Sample records for mgcenter dotmsup minus2center

  1. Light acclimation in Porphyridium purpureum (Rhodophyta): Growth, photosynthesis, and phycobilisomes

    Levy, I.; Gantt, E. (Smithsonian Institution, WA (USA))


    Acclimation to three photon flux densities 10, 35, 180 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} was determined in laboratory cultures of Porphyridium purpureum Bory, Drew and Ross. Cultures grown at low, medium, and high PPFDs had compensation points of <3, 6, and 20 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1}, respectively, and saturating irradiances in the initial log phase of 90, 115, 175 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} and up to 240 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} in late log phase. High light cells had the smallest photosynthetic unit size (phycobiliproteins plus chlorophyll), the highest photosynthetic capacity, and the highest growth rates. Photosystem I reaction centers (P700) per cell remained proportional to chlorophyll at ca. 110 chl/P700. However, phycobiliprotein content decreased as did the phycobilisome number (ca. 50%) in high light cells, whereas the phycobilisome size remained the same as in medium and low light cells. We concluded that acclimation of this red alga to varied PPFDs was manifested by the plasticity of the photosystem II antennae with little, if any, affect noted on photosystem I.

  2. Net carbon dioxide exchange rates and predicted growth patterns in Alstroemeria Jacqueline' at varying irradiances, carbon dioxide concentrations, and air temperatures

    Leonardos, E.D.; Tsujita, M.J.; Grodzinski, B. (Univ. of Guelph, Ontario (Canada). Dept. of Horticultural Science)


    The influence of irradiance, CO[sub 2] concentration, and air temperature on leaf and whole-plant net C exchange rate (NCER) of Alstroemeria Jacqueline' was studied. At ambient CO[sub 2], leaf net photosynthesis was maximum at irradiances above 600 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] photosynthetically active radiation (PAR), while whole-plant NCER required 1,200 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] PAR to be saturated. Leaf and whole-plant NCERs were doubled under CO[sub 2] enrichment of 1,500 to 2,000 [mu]l CO[sub 2]/liter. Leaf and whole-plant NCERs declined as temperature increased from 20 to 35 C. Whereas the optimum temperature range for leaf net photosynthesis was 17 to 23 C, whole-plant NCER, even at high light and high CO[sub 2], declined above 12 C. Dark respiration of leaves and whole plants increased with a Q[sub 10] of [approx] 2 at 15 to 35 C. In an analysis of day effects, irradiance, CO[sub 2] concentration, and temperature contributed 58%, 23%, and 14%, respectively, to the total variation in NCER explained by a second-order polynomial model (R[sup 2] = 0.85). Interactions among the factors accounted for 4% of the variation in day C assimilation. The potential whole-plant growth rates during varying greenhouse day and night temperature regimes were predicted for short- and long-day scenarios. The data are discussed with the view of designing experiments to test the importance of C gain in supporting flowering and high yield during routine harvest of Alstroemeria plants under commercial greenhouse conditions.

  3. Effect of CO sub 2 enrichment and high photosynthetic photon flux densities (PPFD) on rubisco and PEP-case activities of in vitro cultured strawberry plants

    Desjardins, Y.; Beeson, R.; Gosselin, A. (Laval Univ., Quebec (Canada))


    Standard growing conditions in vitro (low light and CO{sub 2}) are not conducive to autotrophy. An experiment was conducted to improve photosynthesis in vitro in the hope of increasing survival in acclimatization. A factorial experiment was elaborated where CO{sub 2} and PPFD were supplied to in vitro cultured strawberry plants in the rooting stage. Activities of carboxylating enzymes were determined after 4 weeks of culture. The activities of non-activated and activated rubisco and PEP-Case were measured after extraction of the enzymes and a reaction with NaH{sup 14}CO{sub 3} followed by scintillation counting spectroscopy. High CO{sub 2} concentration significantly increased net assimilation rates (NAR) by 165% over the control for both 1650 and 3000 ppm CO{sub 2}. High PPFD only increased NAR by 12 and 35% for 150 and 250 {mu}mol{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} respectively over the control. Plants grown at 3000 ppm CO{sub 2} had the highest level of chlorophyll/g FW with 97% more than the control. The activity of PEP-Case was the highest at high light levels and high CO{sub 2} with rates of 1.65 for 1650 ppm versus 1.22 mmol CO{sub 2} mg{sup {minus}1} chl. h{sup {minus}1} at 250 {mu}mol{center dot}m{sup {minus}2}{center dot}s{sup {minus}1}. There was no difference in PEP activity at low light levels. The rubisco activity was lower at 1650 and 3000 ppm CO{sub 2}. Increases in NAR correlate more closely to the PEP-Case than to Rubisco activity. Physiological significance of high activity of PEP-Case over rubisco will be discussed.

