WorldWideScience

Sample records for mgb2 superconducting wires

  1. MgB2 superconducting wires basics and applications

    CERN Document Server

    2016-01-01

    The compendium gives a complete overview of the properties of MgB2 (Magnesium Diboride), a superconducting compound with a transition temperature of Tc = 39K, from the fundamental properties to the fabrication of multifilamentary wires and to the presentation of various applications. Written by eminent researchers in the field, this indispensable volume not only discusses superconducting properties of MgB2 compounds, but also describes known preparation methods of thin films and of bulk samples obtained under high pressure methods. A unique selling point of the book is the detailed coverage of various applications based on MgB2, starting with MRI magnets and high current cables, cooled by Helium (He) vapor. High current cables cooled by liquid hydrogen are also highlighted as an interesting alternative due to the shrinking He reserves on earth. Other pertinent subjects comprise permanent magnets, ultrafine wires for space applications and wind generator projects.

  2. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  3. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    2018-01-01

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  4. Influence of iridium doping in MgB2 superconducting wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2018-01-01

    MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700°C, 800°C or 900°C for 1h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered...... by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence...

  5. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    Science.gov (United States)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  6. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    Science.gov (United States)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  7. Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire

    International Nuclear Information System (INIS)

    Smith, A C; Pei, X; Oliver, A; Husband, M; Rindfleisch, M

    2012-01-01

    A prototype resistive superconducting fault current limiter (SFCL) was developed using single-strand round magnesium diboride (MgB 2 ) wire. The MgB 2 wire was wound with an interleaved arrangement to minimize coil inductance and provide adequate inter-turn voltage withstand capability. The temperature profile from 30 to 40 K and frequency profile from 10 to 100 Hz at 25 K were tested and reported. The quench properties of the prototype coil were tested using a high current test circuit. The fault current was limited by the prototype coil within the first quarter-cycle. The prototype coil demonstrated reliable and repeatable current limiting properties and was able to withstand a potential peak current of 372 A for one second without any degradation of performance. A three-strand SFCL coil was investigated and demonstrated scaled-up current capacity. An analytical model to predict the behaviour of the prototype single-strand SFCL coil was developed using an adiabatic boundary condition on the outer surface of the wire. The predicted fault current using the analytical model showed very good correlation with the experimental test results. The analytical model and a finite element thermal model were used to predict the temperature rise of the wire during a fault. (paper)

  8. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  9. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    Science.gov (United States)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  10. submitter Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    CERN Document Server

    Sugano, Michinaka; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2015-01-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young's modulus of MgB2 filaments in wires with a practical level of critical current. The Young's moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young's modulus of the few-micron-thick Nb–Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young's moduli of the in situ and ex situ MgB2 wires were in the range of 76–97 GPa and no distinct difference depending on the fabrication process was found.

  11. Ex-situ manufacturing of SiC-doped MgB2 used for superconducting wire in medical device applications

    Science.gov (United States)

    Herbirowo, Satrio; Imaduddin, Agung; Sofyan, Nofrijon; Yuwono, Akhmad Herman

    2017-02-01

    Magnesium diboride (MgB2) is a superconductor material with a relatively high critical temperature. Due to its relatively high critical temperature, this material is promising and has the potential to replace Nb3Sn for wire superconducting used in many medical devices. In this work, nanoparticle SiC-doped MgB2 superconducting material has been fabricated through an ex-situ method. The doping of nanoparticle SiC by 10 and 15 wt% was conducted to analyze its effect on specific resistivity of MgB2. The experiment was started by weighing a stoichiometric amount of MgB2 and nanoparticles SiC. Both materials were mixed and grounded for 30 minutes by using an agate mortar. The specimens were then pressed into a 6 mm diameter stainless steel tube, which was then reduced until 3 mm through a wire drawing method. X-ray diffraction analysis was conducted to confirm the phase, whereas the superconductivity of the specimens was analyzed by using resistivity measurement under cryogenic magnetic system. The results indicated that the commercial MgB2 showed a critical temperature of 37.5 K whereas the SiC doped MgB2 has critical temperature of 38.3 K.

  12. Fabrication of extruded wire of MgB2/Al composite material and its superconducting property and microstructure

    Czech Academy of Sciences Publication Activity Database

    Matsuda, K.; Nishimura, K.; Ikeno, S.; Mori, K.; Aoyama, S.; Yabumoto, Y.; Hishinuma, Y.; Müllerová, Ilona; Frank, Luděk; Yurchenko, V. V.; Johansen, T. H.

    2008-01-01

    Roč. 97, - (2008), 012230:1-6 E-ISSN 1742-6596. [European Conference on Applied Superconductivity /8./ - EUCAS 2007. Brussels, 16.09.2007-20.09.2007] Institutional research plan: CEZ:AV0Z20650511 Keywords : MgB2/Al composite * superconductors * electron microscopy Subject RIV: JI - Composite Materials

  13. Critical state instability in Nb-clad MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Beilin, V.; Felner, I.; Tsindlekht, M.I.; Dul'kin, E.; Mojaev, E.; Roth, M.

    2008-01-01

    Magnetization hysteresis loops of Cu/MgB 2 , Nb/MgB 2 , Cu/Nb/MgB 2 and Fe/Cu/MgB 2 wires in parallel magnetic fields of up to 5 T were studied in the temperature range from 5 to 35 K. All Nb-clad samples exhibited a thermomagnetic instability (TMI) in the form of magnetization jumps. In a thick wire (about 2 mm in core diameter), the TMI persisted up to the unexpectedly high temperature of 32 K. Thin wires showed low TMI which vanished at T > 10 K. Cu/MgB 2 wires which did not contain a Nb barrier, showed no signs of TMI. The TMI in thin wires exhibited good reproducibility and stability in the jump pattern (JP) (jump amplitudes and positions), while thick wires showed the worst time stability. We found that moderate flat rolling of the round unstable Cu/Nb/MgB 2 wire resulted in negligible TMI at 5 K in the processed flat tape. The TMI amplitudes of studied samples correlated with the adiabatic stability parameter, β -1

  14. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    Energy Technology Data Exchange (ETDEWEB)

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  15. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    Science.gov (United States)

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was magnets operating in the persistent current mode.

  16. Development of Ti-sheathed MgB2 wires with high critical current density

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Hanna, M; Yen, F; Lv, B; Alessandrini, M; Keith, S; Hoyt, C; Tang, Z; Salama, K

    2006-01-01

    Working towards developing lightweight superconducting magnets for future space and other applications, we have successfully fabricated mono-core Ti-sheathed MgB 2 wires by the powder-in-tube method. The wires were characterized by magnetization, electrical resistivity, x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry measurements. The results indicate that the Ti sheath does not react with the magnesium and boron, and the present wire rolling process can produce MgB 2 wires with a superconducting volume fraction of at least 64% in the core. Using the Bean model, it was found that at 5 K, the magnetic critical current densities, J c , measured in magnetic fields of 0, 5, and 8 T are about 4.2 x 10 5 , 3.6 x 10 4 , and 1.4 x 10 4 A cm -2 , respectively. At 20 K and 0 T, the magnetic J c is about 2.4 x 10 5 A cm -2 . These results show that at zero and low fields, the values of the magnetic J c for Ti-sheathed MgB 2 wires are comparable with the best results available for the Fe-sheathed MgB 2 wires. At high fields, however, the J c for Ti-sheathed MgB 2 wires appears higher than that for the Fe-sheathed MgB 2 wires

  17. Optimization of superconductivity properties in MgB2 Wires and tapes to generate high magnetic fields

    International Nuclear Information System (INIS)

    Serrano, German

    2005-01-01

    We present, in this work, a study of the effects of doping, heat treatments and mechanisms of deformation, over the microstructure and superconducting properties of powder in tube (PIT) M g B 2 wires and tapes.We observed that nano-SiC doping improves the critical current density (J c ) and the upper critical field (H c 2).The combined use of doping and Hot Isostatic Pressing (HIPing), produces samples with high density and improves J c s.We studied the influence of number and temperature of intermediate heat treatments (TTI), during the fabrication of wires and tapes.We observed that TTI made at low temperature ( o C), results in wires and tapes with better microstructure than those made at high temperature.Moreover, the increment of the heat treatments numbers at high temperature, decreases the quality of microstructure and J c .In the study of sheaths materials, we observed that the J c values measured by magnetization in Ti sheath samples are two order of magnitude larger than the values measured by transport, which indicates macroscopic fracture problems.On other hand, we fabricated tapes with excellent J c values (10 4 A/cm 2 at 4K and 7T), which are similar to those of samples made with HIPing.This tape presents some degree of grains alignment, as a consequence of rolling.We observed J c anisotropy in both transport and magnetization measurements in a range between 4 and 26K, and the same effect in H c 2.The anisotropy factor in Jc increase with applied field, while the anisotropy in Hc2 is constant with temperature (H c 2 parallel H c 2 perpendicular ∼1.2).Finally, we observed that carbon nanotubes doping improves H c 2 and this effects is most important at temperatures below 5K.This increase in H c 2 was predicted by Gurevich [45], as an effect of modification in scattering coefficient between electronics bands of M g B 2 by doping [es

  18. Negative effects of crystalline-SiC doping on the critical current density in Ti-sheathed MgB2(SiC)y superconducting wires

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Luo, Z P; Hoyt, C; Yen, F; Guchhait, S; Lv, B; Markert, J T

    2007-01-01

    Ti-sheathed MgB 2 wires doped with nanosize crystalline-SiC up to a concentration of 15 wt% SiC have been fabricated, and the effects of the SiC doping on the critical current density (J c ) and other superconducting properties studied. In contrast with the previously reported results that nano-SiC doping with a doping range below 16 wt% usually enhances J c , particularly at higher fields, our measurements show that SiC doping decreases J c over almost the whole field range from 0 to 7.3 T at all temperatures. Furthermore, it is found that the degradation of J c becomes stronger at higher SiC doping levels, which is also in sharp contrast with the reported results that J c is usually optimized at doping levels near 10 wt% SiC. Our results indicate that these negative effects on J c could be attributed to the absence of significant effective pinning centres (mainly Mg 2 Si) due to the high chemical stability of the crystalline-SiC particles

  19. Development of MgB2 superconductor wire with high critical current

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong; Kim, Nam Kyu; Kim, Yi Jeong; Yi, Ji Hye; Lee, Ji Hyun; Tan, Kai Sin

    2009-07-01

    The MgB 2 superconductor with smaller grain size could improve its critical properties by providing flux pinning centers with high grain boundary density. The effects of C doping such as charcoal, paper ash and glycerin on the superconducting properties was investigated for in situ processed MgB 2 samples using low purity semi-crystalline B powder. The results show a decrease in Tc and an enhancement of Jc at high fields for the C-doped samples as compared to the un-doped samples. A combined process of a mechanical ball milling and liquid glycerin (C 3 H 8 O 3 ) treatment of B powder has been conducted to enhance the superconducting properties of MgB 2 . The mechanical ball milling was effective for grain refinement, and a lattice disorder was easily achieved by glycerin addition. With the combined process, the critical properties was further increased due to a higher grain boundary density and a greater C substitution. To get fine grain structure of MgB 2 with high critical current properties, mechanical milling for as-received B powder and low temperature solid-state reaction of 550 or 600 .deg. C were attempted to in situ powder-in-tube processed MgB 2 /Fe wires. The critical current properties of the MgB 2 wires using the milled B powder were enhanced due to a smaller grain size and an increased volume of the superconducting phase. The solid-state reaction of a low temperature process for the samples using the milled B powder resulted in a poorer crystallinity with a smaller grain size, which improved superconducting properties. We established the system to measure the transport current properties of the MgB 2 wires. The field dependence of the transport Jc was evaluated for the MgB 2 wires heat-treated at different heat treatment conditions using ball-milled and glycerin-treated B powder. The MgB 2 magnet was developed and the AC loss of MgB 2 wire was also investigated. A conduction cooling device to cool the MgB 2 coil down to 4 K has been fabricated and the

  20. Effect on deformation process of adding a copper core to multifilament MgB2 superconducting wire

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    Using the PIT method, multifilament wire with different packing strategies has been manufactured. In all, three types of wire have been investigated, a 19-filament configuration using ex-situ powder in an Fe-matrix and two 8-filament configurations in an Fe-matrix applying a copper core, one using....... This finding is supported by numerical simulations of the deformation process which indicate that tensile stresses are. concentrated around the middle of the wire during the drawing process. As such, strategic packing of the multifilament configuration can reduce the need for annealing during the mechanical...

  1. Lightweight MgB2 superconducting 10 MW wind generator

    Science.gov (United States)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  2. Lightweight MgB2 superconducting 10 MW wind generator

    International Nuclear Information System (INIS)

    Marino, I; Pujana, A; Sarmiento, G; Sanz, S; Merino, J M; Tropeano, M; Sun, J; Canosa, T

    2016-01-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB 2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator’s main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator. (paper)

  3. Development of magnesium diboride (MgB 2) wires and magnets using in situ strand fabrication method

    Science.gov (United States)

    Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E. W.

    2007-06-01

    Since 2001 when magnesium diboride (MgB 2) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc.

  4. Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method

    International Nuclear Information System (INIS)

    Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E.W.

    2007-01-01

    Since 2001 when magnesium diboride (MgB 2 ) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc

  5. Electromagnetic densification of MgB2/Cu wires

    International Nuclear Information System (INIS)

    Woźniak, M; Glowacki, B A

    2014-01-01

    Electromagnetic compaction of in situ MgB 2 /Cu wire has been achieved using a custom-built 200 J device. The monofilament core packing density was increased by 8% and up to 31% for unreacted and reacted wires respectively. The higher density of the MgB 2 core resulted in a critical current density increase of up to 75% in comparison to that for cold-drawn-only wire. Applying this treatment to a wire with Cu powder additions to the core and with an optimized heat treatment resulted in one of the highest ever reported values of J c for MgB 2 /Cu wires of 6.83 × 10 3  A cm −2 at 4.2 K and 6 T. (paper)

  6. Pseudopotential approach to superconductivity in MgB2

    International Nuclear Information System (INIS)

    Sharma, K.S.; Bhargava, Nidhi; Jain, Ritu; Goyal, Varsha; Sharma, Ritu; Sharma, Smita

    2010-01-01

    Superconductivity in MgB 2 has been re-examined in BCS-Eliashberg framework by employing Mc-Millan's T c -equation and form factors of MgB 2 computed from the form factors of component metals (Model-I). The empty core model pseudopotential due to Ashcroft and random phase approximation form of dielectric screening due to Gellmann and Brueckner are used in the present work. An excellent agreement between the present values and other theoretically computed values of T c and with the relevant experimental data for MgB 2 confirms the validity of the present approach. The explicit dependence of λ and T c on the isotopic masses of Mg and B, as revealed from the present work, confirms the role of lattice vibrations in the superconducting behaviour of MgB 2 and the high value of T c in it may be attributed to the phonon mediated e-e interaction coupled with higher values of phonon frequencies due to light mass of B atoms. It has also been observed that the pseudo-atom model (Model-II) with appropriate choice of the potential parameter r c successfully explains high value of T c and isotope effect in MgB 2 , confirming the prominent role played by electron-phonon interaction in the high-T c superconductivity observed in MgB 2 . The isotope effect exponent α-values obtained from the two models are in complete agreement with each other and the present value α = 0.46 is also much closer to the BCS value of 0.5. Interaction strength N 0 V values obtained from the two models are also in perfect agreement with each other and the present value N 0 V = 0.48 suggests that MgB 2 is a strong coupling superconductor. (author)

  7. Influence of Ni and Cu contamination on the superconducting properties of MgB2 filaments

    International Nuclear Information System (INIS)

    Jung, A; Schlachter, S I; Runtsch, B; Ringsdorf, B; Fillinger, H; Orschulko, H; Drechsler, A; Goldacker, W

    2010-01-01

    Technical MgB 2 wires usually have a sheath composite consisting of different metals. For the inner sheath with direct contact to the superconducting filament, chemically inert Nb may be used as a reaction barrier and thermal stabilization is provided by a highly conductive metal like Cu. A mechanical reinforcement can be achieved by the addition of stainless steel. In order to illuminate the influence of defects in the reaction barrier, monofilament in situ wires with direct contact between the MgB 2 filament and frequently applied reactive sheath metals like Cu, Ni or Monel are studied. Reactions of Mg and B with a Cu-containing sheath lead to Cu-based by-products penetrating the whole filament. Reactions with Ni-containing sheaths lead to Ni-based by-products which tend to remain at the filament-sheath interface. Cu and/or Ni contamination of the filament lowers the MgB 2 -forming temperature due to the eutectic reaction between Mg, Ni and Cu. Thus, for the samples heat-treated at low temperatures J C and (partly) T C are increased compared to stainless-steel-sheathed wires. At high heat treatment temperatures uncontaminated filaments lead to the highest J C values. From the point of view of broken reaction barriers in real wires, the contamination of the filament with Cu and/or Ni does not necessarily constrain the superconductivity; it may even improve the properties of the wire, depending on the desired application.

  8. Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes

    International Nuclear Information System (INIS)

    Birajdar, B; Peranio, N; Eibl, O

    2008-01-01

    In MgB 2 the correlation of microstructure with superconducting properties, in particular the critical current density, requires powerful analytical tools. Critical current densities and electrical resistivities of different MgB 2 superconductors differ by orders of magnitudes and the current limiting mechanisms have not been fully understood. Granularity of MgB 2 is one significant reason for reduced critical current densities and is introduced intrinsically by the anisotropy of B c2 but also extrinsically by the microstructure of the material. B c2 enhancement by doping is another important challenge for chemical analysis and, at present, doping levels are not well controlled on the sub-μm scale. In this paper the quantitative electron microscopy and spectroscopy methods essential for the microstructural analysis of MgB 2 are described. By quantitative electron microscopy and spectroscopy we mean a combined SEM and TEM analysis that covers various length scales from μm to nm. Contamination-free sample preparation, chemical mapping including B, and advanced chemical quantification using x-ray microanalysis were essential elements of the applied methodology. The methodology was applied to in situ and ex situ MgB 2 wires and tapes with and without SiC additives. Quantitative B analysis by EDX spectroscopy was applied quantitatively in the SEM and TEM, which is a major achievement. Although MgB 2 is a binary system, the thermodynamics of phase formation is complex, and the complexity is dramatically increased if additives like SiC are used. The small, sub-μm grain sizes of the matrix and secondary phases require TEM methods. However, granularity on the μm scale was also identified and underlines the importance of the combined SEM and TEM studies. Significant differences in the microstructure were observed for in situ and ex situ samples. This holds particularly if SiC was added and yielded Mg 2 Si for in situ samples annealed at 600-650 deg. C and Mg-Si-O phases

  9. A new approach to MgB2 superconducting magnet fabrication

    International Nuclear Information System (INIS)

    Miyazoe, A; Ando, T; Wada, H; Abe, H; Hirota, N; Sekino, M

    2008-01-01

    Fabrication of MgB 2 -based superconducting magnets has been attempted by a new approach using film coated on symmetric tubes. Superconducting MgB 2 films have been prepared on iron substrates by electroplating in molten electrolytes. The critical current (I c ) of the MgB 2 electroplating films at 4.2 K and at self-field was 15 A on the basis of 1 μV/cm of I c criterion. A model calculation has shown that MgB 2 -based superconducting magnets based on MgB 2 electroplating films have the potential to generate magnetic fields over 0.5 T

  10. Multifilamentary MgB2 wires fracture behavior during the drawing process

    International Nuclear Information System (INIS)

    Shan, D.; Yan, G.; Zhou, L.; Li, J.S.; Li, C.S.; Wang, Q.Y.; Xiong, X.M.; Jiao, G.F.

    2012-01-01

    The fracture behavior of 6 + 1 filamentary MgB 2 superconductive wires is presented here. The composite wires were fabricated by in situ Powder-in-Tube method using Nb as a barrier and copper as a stabilizer. The microstructure of the material has a great influence on its fracture behavior. The microstructural aspects of crack nucleation and propagation are discussed. It shows that there are complicated correlations between fracture behavior and the main influencing parameters, which contain specific drawing conditions (drawing velocity, reduction in area per pass), materials properties (strength, yield stress, microstructure) as well as the extent of bonding between the metal sheaths at their interface.

  11. Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo

    2010-06-01

    The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.

  12. EDX and ion beam treatment studies of filamentary in situ MgB2 wires with Ti barrier

    International Nuclear Information System (INIS)

    Rosova, A.; Kovac, P.; Husek, I.; Kopera, L.

    2011-01-01

    Highlights: → SiC-doped MgB 2 wires with Ti barrier showed good Jc in magnetic field. → Explanation why the Ti barrier fits to SiC-doped MgB 2 filaments. → Ti barrier getters Si from SiC-doped filaments and improve their properties. → Si accumulated in an inner layer of Ti barrier protects filaments from Cu diffusion. → Ion beam treatment helps to discover microstructure of complicated systems. - Abstract: In situ SiC-doped filamentary MgB 2 wires (with the diameter of 0.860 and 0.375 mm) with Cu stabilization separated by Ti barrier layers supported by outer SS sheath and annealed at 800 deg. C/0.5 h have been studied by combination of EDX analysis and ion beam selective etching. It was found that several Ti-Cu inter-metallic compounds were created by Cu-Ti interdiffusion and thus the barrier protection against Cu penetration into the superconducting filaments is limited. We showed an advantage of Ti use as the barrier material in our wires. Ti getters silicon out from the superconducting filament, what purges superconducting MgB 2 from Si and creates an additional Si-rich layer in inner part of Ti barrier which prevents Cu diffusion more effectively.

  13. Automatic development of normal zone in composite MgB2/CuNi wires with different diameters

    Science.gov (United States)

    Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.

    2010-06-01

    One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.

  14. Characterization of Mechanical Properties of MgB$_2$ Conductor for the Superconducting Link Project at CERN

    CERN Document Server

    Sugano, M; Bartova, B; Bjoerstad, R; Scheuerlein, C; Grasso, G

    2015-01-01

    In the framework of high luminosity upgrade of Large Hadron Collider at CERN, superconducting links are being developed. MgB2 wire is a candidate conductor for use in high-current cables. Mechanical properties of this material are of key importance for the definition of the cable design and operating conditions. In this study, we evaluated the Young's modulus of MgB2 filaments extracted from ex situ processed composite wires. The wires were produced in unit lengths of about 1 km and used in high-current cables. Single fiber tensile test was carried out on filaments composed of MgB2, Nb barrier, and Nb-Ni reaction layer. From the unloading modulus of filament specimens measured with different gauge lengths, the Young's modulus of composite filaments extracted from two different strands was determined to be 114 and 122 GPa at room temperature, respectively. By using the rule-of-mixture, the Young's modulus of MgB2 was estimated to be lower than that reported for highly dense MgB2 bulks. The reason for such diff...

  15. Pulse laser irradiation into superconducting MgB2 detector

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Miki, Shigehito; Satoh, Kazuo; Yotsuya, Tsutomu; Shimakage, Hisashi; Wang, Zhen; Okayasu, Satoru; Katagiri, Masaki; Machida, Masahiko; Kato, Masaru; Ishida, Takekazu

    2005-01-01

    We performed 20-ps pulse laser irradiation experiments on a MgB 2 neutron detector to know a thermal-relaxation process for designing a MgB 2 neutron detector. The membrane-type structured MgB 2 device was fabricated to minimize the heat capacity of sensing part of a detector as well as to enhance its sensitivity. We successfully observed a thermal-relaxation signal resulting from pulse laser irradiation by developing a detection circuit. The response time was faster than 1 μs, meaning that the detector would be capable of counting neutrons at a rate of more than 10 6 events per second

  16. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    Science.gov (United States)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  17. Properties of stabilized MgB2 composite wire with Ti barrier

    International Nuclear Information System (INIS)

    Kovac, P; Husek, I; Melisek, T; Holubek, T

    2007-01-01

    Stabilized four-filament in situ MgB 2 /Ti/Cu/Monel composite wire was produced by the rectangular wire-in-tube (RWIT) technique. 10 wt% of nanosize SiC was added into the Mg-B powder mixture, which was packed into the Ti/Cu and Monel tubes, respectively. The assembled composite was two-axially rolled into wire and/or tape form and sintered at temperatures of 650-850 deg. C/0.5 h. Stabilized MgB 2 wire with Ti barrier is studied in terms of field-dependent transport critical current density, effects of filament size reduction and thermal stability

  18. Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities

    Science.gov (United States)

    Tan, Teng

    The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates

  19. Towards a Cryogen-Free MgB2-Based Superconducting Radio Frequency Accelerating Cavities

    Science.gov (United States)

    Nassiri, Alireza

    Studies on the application of Magnesium diboride (MgB2) superconducting films have shown promise for use with the radio-frequency (SRF) accelerating cavities. MgB2\\ coating is a potential candidate to replace bulk niobium (Nb) SRF cavities. The ultimate goal of our research is to demonstrate MgB2 coating on copper cavities to allow operation at about 20 K or so as a result of the high transition temperature (Tc) of MgB2 and taking advantage of the excellent thermal conductivity of copper. Here, we will report on our recent experimental results of applying hybrid physical-chemical vapor deposition (HPCVD) to grow MgB2 films on 2-inch diameter copper discs as well as on a 2.8 GHz resonator cavity *Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.

  20. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  1. Design of MgB2 Superconducting coils for the Ignitor Experiment*

    Science.gov (United States)

    Grasso, G.; Penco, R.; Berta, S.; Coppi, B.; Giunchi, G.

    2009-11-01

    A feasibility study for the adoption of MgB2 superconducting cables for the largest (about 5 m in diameter) of the poloidal field coils of the Ignitor machine is being carried out. This initiative was prompted by the progress made in the fabrication of MgB2 long cables, and related superconducting magnets of relatively large dimensions. These magnets will be cryocooled at the operating temperature of 10-15 K that is compatible with the He-gas cryogenic cooling system of Ignitor as well as with the projected superconducting current density of the MgB2 material, at the magnetic field values (˜4-5 T) in which these coils are designed to operate. The optimal cable configuration has been identified that can provide an efficient cooling of the MgB2 conductors over times compatible with the machine duty cycles. MgB2 superconductors hold the promise of becoming suitable for high field magnets by appropriate doping of the material and of replacing gradually the normal conducting coils adopted, by necessity, in high field experiments. Therefore, an appropriate R&D program on the development of improved MgB2 material and related superconducting cabling options has been undertaken, involving different institutions.

  2. Preparation of MgB2 superconducting microbridges by focused ion beam direct milling

    Science.gov (United States)

    Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li

    2017-01-01

    MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.

  3. Superconducting and normal state properties of carbon doped and neutron irradiated MgB2

    International Nuclear Information System (INIS)

    Wilke, R.H.T.; Samuely, P.; Szabo, P.; Holanova, Z.; Bud'ko, S.L.; Canfield, P.C.; Finnemore, D.K.

    2007-01-01

    Current research in MgB 2 focuses on the effects various types of perturbations have on the superconducting properties of this novel two-gap superconductor. In this article we summarize the effects of carbon doping and neutron irradiation in bulk MgB 2 . Low levels of carbon doping and light neutron irradiation result in significant enhancements in H c2 . At high fluences, where superconductivity is nearly fully suppressed, superconductivity can be restored through post exposure annealing. However, this results in a change in the interdependencies of the normal state and superconducting properties (ρ 0 , T c , H c2 ), with little or no enhancement in H c2

  4. Superconductivity and thermal property of MgB2/aluminum matrix composite materials fabricated by 3-dimensional penetration casting method

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Saeki, Tomoaki; Nishimura, Katsuhiko; Ikeno, Susumu; Mori, Katsunori; Yabumoto, Yukinobu

    2006-01-01

    Superconductive MgB 2 /Al composite material with low and high volume fractions of particles were fabricated by our special pre-packing technique and 3-dimensional penetration casting method. The composite material showed homogeneous distribution of MgB 2 particles in the Al-matrix with neither any aggregation of particles nor defects such as cracks or cavities. The critical temperature of superconducting transition (T C ) was determined by electrical resistivity and magnetization to be about 37-39 K. Specific heat measurements further supported these T C findings. The Meissner effect was also verified in the liquid He, in which a piece of the composite floated above a permanent magnet. The thermal conductivity of the MgB 2 /Al composite material was about 25 W/K·m at 30K, a value much higher than those found for NbTi or Nb 3 Sn superconducting wires normally used in practice, which are 0.5 and 0.2 W/K·m at 10 K, respectively. A billet of the superconducting material was successfully hot-extruded, forming a rod. The same as the billet sample, the rod showed an onset T C of electrical resistivity of 39 K. (author)

  5. Electronic structure and superconductivity of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  6. Low-temperature synthesis of superconducting nanocrystalline MgB2

    International Nuclear Information System (INIS)

    Lu, J.; Xiao, Z.; Lin, Q.; Claus, H.; Fang, Z.Z.

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  7. Defect structures in MgB2 wires introduced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Liao, X Z; Serquis, A; Zhu, Y T; Civale, L; Hammon, D L; Peterson, D E; Mueller, F M; Nesterenko, V F; Gu, Y

    2003-01-01

    The microstructures of MgB 2 wires prepared by the powder-in-tube technique and subsequent hot isostatic pressing were investigated using transmission electron microscopy. A large amount of crystalline defects including small-angle twisting, tilting and bending boundaries, in which high densities of dislocations reside, was found forming sub-grains within MgB 2 grains. It is believed that these defects resulted from particle deformation during the hot isostatic pressing process and are effective flux pinning centres that contribute to the high critical current densities of the wires at high temperatures and at high fields

  8. Development and fundamental study on a superconducting induction/synchronous motor incorporated with MgB2 cage windings

    International Nuclear Information System (INIS)

    Nakamura, T; Yamada, Y; Nishio, H; Sugano, M; Amemiya, N; Kajikawa, K; Wakuda, T; Takahashi, M; Okada, M

    2012-01-01

    In this paper, a fundamental study of the rotating characteristics of a induction/synchronous motor by use of superconducting MgB 2 cage windings is carried out based on analysis and experiment. Current transport properties of the produced monofilamentary MgB 2 wires are firstly characterized, and then utilized for the determination of the current carrying capacity of the rotor bars. Then, the motor model is designed and fabricated with the aid of conventional (copper) stator windings. We successfully observe the synchronous rotation of the fabricated motor at a rotation speed range from 300 to 1800 rpm. We can also realize an almost constant torque versus speed curve, and this characteristic is explained from the steep take-off of the electric field versus the current density curve, based on the nonlinear electrical equivalent circuit. These results are promising for the practical applications of a high efficiency motor for a liquid hydrogen circulation pump.

  9. Mechanical properties and bending strain effect on Cu-Ni sheathed MgB2 superconducting tape

    International Nuclear Information System (INIS)

    Fu, Minyi; Chen, Jiangxing; Jiao, Zhengkuan; Kumakura, H.; Togano, K.; Ding, Liren; Zhang, Yong; Chen, Zhiyou; Han, Hanmin; Chen, Jinglin

    2004-01-01

    The Young's modulus (E) of Cu-Ni sheathed MgB 2 monofilament tape was measured using electric method. It is about 8.05 x 10 10 Pa, the same order of Cu and its alloys. We found that the lower E value of the MgB 2 component seemed to relate to the lower filament density. The benefits of pre-compression in filaments were discussed in terms of improving stress distribution in the wires and tapes during winding and operation of superconducting magnets. The magnetic field dependence of J c was investigated on the sample subjected to various strain levels through bending with different radii at 4.2 K

  10. Two ways to model voltage-current curves of adiabatic MgB2 wires

    International Nuclear Information System (INIS)

    Stenvall, A; Korpela, A; Lehtonen, J; Mikkonen, R

    2007-01-01

    Usually overheating of the sample destroys attempts to measure voltage-current curves of conduction cooled high critical current MgB 2 wires at low temperatures. Typically, when a quench occurs a wire burns out due to massive heat generation and negligible cooling. It has also been suggested that high n values measured with MgB 2 wires and coils are not an intrinsic property of the material but arise due to heating during the voltage-current measurement. In addition, quite recently low n values for MgB 2 wires have been reported. In order to find out the real properties of MgB 2 an efficient computational model is required to simulate the voltage-current measurement. In this paper we go back to basics and consider two models to couple electromagnetic and thermal phenomena. In the first model the magnetization losses are computed according to the critical state model and the flux creep losses are considered separately. In the second model the superconductor resistivity is described by the widely used power law. Then the coupled current diffusion and heat conduction equations are solved with the finite element method. In order to compare the models, example runs are carried out with an adiabatic slab. Both models produce a similar significant temperature rise near the critical current which leads to fictitiously high n values

  11. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  12. Quench Property of Twisted-Pair MgB$_2$ Superconducting Cables in Helium Gas

    CERN Document Server

    Spurrell, J; Falorio, I; Pelegrin, J; Ballarino, A; Yang, Y

    2015-01-01

    CERN's twisted-pair superconducting cable is a novel design which offers filament transposition, low cable inductance and is particularly suited for tape conductors such as 2G YBCO coated conductors, Ag-sheathed Bi2223 tapes and Ni/Monel-sheathed MgB2 tapes. A typical design of such twistedpair cables consists of multiple superconducting tapes intercalated with thin copper tapes as additional stabilizers. The copper tapes are typically not soldered to the superconducting tapes so that sufficient flexibility is retained for the twisting of the tape assembly. The electrical and thermal contacts between the copper and superconducting tapes are an important parameter for current sharing, cryogenic stability and quench propagation. Using an MgB2 twisted-pair cable assembly manufactured at CERN, we have carried out minimum quench energy (MQE) and propagation velocity (vp) measurements with point-like heat deposition localized within a tape. Furthermore, different contacts between the copper and superconductor aroun...

  13. Direct observation of superconducting gaps in MgB 2 by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J. C.; Sasaki, S.; Kadowaki, K.

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2. We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2.

