposition (PLD) in 30 Pa oxygen ambient and at a temperature of 400-700 °C. Ex situ reflection high-energy electron diffraction (RHEED) as well as X-ray diffraction (XRD) θ/2 θ scan indicated that the films deposited above 650 °C were well crystallized though they had a rough surface as shown by atom force microscopy (AFM). XRD Φ scans revealed that these films were composed of all three different types of orientation domains, which was further confirmed by the RHEED patterns. The heteroepitaxial relationship between SrRuO 3 and MgO was found to be [1 1 0] SRO//[1 0 0] MgO and 45°-rotated cube-on-cube [0 0 1] SRO//[1 0 0] MgO. These domain structures and surface morphology are similar to that of ever-reported SrRuO 3 thin films deposited on the (0 0 1) LaAlO 3 substrates, and different from those deposited on (0 0 1) SrTiO 3 substrates that have an atomically flat surface and are composed of only the [1 1 0]-type domains. The reason for this difference was ascribed to the effect of lattice mismatch across the film/substrate interface. The room temperature resistivity of SrRuO 3 films fabricated at 700 °C was 300 μΩ cm. Therefore, epitaxial SrRuO 3 films on MgO substrate could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.

  2. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    International Nuclear Information System (INIS)

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; Thevuthasan, S; El-Khoury, P Z; Hess, W P; Kayani, Asghar

    2013-01-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag + ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. (paper)

  3. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  4. Utilization technology on slurried ash

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Yoshio; Yasuda, Minoru; Furuki, Yasuhiko [The Coal Mining Research Centre, Japan, Tokyo, Japan; Electric Power Development Co., Ltd., Tokyo (Japan))

    1987-08-01

    Three research results of the utilization technology on slurried ash were reported. As for the utilization as the fly ash quick setting (FQS) backfill grout for tail void in shield works of tunneling, grout blending was simplified, the blended solution of cement, clay, additives and water was stabilized, and a favorable workability and long term durability were obtained. As for the utilization as the material of a SMW (soil mixing wall) method for continuous walls in long shaft digging, a fly ash-gypsum-cement (FGC) stabilizer showed an excellent workability and remarkably high water-tightness as compared with conventional cement bentonite. As for the utilization as the material of an injection method of overlay mats in foundation works of light weight structures on the sea bed mud foundation, since a FGC concrete weight in water was remarkably light as 0.7t/m{sup 3}, no both large mold form strength and vibration compacting were required. 10 figs., 8 tabs.

  5. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  6. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  7. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  8. Characterization of ashes of elephant grass (Pennisetum purpureum) for potential added in mass red ceramic; Caracterizacao de cinzas de capim elefante (Pennisetum purpureum) para potencial adicao em massa de ceramica vermelha

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.M.F.D.; Sales, K.A.; Monteiro, S.N.; Vieira, C.M.F., E-mail: diasilva.a@hotmail.com [Universidade Estadual do Norte Fluminense Darcy Ribeiro (LAMAV/UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Materiais Avancados

    2012-07-01

    This work is in characterizing ash from biomass grass (Pennisetum purpureums) for incorporation into red ceramic masses. The ashes of elephant grass were generated from burning this dry biomass in an industrial furnace of red ceramic. The morphology of the material generated was observed by an optical microscope. The chemical composition was determined by fluorescence X-ray spectrometry, and the identification of phases by X-ray diffraction. The particle size distribution was obtained by sieving. Thermogravimetric analyzes were also conducted. The results indicate that these ashes are constituted of high quantities of SiO{sub 2}, MgO, CaO and K{sub 2}O, totaling approximately 75% of composition of matter. They have a particle size of 0.7 to 2.2mm featuring. The residue as a kind of coarse particles. Therefore, the results of this study can support future research to the addition of this residue in structural ceramics products (red ceramic)

  9. The Photocatalytic Removal of Ortho Chlorophenol from Aqueous Solution Using Modified Fly Ash - Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Mohamad Malakootian

    2016-05-01

    Full Text Available The photocatalytic process is a useful method for the effective removal of phenolic compounds. Conducted in the spring‒summer 2013 at the Engineering Research Center for Environmental Health, Kerman University of Medical Sciences, this experimental study used a modified fly ash‒TiO2 mixture to enhance the photocatalytic removal efficiency of ortho-chlorophenol. Fly ash obatined from the Thermal Power Plant in Zarand, Kerman, was initially washed with sulfuric acid before being oxidized with potassium permanganate. The mixture of modified fly ash and TiO2 was then used for the removal of ortho-chlorophenol in the presence of UV light and the factors involved in the removal process were optimized. It was found that the ortho-chlorophenol removal efficiency recorded by the mixture of modified fly ash and TiO2 was higher than that by each of the modified fly ash or TiO2/UV alone. It was, further, observed that removal efficiency with a modified fly ash to TiO2 ratio of 3:1 rose to 98.8% under optimum conditions (i.e., pH: 2; contact time: 2 h; room temperature (29±2˚C, and a catalyst dose of 0.6 g. The ortho-chlorophenol removal efficiency in real wastewater from the Coal Wash Plant in Zarand was recorded at 88.4%. Based on the results obtained from simultaneous use of modified fly ash and TiO2, the proposed method may be recommended for industrial applications.

  10. Proceedings of symposium on ash in North America

    Science.gov (United States)

    Charles H. Michler; Matthew D., eds. Ginzel

    2010-01-01

    Includes 5 papers and 30 abstracts covering topics related to the biology and ecology of the ash species, ash utilization and management, emerald ash borer, and other threats to ash, and genetics and conservation of ash species. A paper titled "Population-level variation of Fraxinus americana L. is influenced by climate...

  11. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  12. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  13. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  14. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  15. Annealing effect of thermal spike in MgO thin film prepared by cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daoyun, E-mail: zhudy@gdut.edu.cn [Experiment Teaching Department, Guangdong University of Technology, Guangzhou 510006 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhao, Shoubai [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510400 (China); Zheng, Changxi; Chen, Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, Zhenhui, E-mail: stshzh@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-12-16

    MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg{sup 2+} or O{sup 2-} to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M{sub (100)} = 199 GPa, M{sub (110)} = 335 GPa and M{sub (111)} = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments. - Highlights: • MgO thin films with preferred orientation were obtained by CVAD technique. • Annealing effect of a thermal spike in MgO film was discussed. • Lattice spacing of MgO film decreased with the increase of bias voltage. • Film preferred orientation changed from (200) to (220) as the bias voltage increased.

  16. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  17. Mixtures of coal ash and compost as substrates for highbush blueberry

    Energy Technology Data Exchange (ETDEWEB)

    Black, B.L.; Zimmerman, R.H. [ARS, Beltsville, MD (USA). USDA Henry A Wallace Beltsville Agriculture Research Center, Fruit Lab.

    2002-07-01

    Bottom ash from a coal-fired power plant and two composts were tested as components of soil-free media and as soil amendments for growing highbush blueberry (Vaccinium corymbosum L.). Combinations of ash and compost were compared to Berryland sand, and Manor clay loam, and compost amended Manor clay loam. The pH of all treatment media was adjusted to 4.5 with sulfur at the beginning of the experiment. In 1997, plants of 'Bluecrop' and 'Sierra' were planted in 15-dm{sup 3} pots containing the pH-adjusted treatment media. The first substantial crop was harvested in 1999. At the end of the 1999 season, one half of the plants were destructively harvested for growth analysis. The remaining plants were cropped again in 2000. Yield and fruit size data were collected in both seasons, and leaf and fruit samples were collected in 1999 for elemental analysis. The presence of coal ash or composted biosolids in the media had no detrimental effect on leaf or fruit elemental content. Total growth and yield of both cultivars was reduced in clay loam soil compared to Berryland sand, whereas growth and yield of plants in coal ash-compost was similar to or exceeded that of plants in Berryland sand.

  18. Buckets of ash track tephra flux from Halema'uma'u Crater, Hawai'i

    Science.gov (United States)

    Swanson, Don; Wooten, Kelly M.; Orr, Tim R.

    2009-01-01

    The 2008–2009 eruption at Kīlauea Volcano's summit made news because of its eight small discrete explosive eruptions and noxious volcanic smog (vog) created from outgassing sulfur dioxide. Less appreciated is the ongoing, weak, but continuous output of tephra, primarily ash, from the new open vent in Halema'uma'u Crater. This tephra holds clues to processes causing the eruption and forming the new crater-in-a-crater, and its flux is important to hazard evaluations.The setting of the vent–easily accessible from the Hawaiian Volcano Observatory (HVO)—is unusually favorable for neardaily tracking of tephra mass flux during this small prolonged basaltic eruption. Recognizing this, scientists from HVO are collecting ash and documenting how ejection masses, components, and chemical compositions vary through time.

  19. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  20. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  1. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  2. A-axis oriented superconductive YBCO thin films. Growth mechanism on MgO substrate. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Hamet, J F; Mercey, B; Hervieu, M; Poullain, G; Raveau, B [Centre de Materiaux Supraconducteurs, CRISMAT-ISMRa, 14 - Caen (France)

    1992-08-01

    The growth mechanism of a-axis oriented YBCO thin films has been studied by TEM. At 650degC, a disordered cubic perovskite is first formed with a[sub p]parallela[sub MgO], then a strained tetragonal a-axis oriented perovskite is observed, with c=3a[sub p], slightly misoriented with respect to MgO and showing a marquetry-like contrast. At 750degC, a [1anti 10] axis oriented perovskite is formed whose lattice exhibits a rotation with respect to MgO lattice, but also a tilting of the [CuO[sub 2

  3. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar

    2016-06-16

    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable of adsorbing dinitrogen (N2), however there is no dissociative adsorption of N2 on single transition metal dopant. When two TM atoms are doped on MgO(100) surface, dissociative adsorption of dinitrogen occurs in all the three cases. Whether the dissociation is spontaneous or is it associated with activation barrier depends on the orientation of N2 molecule approaching the dopant site.

  4. Depth-selective 2D-ACAR and coincidence Doppler investigation of embedded Au nanocrystals in MgO

    International Nuclear Information System (INIS)

    Eijt, S.W.H.; Veen, A. van; Falub, C.V.; Schut, H.; Huis, M.A. van; Mijnarends, P.E.

    2004-01-01

    We present a depth-selective 2D-ACAR and two-detector Doppler broadening study on Au nanocrystals in monocrystalline MgO(100), produced in sub-surface layers by ion implantation and subsequent thermal annealing to temperatures beyond the stability range of vacancy clusters in MgO. In contrast to the case of Li nanocrystals, it was found that positrons do not trap inside the Au nanocrystals, but only in defects at the nanocrystal-to-host interface (attached vacancy clusters). This is interpreted in terms of the positron affinity of Au, MgO and the defects. (orig.)

  5. Depth-selective 2D-ACAR and coincidence Doppler investigation of embedded Au nanocrystals in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Eijt, S.W.H.; Veen, A. van; Falub, C.V.; Schut, H.; Huis, M.A. van [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Mijnarends, P.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands); Dept. of Physics, Northeastern Univ., Boston, MA (United States)

    2004-07-01

    We present a depth-selective 2D-ACAR and two-detector Doppler broadening study on Au nanocrystals in monocrystalline MgO(100), produced in sub-surface layers by ion implantation and subsequent thermal annealing to temperatures beyond the stability range of vacancy clusters in MgO. In contrast to the case of Li nanocrystals, it was found that positrons do not trap inside the Au nanocrystals, but only in defects at the nanocrystal-to-host interface (attached vacancy clusters). This is interpreted in terms of the positron affinity of Au, MgO and the defects. (orig.)

  6. Amelioration and reforestation of sulfurous mine soils in Lusatia (eastern Germany)

    International Nuclear Information System (INIS)

    Katzur, J.; Haubold-Rosar, M.