  4. Topographic patterns of above- and below ground production and nitrogen cycling in alpine tundra

    Fisk, M.C.; Schmidt, S.K.; Seastedt, T.R. [Univ. of Colorado, Boulder, CO (United States)


    Topography controls snowpack accumulation and hence growing-season length, soil water availability, and the distribution of plant communities in the Colorado Front Range alpine. Nutrient cycles in such an environment are likely to be regulated by interactions between topographically determined climate and plant species composition. The authors investigated variation in plant and soil components of internal N cycling across topographic gradients of dry, moist, and wet alpine tundra meadows at Niwot Ridge, Colorado. They expected that plant production and N cycling would increase from dry to wet alpine tundra meadows, but they hypothesized that variation in N turnover would span a proportionately greater range than productivity, because of feedbacks between plants and soil microbial processes that determine N availability. Plant production of foliage and roots increased over topographic sequences from 280 g{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in dry meadows to 600 g{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in wet meadows and was significantly correlated to soil moisture. Contrary to their expectation, plant N uptake for production increased to a lesser degree, from 3.9 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in dry meadows to 6.8 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1} in wet meadows. In all communities, the belowground component accounted for the majority of biomass, production, and N use for production.

  5. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park

    Frank, D.A. [Syracuse Univ., NY (United States). Biological Research Labs.; Groffman, P.M. [Inst. of Ecosystem Studies, Millbrook, NY (United States)


    Within large grassland ecosystems, climatic and topographic gradients are considered the primary controls of soil processes. Ungulates also can influence soil dynamics; however the relative contribution of large herbivores to controlling grassland soil processes remains largely unknown. In this study, the authors compared the effects of native migratory ungulates and variable site (landscape) conditions, caused by combined climatic and topographic variability, on grassland of the northern winter range of Yellowstone National Park by determining soil C and N dynamics inside and outside 33--37 yr exclosures at seven diverse sites. Sites included hilltop, slope, and slope bottom positions across a climatic gradient and represented among the driest and wettest grasslands on the northern winter range. The authors performed two experiments: (1) a 12-mo in situ net N mineralization study and (2) a long-term (62-wk) laboratory incubation to measure potential N mineralization and microbial respiration. Results from the in situ experiment indicated that average net N mineralization among grazed plots was double that of fenced, ungrazed plots (1.9 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}). Mean grazer enhancement of net N mineralization across sites (1.9 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}), approached the maximum difference in net N mineralization among fenced plots (2.2 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}), i.e., the greatest landscape effect observed. Furthermore, ungulates substantially increased between-site variation in mineralization; grazed grassland, 1 SD = 2.2 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}, fenced grassland, 1 SD = 0.85 g N{center_dot}m{sup {minus}2}{center_dot}yr{sup {minus}1}.

  6. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections

    Gonsalves, C.; Xue, B.; Yepes, M.; Fuchs, M.; Ling, K.; Namba, S. (Cornell Univ., Geneva, NY (United States). Dept. of Plant Pathology)


    A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500 mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.

  7. Indentation studies on Y[sub 2]O[sub 3]-stabilized ZrO[sub 2]; 2: Toughness determination from stable growth of indentation-induced cracks

    Dransmann, G.W.; Steinbrech, R.W. (Inst. fuer Reaktorwerkstoffe, Juelich (Germany)); Pajares, A.; Guiberteau, F. (Univ. de Extremadura, Badajoz (Spain). Facultad de Ciencias); Dominguez-Rodriguez, A. (Univ. de Sevilla (Spain). Dept. de Fisic Materia Condensada); Heuer, A.H. (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Materials Science and Engineering)


    Stable indentation cracks were grown in four-point bend tests to study the fracture toughness of two Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] ceramics containing 3 and 4 mol% Y[sub 2]O[sub 3]. By combining microscopic in situ stable crack growth observations at discrete stresses with crack profile measurements, the dependence of toughness on crack extension was determined from crack extension plots, which graphically separate the crack driving residual stress intensity and applied stress intensity factors. Both materials exhibit steeply rising R-curves, with a plateau toughness of 4.5 and 3.1 MPa[center dot]m[sup 1/2] for the 3- and 4-mol% materials, respectively. The magnitude of the plateau toughness reflects the fraction of tetragonal grain contributing to transformation toughening.

  8. Photosynthesis and growth of two rain forest species in simulated gaps under elevated CO{sub 2}

    Roden, J.S.; Wiggins, D.J.; Ball, M.C. [Australian National Univ., Canberra (Australia)