  14. Direct observation of superconducting gaps in MgB2 by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K.

    2004-01-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2 . We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2

  15. Enhancing the superconducting temperature of MgB2 by SWCNT dilution

    Science.gov (United States)

    Ma, Danhao; Jayasingha, Ruwantha; Hess, Dustin T.; Adu, Kofi W.; Sumanasekera, Gamini U.; Terrones, Mauricio

    2014-02-01

    We report, for the first time, an increase in the superconducting critical temperature, TC of commercial “dirty” MgB2 by a nonsubstitutional hole-doping of the MgB2 structure using minute, single-wall carbon nanotube (SWCNT) inclusions. We varied the SWCNTs concentration from 0.05 wt% to 5 wt% and investigated the temperature-dependent resistivity from 10 K to 300 K. We used micro-Raman spectroscopy, field-emission scanning electron microscopy, and X-ray diffraction to analyze the interfacial interactions between the SWCNTs and the MgB2 grains. We obtained an increase in TC from 33.0 to 37.8 K (ΔTC+=4.8 K), which is attributed to charge transfer from the MgB2 structure to the SWCNT structure. The charge transfer phenomenon is confirmed by micro-Raman analysis of the phonon states of the SWCNT tangential band frequency in the composites. We determined the charge transfer per carbon atom to be 0.0023/C, 0.0018/C and 0.0008/C for 0.05 wt%, 0.5 wt% and 5 wt% SWCNT inclusions, respectively, taking into account the contributions from the softening of the lattice constant and the nonadiabatic (dynamic) effects at the Fermi level. This report provides an experimental, alternative pathway to hole-doping of MgB2 without appealing to chemical substitution.

  16. Evaluations of MgB2 Coatings on 2'' Copper Discs for Superconducting Radio Frequency Applications

    Science.gov (United States)

    Withanage, Wenura; Tan, Teng; Lee, Namhoon; Banjade, Huta; Eremeev, Grigory; Welander, Paul; Valente-Feliciano, Anne-Marie; Kustom, Robert; Wolak, Matthäus; Nassiri, Alireza; Xi, Xiaoxing

    We propose that coating the inner walls of copper RF cavities with superconducting MgB2 (Tc = 39 K) can result in a viable alternative to the already established niobium-based SRF technology. This approach improves the thermal conductivity, allows for operation at higher temperatures, and reduces the need for large helium refrigeration, thereby resulting in lower operational costs. For our studies, we grew MgB2 films via hybrid physical chemical vapor deposition (HPCVD) on 2'' Cu substrates. Since Mg and Cu readily form an alloy at higher temperatures, the HPCVD setup was modified in order to achieve lower deposition temperatures, minimize alloy formation, and provide high quality MgB2 films. This method yielded MgB2 coatings on 2'' Cu discs with transition temperatures around 38 K. The samples were characterized with regards to their RF attributes and showed similar performance in comparison to Nb reference samples. The presented results show that MgB2 coated copper can be a suitable alternative for use in SRF cavities.

  17. Stress-strain effects on powder-in-tube MgB2 tapes and wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Takaya, Ryuya; Kasaba, Koichi; Tachikawa, Kyoji; Yamada, Yutaka; Shimura, Satoshi; Koshizuka, Naoki; Watanabe, Kazuo

    2005-01-01

    The effects of stress-strain on the critical current, I c , of ex situ powder-in-tube (PIT)-processed Ni-sheathed MgB 2 tapes and round wires as well as in situ PIT-processed Cu-sheathed wires at 4.2 K in a magnetic field up to 5 T have been studied. The effect of In powder addition on the Ni-sheathed MgB 2 wire was not so clear compared with that in the tape, in which the irreversible strain, ε irr , for the I c degradation onset increases significantly by the addition. This is attributed to the difference in the microstructure of the core associated with cold workings. A peak and gradual degradation behaviour of I c with strain beyond ε irr was found in the wire, whereas no evident peak and a steep degradation behaviour was found in the tape. As a possible reason, the difference in the triaxial residual stress state at 4.2 K due to the difference in geometry of the cross-section is suspected. The transverse compression tests revealed that I c of the wire did not degrade up to 270 MPa. Again, the effect of In addition was minimal. The Young's modulus of MgB 2 , 31-41 GPa, at room temperature was estimated by a tensile test of Cu sheath wire using a high-accuracy extensometer and the law of mixtures. The tensile strain dependence of I c in the Cu sheath wire was similar to that in the Ni-sheathed wire, ε irr being 0.4%. However, the stress corresponding to ε irr , 50 MPa, was about 1/10 of that for the Ni-sheath wire and the irreversible transverse compressive stress, 150 MPa, was also lower. The effect of bending strain on the I c in Cu-sheathed wire was compared with that of the tensile strain

  18. Multiple superconducting gaps in MgB2 single crystals from magnetic torque

    International Nuclear Information System (INIS)

    Atsumi, Toshiyuki; Xu, Mingxiang; Kitazawa, Hideaki; Ishida, Takekazu

    2004-01-01

    We have measured the magnetic torque of an MgB 2 single crystal in the various different fields below 10 kG by using a torque magnetometer and a 4 K closed cycle refrigerator. The MgB 2 single crystal was synthesized by the vapor transport method. The torque can be measured as an off-balance signal of the Wheatstone bridge of the four piezoresistors on a Si cantilever. The torque curves are analyzed by the Kogan model. The superconducting anisotropy γ is rather independent of temperature in 5 and 10 kG, but is dependent on field up to 60 kG. We consider that the field dependence of γ comes from the nature of the multiple superconducting gaps. The experimental results show that the π-band superconducting gaps have been deteriorated gradually up to a crossover field H * (π) ∼ 20 kG at 10 K when the magnetic field increases

  19. The MgB2 superconducting energy gaps measured by Raman spectroscopy

    International Nuclear Information System (INIS)

    Quilty, James William

    2003-01-01

    Understanding the nature of the superconducting energy gap in magnesium diboride is an essential part of understanding this unusual superconductor, and Raman scattering is a convenient and powerful technique which is able to directly measure the key physical properties of the gap. The Raman spectra of MgB 2 show clear superconductivity induced renormalisations and evidence is found for two superconducting gaps residing on the σ and π Fermi surfaces with maximum magnitudes of around 110 and 30 cm -1 . The larger gap appears as a sharp peak in the electronic Raman scattering continuum while the smaller gap manifests itself as a threshold in the low-frequency spectral intensity, indicating that the gaps form in different electronic environments. The physical properties of the gaps favour explanations of the extraordinarily high T c in MgB 2 within strong coupling theory

  20. Electronic structure and superconductivity of MgB2

    Indian Academy of Sciences (India)

    Unknown

    High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Abstract. Results ... compared to the experimentally determined values of these quantities. ... that spectroscopies which probe the superconducting gap.

  1. Progress in electrical and mechanical properties of rectangular MgB2 wires

    International Nuclear Information System (INIS)

    Kovac, P; Melisek, T; Kopera, L; Husek, I; Polak, M; Kulich, M

    2009-01-01

    Critical current densities and mechanical resistance of MgB 2 wires made by the rectangular wire-in-tube technique (RWIT) have been studied. Wires prepared from different precursor powders and variable sheath materials are compared. The best electrical performance (10 4 A cm -2 at 11.3 T) was measured for the wire with mechanically alloyed powder doped by SiC. While the critical current densities, J c , at 4.2 K are considerably influenced by the powder used, the differences at 20 K are much smaller. Flattened wires show different levels of critical current anisotropy influenced by the precursor powder used. Stress-strain characteristics and critical current degradation are strongly affected by the applied metallic materials and also by the filament's strength. The highest irreversible strain ε irr = 0.55% was measured for Ti/Cu/Monel sheathed wire with filaments from mechanically alloyed powder.

  2. Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2

    Directory of Open Access Journals (Sweden)

    T. Gegechkori

    2018-02-01

    Full Text Available The original hot shock wave assisted consolidation method combining high temperature was applied with the two-stage explosive process without any further sintering to produce superconducting materials with high density and integrity. The consolidation of MgB2 billets was performed at temperatures above the Mg melting point and up to 1000oC in partially liquid condition of Mg-2B blend powders. The influence of the type of boron (B isotope in the composition on critical temperature and superconductive properties was evaluated. An example of a hybrid Cu-MgB2–Cu superconducting tube is demonstrated and conclusions are discussed.

  3. Superconducting properties of MgB2 particle impregnated with Mg-based alloys

    International Nuclear Information System (INIS)

    Shimizu, Yusuke; Matsuda, Kenji; Mizutani, Manabu; Nishimura, Katsuhiko; Kawabata, Tokimasa; Ikeno, Susumu; Hishinuma, Yoshimitsu; Aoyama, Shigeki

    2011-01-01

    The three-dimensional penetration method combined with semi-solid casting (SS-3DPC) was utilized to prepare magnesium diboride (MgB 2 ) powder composite materials with various host materials of Mg, Mg-3%Al, Mg-3%Al-1%Zn, Mg-9%Al, and Mg-9%Al-1%Zn. X-ray diffraction measurements indicated predominant peak patterns of MgB 2 and a host alloy, implying that the host material tightly bonded MgB 2 grains without melting the MgB 2 powder. This was confirmed by SEM images. Measured electrical resistivity and magnetization versus temperature showed clear signals of superconducting transition temperature of 27-38 K for all the samples cut out from the billets. Magnetic hysteresis loop observed at 5 K enabled us to estimate a critical current density (J c ) based on the extended Bean model. Additions of aluminum and zinc elements to magnesium host-matrix were found to enhance J c and increase residual resistivity (ρ 0 ) suggesting that aluminum and zinc have an effect on pinning magnetic flux flow for J c enhancement, and scattering conduction electrons for increase of ρ 0 . (author)

  4. Electrical, Structural and Mechanical Properties of Superconducting MGB2/MG Composites

    International Nuclear Information System (INIS)

    Ulucan, S.

    2004-01-01

    The brittle nature of MgB 2 does not allow this material to be used as a stand-alone material for large scale applications based on wire production. MgB 2 /Mg composites were prepared using metal matrix composite fabrication technique. To obtain composites MgB 2 and Mg powders were mixed at different weight fractions and uniaxially pressed in a cylindrical dye under the pressure of 0.5 GPa and 1.0 GPa for two hours at various temperatures. XRD, SEM and EDX techniques were used for phase identification and microstructural studies. Resistivities of the composites were measured between 20 K and room temperature. The effect of temperature on the mechanical properties of MgB 2 /Mg composites was investigated. For this purpose, compressive mechanical testing was performed to measure elastic modulus and strain at failure values of the composites. It was found that the relative weight fraction of the powders and the temperature have same considerable effect on the electrical, microstructural and the mechanical properties of the composites

  5. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique

    Science.gov (United States)

    Portesi, C.; Borini, S.; Amato, G.; Monticone, E.

    2006-03-01

    In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.

  6. The effects of Fe2O3 nanoparticles on MgB2 superconducting thin films

    International Nuclear Information System (INIS)

    Koparan, E.T.; Sidorenko, A.; Yanmaz, E.

    2013-01-01

    Full text: Since the discovery of superconductivity in binary MgB 2 compounds, extensive studies have been carried out because of its excellent properties for technological applications, such as high transition temperature (T c = 39 K), high upper critical field (H c2 ), high critical current density (J c ). Thin films are important for fundamental research as well as technological applications of any functional materials. Technological applications primarily depend on critical current density. The strong field dependence of J c for MgB 2 necessitates an enhancement in flux pinning performance in order to improve values in high magnetic fields. An effective way to improve the flux pinning is to introduce flux pinning centers into MgB 2 through a dopant having size comparable to the coherence length of MgB 2 . In this study, MgB 2 film with a thickness of about 600 nm was deposited on the MgO (100) single crystal substrate using a 'two-step' synthesis technique. Firstly, deposition of boron thin film was carried out by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850 degrees Celsius in magnesium vapour. In order to investigate the effect of Fe 2 O 3 nanoparticles on the structural and magnetic properties of films, MgB 2 films were coated with different concentrations of Fe 2 O 3 nanoparticles by a spin coating process. The effects of different concentrations of ferromagnetic Fe 2 O 3 nanoparticles on superconducting properties of obtained films were carried out by using structural (XRD, SEM, AFM), electrical (R-T) and magnetization (M-H, M-T and AC Susceptibility) measurements. It was calculated that anisotropic coefficient was about γ = 1.2 and coherence length of 5 nm for the uncoated film. As a result of coherence length, the appropriate diameters of Fe 2 O 3 nanoparticles were found to be 10 nm, indicating that these nanoparticles served as the pinning centers. Based on the data obtained from this study, it can be

  7. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    International Nuclear Information System (INIS)

    Abrahamsen, A.B.; Givel, J.C.; Andersen, N.H.; Zangenberg, N.; Baurichter, A.

    2006-11-01

    A comprehensive analysis of the innovation potential of superconductivity at Risoe was performed in February 2004 by the main author of this report. Several suggestions for new products and new markets were formulated by the superconductivity group and examined by the innovation staff at Risoe. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale accelerators such as the Large Hadron Collider(LHC) at Cern, or in the nuclear magnetic resonance (NMR) community using MR-imaging scanners in medicine and phase identification in organic chemistry. Only the NMR applications can be categorized as a highly profitable and commercial market today. The superconductivity group of Risoe formulated and presented the gearless superconducting wind turbine multipole generator as the most promising new concept, but further initiatives were stopped due to unclear patent possibilities. The experience of the innovation review was used in the STVF framework program 'New superconductors: mechanisms, processes and products' to identify potential new product for the collaborating company Danfysik A/S, which has a strong tradition in building resistive magnets for particle accelerators. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European Framework Program 6 project HIPERMAG. It was presented at the Risoe innovation seminar January 2006, and recently a collaboration between Risoe and Danfysik A/S was initialized. The present report aims to outline a potential superconducting product within the STVF program. The use of the MgB 2 superconductors in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the

  8. Magnetic microscopy for characterization of local critical current in iron-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Higashikawa, K.; Yamamoto, A.; Kiss, T.; Ye, S.; Matsumoto, A.; Kumakura, H.

    2014-01-01

    Highlights: • We developed a characterization method of local critical current in MgB 2 wires. • Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). • Local critical current value was quantified with the aid of the finite element method (FEM). • MgB 2 wire still has inhomogeneous distribution in local critical current. • Higher potential than that estimated by the four-probe transport method was suggested. - Abstract: We have developed a characterization method of local critical current in iron-sheathed MgB 2 wires. Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). The value of local critical current was quantified with the aid of the finite element method (FEM) considering the ferromagnetic properties of the iron sheath. The results suggested that MgB 2 wires fabricated by internal Mg diffusion processes still have large longitudinal inhomogeneity and much higher potential than that estimated by the four-probe transport method. This will be very important information for making a correct strategy for further development of MgB 2 wires

  9. The effect of citric and oxalic acid doping on the superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N; Singla, Rashmi; Varma, G D; Malik, V K; Bernhard, C

    2009-01-01

    In this paper we report the effect of carbon doping on the structural and superconducting properties of MgB 2 using citric and oxalic acids as carbon sources. The bulk polycrystalline samples have been synthesized via a standard solid state reaction route with composition MgB 2 +x wt% of citric and oxalic acids (x = 0, 5 and 10). The x-ray diffraction results reveal the formation of dominantly MgB 2 with only a small amount of impurity phase MgO and substitution of C at the B site of MgB 2 for both dopants. Improvements in the upper critical field (H C2 ), irreversibility field (H irr ) and high field (>2.5 T) critical current density (J C ) have been observed on C doping in the samples. The correlations between superconducting properties and structural characteristics of the samples are described and discussed in this paper.

  10. Ripple Field AC Losses in 10-MW Wind Turbine Generators With a MgB2 Superconducting Field Winding

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Magnusson, Niklas

    2016-01-01

    Superconducting (SC) synchronous generators are proposed as a promising candidate for 10-20-MW direct-drive wind turbines because they can have low weights and small sizes. A common way of designing an SC machine is to use SC wires with high current-carrying capability in the dc field winding...... and the ac armature winding is made with copper conductors. In such generators, the dc field winding is exposed to ac magnetic field ripples due to space harmonics from the armature. In generator design phases, the ac loss caused by these ripple fields needs to be evaluated to avoid local overheating...... and an excessive cooling budget. To determine the applicability of different design solutions in terms of ac losses, this paper estimates the ac loss level of 10-MW wind generator designs employing a MgB2 SC field winding. The effects on ac losses are compared between nonmagnetic and ferromagnetic teeth...

  11. Contribution to the development of dry R and W MgB2 superconducting magnets

    International Nuclear Information System (INIS)

    Pasquet, Raphael

    2015-01-01

    Currently, the majority of superconducting magnets, including MRI, are cooled by a bath of liquid helium at atmospheric pressure. Nevertheless, this type of cooling is expensive and imposes significant security constraints for large volumes. For these reasons, the cooling of superconducting magnets is desirable without liquid helium. Cryo-cooler provides dry cooling to 4 K without any liquid helium. However, the power available is low and dry cooling is difficult. In these conditions, it is complicate to use NbTi with dry cooling. But if we increase the operating temperature to 10 K, the power of cryo-cooler increases by a factor of ten. Nevertheless in this case, it is necessary to use of a high critical temperature superconductor. We choose to use MgB 2 R and W conductors because it is relatively low cost but it has the handicap to be sensible at mechanical stress. It is therefore necessary to be careful during their winding to not degrade their superconducting performance. As part of this thesis, we have developed a dry test facility to measure the critical current of MgB 2 R and W conductors as well as mock-ups. To do this, a new type of thermal contact based on aluminum nitride has been developed. In addition to this development, we designed two MgB 2 R and W magnet mock-ups: a solenoid and a double pancake. The double pancake was manufactured (with a new patented winding method) and it has been successfully tested. (author) [fr

  12. Vibrational spectroscopy of superconducting MgB2 by neutron inelastic scattering

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2001-01-01

    Neutron inelastic scattering measurements have been performed on superconducting MgB 2 above and below T c . The temperature dependence of the generalized phonon density-of-states showed clear anomalous behaviour near 24 meV in the acoustic phonon region, which may be interpreted as evidence of a substantial contribution to the total electron-phonon coupling strength deriving from these phonons. Weaker evidence for a corresponding response in the high-energy B bond stretching phonons was also encountered. (author)

  13. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  14. Effect of malic acid doping on the structural and superconducting properties of MgB2

    International Nuclear Information System (INIS)

    Ojha, N.; Sudesh; Stuti Rani; Varma, G.D.

    2010-01-01

    The samples have been prepared via standard solid state reaction route with nominal compositions MgB 2 + x wt% malic acid (x = 0, 5 and 10) by sintering at two different temperatures: 800 and 850 deg C in argon atmosphere. Improvement in upper critical fields (H c2 ) and irreversibility field (H irr ) of doped samples as compared to undoped samples have been observed. At 10 K, critical current densities (J c ) of the 5 and 10 wt% malic acid doped MgB 2 samples sintered at 850 deg C have higher values as compared to undoped sample sintered at the same temperature in the fields greater than 3 T. However, J c values of 5 wt% malic acid doped sample are higher than 10 wt% doped sample in the entire applied field region (0 - 7 T). In case of the samples sintered at 800 deg C improvement in J c values of 5 wt% doped sample have been found in entire field region as compared to undoped sample. On the other hand we see deterioration in J c values of 10 wt% doped samples sintered at 800 deg C as compared to undoped samples sintered at same temperature. The correlations between structural and superconducting properties will be described and discussed in this paper. (author)

  15. The effect of copper additions in the synthesis of in situ MgB2 Cu-sheathed wires

    International Nuclear Information System (INIS)

    Woźniak, M.; Hopkins, S.C.; Gajda, D.; Glowacki, B.A.

    2012-01-01

    The powder-in-tube (PIT) technique has been used to fabricate copper-sheathed magnesium diboride (MgB 2 ) wires using an insitu reaction method. The effect of copper powder additions, magnesium-boron molar ratio and heat treatment is studied by SEM, XRD, transport critical current I c (B) and resistivity ρ(T, B) measurements. The results show that addition of copper powder to the core of the wire accelerates the formation of MgB 2 and hence increases its amount and greatly decreases the amount of Mg-Cu intermetallic phases present in the core of the wire after heat treatment. Excess magnesium proved to be effective in compensating for Mg loss due to interdiffusion with the Cu of the wire sheath and resulted in less unreacted boron in the core for wires without added Cu, but seems to oppose the accelerated formation of MgB 2 in Cu added wires. The highest critical current density, 2.8 × 10 4 A cm -2 at 3 T and 4.2 K, was achieved for a wire with a stoichiometric Mg:B ratio and 3 at.% added copper powder heat treated at 700 °C for 5 min.

  16. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    Science.gov (United States)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  17. Behaviour of filamentary MgB2 wires subjected to tensile stress at 4.2 K

    International Nuclear Information System (INIS)

    Kováč, P; Kopera, L; Melišek, T; Hušek, I; Rindfleisch, M; Haessler, W

    2013-01-01

    Different filamentary MgB 2 wires have been subjected to tensile stress at 4.2 K. Stress–strain and critical current versus stress and strain characteristics of wires differing by filament architecture, sheath materials, deformation and heat treatment were measured and compared. It was found that the linear increase of critical current due to the pre-compression effect (ranging from 5% up to ≈20%) is affected by thermal expansion and the strength of used metallic sheaths. The values of irreversible strain ε irr and stress σ irr depend dominantly on the applied outer sheath and its final heat treatment conditions. Consequently, the strain-tolerance of MgB 2 wires is influenced by several parameters and it is difficult to see a clear relation between I c (ε) and σ(ε) characteristics. The lowest ε irr was measured for Monel sheathed wires (0.3–0.6%), medium for GlidCop ® sheath (0.48–0.6%), and the highest ε irr = 0.6–0.9% were obtained for MgB 2 wires reinforced by the stainless steel 316L annealed at temperature between 600 and 800 ° C. The highest ε irr = 0.9% and σ irr = 900 MPa were measured for the work-hardened steel, which is not considerably softened by the heat treatment at 600 ° C/2.5 h. (paper)

  18. S-I-N tunneling spectroscopy of MgB2 superconductor: evidence of two superconducting energy gaps

    International Nuclear Information System (INIS)

    Sen, Shashwati; Aswal, D.K.; Singh, Ajay; Gadkari, S.C.; Shah, K.; Gupta, S.K.; Sahni, V.C.

    2002-01-01

    The tunneling spectra of polycrystalline MgB 2 , have been recorded, at different temperatures between 29 K and T c , using planar superconductor- insulating-normal (S-I-N) tunneling spectroscopy. The planar S-I-N tunnel junctions have been fabricated by thermally evaporating Ag electrodes on MgB 2 surface. The naive layer, which forms at the surface of MgB 2 , due to atmospheric degradation, was employed as an insulating layer between Ag electrodes and MgB 2 . We have found presence of two clear superconducting energy gaps in MgB 2 . The magnitudes of these gaps at 29.5 K are 1.8 and 5.9 MeV, respectively. In the vicinity of T c , while larger energy gap obeyed BCS temperature dependence, the smaller energy gap deviated from BCS dependence. All the spectra exhibited zero-bias conductance, which decreased linearly with temperature and vanished at T c . (author)

  19. Nanostructure characterization of Ni and B layers as artificial pinning centers in multilayered MgB2/Ni and MgB2/B superconducting thin films

    International Nuclear Information System (INIS)

    Sosiati, H.; Hata, S.; Doi, T.; Matsumoto, A.; Kitaguchi, H.; Nakashima, H.

    2013-01-01

    Highlights: ► Nanostructure characterization of Ni and B layers as artificial pinning centers (APCs). ► Relationship between nanostructure and J c property. ► Enhanced J c in parallel field by parallel APCs within the MgB 2 film. -- Abstract: Research on the MgB 2 /Ni and MgB 2 /B multilayer films fabricated by an electron beam (EB) evaporation technique have been extensively carried out. The critical current density, J c of MgB 2 /Ni and MgB 2 /B multilayer films in parallel fields has been suggested to be higher than that of monolayer MgB 2 film due to introducing the artificial pinning centers of nano-sized Ni and B layers. Nanostructure characterization of the artificial pinning centers in the multilayer films were examined by transmission electron microscopy (TEM) and scanning TEM (STEM-energy dispersive X-ray spectroscopy (STEM-EDS))–EDS to understand the mechanism of flux pinning. The growth of columnar MgB 2 grains along the film-thickness direction was recognized in the MgB 2 /Ni multilayer film, but not in the MgB 2 /B multilayer film. Nano-sized Ni layers were present as crystalline epitaxial layers which is interpreted that Ni atoms might be incorporated into the MgB 2 lattice to form (Mg,Ni)B 2 phase. On the other hand, nano-sized B layers were amorphous layers. Crystalline (Mg,Ni)B 2 layers worked more effectively than amorphous B-layers, providing higher flux-pinning force that resulted in higher J c of the MgB 2 /Ni multilayer film than the MgB 2 /B multilayer film

  20. Transport relaxation measurements and glassy state effects in superconducting MgB2

    International Nuclear Information System (INIS)

    Olutas, M.; Yetis, H.; Altinkok, A.; Kilic, A.; Kilic, K.

    2008-01-01

    Time dependent effects in superconducting MgB 2 have been studied systematically for the first time by transport relaxation measurements (V-t curves) as a function of transport current (I), temperature (T) and external magnetic field (H). At very low dissipation levels (below ∼1 μV), it was observed that the sample voltage grows up smoothly in time by exhibiting the details of initial stage of relaxation process. At high dissipation levels, steady state corresponding to constant flow rate is maintained within a very short time and monitoring of details of flux dynamic evolving along sample becomes difficult on long time scales. Another interesting behavior is the appearance of voltage peak when the transport current was reduced to a finite value. After peak, it was observed that the sample voltage relaxes smoothly by leveling off within a very short time. The evolution of V-t curves suggests that formation of resistive flow channels along sample develops easily, which is quite similar to that of obtained for the superconducting ceramic samples whose grain boundaries are improved. Time dependent effects were also observed in magnetovoltage measurements (V-H curves) as the field sweep rate (dH/dt) varies. The observations were interpreted mainly in terms of flux trapping in grains

  1. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Shimakage, H.; Wang, Z.; Kaya, N.

    2005-01-01

    The effects of aluminum nitride (AlN) buffer layers on the superconducting properties of MgB 2 thin film were investigated. The AlN buffer layers and as-grown MgB 2 thin films were deposited in situ using the multiple-target sputtering system. The best depositing condition for the AlN/MgB 2 bi-layer occurred when the AlN was deposited on c-cut sapphire substrates at 290 deg. C. The crystallinity of the AlN/MgB 2 bi-layer was studied using the XRD φ-scan and it showed that AlN and MgB 2 had the same in-plane alignment rotated at an angle of 30 deg. as compared to c-cut sapphire. The critical temperature of the MgB 2 film was 29.8 K and the resistivity was 50.0 μΩ cm at 40 K

  2. Preparation of high quality superconducting thin MgB2 films for electronics

    International Nuclear Information System (INIS)

    Surdu, Andrei; Zdravkov, Vladimir; Sidorenko, Anatolie; Rossolenko, Anna; Ryazanov, Valerii; Bdikin, Igor; Kroemer, Oliver; Nold, Eberhard; Koch, Thomas; Schimmel, Thomas

    2007-01-01

    In this work we report the growth of high-Tc MgB 2 smooth films which are prepared in a two-step process: 1) deposition of the precursor films and 2) their annealing in Mg vapor with a specially designed, reusable reactor. Our method opens perspectives for the use of MgB 2 films in microelectronics, especially for high-frequency applications. (authors)

  3. Refinement of Crystalline Boron and the Superconducting Properties of MgB2 by Attrition Ball Milling

    International Nuclear Information System (INIS)

    Lee, J. H.; Shin, S. Y.; Park, H. W.; Jun, B. H.; Kim, C. J.

    2008-01-01

    We report refinement of crystalline boron by an attrition ball milling system and the superconducting properties of the MgB 2 pellets prepared from the refined boron. In this work, we have conducted the ball milling with only crystalline boron powder, in order to improve homogeneity and control the grain size of the MgB 2 that is formed from it. We observed that the crystalline responses in the ball-milled boron became broader and weaker when the ball-milling time was further increased. On the other hand, the B 2 O 3 peak became stronger in the powders, resulting in an increase in the amount of MgO within the MgB 2 volume. The main reason for this is a greater oxygen uptake. From the perspective of the superconducting properties, however, the sample prepared from boron that was ball milled for 5 hours showed an improvement of critical current density (J c ), even with increased MgO phase, under an external magnetic field at 5 and 20 K.

  4. Critical current density improvements in MgB2 superconducting bulk samples by K2CO3 additions  

    DEFF Research Database (Denmark)

    Grivel, J.-C.

    2018-01-01

    MgB2 bulk samples with potassium carbonate doping were made by means of reaction of elemental Mg and B powders mixed with various amounts of K2CO3. The Tc of the superconducting phase as well as its a-axis parameter were decreased as a result of carbon doping. Potassium escaped the samples during...... reaction. The critical current density of MgB2 was improved both in self field and under applied magnetic field for T ≤ 30 K, with optimum results for 1 mol% K2CO3 addition. The normalized flux pinning force (f(b)) shows that the flux pinning mechanism at low field is similar for all samples, following...

  5. Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum; Duong, Pham van; Ha, Dong Hyup; Oh, Young Hoon; Kang, Won Nam; Chai, Jong Seo [Sungkunkwan Univeversity, Suwon (Korea, Republic of); Hong, Seung Pyo; Kim, Ran Young [Kore Institute of Radiological and Medical Science, Seoul (Korea, Republic of)

    2016-06-15

    Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV α-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

  6. Optimization of the copper addition to the core of in situ Cu-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Woźniak, M; Juda, K L; Hopkins, S C; Glowacki, B A; Gajda, D

    2013-01-01

    Recent results on powder-in-tube in situ Cu-sheathed MgB 2 wires have shown that copper powder additions to the core can accelerate the formation of MgB 2 , increasing its volume fraction and greatly decreasing the amount of Mg–Cu intermetallic phases present in the core after heat treatment. The amount of added copper and heat treatment conditions strongly affect the critical current of the wire and require optimization. To identify the optimum parameters, eight wires with starting core compositions of Mg+2B+xCu with x = 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.12 and 0.15 were prepared with two heating ramp rates and their properties were investigated by SEM, XRD and J c and n-value measurements. The highest J c was found to be for x = 0.09, whereas x = 0.03 resulted in the highest n-value. The results are relatively independent of the heating ramp rate used for heat treatment. (paper)

  7. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.; Zangenberg, N.; Baurichter, A.

    2006-01-01

    for the collaborating company Danfysik A/S, which has a strongtradition in building resistive magnets for particle accelerators[4]. A technology transfer project was formulated at the end of 2005 with the purpose to collect the knowledge about the MgB2 superconductor gained in the STVF program and in the European...... in a dipole magnet for guiding particle beams in a small scale accelerator is examined with the purpose to build lighter and smaller than the present resistive magnets. Here the criticalcurrent density of primarily MgB2 will be compared with current density determined by specifications similar to the Tevatron...... accelerator, B = 4:4 Tesla and coil aperture D = 76 mm [6], which has been identified by Danfysik A/S as interesting. It isconcluded that MgB2 is useful for the dipole application and construction of a small test coil of one half of the magnet is planned in 2007....

  8. Pinning enhancement in MgB2 superconducting thin films by ...

    Indian Academy of Sciences (India)

    The magnetic field dependence of the critical current density Jc was calculated from the M–H loops and magnetic field dependence of ... MgB2 thin film; Fe2O3 nanoparticles; critical current density; r-plane Al2O3 substrate. 1. Introduction. The discovery of ... It was thought that from these cal- culations, one can choose an ...

  9. Field cooling of a MgB2 cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    International Nuclear Information System (INIS)

    Perini, E; Giunchi, G

    2009-01-01

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB 2 , even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB 2 bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below T c . We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  10. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  11. Peak effect and vortex dynamics in superconducting MgB2 single crystals

    International Nuclear Information System (INIS)

    Lee, Hyun-Sook; Jang, Dong-Jin; Kim, Heon-Jung; Kang, Byeongwon; Lee, Sung-Ik

    2007-01-01

    The dynamic nature of the vortex state of MgB 2 single crystals near the peak effect (PE) region, which is very different either from that of conventional low-temperature superconductors or from that of high-temperature cuprate superconductors, is introduced in this article. Relaxation from a disordered, metastable field-cooled (FC) state to an ordered, stable zero-field-cooled (ZFC) state of the MgB 2 single crystals under an applied magnetic field and current is investigated. From an analysis of the noise properties in the ZFC state, a dynamic vortex phase diagram of the MgB 2 is obtained near the PE region. Between the onset and the peak region in the critical current vs. magnetic field diagram, crossovers from a high-noise state to a noise-free state are observed with increasing current. Above the peak, however, an opposite phenomenon, crossovers from a noise-free to a high-noise state, is observed which has not been observed in any other superconductors. The hysteresis in the I-V curves and the two-level random telegraph noise in the time evolution of the voltage response under an constant applied current at the ZFC state are also studied in detail

  12. Enhanced superconducting properties of MgB2 by carbon substitution using carbon containing nano additives

    International Nuclear Information System (INIS)

    Devadas, K.M.; Varghese, Neson; Vinod, K.; Rahul, S.; Thomas, Syju; Anooja, J.B.; Syamaprasad, U.; Sundaresan, A.; Roy, S.B.

    2010-01-01

    A comparative study on the effect of doping of nano carbon, nano diamond and nano SiC in MgB 2 is carried out. The J c (H) is significantly enhanced for all doped samples compared to the pure sample among which MgB 1.9 C 0.1 (nano C) exhibits the best J c (H) performance. The enhanced performance is due to the effective substitution of C at B site which is confirmed by the systematic decrease in both α axis and T c . (author)

  13. Enhanced J c property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process

    International Nuclear Information System (INIS)

    Jiang, C.H.; Nakane, T.; Hatakeyama, H.; Kumakura, H.