    1996-01-01

    In Germany nearly 1.550 km 2 have been claimed by brown coal mining until now. Mine soils formed of carboniferous and sulfurous overburden are classified as sulfurous mine soils. They remain vegetation-free for decades and may be cultivated only after soil amelioration. The objective of amelioration is a sustained improvement of soil reaction. Lime requirement for the achievement of a certain pH-value is calculated from acid-base-balance (SBB). Lime fertilizers and base-rich brown coal ashes are used for amelioration. As ashes have several advantages, their application is recommended. The ameliorative application of lime fertilizer or brown coal ash should be incorporated intensively into the soil to a depth of 60 cm, better 100 cm. Amelioration includes a mineral fertilization with N, P and K. Afforestation with Pinus sylvestris, Pinus nigra, Larix decidua, Larix eurolepis. Tilia cordata, Quercus rubra and Quercus petraea on ameliorated mine soils show surprising good results. Multi-species stands have very positive effects on soil formation. Raw humus is formed under pine and larch, and under deciduous trees moder and mull with higher bioactivity and better development of water and nutrient balance in the topsoil are found. 55 refs., 6 figs., 4 tabs

  7. Utilization of Hospital Waste Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2013-01-01

    Full Text Available Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement.

  8. Method of reversibly immobilizing sulfate ash

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1984-01-01

    A sulphate ash at least 20% by weight of which consists of sulphates of transuranic elements is immobilised by heating to melting a mixture of the ash, a metal, and a fluxing agent; the metal used is Al, Ce, Sm, Eu or mixtures thereof and it is used in an amount sufficient to reduce the transuranic sulphates in the ash to metal and form an alloy with the metal so produced; sufficient of the fluxing agent is used to reduce the percentage of transuranic sulphates in the mix to form 1% to 10% of the mix and the molten mixture is cooled and the alloy containing the immobilised ash separated. (author)

  9. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  10. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  11. Hazards Associated With Recent Popocatepetl Ash Emissions

    Science.gov (United States)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  12. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Science.gov (United States)

    Deborah McCullough; Therese Poland; David. Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  13. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    Science.gov (United States)

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  14. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis)

    Science.gov (United States)

    Kathleen S. Knight; John P. Brown; Robert P. Long

    2013-01-01

    Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...

  15. Use of unwounded ash trees for the detection of emerald ash borer adults: EAB landing behavior

    Science.gov (United States)

    Jordan M. Marshall; Melissa J. Porter; Andrew J. Storer

    2011-01-01

    Incorporation of multiple trapping techniques and sites within a survey program is essential to adequately identify the range of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) infestation. Within natural forests, EAB lands on stick band traps wrapped around girdled ash trees at a rate similar to that on unwounded ash trees. The objective of...

  16. Survey for tolerance to emerald ash borer within North American ash species

    Science.gov (United States)

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  17. A Study of the Stability and Characterization Plutonium Dioxide and Chemical Characterization [of] Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash

    International Nuclear Information System (INIS)

    Ray, A.K.; Boettger, J.C.; Behrens, Robert G.

    1999-01-01

    In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO 2 . Earlier studies have indicated that PuO 2 has the fluorite structure of CaF 2 and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO 2 . The LCGTO-FF technique characterized by its use of three independent GTO basis sets to expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO 2 will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using microprobe analysis. Some

  18. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  19. Optimization of soil stabilization with class C fly ash.

    Science.gov (United States)

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  20. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Science.gov (United States)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  1. Forest fuel, ashes and ecology

    International Nuclear Information System (INIS)

    Lundborg, A.

    1994-01-01

    Large-scale use of bioenergy is an essential measure if several of the major environmental problems are to be solved. However, it is important to utilize the possibilities available to produce biofuel without creating new environmental problems. Whole-tree removal gives a considerable reduction in the nitrogen lead which, in combination with the return of ashes, counteracts the nutrient imbalance and acidification in southern Sweden. Forestry of that kind should lead to lower total leaching of nitrogen in comparison with conventional forestry. In situations where there is high deposition of atmospheric sulphur and nitrogen, fuel removal with return of a moderate dose of slowly dissolvable ashes should be a good soil management measure. The humus status and flora/fauna always require some kind of consideration. With compensation measures and retained nutrient status there should be no problems with the humus status on most soils. However, on poor and dry soils, it is suitable to avoid whole-tree removal on account of the humus status. Consideration to nature includes, for example, increasing the number of broad-leaf trees, old trees and dead wood (preferably the trunks). These measures concern all types of forestry and are not linked directly with fuel removal. Removal of felling residues and return of ashes are of minor importance in comparison with this and fit well into forestry adapted to natural values. With correct planning and accomplishment of the removal of forest fuel the natural values of the forest can be retained or even improved. Forestry where fuel is also produced can be designed whereby negative effects are avoided at the same time as positive environmental effects are obtained. 68 refs, 5 figs, 3 tabs

  2. Process for growing a film epitaxially upon a MGO surface and structures formed with the process

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  3. Process for growing a film epitaxially upon a MgO surface

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    1997-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  4. Etching mechanism of MgO thin films in inductively coupled Cl2/Ar plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Koo, Seong-Mo; Kim, Dong-Pyo; Kim, Kyoung-Tae; Kim, Chang-Il

    2004-01-01

    The etching mechanism of MgO thin films in Cl 2 /Ar plasma was investigated. It was found that the increasing Ar in the mixing ratio of Cl 2 /Ar plasma causes nonmonotonic MgO etch rate, which reaches a maximum value at 70%Ar+30%Cl 2 . Langmuir probe measurement showed the noticeable influence of Cl 2 /Ar mixing ratio on electron temperature and electron density. The zero-dimensional plasma model indicated monotonic changes of both densities and fluxes of active species. At the same time, analyses of surface kinetics showed the possibility of nonmonotonic etch rate behavior due to the concurrence of physical and chemical pathways in ion-assisted chemical reaction

  5. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    Science.gov (United States)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-04-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6×1016 cm-2. As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles.

  6. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Muecklich, A.; Groetzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-01-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6x10 16 cm -2 . As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles

  7. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method

    International Nuclear Information System (INIS)

    Wang Wei; Qiao Xueliang; Chen Jianguo; Tan Fatang

    2008-01-01

    Ti-doped MgO nanopowders were prepared via a chemical coprecipitation method using acetic acid as a modifier in the presence of the surfactant polyethylene glycol (PEG 400). The as-obtained products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results show that titanium atoms have been successfully incorporated into the crystal lattice of MgO with periclase structure. The modifier, acetic acid, can significantly reduce the particle size, and improve size distribution and dispersion of nanoparticles. In addition, the effect of doped titanium on the structure and morphology of magnesium oxide was also investigated

  8. Optical studies of E-beam evaporated MgO films for plasma display panels

    CERN Document Server

    Lee, S I; Oh, S G

    1999-01-01

    Variable-incident-angle spectroscopic ellipsometry has been used for non-destructive depth profiling of MgO thin films, one of the key elements of plasma display panels. We have found that all the examined MgO films have a three-layer structure with a dense interface layer , a void-included middle layer, and a surface layer. We have also found that the void fraction is increased with the oxygen-flow rate at a fixed substrate temperature and decreased with the substrate temperature at a fixed oxygen-flow rate. Moreover, discuss the close correlation between the water adsorption and the void fraction and show a general agreement between the surface layer thickness and the mean height determined by using a atomic force microscopy.

  9. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    International Nuclear Information System (INIS)

    Mazierska, Janina; Ledenyov, Dimitri; Jacob, Mohan V; Krupka, Jerzy

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO 3 post dielectric resonator with DyBa 2 Cu 3 O 7 end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10 -6 . The tested MgO substrates exhibited the average relative permittivity of 9.63 and tanδ from 3.7 x 10 -7 to 2 x 10 -5 at frequency of 10.5 GHz in the temperature range from 14 to 80 K

  10. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Mazierska, Janina [Institute of Information Sciences and Technology, Massey University, Palmerston North, P. Bag 11222 (New Zealand); Ledenyov, Dimitri [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Jacob, Mohan V [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Krupka, Jerzy [Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej, Koszykowa 75, 00-662 Warsaw (Poland)

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO{sub 3} post dielectric resonator with DyBa{sub 2}Cu{sub 3}O{sub 7} end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10{sup -6}. The tested MgO substrates exhibited the average relative permittivity of 9.63 and tan{delta} from 3.7 x 10{sup -7} to 2 x 10{sup -5} at frequency of 10.5 GHz in the temperature range from 14 to 80 K.

  11. Sulfur isotope signatures in New Zealand

    International Nuclear Information System (INIS)

    Cainey, J.

    2001-01-01

    The role of sulfur in cloud formation makes it a crucial ingredient in the global climate change debate. So it is important to be able to measure sulfur in the atmosphere and identify where it came from. (author)

  12. Model Prebiotic Iron-Sulfur Peptides

    Science.gov (United States)

    Bonfio, C.; Scintilla, S.; Shah, S.; Evans, D. J.; Jin, L.; Szostak, J. W.; Sasselov, D. D.; Sutherland, J. D.; Mansy, S. S.

    2017-07-01

    Iron-sulfur clusters form easily in aqueous solution in the presence of thiolates and iron ions. Polymerization of short, iron-sulfur binding tripeptide sequences leads to ferredoxin-like ligand spacing and activity.

  13. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  14. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  15. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  16. The phase diagram and transport properties of MgO from theory and experiment

    Science.gov (United States)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangkun [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Bao, Jianguo, E-mail: bjianguo@cug.edu.cn [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Liu, Ying; Ling, Haibo; Zheng, Han [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Kim, Sang Hoon, E-mail: kim_sh@kist.re.kr [Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-12-15

    Highlights: Manganese catalyst was immobilized on Fe{sub 3}O{sub 4}/graphene hybrids to facilitate magnetic separation. Magnetic manganese catalyst exhibited high efficacy and long-term stability for catalytic PMS activation. The minerlization efficiency and the biotoxicity of BPA byproducts were evaluated. The degradation pathways of BPA and the possible activation mechanism of PMS were proposed. - Abstract: A heterogeneous manganese/magnetite/graphene oxide (Mn-MGO) hybrid catalyst was fabricated through the reduction of KMnO{sub 4} by ethylene glycol in the presence of magnetite/GO (MGO) particles. The Mn-MGO catalyst exhibited high efficacy and long-term stability in activating peroxymonosulfate (PMS) to generate sulfate radicals for the removal of bisphenol A (BPA) from water. The results of the batch experiments indicated that an increase in the catalyst dose and solution pH could enhance BPA degradation in the coupled Mn-MGO/PMS system. Regardless of the initial pH, the solution pH significantly dropped after the reaction, which was caused by catalytic PMS activation. The production of sulfate radicals and hydroxyl radicals was validated through radical quenching and electron paramagnetic resonances (EPR) tests. BPA degradation pathways were proposed on the basis of LC-MS and GC-MS analyses. Finally, a possible mechanism of catalytic PMS activation was proposed that involved electron transfer from MnO or Mn{sub 2}O{sub 3} to PMS with the generation of sulfate radicals, protons and MnO{sub 2}, as well as the simultaneous reduction of MnO{sub 2} by PMS.

  18. Large-area thin self-supporting carbon foils with MgO coatings

    Science.gov (United States)

    Stolarz, Anna; Maier-Komor, Peter

    2002-03-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  19. Neutron monochromators of BeO, MgO and ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N. [Reactor Physics Department, NRC, AEAE, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, NRC, AEAE, Cairo (Egypt); Mansy, M.S., E-mail: mohamedmansy_np@yahoo.com [Physics Department, Faculty of Science, Zagazig University (Egypt)

    2014-05-21

    The monochromatic features of BeO, MgO and ZnO single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.05 up to 0.5 nm. A computer program MONO, written in “FORTRAN”, has been developed to carry out the required calculations. Calculation shows that a 5 mm thick MgO single crystal cut along its (2 0 0) plane having mosaic spread of 0.5° FWHM has the optimum parameters when it is used as a neutron monochromator. Moreover, at wavelengths shorter than 0.24 nm the reflected monochromatic neutrons are almost free from the higher order ones. The same features are seen with BeO (0 0 2) with less reflectivity than that of the former. Also, ZnO cut along its (0 0 2) plane is preferred over the others only at wavelengths longer than 0.20 nm. When the selected monochromatic wavelength is longer than 0.24 nm, the neutron intensities of higher orders from a thermal reactor flux are higher than those of the first-order one. For a cold reactor flux, the first order of BeO and MgO single crystals is free from the higher orders up to 0.4 nm, and ZnO at wavelengths up to 0.5 nm. - Highlights: • Monochromatic features of BeO, MgO and ZnO single crystals. • Calculations of neutron reflectivity using a computer program MONO. • Optimum mosaic spread, thickness and cutting plane of single crystals.