    Two species common to the temperate rain forests of New South Wales, Australia (Doryphora sassafras and Acmena smithii) were grown for 2 wk in either ambient (350 {mu}L/L) or elevated (700 {mu}L/L) CO{sub 2} concentrations and low light (30 {mu}mol photons{center_dot}m{sup {minus}2}{center_dot}s{sup {minus}1}) after which the seedlings were exposed for over 9 wk to a midday 2-h highlight period (1250 {mu}mol photons{center_dot}m{sup {minus}2}{center_dot}s{sup {minus}1}, maximum) to simulate a tree fall gap. For both species, plants grown in elevated CO{sub 2} had greater biomass than plants grown in ambient CO{sub 2}. However, relative increases in biomass were greater in Acmena, an early-successional species, than Doryphora, a late-successional species. Recovery in quantum efficiencies over time was observed for Doryphora, implying physiological acclimation to the new light environment. Doryphora plants grown in elevated CO{sub 2} had lower values of F{sub v}/F{sub m} than plants grown in ambient CO{sub 2}. Although exposure to the simulated tree fall gap dramatically increased the conversion of pigments of the xanthophyll cycle, as well as increased the total pool size of xanthophyll cycle pigments relative to total chlorophyll concentration, there were no differences in either parameter between co{sub 2} treatments. Leaves of Doryphora and those seedlings grown in elevated CO{sub 2} had greater starch concentrations than Acmena and those seedlings grown in elevated CO{sub 2} had greater starch concentrations than Acmena and those seedlings grown in ambient CO{sub 2}, respectively. The reduction in quantum efficiencies for plants grown in elevated CO{sub 2} and exposed to a simulated tree fall gap is discussed in the context of the importance of gap phase regeneration for species in rain forest ecosystems and the potential effects of global change on those processes. 37 refs., 4 figs., 2 tabs.

  9. Spatial variation in rates of carbon and nitrogen accumulation in a boreal bog

    Ohlson, M. [Agricultural Univ. of Norway, Aas (Norway). Dept. of Biology and Nature Conservation; Oekland, R.H. [Univ. of Oslo (Norway)


    Although previous studies hint at the occurrence of substantial spatial variation in the accumulation rates of C and N in bogs, the extent to which rates may vary on high-resolution spatial and temporal scales is not known. A main reason for the lack of knowledge is that it is problematic to determine the precise age of peat at a given depth. The authors determined rates of carbon and nitrogen accumulation in the uppermost decimeters of a bog ecosystem using the pine method, which enables accurate dating of surface peat layers. They combined accumulation data with numerical and geostatistical analyses of the recent vegetation to establish the relationship between bog vegetation and rate of peat accumulation. Use of a laser technique for spatial positioning of 151 age-determined peat cores within a 20 x 20 m plot made it possible to give the first tine-scaled account of spatial and temporal variation in rates of mass, carbon, and nitrogen accumulation during the last century. Rates of C and N accumulation were highly variable at all spatial scales studied. For example, after {approximately}125 yr of peat growth, C and N accumulation varied by factors of five and four, respectively, from 25 to 125 g/dm{sup 2} for C, and from 0.7 to 2.6 g/dm{sup 2} for N. It takes 40 yr of peat accumulation before significant amounts of C are lost through decay. Hummocks built up by Sphagnum fuscum and S. rubellum were able to maintain average rates of C accumulation that exceed 2 g{center_dot}dm{sup {minus}2}{center_dot} yr{sup {minus}1} during 50 yr of growth. The authors argue that data on spatial variation in rates of C accumulation are necessary to understand the role of boreal peatlands in the greenhouse effect and global climate.

  10. Molecular dynamics simulation of relationship between local structure and dynamics during glass transition of Mg7Zn3 alloy%Mg7Zn3合金玻璃转变过程局域结构与动力学关联的分子动力学模拟

    侯兆阳; 刘让苏; 徐春龙; 帅学敏; 舒瑜


    The rapid solidification process of Mg7Zn3 alloy was simulated by the molecular dynamics method. The relationship between the local structure and the dynamics during the liquid-glass transition was deeply investigated. It was found that the Mg-centered FK polyhedron and the Zn-centered icosahedron play a critical role in the formation of Mg7Zn3 metallic glass. The self-diffusion coefficients of Mg and Zn atoms deviate from the Arrhenius law near the melting temperature and then satisfy the power law. According to the time correlation functions of mean-square displacement, incoherent intermediate scattering function and non-Gaussian parameter, it was found that the β-relaxation in Mg7Zn3 supercooled liquid becomes more and more evident with decreasing temperature, and the α-relaxation time rapidly increases in the VFT law. Moreover, the smaller Zn atom has a faster relaxation behavior than the Mg atom. Some local atomic structures with short-range order have lower mobility, and they play a critical role in the appearance of cage effect in theβ-relaxation regime. The dynamics deviates from the Arrhenius law just at the temperature as the number of local atomic structures begins to rapidly increase. The dynamic glass transition temperature (Tc) is close to the glass transition point in structure (TgStr).%采用分子动力学方法对 Mg7Zn3合金快速凝固过程进行计算机模拟,研究玻璃转变过程局域结构与动力学之间的关联。结果表明:以Mg原子为中心的FK多面体和以Zn原子为中心的二十面体局域结构,对Mg7Zn3金属玻璃的形成起关键性作用。Mg(Zn)原子的扩散系数在熔点附近开始偏离Arrhenius关系,而满足幂指数规律。根据均方位移、非相干中间散射函数和非Gauss函数等时间相关函数,发现:随着温度的降低,β驰豫越来越显著,α弛豫时间以VFT指数规律迅速增加;而且半径较小的Zn原子比Mg原子呈现较快的弛豫动力学行