    2005-01-01

    A modified in situ PIT process, which included a short time pre-annealing and intermediate drawing step in the conventional in situ PIT process, was employed to fabricate thin round MgB 2 /Fe wires from MgH 2 and B powders. The pores and cracks resulted from the MgH 2 decomposition during the pre-annealing were effectively eliminated by the intermediate drawing step, which subsequently increased the core density and J c property of final heat treated wires. A higher reduction rate after the pre-annealing led to a larger enhancement in J c within this study. The reproducibility of our new process on the J c improvement in MgB 2 wires was confirmed in two series of wires doped with 5 mol% or 10 mol% nano-SiC particles separately

  14. Development of ex situ processed MgB2 wires and their applications to magnets

    International Nuclear Information System (INIS)

    Braccini, Valeria; Nardelli, Davide; Penco, Roberto; Grasso, Giovanni

    2007-01-01

    In spite of the relatively short time dedicated to the development of magnesium diboride conductors since its discovery in early 2001, a substantial improvement was soon achieved in their manufacture and use. Unlike many others HTS and LTS materials, the MgB 2 conductor processing is more open to a number of improvements and modifications that help in making it more attractive for several DC and AC applications. Many kilometres of conductors were already produced throughout the world and it is now possible to start seriously thinking about a systematic industrial production of this material, as it is already possible to purchase it in reasonable lengths on the free market. These remarkable lengths of conductor were also wound in coils and their performance continuously improved in the past years. Here we will present a review of the recent results and a perspective for the future development of this 'new' superconductor, starting from the optimisation of the precursor powders needed to improve the magnetic field behaviour of the tapes, to the conductor development, i.e. the production of multifilamentary Cu-stabilized tapes in lengths up to 1.78 km, to the realization of the first large-scale application devices such as MRI magnets and fault current limiters

  15. Effects of MgO impurities and micro-cracks on the critical current density of Ti-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Liang, G.; Alessandrini, M.; Yen, F.; Hanna, M.; Fang, H.; Hoyt, C.; Lv, B.; Zeng, J.; Salama, K.

    2007-01-01

    Ti-sheathed monocore MgB 2 wires with improved magnetic critical current density (J c ) have been fabricated by in situ powder-in-tube (PIT) method and characterized by magnetization, X-ray diffraction, scanning electron microscopy and electrical resistivity measurements. For the best wire, the magnetic J c values at 5 K and fields of 2 T, 5 T, and 8 T are 4.1 x 10 5 A/cm 2 , 7.8 x 10 4 A/cm 2 , and 1.4 x 10 4 A/cm 2 , respectively. At 20 K and fields of 0.5 T and 3 T, the J c values are about 3.6 x 10 5 A/cm 2 and 3.1 x 10 4 A/cm 2 , respectively, which are much higher than those of the Fe-sheathed mono-core MgB 2 wires fabricated with the same in situ PIT process and under the same fabricating conditions. It appears that the overall J c for the average Ti-sheathed wires is comparable to that of the Fe-sheathed wires. Our X-ray diffraction and scanning electron microscopy analysis indicates that J c in the Ti-sheathed MgB 2 wires can be strongly suppressed by MgO impurities and micro-cracks

  16. Interplay of dendritic avalanches and gradual flux penetration in superconducting MgB2 films

    International Nuclear Information System (INIS)

    Shantsev, D V; Goa, P E; Barkov, F L; Johansen, T H; Kang, W N; Lee, S I

    2003-01-01

    Magneto-optical imaging was used to study a zero-field-cooled MgB 2 film at 9.6 K where in a slowly increasing field the flux penetrates by an abrupt formation of large dendritic structures. Simultaneously, a gradual flux penetration takes place, eventually covering the dendrites, and a detailed analysis of this process is reported. We find an anomalously high gradient of the flux density across a dendrite branch, and a peak value that decreases as the applied field increases. This unexpected behaviour is reproduced by flux creep simulations based on the non-local field-current relation in the perpendicular geometry. The simulations also provide indirect evidence that flux dendrites are formed at an elevated local temperature, consistent with a thermo-magnetic mechanism of the instability

  17. The superconducting properties of co-doped polycrystalline MgB2

    International Nuclear Information System (INIS)

    Moore, J D; Perkins, G K; Branford, W; Yates, K A; Caplin, A D; Cohen, L F; Chen, Soo Kien; Rutter, N A; MacManus-Driscoll, Judith L

    2007-01-01

    In this study we compare the critical current density, the irreversibility line and the upper critical field of four MgB 2 polycrystalline samples, which are either undoped or have 5% carbon or 5% carbon plus either 1% aluminium or 2% zirconium. We discuss how care must be taken for the extraction of the irreversibility line in such samples. We also show how ac susceptibility and Hall probe imaging can be used to examine whether the samples remain fully connected to the highest available fields. Compared to simple 5% carbon doping we find that co-doping provides modest improvement in the pinning properties at intermediate fields in the carbon plus zirconium doped sample

  18. Dry cryomagnetic system with MgB2 coil

    Science.gov (United States)

    Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskii, S. V.; Rudnev, I. A.

    2017-12-01

    MgB2 may be the future superconducting wire material for industrial magnets due to it’s higher operation temperature and potentially lower cost than low temperature superconductors (LTS) have. We designed a compact cryomagnetic system with the use of MgB2. The possibility of creating a magnet with a central field of 5 T from a commercial MgB2 wire by the “react and wound” method was investigated. The magnetic system is cooled by a cryocooler through a copper bus. The magnet has a warm bore diameter of 4 cm. The design of a magnet consisting of three concentric solenoids is proposed: an internal one of high-temperature superconductor (HTS), an average of MgB2, and an external of NbTi. The operating current of the system is 100 A. Two pairs of current leads are used. A separate pair of current leads for power supplying NbTi coil allows testing of MgB2 and HTS coils in an external field. The load curves for each of the magnets are calculated.

  19. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    Science.gov (United States)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  20. Development of 'low activation superconducting wire' for an advanced fusion reactor

    International Nuclear Information System (INIS)

    Hishinuma, Y.; Yamada, S.; Sagara, A.; Kikuchi, A.; Takeuchi, T.; Matsuda, K.; Taniguchi, H.

    2011-01-01

    In the D-T burning plasma reactor beyond ITER such as DEMO and fusion power plants assuming the steady-state and long time operation, it will be necessary to consider carefully induced radioactivity and neutron irradiation properties on the all components for fusion reactors. The decay time of the induced radioactivity can control the schedule and scenarios of the maintenance and shutdown on the fusion reactor. V 3 Ga and MgB 2 compound have shorter decay time within 1 years and they will be desirable as a candidate material to realize 'low activation and high magnetic field superconducting magnet' for advanced fusion reactor. However, it is well known that J c -B properties of V 3 Ga and MgB 2 wires are lower than that of the Nb-based A15 compound wires, so the J c -B enhancements on the V 3 Ga and MgB 2 wires are required in order to apply for an advanced fusion reactor. We approached and succeeded to developing the new process in order to improve J c properties of V 3 Ga and MgB 2 wires. In this paper, the recent activities for the J c improvements and detailed new process in V 3 Ga and MgB 2 wires are investigated. (author)

  1. An innovative technique to synthesize C-doped MgB2 by using chitosan as the carbon source

    International Nuclear Information System (INIS)

    Bovone, G; Kawale, S; Siri, A S; Vignolo, M; Bernini, C

    2014-01-01

    Here, we report a new technique to synthesize carbon-doped MgB 2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB 2 , in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB 2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB 2 powder. Mono-filamentary MgB 2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB 2 and pure MgB 2 powders. Transport property measurements on these wires were made and compared with MgB 2 wire produced using commercial boron. (fast track communication)

  2. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    Energy Technology Data Exchange (ETDEWEB)

    Marzik, James, V.

    2005-10-13

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  3. Fabrication of Chemically Doped, High Upper Critical Field Magnesium Diboride Superconducting Wires

    International Nuclear Information System (INIS)

    Marzik, James V.

    2005-01-01

    Controlled chemical doping of magnesium diboride (MgB2) has been shown to substantially improve its superconducting properties to the levels required for high field magnets, but the doping is difficult to accomplish through the usual route of solid state reaction and diffusion. Further, superconducting cables of MgB2 are difficult to fabricate because of the friable nature of the material. In this Phase I STTR project, doped and undoped boron fibers were made by chemical vapor deposition (CVD). Several >100m long batches of doped and undoped fiber were made by CVD codeposition of boron plus dopants. Bundles of these fibers infiltrated with liquid magnesium and subsequently converted to MgB2 to form Mg-MgB2 metal matrix composites. In a parallel path, doped boron nano-sized powder was produced by a plasma synthesis technique, reacted with magnesium to produce doped MgB2 superconducting ceramic bodies. The doped powder was also fabricated into superconducting wires several meters long. The doped boron fibers and powders made in this program were fabricated into fiber-metal composites and powder-metal composites by a liquid metal infiltration technique. The kinetics of the reaction between boron fiber and magnesium metal was investigated in fiber-metal composites. It was found that the presence of dopants had significantly slowed the reaction between magnesium and boron. The superconducting properties were measured for MgB2 fibers and MgB2 powders made by liquid metal infiltration. Properties of MgB2 products (Jc, Hc2) from Phase I are among the highest reported to date for MgB2 bulk superconductors. Chemically doped MgB2 superconducting magnets can perform at least as well as NbTi and NbSn3 in high magnetic fields and still offer an improvement over the latter two in terms of operating temperature. These characteristics make doped MgB2 an effective material for high magnetic field applications, such as magnetic confined fusion, and medical MRI devices. Developing

  4. Growth of superconducting MgB2 films by pulsed-laser deposition using a Nd-YAG laser

    International Nuclear Information System (INIS)

    Badica, P; Togano, K; Awaji, S; Watanabe, K

    2006-01-01

    Thin films of MgB 2 on r-cut Al 2 O 3 substrates have been grown by pulsed-laser deposition (PLD) using a Nd-YAG laser (fourth harmonic-266 nm) instead of the popular KrF excimer laser. The growth window to obtain superconducting films is laser energy 350-450 mJ and vacuum pressure with Ar-buffer gas of 1-8/10 Pa (initial background vacuum 0.5-1 x 10 -3 Pa). Films were deposited at room temperature and post-annealed in situ and ex situ at temperatures of 500-780 0 C and up to 1 h. Films are randomly oriented with maximum critical temperature (offset of resistive transition) of 27 K. SEM/TEM/EDS investigations show that they are mainly composed of small sphere-like particles (≤20 nm), and contain oxygen and some carbon, uniformly distributed in the flat matrix, but the amount of Mg and/or oxygen is higher in the aggregates-droplets (100-1000 nm) observed on the surface of the film's matrix. Some aspects of the processing control and dependences on film characteristics are discussed. The technique is promising for future development of coated conductors

  5. Theoretical study of superconductivity in MgB 2 and its alloys

    Indian Academy of Sciences (India)

    total density of states (DOS) and; the partial DOS around the Fermi energy, F, clearly show the importance of B -electrons for superconductivity. For BeB2 and NaB2, our results indicate qualitative similarities but significant quantitative differences in their electronic structure due to differences in the number of valence ...

  6. Critical current density analysis of ex situ MgB2 wire by in-field and temperature Hall probe imaging

    International Nuclear Information System (INIS)

    Bartolome, E; Granados, X; Cambel, V; Fedor, J; Kovac, P; Husek, I

    2005-01-01

    The irreversible magnetic behaviour at different temperatures of an ex situ Fe-alloy/MgB 2 wire, exhibiting a granular compositional distribution, was studied using an in-field, high resolution Hall probe imaging system. Quantitative information about the local current density was obtained by solving the Biot-Savart inversion problem. The flux penetration and current distribution maps obtained can be attributed to a inhomogeneous compositional 'plum-cake-like' system, consisting of large, isolated MgB 2 agglomerations embedded in a matrix of finely distributed MgB 2 +MgO. The critical current densities within the grains and their evolution with the applied magnetic field and temperature have been obtained, and compared to the mean J c (H,T) in the matrix

  7. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  8. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  9. Fabrication of seven-core multi-filamentary MgB2 wires with high critical current density by an internal Mg diffusion process

    International Nuclear Information System (INIS)

    Togano, K; Hur, J M; Matsumoto, A; Kumakura, H

    2009-01-01

    We found that the reaction between a Mg core and a B powder layer in an internal Mg diffusion (IMD)-processed multi-filamentary wire can proceed rapidly even at a furnace temperature lower than the melting point of Mg (650 deg. C), resulting in the formation of a reacted layer with a fine composite structure and, hence, excellent in-field critical current properties. The multi-filamentary wire is composed of an outermost Cu-Ni sheath and seven filaments with a Ta sheath, a Mg core, and B+SiC powder filled in the space between the Ta sheath and the Mg core. Heat treatment at 645 deg. C for 1 h produced a reacted layer with dense composite structure along the inner wall of the Ta sheath and a hole at the center of each core. This reaction probably initiated from the heat generation at the B/Mg interface, resulting in a temperature rise of the Mg core and the occurrence of liquid Mg infiltration. The J c value at 4.2 K for the reacted layer exceeds 10 5 cm -2 at 9 T, which is the highest reported so far for MgB 2 wire, including powder-in-tube (PIT)-processed wires. These results indicate that the IMD process can compete in terms of practical wire fabrication with the conventional PIT process.

  10. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  11. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    International Nuclear Information System (INIS)

    Sarmiento, G; Sanz, S; Pujana, A; Merino, J M; Apiñaniz, S; Marino, I; Iturbe, R; Nardelli, D

    2014-01-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB 2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB 2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  12. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  13. Pressure dependence of the Raman spectrum, lattice parameters and superconducting critical temperature of MgB2: evidence for pressure-driven phonon-assisted electronic topological transition

    International Nuclear Information System (INIS)

    Goncharov, A.F.; Struzhkin, V.V.

    2003-01-01

    We overview recent high-pressure studies of high-temperature superconductor MgB 2 by Raman scattering technique combined with measurements of superconducting critical temperature T c and lattice parameters up to 57 GPa. An anomalously broadened Raman band at 620 cm -1 is observed and assigned to the in-plane boron stretching E 2g mode. It exhibits a large Grueneisen parameter indicating that the vibration is highly anharmonic. The pressure dependencies of the E 2g mode and T c reveal anomalies at 15-22 GPa (isotope dependent). The anharmonic character of the E 2g phonon mode, its anomalous pressure dependence, and also that for T c are interpreted as a result of a phonon-assisted Lifshitz electronic topological transition

  14. Low AC-Loss Superconducting Cable Technology for Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of low AC loss magnesium diboride (MgB2) superconducting wires enables much lighter weight superconducting stator coils than with any other metal or...

  15. Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Liu, Dong

    2014-01-01

    A design study of a 10 MW direct drive wind turbine generator based on MgB2 superconducting wires is presented and the cost of the active materials of the generator is estimated to be between 226 €/kW and 84 €/kw, which is lower than the threshold values of 300 €/kW of the INNWIND.EU project. A n...

  16. The influence of the roll diameter in flat rolling of of superconducting in situ and ex situ MgB2 tape

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    , 150 and 210 mm in each step. The investigation has shown that the in situ powder is more readily compacted than the ex situ powder, with an average increase of relative density after mechanical processing of 37% for in situ powder and 19% for ex situ powder. Statistical analysis showed that the choice......Applying the powder in tube (PIT) method, single-filament MgB2/Fe wire and tape has been manufactured applying both the ex situ and the in situ approach. The influence of the roll diameter in three-step flat rolling on the powder density and critical temperature has been examined using rolls of 70...... roll in the first and second reductions followed by the 150 mm or 210 mm roll in the last reduction was the optimum strategy for both powder types. AC susceptibility testing showed that for the in situ tapes there was no correlation between the powder density and the critical temperature. For ex situ...

  17. Electroplated superconducting wire

    International Nuclear Information System (INIS)

    Peger, C.H.

    1991-01-01

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  18. The superconducting gaps of C-substituted and Al-substituted MgB2 single crystals by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Daghero, D.; Gonnelli, R.S.; Ummarino, G.A.; Calzolari, A.; Dellarocca, Valeria; Stepanov, V.A.; Zhigadlo, N.; Kazakov, S.M.; Karpinski, J.

    2005-01-01

    We studied the effects of carbon and aluminum substitutions on the gaps of the two-band superconductor MgB 2 by means of point-contact measurements in Mg(B 1-x C x ) 2 and Mg 1-y Al y B 2 single crystals with 0≤x≤0.132 and 0≤y≤0.21. The gap amplitudes, Δ ω and Δ π , were determined by fitting the conductance curves of the point contacts with the standard Blonder-Tinkham-Klapwijk (BTK) model generalized to the two-band case. Whenever possible, their values were confirmed by the independent fit (with a single-band BTK model) of the partial contribution of the two bands to the conductance, separated by means of a suitable magnetic field B*. In C-substituted crystals, the two gaps remain clearly distinct up to x∝0.10, but at x=0.132 we observed for the first time their merging into a single gap Δ≅3 meV with a gap ratio 2Δ=k B T c close to the standard BCS value. In Al-substituted crystals, we found no evidence of this gap merging. Instead, Δ π reaches the value 0.4 meV at y=0.21, where Δ π saturates at about 4 meV. These results are compared with other recent experimental findings in polycrystals and with the predictions of the models for multiband superconductivity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  20. Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems

    Science.gov (United States)

    Baig, Tanvir; Al Amin, Abdullah; Deissler, Robert J; Sabri, Laith; Poole, Charles; Brown, Robert W; Tomsic, Michael; Doll, David; Rindfleisch, Matthew; Peng, Xuan; Mendris, Robert; Akkus, Ozan; Sumption, Michael; Martens, Michael

    2017-01-01

    Conceptual designs of 1.5 and 3.0 T full-body magnetic resonance imaging (MRI) magnets using conduction cooled MgB2 superconductor are presented. The sizes, locations, and number of turns in the eight coil bundles are determined using optimization methods that minimize the amount of superconducting wire and produce magnetic fields with an inhomogeneity of less than 10 ppm over a 45 cm diameter spherical volume. MgB2 superconducting wire is assessed in terms of the transport, thermal, and mechanical properties for these magnet designs. Careful calculations of the normal zone propagation velocity and minimum quench energies provide support for the necessity of active quench protection instead of passive protection for medium temperature superconductors such as MgB2. A new ‘active’ protection scheme for medium Tc based MRI magnets is presented and simulations demonstrate that the magnet can be protected. Recent progress on persistent joints for multifilamentary MgB2 wire is presented. Finite difference calculations of the quench propagation and temperature rise during a quench conclude that active intervention is needed to reduce the temperature rise in the coil bundles and prevent damage to the superconductor. Comprehensive multiphysics and multiscale analytical and finite element analysis of the mechanical stress and strain in the MgB2 wire and epoxy for these designs are presented for the first time. From mechanical and thermal analysis of our designs we conclude there would be no damage to such a magnet during the manufacturing or operating stages, and that the magnet would survive various quench scenarios. This comprehensive set of magnet design considerations and analyses demonstrate the overall viability of 1.5 and 3.0 T MgB2 magnet designs. PMID:29170604

  1. Defect structure of ultrafine MgB2 nanoparticles

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Repp, Sergej; Erdem, Emre; Thomann, Ralf; Acar, Selçuk

    2014-01-01

    Defect structure of MgB 2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB 2 , namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB 2 , respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB 2 in comparison with bulk MgB 2 . Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB 2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB 2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications

  2. World-record current in the MgB2 superconductor

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two 20-metre long cables made of Magnesium Diboride (MgB2) superconductor. This result makes the use of such technology a viable solution for long-distance power transportation.   The 20-metre long electrical transmission line containing the two 20 kA MgB2 cables. “The test is an important step in the development of cold electrical power transmission systems based on the use of MgB2,” says Amalia Ballarino, head of the Superconductors and Superconducting Devices section in the Magnet, Superconductors and Cryostat group of the Technology Department, and initiator of this project. “The cables and associated technologies were designed, developed and tested at CERN. The superconducting wire is the result of a long R&D effort that started ...

  3. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping

    Science.gov (United States)

    Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.

    2003-08-01

    We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.

  4. Sugar as an optimal carbon source for the enhanced performance of MgB2 superconductors at high magnetic fields

    Science.gov (United States)

    Shcherbakova, O. V.; Pan, A. V.; Wang, J. L.; Shcherbakov, A. V.; Dou, S. X.; Wexler, D.; Babić, E.; Jerčinović, M.; Husnjak, O.

    2008-01-01

    In this paper we report the results of an extended study of the effect of sugar doping on the structural and electromagnetic properties of MgB2 superconductors. High values of the upper critical field (Bc2) of 36 T and the irreversibility field (Birr) of 27 T have been estimated at the temperature of 5 K in a bulk MgB2 sample with the addition of 10 wt% of sugar. The critical current density (Jc(Ba)) of sugar-doped samples has been significantly improved in the high field region. The value of transport Jc has reached as high as 108 A m-2 at 10 T and 5 K for Fe-sheathed sugar-doped MgB2 wire. The analysis of the pinning mechanism in the samples investigated indicated that dominant vortex pinning occurs on the surface type of pinning defects, such as grain boundaries, dislocations, stacking faults etc, for both pure and doped MgB2. In sugar-doped samples, pinning is governed by numerous crystal lattice defects, which appear in MgB2 grains as a result of crystal lattice distortion caused by carbon substitution for boron and nano-inclusions. The drastically improved superconducting properties of sugar-doped samples are also attributed to the highly homogeneous distribution and enhanced reactivity of this dopant with host Mg and B powders. The results of this work suggest that sugar is the optimal source of carbon for doping MgB2 superconductor, especially for application at high magnetic fields.

  5. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    International Nuclear Information System (INIS)

    Marzik, James V.

    2012-01-01

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl 3 in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB 2 wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J c , in excess of 10 5 A cm -2 at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H c2 (0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T c in carbon-doped MgB 2 powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB 2 superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant chemistry and concentration, wire

  6. Specific heat of the 38-K superconductor MgB_2 in the normal and superconducting state: bulk evidence for a double gap

    OpenAIRE

    Junod, Alain; Wang, Yuxing; Bouquet, Frederic; Toulemonde, Pierre

    2001-01-01

    The specific heat of two polycrystalline samples of MgB_2 is presented and analyzed (2 - 300 K, 0 - 16 T), together with magnetic properties. The main characteristics are a low density of states at the Fermi level, high phonon frequencies, and an anomalous temperature- and field- dependence of the specific heat at T < T_c. A two-gap model with a gap ratio of 3:1 fits the specific heat in zero field. The smaller gap is washed out by a field of 0.5 T.

  7. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  8. Measurement of the anisotropy ratios in MgB2 single crystals

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Kang, Byeongwon; Lee, Hyun-Sook; Lee, Sung-Ik

    2006-01-01

    We present our recent measurements on the anisotropy ratios of MgB 2 single crystals. Our measurements indicate that the anisotropy ratios of the penetration depth and of the upper critical field have different magnitudes and temperature dependences, as predicted by theoretical calculations. These results imply that the two-gap nature can strongly influence the superconducting properties of MgB 2

  9. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  10. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  11. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  12. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  13. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  14. Studying superconducting Nb$_{3}$Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb$_{3}$Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb$_{3}$Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  15. MgB2 thick films on three-dimensional structures fabricated by HPCVD

    Science.gov (United States)

    Guo, Zhengshan; Cai, Xingwei; Liao, Xuebin; Chen, Yiling; Yang, Can; Niu, Ruirui; Luo, Wenhao; Huang, Zigeng; Feng, Qingrong; Gan, Zizhao

    2018-06-01

    Magnetic shielding has been a key factor in the measurement of ultra-weak magnetic fields, especially for shielding from low frequency electromagnetic noise. With the recent development of superconducting quantum interference devices, superconducting magnetic shielding has become an important area of research. MgB2 has shown great potential in magnetic shielding for its remarkable superconducting properties, the feasibility of its use in this capacity having been demonstrated by MgB2 bulk samples. However, the potential for application of such bulk samples is limited. In this work, we have investigated the possibility of the fabrication of MgB2 films on three-dimensional (3D) structures using a hybrid physical‑chemical vapor deposition system. MgB2 films 10 μm thick have been fabricated on the outer surface of a polycrystalline Al2O3 cylinder. The deposited film showed a transition temperature (TC) of 39 K and J C of 5.1 × 105 A · cm‑2, which are comparable to those of planar MgB2 films. This work shows the feasibility of depositing MgB2 films onto a 3D structure, and sheds light on the potential use of MgB2 films in superconducting magnetic shielding.

  16. Observation of pseudogap in MgB2

    Science.gov (United States)

    Patil, S.; Medicherla, V. R. R.; Ali, Khadiza; Singh, R. S.; Manfrinetti, P.; Wrubl, F.; Dhar, S. K.; Maiti, Kalobaran

    2017-11-01

    We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.

  17. Effect of process variables on synthesis of MgB2 by a high energy ball mill

    Directory of Open Access Journals (Sweden)

    Kurama Haldun

    2016-01-01

    Full Text Available The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure

  18. Fluctuations on the magnetic response of superconducting thin films of Nb and MgB2 - Percolation limit of vortex mobility

    International Nuclear Information System (INIS)

    Colauto, F.; Orgiani, P.; Xi, X.X.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.; Patino, E.; Blamire, M.G.; Ortiz, W.A.

    2007-01-01

    Application of a magnetic field of sufficient intensity orthogonal to superconducting thin films may produce dendritic patterns, where penetrated and Meissner regions coexist. The dendritic mode can be detected by AC-susceptibility measurements, since fingers penetrated by the magnetic field act as intergranular material. Measurements of the AC-susceptibility have the conventional shape for smaller values of magnitude and frequency of the excitation field. However, for frequencies in the vicinity of 1 kHz and AC-fields around 3 Oe and above, the curve deviates from its canonical behavior and fluctuates, the excursion becoming wider as the amplitude is increased. In this contribution we present results of a systematic study conducted to determine the threshold between smooth and fluctuating regimes of the magnetic response of the film, which is interpreted as the percolation limit of vortex mobility throughout the sample

  19. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  20. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    Science.gov (United States)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  1. Specific heat of MgB_2 after irradiation

    OpenAIRE

    Wang, Yuxing; Bouquet, Frederic; Sheikin, Ilya; Toulemonde, Pierre; Revaz, Bernard; Eisterer, Michael; Weber, Harald W.; Hinderer, Joerg; Junod, Alain

    2002-01-01

    We studied the effect of disorder on the superconducting properties of polycrystalline MgB_2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2 Delta 0 / k_B T_c = 1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T_c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutr...

  2. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Directory of Open Access Journals (Sweden)

    Narendra Acharya

    2016-08-01

    Full Text Available In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc and high critical current density (Jc. The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  3. Active Protection of an MgB2 Test Coil

    Science.gov (United States)

    Park, Dong Keun; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu

    2011-01-01

    This paper presents results of a study, experimental and computational, of a detect-and-activate-the-heater protection technique applied to a magnesium diboride (MgB2) test coil operated in semi-persistent mode. The test coil with a winding ID of 25 cm and wound with ~500-m long reacted MgB2 wire was operated at 4.2 K immersed in a bath of liquid helium. In this active technique, upon the initiation of a “hot spot” of a length ~10 cm, induced by a “quench heater,” a “protection heater” (PH) of ~600-cm long planted within the test coil is activated. The normal zone created by the PH is large enough to absorb the test coil’s entire initial stored energy and still keeps the peak temperature within the winding below ~260 K. PMID:22081754

  4. Investigation of pinning in MgB2 superconductors

    International Nuclear Information System (INIS)

    Mohammad, S.; Reissner, M.; Steiner, W.; Bauer, E.; Giovannini, M.

    2006-01-01

    Full text: The pinning behaviour of bulk MgB 2 superconductors is peculiar in many respects. Pinning seems to be stronger than in classical high T C materials and there seems to be no weak link problem in these compounds, giving hope to produce bulk samples and wires with current densities appropriate for technical applications. But, although many studies concerning the pinning behaviour in this compound appeared in recent years, the results are still contradictory. In the present work we present results of an investigation of the pinning behaviour by magnetic relaxation measurements of three MgB 2 samples: a pure one, a sample with 8 at% Al substitution and a sample with 10 wt% of SiC admixture. A comparison of different analyses methods is given. (author)

  5. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  6. A New Superconducting Wire for Future Accelerators

    CERN Multimedia

    2006-01-01

    The CARE/NED project has developed a new superconducting wire that can achieve very high currents (1400 amps) at high magnetic fields (12 teslas). Cross-section of the CARE/NED wire produced by SMI. As we prepare to enter a new phase of particle physics with the LHC, technological development is a continuous process to ensure the demands of future research are met. The next generation of colliders and upgrades of the present ones will require significantly larger magnetic fields for bending and focusing the particle beams. NED (Next European Dipole) is one of the projects taking on this challenge to push technology beyond the present limit (see: More about NED). The magnets in the LHC rely on niobium titanium (NbTi) as the superconducting material, with a maximum magnetic field of 8 to 10T (tesla). In order to exceed this limitation, a different material together with the corresponding technology needs to be developed. NED is assessing the suitability of niobium tin (Nb3Sn), which has the potential to at le...

  7. Progress in the deposition of MgB2 thin films

    International Nuclear Information System (INIS)

    Xi, X X; Pogrebnyakov, A V; Zeng, X H; Redwing, J M; Xu, S Y; Li, Qi; Liu, Zi-Kui; Lettieri, J; Vaithyanathan, V; Schlom, D G; Christen, H M; Zhai, H Y; Goyal, A

    2004-01-01

    An MgB 2 thin film deposition technology is the first critical step in the development of superconducting electronics utilizing the 39 K superconductor. It turned out to be a challenging task due to the volatility of Mg and phase stability of MgB 2 , the low sticking coefficients of Mg at elevated temperatures, and the reactivity of Mg with oxygen. A brief overview of current deposition techniques is provided here from a thermodynamic perspective, with an emphasis on a very successful technique for high quality in situ epitaxial MgB 2 films, the hybrid physical-chemical vapour deposition. Examples of heterostructures of MgB 2 with other materials are also presented

  8. Development of Nb-Ti multifilamentar superconducting wires

    International Nuclear Information System (INIS)

    Otubo, J.

    1986-01-01

    Ni-Ti superconducting wires with multifilamentar configuration were produced, using the grouping technique. Some basic concepts on superconductivity and its main critical parameters are presented. The criteria for stabilizing superconductors in terms of the geometry are studied. The main critical parameters, H c , J c , T c in function of the composition and the metallurgical structure of Ni-Ti alloy are analysed. The development of Ni-Ti superconducting wires is described. (M.C.K.) [pt

  9. Processing of flexible high-Tc superconducting wires

    International Nuclear Information System (INIS)

    Lee, B.I.; Modi, V.

    1989-01-01

    Wires superconducting at temperatures above 77 K are produced by using YBa 2 Cu 3 O 7 materials. Flexibility was obtained by support from prefabricated fibers or a metallic coating on the extruded YBa 2 Cu 3 O 7 wires. The microstructure, the T c and the critical current densities of the wires were determined. Processing variables and steps are described

  10. Improving magnetic properties of MgB_2 bulk superconductors by synthetic engine oil treatment

    International Nuclear Information System (INIS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-01-01

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB_2 superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB_2. • The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB_2 sample. • The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB_2 samples immersed in synthetic engine oil on the critical current density ( J_c(H)), magnetic field dependence of the pinning force density f_p(b) and T_c performances of MgB_2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB_2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB_2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB_2 sample because of the number of the pinning centers. The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J_c value for the pure sample is 2.0 × 10"3 A/cm"2, whereas for the MgB_2 sample immersed at 300 min standby time in engine oil the J_c is enhanced to 4.8 × 10"3 A/cm"2 at 5 K and 3 T. The superconducting transition temperature (T_c) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was

  11. Directional scanning tunneling spectroscopy in MgB2

    International Nuclear Information System (INIS)

    Iavarone, M.; Karapetrov, G.; Koshelev, A.E.; Kwok, W.K.; Crabtree, G.W.; Hinks, D.G.; Cook, R.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.

    2003-01-01

    The superconductivity in MgB 2 has a two-band character with the dominating band having a 2D character and the second band being isotropic in the three dimensions. We use tunneling microscopy and spectroscopy to reveal the two distinct energy gaps at Δ 1 =2.3 meV and Δ 2 =7.1 meV. Different spectral weights of the partial superconducting density of states are a reflection of different tunneling directions in this multi-band system. The results are consistent with the existence of two-band superconductivity in the presence of strong interband superconducting pair interaction and quasiparticle scattering. The temperature evolution of the tunneling spectra shows both gaps vanishing at the bulk T c

  12. Fabrication of a Scaled MgB2 Racetrack Demonstrator Pole for a 10-MW Direct-Drive Wind Turbine Generator

    DEFF Research Database (Denmark)

    Magnusson, Niklas; Eliassen, Jan Christian; Abrahamsen, Asger Bech

    2018-01-01

    Field windings made of MgB2 wires or tapes are considered for their potential to reduce volume, weight, and cost of large offshore wind turbine generators. To gain experience of how to use this relatively new material in full-scale generators, tests of different winding methodologies and techniques...... are needed. In this paper, we describe in detail the steps used to wind a racetrack coil with a length of 1 m and a width of 0.5 m out of 4.5 km of MgB2 superconducting tape. The width corresponds to a full-scale pole of a 10-MW generator, whereas the length of the straight section is shorter than...... the corresponding full-scale pole. The coil was built up of ten double pancake coils. Each double pancake coil was wet wound using a semiautomatic winding process, where Stycast 2850 was applied directly to the MgB2 tape without any other dedicated electrical insulation. The strengths and weaknesses of the winding...

  13. Superconducting wire for the T-15 toroidal magnet

    International Nuclear Information System (INIS)

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  14. Wire rope superconducting cable for diurnal load leveling SMES

    International Nuclear Information System (INIS)

    Costello, G.A.