  20. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.

    Science.gov (United States)

    Dong, Qi; Yao, Xiahui; Luo, Jingru; Zhang, Xizi; Hwang, Hajin; Wang, Dunwei

    2016-12-11

    Dual redox mediators (RMs) were introduced for Mg-O 2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.

  1. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  2. Antibacterial characteristics of CaCO{sub 3}-MgO composites

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Osamu, E-mail: yamamoto@cges.akita-u.ac.jp [Center for Geo-Environmental Science, Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuen-machi, Akita 010-8502 (Japan); Ohira, Toshiaki; Alvarez, Kelly [Center for Geo-Environmental Science, Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuen-machi, Akita 010-8502 (Japan); Fukuda, Masayuki [Division of Dentistry and Oral Surgery, Akita University Hospital, 1-1-1 Hondo, Akita 010-8543 (Japan)

    2010-10-15

    Dentifrices, such as tooth-paste, are pastes containing insoluble abrasives that aid in the removal of plaque from the teeth and help to polish them. Composite powders contributing to oral hygiene application, i.e., nano-scale MgO crystallite dispersed in CaCO{sub 3} grain, were fabricated by the thermal decomposition of dolomite. The composite obtained by heating at 800 deg. C consisted of CaCO{sub 3} grains including 20 nm MgO fine crystallite, being the purpose powder in this study. The antibacterial activity of these powders related to gram-positive and gram-negative bacteria was evaluated in vitro. The thermal decomposition above 800 deg. C resulted in the mixture of CaO and MgO. Antibacterial activity of the composite enhanced with increasing powder concentration. Though antibacterial action toward Staphylococcus aureus was greater than towards Escherichia coli, the death rate constant was identical in both bacteria. It can be concluded that the obtained composite possesses two functions able to improve the oral hygiene: as a tooth abrasive and as an antibacterial agent.

  3. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study

    Science.gov (United States)

    Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.

    2009-06-01

    Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.

  4. Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    T.A. Nirmal Peiris

    2017-02-01

    Full Text Available Herein, we studied the effect of MgO coating thickness on the performance of printable perovskite solar cells (PSCs by varying the electrodeposition time of Mg(OH2 on the fluorine-doped tin oxide (FTO/TiO2 electrode. Electrodeposited Mg(OH2 in the electrode was confirmed by energy dispersive X-ray (EDX analysis and scanning electron microscopic (SEM images. The performance of printable PSC structures on different deposition times of Mg(OH2 was evaluated on the basis of their photocurrent density-voltage characteristics. The overall results confirmed that the insulating MgO coating has an adverse effect on the photovoltaic performance of the solid state printable PSCs. However, a marginal improvement in the device efficiency was obtained for the device made with the 30 s electrodeposited TiO2 electrode. We believe that this undesirable effect on the photovoltaic performance of the printable PSCs is due to the higher coverage of TiO2 by the insulating MgO layer attained by the electrodeposition technique.

  5. Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    V.T. Srisuvetha

    2017-04-01

    Full Text Available MgO thin flims have been prepared on substrates by a novel and simple sol-gel method using magnesium nitrate and collusion as starting material.The MgO nano catalyst with good sensor crystallization were obtained after annealing at 100°C Magnesium oxide was prepared by sol-gel method. The method involves the hydrolysis of magnesium alkoxide in the presence of acid or basic catalysts followed by a Oxalic acid reaction. The synthesized solids were characterized by IR spectroscopy X-ray diffraction electron microscopy. Ultraviolet visible absorbance measurement photoluminescence and Raman scattering spectra. X-ray diffraction (XRD characterization showed the formation of smaller particles after sol gel irradiation the structure and morphology of the MgO particles were analyzed byXRD. These articles were used for FTIR spectroscopic measurement and spectra were collected. In EDS we calculated the peak intensity the SEM the images of metal oxide.UV (Ultra Violet refers to adsorption spectroscopy optical properties of assorption, band gap energy.This means if use light in the visible and adjacent ranges.

  6. Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Hee; Park, Dong Gon [Sookmyung Women' s University, Seoul (Korea, Republic of)

    2003-10-15

    Thermal decomposition of hydrated surface layer of Mg(OH){sub 2} at 500 .deg. C in vacuum turned non-porous MgO into porous one with high surface area of around 270 m{sup 2}/g. Most of its surface area, 74 %, was from micropores, and rest of it was from mesopores in wedge-shaped slits, exhibiting bimodal size distribution centered around 30 and 90 A. Rehydration followed by subsequent dehydration at 300 .deg. C in dynamic vacuum further raised the surface area to 340 m{sup 2}/g. Fraction of microporous surface area was increased to 93%, and the shape of the mesopores was modified into parallel slits with a specific dimension of 32 A. Application of Fe{sub 2}O{sub 3} over MgO via iron complex formation did not alter the pore characteristics of MgO core, except slightly increased pore dimension. Over the course of the modification, Fe{sub 2}O{sub 3} stayed on the surface possibly via spill-over reaction.

  7. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-01-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10 16 Cd ions cm -2 and 210 keV, 1 x 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions

  8. Neutron monochromators of BeO, MgO and ZnO single crystals

    Science.gov (United States)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2014-05-01

    The monochromatic features of BeO, MgO and ZnO single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.05 up to 0.5 nm. A computer program MONO, written in “FORTRAN”, has been developed to carry out the required calculations. Calculation shows that a 5 mm thick MgO single crystal cut along its (2 0 0) plane having mosaic spread of 0.5° FWHM has the optimum parameters when it is used as a neutron monochromator. Moreover, at wavelengths shorter than 0.24 nm the reflected monochromatic neutrons are almost free from the higher order ones. The same features are seen with BeO (0 0 2) with less reflectivity than that of the former. Also, ZnO cut along its (0 0 2) plane is preferred over the others only at wavelengths longer than 0.20 nm. When the selected monochromatic wavelength is longer than 0.24 nm, the neutron intensities of higher orders from a thermal reactor flux are higher than those of the first-order one. For a cold reactor flux, the first order of BeO and MgO single crystals is free from the higher orders up to 0.4 nm, and ZnO at wavelengths up to 0.5 nm.

  9. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van E-mail: vanhuis@iri.tudelft.nl; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10{sup 16} Cd ions cm{sup -2} and 210 keV, 1 x 10{sup 16} Se ions cm{sup -2} in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  10. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  11. A first-principles and experimental study of helium diffusion in periclase MgO

    Science.gov (United States)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  12. Morphological and optical studies of zinc oxide doped MgO

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Zayani Jaafar, E-mail: jaafar.zayani@yahoo.fr; Matoussi, Adel

    2016-06-25

    This paper reports morphological and optical characterizations of sintered (ZnO){sub 1−x}(MgO){sub x} composite materials. The effects of MgO doping content on these pellets properties have been analyzed. The SEM observations have shown rougher surfaces of the samples covered by grains having prismatic shapes and different sizes. From reflectance and absorption measurements, we have determined the band gap energy which tends to augment from 3.287 to 3.827 eV as the doping content increases. This widening of the optical band gap is explained by the Burstein-Moss effect which causes a significant increase of electron concentration (2.89 10{sup 18}−5.1910{sup 20} cm{sup −3}). In addition, the absorption coefficient, Urbach energy, optical constants (refractive index, extinction coefficient, dielectric constant) and dispersion parameters, such as E{sub 0} (single-oscillator energy), E{sub d} (dispersive energy) were determined of the (ZnO){sub 1−x}(MgO){sub x} composites and analyzed. - Highlights: • (ZnO){sub 1−x}(MgO){sub x} composites were synthesized by solid state sintering method. • MgO doping increased the band gap energy. • SEM observations have shown a decrease of grain sizes when the MgO doping increases. • Optical constants and dispersion parameters were determined and analyzed.

  13. Antibacterial characteristics of CaCO3-MgO composites

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Ohira, Toshiaki; Alvarez, Kelly; Fukuda, Masayuki

    2010-01-01

    Dentifrices, such as tooth-paste, are pastes containing insoluble abrasives that aid in the removal of plaque from the teeth and help to polish them. Composite powders contributing to oral hygiene application, i.e., nano-scale MgO crystallite dispersed in CaCO 3 grain, were fabricated by the thermal decomposition of dolomite. The composite obtained by heating at 800 deg. C consisted of CaCO 3 grains including 20 nm MgO fine crystallite, being the purpose powder in this study. The antibacterial activity of these powders related to gram-positive and gram-negative bacteria was evaluated in vitro. The thermal decomposition above 800 deg. C resulted in the mixture of CaO and MgO. Antibacterial activity of the composite enhanced with increasing powder concentration. Though antibacterial action toward Staphylococcus aureus was greater than towards Escherichia coli, the death rate constant was identical in both bacteria. It can be concluded that the obtained composite possesses two functions able to improve the oral hygiene: as a tooth abrasive and as an antibacterial agent.

  14. Trap characterization by photo-transferred thermoluminescence in MgO nanoparticles

    Science.gov (United States)

    Isik, M.; Gasanly, N. M.

    2018-05-01

    Shallow trapping centers in MgO nanoparticles were characterized using photo-transferred thermoluminescence (TL) measurements. Experiments were carried out in low temperature range of 10-280 K with constant heating rate. Shallow traps were filled with charge carriers firstly by irradiating the sample at room temperature using S90/Y90 source and then illuminating at 10 K using blue LED. TL glow curve exhibited one peak around 150 K. Curve fitting analyses showed that this peak is composed of two individual peaks with maximum temperatures of 149.0 and 155.3 K. The activation energies of corresponding trapping centers were revealed as 0.70 and 0.91 eV. The dominant mechanism for TL process was found as second order kinetics which represent that fast retrapping is effective transitions taking place within the band gap. Structural characterization of MgO nanoparticles were investigated using x-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. Analyses of experimental observations indicated that MgO nanoparticles show good crystallinity with particle size in nanometer scale.

  15. The role of MgO content in ex situ MgB2 wires

    DEFF Research Database (Denmark)

    Kovac, P.; Hugek, I.; Meligek, T.

    2004-01-01

    An experimental study of the effect of MgO content in the MgB2 powder used for ex situ made composite wires was carried out. Two single-core MgB2/Fe/Cu wires were made using commercial MgB2 powders from Alfa Aesar containing different fraction of MgO. Critical temperature and critical currents of...

  16. Flight potential of the emerald ash borer

    Science.gov (United States)

    Leah S. Bauer; Deborah L. Miller; Robin A.J. Taylor; Robert A. Haack

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) in North America. Native to several Asian countries, EAB was discovered in six southeastern Michigan counties and southwestern Ontario in 2002. EAB presumably emerged from infested solid wood...

  17. Biology of emerald ash borer parasitoids

    Science.gov (United States)

    Leah S. Bauer; Jian J. Duan; Jonathan P. Lelito; Houping Liu; Juli R. Gould

    2015-01-01

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle introduced from China (Bray et al., 2011), was identified as the cause of ash (Fraxinus spp.) mortality in southeast Michigan and nearby Ontario in 2002 (Haack et al., 2002; Federal Register, 2003; Cappaert et al., 2005)....

  18. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  19. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  20. Laboratory rearing of emerald ash borer

    Science.gov (United States)

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Houping Liu; Toby Petrice

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was identified in 2002 as the cause of ash (Fraxinus spp.) mortality throughout southeastern Michigan and southwestern Ontario. More isolated infestations continue to be found throughout Lower Michigan, northern...

  1. Emerald ash borer survival in firewood

    Science.gov (United States)

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to Asia and was first discovered in Michigan and Ontario in 2002. As of October 2004, EAB was only found to breed in ash (Fraxinus) trees in North America. EAB is spreading naturally through adult flight as well as artificially through...

  2. Emerald ash borer biology and invasion history

    Science.gov (United States)

    Robert A. Haack; Yuri Baranchikov; Leah S. Bauer; Therese M. Poland

    2015-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to eastern Asia and is primarily a pest of ash (Fraxinus) trees (Fig. 1). Established populations of EAB were first detected in the United States and Canada in 2002 (Haack et al., 2002), and based on a dendrochronology study by Siegert...

  3. Evaluation of atomic absorption Spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    Three commonly used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and AAS-Non Ashing) and titrimetry (potassium permanganate titration) have been evaluated in this study to determine the calcium content in six food samples whose calcium levels ranged from 0 to more than 250mg/100g ...

  4. Determining ash content in flotation wastes by means of the MPOF optical ash meter. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-03-01

    The paper evaluates an experimental unit of the MPOF optical ash meter, developed by the EMAG Research and Production Center for Electrical Engineering and Mining Automation. The MPOF, which is being tested at the coal preparation plant of the 30 lecia PRL mine, is the first system for continuous determination of ash content in flotation tailings developed in Poland. A block scheme of the system is given. It consists of a measuring head and electronic system which processes data supplied by the measuring head and calculates ash content. System operation is based on the principle of determining ash content in a mixture of coal and mineral wastes by measuring mixture reflectivity. Determining ash content in the mixture is possible as reflectivity coefficients for coal and ash are constant. Performance of the MPOF optical ash meter is evaluated; the results are shown in a table and a scheme. Measurement accuracy is satisfactory.

  5. Air Quality Criteria for Sulfur Oxides.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  6. Biologically removing sulfur from dilute gas flows

    Science.gov (United States)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  7. Method of distillation of sulfurous bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Hallback, A J.S.; Bergh, S V

    1918-04-22

    A method of distillation of sulfur-containing bituminous shales is characterized by passing the hot sulfur-containing and oil-containing gases and vapors formed during the distillation through burned shale containing iron oxide, so that when these gases and vapors are thereafter cooled they will be, as far as possible, free from sulfur compounds. The patent contains six more claims.

  8. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  9. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is generally...

  10. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  11. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Science.gov (United States)

    Schumann, U.; Weinzierl, B.; Reitebuch, O.; Schlager, H.; Minikin, A.; Forster, C.; Baumann, R.; Sailer, T.; Graf, K.; Mannstein, H.; Voigt, C.; Rahm, S.; Simmet, R.; Scheibe, M.; Lichtenstern, M.; Stock, P.; Rüba, H.; Schäuble, D.; Tafferner, A.; Rautenhaus, M.; Gerz, T.; Ziereis, H.; Krautstrunk, M.; Mallaun, C.; Gayet, J.-F.; Lieke, K.; Kandler, K.; Ebert, M.; Weinbruch, S.; Stohl, A.; Gasteiger, J.; Groß, S.; Freudenthaler, V.; Wiegner, M.; Ansmann, A.; Tesche, M.; Olafsson, H.; Sturm, K.

    2011-03-01

    visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kg s-1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.

  12. Model surface studies of metal oxides: Adsorption of water and methanol on ultrathin MgO films on Mo(100)

    International Nuclear Information System (INIS)

    Wu, M.; Estrada, C.A.; Corneille, J.S.; Goodman, D.W.

    1992-01-01

    Model surface studies of magnesium oxide have been carried out using surface sensitive techniques. Ultrathin MgO films have been synthesized under ultrahigh vacuum (UHV) conditions by thermally evaporating Mg onto Mo(100) in the presence of oxygen. Low-energy electron diffraction (LEED) studies indicate that the MgO films grow epitaxially with the (100) face of MgO oriented parallel to Mo(100). The MgO films, prepared under optimum synthesis conditions, have essentially one-to-one stoichiometry, are nearly free from pointlike surface defects, and have properties essentially identical to those of bulk, single-crystal MgO. Adsorption of water and methanol onto the MgO films has been studied using high-resolution electron energy-loss spectroscopy (HREELS) and temperature programmed desorption (TPD). In order to circumvent the difficulty associated with intense multiple surface optical phonon (Fuchs--Kliewer modes) losses, a new approach to acquisition of HREELS data has been demonstrated. This new approach enables the direct observation of weak loss features due to excitation of the adsorbates without serious interference from multiple phonon losses. Our HREELS studies show that water and methanol undergo heterolytic dissociation, leading to the formation of hydroxyl and methoxy species, respectively

  13. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  14. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  15. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  16. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  17. Washability and Distribution Behaviors of Trace Elements of a High-Sulfur Coal, SW Guizhou, China

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2018-02-01

    Full Text Available The float-sink test is a commonly used technology for the study of coal washability, which determines optimal separation density for coal washing based on the desired sulfur and ash yield of the cleaned coal. In this study, the float-sink test is adopted for a high-sulfur Late Permian coal from Hongfa coalmine (No.26, southwestern Guizhou, China, to investigate its washability, and to analyze the organic affinities and distribution behaviors of some toxic and valuable trace elements. Results show that the coal is difficult to separate in terms of desulfurization. A cleaned coal could theoretically be obtained with a yield of 75.50%, sulfur 2.50%, and ash yield 11.33% when the separation density is 1.57 g/cm3. Trace elements’ distribution behaviors during the gravity separation were evaluated by correlation analysis and calculation. It was found that Cs, Ga, Ta, Th, Rb, Sb, Nb, Hf, Ba, Pb, In, Cu, and Zr are of significant inorganic affinity; while Sn, Co, Re, U, Mo, V, Cr, Ni, and Be are of relatively strong organic affinity. LREE (Light rare earth elements, however, seem to have weaker organic affinity than HREE (Heavy rare earth elements, which can probably be attributed to lanthanide contraction. When the separation density is 1.60 g/cm3, a large proportion of Sn, Be, Cr, U, V, Mo, Ni, Cd, Pb, and Cu migrate to the cleaned coal, but most of Mn, Sb and Th stay in the gangue. Coal preparation provides alternativity for either toxic elements removal or valuable elements preconcentration in addition to desulfurization and deashing. The enrichment of trace elements in the cleaned coal depends on the predetermined separation density which will influence the yields and ash yields of the cleaned coal.

  18. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  19. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  20. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    OpenAIRE

    Schmidt, A; Witham, CS; Theys, N; Richards, NAD; Thordarson, T; Szpek, K; Feng, W; Hort, MC; Woolley, AM; Jones, AR; Redington, AL; Johnson, BT; Hayward, CL; Carslaw, KS

    2014-01-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We h...

  1. Effects of mineral matters on evolution of sulfur-containing gases in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1998-07-01

    The evolution of sulfur-containing gases were investigated using two Chinese coals with their de-ash and de-pyrite forms in pyrolysis and hydropyrolysis. Mineral matter can not only return H{sub 2}S produced in pyrolysis and hydropyrolysis, but also catalyse hydrodesulfurization and reduce COS formation. Secondary reactions markedly influence COS formation. Mineral matter can reduce CH{sub 3}SH formation, and pyrite shows positive effects on CH{sub 3}SH formation. 7 refs., 6 figs., 1 tab.

  2. Solid solubility of MgO in the calcium silicates of portland clinker. The effect of CaF2

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    1992-03-01

    Full Text Available The solid solubility of MgO in the calcium silicates of portland clinker has been determined by XRD and XDS. The influence that the presence of CaF2 has on said solubility has also been verified. The solid solution limit of MgO in C3S at 1275 ºC lies at about 1.0% wt, where the triclinic form II stabilizes. The presence of CaF2 does not alter the maximum value of the MgO solubilized in that silicate, although there does take place the stabilization of the triclinic polymorph II at lower MgO contents (between 0.3 - 0.6% wt. The maximum amount of solubilized MgO in βC2 at 1.050 ºC lies around 0.5% wt. This value does not change by the presence of CaF2.Se ha determinado por DRX y EDX la solubilidad sólida del MgO en los silicatos cálcicos del clínker portland. Se ha comprobado, así mismo la influencia que sobre dicha solubilidad tiene la presencia de CaF2. El límite de disolución sólida del MgO en el C3S a 1.275º C se sitúa alrededor del 1,0% en peso, estabilizándose la forma triclínica II. La presencia de CaF2 no altera el valor máximo de MgO solubilizado en este silicato, aunque si se produce la estabilización del polimorfo triclínico II a contenidos menores de MgO (entre 0,3 – 0,6% en peso. La cantidad máxima de MgO solubilizado en e/ βC2S a 1.050 ºC se sitúa en torno al 0,5% en peso. Este valor no se ve modificado por la presencia de CaF2.

  3. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    Science.gov (United States)

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  4. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  5. Synthesis and characterization of zeolite from coal fly ash

    Science.gov (United States)

    Liu, Yong; Luo, Qiong; Wang, Guodong; Li, Xianlong; Na, Ping

    2018-05-01

    Fly ash (FA) from coal-based thermal power plant was used to synthesize zeolite in NaOH solution with hydrothermal method in this work. Firstly, the effects of calcination and acid treatment on the removal of impurities in fly ash were studied. Then based on the pretreated FA, the effects of alkali concentration, reaction temperature and Si/Al ratio on the synthesis of zeolite were studied in detail. The mineralogy, morphology, thermal behavior, infrared spectrum and specific surface for the synthetic sample were investigated. The results indicated that calcination at 750 °C for 1.5 h can basically remove unburned carbon from FA, and 4 M hydrochloric acid treatment of calcined FA at 90 °C for 2 h will reduce the quality of about 34.3%wt, which are mainly iron, calcium and sulfur elements. The concentration of NaOH, reaction temperature and Si/Al ratio have important effect on the synthesis of zeolite. In this study, 0.5 M NaOH cannot obtain any zeolite. High temperature is beneficial to zeolite synthesis from FA, but easily lead to a variety of zeolites. The synthetic sample contains three kinds of zeolites such as zeolite P, sodalite and zeolite X, when the reaction conditions are 2 M NaOH and 120 °C for 24 h. In this research, quartz always exists in the synthetic sample, but will reduce with the increase of temperature. The synthetic zeolite has the specific surface area of about 42 m2 g‑1 and better thermal stability.

  6. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  7. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  8. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  9. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  10. Hypocotyl derived in vitro regeneration of pumpkin ash (Fraxinus profunda)

    Science.gov (United States)

    Micah E. Stevens; Paula M. Pijut

    2012-01-01

    Pumpkin ash (Fraxinus profunda (Bush) Bush) is at risk for extirpation by an exotic insect, the emerald ash borer (EAB). Pumpkin ash is limited to wetland areas of the Eastern United States, and has been listed as an endangered species because of EAB activity. Pumpkin ash provides many benefits to the ecosystem, and its wood is used in the...

  11. Electrodialytic removal of Cd from biomass combustion fly ash suspensions

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor M.; Ottosen, Lisbeth M.; Damoe, Anne J.

    2013-01-01

    was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd...

  12. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice....... In this study, a fly ash sample from an operating Danish power plant based on wood biomass was collected, chemically characterized and investigated for its leaching release of nutrients and heavy metals. A column leaching test was employed. The strongly alkaline pH of all the collected eluates suggested...

  13. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  14. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  15. Fusibility and sintering characteristics of ash

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  16. Volatile earliest Triassic sulfur cycle

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Algeo, Thomas J.

    2017-01-01

    model experiment. Exposure of evaporite deposits having a high δ 34S may account for the source change, with a possible role for the Siberian Traps volcanism by magmatic remobilization of Cambrian rock salt. A high sulfur cycle turnover rate would have left the ocean system vulnerable to development......Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during...... fractionation and point to a more universal control, i.e., contemporaneous seawater sulfate concentration.The MSR-trend transfer function yielded estimates of seawater sulfate of 0.6-2.8mM for the latest Permian to earliest Triassic, suggesting a balanced oceanic S-cycle with equal S inputs and outputs...

  17. Effects of inhaled coal fly ash on lung biochemistry and function in guinea pigs

    International Nuclear Information System (INIS)

    Kimmel, T.A.; Chen, L.C.; Ryan, I.; Gordon, I.; Amdur, M.O.