    1980-01-01

    The design of a wire rope cable for a superconducting magnetic energy storage (SMES) unit is discussed. The superconducting wires in the rope permit the passage of large currents in the relatively small conductors of the windings and hence cause large electromagnetic forces to act on the rope. The diameter of the rope, from a strength point of view, can be considerably reduced by supporting the rope at various points along its length

  15. Superconducting properties of in situ powder-in-tube-processed MgB2 tapes fabricated with sub-micrometre Mg powder prepared by an arc-plasma method

    International Nuclear Information System (INIS)

    Yamada, H; Uchiyama, N; Matsumoto, A; Kitaguchi, H; Kumakura, H

    2007-01-01

    We fabricated in situ powder-in-tube-processed MgB 2 /Fe tapes using sub-micrometre Mg powder prepared by applying an arc-plasma method. We found that the use of this sub-micrometre Mg powder was very effective in increasing the J c values. The transport J c value of 10 mol% SiC-added tapes fabricated with this sub-micrometre Mg powder reached 275 A mm -2 at 4.2 K and 10 T. This value was about six times that of 5 mol% SiC-added tapes fabricated with commercial Mg powder. Microstructure analyses suggest that this J c enhancement is primarily due to the smaller MgB 2 grain size

  16. MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation

    Directory of Open Access Journals (Sweden)

    Tamin Tai

    2012-12-01

    Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.

  17. Fabrication and radio frequency test of large-area MgB2 films on niobium substrates

    Science.gov (United States)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; Yang, Can; Franzi, Matthew; Tantawi, Sami; Feng, Qingrong; Liu, Kexin

    2017-04-01

    Magnesium diboride (MgB2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB2 films on metal substrates is needed. In this work, high quality MgB2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩ at 4 K and 11.4 GHz. The fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB2 films are presented.

  18. Effects of carbon concentration and filament number on advanced internal Mg infiltration-processed MgB2 strands

    International Nuclear Information System (INIS)

    Li, G Z; Sumption, M D; Zwayer, J B; Susner, M A; Collings, E W; Rindfleisch, M A; Thong, C J; Tomsic, M J

    2013-01-01

    In this paper we show that an advanced internal Mg infiltration method (AIMI) is effective in producing superconducting wires containing dense MgB 2 layers with high critical current densities. The in-field critical current densities of a series of AIMI-fabricated MgB 2 strands were investigated in terms of C doping levels, heat treatment (HT) time and filament numbers. The highest layer J c for our monofilamentary AIMI strands was 1.5 × 10 5 A cm −2 at 10 T, 4.2 K, when the C concentration was 3 mol% and the strand was heat-treated at 675 ° C for 4 h. Transport critical currents were also measured at 4.2 K on short samples and 1 m segments of 18-filament C doped AIMI strands. The layer J c s reached 4.3 × 10 5 A cm −2 at 5 T and 7.1 × 10 4 A cm −2 at 10 T, twice as high as those of the best powder-in-tube strands. The analysis of these results indicates that the AIMI strands, possessing both high layer J c s and engineering J e s after further optimization, have strong potential for commercial applications. (paper)

  19. Scanning tunneling spectroscopy on neutron irradiated MgB2 thin films

    International Nuclear Information System (INIS)

    Di Capua, Roberto; Salluzzo, Marco; Vaglio, Ruggero; Ferdeghini, Carlo; Ferrando, Valeria; Putti, Marina; Xi Xiaoxing; Aebersold, Hans U.

    2007-01-01

    Neutron irradiation was performed on MgB 2 thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the π gap with increasing disorder was found

  20. Development of Nb3Sn AC superconducting wire. Pt. 2

    International Nuclear Information System (INIS)

    Kasahara, Hobun; Torii, Shinji; Akita, Shirabe; Ueda, Kiyotaka; Kubota, Yoji; Yasohama, Kazuhiko; Kobayashi, Hisayasu; Ogasawara, Takeshi.

    1993-01-01

    For the realization of superconducting power apparatus, it is important that the development of highly stable superconducting cables. Nb 3 Sn wire has higher critical temperature than NbTi wire. Therefore, it is possible to make highly stable superconducting wires. In this report, we examine a manufacturing process of Ac Nb 3 Sn wire. This manufacturing process has four times higher critical current density than conventional processes. We have made a 400 kVA class AC coil with React and Wind method. The loss density of this coil was 20MW/m 3 at just before the quench. In this case, the temperature of cable increased about 3.8 K. This means that the Nb 3 Sn coil has a very high stability. (author)

  1. Specific heat of MgB2 after irradiation

    International Nuclear Information System (INIS)

    Wang Yuxing; Bouquet, Frederic; Sheikin, Ilya; Toulemonde, Pierre; Revaz, Bernard; Eisterer, Michael; Weber, Harald W; Hinderer, Joerg; Junod, Alain

    2003-01-01

    We studied the effect of disorder on the superconducting properties of polycrystalline MgB 2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2Δ 0 /k B T c =1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutrons, a substantial bulk increase of dH c2 /dT at T c can be obtained without sacrificing more than a few degrees in T c . The upper critical field of the sample after irradiation exceeds 28 T at T→0

  2. Estimation of hysteretic losses for MgB2 tapes under the operating conditions of a generator

    International Nuclear Information System (INIS)

    Vargas-Llanos, Carlos Roberto; Zermeño, Víctor M R; Grilli, Francesco; Sanz, Santiago; Trillaud, Frederic

    2016-01-01

    Hysteretic losses in the MgB 2 wound superconducting coils of a 550 kW synchronous hybrid scaled generator were estimated as part of the European project SUPRAPOWER led by the Spanish Fundación Tecnalia Research and Innovation. Particular interest was given to the losses caused by the magnetic flux ripples in the rotor coils originating from the conventional stator during nominal operation. To compute these losses, a 2D finite element analysis was conducted and Maxwell’s equations written in the H-formulation were solved considering the nonlinear material properties of the conductor materials. The modeled tapes are made of multiple MgB 2 filaments embedded in a Ni matrix and soldered to a high purity copper strip and insulated with Dacron braid. Three geometrical models of single tape cross sections of decreasing complexity were studied: (1) the first model reproduced closely the actual cross section obtained from tape micrographs. (2) The second model was obtained from the computed elasto-plastic deformation of a round Ni wire. (3) The third model was based on a simplified cross section with the superconducting filaments bundled in a single elliptical bulky structure. The last geometry allowed the validation of the modeling technique by comparing numerical losses with results from well-established analytical expressions. Additionally, the following cases of filament transpositions of the multi-filamentary tape were studied: no transposition, partial and full transposition; thereby improving understanding of the relevance of the tape fabrication process on the magnitude of the determination of ac losses. Finally, choosing the right level of geometrical detail, the following operational regimes of the machine and its impact on individual superconducting tape losses in the rotor were studied: bias-dc current, ramping current under ramping background field and magnetic flux ripples under dc background current and field. (paper)

  3. Estimation of hysteretic losses for MgB2 tapes under the operating conditions of a generator

    Science.gov (United States)

    Vargas-Llanos, Carlos Roberto; Zermeño, Víctor M. R.; Sanz, Santiago; Trillaud, Frederic; Grilli, Francesco

    2016-03-01

    Hysteretic losses in the MgB2 wound superconducting coils of a 550 kW synchronous hybrid scaled generator were estimated as part of the European project SUPRAPOWER led by the Spanish Fundación Tecnalia Research & Innovation. Particular interest was given to the losses caused by the magnetic flux ripples in the rotor coils originating from the conventional stator during nominal operation. To compute these losses, a 2D finite element analysis was conducted and Maxwell’s equations written in the H-formulation were solved considering the nonlinear material properties of the conductor materials. The modeled tapes are made of multiple MgB2 filaments embedded in a Ni matrix and soldered to a high purity copper strip and insulated with Dacron braid. Three geometrical models of single tape cross sections of decreasing complexity were studied: (1) the first model reproduced closely the actual cross section obtained from tape micrographs. (2) The second model was obtained from the computed elasto-plastic deformation of a round Ni wire. (3) The third model was based on a simplified cross section with the superconducting filaments bundled in a single elliptical bulky structure. The last geometry allowed the validation of the modeling technique by comparing numerical losses with results from well-established analytical expressions. Additionally, the following cases of filament transpositions of the multi-filamentary tape were studied: no transposition, partial and full transposition; thereby improving understanding of the relevance of the tape fabrication process on the magnitude of the determination of ac losses. Finally, choosing the right level of geometrical detail, the following operational regimes of the machine and its impact on individual superconducting tape losses in the rotor were studied: bias-dc current, ramping current under ramping background field and magnetic flux ripples under dc background current and field.

  4. The preliminary study of the quench protection of an MgB2

    Science.gov (United States)

    Juster, F. P.; Berriaud, C.; Bonelli, A.; Pasquet, R.; Przybilski, H.; Schild, T.; Scola, L.

    2014-01-01

    In the framework of general studies currently carried out at CEA/Saclay in collaboration with Sigmaphi Company on dry MgB2 magnet operating at 10 K and medium range field, 1 T up to 4 T., we plan to build a prototype-coil with a commercial MgB2 wire. This coil, the nominal axial magnetic field of which is 1 tesla, will be placed in a 3 teslas background field generated by a classical NbTi coil. This paper deals with the preliminary quench protection studies including stability and quench propagation modeling.

  5. Electronic structure of MgB2

    Indian Academy of Sciences (India)

    Abstract. Results of ab initio electronic structure calculations on the compound MgB2 using the. FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, c/a ratio and the bulk modulus, all of which are in excellent ...

  6. Electronic structure of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound MgB2 using the FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  7. MgB2-based superconductors for fault current limiters

    Science.gov (United States)

    Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.

    2017-02-01

    A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.

  8. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Chang, In Soon; Lee, Jong Min; Um, Tae Yoon; Hong, Kyae Won; Lee, Ho Jin; Lee, Hee Kwun; Kim, Chan Joong; Park, Soon Dong; Kim, Woo Gon; Kim, Ki Baek; Kwon, Sun Chil

    1992-10-01

    On this study Y-Ba-Cu-O was prepared by partial melt process and superconducting wire was fabricated by powder-in-tube method. First, mechancial properties, electrical properties, microstructure and oxygen diffusion behavior were observed. Second, through fabricated superconducting wire, conceptual design, composition and plasticity of filament superconducting wire were investigated. (Author)

  9. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  10. Microwave Synthesis and Magnetic Properties of High Tc Superconductor MGB2

    International Nuclear Information System (INIS)

    Koeseoglu, Y.

    2004-01-01

    Polycrystalline powders of MgB 2 have been synthesized by microwave synthesis technique. Crystallographic information of the sample was investigated by powder X-ray diffraction (XRD). The main phase was determined as MgB2, and secondary phases as MgB4 and MgO. The temperature dependence of magnetic properties of polycrystalline MgB2, synthesized by using microwave heating of the constituents have been characterized by SQUID magnetometer and X-band EPR spectrometer. The transition temperature to the superconducting phase is observed as 39K for both measurements. An isotropic, strong and very narrow EPR signal corresponding to free electron g-value (ge=2.0023) is observed. The observed line broadening with decreasing temperature might arise from the dipolar interactions between the superparamagnetic nanoparticles. Normally, the internal magnetic field originating from magnetic entities is expected to be more uniform as a result of highly ordered magnetic moments at low temperatures; giving narrower ESR line in contrary in our case. While the ESR line is broadened, the signal intensity is drastically decreased just below T c =39 K corresponding to a transition temperature from normal to superconducting state. Some minor changes in both intensity and line width curves might be taken as signs for changes of local crystalline field symmetry around weakly localized conduction electrons or holes, which are the sources of ESR signal in MgB 2 compound

  11. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines: Cost of Energy Based

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    This paper aims at finding feasible electromagnetic designs of superconducting synchronous generators (SCSGs) for a 10-MW direct-drive wind turbine. Since a lower levelized cost of energy (LCoE) increases the feasibility of SCSGs in this application, 12 generator topologies are compared regarding...... their LCoE in a simplified form of levelized equipment cost of energy (LCoE$_{\\text{eq}}$). MgB$_2$ wires are employed in the field winding. Based on the current unit cost and critical current density capability of the MgB $_2$ wire at 20 K, the topologies with more iron have a much lower LCo...

  12. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  13. A possibility of enhancing Jc in MgB2 film grown on metallic hastelloy tape with the use of SiC buffer layer

    International Nuclear Information System (INIS)

    Putri, W. B. K.; Kang, B.; Ranot, M.; Lee, J. H.; Kang, W. N.

    2014-01-01

    We have grown MgB 2 on SiC buffer layer by using metallic Hastelloy tape as the substrate. Hastelloy tape was chosen for its potential practical applications, mainly in the power cable industry. SiC buffer layers were deposited on Hastelloy tapes at 400, 500, and 600 degrees C by using a pulsed laser deposition method, and then by using a hybrid physical-chemical vapor deposition technique, MgB 2 films were grown on the three different SiC buffer layers. An enhancement of critical current density values were noticed in the MgB 2 films on SiC/Hastelloy deposited at 500 and 600 degrees C. From the surface analysis, smaller and denser grains of MgB 2 tapes are likely to cause this enhancement. This result infers that the addition of SiC buffer layers may contribute to the improvement of superconducting properties of MgB 2 tapes.

  14. Physical properties in flux line lattice state in MgB2 probed by μSR

    International Nuclear Information System (INIS)

    Ohishi, Kazuki; Muranaka, Takahiro; Akimitsu, Jun; Koda, Akihiro; Higemoto, Wataru; Kadono, Ryosuke

    2002-01-01

    We have performed muon spin rotation (μSR) measurements to deduce the magnetic penetration depth λ in the flux line lattice state of MgB 2 microscopically. It is observed that λ shows a quadratic temperature dependence which is predicted for the case of superconducting gap with line nodes. Furthermore, it clearly exhibits a strong field dependence, where λ increases almost linearly with H. These results strongly suggest that the superconducting order parameter in MgB 2 is highly anisotropic. (author)

  15. Thickness dependence of J_c (0) in MgB_2 films

    International Nuclear Information System (INIS)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-01-01

    Highlights: • A serial of MgB_2 superconducting films from 10 nm to 8 µm have been prepared. • T_c and J_c (5 K, 0 T) of films are high. • J_c (5 K, 0 T) reaches its maximum 2.3 × 10"8 A cm"−"2 for 100 nm films. • The relationship between thickness and J_c has been discussed in detail. - Abstract: MgB_2 superconducting films, whose thicknesses range from 10 nm to 8 µm, have been fabricated on SiC substrates by hybrid physical–chemical vapor deposition (HPCVD) method. It is the first time that the T_c and the J_c of MgB_2 films are studied on such a large scale. It is found that with the increasing of thickness, T_c elevates first and then keeps roughly stable except for some slight fluctuations, while J_c (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum J_c (5 K, 0 T) = 2.3 × 10"8 A cm"−"2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB_2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB_2 films.

  16. Formation of polycrystalline MgB2 synthesized by powder in sealed tube method with different initial boron phase

    Science.gov (United States)

    Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar

    2018-04-01

    Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).

  17. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  18. Ductile alloy and process for preparing composite superconducting wire

    Science.gov (United States)

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  19. Small Fermi energy, strong electron-phonon effects and anharmonicity in MgB2

    International Nuclear Information System (INIS)

    Cappelluti, E.; Pietronero, L.

    2007-01-01

    The investigation of the electron-phonon properties in MgB 2 has attracted a huge interest after the discovery of superconductivity with T c 39 K in this compound. Although superconductivity is often described in terms of the conventional Eliashberg theory, properly generalized in the multiband/multigap scenario, important features distinguish MgB 2 from other conventional strong-coupling superconductors. Most important it is the fact that a large part of the total electron-phonon strength seems to be concentrated here in only one phonon mode, the boron-boron E 2g stretching mode. Another interesting property is the small Fermi energy of the σ bands, which are strongly coupled with the E 2g mode. In this contribution, we discuss how the coexistence of both these features give rise to an unconventional phenomenology of the electron-phonon properties

  20. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  1. Texture gradients in Fe-sheathed ex situ produced MgB2 tapes

    International Nuclear Information System (INIS)

    Lezza, P; Gladyshevskii, R; Abaecherli, V; Fluekiger, R

    2006-01-01

    Superconducting Fe-sheathed MgB 2 monofilamentary tapes have been fabricated by the powder-in-tube technique, varying the particle size of the starting MgB 2 powder and applying either cold or hot rolling during the last deformation process. Measurements of the critical current density J c with the magnetic field applied parallel or perpendicular to the tape surface revealed a pronounced anisotropy for the cold rolled tapes, which was found to increase with increasing particle size and magnetic field strength. The microstructural origin of the J c anisotropy was confirmed by means of x-ray diffraction performed on the filaments after mechanical removal of the sheath. The local texture was studied in a series of diffraction patterns collected at different distances from the filament centre, removing each time some 25 μm of the filament thickness. In the cold rolled tapes, the average orientation of the MgB 2 grains was found to approach a preferred orientation with the crystallographic c-axis perpendicular to the tape surface, near the interface with the sheath; however, the misalignment angle increased towards the centre of the tape. In the hot rolled tapes, for which no J c anisotropy was observed, the grains were found to be approximately randomly oriented. Roughness measurements performed on the side of the Fe sheath in contact with the MgB 2 filament are in agreement with the difference in texture observed for cold and hot rolled tapes

  2. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  3. On heavy carbon doping of MgB2

    International Nuclear Information System (INIS)

    Kasinathan, Deepa; Lee, K.-W.; Pickett, W.E.

    2005-01-01

    Heavy carbon doping of MgB 2 is studied by first principles electronic structure studies of two types, an ordered supercell (Mg(B 1-x C x ) 2 , x 0.0833) and also the coherent potential approximation method that incorporates effects of B-C disorder. For the ordered model, the twofold degenerate σ-bands that are the basis of the high temperature superconductivity are split by 60 meV (i.e. 7 meV/% C) and the σ Fermi cylinders contain 0.070 holes/cell, compared to 0.11 for MgB 2 . A virtual crystal treatment tends to overestimate the rate at which σ holes are filled by substitutional carbon. The coherent potential approximation (CPA) calculations give the same rate of band filling as the supercell method. The occupied local density of states of C is almost identical to that of B in the upper 2 eV of the valence bands, but in the range -8 eV to -2 eV, C has a considerably larger density of states. The calculations indicate that the σ Fermi surface cylinders pinch off at the zone center only above the maximum C concentration x ∼ 0.10. These results indicate that Mg(B 1-x C x ) 2 as well as Mg 1-x Al x B 2 is a good system in which to study the evolution of the unusual electron-phonon coupling character and strength as the crucial σ hole states are filled

  4. Multiband model for tunneling in MgB2 junctions

    NARCIS (Netherlands)

    Brinkman, Alexander; Golubov, Alexandre Avraamovitch; Rogalla, Horst; Dolgov, O.V.; Kortus, J.; Kong, Y.; Jepsen, O.; Andersen, O.K.

    2002-01-01

    A theoretical model for quasiparticle and Josephson tunneling in multiband superconductors is developed and applied to MgB2-based junctions. The gap functions in different bands in MgB2 are obtained from an extended Eliashberg formalism, using the results of band structure calculations. The

  5. Fabrication of superconducting wire using organometallic precursors and infiltration

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1991-01-01

    Organometallic precursors from naphthenic acid and metal nitrates were used for the synthesis of YBCO oxide superconducting compounds. The characteristics of metal naphthenates as organometallic precursors were investigated by IR spectra, viscosity measurements, and infiltration. 123 superconducting compound obtained from 123 naphthenate showed a Tc of 90 degree K and a rather dense and elongated microstructure. Also, the melting behavior of Ba-cuprates which were used for 123 making was studied. A low-temperature melting process was developed to fabricate silver-sheathed superconducting wire with the powder-in-tube method; flowing argon gas is introduced to the system at 930-945 degree C to reduce the melting temperature of the 123 compound without silver sheath melting. It resulted in a 90 degree K Tc superconducting core with dense and locally aligned microstructure. SEM-EDS and XRD analysis, 4-probe resistance and Jc measurements, and carbon-content determinations were carried out to characterize the microstructure, grain alignment, and superconducting properties of the samples

  6. New analytical results in the electromagnetic response of composite superconducting wire in parallel fields

    NARCIS (Netherlands)

    Niessen, E.M.J.; Niessen, E.M.J.; Zandbergen, P.J.

    1993-01-01

    Analytical results are presented concerning the electromagnetic response of a composite superconducting wire in fields parallel to the wire axis, using the Maxwell equations supplemented with constitutive equations. The problem is nonlinear due to the nonlinearity in the constitutive equation

  7. Characterization of NbTi multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Vellego, G.

    1988-01-01

    Pirelli is developing superconducting mulfilamentary NbTi wires, with current carrying capacities of up to 500 A, for use in magnetic resonance imaging (MRI) systems and in small research magnets. Pirelli and IFUSP have developed a system for assessing wire performance, whose quality is comparable to the equivalent systems at the Brookhaven National Laboratory (BNL) and at the National Bureau of Standards (NBS). In particular, a high sensitivity is required for critical current measurements, so that the modern criteria for definition of critical current can be used. These involve conductor resistivities of the order of 10 -12 ohm-cm. The methods of measurements of critical current in applied magnetic fields, of residual resistance ratio and of copper to superconductor ratio are described. The results of the first tests performed in Pirelli wires and in wires of other manufacturers are described. These include tests on a NBS standard reference material. These results are of the same quality as results obtained at BNL or NBS on the same wires. So this system can be very useful throughout the Pirelli program. (author) [pt

  8. MgB2 thin films on silicon nitride substrates prepared by an in situ method

    International Nuclear Information System (INIS)

    Monticone, Eugenio; Gandini, Claudio; Portesi, Chiara; Rajteri, Mauro; Bodoardo, Silvia; Penazzi, Nerino; Dellarocca, Valeria; Gonnelli, Renato S

    2004-01-01

    Large-area MgB 2 thin films were deposited on silicon nitride and sapphire substrates by co-deposition of Mg and B. After a post-annealing in Ar atmosphere at temperatures between 773 and 1173 K depending on the substrate, the films showed a critical temperature higher than 35 K with a transition width less than 0.5 K. The x-ray diffraction pattern suggested a c-axis preferential orientation in films deposited on amorphous substrate. The smooth surface and the good structural properties of these MgB 2 films allowed their reproducible patterning by a standard photolithographic process down to dimensions of the order of 10 μm and without a considerable degradation of the superconducting properties

  9. MgB2 energy gap determination by scanning tunnelling spectroscopy

    International Nuclear Information System (INIS)

    Heitmann, T W; Bu, S D; Kim, D M; Choi, J H; Giencke, J; Eom, C B; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Haas, M; Cava, R J; Larbalestier, D C; Rzchowski, M S

    2004-01-01

    We report scanning tunnelling spectroscopy (STS) measurements of the gap properties of both ceramic MgB 2 and c-axis oriented epitaxial MgB 2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunnelling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap δ = 2.2-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, δ 7.2 meV, consistent with a proposed two-band model

  10. Effects of disorder on the microwave properties of MgB2 polycrystalline films

    International Nuclear Information System (INIS)

    Ghigo, G.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Mezzetti, E.; Ummarino, G. A.

    2006-01-01

    The role of disorder in superconducting magnesium diboride (MgB 2 ) policrystalline films is investigated in the high frequency range by a coplanar microwave resonator technique. Two sources of disorder are considered, heavy-ion irradiation damage and sample ageing. Microwave measurements are analyzed in the framework of the two-gap model with strong interband scattering contribution. It turns out that disorder enhancement increases the interband scattering rate, resulting in a reduction of the surface resistance at low temperatures, due to a slight increase of the π gap. Moreover, increasing disorder at grain boundaries induces a nonmonotonic residual surface resistance, showing the features of a resistive behavior for the highest disorder level. Finally, the effects of the different kinds of disorder on the intrinsic and on the grain-boundary properties of the MgB 2 films are compared and discussed

  11. Scaling behavior of mixed-state hall effect in MgB2 thin films

    International Nuclear Information System (INIS)

    Jung, Soon-Gil; Seong, W.K.; Kang, W.N.; Choi, Eun-Mi; Kim, Heon-Jung; Lee, Sung-Ik; Kim, Hyeong-Jin; Kim, H.C.

    2006-01-01

    The Hall resistivity (ρ xy ) and the longitudinal resistivity (ρ xx ) in c-axis-oriented superconducting MgB 2 thin films have been investigated in extended fields up to 18T. We have observed a scaling behavior between the Hall resistivity and the longitudinal resistivity, ρ xy =Aρ xx β , where the exponent (β) is observed to be independent of the temperatures and the magnetic fields. For a wide magnetic field region from 1 to 18T and a wide temperature region from 10 to 28K, a universal power law with β=2.0+/-0.1 was observed in c-axis-oriented MgB 2 thin films. These results can be well interpreted by using recent models

  12. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  13. Design Aspects on Winding of an MgB2 Superconducting Generator Coil

    DEFF Research Database (Denmark)

    Magnusson, N.; Eliassen, J.C.; Abrahamsen, Asger Bech

    2015-01-01

    copper conductors at room temperature at one tenth of the wire cost per unit carried current. In the framework of the European project INNWIND.EU, an MgB2 superconducting generator pole will be designed, built and tested. Some of the design aspects of this work with emphasis on the winding process...... and associated coil insulation are discussed. An overall high current density in the coil is of crucial importance to obtain clear benefits compared to conventional solutions. The wire itself may be the most important parameter in that respect. However, the overall current density of the coil is also influenced......% compared to the use of an additional, dedicated, electrical insulation like Kapton for wet-winding or glass-fibre for dry-winding followed by vacuum impregnation. We show the results of a trial winding of 500 m of MgB2 superconducting wire into a double pancake coil using the wet-winding technique...

  14. Development of a new type of three-component composite superconducting wire

    International Nuclear Information System (INIS)

    Onishi, T.

    1977-01-01

    A new type of multifilamentary composite superconducting wire is described. This wire consists of seven filaments, each of which is a fine tubular Nb 50% Ti wire, filled with high purity aluminium and embedded in a cupronickel matrix. The results of experiments carried out on the stability and ac losses of this wire are presented. (author)

  15. Enhancement of Jc of MgB2 thin films by introduction of oxygen during deposition

    International Nuclear Information System (INIS)

    Mori, Zon; Doi, Toshiya; Hakuraku, Yoshinori; Kitaguchi, Hitoshi

    2006-01-01

    The introduction of various pinning center are examined as the effective means for improvement of J c of MgB 2 thin films. We have investigated the effects of introduction of oxygen during deposition on the superconducting properties of MgB 2 thin films. MgB 2 thin films were prepared on polished sapphire C(0001) single crystal substrates by using electron beam evaporation technique (EB) without any post-annealing. The background pressure was less than 1.3x10 -6 Pa. The evaporation flux ratio of Mg was set at 30 times as high as that of B, and the growth rate of MgB 2 film was 1nm/s. The film thickness was typically 300nm at 5min deposition. The substrate temperature was 245 deg. C. Under these conditions, we controlled the oxygen partial pressure (P O 2 ) within the range from 1.3x10 -6 to 1.3x10 -3 Pa by using a quadrapole mass spectrometer. Although T c of deposited thin film decreased in order of P O 2 , ΔM in the magnetization hysteresis loops measured from 0 to 6T at 4.2K increased up to 1.3x10 -5 . On the other hand, thin film prepared under P O 2 of 1.3x10 -3 Pa does not show superconducting transition. Between these films, there is no difference in the crystal structure from X-ray diffraction (XRD). These results suggest that the pinning center in the thin films increased by introduction of oxygen. Extremely small amount of oxygen introduction has enabled the control of growth of oxide

  16. Method for producing superconducting wire and products of the same

    International Nuclear Information System (INIS)

    Marancik, W.G.; Ormand, F.T.

    1975-01-01

    A method is described for producing a composite superconducting wire including one or more strands of high-field Type II superconductor embedded in a conductive matrix of normal material. A composite body is prepared which includes a matrix in which are embedded one or more rods of a metal which is capable of forming a high-field Type II superconductor upon high temperature extruded to an intermediate diameter, and then is hot-drawn to a final diameter at temperatures exceeding about 100 0 C, by multiple passes through drawing dies, the composite being reduced in cross-sectional area approximately 15 to 20 percent per draw. In a preferred mode of practicing the invention, the rods comprise vanadium or niobium, with the matrix being respectively gallium--bronze or tin--bronze, and the superconductive strands being formed by high temperature diffusion of the gallium or tin into the rods subsequent to drawing

  17. A-15 superconducting composite wires and a method for making

    International Nuclear Information System (INIS)

    Suenaga, M.; Klamut, C. J.; Luhman, Th. S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, The tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes

  18. New technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns has heretofore been confined exclusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  19. A new technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns, has heretofore been confined excusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  20. Electromechanical characterization of superconducting wires and tapes at 77 K

    CERN Document Server

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  1. Magnetic properties and critical current density of bulk MgB2 polycrystalline with Bi-2212 addition

    International Nuclear Information System (INIS)

    Shen, T M; Li, G; Zhu, X T; Cheng, C H; Zhao, Y

    2005-01-01

    Bulk samples of MgB 2 were prepared with 0, 3, 5, and 10 wt% Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) particles, added using a simple solid-state reaction route in order to investigate the effect of inclusions of a material with higher T c than the superconducting matrix. The density, diamagnetic signal, and critical current density, J c , of the samples change significantly with the doping level. It is found that J c is significantly enhanced by the Bi-2212 addition. Microstructural analysis indicates that a small amount of Bi-2212 is decomposed into Cu 2 O and other impurity phases while a significant amount of unreacted Bi-2212 particles remains in MgB 2 matrix, and these act as effective pinning centres for vortices. The enhanced pinning force is mainly attributable to these highly dispersed inclusions inserted in the MgB 2 grains. Despite the effectiveness of the high-T c inclusions in increasing superconducting critical currents in our experiment, our results seem to demonstrate the superiority of attractive centres over repulsive ones. A pinning mechanism is proposed to account for the contribution of this type of pinning centre in MgB 2 superconductors. (rapid communication)

  2. The Quantum Socket: Wiring for Superconducting Qubits - Part 3

    Science.gov (United States)

    Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.

  3. Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; De Silva, K.S.B.; Kondyurin, A.; Bao, P.; Li, W.X.; Xu, X.; Peleckis, G.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    Highlights: • First report on nano-carbon doped MgB 2 superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B 4 C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB 2 with 2.5% nano-carbon doped showed the highest J c , ≈10 4 A/cm 2 for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB 2 crystalline. The strain increased across the doping level due to the carbon substitution in the MgB 2 matrix. The broadening of the T c curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B 4 C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB 2 . Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J c of the 10% nano-carbon doped MgB 2 bulk superconductor

  4. Two band superconductivity for MgB2: Tc and isotope exponent α as a function of the carrier number n and the role of the center of the band

    International Nuclear Information System (INIS)

    Rodriguez-Nunez, J.J.; Schmidt, A.A.; Bianconi, A.; Perali, A.

    2005-08-01

    We study a two band superconducting, assuming that we have two tight binding bands, ε 2 (k-vector) = ε 2 (0) - t 2 [cos(k x ) + cos(k y ) + s 2 cos(k z )] - μ and ε 3 (k-vector) ε 3 (0) - t 3 [cos(k x ) + cos(k y )+s 3 cos(k z )] - μ. We solve the two gap equations at T = T c and calculate T c x n and μ x n for various values of pairing interaction, V, and Debye frequency, ω D . Also, from an expression developed in a previous paper by two of the present authors, we calculate α x n, where n is the number of carriers per site per band and α is the isotope exponent. We take only interband scattering, V, as a first approach. We find that in order to have superconductivity (T c ≠ 0), large values of V are necessary. Also, for V/ω D > 1, we obtain α > 1.00 and for V/ω D >1.00, the isotope exponent becomes less than 1. (author)

  5. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  6. Superconducting wire for Lawrence Livermore National Laboratory in U.S.A

    International Nuclear Information System (INIS)

    Inoue, Itaru; Ikeda, Masaru; Tanaka, Yasuzo; Meguro, Shinichiro

    1985-01-01

    In Lawrence Livermore National Laboratory in USA, the development of a mirror type nuclear fusion reactor is carried out, and for plasma confinement, superconducting magnets are used. For the axicell coil generating a 12 T magnetic field in one of these magnets, Nb 3 Sn superconducting wires are to be used, and after the completion, it will be the largest magnet in the world as high magnetic field superconducting magnets. Furukawa Electric Co., Ltd. has completed the delivery of Nb 3 Sn superconducting wires used for this purpose. Since the Nb 3 Sn superconducting wires are very brittle, attention was paid to the manufacture to satisfy the required characteristics, and it was able to obtain the good reputation that the product was highly homogeneous as the superconducting wires of this type. In this paper, the design, manufacture and various characteristics of these superconducting wires are reported. The Nb 3 Sn superconducting wires were manufactured on industrial scale of 8 tons. The features of these Nb 3 Sn wires are the compound structure with semi-hard copper for low temperature stability and strengthening. (Kako, I.)

  7. A superconducting shield to protect astronauts

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  8. Technology development of fabrication NbTi and Nb3 Sn superconducting wires

    International Nuclear Information System (INIS)

    Rodrigues Junior, D.; Bormio, C.; Baldan, C.A.; Ramos, M.J.; Pinatti, D.G.

    1988-01-01

    The technology development of NbTi and Nb 3 Sn superconducting wires are studied, mentioning the use of fluxes capture theory in the sizing of wires fabrication. The fabrication process, the thermal treatment and the experimental datas of critical temperature and current of Nb 3 Sn wires are described. (C.G.C.) [pt

  9. Non-resonant microwave absorption studies of superconducting ...

    Indian Academy of Sciences (India)

    Abstract. Non-resonant microwave absorption (NRMA) studies of superconducting MgB2 and a sample containing 10% by weight of MgO in MgB2 are reported. The NRMA results indicate near absence of intergranular weak links in the pure MgB2 sample. A linear temperature dependence of the lower critical field Hc1 is ...

  10. Characterisation of nano-grains in MgB2 superconductors by transmission Kikuchi diffraction

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; Trimby, P.W.; De Silva, K.S.B.; Bao, P.; Li, W.X.; Xu, X.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    We report the first application of the emerging transmission Kikuchi diffraction technique in the scanning electron microscope to investigate nano-grain structures in polycrystalline MgB 2 superconductors. Two sintering conditions were considered, and the resulting differences in superconducting properties are correlated to differences in grain structure. A brief comparison to X-ray diffraction results is presented and discussed. This work focusses more on the application of this technique to reveal grain structure, rather than on the detailed differences between the two sintering temperatures

  11. Possible high-T/sub c/ superconductivity in thin wires

    International Nuclear Information System (INIS)

    Lee, Y.C.; Mendoza, B.S.

    1989-01-01

    A heuristic approach to the theory of superconductivity based on a simple physical picture and capable of treating the simultaneous participation of multiple bosonic modes that mediate the pairing interaction is first developed. The effect of the bosonic mode damping is also accounted for. We then propose a possible mechanism of superconductivity in slender electronic systems of finite cross sections based on the pairing interaction mediated by the multiple modes of acoustic plasmons in these structures. Such modes include the quasi-one-dimensional plasmon as well as the so-called slender acoustic plasmons. The critical temperature and the energy gap/T/sub c/ ratio are then calculated by the heuristic method just developed. Numerical results on T/sub c/ in various samples are presented, showing T/sub c/ in the 150--200 K range. The ratio 2Δ 0 /T/sub c/ differs generally from the BCS value due to the temperature dependence of the mode damping. The associated coherence length is shown to be considerably smaller than the transverse dimension of the wires

  12. Development of Fe-based superconducting wires for liquid-hydrogen level sensors

    Science.gov (United States)

    Ishida, S.; Tsuchiya, Y.; Mawatari, Y.; Eisaki, H.; Nakano, A.; Yoshida, Y.

    2017-07-01

    We developed liquid-hydrogen (LH2) level sensors with Ba(Fe1-x Co x )2As2 superconducting wires (Co-Ba122 wires) as their detection elements. We fabricated Co-Ba122 wires with different Co concentrations x by using the powder-in-tube method. The superconducting transition temperatures of the wires were successfully controlled in the range of 20-25 K by changing x from 0.06 to 0.10. The resistance-temperature curves of the wires exhibited sharp superconducting transitions with widths of 0.5-1.0 K. In addition, we performed an operation test of the Co-Ba122 level sensors with LH2. Close correspondence between the output resistance and the actual LH2 level was observed for a sensor equipped with x = 0.09 wire, demonstrating that this sensor can accurately measure LH2 levels.

  13. Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics

    International Nuclear Information System (INIS)

    Cui Chunxiang; Liu Debao; Shen Yutian; Sun Jinbin; Meng Fanbin; Wang Ru; Liu Shuangjin; Greer, A.L.; Chen, S.K.; Glowacki, B.A.

    2004-01-01

    Single-crystal MgB 2 nanoparticles, with diameters in the range 20-100 nm, have been synthesized in situ in the sample chamber of an X-ray diffractometer. The reaction kinetics are analyzed and related to the atomic-level structure of the particles as observed by high-resolution electron microscopy. Synthesis conditions may have a significant influence on microstructure and superconducting properties

  14. Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon

    Science.gov (United States)

    Baker, A. A.; Bayu Aji, L. B.; Bae, J. H.; Stavrou, E.; Steich, D. J.; McCall, S. K.; Kucheyev, S. O.

    2018-05-01

    We describe the fabrication and characterization of 25–800 nm thick MgB2 films on glassy carbon substrates by Mg vapor annealing of sputter-deposited amorphous B films. Results demonstrate a critical role of both the initial B film thickness and the temperature–time profile on the microstructure, elemental composition, and superconducting properties of the resultant MgB2 films. Films with thicknesses of 55 nm and below exhibit a smooth surface, with a roughness of 1.1 nm, while thicker films have surface morphology consisting of elongated nano-crystallites. The suppression of the superconducting transition temperature for thin films scales linearly with the oxygen impurity concentration and also correlates with the amount of lattice disorder probed by Raman scattering. The best results are obtained by a rapid (12 min) anneal at 850 °C with large temperature ramp and cooling rates of ∼540 °C min‑1. Such fast processing suppresses the deleterious oxygen uptake.

  15. MgB2 magnetometer with a directly coupled pick-up loop

    Science.gov (United States)

    Portesi, C.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.; Monticone, E.; Gonnelli, R. S.

    2006-05-01

    In this work, we show the results obtained in the fabrication and characterization of an MgB2 magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 107 A cm-2. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm2. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB2 thin films, such as the penetration depth.

  16. AC loss in superconducting wires operating in a wind turbine like generator

    DEFF Research Database (Denmark)

    Seiler, Eugen; Zirngibl, Thomas; Mijatovic, Nenad

    2010-01-01

    We have manufactured a small circular superconducting coil impregnated with epoxy fibreglass. The coil was wound from a Bi-2223/Ag superconducting wire and it was tested in liquid nitrogen at 77 K. Current-voltage characteristic and the AC losses of the coil were measured and compared...

  17. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    Science.gov (United States)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  18. A new wire fabrication processing using high Ga content Cu-Ga compound in V3Ga compound superconducting wire

    International Nuclear Information System (INIS)

    Hishinuma, Yoshimitsu; Nishimura, Arata; Kikuchi, Akihiro; Iijima, Yasuo; Takeuchi, Takao

    2007-01-01

    A superconducting magnet system is also one of the important components in an advanced magnetic confinement fusion reactor. Then it is required to have a higher magnetic field property to confine and maintain steady-sate burning deuterium (D)-tritium (T) fusion plasma in the large interspace during the long term operation. Burning plasma is sure to generate 14 MeV fusion neutrons during deuterium-tritium reaction, and fusion neutrons will be streamed and penetrated to superconducting magnet through large ports with damping neutron energy. Therefore, it is necessary to consider carefully not only superconducting property but also neutron irradiation property in superconducting materials for use in a future fusion reactor, and a 'low activation and high field superconducting magnet' will be required to realize the fusion power plant beyond International Thermonuclear Experimental Reactor (ITER). V-based superconducting material has a much shorter decay time of induced radioactivity compared with the Nb-based materials. We thought that the V 3 Ga compound was one of the most promising materials for the 'low activation and higher field superconductors' for an advanced fusion reactor. However, the present critical current density (J c ) property of V 3 Ga compound wire is insufficient for apply to fusion magnet applications. We investigated a new route PIT process using a high Ga content Cu-Ga compound in order to improve the superconducting property of the V 3 Ga compound wire. (author)

  19. Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk MgB2 Superconductors

    Science.gov (United States)

    Tripathi, D.; Dey, T. K.

    2018-05-01

    The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.

  20. Structural and critical current properties in Al-doped MgB2

    International Nuclear Information System (INIS)

    Zheng, D.N.; Xiang, J.Y.; Lang, P.L.; Li, J.Q.; Che, G.C.; Zhao, Z.W.; Wen, H.H.; Tian, H.Y.; Ni, Y.M.; Zhao, Z.X.

    2004-01-01

    A series of Al-doped Mg 1-x Al x B 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2 , measurements on the superconducting transition temperature T c , irreversible field B irr and critical current density J c were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration

  1. Structural and critical current properties in Al-doped MgB 2

    Science.gov (United States)

    Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.

    2004-08-01

    A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.

  2. The increase in Tc for MgB2 superconductor under high pressure

    International Nuclear Information System (INIS)

    Liu, Z-X; Jin, C-Q; You, J-Y; Li, S-C; Zhu, J-L; Yu, R-C; Li, F-Y; Su, S-K

    2002-01-01

    We report in situ high-pressure studies up to 1.0 GPa on MgB 2 superconductor which had been synthesized at high pressure. The as-prepared sample is of high quality as regards having a sharp superconducting transition (T c ) at 39 K. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with a mixed oil as the pressure-transmitting medium, which provides a quasi-hydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that T c increases with pressure in the initial pressure range, leading to a parabolic-like T c -P evolution

  3. Unconventional conventional superconductivity in MgB2

    Science.gov (United States)

    Mazin, Igor

    2002-03-01

    State-of-the-art numerical estimates of the electron-phonon coupling (EPC) constant are of the order of 0.8, which is just a little too low for Tc=39 K. Furthermore, there are indication that this conventional picture faces some problems: (a) specific heat suggests EPC even smaller that the calculatons (b) there is evidence of a gap smaller than 3.5 Tc, and of more than one gap (c) Low-temperature thermodynamics disagrees with the simple BCS picture. There are also theoretical indications of interesting deviations from the standard Eliashberg theory: (1) most of the coupling comes from interaction of just two phonons with two (out of four) bands. (2) The phonons in question are strongly anharmonic (3) Very unusually, nonlinear coupling of these phonons with electrons (i.e., two-phonon exchange) is stronger that the linear coupling. (4) Calculations predict two considerably different order parameters for the two sets of bands. This multigap scenario explains naturally a number of puzzling experiments, but seems to be at odds with the lack of any correlation between the residual resistivity and Tc. One can reconcile these, though, if the defect scattering occurs primarily in the intraband channels. This is supported by chemical arguments and by recent optical experiments. Furthermore, the hypothesis of two qualitatively different scattering rates for the two types of bands is consistent with a number of otherwise hard to explain transport measurements.

  4. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  5. Superior critical current density obtained in MgB_2 bulks via employing carbon-coated boron and minor Cu addition

    International Nuclear Information System (INIS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-01-01

    Highlights: • Usage of carbon-coated boron leads to high level of homogeneous carbon doping. • Cu addition improves MgB_2 grain connectivity, leading to higher J_c at low fields. • Cu addition reduces MgO impurity, also contributing to the improvement of J_c. - Abstract: High performance Cu doped MgB_2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB_2 grains, as well as a high level of homogeneous carbon doping in the MgB_2 samples, which significantly enhance the J_c in both Cu doped and undoped bulks compared to MgB_2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB_2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (J_c) at self fields and low fields (the best values are 7 × 10"5 A/cm"2 at self fields, and 1 × 10"5 A/cm"2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of J_c at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB_2 bulks or wires with excellent J_c on an industrial scale.

  6. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    Science.gov (United States)

    Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.

    2018-05-01

    The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.

  7. Microwave absorption studies of MgB2 superconductor

    Indian Academy of Sciences (India)

    band (9–. 10 GHz) spectrometer. Both polycrystalline pellet and single-grain MgB2, having nearly the same Tc (∼ 39 K) and same size (3×2×1 mm3), were used in the present investigations. Low field modulated microwave absorption signals ...

  8. Preparation and characterization of MgB2 superconductor

    Indian Academy of Sciences (India)

    2Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. Abstract. The MgB2 superconductor, synthesized using solid-state and liquid-phase sintering methods, have been characterized for various properties. The upper critical field, irreversibility line and critical current density have been ...

  9. Microwave absorption studies of MgB 2 superconductor

    Indian Academy of Sciences (India)

    Microwave absorption studies have been carried out on MgB2 superconductor using a standard X-band EPR spectrometer. The modulated low-field microwave absorption signals recorded for polycrystalline (grain size ∼ 10m) samples suggested the absence of weak-link character. The field dependent direct microwave ...

  10. Method of forming a ceramic superconducting composite wire using a molten pool

    International Nuclear Information System (INIS)

    Geballe, T.H.; Feigelson, R.S.; Gazit, D.

    1991-01-01

    This paper describes a method for making a flexible superconductive composite wire. It comprises: drawing a wire of noble metal through a molten material, formed by melting a solid formed by pressing powdered Bi 2 O 3 , CaCO 3 SrCO 3 and CuO in a ratio of components necessary for forming a Bi-Sr-Ca-Cu-O superconductor, into the solid and sintering at a temperature in the range of 750 degrees - 800 degrees C. for 10-20 hours, whereby the wire is coated by the molten material; and cooling the coated wire to solidify the molten material to form the superconductive flexible composite wire without need of further annealing

  11. Influence of the cooling rate on the main factors affecting current-carrying ability in pure and SiC-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Shcherbakova, O V; Pan, A V; Soltanian, S; Dou, S X; Wexler, D

    2007-01-01

    We have systematically studied and compared the effect of cooling rate on microstructure, critical current density, upper critical field and irreversibility field in pure and 10 wt% SiC-added MgB 2 superconductors. The sintering process was carried out on the samples at a temperature of 750 deg. C for 1 h followed by quenching or cooling to room temperature in 0.3 h (2433 deg. C h -1 ), 14 h (52 deg. C h -1 ) and 25 h (30 deg. C h -1 ). Changes in the microstructure due to variations in cooling rate have been studied with the help of scanning and transmission electron microscopy. Correlations between microstructure and superconducting properties have been observed, identified and explained for both pure and SiC-added MgB 2 samples. Modifications to the pinning environment and grain boundary transparency are considered to be responsible for variations in the current-carrying ability. The dominant pinning on grain boundaries in the pure MgB 2 samples and on nano-inclusions (inducing accompanying defects) in the SiC-doped samples is clearly distinguished. On the basis of our experimental results, we have concluded that the cooling rate can be an important parameter influencing the superconducting properties of MgB 2 samples

  12. In-situ synchrotron x-ray study of MgB2 formation when doped by SiC

    Science.gov (United States)

    Abrahamsen, A. B.; Grivel, J.-C.; Andersen, N. H.; Herrmann, M.; Häßler, W.; Birajdar, B.; Eibl, O.; Saksl, K.

    2008-02-01

    We have studied the evolution of the reaction xMg + 2B + ySiC → zMg1-p(B1-qCq)2 + yMg2Si in samples of 1, 2, 5 and 10 wt% SiC doping. We found a coincident formation of MgB2 and Mg2Si, whereas the crystalline part of the SiC nano particles is not reacting at all. Evidence for incorporation of carbon into the MgB2 phase was established from the decrease of the a-axis lattice parameter upon increasing SiC doping. An estimate of the MgB2 lower limit grain size was found to decrease from L100 = 795 Å and L002 = 337 Å at 1 wt% SiC to L100 = 227 Å and L002= 60 Å at 10 wt% SiC. Thus superconductivity might be suppressed at 10 wt% SiC doping due to the grain size approaching the coherence length.

  13. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  14. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  15. Critical current density of MgB2 thin films and the effect of interface pinning

    International Nuclear Information System (INIS)

    Choi, Eun-Mi; Gupta, S K; Sen, Shashwati; Lee, Hyun-Sook; Kim, Hyun-Jung; Lee, Sung-Ik

    2004-01-01

    Preferentially oriented MgB 2 thin films with c-axis normal to the surface have been prepared and characterized for microstructure and transport properties. The magnetic field dependence of superconducting critical current density J c has been determined from the magnetization hysteresis (M-H) loops at various temperatures using the Bean's critical state model. High J c of these films show their potential for applications. We have also measured the angular dependences of J c . The angular dependence is seen to be in agreement with the anisotropic Ginzburg-Landau model except that at angles close to the ab plane, increased pinning due to film-substrate interaction is observed. The angular range where interface pinning is effective has been determined by measurement of asymmetry in dissipation on reversal of current for fields applied at angles close to the ab plane

  16. Comparative study of neutron irradiation and carbon doping in MgB2 single crystals

    International Nuclear Information System (INIS)

    Krutzler, C.; Zehetmayer, M.; Eisterer, M.; Weber, H. W.; Zhigadlo, N. D.; Karpinski, J.

    2007-01-01

    We compare the reversible and irreversible magnetic properties of superconducting carbon doped and undoped MgB 2 single crystals before and after neutron irradiation. A large number of samples with transition temperatures between 38.3 and 22.8 K allows us to study the effects of disorder systematically. Striking similarities are found in the modification of the reversible parameters by irradiation and doping, which are discussed in terms of impurity scattering and changes of the Fermi surface. The irreversible properties are influenced by two counteracting mechanisms: they are enhanced by the newly introduced pinning centers but degraded by changes in the thermodynamic properties. Accordingly, the large neutron induced defects and the small defects from carbon doping lead to significantly different effects on the irreversible properties. Finally, the fishtail effect caused by all kinds of disorder is discussed in terms of an order-disorder transition of the flux-line lattice

  17. Using specific heat to scan gaps and anisotropy of MgB2

    International Nuclear Information System (INIS)

    Bouquet, F.; Wang, Y.; Toulemonde, P.; Guritanu, V.; Junod, A.; Eisterer, M.; Weber, H.W.; Lee, S.; Tajima, S.

    2004-01-01

    We performed specific heat measurements to study the superconducting properties of the ∼40 K superconductor MgB 2 , up to 16 T, using polycrystal and single crystal samples. Our results establish the validity of the two-gap model. We tested the effect of disorder by irradiating our sample. This procedure decreased T c down to ∼26 K, but did not suppress completely the smaller gap, at variance with theoretical expectations. A positive effect of the irradiation was the increase of H c2 up to almost 30 T. Our results on the single crystal allow the anisotropy of each band to be determined independently, and show the existence of a cross-over field well below H c2 characterizing the physics of the small-gapped band. We also present preliminary results on Nb 3 Sn, showing similar, but weaker effects

  18. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  19. Zero-bias conductance quantization in a normal / superconducting junction of nano wire

    International Nuclear Information System (INIS)

    Asano, Yasuhiro; Tanaka, Yukio

    2012-01-01

    We discuss a strong relationship between Majorana fermions and odd-frequency Cooper pairs which appear at a disordered normal nano wire attached to a topologically nontrivial superconducting one. The zero-bias differential conductance in a normal / superconducting nano wire junctions is quantized at 2e 2 /h irrespective of degree of disorder, length of disordered segment, and random realization of disordered potential. Such behaviors are exactly the same as those in the anomalous proximity effect of p x -wave spin-triplet superconductors. We show that odd-frequency Cooper pairs assist the unusual transport properties.

  20. Theoretical and experimental determination of mechanical properties of superconducting composite wire

    International Nuclear Information System (INIS)

    Gray, W.H.; Sun, C.T.

    1976-07-01

    The mechanical properties of a composite superconducting (NbTi/Cu) wire are characterized in terms of the mechanical properties of each constituent material. For a particular composite superconducting wire, five elastic material constants were experimentally determined and theoretically calculated. Since the Poisson's ratios for the fiber and the matrix material were very close, there was essentially no (less than 1 percent) difference among all the theoretical predictions for any individual mechanical constant. Because of the expense and difficulty of producing elastic constant data of 0.1 percent accuracy, and therefore conclusively determining which theory is best, no further experiments were performed

  1. Young's modulus of a copper-stabilized niobium-titanium superconductive wire

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Moulder, J.C.; Austin, M.W.

    1980-01-01

    Young's modulus was determined for a 0.6-mm-dia niobium-titanium superconductive wire. Two methods were used: continuous-wave-resonance and laser-pulse-excitation. Young's moduli were also determined for the components - copper and Nb-Ti - in both wire and bulk forms. Some mechanical-deformation effects on Young's modulus were also measured. From the component' elastic moduli, that of the composite was predicted accurately by a simple rule-of-mixtures relationship

  2. Composite superconducting wires produced by rapid coating in Bi-Sr-Ca-Cu-O metal oxide system

    International Nuclear Information System (INIS)

    Grozav, A.D.; Konopko, L.A.; Leoporda, N.I.

    1989-01-01

    Method for producing superconducting composite wires by dip coating of copper wires in metal-oxide BiSrCaCu 2 O x melt is developed. The thickness of the coating is regulated by the change of dip rate, melt viscosity and by the number of passages through the melt. Wire annealing at 700-800 deg C leads to the production of two phases, one of them being superconducting with T c =80K

  3. Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor

    OpenAIRE

    Soltanian, S.; Horvat, J.; Wang, X. L.; Munroe, P.; Dou, S. X.

    2003-01-01

    Polycrystalline MgB2-xCx samples with x=0.05, 0.1, 0.2, 0.3, 0.4 nano-particle carbon powder were prepared using an in-situ reaction method under well controlled conditions to limit the extent of C substitution. The phases, lattice parameters, microstructures, superconductivity and flux pinning were characterized by XRD, TEM, and magnetic measurements. It was found that both the a-axis lattice parameter and the Tc decreased monotonically with increasing doping level. For the sample doped with...

  4. Mapping flux avalanches in MgB2 films-equivalence between magneto-optical imaging and magnetic measurements

    International Nuclear Information System (INIS)

    Colauto, F; Choi, E M; Lee, J Y; Lee, S I; Yurchenko, V V; Johansen, T H; Ortiz, W A

    2007-01-01

    Vortex avalanches are known to occur in MgB 2 films within a certain range of temperatures and magnetic fields. These events, resulting from a thermomagnetic instability, were first revealed by real-time magneto-optical imaging, which exposed dendritic paths of abrupt flux propagation. This very powerful technique has, however, a practical limitation, since sensors that are currently available cannot be used at high magnetic fields. This letter shows that results obtained using dc magnetometry are in good correspondence with those furnished by magneto-optical imaging, demonstrating that the two techniques can be efficiently used as complementary tools to map vortex avalanches in superconducting films. (rapid communication)

  5. The development of the high-tension wire for nuclear fusion superconductive magnet measurement

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Morita, Yohsuke; Yamazaki, Takanori; Watanabe, Kiyoshi; Furusawa, Ken-ichi.

    1987-01-01

    Following on tokamak critical plasma testing device JT-60, experimental fusion reactor JT-100 is being developed. The 6 kV high-tension wire has been developed for use in JT-100 under ultra-low temperature and high radiation environment. Used for superconductive magnet measurement, the wire is inserted in the vacuum vessel, being immersed within the liquid helium. As the insulating material of this wire, polyetherimido was found to be most suitable in the respects of radiation resistance and voltage-withstand property. In an electric wire covered with polyetherimido, which was made in trial, its test in voltage-withstand and bending characteristics at ultra-low temperature showed the wire to be usable for the intended purpose. (Mori, K.)

  6. de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB2

    International Nuclear Information System (INIS)

    Carrington, A.; Yelland, E.A.; Fletcher, J.D.; Cooper, J.R.

    2007-01-01

    Our understanding of the superconducting properties of MgB 2 is strongly linked to our knowledge of its electronic structure. In this paper we review experimental measurements of the Fermi surface parameters of pure and Al-doped MgB 2 using the de Haas-van Alphen (dHvA) effect. In general, the measurements are in excellent agreement with the theoretical predictions of the electronic structure, including the strength of the electron-phonon coupling on each Fermi surface sheet. For the Al doped samples, we are able to measure how the band structure changes with doping. These results are in excellent agreement with calculations based on the virtual crystal approximation. We also review work on the dHvA effect in the superconducting state

  7. Transport properties and exponential n-values of Fe/MgB2 tapes with various MgB2 particle sizes

    International Nuclear Information System (INIS)

    Lezza, P.; Abaecherli, V.; Clayton, N.; Senatore, C.; Uglietti, D.; Suo, H.L.; Fluekiger, R.

    2004-01-01

    Fe/MgB 2 tapes have been prepared starting with pre-reacted binary MgB 2 powders. As shown by resistive and inductive measurements, the reduction of particle size to a few microns by ball milling has little influence on B c2 , while the superconducting properties of the individual MgB 2 grains are essentially unchanged. Reducing the particle size causes an enhancement of B irr from 14 to 16 T, while J c has considerably increased at high fields, its slope J c (B) being reduced. At 4.2 K, values of 5.3 x 10 4 and 1.2 x 10 3 A/cm 2 were measured at 3.5 and 10 T, respectively, suggesting a dominant role of the conditions at the grain interfaces. A systematic variation of these conditions at the interfaces is undertaken in order to determine the limit of transport properties for Fe/MgB 2 tapes. The addition of 5% Mg to MgB 2 powder was found to affect neither J c nor B c2 . For the tapes with the highest J c values, very high exponential n factors were measured: n=148, 89 and 17 at 3.5, 5 and 10 T, respectively and measurements of critical current versus applied strain have been performed. The mechanism leading to high transport critical current densities of filamentary Fe/MgB 2 tapes based on MgB 2 particles is discussed

  8. Development of superconducting wire and cable for the SSC project in Sumitomo Electric Industries

    International Nuclear Information System (INIS)

    Sashida, T.; Saito, S.; Oku, G.; Kurimoto, K.; Yamada, Y.; Yokota, M.; Ohmatsu, K.; Nagata, M.

    1991-01-01

    As a large production volume of NbTi superconducting wire and cable is required for the SSC project, a production process has been developed at Sumitomo Electric to optimize critical variables of wire properties. To achieve high electrical properties and a high overall yield of NbTi alloy in the fabrication process, the authors have employed carefully designed large size multifilament billets weighing more than 350kg to decrease the number of billets in large production scale. The collider dipole magnet consists of inner and outer cables, and the cable should be as uniform as possible to ensure the performance of the magnets. The authors studied two aspects to obtain such uniformity of superconducting wire; one is the selection of unit weight and the other is the property of critical current density of a strand

  9. Properties of hot pressed MgB2/Ti tapes

    International Nuclear Information System (INIS)

    Kovac, P.; Husek, I.; Melisek, T.; Fedor, J.; Cambel, V.; Morawski, A.; Kario, A.

    2009-01-01

    Hot axial and hot isostatic pressing was applied for single-core MgB 2 /Ti tapes. Differences in transport current density, n-exponents and critical current anisotropy are discussed and related to the grain connectivity influenced by pressing. The magnetic Hall probe scanning measurements allowed observing the isolated regions for axially hot pressed sample attributed to the longitudinally oriented cracks introduced by pressing. The highest current densities were measured for the tape subjected to hot isostatic pressing due to improved connectivity.

  10. MgB2 thin films by hybrid physical-chemical vapor deposition

    International Nuclear Information System (INIS)

    Xi, X.X.; Pogrebnyakov, A.V.; Xu, S.Y.; Chen, K.; Cui, Y.; Maertz, E.C.; Zhuang, C.G.; Li, Qi; Lamborn, D.R.; Redwing, J.M.; Liu, Z.K.; Soukiassian, A.; Schlom, D.G.; Weng, X.J.; Dickey, E.C.; Chen, Y.B.; Tian, W.; Pan, X.Q.; Cybart, S.A.; Dynes, R.C.

    2007-01-01

    Hybrid physical-chemical vapor deposition (HPCVD) has been the most effective technique for depositing MgB 2 thin films. It generates high magnesium vapor pressures and provides a clean environment for the growth of high purity MgB 2 films. The epitaxial pure MgB 2 films grown by HPCVD show higher-than-bulk T c due to tensile strain in the films. The HPCVD films are the cleanest MgB 2 materials reported, allowing basic research, such as on magnetoresistance, that reveals the two-band nature of MgB 2 . The carbon-alloyed HPCVD films demonstrate record-high H c2 values promising for high magnetic field applications. The HPCVD films and multilayers have enabled the fabrication of high quality MgB 2 Josephson junctions

  11. Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering

    International Nuclear Information System (INIS)

    Gurevich, A; Patnaik, S; Braccini, V; Kim, K H; Mielke, C; Song, X; Cooley, L D; Bu, S D; Kim, D M; Choi, J H; Belenky, L J; Giencke, J; Lee, M K; Tian, W; Pan, X Q; Siri, A; Hellstrom, E E; Eom, C B; Larbalestier, D C

    2004-01-01

    We report a significant enhancement of the upper critical field H c2 of different MgB 2 samples alloyed with nonmagnetic impurities. By studying films and bulk polycrystals with different resistivities ρ, we show a clear trend of an increase in H c2 as ρ increases. One particular high resistivity film had a zero-temperature H c2 (0) well above the H c2 values of competing non-cuprate superconductors such as Nb 3 Sn and Nb-Ti. Our high-field transport measurements give record values H c2 perp (0) ∼ 34 T and H c2 par (0) ∼ 49 T for high resistivity films and H c2 (0) ∼ 29 T for untextured bulk polycrystals. The highest H c2 film also exhibits a significant upward curvature of H c2 (T) and a temperature dependence of the anisotropy parameter γ(T)=H c2 par / H c2 opposite to that of single crystals: γ(T) decreases as the temperature decreases, from γ(T c ) ∼ 2 γ(0) ∼ 1.5. This remarkable H c2 enhancement and its anomalous temperature dependence are a consequence of the two-gap superconductivity in MgB 2 , which offers special opportunities for further H c2 increases by tuning of the impurity scattering by selective alloying on Mg and B sites. Our experimental results can be explained by a theory of two-gap superconductivity in the dirty limit. The very high values of H c2 (T) observed suggest that MgB 2 can be made into a versatile, competitive high-field superconductor

  12. Thermal anchoring of wires in large scale superconducting coil test experiment

    International Nuclear Information System (INIS)

    Patel, Dipak; Sharma, A.N.; Prasad, Upendra; Khristi, Yohan; Varmora, Pankaj; Doshi, Kalpesh; Pradhan, S.

    2013-01-01

    Highlights: • We addressed how thermal anchoring in large scale coil test is different compare to small cryogenic apparatus? • We did precise estimation of thermal anchoring length at 77 K and 4.2 K heat sink in large scale superconducting coil test experiment. • We addressed, the quality of anchoring without covering entire wires using Kapton/Teflon tape. • We obtained excellent results in temperature measurement without using GE Varnish by doubling estimated anchoring length. -- Abstract: Effective and precise thermal anchoring of wires in cryogenic experiment is mandatory to measure temperature in milikelvin accuracy and to avoid unnecessary cooling power due to additional heat conduction from room temperature (RT) to operating temperature (OT) through potential, field, displacement and stress measurement instrumentation wires. Instrumentation wires used in large scale superconducting coil test experiments are different compare to cryogenic apparatus in terms of unique construction and overall diameter/area due to errorless measurement in large time-varying magnetic field compare to small cryogenic apparatus, often shielded wires are used. Hence, along with other variables, anchoring techniques and required thermal anchoring length are entirely different in this experiment compare to cryogenic apparatus. In present paper, estimation of thermal anchoring length of five different types of instrumentation wires used in coils test campaign at Institute for Plasma Research (IPR), India has been discussed and some temperature measurement results of coils test campaign have been presented

  13. An investigation into preparation of silver sheathed superconducting wires with a high critical temperature

    International Nuclear Information System (INIS)

    Chaffron, Laurent

    1992-01-01

    We have shown that the critical current density of YBaCuO superconducting wires prepared using 'powder in tube' method is limited by the following principal factors: - cracks and porosity arising from the shrinkage of the powder during sintering, - irregularities in the wire section, - presence of secondary phases in the phase diagram of the three oxides, - incomplete re-oxidation at the centre of the wire, - insufficient, or complete lack of, texture in the wire, - presence of amorphous, non superconducting phase across the grains that blocks grain boundary migration. We have reduced the deleterious effects due to the first four factors by modifying prior nature of the powder, by reinforcing the sheath and by modifying the thermal treatments. We also used creep sintering to produce a strong texture; however, our study shows that texture, though necessary, is not a sufficient condition for a high current. This is because the latter is limited by the presence of the amorphous phase at too many grain boundaries. Finally, we have obtained wires in which grain boundaries are clean and which have very high critical currents by melting the wire in a thermal gradient and by passing it through the gradient very slowly. Such a technique, however, is too slow for producing superconductors. (author) [fr

  14. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  15. Phase 1 Final Technical Report - MgB2 Synthesis: Pushing to High Field Performance

    International Nuclear Information System (INIS)

    Bhatia, Mohit; McIntyre, Peter

    2009-01-01

    Accelerator Technology Corp. (ATC) has successfully completed its Phase 1 effort to develop rf plasma torch synthesis of MgB2 superconducting powder. The overall objective is to de-velop a way to introduce homogeneous alloying of C and SiC impurities into phase-pure MgB2. Several groups have attained remarkable benefits from such alloying in raising the upper critical field Hc2 from ∼14 T to ∼30 T (bulk) and ∼50 T (thin films). But no one has succeeded in pro-ducing that benefit homogeneously, so that current transport in a practical powder-in-tube (PIT) conductor is largely the same as without the alloying. ATC has conceived the possibility of attaining such homogeneity by passing aerosol suspen-sions of reactant powders through an rf plasma torch, with each reactant transported on a stream-line that heats it to an optimum temperature for the synthesis reaction. This procedure would uniquely access non-equilibrium kinetics for the synthesis reaction, and would provide the possi-bility to separately control the temperature and stoichiometry of each reactant as it enters the mixing region where synthesis occurs. It also facilitates the introduction of seed particles (e.g. nanoscale SiC) to dramatically enhance the rate of the synthesis reaction compared to gas-phase synthesis in rf plasma reported by Canfield and others. During the Phase 1 effort ATC commissioned its 60 kW 5 MHz rf source for a manufactur-ing-scale rf plasma torch. This effort required repair of numerous elements, integration of cooling and input circuits, and tuning of the load characteristics. The effort was successful, and the source has now been tested to ∼full power. Also in the Phase 1 effort we encountered a subsidiary but very important problem: the world is running out of the only present supply of phase-pure amorphous boron. The starting boron powder must be in the amorphous phase in order for the synthesis reaction to produce phase-pure MgB2. Even small contamination with

  16. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime

    Science.gov (United States)

    Reeg, Christopher; Loss, Daniel; Klinovaja, Jelena

    2018-04-01

    Semiconducting quantum wires defined within two-dimensional electron gases and strongly coupled to thin superconducting layers have been extensively explored in recent experiments as promising platforms to host Majorana bound states. We study numerically such a geometry, consisting of a quasi-one-dimensional wire coupled to a disordered three-dimensional superconducting layer. We find that, in the strong-coupling limit of a sizable proximity-induced superconducting gap, all transverse subbands of the wire are significantly shifted in energy relative to the chemical potential of the wire. For the lowest subband, this band shift is comparable in magnitude to the spacing between quantized levels that arises due to the finite thickness of the superconductor (which typically is ˜500 meV for a 10-nm-thick layer of aluminum); in higher subbands, the band shift is much larger. Additionally, we show that the width of the system, which is usually much larger than the thickness, and moderate disorder within the superconductor have almost no impact on the induced gap or band shift. We provide a detailed discussion of the ramifications of our results, arguing that a huge band shift and significant renormalization of semiconducting material parameters in the strong-coupling limit make it challenging to realize a topological phase in such a setup, as the strong coupling to the superconductor essentially metallizes the semiconductor. This metallization of the semiconductor can be tested experimentally through the measurement of the band shift.