    1991-01-01

    The ultrafine fraction of particles produced during the combustion of coal are the most difficult to remove with control devices and are retained longest in the atmosphere. Combustion of a high-sulfur coal, such as Illinois No. 6, produces a significant quantity of sulfuric acid, most of which is absorbed to the surface of those particles smaller than 1 μm in diameter. Particles smaller than 0.05 μm in diameter, moreover, consist largely of sulfuric acid; since these particles penetrate to the deepest regions of the lung, exposure to coal fly ash can result in the administration of large doses of acid to the alveolar tissues. Using a combustion system that generates coal fly ash similar to that collected in flue gas, guinea pigs were exposed for 2 h to aerosols produced from Illinois No. 6 (mean aerodynamic diameter 0.2 μm) at concentrations of 5 and 20 mg/m 3 . The animals were lavaged at 24 h post-exposure and levels of dehydrogenase (LDH), β-glucuronidase (β-GC), and protein were compared to those of control animals. After 24 h, no changes in levels of LDH and β-GC were seen in the lavage fluid from both high-dose and low-dose animals. Slight, but statistically significant elevations in protein concentration were measured in the high-dose exposure group. The total cell number in the lavage fluid was also found exposure group. The total cell number in the lavage fluid was also found to be exchanged following both exposures. It was previously found that exposure to 5 mg/M 3 of Illinois No. 6 fly ash results in immediate reductions in pulmonary diffusing capacity (DLco), total lung capacity (TLC), and vital capacity, and that both DLco and TLC values are not completely restored to normal 96 h post-exposure. These results suggest that the alterations in pulmonary function resulting from exposure to acidic coal fly ash are not accompanied by major inflammatory changes in lavage fluid

  18. Outlook for ash in your forest: results of emerald ash borer research and implications for management

    Science.gov (United States)

    Kathleen S. Knight

    2014-01-01

    Since its accidental introduction near Detroit, Michigan, in the mid-1990s, emerald ash borer (EAB) has rapidly spread through much of the U.S. and adjacent Canada, leaving millions of dead ash trees in Midwestern states (4,11). Unfortunately, EAB attacks trees as small as an inch in stem diameter and it attacks all five ash species native to the region - white, green...

  19. Determining the ash content of coal flotation tailings using an MPOF optical ash meter

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-01-01

    The block layout, a description of the design and principles of operation of an automatic optical, continuous action MPOF type ash meter are presented. The difference in the optical properties of coal and rock is used in the ash meter. The identification of the ash content is conducted on the basis of the spectral characteristics of reflection of a finely dispersed aqueous coal and rock suspension.

  20. Review of ecosystem level impacts of emerald ash borer on black ash wetlands: What does the future hold?

    Science.gov (United States)

    Randall K. Kolka; Anthony W. D' Amato; Joseph W. Wagenbrenner; Robert A. Slesak; Thomas G. Pypker; Melissa B. Youngquist; Alexis R. Grinde; Brian J. Palik

    2018-01-01

    The emerald ash borer (EAB) is rapidly spreading throughout eastern North America and devastating ecosystems where ash is a component tree. This rapid and sustained loss of ash trees has already resulted in ecological impacts on both terrestrial and aquatic ecosystems and is projected to be even more severe as EAB invades black ash-dominated wetlands of the western...

  1. Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer

    Science.gov (United States)

    Nicholas Bolton; Joseph Shannon; Joshua Davis; Matthew Grinsven; Nam Noh; Shon Schooler; Randall Kolka; Thomas Pypker; Joseph Wagenbrenner

    2018-01-01

    Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations...

  2. Project ash cultch: A report on optimal oyster cultch based on a prepared fly ash substratum

    International Nuclear Information System (INIS)

    Price, K.S.; Hansen, K.M.; Schlekat, C.E.

    1991-01-01

    Based on a three year study involving setting, growth, mortality, oyster condition, and metals accumulation, the evidence is extensive and convincing that stabilized coal ash is an acceptable oyster growing cultch (substratum). Oyster larvae are attracted to set on coal ash cultch at commercial fishery densities, tend to grow as well as on natural substrata (oyster shell), and are moderately more exposed to predators on the puck shaped ash materials as produced for this study. Oysters grown for one to two years on coal ash do not accumulate heavy metals and generally are in good health as measured by several biological condition indexes

  3. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  4. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  5. Producing New Composite Materials by Using Tragacanth and Waste Ash

    OpenAIRE

    Yasar Bicer; Serif Yilmaz

    2013-01-01

    In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conduct...

  6. Coal ash parameters by neutron activation

    International Nuclear Information System (INIS)

    Chrusciel, Edward; Chau, N.D.; Niewodniczanski, J.W.

    1994-01-01

    The coal parameters, ash content and ash slagging index, may be strongly related to the chemical composition of mineral impurities in coal. Based on this assumption the authors have examined the feasibility of neutron activation techniques, both as a laboratory and a well logging method, by recording induced γ-rays in the two energy intervals with the help of a scintillation γ-ray spectrometer. Results from the Upper Silesiab Coal Basin have shown that the method can be used to evaluate the ash content and ash fusion temperature, both in the laboratory and in well logging; the corresponding mean standard deviations being 1.5 wt% and 35 o C; and 3 wt% and 45 o C respectively. (author)

  7. The Ash Wednesday supper a new translation

    CERN Document Server

    Bruno, Giordano

    2018-01-01

    Giordano Bruno's The Ash Wednesday Supper presents a revolutionary cosmology founded on the new Copernican astronomy that Bruno extends to infinite dimensions, filling it with an endless number of planetary systems.

  8. ASH External Web Portal (External Portal) -

    Data.gov (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  9. Basic soil benefits from ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Martens, D.C.; Plank, C.O.

    1970-01-01

    The beneficial effects of fly ash application shown herein are expected to encourage future disposal of the material in agricultural soils. It is foreseen, however, that fly ash disposal in agricultural soils would be unsuccessful if adverse effects on crop production result from its misuse. It seems evident, therefore, that quality control measures will be required to insure proper disposal of the material in agricultural soils. It will be necessary to consider differences in chemical properties of various samples of fly ash and in chemical reactions of samples of fly ash and soils. Differences in tolerances of plants to soluble salt damage and to specific nutrient deficiencies and toxicities will also have to be taken into account. 9 tables.

  10. Volcanic Ash Advisory Database, 1983-2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  11. Greener management practices - ash mound reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, S.L.; Shyam, A.K.; Soni, R. [National Thermal Power Corp. Ltd., New Delhi (India)

    2002-12-01

    The dry ash handling system at Dadri has been pioneered for the first time in India by the National Thermal Power Corporation (NTPC). The system is similar to that at the Drax power station in England. The paper reports the successful experimental trials carried out on vegetation of temporary ash mounds to assess the growth potential of local herbs, shrubs, trees and grasses directly on ash with no soil cover or fertiliser. These were extended to trials directly on the available (completed) mound surfaces. The grass Cynodon dactylon germinated well as did seeds of tree species including the Casurarina and Eucalyptus. It is hoped that efforts at Dadri will ultimately transform the ash into a productive and self sustaining ecosystem, as leaf fall adds additional organic material and the weathering process continues. 6 refs., 6 figs.

  12. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view

    Energy Technology Data Exchange (ETDEWEB)

    Kronbauer, Marcio A. [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Izquierdo, Maria [School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); Wagner, Nicola J. [School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Taffarel, Silvio R.; Bizani, Delmar [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); and others

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO{sub 3} versus Al{sub 2}O{sub 3} determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. - Highlights: • Coal waste geochemisty can provide increased environmental information in coal-mining areas. • Oxidation is the major process for mineral transformation in coal ashes. • The electron bean methodology has been applied to investigate neoformed minerals.

  13. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    Science.gov (United States)

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations.

  14. Sustainability, Eco-Point and Engineering Performance of Different Workability OPC Fly-Ash Mortar Mixes

    Directory of Open Access Journals (Sweden)

    Putri Zulaiha Razi

    2016-05-01

    Full Text Available This study investigates the engineering performance and CO2 footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO2 footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum. This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%. Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.

  15. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Subramania, A; Kumar, G Vijaya; Priya, A R Sathiya; Vasudevan, T

    2007-01-01

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively

  16. Melting temperatures of MgO under high pressure determined by micro-texture observation

    Science.gov (United States)

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2016-12-01

    Periclase (MgO) is the second abundant mineral after bridgmanite in the Earth's lower mantle, and its melting temperature (Tm) under pressure is important to constrain the chemical composition of ultra-deep magma formed near the mantle-core boundary. However, the melting behavior is highly controversial among previous studies: a laser-heated diamond anvil cell (LHDAC) study reported a melting curve with a dTm/dP of 30 K/GPa at zero pressure [1], while several theoretical computations gave substantially higher dTm/dP of 90 100 K/GPa [2,3]. We performed a series of LHDAC experiments for measurements of Tm of MgO under high pressure, using single crystal MgO as the starting material. The melting was detected by using micro-texture observations of the quenched samples. We found that the laser-heated area of the sample quenched from the Tm in previous LHDAC experiments [1] showed randomly aggregated granular crystals, which was not caused by melting, but by plastic deformation of the sample. This suggests that the Tms of their study were substantially underestimated. On the other hand, the sample recovered from the temperature higher by 1500-1700 K than the Tms in previous LHDAC experiments showed a characteristic internal texture comparable to the solidification texture typically shown in metal casting. We determined the Tms based on the observation of this texture up to 32 GPa. Fitting our Tms to the Simon equation yields dTm/dP of 82 K/GPa at zero pressure, which is consistent with those of the theoretical predictions (90 100 K/GPa) [2,3]. Extrapolation of the present melting curve of MgO to the pressure of the CMB (135 GPa) gives a melting temperature of 8900 K. The present steep melting slope offers the eutectic composition close to peridotite (in terms of Mg/Si ratio) throughout the lower mantle conditions. According to the model for sink/float relationship between the solid mantle and the magma [4], a considerable amount of iron (Fe/(Mg+Fe) > 0.24) is expected

  17. Large-area thin self-supporting carbon foils with MgO coatings

    CERN Document Server

    Stolarz, A

    2002-01-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 mu g/cm sup 2 , coated with approximately 4 mu g/cm sup 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm sup 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  18. Large-area thin self-supporting carbon foils with MgO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Stolarz, Anna E-mail: anna@slcj.uw.edu.pl; Maier-Komor, Peter

    2002-03-11

    Large area self-supporting carbon foils in the thickness of range of 8-22 {mu}g/cm{sup 2}, coated with approximately 4 {mu}g/cm{sup 2} MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm{sup 2}. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  19. Positron bound states on hydride ions in thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1996-01-01

    Positron-lifetime and Doppler-broadening techniques were used to unambiguously identify positronium hydrides in thermochemically reduced MgO crystals at low temperatures. Positrons trapped at H - ions, forming PsH, yield a lifetime of (640±40) ps, independent of temperature. Complementary evidence for this identification was provided by Doppler-broadening experiments, in which positrons were trapped at H 2- sites at low temperatures. The H 2- ions were formed via H - +e - →H 2- by the capturing of an electron released from Fe + impurity under blue-light stimulation. copyright 1996 The American Physical Society

  20. Vacancy Clusters on Surfaces of Au Nanoparticles Embedded in MgO

    International Nuclear Information System (INIS)

    Xu, Jun; Mills, A. P. Jr.; Ueda, A.; Henderson, D. O.; Suzuki, R.; Ishibashi, S.

    1999-01-01

    MeV implantation of gold ions into MgO(100) followed by annealing is a method to form gold nanoparticles for obtaining modified optical properties. We show from variable-energy positron spectroscopy that clusters of 2 Mg and 2 O vacancies (v 4 ) are attached to the gold nanoparticle surfaces within the projected range (R p ) . We also find that v 4 vacancy clusters are created at depths less than R p , and extend into the region greater than R p due to damage induced by knock-on collisions. (c) 1999 The American Physical Society

  1. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, A; Kumar, G Vijaya; Priya, A R Sathiya; Vasudevan, T [Advanced Materials Research Lab, Department of Industrial Chemistry, Alagappa University, Karaikudi-630 003 (India)

    2007-06-06

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively.