  17. Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes

    International Nuclear Information System (INIS)

    Zhang, Z.; Suo, H.; Ma, L.; Zhang, T.; Liu, M.; Zhou, M.

    2011-01-01

    SiC and poly zinc acrylate complexes co-doped MgB 2 bulk has been synthesized. Co-doping can cause higher carbon substitutions and the second phase particles. Co-doping can further increase the Jc value of MgB 2 bulk on the base of the SiC doping. The co-doped MgB 2 bulk samples have been synthesized using an in situ reaction processing. The additives is 8 wt.% SiC nano powders and 10 wt.% [(CH 2 CHCOO) 2 Zn] n poly zinc acrylate complexes (PZA). A systematic study was performed on samples doped with SiC or PZA and samples co-doped with both of them. The effects of doping and co-doping on phase formation, microstructure, and the variation of lattice parameters were studied. The amount of substituted carbon, the critical temperature (T c ) and the critical current density (J c ) were determined. The calculated lattice parameters show the decrease of the a-axis, while no obvious change was detected for c-axis parameter in co-doped samples. This indicates that the carbon was substituted by boron in MgB 2 . The amount of substituted carbon for the co-doped sample shows an enhancement compared to that of the both single doped samples. The co-doped samples perform the highest J c values, which reaches 3.3 x 10 4 A/cm 2 at 5 K and 7 T. It is shown that co-doping with SiC and organic compound is an effective way to further improve the superconducting properties of MgB 2 .

  18. Flux transformers made of commercial high critical temperature superconducting wires.

    Science.gov (United States)

    Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M

    2008-02-01

    We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.

  19. The role of MgO content in ex situ MgB2 wires

    DEFF Research Database (Denmark)

    Kovac, P.; Hugek, I.; Meligek, T.

    2004-01-01

    An experimental study of the effect of MgO content in the MgB2 powder used for ex situ made composite wires was carried out. Two single-core MgB2/Fe/Cu wires were made using commercial MgB2 powders from Alfa Aesar containing different fraction of MgO. Critical temperature and critical currents of...

  20. Quality analysis of superconducting wire and cable for SSC dipole magnets

    International Nuclear Information System (INIS)

    Pollock, D.A.

    1992-01-01

    This paper reports that a critical component of the SSC collider dipole magnets is superconducting cable. The uniformity and reliability requirements for the dipoles place stringent demands on the cable. These needs have been defined as various contract requirements in the material specifications for NbTi alloy, superconducting wire and cable. A supplied qualification program is being started by the SSCL with industry to establish reliable sources of superconductor cable. Key to this qualification program is the establishment by industry of detailed process methods and controls for wire and cable manufacture. To monitor conductor performance, a computer database is being developed by the SSCL Magnet Systems Division Quality Assurance Department. The database is part of a program for ensuring superconductor uniformity by focusing on the understanding and control of variation. A statistical and graphical summary of current data for key performance variables will be presented in light of the specification requirement for uniformity. Superconductor material characteristics to be addressed will include Wire Critical Current (I c ), Copper Ratio (Cu:SC), Wire Diameter, Wire Piece Length, and Cable Dimensional Control

  1. Elastic stiffnesses of an Nb-Ti/Cu-composite superconductive wire

    Science.gov (United States)

    Kim, Sudook; Ledbetter, Hassel; Ogi, Hirotsugu

    2000-09-01

    Elastic-stiffness coefficients were determined on a 1.4-mm-diameter wire consisting of superconducting Nb-Ti fibers in a copper matrix, with a polyvinyl-resin coating. The matrix contained 324 Nb-Ti fibers. An electromagnetic-acoustic-resonance method was used to obtain five independent elastic-stiffness coefficients assuming transverse-isotropic symmetry. From these we calculated Young moduli, bulk modulus, and principal Poisson ratios. As a check, we used a mechanical-impulse-excitation method to directly measure the Young modulus in the fiber direction. The three-phase composite wire showed a 10% anisotropy in the Young modulus.

  2. Superconducting properties of powder-metallurgically produced Cu-Nb3Sn composite wires

    International Nuclear Information System (INIS)

    Schaper, W.; Wecker, J.; Heine, K.; Bormann, R.; Freyhardt, H.C.

    1988-01-01

    The critical current density of composite superconducting wires can be improved by ternary or quaternary additions. If these additions are incorporated into the A15 phase the upper critical field can be increased. An increase in this field, however, can only be realized if the additions do not strongly deteriorate the critical temperature. An enhanced upper critical field in connection with a favorable grain size of the A15 phase finally leads to improved critical current densities in the entire field range. With these parameters as guidelines, the effects of Ti, In, Ga, and Ge additions to the bronze and of Ta additions to the niobium on the superconducting properties of PM produced Cu-Nb 3 Sn wires were investigated

  3. Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    International Nuclear Information System (INIS)

    Jadhav, A B; Subhedar, K M; Hyam, R S; Talaptra, A; Sen, Pintu; Bandyopadhyay, S K; Pawar, S H

    2005-01-01

    The binary intermetallic MgB 2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB 2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods. (rapid communication)

  4. Effects of sintering conditions on critical current properties and microstructures of MgB2 bulks

    International Nuclear Information System (INIS)

    Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Ueda, Shinya; Katsura, Yukari; Iwayama, Isao; Horii, Shigeru; Kishio, Kohji

    2005-01-01

    The effects of heating conditions on critical current properties and microstructures of undoped MgB 2 bulks were systematically studied. Strong correlation was observed between J c and microstructures. The network structure with an excellent inter-grain connectivity of MgB 2 grains contributed to high-J c under low magnetic fields, and small grain size of MgB 2 enhanced the grain boundary flux pinning. Long time heating at low temperatures below the melting point of magnesium was discovered to be most effective for synthesis of MgB 2 bulks having strongly connected MgB 2 network structure with small grains. The sample heated at 550 deg. C for 1200 h recorded a high-J c of 4.02 x 10 5 A cm -2 at 20 K in self-field, while high-temperature and long time heating brought a significant grain growth which resulted in low J c

  5. Specific heat of MgB2 in a one- and a two-band model from first-principles calculations

    International Nuclear Information System (INIS)

    Golubov, A.A.; Dolgov, O.V.; Jepsen, O.; Kong, Y.; Andersen, O.K.; Gibson, B.J.; Ahn, K.; Kremer, R.K.; Kortus, J.

    2002-01-01

    The heat capacity anomaly at the transition to superconductivity of the layered superconductor MgB 2 is compared to first-principles calculations with the Coulomb repulsion, μ*, as the only parameter which is fixed to give the measured T c . We solve the Eliashberg equations for both an isotropic one-band model and a two-band model with different superconducting gaps on the π-band anσd-band Fermi surfaces. The agreement with experiments is considerably better for the two-band model than for the one-band model. (author)

  6. Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

    Directory of Open Access Journals (Sweden)

    Andrei E. Surdu

    2011-12-01

    Full Text Available The effect of depositing FeO nanoparticles with a diameter of 10 nm onto the surface of MgB2 thin films on the critical current density was studied in comparison with the case of uncoated MgB2 thin films. We calculated the superconducting critical current densities (Jc from the magnetization hysteresis (M–H curves for both sets of samples and found that the Jc value of FeO-coated films is higher at all fields and temperatures than the Jc value for uncoated films, and that it decreases to ~105 A/cm2 at B = 1 T and T = 20 K and remains approximately constant at higher fields up to 7 T.

  7. Enhancement of Critical Current Density and Flux Pinning in Acetone and La2O3 Codoped MgB2 Tapes

    International Nuclear Information System (INIS)

    Gao Zhao-Shun; Ma Yan-Wei; Wang Dong-Liang; Zhang Xian-Ping; Awaji Satoshi; Watanabe Kazuo

    2010-01-01

    MgB 2 tape samples with simultaneous additions of acetone and La 2 O 3 were prepared by an in-situ processed powder-in-tube method. Compared to the pure and single doped tapes, both transport J c and fluxing pinning are greatly improved by acetone and La 2 O 3 codoping. Acetone supplies carbon into the MgB 2 crystal lattice and increases the upper critical field, while the La 2 O 3 reacts with B to form LaB 6 nanoparticles as effective flux pining centers. The improvement of the superconducting properties in codoped tapes can be attributed to the combined effects of improvement in H c2 and flux pinning. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Possibility of material cost reduction toward development of low-cost second-generation superconducting wires

    Science.gov (United States)

    Ichinose, Ataru; Horii, Shigeru; Doi, Toshiya

    2017-10-01

    Two approaches to reducing the material cost of second-generation superconducting wires are proposed in this paper: (1) instead of the electrical stabilizing layers of silver and copper presently used on the superconducting layer, a Nb-doped SrTiO3 conductive buffer layer and cube-textured Cu are proposed as an advanced architecture, and (2) the use of an electromagnetic (EM) steel tape as a metal substrate of coated conductors in a conventional architecture. In structures fabricated without using electrical stabilizing layers on the superconducting layer, the critical current density achieved at 77 K in a self-field was approximately 2.6 MA/cm2. On the other hand, in the case of using EM steel tapes, although the critical current density was far from practical at the current stage, the biaxial alignment of YBa2Cu3O y (YBCO) and buffer layers was realized without oxidation on the metal surface. In this study, the possibility of material cost reduction has been strongly indicated toward the development of low-cost second-generation superconducting wires in the near future.

  9. A vibrating wire parallel to a high temperature superconducting slab. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Saif, A G; El-sabagh, M A [Department of Mathematic and Theoretical physics, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The power losses problem for an idealized high temperature type II superconducting system of a simple geometry is studied. This system is composed of a vibrating normal conducting wire (two wires) carrying a direct current parallel to an uniaxial anisotropic type II superconducting slab (moving slab). First, the electromagnetic equation governing the dynamics of this system, and its solutions are obtained. Secondly, a modified anisotropic london equation is developed to study these systems in the case of the slab moving. Thirdly, it is found that, the power losses is dependent on the frequency, london penetration depth, permeability, conductivity, velocity, and the distance between the normal conductors and the surfaces of the superconducting slab. Moreover, the power losses decreases as the distance between the normal conductors and the surface of the superconducting slab decreases; and increases as the frequency, the london penetration depth, permeability, conductivity, and velocity are increased. These losses along the versor of the anisotropy axis is increased as {lambda}{sub |}| increases. Moreover, it is greater than the power losses along the crystal symmetry direction. In the isotropic case as well as the slab thickness tends to infinity, agreement with previous results are obtained. 2 figs.

  10. Development of a short sample test facility for evaluating superconducting wires

    International Nuclear Information System (INIS)

    Singh, M.R.; Kulkarni, D.G.; Sahni, V.C.; Ravikumar, G.; Patel, K.L.

    2002-01-01

    In this paper we describe a short sample test facility we have set up at Bhabha Atomic Research Centre (BARC). This facility has been used to measure critical currents of NbTi/Cu composite superconducting wires by recording V versus I data at 4.2 K. It offers sample current as large as 1500 A and a transverse magnetic field up to 7.4 T. A power law, V ∼I n( H) is fitted to the resistive transition region to estimate the exponent n, which is a measure of the uniformity of superconducting filaments in composite wires. It is observed that inadequate thermal stabilization of sample wire results in thermal runaway, which limits the V-I data to∼ 2μ V . This in turn affects the reliability of estimated filament uniformity. To mitigate this problem, we have used a sample holder made of OFHC-Cu which enhances thermal stabilization of the sample. With this sample holder, the results of measurements carried out on wires developed by the Atomic Fuel Division, BARC show a high filament uniformity (n ∼ 58). (author)

  11. Energy losses in mixed matrix superconducting wires under fast pulsed conditions

    International Nuclear Information System (INIS)

    Wollan, J.J.

    1976-01-01

    Energy losses have been measured on a set of mixed matrix (CuNi, Cu, NbTi) superconducting wires at B's up to 1.5 x 10 7 G/s. The losses have been measured as a function of wire diameter, twist pitch, maximum applied field, and B. Both static and dynamic losses were measured for a field applied perpendicularly to the wire axis. The dynamic losses were measured by slowly applying an external field to a sample and then causing the field to decay exponentially in roughly 1 ms to 10 ms. Under low B (9 kG) and B (10 6 G/s) conditions the hysteretic loss dominated. At high B (21 kG) and B (1.5 x 10 7 G/s) the matrix losses became dominant. The systematic variation of the losses with the mentioned parameters will be presented and will be compared to theoretical predictions

  12. A New Understanding of the Heat Treatment of Nb-Sn Superconducting Wires

    Science.gov (United States)

    Sanabria, Charlie

    Enhancing the beam energy of particle accelerators like the Large Hadron Collider (LHC), at CERN, can increase our probability of finding new fundamental particles of matter beyond those predicted by the standard model. Such discoveries could improve our understanding of the birth of universe, the universe itself, and/or many other mysteries of matter--that have been unresolved for decades--such as dark matter and dark energy. This is obviously a very exciting field of research, and therefore a worldwide collaboration (of universities, laboratories, and the industry) is attempting to increase the beam energy in the LHC. One of the most challenging requirements for an energy increase is the production of a magnetic field homogeneous enough and strong enough to bend the high energy particle beam to keep it inside the accelerating ring. In the current LHC design, these beam bending magnets are made of Nb Ti superconductors, reaching peak fields of 8 T. However, in order to move to higher fields, future magnets will have to use different and more advanced superconducting materials. Among the most viable superconductor wire technologies for future particle accelerator magnets is Nb3Sn, a technology that has been used in high field magnets for many decades. However, Nb3Sn magnet fabrication has an important challenge: the fact the wire fabrication and the coil assembly itself must be done using ductile metallic components (Nb, Sn, and Cu) before the superconducting compound (Nb3 Sn) is activated inside the wires through a heat treatment. The studies presented in this thesis work have found that the heat treatment schedule used on the most advanced Nb3Sn wire technology (the Restacked Rod Process wires, RRPRTM) can still undergo significant improvements. These improvements have already led to an increase of the figure of merit of these wires (critical current density) by 28%.

  13. Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization

    International Nuclear Information System (INIS)

    Cambel, V; Fedor, J; Gregusova, D; Kovac, P; Husek, I

    2005-01-01

    The scanning Hall probe microscope (SHPM) is an important imaging tool used for detailed studies of superconductors in basic science as well as in the industrial sector. It can be used for the studies of losses, current distribution, and effects at grain boundaries. However, only a few SHPMs for magnetic field imaging at temperatures below 77 K have been proposed up to now, most of them designed for small-area (∼10x10 μm 2 ) scanning. We present a large-scale low-temperature SHPM developed for imaging the entire magnetic field in close proximity to magnetic and superconducting samples at 4.2-300 K. The microscope combines a large scanned area and high spatial and magnetic field resolution. The instrument is designed as an insert of standard helium flowing cryostats. The Hall sensor scans an area up to 7 x 25 mm 2 in the whole temperature interval with a spatial resolution better than 5 μm. The presented system is used for the study of ex situ prepared MgB 2 filament. We show that external magnetic field induces local supercurrents in the MgB 2 , from which the critical current can be estimated. Moreover, it indicates the microstructure and space homogeneity of the superconductor

  14. Critical Current and Stability of MgB$_2$ Twisted-Pair DC Cable Assembly Cooled by Helium Gas

    CERN Document Server

    AUTHOR|(CDS)2069632; Ballarino, Amalia; Yang, Yifeng; Young, Edward Andrew; Bailey, Wendell; Beduz, Carlo

    2013-01-01

    Long length superconducting cables/bus-bars cooled by cryogenic gases such as helium operating over a wider temperature range are a challenging but exciting technical development prospects, with applications ranging from super-grid transmission to future accelerator systems. With limited existing knowledge and previous experiences, the cryogenic stability and quench protection of such cables are crucial research areas because the heat transfer is reduced and temperature gradient increased compared to liquid cryogen cooled cables. V-I measurements on gas-cooled cables over a significant length are an essential step towards a fully cryogenic stabilized cable with adequate quench protection. Prototype twisted-pair cables using high-temperature superconductor and MgB2 tapes have been under development at CERN within the FP7 EuCARD project. Experimental studies have been carried out on a 5-m-long multiple MgB$_2$ cable assembly at different temperatures between 20 and 30 K. The subcables of the assembly showed sim...

  15. A high field and cryogenic test facility for neutron irradiated superconducting wire

    Science.gov (United States)

    Nishimura, A.; Miyata, H.; Yoshida, M.; Iio, M.; Suzuki, K.; Nakamoto, T.; Yamazaki, M.; Toyama, T.

    2017-12-01

    A 15.5 T superconducting magnet and a variable temperature insert (VTI) system were installed at a radiation control area in Oarai center in Tohoku University to investigate the superconducting properties of activated superconducting materials by fast neutron. The superconductivity was measured at cryogenic temperature and high magnetic field. During these tests, some inconvenient problems were observed and the additional investigation was carried out. The variable temperature insert was designed and assembled to perform the superconducting property tests. without the liquid helium. To remove the heat induced by radiation and joule heating, high purity aluminum rod was used in VTI. The thermal contact was checked by FEM analysis and an additional support was added to confirm the decreasing the stress concentration and the good thermal contact. After the work for improvement, it was affirmed that the test system works well and all troubles were resolved. In this report, the improved technical solution is described and the first data set on the irradiation effect on Nb3Sn wire is presented.

  16. Growth of high quality large area MgB2 thin films by reactive evaporation

    OpenAIRE

    Moeckly, Brian H.; Ruby, Ward S.

    2006-01-01

    We report a new in-situ reactive deposition thin film growth technique for the production of MgB2 thin films which offers several advantages over all existing methods and is the first deposition method to enable the production of high-quality MgB2 films for real-world applications. We have used this growth method, which incorporates a rotating pocket heater, to deposit MgB2 films on a variety of substrates, including single-crystalline, polycrystalline, metallic, and semiconductor materials u...

  17. Resistive transition of superconducting-wire networks. Influence of pinning and fluctuations

    International Nuclear Information System (INIS)

    Giroud, M.; Buisson, O.; Wang, Y.Y.; Pannetier, B.; Mailly, D.

    1992-01-01

    The authors studied the resistive transition of several 2-D superconducting-wire networks of various coupling strengths, which they characterize in terms of the Kosterlitz-Thouless transition temperature and the ratio ξ/a of the coherence length to the array period. In the extreme strong-coupling limit where the mesh size is of the order of the zero-temperature coherence length, the superconducting behavior is well described by the mean-field properties of the superconducting wave function. Extending to 2-D array, the 1-D phase-slippage model explains the dissipative regime observed above the Ginzburg-Landau depairing critical current. On the other hand, when the coupling is weak, phase fluctuations below the Ginzburg-Landau transition and vortex depinning dominate the resistive behavior. An activated dissipation is observed even below the depairing critical current. Results obtained in this regime for critical temperature, magnetoresistance, or critical current versus temperature, and magnetic field are shown; their periodic oscillations are discussed in terms of depinning of vortices on the array. A simple periodic pinning potential for a vortex in a wire network is calculated, and compared with the case of pinning in Josephson junction arrays. It is shown that this model explains qualitatively the experimental results observed for small ξ/a

  18. Rapid characterization of superconducting wires and tapes in strong pulsed magnetic fields

    International Nuclear Information System (INIS)

    Bockstal, L. van; Keyser, A. de; Deschagt, J.; Hopkins, S.C.; Glowacki, B.A.

    2007-01-01

    A new measurement system for rapid characterization of superconducting wires and tapes is developed. The CryoPulse-BI is a system to provide a direct measurement of critical material parameters for superconducting materials when high long pulsed magnetic fields and strong currents are applied. In the experiments, synchronized magnetic fields up to 30 T and current pulses up to 5 kA are generated with adjustable timing. Varying the magnetic field strength, the current through the sample and the BI timing allows for a thorough characterization of the sample and the determination of critical currents. The rapid cycle time of the experiments yields a rapid and thorough determination of the critical parameters. The method has been tested on low T c as well as high T c materials with the field parallel or perpendicular to the current. The discussion covers the current state of the art including a comparison of our results to classical DC characterization measurements

  19. Comparison of phase boundaries between kagomé and honeycomb superconducting wire networks

    Science.gov (United States)

    Xiao, Yi; Huse, David A.; Chaikin, Paul M.; Higgins, Mark J.; Bhattacharya, Shobo; Spencer, David

    2002-06-01

    We measure resistively the mean-field superconducting-normal phase boundaries of both kagomé and honeycomb wire networks immersed in a transverse magnetic field. In addition to their agreement with theory about the overall shapes of phase diagrams, they show striking one-to-one correspondence between the cusps in the honeycomb phase boundary and those in the kagomé curve. This correspondence is due to their geometric arrangements and agrees with Lin and Nori's recent calculation. We also find that for the frustrated honeycomb network at f=1/2, the current patterns in the superconducting phase differ between the low-temperature London regime and the higher-temperature Ginzburg-Landau regime near Tc.

  20. Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2004-01-01

    MgB2 samples doped with TiO2 nanoparticles were prepared and the effect of TiO2 addition on the superconducting transition temperature (T-c), irreversibility field (H-irr) and critical current density (J(c)) were investigated. It is found that the hexagonal lattice parameters a and c decrease...... with TiO2 doping. Tc decreases gradually from 38.2 to 37.8 K as the TiO2 content increases from 0 to 15 wt%. The H-irr increases at 20 K from 4.3 to 4.9 T as the TiO2 content increases from 0 to 10 wt%, and at the same temperature J(c) increases from 450 to 4250 A/cm(2) at 4.2 T. (C) 2004 Published...

  1. Universal transport characteristics of multiple topological superconducting wires with large charging energy

    Energy Technology Data Exchange (ETDEWEB)

    Kashuba, Oleksiy; Trauzettel, Bjoern [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Timm, Carsten [Institut fuer Theoretische Physik, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    The system with multiple Majorana states coupled to the normal lead can potentially support the interaction between Majorana fermions and electrons. Such system can be implemented by several floating topological superconducting wires with large charging energy asymmetrically coupled to two normal leads. The analysis of the renormalization flow shows that there is a single fixed point - the strong coupling limit of isotropic antiferromagnetic Kondo model. The topological Kondo-like interaction leads also to the selective renormalization of the tunneling coefficients, strongly enhancing one component and suppressing others. Thus, charging energy crucially changes the transport properties of the system leading to the universal single-channel conductance independently from the values of the initial leads-wires coupling.

  2. Phthalocyanine doping to improve critical current densities in MgB2 tapes

    International Nuclear Information System (INIS)

    Zhang Xianping; Ma Yanwei; Wang Dongliang; Gao Zhaoshun; Wang Lei; Qi Yanpeng; Awaji, Satoshi; Watanabe, Kazuo; Mossang, Eric

    2009-01-01

    Phthalocyanine-doped MgB 2 tapes were prepared by the in situ powder-in-tube method. The relationships between the critical current properties, crystallinity and microstructure were studied as a function of the phthalocyanine doping level. It is found that both H irr and H c2 were improved when MgB 2 samples were doped with phthalocyanine, which are mainly attributed to the effective carbon substitution and enhanced flux pinning strength caused by very fine grain sizes. Furthermore, compared to pure samples, the MgO content remained almost unchanged in all doped tapes, which is very beneficial to having better grain connectivity in MgB 2 . Significantly improved J c was obtained in the phthalocyanine-doped MgB 2 tapes, especially under high magnetic fields.

  3. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    Science.gov (United States)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.

  4. Flux pinning behaviors of Ti and C co-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y.; Feng, Y.; Cheng, C.H.; Zhang, Y.P.; Zhao, Y.

    2008-01-01

    Flux pinning behavior of carbon and titanium concurrently doped MgB 2 alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB 2 have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB 2 samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg 0.95 Ti 0.05 B 1.95 C 0.05 has been determined to be U(B dc )∝B dc -1 compared to that of MgB 2 U(B dc )∝B dc -1.5 . As to the U(J) behavior, a relationship of U(J) ∝ J -0.17 is found fitting well for Mg 0.95 Ti 0.05 B 1.95 C 0.05 with respect to U(J) ∝ J -0.21 for MgB 2 . All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB 2

  5. Microwave surface impedance of MgB2 thin film

    International Nuclear Information System (INIS)

    Jin, B B; Klein, N; Kang, W N; Kim, Hyeong-Jin; Choi, Eun-Mi; Lee, Sung-I K; Dahm, T; Maki, K

    2003-01-01

    The microwave surface impedance Z s = R s + jωμ 0 λ was measured with dielectric resonator techniques for two c-axis-oriented MgB 2 thin films. The temperature dependence of the penetration depth λ measured with a sapphire resonator at 17.93 GHz can be well fitted from 5 K close to T c by the standard BCS integral expression assuming the reduced energy gap Δ(0)/kT c to be as low as 1.13 and 1.03 for the two samples. From these fits the penetration depth at zero temperatures was determined to be 102 nm and 107 nm, respectively. The results clearly indicate the s-wave nature of the order parameter. The temperature dependence of surface resistance R s , measured with a rutile dielectric resonator, shows an exponential behaviour below about T c /2 with a reduced energy gap being consistent with the one determined from the λ data. The R s value at 4.2 K was found to be as low as 19 μΩ at 7.2 GHz, which is comparable with that of a high-quality high-temperature thin film of YBa 2 Cu 3 O 7 . A higher-order mode at 17.9 GHz was employed to determine the frequency f dependence of R s ∝ f n(T) . Our results revealed a decrease of n with increasing temperature ranging from n = 2 below 8 K to n 1 from 13 to 34 K

  6. Experimentally verified inductance extraction and parameter study for superconductive integrated circuit wires crossing ground plane holes

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Juergen; Meyer, Hans-Georg; Toepfer, Hannes

    2013-01-01

    As the complexity of rapid single flux quantum (RSFQ) circuits increases, both current and power consumption of the circuits become important design criteria. Various new concepts such as inductive biasing for energy efficient RSFQ circuits and inductively coupled RSFQ cells for current recycling have been proposed to overcome increasingly severe design problems. Both of these techniques use ground plane holes to increase the inductance or coupling factor of superconducting integrated circuit wires. New design tools are consequently required to handle the new topographies. One important issue in such circuit design is the accurate calculation of networks of inductances even in the presence of finite holes in the ground plane. We show how a fast network extraction method using InductEx, which is a pre- and post-processor for the magnetoquasistatic field solver FastHenry, is used to calculate the inductances of a set of SQUIDs (superconducting quantum interference devices) with ground plane holes of different sizes. The results are compared to measurements of physical structures fabricated with the IPHT Jena 1 kA cm −2 RSFQ niobium process to verify accuracy. We then do a parameter study and derive empirical equations for fast and useful estimation of the inductance of wires surrounded by ground plane holes. We also investigate practical circuits and show excellent accuracy. (paper)

  7. Recent progress in methods for non-invasive measurements of local strain in practical superconducting wires and conductors using quantum beam techniques

    International Nuclear Information System (INIS)

    Osamura, Kozo; Machiya, Shutaro; Tsuchiya, Yoshinori; Suzuki, Hiroshi; Awaji, Satoshi; Takahashi, Kohki; Oguro, Hidetoshi; Harjo, Stefanus; Hemmi, Tsutomu; Nakamoto, Tatsushi; Sugano, Michinaka; Jin, Xinzhe; Kajiwara, Kentaro

    2014-01-01

    Practical superconducting wires are designed with a composite structure to meet the desired engineering characteristics by expert selection of materials and design of the architecture. In practice, the local strain exerted on the superconducting component influences the electromagnetic properties. Here, recent progress in methods used to measure the local strain in practical superconducting wires and conductors using quantum beam techniques is introduced. Recent topics on the strain dependence of critical current are reviewed for three major practical wires: ITER-Nb 3 Sn strand, DI-BSCCO wires and REBCO tapes. (author)

  8. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  9. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides.

    Science.gov (United States)

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-06-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project.

  10. The quality assurance of superconducting wire and cable for SSC magnets

    International Nuclear Information System (INIS)

    Pollock, D.; Baggett, P.; Capone, D.

    1991-03-01

    The success of the SSC depends on the consistency and uniformity of the superconducting magnets used in the main collider rings and the high energy booster. To a great extent the success of the magnets depends upon the quality of the superconductor wire and cable used in coil windings. As the SSC project has begun its transition from Research to Development, a new laboratory organization has been established to carry the design requirements from concept to reality. The SSCL Magnet Systems Division Quality Assurance Group has been working on the development of a quality management and analysis system for insuring superconductor uniformity through the understanding and control of manufacturing variation. Key areas of the QA activity include: the design and development of a computer database and analysis system for the collection and statistical analysis of superconductor materials data (containing: source physical and chemical properties, billet process history, and final product performance data); and the development of wire and cable product specifications which focus on the control of variation. As a result of this work several new concepts have been developed which will affect the traditional approach to superconductor wire and cable production. 18 refs., 5 figs., 1 tab

  11. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    International Nuclear Information System (INIS)

    Glowacki, B A; Nuttall, W J

    2008-01-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H 2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB 2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB 2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb 3 Sn strands for ITER fusion magnet with newly developed high field composite MgB 2 PIT conductors has shown that at 14 Tesla MgB 2 possesses better properties than any of the Nb 3 Sn conductors produced. In this paper the potential of MgB 2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB 2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB 2 conductors for Fusion Island are also considered

  12. Advanced modern superconductive materials for the machines and devices working on the principles of levitation

    International Nuclear Information System (INIS)

    Prikhna, T.A.; Novikov, N.V.; Savchuk, Ya.M.; Sverdun, V.V.

    2005-01-01

    By the high-pressure (2 GPa) high-temperature (800-900 degree C) synthesis from Mg and B taken in the MgB 2 stoichiometric ratio and with 10 wt.% of Ti, the MgB 2 -based nanostructural superconductive material with the record values of critical current density, J c , and the irreversible fields has been obtained

  13. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  14. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Evetts, J E [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  15. Superconductivity of powder-in-tube MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B.A.; Evetts, J.E. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Majoros, M. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); Institute of Electrical Engineering, Slovak Academy of Science, Dubravska Cesta 9, Bratislava (Slovakia); Vickers, M. [Department of Materials Science and Metallurgy, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Shi, Y. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 OHE (United Kingdom); McDougall, I. [Oxford Instruments Plc, Eynsham, OX8 ITL (United Kingdom)

    2001-04-01

    A new class of 'powder-in-tube' Mg-B superconducting conductors has been prepared using two different methods: an in situ technique where an Mg + 2B mixture was used as a central conductor core and reacted in situ to form MgB{sub 2}, and an ex situ technique where fully reacted MgB{sub 2} powder was used to fill the metal tube. Conductors were prepared using silver, copper and bimetallic silver/stainless steel tubes. Wires manufactured by the in situ technique, diffusing Mg to B particles experienced {approx}25.5% decrease in density from the initial value after cold deformation, due to the phase transformation from Mg + 2({beta}-B){yields}MgB{sub 2} all with hexagonal structure. A comparative study of the intergranular current and grain connectivity in wires was conducted by AC susceptibility measurements and direct four point transport measurements. Using a SQUID magnetometer, magnetization versus magnetic field (M-H) curves of the round wires before and after sintering and reactive diffusion were measured at 5 K and in magnetic fields up to 5 T to define the J{sub cmag}. The direct current measurements were performed in self field at 4.2 K. A comparison between zero-field-cooled (ZFC) and field-cooled (FC) susceptibility measurements for sintered Ag/MgB{sub 2}, and reacted Cu/Mg + 2B conductors revealed systematic differences in the flux pinning in the wires which is in very good agreement with direct high transport current measurements. (author)

  16. Energy gap in MgB2 superconductor: Andreev reflection studies

    International Nuclear Information System (INIS)

    Aswal, D.K.

    2003-01-01

    To investigate the nature of energy gap in MgB 2 superconductor, we have performed Andreev-reflection studies on MgB 2 / Ag planar junctions. The differential resistance (dV/dI) versus voltage (V) characteristics were recorded as a function of temperature, magnetic field and junction-type. The dV/dI vs V characteristic recorded at low temperature and zero-field for a clean MgB 2 / Ag planar junction exhibited several interesting features, such as, zero bias anomaly, a distinct double-minima, sharp resonance peaks near the energy gap etc. The data, however, could not be explained using Blonder-Tinkham-Klapwijk theory of isotropic superconductor, which indicated that energy gap in MgB 2 is not consistent with the weak-coupling BCS theory. This is further supported by unusual temperature and magnetic field dependence of the tunneling characteristics. The results indicate several possibilities for the energy gap in MgB 2 , such as, an anisotropic energy gap, two-energy or an unconventional gap scenario. (author)

  17. Upper critical fields in multifilamentary NbTi alloy superconducting wires

    International Nuclear Information System (INIS)

    Watanabe, Kazuo; Muto, Yoshio; Noto, Koshichi.

    1991-01-01

    In order to improve the high field performance of superconducting magnets, the upper critical field B c2 for practical multifilamentary alloy wires of NbTi, NbTiTa and NbTiHf were examined in respect with the usage of a pressurized superfluid cooling technique. The addition of Ta or Hf to NbTi enhanced by 0.5 T for B c2 at 1.8 K. Although the addition of a heavy element such as Ta or Hf has been regarded as suppressing Pauli-paramagnetism so far, it was found that the mechanism for B c2 enhancement by Hf addition is different from that by Ta addition. (author)

  18. International round robin test for mechanical properties of Nb3Sn superconductive wires at room temperature

    International Nuclear Information System (INIS)

    Osamura, K; Nyilas, A; Thoener, M; Seeber, B; Fluekiger, R; Ilyin, Y; Njihuis, A; Ekin, J; Clickner, C; Walsh, R P; Toplosky, V; Shin, H; Katagiri, K; Ochiai, S; Hojo, M; Kubo, Y; Miyashita, K

    2008-01-01

    An international RRT has been carried out in order to establish the test method for mechanical properties of commercial Nb 3 Sn superconductive wires under the cooperation of eleven worldwide research groups. From the stress-strain curve, the following quantities were evaluated; modulus of elasticity, transition of elastic to plastic deformation, proof strength, tensile strength and elongation to fracture. The scatter of measured values was analyzed to evaluate the COV, which is the standard deviation divided by the average. The results made clear how the experimental conditions influence the determination of physical quantities. The most important point is that large COVs for modulus of elasticity and proof strength from the initial slope are caused by the narrow elastic limit. Methods have been discussed to improve the statistics of experimental results obtained from the international RRT

  19. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Science.gov (United States)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  20. Possible superlattice formation in high-temperature treated carbonaceous MgB2 at elevated pressure

    International Nuclear Information System (INIS)

    Tschauner, Oliver; Errandonea, Daniel; Serghiou, George

    2006-01-01

    We report indications of a phase transition in carbonaceous MgB 2 above 9 GPa at 300 K after stress relaxation by laser heating. The transition was detected using Raman spectroscopy and X-ray diffraction. The observed changes are consistent with a second-order structural transition involving a doubling of the unit cell along c and a reduction of the boron site symmetry. Moreover, the Raman spectra suggest a reduction in electron-phonon coupling in the slightly modified MgB 2 structure consistent with the previously proposed topological transition in MgB 2 . However, further attributes including deviatoric stress, lattice defects, and compositional variation may play an important role in the observed phenomena

  1. Manufacture of superconducting wire. Progress report, February 1-October 15, 1979

    International Nuclear Information System (INIS)

    Avitzur, B.; Chou, Y.T.; Talbert, S.; Wu, R.

    1979-10-01

    This report is divided into three major sections. The first section covers aspects of the manufacturing technology with existing and potential processes, and the second deals with the analysis of flow and fracture and the derivation of criteria to prevent failure. In the first section, typical present-day procedure to assemble a billet, extrude and draw it, with intermediate and final anneals, is described. Then an hypothetical production line with potential alternative processes along the entire path from heavy billet to fine wire, is laid out. Several processes at different stages of development, are offered. In the second section the analysis of core fracture and its prevention during the process of drawing is provided. Treatment of velocity fields for a bi-metallic rod leads to the determination of criteria for the prevention of fracture. The criteria are presented graphically. The third section describes work on micro properties of superconducting wires. A modification of the bronze method for niobium-tin superconductors is proposed and a preliminary schedule of the testing procedures is outlined

  2. Superconducting properties of (Nb,Ta)3Sn wires fabricated by the bronze process

    International Nuclear Information System (INIS)

    Suenaga, M.; Aihara, K.; Kaiho, K.; Luhman, T.S.

    1979-01-01

    Measurements of the superconducting critical temperature T/sub c/, critical current density, J/sub c/ (8 3 Sn monofilamentary wires. Ta content in the Nb 3 Sn compound was varied by alloying the Nb core prior to a reaction heat treatment. Core compositions were 0, 3, 7, 10, and 20 wt% Ta and heat treatments for the reaction were 16, 64, and 120 h at 725 0 C. For the 120 h heat treatment T/sub c/ decreased monotonically with Ta content from 17.5 to 15.7K while H/sub c2/ increased from 19.8 to 24.6 T. With increasing Ta content J/sub c/ (16 T) increased from 0.7 x 10 5 A/cm 2 to a maximum value of 1.3 x 10 5 at 7 wt% Ta. Further increases in the Ta content produced a decrease in J/sub c/(16 T). At 10 T J/sub c/ decreased with increasing Ta content. An important aspect of this work is the observation that alloying with Ta did not hinder wire ductility during drawing. It appears therefore that the improvements in J/sub c/(16 T) can be incorporated into commercially manufactured conductors

  3. A jelly-roll process for high temperature superconducting tapes and wires

    International Nuclear Information System (INIS)

    Tsuei, C.C.; Chi, C.C.; Frey, T.; Mitzi, D.B.; Kazyaka, T.; Haugan, T.; Ye, J.; Patel, S.; Shaw, D.T.; Wu, M.K.

    1992-01-01

    As an alternative to the powder-in-tube method, a new technique called the jelly-roll process is proposed for making high-T c superconducting tapes and wires. A normal-metal sheet coated with high-T c cuprate is configured in a jelly-roll fashion and cold worked into tapes or wires made of alternating cuprate superconductor and normal metal layers. The feasibility of this new process is demonstrated for both the YBa 2 Cu 3 O 7 /Ag and Bi 2 Sr 2 CaCu 2 O 8 /Ag composite systems. The role of reduction in the cross-sectional area by cold-rolling, heat treatment and oxygenation in optimizing T c and J c has been studied. Preliminary results indicate that partialmelt texturing, in the Bi 2 Sr 2 CaCu 2 O 8 /Ag system, results in a relatively field independent J c (H c (H = 0) ∝5 X 10 4 A cm -2 at 4.2 K

  4. A jelly-roll process for high temperature superconducting tapes and wires

    Energy Technology Data Exchange (ETDEWEB)

    Tsuei, C C; Chi, C C; Frey, T; Mitzi, D B; Kazyaka, T [IBM Thomas J. Watson Research Center, Yorktown Heights, NY (United States); Haugan, T; Ye, J; Patel, S; Shaw, D T [New York State Inst. on Superconductivity, SUNY, Buffalo, Amherst, NY (United States); Wu, M K [Dept. of Physics, National Tsing Hua Univ., Hsinchu (Taiwan)

    1992-07-01

    As an alternative to the powder-in-tube method, a new technique called the jelly-roll process is proposed for making high-T[sub c] superconducting tapes and wires. A normal-metal sheet coated with high-T[sub c] cuprate is configured in a jelly-roll fashion and cold worked into tapes or wires made of alternating cuprate superconductor and normal metal layers. The feasibility of this new process is demonstrated for both the YBa[sub 2]Cu[sub 3]O[sub 7]/Ag and Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8]/Ag composite systems. The role of reduction in the cross-sectional area by cold-rolling, heat treatment and oxygenation in optimizing T[sub c] and J[sub c] has been studied. Preliminary results indicate that partialmelt texturing, in the Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8]/Ag system, results in a relatively field independent J[sub c] (H< or approx.7T) with J[sub c](H = 0) [proportional to]5 X 10[sup 4] A cm[sup -2] at 4.2 K.

  5. A method for building low loss multi-layer wiring for superconducting microwave devices

    Science.gov (United States)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  6. GLAG theory for superconducting property variations with A15 composition in Nb3Sn wires.

    Science.gov (United States)

    Li, Yingxu; Gao, Yuanwen

    2017-04-25

    We present a model for the variation of the upper critical field H c2 with Sn content in A15-type Nb-Sn wires, within the Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) theory frame. H c2 at the vicinity of the critical temperature T c is related quantitatively to the electrical resistivity ρ, specific heat capacity coefficient γ and T c . H c2 versus tin content is theoretically formulated within the GLAG theory, and generally reproduces the experiment results. As Sn content gradually approaches the stoichiometry, A15-type Nb-Sn undergoes a transition from the dirty limit to clean limit, split by the phase transformation boundary. The H-T phase boundary and pinning force show different behaviors in the cubic and tetragonal phase. We dipict the dependence of the composition gradient on the superconducting properties variation in the A15 layer, as well as the curved tail at vicinity of H c2 in the Kramer plot of the Nb 3 Sn wire. This helps understanding of the inhomogeneous-composition inducing discrepancy between the results by the state-of-art scaling laws and experiments.

  7. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1991-09-01

    High magnetization YBaCuO superconductor was prepared with additions of BaSnO 3 , SnO 2 and SiC by partial melt processing. Addition of BaSnO 3 increased the magnetic property of YBaCuO by flux pinning action of finely dispersed BaSnO 3 particles, while addition of SnO 2 decreased the magnetic property, because the size of particle was larger than that of BaSnO 3 . BiPbSrCaCuO superconducting tape of single filament was prepared by powder-in-tube method using silver as a shearth material. The fabrication techniques involves powder packing, swaging, drawing and cold rolling/pressing method. The final dimension of wire after drawing is 1.2mm diameter. The wire was pressed into a tape form with a thickness of 70micron and a width of 3mm. The obtained critical current density of the prepared tape was 2000A/cm 2 at 77K. (Author)

  8. Crystallinity and flux pinning properties of MgB2 bulks

    International Nuclear Information System (INIS)

    Yamamoto, A.; Shimoyama, J.; Ueda, S.; Katsura, Y.; Iwayama, I.; Horii, S.; Kishio, K.

    2006-01-01

    The relationship between flux pinning properties and crystallinity of MgB 2 bulks was systematically studied. Improved flux pinning properties under high fields were observed for samples with low crystallinity. Increased impurity scattering due to strain and defects in lattice corresponding to the degraded crystallinity was considered to enhance flux pinning strength at grain boundaries. Low-temperature synthesis and carbon substitution were confirmed to be effective for degrading crystallinity of MgB 2 bulks, resulting in high critical current properties under high fields

  9. Laser-induced thermoelectric voltage in normal state MgB2 thin films

    International Nuclear Information System (INIS)

    Zhao Songqing; Zhou Yueliang; Zhao Kun; Wang Shufang; Chen Zhenghao; Jin Kuijuan; Lue Huibin; Cheng Bolin; Yang Guozhen

    2006-01-01

    Laser-induced voltage has been observed in c-axis oriented MgB 2 thin film at room temperature. The amplitude of the signal is approximately proportional to the film thickness. For the film with the thickness of 150 nm, a very fast response has been detected when the film was irradiated by a 308 nm pulsed laser of 20 ns duration. The rise time and full width at half-maximum of the signal are about 3 and 25 ns, respectively. The physical origin of the laser-induced voltage can be attributed to a transverse thermoelectricity due to the anisotropic thermopower in MgB 2

  10. Evaluation of carbon incorporation and strain of doped MgB2 superconductor by Raman spectroscopy

    International Nuclear Information System (INIS)

    Yeoh, W.K.; Zheng, R.K.; Ringer, S.P.; Li, W.X.; Xu, X.; Dou, S.X.; Chen, S.K.; MacManus-Driscoll, J.L.

    2011-01-01

    Raman spectroscopy is employed to study both the strain and the carbon substitution level in SiC-doped MgB 2 bulk samples. Raman spectroscopy was demonstrated to be a better method to distinguish the individual influences of strain and carbon than standard X-ray diffraction. It is found that the lattice parameter correlation method for C content determination is invalid for highly strained samples. Our result also provides an alternative explanation for lattice variation in non-carbon-doped MgB 2 , which is basically due to lattice strain.

  11. Theoretical investigation of the vortex state in new superconductors: MgB2 and PrOs4Sb12

    International Nuclear Information System (INIS)

    Dao, V.H.

    2006-01-01

    As illustrated by the present thesis work, gap function anisotropy and crystal anisotropy are combined when influencing superconducting properties under a magnetic field. In order to study the mixed state of the recently discovered multiband superconductor MgB 2 , we first derive the Ginzburg-Landau functional for a two-gap superconductor from a weak coupling BCS model. The interaction between the two condensates is then described by a unique Josephson-type coupling. The two-gap theory then enables to explain the curvature and the anisotropy of the upper critical field, as well as the 30 degrees change of orientation for the vortex lattice which is observed when increasing the strength of the magnetic field applied along the c-tilde axis. Besides, we investigate the vortex lattice geometry in the superconducting heavy fermion PrOs 4 Sb 12 . When taking into account non local corrections for an s-wave T h -tetrahedral superconductor, we can explain the observed deformation of the lattice by the crystal symmetry of the compound. Ab initio results of the band structures confirm quantitatively our analysis. (author)

  12. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  13. RAPID COMMUNICATION: Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    Science.gov (United States)

    Jadhav, A. B.; Subhedar, K. M.; Hyam, R. S.; Talaptra, A.; Sen, Pintu; Bandyopadhyay, S. K.; Pawar, S. H.

    2005-06-01

    The binary intermetallic MgB2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods.

  14. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB2

    International Nuclear Information System (INIS)

    Zhao, Y.; Ke, C.; Cheng, C.H.; Feng, Y.; Yang, Y.; Munroe, P.

    2010-01-01

    Nano-diamond and titanium concurrently doped MgB 2 nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J c -H behavior and pinning force scaling features of MgB 2 have been investigated. Although T c was slightly depressed, J c of MgB 2 have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J c value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB 2 , a unique nanocomposite in which TiB 2 forms a thin layer surrounding MgB 2 grains whereas nano-diamond particles were wrapped inside the MgB 2 grains. Besides, nano-diamond doping results in a high density stress field in the MgB 2 samples, which may take responsibility for the Δκ pinning behavior in the carbon-doped MgB 2 system.

  15. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  16. Recent achievements in MgB 2 physics and applications: A large-area SQUID magnetometer and point-contact spectroscopy measurements

    Science.gov (United States)

    Gonnelli, R. S.; Daghero, D.; Calzolari, A.; Ummarino, G. A.; Tortello, M.; Stepanov, V. A.; Zhigadlo, N. D.; Rogacki, K.; Karpinski, J.; Portesi, C.; Monticone, E.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.

    2006-03-01

    In the first part of the present paper we discuss the fabrication and the characterization of an MgB2-based SQUID magnetometer with a directly coupled large-area pick-up loop, made on an MgB2 film deposited by an all in situ technique. The coarse structure of the SQUID was defined by optical lithography and Ar-ion milling, while the two nanobridges acting as weak links in the superconducting loop were made by focused ion beam (FIB) milling. The device was characterized at different temperatures and showed Josephson quantum interference up to 20 K as well as a noise level already compatible with the recording of an adult magnetocardiogram. In the second part, concerning the fundamental physics of MgB2, we present the results of very recent point-contact measurements on Mg1-xMnxB2 single crystals with 34.1 ⩾ Tc ⩾ 13.3 K (i.e. 0.37% ⩽ x ⩽ 1.5%). The experimental conductance curves were fitted with the generalized two-band BTK model and their behaviour in magnetic fields was studied to check if both the order parameters (OPs) of the σ and π bands were present in the whole doping range. The dependence of the OPs (evaluated through the fit) on the Andreev critical temperature of the junctions is analyzed in the framework of the two-band Eliashberg theory by including the effects of magnetic impurities. The results give an evidence of a dominant effect of the magnetic impurities on the σ-band channel.

  17. Fabrication and superconducting properties of a simple-structured jelly-roll Nb{sub 3}Al wire with low-temperature heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.J. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Yan, G., E-mail: gyan@c-wst.com [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Pan, X.F. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Zhang, P.X. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Qi, M. [Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Liu, X.H.; Feng, Y. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Superconductivity and New Energy R& D Center, Southwest Jiaotong University (SWJTU), Chengdu 610031 (China)

    2015-06-15

    Highlights: • Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the jelly-roll method. • The length of 18-cores Nb{sub 3}Al superconducting wire reaches 100 m without any breakage and intermediate anneal. • This wire has the uniform filament-shapes and fine long-wire homogeneity. • This Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. - Abstract: With extremely high critical current density (J{sub c}) and excellent strain tolerance, Nb{sub 3}Al superconductor is considered as an alternative to Nb{sub 3}Sn for application of high-field magnets. However, owing to their complex structure, Nb{sub 3}Al superconducting wires can hardly meet the requirement of engineering application at present. In this work, a novel simple-structured Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the conventional jelly-roll method, as well as a heat-treatment of 800–850 °C for 20–50 h. The results show that a 18-filament superconducting wire with length longer than 100 m can be successfully prepared by this method, and also this Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. These suggest that with further optimization, the simple-structured Nb{sub 3}Al superconducting wires are very promising to fabricate the km-grade long wires to meet the requirement of engineering application.

  18. Effect of Platinum Group Metal Doping in Magnesium Diboride Wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Alexiou, Aikaterini; Namazkar, Shahla

    2016-01-01

    The effect of some platinum group metals(PGM = Rh, Pd, and Pt) on the microstructure and critical current density of Cu/Nb-sheathed MgB2 wires has been studied using Mg1-x PGMxB2 powders with low doping levels. It was found that Pt and Pd do not enter the MgB2 lattice and have only limited influe...

  19. Feasibility study on partial insulation winding technique for the development of self-protective MgB2 magnet

    Science.gov (United States)

    Kim, Y. G.; Kim, J. C.; Kim, J. M.; Yoo, B. H.; Hwang, D. Y.; Lee, H. G.

    2018-06-01

    This study investigates the feasibility of using the partial insulation winding technique for the development of a self-protective MgB2 MRI magnet with a fast charge-discharge rate. Charge-discharge and quench tests for a prototype PI MgB2 magnet confirmed that the magnet was successfully operated at full-field performance and exhibited self-protecting behavior in the event of a quench. Nonetheless, the required time to charge the 0.5-T/300-mm PI MgB2 magnet was almost five days, implying that the charge-discharge delay of the PI MgB2 magnet still needs to be ameliorated further to develop a real-scale MgB2 MRI magnet with a fast charge-discharge rate.

  20. Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops

    Energy Technology Data Exchange (ETDEWEB)

    Shimazu, Y.; Yokoyama, T

    2004-10-01

    In order to realize strong coupling in a system of multiple flux qubits with a DC-SQUID, the use of kinetic inductance is advantageous because it can be much larger than geometrical inductance for narrow superconducting wires. We measured the inductance associated with narrow Al wires, and estimated the contributions of kinetic and geometrical inductances. The London penetration depth which determines the kinetic inductance is evaluated. We fabricated samples of two Josephson-junction loops and a DC-SQUID which are all coupled with kinetic inductances. The observed magnetic flux due to the loops is in good agreement with the result of numerical simulation based on the estimated inductances.

  1. Critical current and cryogenic stability modelling of filamentary MgB2 conductors

    DEFF Research Database (Denmark)

    Glowacki, B.A.; Majoros, M.; Tanaka, K.

    2006-01-01

    The modelling of a single filament, 6 filaments and 19 filaments MgB(2) conductors was performed for two limiting cases: a) isothermal conditions considering J(c)(B) dependence, b) considering heating effects but with J(c) magnetic field independent. As a starting point of the modelling in case a...

  2. The Raman spectrum and lattice parameters of MgB2 as a function of temperature

    International Nuclear Information System (INIS)

    Shi Lei; Zhang Huarong; Chen Lin; Feng Yong

    2004-01-01

    The temperature dependences of the Raman spectrum and lattice parameters of polycrystalline MgB 2 have been investigated by means of Raman spectroscopy and x-ray diffraction. It is found that the lattice parameters show an approximately linear change with the temperature decrease, giving different thermal expansions along the a- and c-axes, which is caused by the comparatively weak metal-boron bonding in MgB 2 . The grain size of MgB 2 determined by means of x-ray diffraction is around 45 nm for both [100] and [001] directions. There is no evidence for any structural transition while the temperature changes from 300 K down to 12 K. An anomalous Raman band at 603 cm -1 is observed, which is consistent with the theoretical prediction for the E 2g in-plane boron stretching mode. The Raman frequency increases and the linewidth decreases as the temperature decreases. A possible origin of the temperature dependences of the Raman frequency and the linewidth is discussed. It is suggested that the grain size effect of MgB 2 on the nanometric scale will have a clear influence on the frequency and the linewidth of the Raman spectrum

  3. Design of an MgB2 race track coil for a wind generator pole demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2014-01-01

    An MgB2 race track coil intended for demonstrating a down scaled pole of a 10 MW direct drive wind turbine generator has been designed. The coil consists of 10 double pancake coils stacked into a race track coil with a cross section of 84 mm × 80 mm. The length of the straight section is 0.5 m...

  4. Low-temperature dependence of the optical conductivity in superconductor MgB2

    International Nuclear Information System (INIS)

    Shahzamanian, M.A.; Yavary, H.; Moarrefi, M.

    2005-01-01

    The real part of the optical conductivity is calculated by using the Kubo formula approach, and in the framework of the two-bands model. It is shown that a single-gap model is insufficient to describe the optical behavior of superconductor MgB 2 film, but the two-gap model with different symmetries is sufficient to explain the experimental results

  5. Doping effects of carbon and titanium on the critical current density of MgB2

    International Nuclear Information System (INIS)

    Shen, T M; Li, G; Cheng, C H; Zhao, Y

    2006-01-01

    MgB 2 bulks doped with Ti or/and C were prepared by an in situ solid state reaction method to determine the combined effect of C and Ti doping and to probe the detailed mechanism. The magnetization measurement shows that Mg 0.95 Ti 0.05 B 1.95 C 0.05 sample has significantly improved flux pinning compared to the MgB 1.95 C 0.05 sample at 20 K, indicating that C and Ti are largely cooperative in improving the J c (H) behaviour. No TiC phase was detected in the x-ray diffraction (XRD) patterns. Moreover, the overlap of the (100) peaks of MgB 1.95 C 0.05 and Mg 0.95 Ti 0.05 B 1.95 C 0.05 showed that Ti doping does not reduce the amount of C in MgB 2 . Microstructural analyses revealed that the addition of Ti eliminated the porosity present in the carbon-doped MgB 2 pellet, resulting in an improved intergrain connectivity and an increase of effective current pass. Further, MgB 2 doped with C and Ti, which mainly consists of spherical grains about 200-300 nm in size, shows an higher grain homogeneity than the C-doped sample, suggesting that the Ti doping in MgB 1-x C x has played an important role in obtaining uniform grains

  6. Effects of Cu or Ag additions on the kinetics of MgB2 phase formation in Fe-sheated wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Abrahamsen, Asger Bech; Bednarcik, J.

    2008-01-01

    MgB2/Fe wires have been produced by the powder-in-tube technique following the in situ route. The influence of low amounts of Cu or Ag additions into the precursor powder mixture on the kinetics of MgB2 formation was studied in situ by means of synchrotron x-ray diffraction during heat-treatments...

  7. Proposal to negotiate an amendment to an existing contract for the supply of superconducting wire for the LHC corrector magnets

    CERN Document Server

    2005-01-01

    This document concerns the proposal to negotiate an amendment to an existing contract for the supply of superconducting wire for the LHC corrector magnets. For the reasons explained in this document, the Finance Committee is invited to approve an amendment to an existing contract with the firm ALSTOM (FR) for the supply of an additional 1 270 km of superconducting wire (Types 1 and 2) for an amount of 257 549 euros (402 679 Swiss francs), subject to revision for inflation, bringing the total to a maximum amount of 2 814 170 euros (4 399 955 Swiss francs), subject to revision for inflation. The amounts in Swiss francs have been calculated using the present rate of exchange.

  8. Characterisation of superconducting capillaries for magnetic shielding of twisted-wire pairs in a neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S., E-mail: s.henry@physics.ox.ac.uk; Pipe, M.; Cottle, A.; Clarke, C.; Divakar, U.; Lynch, A.

    2014-11-01

    The cryoEDM neutron electric dipole moment experiment requires a SQUID magnetometry system with pick-up loops inside a magnetically shielded volume connected to SQUID sensors by long (up to 2 m) twisted-wire pairs (TWPs). These wires run outside the main shield, and therefore must run through superconducting capillaries to screen unwanted magnetic pick-up. We show that the average measured transverse magnetic pick-up of a set of lengths of TWPs is equivalent to a loop area of 5.0×10{sup −6} m{sup 2}/m, or 14 twists per metre. From this we set the requirement that the magnetic shielding factor of the superconducting capillaries used in the cryoEDM system must be greater than 8.0×10{sup 4}. The shielding factor—the ratio of the signal picked-up by an unshielded TWP to that induced in a shielded TWP—was measured for a selection of superconducting capillaries made from solder wire. We conclude the transverse shielding factor of a uniform capillary is greater than 10{sup 7}. The measured pick-up was equal to, or less than that due to direct coupling to the SQUID sensor (measured without any TWP attached). We show that discontinuities in the capillaries substantially impair the magnetic shielding, yet if suitably repaired, this can be restored to the shielding factor of an unbroken capillary. We have constructed shielding assemblies for cryoEDM made from lengths of single core and triple core solder capillaries, joined by a shielded Pb cylinder, incorporating a heater to heat the wires above the superconducting transition as required.

  9. Superconductivity at the industrial scale

    International Nuclear Information System (INIS)

    Tixador, P.; Lebrun, Ph.

    2011-01-01

    The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)

  10. Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Igor O [Los Alamos National Laboratory; Arendt, Paul N [Los Alamos National Laboratory; Stan, Liliana [Los Alamos National Laboratory; Holesinger, Terry G [Los Alamos National Laboratory; Foltyn, Steven R [Los Alamos National Laboratory; Depaula, Raymond F [Los Alamos National Laboratory

    2009-01-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

  11. Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets

    International Nuclear Information System (INIS)

    Gomez, A; Del Valle, J; Gonzalez, E M; Vicent, J L; Chiliotte, C E; Carreira, S J; Bekeris, V; Prieto, J L; Schuller, Ivan K

    2014-01-01

    Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current I c (H), magnetization M(H) and ac-susceptibility χ ac (H) in a broad temperature range. Due to the coherence length divergence at T c , a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to T c , wire network behaviour is only present in a very narrow temperature window close to T c . In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. (papers)

  12. Experimental studies of the quench behaviour of MgB{sub 2} superconducting wires for fault current limiter applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye Lin [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Majoros, M [Laboratories for Applied Superconductivity and Magnetism, Ohio State University, Columbus, OH 43210 (United States); Campbell, A M [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Coombs, T [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Astill, D [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Harrison, S [Scientific Magnetics, Culham Science Centre, Culham, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Husband, M [Strategic Research Center (SRC)-Electrical Engineering, Rolls-Royce plc, Derby DE24 8BJ (United Kingdom); Rindfleisch, M [Hyper Tech Research Inc., Columbus, OH 43212 (United States); Tomsic, M [Hyper Tech Research Inc., Columbus, OH 43212 (United States)

    2007-07-15

    Various MgB{sub 2} wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26 K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB{sub 2} wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83 mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 deg. C for a hold time of 20-40 min. Current limiting properties of MgB{sub 2} wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50 Hz. The quench currents extracted from the pulse measurements were in a range of 200-328 A for different samples, corresponding to an average engineering critical current density (J{sub e}) of around 4.8 x 10{sup 4} A cm{sup -2} at 25 K in the self-field, based on the 1 {mu}V cm{sup -1} criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB{sub 2} wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB{sub 2} wires.

  13. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  14. Mixed-state flux dynamics in bulk MgB2

    International Nuclear Information System (INIS)

    Li Shi; Taylor, B.J.; Frederick, N.A.; Maple, M.B.; Nesterenko, V.F.; Indrakanti, S.S.

    2002-01-01

    Electric field vs. current density (E-J) isotherms in the mixed-state of a bulk sample of the high-temperature superconductor MgB 2 (T c =38.5 K), synthesized under 200 MPa pressure by hot isostatic pressing (HIPing), have been measured and analyzed in terms of the critical scaling model. Magnetization data reveal distinctly different critical current density (J c ) behaviors in high and low magnetic field critical scaling regions. E-J isotherm sets at fields ranging from 2 to 90 kOe conform to the vortex-glass (VG) scaling anzatz. Scaling analysis, resistivity data and J c data suggest that a Bragg-glass state may exist for H c2 (T), the VG transition line H g (T), and the magnetic irreversibility line H irr (T) has been established for bulk MgB 2

  15. Effect of sheath material on critical current characteristics of MgB2 at high temperatures

    International Nuclear Information System (INIS)

    Kiuchi, M.; Yamauchi, K.; Kurokawa, T.; Otabe, E.S.; Matsushita, T.; Okada, M.; Tanaka, K.; Kumakura, H.; Kitaguchi, H.

    2004-01-01

    Critical current density and irreversibility field were measured at various temperatures and magnetic fields for MgB 2 PIT tape specimens with different sheaths materials. The experimental results were compared with theoretical estimations using the flux creep-flow model. It is found that the hardness of sheath material indirectly affects the pinning property only through the packing density of MgB 2 . It is considered that the critical current density is mainly determined by a low value of distributed local critical current density determined by grain connectivity. On the other hand, the irreversibility field which is approximately the same among the three tapes is mainly determined by the average pinning strength

  16. Raman spectra of MgB2 at high pressure and topological electronic transition

    International Nuclear Information System (INIS)

    Meletov, K.P.; Kulakov, M.P.; Kolesnikov, N.N.; Arvanitidis, J.; Kourouklis, G.A.

    2002-01-01

    Raman spectra of the MgB 2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼ 590 cm -1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼ 5 GPa exhibits a change in the slope as well as a hysteresis effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB 2 may undergo a pressure-induced topological electronic transition [ru

  17. Low-field vortex pinning model for undoped sintered MgB2 powders

    International Nuclear Information System (INIS)

    Agassi, Y D

    2011-01-01

    Sintered MgB 2 powders constitute a porous ensemble of irregularly shaped agglomerates of tightly packed grains. The low-field critical current density in such powders was experimentally observed to scale with the inverse of the average agglomerate size. Motivated by this observation we consider a flux pinning model which accounts for the MgB 2 powder porosity by focusing on a single finite-size agglomerate size. According to the model the observed critical current density dependence on the agglomerate size reflects the outward pull exerted on a vortex that is pinned in proximity to the agglomerate edges. The calculated critical current density replicates the observed scaling within agglomerate-size bounds. Implications of the model are discussed.

  18. Transport properties and Raman spectra of impurity substituted MgB2

    International Nuclear Information System (INIS)

    Masui, T.

    2007-01-01

    Recent advances in the study of MgB 2 are reviewed, with focus on the transport properties and Raman scattering measurements for impurity substituted crystals. Carbon and Aluminium substitution change band filling, introduce intraband and interband scattering. These effects are seen in the temperature dependence of resistivity, Hall coefficients, and phonon peak of Raman spectra. Manganese substitution introduces magnetic scattering, that increases resistivity but gives little change in Raman spectra. The effect of disorder in neutron irradiated samples is also discussed

  19. Surface barrier and bulk pinning in MgB$_2$ superconductor

    OpenAIRE

    Pissas, M.; Moraitakis, E.; Stamopoulos, D.; Papavassiliou, G.; Psycharis, V.; Koutandos, S.

    2001-01-01

    We present a modified method of preparation of the new superconductor MgB$_2$. The polycrystalline samples were characterized using x-ray and magnetic measurements. The surface barriers control the isothermal magnetization loops in powder samples. In bulk as prepared samples we always observed symmetric magnetization loops indicative of the presence of a bulk pinning mechanism. Magnetic relaxation measurements in the bulk sample reveal a crossover of surface barrier to bulk pinning.

  20. Tunneling Spectroscopy of the Energy Gap in MgB2 Under Magnetic Fields

    International Nuclear Information System (INIS)

    Ekino, T.; Takasaki, T.; Fujii, H.; Muranaka, T.; Akimitsu, J.

    2003-01-01

    Effects of magnetic field on the multiple-gap structure in the superconductor MgB 2 have been studied by break junctions. With increasing the field, the gap value decreases with filling up of the states inside of the gap. The gap-closing field B c correlates with the gap size. The extrapolated B c value for the larger gap is almost consistent with the upper critical field of this compound. (author)

  1. Intraband scattering studies in carbon- and aluminium-doped MgB2

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Hol'anova, Z.; Bud'ko, S.; Canfield, P.

    2006-01-01

    Magnetic field effect on the point-contact spectra of the Al- and C-substituted MgB 2 is presented. It is shown that suppression of the π-band contribution to the spectrum is different in the aluminium- and carbon-doped samples. The carbon substitution leads to a stronger enhancement of the π-band scattering while the Al-doping does not change the ratio between the π and σ scatterings

  2. The mechanism of Tc performance for Zn doped MgB2 sintered in magnetic field

    International Nuclear Information System (INIS)

    Li, W.X.; Li, Y.; Chen, R.H.; Zeng, R.; Dou, S.X.

    2010-01-01

    The mechanism of magnetic field sintering on the critical transition temperature, T c , for the Zn doped MgB 2 superconductor was investigated with the observation of Raman scattering measurement and the Raman spectra fit analysis. The broadened E 2g mode in Raman spectra shows the strengthening of the electron-phonon coupling (EPC) for the sample sintered in magnetic field. A synchronous fluctuation is observed between the Raman characters of the E 2g mode and the T c .

  3. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-01-01

    Significant improvements in the properties of superconducting materials have occurred recently. These improvements are being incorporated into the latest generation of wires, cables, and tapes that are being used in a broad range of prototype devices. These devices include new, high field accelerator and NMR magnets, magnets for fusion power experiments, motors, generators, and power transmission lines. These prototype magnets are joining a wide array of existing applications that utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments such as ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising new materials such as MgB2 have been discovered and are being studied in order to assess their potential for new applications. In this paper, we will review the key developments that are leading to these new applications for superconducting materials. In some cases, the key factor is improved understanding or development of materials with significantly improved properties. An example of the former is the development of Nb3Sn for use in high field magnets for accelerators. In other cases, the development is being driven by the application. The aggressive effort to develop HTS tapes is being driven primarily by the need for materials that can operate at temperatures of 50 K and higher. The implications of these two drivers for further developments will be discussed. Finally, we will discuss the areas where further improvements are needed in order for new applications to be realized

  4. Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2

    International Nuclear Information System (INIS)

    Cheng, C H; Yang, Y; Munroe, P; Zhao, Y

    2007-01-01

    Doping effects of nano-diamond and carbon nanotubes (CNTs) on critical current density of bulk MgB 2 have been studied. CNTs are found prone to be doped into the MgB 2 lattice whereas nano-diamond tends to form second-phase inclusions in the MgB 2 matrix, leading to a more significant improvement of J c (H) by doping by nano-diamond than by CNTs in MgB 2 . TEM reveals tightly packed MgB 2 nanograins (50-100 nm) with a dense distribution of diamond nanoparticles (10-20 nm) inside MgB 2 grains in nano-diamond-doped samples. Such a unique microstructure leads to a flux pinning behaviour different from that in CNTs-doped MgB 2

  5. Stabilization of the dissipation-free current transport in inhomogeneous MgB2 thin films

    International Nuclear Information System (INIS)

    Treiber, S.; Stahl, C.; Schütz, G.; Soltan, S.; Albrecht, J.