  2. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    Science.gov (United States)

    Subramania, A.; Vijaya Kumar, G.; Sathiya Priya, A. R.; Vasudevan, T.

    2007-06-01

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively.

  3. Theoretical evidence for unexpected O-rich phases at corners of MgO surfaces

    Science.gov (United States)

    Bhattacharya, Saswata; Berger, Daniel; Reuter, Karsten; Ghiringhelli, Luca M.; Levchenko, Sergey V.

    2017-12-01

    Realistic oxide materials are often semiconductors, in particular at elevated temperatures, and their surfaces contain undercoordinated atoms at structural defects such as steps and corners. Using hybrid density-functional theory and ab initio atomistic thermodynamics, we investigate the interplay of bond-making, bond-breaking, and charge-carrier trapping at the corner defects at the (100) surface of a p -doped MgO in thermodynamic equilibrium with an O2 atmosphere. We show that by manipulating the coordination of surface atoms, one can drastically change and even reverse the order of stability of reduced versus oxidized surface sites.

  4. Thermally stimulated currents in ZrO2:MgO

    International Nuclear Information System (INIS)

    Muccillo, E.N.S.

    1987-01-01

    Thermally Stimulated Depolarization Current measurements between 100 K and 350 K have been performed in ZrO 2 :MgO ceramic samples to discriminate the several kinds of polarization (orientational and interfacial polarization, and extrinsic and intrinsic space charge effects) to allow for the use of the technique in the study of solid solution formation in partially stabilized zirconia. The samples were prepared by conventional ceramic processing methods. Different electrode materials have been used: colloidal graphite, silver, gold, and also insulating electrodes (e.g. mylar foils). The current spectra obtained are strongly dependent upon the electrode material showing the presence of spacial charge phenomenon in these ceramics. (Author) [pt

  5. Thermally stimulated currents in ZrO2:MgO

    International Nuclear Information System (INIS)

    Muccillo, E.N.S.

    1987-01-01

    Thermally Stimulated Depolarization Current measurements between 100 K and 350 K have been performed in ZrO 2 :MgO ceramic samples to discriminate the several Kinds of polarization (orientational and interfacial polarization, and extrinsic and intrinsic space charge effects) to allow for the use of the technique in the study of solid solution formation in partially stabilized zirconia. The samples were prepared by conventional ceramic processing methods. Different electrode materials have been used: colloidal graphite, silver, gold, and also insulating electrodes (e.g. mylar foils). The current spectra obtained are strongly dependent upon the electrode material showing the presence of spacial charge phenomenon in these ceramics. (Author) [pt

  6. Formation and degradation of PCDD/F in waste incineration ashes

    International Nuclear Information System (INIS)

    Lundin, Lisa

    2007-11-01

    The disposal of combustible wastes by incineration is a controversial issue that is strongly debated by both scientists and environmental activists due to the resulting emissions of noxious compounds, including (inter alia) polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), heavy metals and acid gases like sulfur dioxide. Currently available air pollution control devices are capable of effectively cleaning flue gases, and PCDD/F emissions to air from modern municipal solid waste (MSW) incinerators are low. However, the PCDD and PCDF end up in ash fractions that, in Sweden, are usually deposited in landfills. The European Union has recently set a maximum permitted total concentration of 15 μg TEQ/kg for PCDD/F species in waste. Fly ash from municipal solid waste (MSW) incineration containing PCDD/Fs at concentrations above this limit will have to be remediated to avoid disposing of them in landfills; an expensive and environmentally unfriendly option. Therefore, effective, reliable and cost-effective methods for degrading PCDD/F in fly ash are required, and a better understanding of the behavior of PCDDs and PCDFs during thermal treatment will be needed to develop them. In the studies this thesis is based upon both the formation and degradation of PCDDs and PCDFs in ashes from MSW incineration were studied. The main findings of the investigations regarding PCCD/F formation were: The concentrations of PCDD and PCDF in fly ash increased with reductions in the temperature in the post-combustion zone. The homologue profile in the ash changed when the temperature in the post-combustion zone changed. The final amounts of PCDD and PCDF present were affected by their rates of both formation and degradation, and the mechanisms involved differ between PCDDs and PCDFs. The main findings from the degradation studies were: The chemical composition of ash has a major impact on the degradation potential of PCDD and PCDF. The presence of oxygen during thermal

  7. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt

    Science.gov (United States)

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong

    2018-01-01

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008

  8. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt.

    Science.gov (United States)

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk

    2018-05-14

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.

  9. Analysis of Waste Isolation Pilot Plan (WIPP) Underground and MGO Samples by the Savannah River National Laboratory (SRNL)

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. [Savannah River Site (SRS), Aiken, SC (United States); Ajo, H. [Savannah River Site (SRS), Aiken, SC (United States); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, C. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States); Ekechukwu, A. [Savannah River Site (SRS), Aiken, SC (United States); Gregory, C. [Savannah River Site (SRS), Aiken, SC (United States); Jones, M. [Savannah River Site (SRS), Aiken, SC (United States); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States); White, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-12-31

    Analysis of the recent WIPP samples are summarized in this report; WIPP Cam Filters 4, 6, 9 (3, 7, 11 were analyzed with FAS-118 in a separate campaign); WIPP Drum Lip R16 C4; WIPP Standard Waste Box R15 C5; WIPP MgO R16 C2; WIPP MgO R16 C4; WIPP MgO R16 C6; LANL swipes of parent drum; LANL parent drum debris; LANL parent drum; IAEA Swipe; Unused “undeployed” Swheat; Unused “undeployed” MgO; and Masselin cloth “smears”. Analysis showed that the MgO samples were very pure with low carbonate and water content. Other samples showed the expected dominant presence of Mg, Na and Pb. Parent drum debris sample was mildly acidic. Interpretation of results is not provided in this document, but rather to present and preserve the analytical work that was performed. The WIPP Technical Analysis Team is responsible for result interpretation which will be written separately.

  10. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    International Nuclear Information System (INIS)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe 50 Co 50 alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal

  11. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.

    Science.gov (United States)

    Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia

    2017-09-01

    Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.

  12. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  13. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G.

    2012-01-01

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  14. High Capacitive Storage Performance of Sulfur and Nitrogen Codoped Mesoporous Graphene.

    Science.gov (United States)

    Ma, Xinlong; Gao, Daowei

    2018-03-22

    Mesoporous graphene is synthesized based on the chemical vapor deposition methodology by using heavy MgO flakes as substrates in a fluidized-bed reactor. Subsequently, sulfur and nitrogen coincorporation into graphene frameworks is realized by the reaction between carbon atoms and thiourea molecules. The as-obtained sulfur and nitrogen codoped mesoporous graphene (SNMG) exhibits remarkable capacitive energy-storage behavior, as a result of well-developed pore channels, in terms of that in a symmetric supercapacitor and lithium-ion hybrid capacitor (LIHC). The ultrahigh durability of the SNMG/SNMG symmetric supercapacitor is demonstrated by long-term cycling, for which no capacitance decay is found after 20 000 cycles. A LIHC constructed from commercial Li 4 Ti 5 O 12 (LTO) as the anode and SNMG as the cathode is capable of delivering much enhanced lithium-storage ability and better rate capability than that of activated carbon (AC)/LTO LIHC. Moreover, SNMG/LTO LIHC exhibits maximum energy and power densities of 86.2 Wh kg -1 and 7443 W kg -1 and maintains 87 % capacitance retention after 2000 cycles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  16. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  17. Utilization of pulverized fuel ash in Malta

    International Nuclear Information System (INIS)

    Camilleri, Josette; Sammut, Michael; Montesin, Franco E.

    2006-01-01

    In Malta all of the waste produced is mixed and deposited at various sites around the island. None of these sites were purpose built, and all of the waste is above groundwater level. The landfills are not engineered and do not contain any measures to collect leachate and gases emanating from the disposal sites. Another waste, which is disposed of in landfills, is pulverized fuel ash (PFA), which is a by-product of coal combustion by the power station. This has been disposed of in landfill, because its use has been precluded due to the radioactivity of the ashes. The aim of this study was to analyze the chemical composition of the pulverized fuel ash and to attempt to utilize it as a cement replacement in normal concrete mixes in the construction industry. The levels of radiation emitted from the ashes were measured by gamma spectrometry. The results of this study revealed that although at early ages cement replacement by PFA resulted in a reduction in compressive strength (P = 0), when compared to the reference concrete at later ages the strengths measured on concrete cores were comparable to the reference concrete (P > 0.05). The utilization of PFA up to 20% cement replacement in concrete did not raise the radioactivity of the concrete. In conclusion, utilization of PFA in the construction industry would be a better way of disposing of the ashes rather than controlling the leachate and any radioactivity emitted by the landfilled ashes

  18. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  19. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H 2 S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H 2 S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H 2 S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H 2 S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H 2 S by base adsorption was effective for mitigating inhibition. H 2 S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H 2 S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H 2 S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H 2 S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H 2 S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the

  20. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  1. Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass

    Directory of Open Access Journals (Sweden)

    Sébastien Fournel

    2015-07-01

    Full Text Available Agricultural producers are interested in using biomass available on farms to substitute fossil fuels for heat production. However, energy crops like reed canary grass contain high nitrogen (N, sulfur (S, potassium (K and other ash-forming elements which lead to increased emissions of gases and particulate matter (PM and ash-related operational problems (e.g., melting during combustion. To address these problematic behaviors, reed canary grass was blended with wood (50 wt% and fuel additives (3 wt% such as aluminum silicates (sewage sludge, calcium (limestone and sulfur (lignosulfonate based additives. When burned in a top-feed pellet boiler (29 kW, the four blends resulted in a 17%–29% decrease of PM concentrations compared to pure reed canary grass probably because of a reduction of K release to flue gas. Nitrogen oxides (NOx and sulfur dioxide (SO2 emissions varied according to fuel N and S contents. This explains the lower NOx and SO2 levels obtained with wood based products and the higher SO2 generation with the grass/lignosulfonate blend. The proportion of clinkers found in combustion ash was greatly lessened (27%–98% with the use of additives, except for lignosulfonate. The positive effects of some additives may allow agricultural fuels to become viable alternatives.

  2. Wildland fire ash: future research directions

    Science.gov (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  3. Fly-ash poisoning in the surroundings of foundries

    Energy Technology Data Exchange (ETDEWEB)

    Hupka, E

    1955-01-01

    Chronic articular swellings were observed in colts and cattle grazing in the vicinity of two factories. Postmortem findings included an increased synovial content and a detachment of articular cartilage from the underlying bone. Several of the colts also developed roaring due to paralysis of the recurrent nerves. Analysis of fly-ash samples from the two foundries revealed the following: lead, 16.87 percent and 44.79 percent; zinc, 23.41 percent and 5.28 percent; sulfur, 12.53 percent and 8.20 percent; and arsenic, 0.52 percent and 0.22 percent, respectively. Cadmium levels of 2.22 percent were also found in the dust from one of foundries, while cerium (5.00 percent) was detected in the dust from the other foundry. Identical articular lesions were reproduced in two colts receiving dietary rations containing the forge dusts. Manifestations of pharyngoparalysis also appeared, resulting in pneumonia in one case due to pharyngeal dysphagia. Lead poisoning, complicated by other toxic substances, was suggested as the cause. Analyses of several colt livers revealed contents exceeding 0.2 mg/100 g in all cases.

  4. 21 CFR 184.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9), also...

  5. Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching.

    Science.gov (United States)

    Baek, Jin Woong; Choi, Angelo Earvin Sy; Park, Hung Suck

    2017-12-01

    Optimization studies of a novel and eco-friendly construction material, Thiomer, was investigated in the solidification/stabilization of automobile shredded residue (ASR) fly ash. A D-optimal mixture design was used to evaluate and optimize maximum compressive strength and heavy metals leaching by varying Thiomer (20-40wt%), ASR fly ash (30-50wt%) and sand (20-40wt%). The analysis of variance was utilized to determine the level of significance of each process parameters and interactions. The microstructure of the solidified materials was taken from a field emission-scanning electron microscopy and energy dispersive X-ray spectroscopy that confirmed successful Thiomer solidified ASR fly ash due to reduced pores and gaps in comparison with an untreated ASR fly ash. The X-ray diffraction detected the enclosed materials on the ASR fly ash primarily contained sulfur associated crystalline complexes. Results indicated the optimal conditions of 30wt% Thiomer, 30wt% ASR fly ash and 40wt% sand reached a compressive strength of 54.9MPa. For the optimum results in heavy metals leaching, 0.0078mg/LPb, 0.0260mg/L Cr, 0.0007mg/LCd, 0.0020mg/L Cu, 0.1027mg/L Fe, 0.0046mg/L Ni and 0.0920mg/L Zn were leached out, being environmentally safe due to being substantially lower than the Korean standard leaching requirements. The results also showed that Thiomer has superiority over the commonly used Portland cement asa binding material which confirmed its potential usage as an innovative approach to simultaneously synthesize durable concrete and satisfactorily pass strict environmental regulations by heavy metals leaching. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Geochemistry of volcanic ashes, thermal waters and gases ejected during the 1979 eruption of Ontake Volcano, Japan

    International Nuclear Information System (INIS)

    Sugiura, Tumomu; Sugisaki, Ryuichi; Mizutani, Yoshihiko; Kusakabe, Minoru.

    1980-01-01

    Ontake Volcano suddenly began to erupt on its south-western flank near the summit at 05sup(h)20sup(m) on Oct. 28, 1979, forming several new craters and ejecting large amounts of volcanic ash and steam. Up to that time, the volcano had been believed to be dormant, though there were weak geothermal activities at a part of the south-western flank of the volcano, Jigokudani. This paper reports some results obtained by preliminary examination of volcanic ashes, thermal waters and gases collected on and around Ontake Volcano during the early stage of eruptive activity. The volcanic ashes are homogeneous in chemical and mineralogical compositions, and similar in chemical composition to the pre-historic volcanic ashes. The ashes contain pyrite, anhydrite, cristobalite and clay minerals. The sulfur isotopic equilibrium temperature is estimated to be about 400 0 C for pyrite-anhydrite pairs in the volcanic ashes. The estimated temperature is apparently too high for the temperature of phreatic explosion. The interpretation of this isotopic data remains unsettled. The thermal waters collected from the boiling pools in craters are enriched in D and 18 O. The isotopic enrichment is probably caused by evaporation of water at the surface of boiling pool. The hydrogen and oxygen isotopic data also suggest that spring waters issuing around Ontake Volcano are meteoric in origin. Nigorigo Hot Spring, about 4 km north-west of Ontake Volcano, showed significant increase in the concentrations of major dissolved chemical components soon after the eruption, but since then no significant change in chemical and isotopic composition has been observed. (author)

  7. Determination of sulfur content in fuels

    International Nuclear Information System (INIS)

    Daucik, P.; Zidek, Z.; Kalab, P.

    1998-01-01

    The sulfur content in fuels, Diesel fuels, and in the solutions of dibutylsulfide in a white oil was determined by various methods. The results obtained by elemental analysis have shown that the method is not advisable for the determination of sulfur in fuels. A good agreement was found by comparing the results in the determination of the sulfur by Grote-Krekeler's and Hermann-Moritz's methods and by the energy-dispersive X-ray fluorescence analysis. The last method is the modern, comfortable, and timesaving method enabling the fast and precise determination of sulfur contents in the various types of samples. (authors)

  8. Study of electron-beam-evaporated MgO films using electron diffraction, optical absorption and cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aboelfotoh, M.O.; Ramsey, J.N.

    1982-05-21

    Reflection high energy electron diffraction, optical absorption and cathodoluminescence were used to study MgO films deposited onto fused silica, single-crystal silicon and LiF substrates at various temperatures. Results showed that some of the same optical absorption and emission bands observed in X- or UV-irradiated, additively colored or mechanically deformed MgO crystals were observed in evaporated MgO films. The peak positions and the relative peak intensities of the optical absorption and emission bands depended on the substrate temperature during film deposition as well as on the structure of the film. The effect of heating the films in air and vacuum on the optical absorption and emission bands is also discussed.

  9. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5 nm have the high-pressure rock-salt structure and are in a cube-on-cube orientation relation with MgO, whereas clusters larger than 5 nm adopt the stable wurtzite crystal structure and were observed in two different orientation relations with MgO

  10. Annealing temperature effects on the magnetic properties and induced defects in C/N/O implanted MgO

    Science.gov (United States)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2013-02-01

    Virgin MgO single crystals were implanted with 70 keV C/N/O ions at room temperature to a dose of 2 × 1017/cm2. After implantation the samples showed room temperature hysteresis in magnetization loops. The annealing effects on the magnetic properties and induced defects of these samples were determined by vibrating sample magnetometer and positron annihilation spectroscopy, respectively. The experimental results indicate that ferromagnetism can be introduced to MgO single crystals by doping with C, N or introduction of Mg related vacancy defects. However, the Mg vacancies coexistence with C or N ions in the C-/N-implanted samples may play a negative role in magnetic performance in these MgO samples. The rapid increase of magnetic moment in O-implanted sample is attributed to the formation of new type of vacancy defects.

  11. Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    International Nuclear Information System (INIS)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-01-01

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe 3 C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures

  12. An examination of sulfur polymer cement as a waste encapsulation agent

    International Nuclear Information System (INIS)

    McNew, E.B.

    1995-01-01

    Sulfur polymer cement (SPC) is a unique material having potential applications for hazardous and radioactive waste encapsulation. This material was originally developed by the US Bureau of Mines as an acid and chemical resistant construction cement and has since been applied in tie waste encapsulation field. The material is easily prepared from elemental sulfur and organic dienes. It is an easy to use low-viscosity thermoplastic, and has many favorable properties such as low porosity, high compressive strength, and resistance to chemical attack. The results of several invetigations on this material will be discussed, and include: (1) the chemical form and physical structure of the material, (2) the compressive strength of cylindrical test samples after gamma radiation testing, (3) the aqueous leaching behavior of lead, cerium, cesium, cobalt, and strontium from SPC-ash mixtures at room and elevated temperatures, (4) the casting compatibility of mixtures of SPC with different waste materials, (5) the ability of SPC to encapsulate elemental mercury contaminated soils, (6) laboratory and field studies of SPC biocorrosion by Thiobacillus bacteria, (7) small scale (10 kg) SPC-ash monolith casting studies, and (8) methods for the formulation of a grade of SPC more applicable to the encapsulation of aggregate waste materials

  13. Coal Ash Aerosol in East Asian Outflow as a Source for Oceanic Deposition of Iron and Other Metals

    Science.gov (United States)

    Anderson, J. R.; Hua, X.

    2008-12-01

    While ocean deposition of East Asian dust is given significant emphasis as a source of biologically-active trace elements, iron in particular, dust events are episodic and highly seasonal. There is, however, a constant source of aerosol that is chemically similar to dust (albeit amorphous in structure rather than crystalline) in the ash particles emitted from many hundreds of coal-fired power plants that are sited along the entire coastal region of China and Korea. The emission controls on these facilities vary widely and, in even cases of state-of-the-art emission controls, the secondary release of ash can be significant. There are of course even more small industrial and household sources of coal combustion emissions, in most cases with little or no emissions controls. Ash from a modern coal-fired power facility in Korea has been examined chemically and morphologically with electron microscopic techniques. As is characteristic of all such facilities, two principal types of ash are present: (1) flyash, silicate glass spheres that are emitted with the smoke and removed by electrostatic precipitators; and (2) bottom ash, "clinkers" and noncombustible material sticking to the furnace walls that are mixed with water and ground after cooling, then removed as a slurry to a dumping area. In addition, iron sulfide (pyrite) is a common constituent of coal and provides both a source of sulfur dioxide gas and also molten iron spherical particles in the ash. The iron spheres then are rapidly oxidized upon cooling. Bottom ash is a more complex material than flyash in that it contains more iron and other trace metals, plus it contains varying amounts of uncombusted carbon. The post-combustion handling of bottom ash can lead to significant emissions despite the fact that little or none goes out the stack. The iron oxide spheres can also be emitted by this secondary method. The concentrations of ash can be very high in close proximity to power plants (PM10 of several hundred

  14. Advanced characterisation of municipal solid waste ashes

    Energy Technology Data Exchange (ETDEWEB)

    Skytte Pedersen, Randi

    2002-12-15

    This report deals with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant Maebjergvaerket, Holstebro. MSW has been used as a fuel since the mid 1960's and since then, the MSW incineration plants have experienced operational problems due to deposit formation and corrosion. Inorganic elements tightly or loosely bound in the waste are the main cause of these problems. The tightly bound elements will mainly stay on the grate during combustion, whereas the loosely bound elements are volatilised and recondensed elsewhere in the furnace. Many of the heavy metals form volatile chlorides during the incineration, and the fly ash fraction thus show enrichment in these elements. Presence of chlorides and heavy metals in deposits may cause severe corrosion due to formation of low-melting eutectics. Chlorine gas in the flue gas is also of major concern with respect to corrosion, due to formation of volatile chlorides when chlorine comes in contact with the tube material. Four different ash fractions (bottom ash, super heater ash, economiser ash and fly ash) taken from Maebjergvaerket have been analysed with respect to particle sizes, structures, shapes and composition. The applied methods were scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX) and mapping, which were used in order to determine sizes, chemical composition and structure of the particles. X-ray powder diffraction (XRD) was used to provide information about crystallography and mineral phases. Chemical analysis was also performed along with a particle size distribution for the fine-grained fractions (economiser and fly ash). The amount of silicates consisting of Ca, Al and Si, were found to decrease through the furnace, whereas the amount of alkali (Na, K) chlorides and heavy metals (Pb, Zn) increased. The bonding in the waste before incineration is the direct cause of this, since silicates are tightly bound and chlorides are loosely bound. There was a

  15. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  16. Lubrication of dislocation glide in MgO by hydrous defects

    Science.gov (United States)

    Skelton, Richard; Walker, Andrew M.

    2018-02-01

    Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2{110} and 1/2{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2 screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.

  17. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    International Nuclear Information System (INIS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory

    2017-01-01

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  18. Positron annihilation study of formation of Mg vacancy in MgO

    International Nuclear Information System (INIS)

    Mizuno, M.; Araki, H.; Shirai, Y.; Inoue, Y.; Sugita, K.; Mizoguchi, T.; Tanaka, I.; Adachi, H.

    2004-01-01

    We have investigated the formation of Mg vacancy induced by ultra-dilute trivalent impurities in MgO by a combination of positron annihilation measurement and theoretical calculations of positron lifetimes. The undoped MgO yields the shortest positron lifetime of 130 ps that is shorter than that of 166 ps previously reported using a single crystal sample. The positron lifetime of the doped samples increases with the increase of the Al or Ga dopant concentration and is saturated at around 170 ps. This result indicates that the previously reported value of 166 ps is ascribed to not the bulk but the vacancy state induced by impurities. The experimental bulk lifetime of 130 ps, which is obtained by employing trapping model, is well reproduced by the theoretical calculation using the semiconductor model. The calculated defect lifetime is about 20 ps longer than the experimental value. This may be due to the lattice relaxation around Mg vacancy associated with the trapping of positrons. (orig.)

  19. Carbon monoxide MgO from dispersed solids to single crystals: a review and new advances

    Science.gov (United States)

    Spoto, G.; Gribov, E. N.; Ricchiardi, G.; Damin, A.; Scarano, D.; Bordiga, S.; Lamberti, C.; Zecchina, A.

    2004-10-01

    In this review we describe 30 years of research on the surface properties of magnesium oxide, considered as the model prototype oxide of cubic structure. The surface properties of single crystals, thin films and powdered samples (sintered at progressive higher temperatures) are considered and compared, with the aim of demonstrating that the gap between “believed perfect” single crystal surfaces, typical of “pure” Surface Science, and high surface area samples, typical of Catalysis Science, can be progressively reduced. The surface features considered in this review are the structural (morphological), optical, absorptive and reactive properties. As the carbon monoxide molecule is able to probe the surface properties of both anions and cations, it can give a complete information of the surface structure of MgO samples. For this reason the adsorption and spectroscopy of this molecule is preferentially considered in this review. Particular emphasis is given in reviewing results obtained by high resolution transmission microscopy and in situ IR spectroscopy of adsorbed species (in both reflection and transmission modes), but also UV-Vis diffuse reflectance, photoluminescence, TDS, EPR, electron based techniques are mentioned. Reviewed experimental results are also commented in view of the important theoretical literature available on this topic and are complemented by new transmission IR data concerning CO adsorbed, down to 60 K, on powdered MgO samples with increasing surface area. These innovative experiments allow us to perform, on powdered samples, the adsorption experiments typical of single crystals (or films) Surface Science, with an increase of the S/N of the vibrational features higher than two order of magnitude. As far the new results (never published before) are concerned, we report IR spectra of CO dosed at 60 K on polycrystalline MgO samples with different surface area obtained by Mg(OH) 2 decomposition and progressive sintering at high temperature

  20. Positron annihilation study of formation of Mg vacancy in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, M.; Araki, H.; Shirai, Y. [Science and Technology Center for Atoms, Molecules and Ions Control, Osaka Univ., Osaka (Japan); Inoue, Y.; Sugita, K. [Dept. of Materials Science and Engineering, Osaka Univ., Osaka (Japan); Mizoguchi, T.; Tanaka, I.; Adachi, H. [Dept. of Materials Science and Engineering, Kyoto Univ., Kyoto (Japan)

    2004-07-01

    We have investigated the formation of Mg vacancy induced by ultra-dilute trivalent impurities in MgO by a combination of positron annihilation measurement and theoretical calculations of positron lifetimes. The undoped MgO yields the shortest positron lifetime of 130 ps that is shorter than that of 166 ps previously reported using a single crystal sample. The positron lifetime of the doped samples increases with the increase of the Al or Ga dopant concentration and is saturated at around 170 ps. This result indicates that the previously reported value of 166 ps is ascribed to not the bulk but the vacancy state induced by impurities. The experimental bulk lifetime of 130 ps, which is obtained by employing trapping model, is well reproduced by the theoretical calculation using the semiconductor model. The calculated defect lifetime is about 20 ps longer than the experimental value. This may be due to the lattice relaxation around Mg vacancy associated with the trapping of positrons. (orig.)

  1. Positronium hydride in hydrogen-laden thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Pareja, R.; la Cruz, R.M. de; Pedrosa, M.A.; Gonzalez, R.; Chen, Y.

    1990-01-01

    Thermochemical reduction of hydrogen-laden MgO single crystals at T∼2400 K results in a large concentration of both hydride (H - ) ions and anion vacancies (>10 24 m -3 ). Positron-lifetime experiments of these crystals provide evidence for bound positronium hydride states also referred to as [e + -H - ] or PsH states. The presence of the anion vacancies was found to inhibit the formation of these states. After thermally annealing out these vacancies, such that H - concentration remains intact, two long-lived components appear in the lifetime spectrum. Furthermore, these two components correlate with the presence of the H - ions. These results suggest the existence of bound [e + -H - ] states when positrons are trapped by the H - ions, and the subsequent formation of positronium (Ps) states by the dissociation of the [e + -H - ] states. From the values of the intermediate lifetime component, a value of (570±50) ps is obtained for the lifetime of the PsH state located in an anion vacancy in MgO. The longest lifetime component ∼(1--3) ns is attributed to pick-off annihilation of ortho-Ps states

  2. Positronium hydride in hydrogen-laden thermochemically reduced MgO single crystals

    Science.gov (United States)

    Pareja, R.; de La Cruz, R. M.; Pedrosa, M. A.; González, R.; Chen, Y.

    1990-04-01

    Thermochemical reduction of hydrogen-laden MgO single crystals at T~2400 K results in a large concentration of both hydride (H-) ions and anion vacancies (>1024 m-3). Positron-lifetime experiments of these crystals provide evidence for bound positronium hydride states also referred to as [e+-H-] or PsH states. The presence of the anion vacancies was found to inhibit the formation of these states. After thermally annealing out these vacancies, such that H- concentration remains intact, two long-lived components appear in the lifetime spectrum. Furthermore, these two components correlate with the presence of the H-ions. These results suggest the existence of bound [e+-H-] states when positrons are trapped by the H- ions, and the subsequent formation of positronium (Ps) states by the dissociation of the [e+-H-] states. From the values of the intermediate lifetime component, a value of (570+/-50) ps is obtained for the lifetime of the PsH state located in an anion vacancy in MgO. The longest lifetime component ~(1-3) ns is attributed to pick-off annihilation of ortho-Ps states.

  3. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Ohresser, P.; Perez, A.; Dupuis, V.

    2008-01-01

    We report the synthesis and characterization of CoPt nanoparticles, using X-ray magnetic circular dichroism (XMCD) at the Co L 2,3 edges. Clusters are produced in ultra-high vacuum conditions, following a physical route, and embedded in non-metallic matrices: MgO and amorphous carbon (a-C). In MgO, Co atoms are partially oxidized, which goes with a μ L /μ S enhancement. On the contrary, a-C appears as a very suitable matrix. In particular, annealing of CoPt cluster embedded in a-C is able to promote L 1 0 chemical order, without alteration of the sample. This transformation, which has been directly evidenced by transmission electron microscopy observations, is accompanied by a striking augmentation of μ S , μ L and the μ L /μ S ratio of Co. The presence of Pt leads to an enhanced Co magnetic moment, as compared to Co bulk, even for the chemically disordered alloy. Moreover, the high value of 1.91μ B /at. measured for μ S is unusual for Co and must be a signature of chemical order in CoPt alloy nanoparticles

  4. The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries

    NARCIS (Netherlands)

    Harks, Peter Paul R.M.L.; Robledo, Carla B.; Verhallen, Tomas W.; Notten, Peter H.L.; Mulder, Fokko M.

    2017-01-01

    It is shown that the dissolution of elemental sulfur into, and its diffusion through, the electrolyte allows cycling of lithium–sulfur batteries in which the sulfur is initially far removed and electrically insulated from the current collector. These findings help to understand why liquid

  5. Prospects for long-term ash survival in the core emerald ash borer mortality zone

    Science.gov (United States)

    Jordan M. Marshall; Andrew J. Storer; Roger Mech; Steven A. Katovich

    2011-01-01

    Attacking all North American ash species (Fraxinus spp.), emerald ash borer (EAB) (Agrilus planipennis Fairmaire) has caused significant mortality within its introduced range. For other forest pests, host bark plays an important role in infestation density and oviposition behavior. The objectives of this study were to (1) locate...

  6. Monitoring ash (Fraxinus spp.) decline and emerald ash borer (Agrilus planipennis) symptoms in infested areas

    Science.gov (United States)

    Kathleen S. Knight; Britton P. Flash; Rachel H. Kappler; Joel A. Throckmorton; Bernadette Grafton; Charles E. Flower

    2014-01-01

    Emerald ash borer (A. planipennis) (EAB) has had a devastating effect on ash (Fraxinus) species since its introduction to North America and has resulted in altered ecological processes across the area of infestation. Monitoring is an important tool for understanding and managing the impact of this threat, and the use of common...

  7. Breeding strategies for the development of emerald ash borer - resistant North American ash

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Kathleen S. Knight; Therese Poland; Daniel A. Herms; Mary E. Mason

    2012-01-01

    The emerald ash borer (Agrilus plannipennis; EAB) is a phloem-feeding beetle that is endemic to Asia. It was discovered in North America in 2002, found almost simultaneously near Detroit, Michigan and Windsor, Ontario, Canada. Adult beetles feed on ash (Fraxinus spp.) foliage, but larval feeding on phloem, cambium, and...

  8. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  9. Fabrication and performance of a tubular ceria based oxygen transport membrane on a low cost MgO support

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Søgaard, Martin; Clemens, F.

    2015-01-01

    A 30 μm thin-film tubular CGO (Ce0.9Gd0.1O1.95−δ) membrane with catalytic layers on both sides has been prepared by dip-coating on a low cost, porous magnesium oxide (MgO) support. The MgO support was fabricated through a thermoplastic extrusion process. Support, thin membrane and catalytic layer...... atmospheric air and N2, H2 for the feed and sweep side respectively. The oxygen permeation was 4 N ml min−1 cm−2 at 850 °C using H2 on one side and air on the other side....

  10. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  11. Effect of Fe2O3 on the sintering and stabilization of ZrO2-MgO system

    International Nuclear Information System (INIS)

    Longo, E.; Paskocimas, C.A.; Ambrosecchia, J.R.; Weffort, L.C.; Baldo, J.B.; Leite, L.R.; Varela, J.A.

    1990-01-01

    Through X-ray diffraction, it was studied the influence of the iron oxide (Fe 2 O 3 ) as a mineralizer in the development of partially stabilized zirconia phases (cubic/tetragonal) within the system ZrO 2 -MgO. In the preparation of the studied compositions it was utilized a Brazilian comercial zirconia powder and different precursors for the MgO and Fe 2 O 3 additives. It was observed that the main effect of iron oxide consisted on the speed up of the solid solution formation process of Mg + 2 in the Zr +4 sub-lattice, as well as being a very effective sintering agent. (author) [pt

  12. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    OpenAIRE

    Fat'yanov, Oleg V.; Asimow, P. D.

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority ...

  13. MgO thin films deposited by electrostatic spray pyrolysis for protecting layers in AC-plasma display panel

    CERN Document Server

    Kim, S G

    1999-01-01

    MgO thin films were deposited on SiO sub 2 (100) substrates by using electrostatic spray pyrolysis and Mg(tmhd) sub 2 as the precursor. The growth rates of the films varyed from 34 to 87 A/min and were measured for various substrate and guide temperatures. X-ray diffraction analysis provide evidence that the MgO films deposited at temperatures as low as 400 approx 500 .deg. C had preferred orientation to (100) plane perpendicular to the substrate surface. X-ray photoelectron spectroscopy and Auger electron spectroscopy data indicated that there were few organics incorporated in the films.

  14. AL(0) in municipal waste incinerator ash

    Science.gov (United States)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  15. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Bioleaching of trace metals from coal ash using local isolate from coal ash ponds

    Directory of Open Access Journals (Sweden)

    Pangayao Denvert

    2018-01-01

    Full Text Available Bioleaching of chromium, copper, manganese and zinc from coal ash were investigated using isolates from coal ash ponds particularly Psuedomonas spp. Six (6 different coal ash ponds were examined however, after initial screening Psuedomonas spp. were only present in three (3 coal ash ponds. Among the three coal ash ponds, results showed that eight (8 putative Pseudomonas spp. isolates were present that were identified using the Polymerase Chain Reaction (PCR. Using the eight putative Pseudomonas spp. for bioleaching at optimum conditions and 15 days, the pH value ranges from 8.26 to 8.84 which was basic in nature. Moreover, the maximum metal leached were 8.04% Cr, 12.05% Cu, 4.34% Mn and 10.63% Zn.

  17. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  18. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgO – Al2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgO – Al2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  19. Study of a large rapid ashing apparatus and a rapid dry ashing method for biological samples and its application

    International Nuclear Information System (INIS)

    Jin Meisun; Wang Benli; Liu Wencang

    1988-04-01

    A large rapid-dry-ashing apparatus and a rapid ashing method for biological samples are described. The apparatus consists of specially made ashing furnace, gas supply system and temperature-programming control cabinet. The following adventages have been showed by ashing experiment with the above apparatus: (1) high speed of ashing and saving of electric energy; (2) The apparatus can ash a large amount of samples at a time; (3) The ashed sample is pure white (or spotless), loose and easily soluble with few content of residual char; (4) The fresh sample can also be ashed directly. The apparatus is suitable for ashing a large amount of the environmental samples containing low level radioactivity trace elements and the medical, food and agricultural research samples

  20. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.