    2014-01-01

    Highlights: • We investigate transport properties of inhomogeneous MgB 2 films. • An inhomogeneous microstructure stabilizes supercurrents. • Vortex pinning forces and energies have been analyzed experimentally. • In inhomogeneous films the increase of the pinning energy is responsible for stable supercurrents. - Abstract: In type-II superconductors at T = 0 the critical current density is determined by the pinning of flux lines. Considering an arbitrarily shaped energy landscape the pinning force at each pinning site is given by the derivative of the flux line energy with respect to the considered direction. At finite temperatures, in addition, thermal activation can lead to a depinning of flux lines. The governing property in this case is the depth of the corresponding pinning potential, i.e. the pinning energy. We show a detailed analysis of both pinning forces and pinning energies of MgB 2 films with inhomogeneous microstructure. We show that a pronounced increase of the pinning energy is responsible for the significantly enhanced stability of the dissipation-free current transport in thin inhomogeneous MgB 2 films. This is found even if the corresponding pinning forces are small

  6. Intrinsic flux pinning mechanisms in different thickness MgB2 films

    Directory of Open Access Journals (Sweden)

    C. Yang

    2017-03-01

    Full Text Available MgB2 films in four thickness (60 nm, 200nm, 600nm and 1μm have been fabricated by hybrid physical–chemical vapor deposition technique (HPCVD. By measuring the magnetization hysteresis loops and the resistivity, we have obtained the transport and magnetic properties of the four films. After that, the pinning mechanisms in them were discussed. Comparing the pinning behaviors in these ultrathin films, thin films and thick films, it was found that there exist different pinning types in MgB2 films of different thickness. In combination with the study of the surface morphology, cross-section and XRD results, we concluded that MgB2 films had different growth modes in different growth stages. For thin films, films grew along c axis, and grain boundaries acted as surface pinning. While for thick films, films grew along c axis at first, and then changed to a-b axis growth. As a result, the a-b axis grains acted as strong volume pinning.

  7. Flux pinning properties of impurity doped MgB2 bulks synthesized by diffusion method

    International Nuclear Information System (INIS)

    Ueda, Shinya; Shimoyama, Jun-ichi; Yamamoto, Akiyasu; Katsura, Yukari; Iwayama, Isao; Horii, Shigeru; Kishio, Kohji

    2005-01-01

    Doping effects of carbon-containing impurities on the critical current properties and microstructure were systematically studied for highly dense MgB 2 bulks prepared by the diffusion method starting from magnesium and boron which are separately packed in sealed stainless tubes. Obtained samples exhibited improved critical current density, J c , simply by an increase of effective current pass. A non-doped MgB 2 recorded almost double high J c at 20 K compared with those of the conventional porous MgB 2 bulks having ∼50% of the theoretical density, while irreversibility field, H irr , did not largely change. J c under high magnetic fields were enhanced by doping of carbon-containing impurities, such as SiC and B 4 C. Optimal doping levels of SiC and B 4 C for high critical current properties at 20 K are found to be ∼2% and 5%, respectively, as nominal carbon concentration at boron site. Difference in the optimal doping levels is originated from the difference in their reactivity

  8. Superconducting Magnet Power Supply and Hard-Wired Quench Protection at Jefferson Lab for 12 GeV Upgrade

    International Nuclear Information System (INIS)

    Ghoshal, Probir K.; Bachimanchi, Ramakrishna; Fair, Ruben J.; Gelhaar, David; Kumar, Onish

    2017-01-01

    The superconducting magnet system in Hall B being designed and built as part of the Jefferson Lab 12 GeV upgrade requires powering two conduction cooled superconducting magnets - a torus and a solenoid. The torus magnet is designed to operate at 3770 A and solenoid at 2416 A. Failure Modes and Effects Analysis (FMEA) determined that voltage level thresholds and dump switch operation for magnet protection should be tested and analyzed before incorporation into the system. The designs of the quench protection and voltage tap sub-systems were driven by the requirement to use a primary hard-wired quench detection sub-system together with a secondary PLC-based protection. Parallel path voltage taps feed both the primary and secondary quench protection sub-systems. The PLC based secondary protection is deployed as a backup for the hard-wired quench detection sub-system and also acts directly on the dump switch. Here, we describe a series of tests and modifications carried out on the magnet power supply and quench protection system to ensure that the superconducting magnet is protected for all fault scenarios.

  9. A two-dimensional finite element method to calculate the AC loss in superconducting cables, wires and coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Y; Pei, R; Coombs, T A [Electronic, Power and Energy Conversion Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Ye, L [Department of Electrical Power Engineering, CAU, P. O. Box 210, Beijing 100083 (China); Campbell, A M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, CB3 0HE (United Kingdom)], E-mail: Zh223@cam.ac.uk

    2008-02-15

    In order to utilize HTS conductors in AC electrical devices, it is very important to be able to understand the characteristics of HTS materials in the AC electromagnetic conditions and give an accurate estimate of the AC loss. A numerical method is proposed in this paper to estimate the AC loss in superconducting conductors including MgB{sub 2} wires and YBCO coated conductors. This method is based on solving a set of partial differential equations in which the magnetic field is used as the state variable to get the current and electric field distributions in the cross sections of the conductors and hence the AC loss can be calculated. This method is used to model a single-element and a multi-element MgB{sub 2} wires. The results demonstrate that the multi-element MgB{sub 2} wire has a lower AC loss than a single-element one when carrying the same current. The model is also used to simulate YBCO coated conductors by simplifying the superconducting thin tape into a one-dimensional region where the thickness of the coated conductor can be ignored. The results show a good agreement with the measurement.

  10. Proposal for the change of contractor for the supply of superconducting wires for the LHC corrector magnets

    CERN Document Server

    2001-01-01

    This document concerns the change of contractor for the supply of superconducting wires of four different types (1 to 4) for the LHC corrector magnets. For the reasons set out in this document, the Finance Committee is invited to agree to the negotiation of a contract with ALSTOM (FR), for the supply of superconducting wire for a total amount of 1 963 793 euros (3 140 059 Swiss francs), not subject to revision until 31 December 2001, with options for up to 20% additional wire, for an additional amount of 392 759 euros (628 012 Swiss francs), not subject to revision until 31 December 2001, bringing the total amount to 2 356 552 euros (3 768 071 Swiss francs), not subject to revision until 31 December 2001. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: FR - 67%, US - 27%, DE - 4% and BE - 2%.

  11. A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing

    International Nuclear Information System (INIS)

    Durrell, J H; Dennis, A; Shi, Y; Xu, Z; Campbell, A M; Babu, N Hari; Cardwell, D A; Dancer, C E J; Todd, R I; Grovenor, C R M

    2012-01-01

    A trapped field of over 3 T has been measured at 17.5 K in a magnetized stack of two disc-shaped bulk MgB 2 superconductors of diameter 25 mm and thickness 5.4 mm. The bulk MgB 2 samples were fabricated by uniaxial hot pressing, which is a readily scalable, industrial technique, to 91% of their maximum theoretical density. The macroscopic critical current density derived from the trapped field data using the Biot–Savart law is consistent with the measured local critical current density. From this we conclude that critical current density, and therefore trapped field performance, is limited by the flux pinning available in MgB 2 , rather than by lack of connectivity. This suggests strongly that both increasing sample size and enhancing pinning through doping will allow further increases in trapped field performance of bulk MgB 2 . (rapid communication)

  12. Improved flux pinning behaviour in bulk MgB2 achieved by nano-SiO2 addition

    International Nuclear Information System (INIS)

    Rui, X F; Zhao, Y; Xu, Y Y; Zhang, L; Sun, X F; Wang, Y Z; Zhang, H

    2004-01-01

    Bulk MgB 2 with SiO 2 nanoparticles added has been synthesized using a simple solid-state reaction route. The lattice constant in the c direction increases with additive content due to a small amount of Si being doped into the lattice of the MgB 2 ; however, T c is almost fixed at 37.2 K. The addition of SiO 2 nanoparticles also improves the J c -H and H irr -T characteristics of MgB 2 when the additive content is lower than 7%. At 20 K and 1 T, J c for the sample with 7% additive content reaches 2.5 x 10 5 A cm -2 . Microstructural analysis reveals that a high density of MgSi 2 nanoparticles (10-50 nm) exists inside the MgB 2 grains, leading to the formation of a nanocomposite superconductor

  13. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  14. Direct measurement of elastic modulus of Nb 3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    Science.gov (United States)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-10-01

    Young's modulus of Nb3Sn filaments in Nb3Sn/Cu superconducting composite wire was investigated in detail. Nb3Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb3Sn/Nb barrier and bronze. Then, Nb3Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb3Sn filament modulus. The ratio of Nb3Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb3Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values.

  15. Direct measurement of elastic modulus of Nb3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-01-01

    Young's modulus of Nb 3 Sn filaments in Nb 3 Sn/Cu superconducting composite wire was investigated in detail. Nb 3 Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb 3 Sn/Nb barrier and bronze. Then, Nb 3 Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb 3 Sn filament modulus. The ratio of Nb 3 Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb 3 Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values

  16. Pinning enhancement in MgB 2 superconducting thin films by ...

    Indian Academy of Sciences (India)

    ... coated with different concentrations of Fe2O3 nanoparticles by spin coating process. ... Turkey; Ereğli Faculty of Education, Primary Education Department, Bülent Ecevit ... Manuscript received: 8 May 2012; Manuscript revised: 22 July 2012 ...

  17. Effect of Er doping on the superconducting properties of porous MgB2

    Indian Academy of Sciences (India)

    20 K reaches 9.7 T. These results imply that the RE element Er fills the pores, enhances the density and the grain connectivity. Hence, the ... ing elements, such as Mn, Fe, Co and Ni, which can depair ..... Lyard L, Szabó P, Klein T, Marcus J, Marcenat C, Kim K H, ... Rogado N, Hayward M A, Regan K A, Wang Y, Ong N P,.

  18. A New Cryocooler for MgB2 Superconducting Systems in Turboelectric Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft design...

  19. A New Cryocooler for MgB2 Superconducting Systems in Turboelectric Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft design...

  20. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    International Nuclear Information System (INIS)

    Pan, X.F.; Yan, G.; Qi, M.; Cui, L.J.; Chen, Y.L.; Zhao, Y.; Li, C.S.; Liu, X.H.; Feng, Y.; Zhang, P.X.; Liu, H.J.

    2014-01-01

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb 3 Al wires. • The Nb 3 Al wires were made by using Nb(Al) ss supersaturated solid solution powders. • The Cu-matrix Nb 3 Al superconducting wires have been successfully fabricated. • The transport J c of Nb 3 Al wires at 4.2 K, 10 T is up to 12,700 A/cm 2 . - Abstract: High-performance Nb 3 Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb 3 Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb 3 Al superconducting wires, which were made by using the mechanically alloyed Nb(Al) ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb 3 Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb 2 Al and Nb impurities still keep being existence at present work. At the Nb 3 Al with a nominal 26 at.% Al content, the onset T c reaches 15.8 K. Furthermore, a series of Nb 3 Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J c at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm 2 , respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb 3 Al superconducting wires by directly using the Nb(Al) ss supersaturated solid-solution without the complex RHQT heat-treatment process

  1. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  2. Effects of drawing and high-pressure sintering on the superconducting properties of (Ba,K)Fe2As2 powder-in-tube wires

    International Nuclear Information System (INIS)

    Pyon, Sunseng; Yamasaki, Yuji; Tamegai, Tsuyoshi; Kajitani, Hideki; Koizumi, Norikiyo; Tsuchiya, Yuji; Awaji, Satoshi; Watanabe, Kazuo

    2015-01-01

    The evolution of the superconducting properties of round wires of (Ba,K)Fe 2 As 2 fabricated by the powder-in-tube (PIT) method is systematically studied. After establishing the method to obtain the largest transport critical current density (J c ) in round wires using the hot isostatic press technique, we investigated how the transition temperature (T c ), J c , and microstructures change at each step of the wire fabrication. Unexpectedly, we find that superconducting properties of the wire core are significantly damaged by the drawing process. Systematic measurements of J c and T c of the core superconductor after each drawing and sintering process clarified the evolution of degradation by the drawing process and recovery by heat treatment. (paper)

  3. Method for producing superconductive wires of multifilaments which are encased in copper or a copper alloy and contain niobium and aluminium

    International Nuclear Information System (INIS)

    Flukiger, R.

    1983-01-01

    A method is disclosed for producing a superconductive wire of multifilaments having components comprising niobium and aluminum encased in copper or a copper alloy, wherein the multifilament configuration and the formation of a superconductive A15 phase are positively developed from the components disposed in a copper or copper alloy tube having an interior metallic coating serving as a diffusion barrier, by cold forming and subsequent heat treatment

  4. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  5. Numerical investigations on the characteristics of thermomagnetic instability in MgB2 bulks

    Science.gov (United States)

    Xia, Jing; Li, Maosheng; Zhou, Youhe

    2017-07-01

    This paper presents the characteristics of thermomagnetic instability in MgB2 bulks by numerically solving the macroscopic dynamics of thermomagnetic interaction governed by the coupled magnetic and heat diffusion equations in association with a modified E-J power-law relationship. The finite element method is used to discretize the system of partial differential equations. The calculated magnetization loops with flux jumps are consistent with the experimental results for MgB2 slabs bathed in a wide range of ambient temperatures. We reveal the evolution process of the thermomagnetic instability and present the distributions of the magnetic field, temperature, and current density before and after flux jumps. A 2D axisymmetric model is used to study the thermomagnetic instability in cylindrical MgB2 bulks. It is found that the number of flux jumps monotonously reduces as the ambient temperature rises and no flux jump appears when the ambient temperature exceeds a certain value. Moreover, the flux-jump phenomenon exists in a wide range of the ramp rate of the applied external field, i.e. 10-2-102 T s-1. Furthermore, the dependences of the first flux-jump field on the ambient temperature, ramp rate, and bulk thickness are investigated. The critical bulk thicknesses for stability are obtained for different ambient temperatures and sample radii. In addition, the influence of the capability of the interfacial heat transfer on the temporal response of the bulk temperature is discussed. We also find that the prediction of thermomagnetic instability is sensitive to the employment of the flux creep exponent in the simulations.

  6. Recent developments in melt processed Gd-123 and MgB2 materials at RTRI

    International Nuclear Information System (INIS)

    Muralidhar, M.; Fukumoto, Y.; Ishihara, A.; Suzuki, K.; Tomita, M.; Koblischka, M.R.; Yamamoto, A.; Kishio, K.

    2014-01-01

    Highlights: •Large size Gd-123 bulk material grown in air, using novel thin film Nd-123 seeds grown on MgO crystals. •Quality and uniformity of the Gd-123 materials are excellent. •Batch processed Gd-123 material was used for construction of chilled Maglev vehicle. •MgB 2 bulks can be utilized around 20 K similarly to the Gd-123 material at 77 K. -- Abstract: In this contribution we will report on the current status, recent developments in GdBa 2 Cu 3 O y “Gd-123” and MgB 2 material processing, characterization, and applications at the Railway Technical Research Institute (RTRI). Batch-processing of Gd-123 bulk material grown in air was performed using novel thin film Nd-123 seeds grown on MgO crystals. In this way, we are able to fabricate materials with good quality, and uniform performance. We examined the technology of the uniform performance of the large 45 mm diameter, single grain Gd-123 bulks for use in application of NMR. For this purpose, four 5 mm thick pieces are cut vertically from a single grain Gd-123 material and the magnetic field distribution is measured using a scanning hall sensor. We found that all four pieces are single domain and exhibit a quite uniform field distribution. Furthermore, the batch-processed bulk materials are used for the construction of a chilled Maglev vehicle. On the other hand, to optimize the trapped field performance of bulk MgB 2 material, several samples were prepared by solid state reaction at different temperatures ranging from 750 to 950 °C in pure argon atmosphere. X-ray diffraction results indicated that single phase and homogenous MgB 2 bulks are produced when sintering them around 775 °C. Further, atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated that an uniform grain size results by controlling the processing temperature. So, higher trapped fields can be achieved in sintered MgB 2 material

  7. Correlated vortex pinning in Si-nanoparticle doped MgB2

    OpenAIRE

    Kusevic, I.; Babic, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.

    2003-01-01

    The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB$_{2}$ tapes have been measured at temperatures $T\\geq 28$ K in magnetic fields $B\\leq 0.9$ T. The irreversibility line $B_{irr}(T)$ for doped tape shows a stepwise variation with a kink around 0.3 T. Such $B_{irr}(T)$ variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field $% B_{\\phi}$) and is very different ...

  8. The microwave surface impedance of MgB2 thin films

    International Nuclear Information System (INIS)

    Purnell, A J; Zhukov, A A; Nurgaliev, T; Lamura, G; Bugoslavsky, Y; Lockman, Z; MacManus-Driscoll, J L; Zhai, H Y; Christen, H M; Paranthaman, M P; Lowndes, D H; Jo, M H; Blamire, M G; Hao, Ling; Gallop, J C; Cohen, L F

    2003-01-01

    In this paper we present the results of measurements of the microwave surface impedance of a powder sample and two films of MgB 2 . The powder sample has a T c = 39 K and the films have T c = 29 K and 38 K. These samples show different temperature dependences of the field penetration depth. Over a period of six months, the film with T c = 38 K degraded to a T c of 35 K. We compare the results on all samples with data obtained elsewhere and discuss the implications as far as is possible at this stage

  9. Temperature dependence of the optical conductivity and penetration depth in superconductor MgB2 film

    International Nuclear Information System (INIS)

    Moarrefi, M.; Yavari, H.; Elahi, M.

    2010-01-01

    By using Green's function method the temperature dependence of the optical conductivity and penetration depth of high-quality MgB 2 film are calculated in the framework of the two-band model. We compare our results with experimental data and we argue that the single gap model is insufficient to describe the optical and penetration depth behavior, but the two-band model with different symmetries describes the data rather well. In the two gap model we consider that the both components of optical conductivity are a weighted sum of the contribution from σ and π bonds and hybridization between them is negligible.

  10. Raman study of electronic excitations in MgB2 with application of high magnetic field

    International Nuclear Information System (INIS)

    Machtoub, L.; Takano, Y.; Kito, H.

    2006-01-01

    We present the first results of Raman scattering with application of magnetic field on magnesium diboride (MgB 2 ). In this work, we have investigated the magnetic field dependence of the 72 meV (E 2g mode) and the pair-breaking peak around 100 cm -1 which corresponds to σ-band gap. Intensity enhancement of Raman features around 800 cm -1 accompanied with broadening in the line shape of E 2g mode has been observed in some polycrystalline samples at 0 GPa. Results are compared with previous Raman study under hydrostatic pressure

  11. Superconducting materials for large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  12. Wire chamber requirements and tracking simulation studies for tracking systems at the superconducting super collider

    International Nuclear Information System (INIS)

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1989-02-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. Such computer simulation studies are necessary to determine the feasibility of wire chamber tracking systems for complex events in a high-rate environment such as the SSC. 11 refs., 9 figs., 1 tab

  13. MgB2 for Application to RF Cavities for Accelerators

    International Nuclear Information System (INIS)

    Tajima, T.; Canabal, A.; Zhao, Y.; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.

    2007-01-01

    Magnesium diboride (MgB 2 ) has a transition temperature (T c ) of ∼40 K, i.e., about 4 times as high as that of niobium (Nb).We have been evaluating MgB 2 as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to ∼12 mT (120 Oe), limited by available power, compared to other high-Tc materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in Rs compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans

  14. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  15. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  16. Mechanically activated self-propagated high-temperature synthesis of nanometer-structured MgB2

    International Nuclear Information System (INIS)

    Radev, D.D.; Marinov, M.; Tumbalev, V.; Radev, I.; Konstantinov, L.

    2005-01-01

    Nanometer-sized MgB 2 was prepared via a two-step modification of the mechanically activated self-propagated high-temperature synthesis. The experimental conditions and some structural and phase characteristics of the synthesized product are reported. It is shown that a single-phase material can be prepared after 2 h of intense mechanical treatment of the starting magnesium and boron powders and a synthesis induced at a current-pulse density of 30 A cm -2 . The average size of MgB 2 particles synthesized in this way is 70-80 nm. It is also shown that using the same reagents and the 'classic' high-temperature interaction at 850 deg C with a protective atmosphere of pure Ar, mean particle size of the MgB 2 obtained is 50 μm

  17. Growth of high-quality large-area MgB2 thin films by reactive evaporation

    International Nuclear Information System (INIS)

    Moeckly, B H; Ruby, W S

    2006-01-01

    We report a new in situ reactive deposition thin film growth technique for the production of MgB 2 thin films which offers several advantages over all existing methods and is the first deposition method to enable the production of high-quality MgB 2 films for real-world applications. We have used this growth method, which incorporates a rotating pocket heater, to deposit MgB 2 films on a variety of substrates, including single-crystalline, polycrystalline, metallic, and semiconductor materials up to 4 inch in diameter. This technique allows growth of double-sided, large-area films in the intermediate temperature range of 400-600 deg. C. These films are clean, well-connected, and consistently display T c values of 38-39 K with low resistivity and residual resistivity values. They are also robust and uncommonly stable upon exposure to atmosphere and water. (rapid communication)

  18. Effects of TiC doping on the upper critical field of MgB2 superconductors

    International Nuclear Information System (INIS)

    Yan, S.C.; Zhou, L.; Yan, G.; Lu, Y.F.

    2008-01-01

    TiC doped MgB 2 bulks were fabricated by two-step reaction method. The sample with a nominal compositions of Mg(B 0.95 (TiC) 0.05 ) 4 was first sintered at 1000 deg. C for 0.5 h. An appropriate amount of Mg was added to reach the stoichiometry of Mg(B 0.95 (TiC) 0.05 ) 2 , which was sintered at 750 deg. C for 2 h. The H c2 for the micro-TiC doped MgB 2 reached 12 T at 20 K. And J c is 5.3 x 10 4 A/cm 2 at 20 K and 1 T. The results indicate that the two-step reaction method could effectively introduce the carbon in TiC into the MgB 2 crystalline lattice, and therefore improve the upper critical field

  19. NMR relaxation rates and Knight shifts in MgB2 and AlB2: theory versus experiments

    International Nuclear Information System (INIS)

    Pavarini, E; Baek, S H; Suh, B J; Borsa, F; Bud'ko, S L; Canfield, P C

    2003-01-01

    We have performed 11 B NMR measurements in 11 B enriched MgB 2 powder sample in the normal phase. The Knight shift was accurately determined by using the magic angle spinning technique. Results for 11 B and 27 Al Knight shifts (K) and relaxation rates (1/T 1 ) are also reported for AlB 2 . The data show a dramatic decrease of both K and 1/T 1 for 11 B in AlB 2 with respect to MgB 2 . We compare experimental results with ab initio calculated NMR relaxation rates and Knight shifts. The experimental values for 1/T 1 and K are in most cases in good agreement with the theoretical results. We show that the decrease of K and 1/T 1 for 11 B is consistent with a drastic drop of the density of states at the boron site in AlB 2 with respect to MgB 2

  20. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    International Nuclear Information System (INIS)

    Taylan Koparan, E.; Savaskan, B.; Guner, S.B.; Celik, S.

    2016-01-01

    We present a detailed investigation of the effects of Bi 2 Sr 2 Ca 1 Cu 2 O 8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB 2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB 2 . Moreover, we present MgB 2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB 2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB 2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature (T c ) has slightly dropped from 37.8 K for the pure MgB 2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased. (orig.)

  1. Microstructures and superconducting properties of Y-Ba-Cu and Bi-Sr-Ca-Cu oxide wires and coils prepared by the explosive compaction technique

    International Nuclear Information System (INIS)

    Hagino, S.; Suzuki, M.; Takeshita, T.; Takashima, K.; Tonda, H.

    1989-01-01

    It has been shown that explosive compaction technique can be used to densify metal, and ceramics powders and their mixtures. The authors discuss how they applied this technique to produce silver sheathed superconducting oxide wires and coils (Y-B-Cu-O and Bi-Sr-Ca-Cu-O). The wires and coils to be compacted were placed into metal tube and the tube was filled with SiC powder as a pressure propagating medium and the tube was compacted by a cylindrically axisymmetric method. The wires and coils compacted were then heat-treated in order to improve grain boundary connections of superconducting oxide crystalline grains. The oxide cores heat-treated were seen to be very dense, and a part of a Y-Ba-Cu oxide coil which was heat-treated optimally was found to have a critical current density higher than 13,000A/cm 2 at 77K

  2. Effect of annealing on the superconducting and normal state properties of the doped multifilamentary Cu-Nb composite wires prepared by in situ technique

    International Nuclear Information System (INIS)

    Dubey, S.S.; Dheer, P.N.

    1999-01-01

    The effect of annealing on the superconducting and normal state properties of the Ga-, In-, Ti- and Zr-doped (1 wt%) Cu-Nb composite wires prepared by in situ technique have been investigated in this paper. The wires annealed at 700 C for 10 h and then quenched at room temperature, show a decrease in the superconducting transition temperature, T c , and increase in the transition width, ΔT. Doping of the Cu-Nb wires causes an increase in the normal state resistivity and hence the upper critical field, H C2 . This results in a significant increase of J c . Annealing of these doped samples decreases H C2 and J c . In the case of In- and Ga-doped samples J c shows a marginal improvement at lower field but decreases at higher field. Zr and Ti doping appears to be beneficial for the improved J c in these in situ materials. (orig.)

  3. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  4. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  5. Superconducting critical-current densities of commercial multifilamentary Nb3Sn(Ti) wires made by the bronze process

    International Nuclear Information System (INIS)

    Suenaga, M.; Tsuchiya, K.; Higuchi, N.; Tachikawa, K.

    1985-01-01

    Superconducting critical-current densities Jsub(c) in fields up to 24 T and at 4.2 and 1.8 K were measured for a number of commercial Nb 3 Sn wires which were alloyed with Ti. The best values of Jsub(c) at 20 T and at 4.2 and 1.8 K were 78 and 156 A mm -2 , respectively. In order to achieve these high current densities at H>20 T, it was shown that nonuniformity of the filaments had to be minimized. It was also shown that the grain size of Nb 3 Sn is not very important in determining Jsub(c) at these high magnetic fields, and that achieving high values of critical magnetic field Hsub(c2) is more important than small grain size. (author)

  6. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 2O T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (Auth.)

  7. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 20 T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (orig.)

  8. Microstructural and crystallographic imperfections of MgB{sub 2} superconducting wire and their correlation with the critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Shahabuddin, Mohammed; Alzayed, Nasser S. [Department of Physics and Astronomy, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Oh, Sangjun [Materials Research Team, National Fusion Research Institute, Yueeong, Daejeon 305-333 (Korea, Republic of); Choi, Seyong [Busan Center, Korea Basic Science Institute, Geumjeong, Busan 609-735 (Korea, Republic of); Maeda, Minoru [Department of Physics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Hata, Satoshi; Shimada, Yusuke [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hossain, Md Shahriar Al [Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Kim, Jung Ho, E-mail: jhk@uow.edu.au [Department of Physics and Astronomy, College of Science, P. O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia)

    2014-01-15

    A comprehensive study of the effects of structural imperfections in MgB{sub 2} superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB{sub 2} material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB{sub 2}, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB{sub 2}, however, even at low sintering temperature, and thus block current transport paths.

  9. Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Nakamura, M.; Tanaka, M.; Adachi, T.; Ochiai, S.; Miyashita, K.

    2004-01-01

    The mechanical properties and the thermal residual stress distribution of copper in Nb 3 Sn/Cu composite superconductor were investigated in detail. The stabilizer copper was removed from the composite wire, and the stress-strain behavior of this wire was compared with that of the original composite wire. The subtraction yielded the stress-strain curves of the copper when the Bauschinger effect was taken into account. The tensile test of the composites from which about 30% and 60% of copper was removed suggested the existence of the distribution of the thermal residual stress in the stabilizer copper. When this factor was taken into account, the analytical stress-strain curve agreed well with the experimental stress-strain curve. Thus, the stress-stain behavior of each component was fully understood

  10. Negative self-inductance in superconducting thin wires and weak links

    International Nuclear Information System (INIS)

    Christiansen, P.V.; Hansen, E.B.; Sjostrom, C.J.

    1971-01-01

    The concept of negative self-inductance is explained by deriving the velocity dependence of the superinductance on the basis of the uniform Ginsburg-Landau (GL) solution. A formulation of the GL theory is presented which is suited for describing the depairing effects in a thin wire or film. The stability of the solutions to the GL equations is discussed. It is found that for a long wire or film negative self-inductance and instability always go together. An application of the developed theory to weak links is considered

  11. Microwave second-harmonic response of ceramic MgB2 samples

    International Nuclear Information System (INIS)

    Agliolo Gallitto, A.; Bonsignore, G.; Li Vigni, M.

    2005-01-01

    Nonlinear microwave response of different ceramic MgB 2 samples has been investigated by the technique of second-harmonic emission. The second-harmonic signal has been investigated as a function of temperature, DC magnetic field and input microwave power. The attention has mainly been devoted to the response at low magnetic fields, where nonlinear processes arising from motion of Abrikosov fluxons are ineffective. The results show that different mechanisms are responsible for the nonlinear response in the different ranges of temperature. At low temperatures, the nonlinear response is due to processes involving weak links. At temperatures close to T c , a further contribution to the harmonic emission is present; it can be ascribed to modulation of the order parameter by the microwave field and gives rise to a peak in the temperature dependence of the harmonic signal

  12. Hall conductivity and the vortex phase in MgB2 thin films

    International Nuclear Information System (INIS)

    Jung, Soon-Gil; Seong, W K; Huh, Ji Young; Lee, T G; Kang, W N; Choi, Eun-Mi; Kim, Heon-Jung; Lee, Sung-Ik

    2007-01-01

    In a MgB 2 thin film superconductor, we have found that Hall conductivity (σ xy ) is described by the sum of two terms, σ xy = C 1 /H+C 3 H, where C 1 and C 3 are independent of the magnetic fields and have positive values. C 1 is observed to be proportional to (1-t) n with n = 4.2, where t is the reduced temperature (T/T c ), and C 3 is weakly dependent on the temperature. These results are consistent with those of the overdoped La 2-x Sr x CuO 4 superconductors. Based on Hall angle data, we obtained a vortex phase diagram with three regions, vortex-solid, crossover, and vortex-liquid regions in the H-T plane

  13. Phase dynamics of single long Josephson junction in MgB2 superconductor

    Science.gov (United States)

    Chimouriya, Shanker Pd.; Ghimire, Bal Ram; Kim, Ju H.

    2018-05-01

    A system of perturbed sine Gordon equations is derived to a superconductor-insulator-superconductor (SIS) long Joseph-son junction as an extension of the Ambegaokar-Baratoff relation, following the long route of path integral formalism. A computer simulation is performed by discretizing the equations using finite difference approximation and applied to the MgB2 superconductor with SiO2 as the junction material. The solution of unperturbed sG equation is taken as the initial profile for the simulation and observed how the perturbation terms play the role to modify it. It is found initial profile deformed as time goes on. The variation of total Josephson current has also been observed. It is found that, the perturbation terms play the role for phase frustration. The phase frustration achieves quicker for high tunneling current.

  14. Tests on MgB2 for Application to SRF Cavities

    International Nuclear Information System (INIS)

    Tajima, T.; Canabal, A.; Los Alamos; Zhao, Y.; Wollongong U.; Romanenko, A.; Cornell U., LNS; Nantista, C.; Tantawi, S.; SLAC; Phillips, L.; Jefferson Lab; Iwashita, Y.; Kyoto U., Inst. Chem. Res.; Campisi, I.; Oak Ridge; Moeckly, B.; Superconductor Tech., Santa Barbara

    2006-01-01

    Magnesium diboride (MgB 2 ) has a transition temperature (T c ) of ∼40 K, i.e., about 4 times higher than niobium (Nb). Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (R s ) than Nb at 4 K and seems to have much less power dependence than high-T c materials such as YBCO. However, it was also found that it will depend on the way you deposit the film. The result from on-axis pulsed laser deposition (PLD) showed rapid increase in R s with higher surface magnetic fields compared to the film deposited with reactive evaporation method

  15. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  16. Peak effect and superconducting properties of SmFeAsO{sub 0.8}F{sub 0.2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y L; Cui, Y J; Yang, Y; Zhang, Y; Wang, L; Zhao, Y [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, and Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C H; Sorrell, C [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-11-15

    Ta-sheathed SmFeAsO{sub 0.8}F{sub 0.2} superconducting wires with T{sub c} = 52.5 K have been fabricated using the powder-in-tube (PIT) method and the superconducting properties of the wires have been investigated. The wires exhibit a very large intragrain critical current density at a temperature below 30 K. A peak effect with maximal J{sub c} = 0.6 MA cm{sup -2} at 10 K under 6 T field was observed. The peak field H{sub pear} is strongly temperature-dependent. A severe weak-link effect depresses the development of global supercurrent owing to a very short coherence length. The wires also show a power law temperature dependence for the irreversibility line with H{sub irr}{approx_equal}(1-T/T{sub c}){sup 1.5}. The H-T phase diagram was found to be similar to that of other superconducting cuprates.

  17. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  18. 50 K anomalies in superconducting MgB{sub 2} wires in copper and silver tubes

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Glowacki, B A [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Vickers, M E [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom)

    2002-02-01

    In situ and ex situ MgB{sub 2} wires were prepared by the powder-in-tube method. Copper and silver tubes were used as a cladding material. AC susceptibility measurements revealed a small anomalous decrease with onset around 50 K. This effect persisted also when the wires were ground into powders. Electron microscopy and x-ray studies were performed on copper clad samples. Spectroscopic measurements in a SEM showed that regions contained either Cu or Mg and B. X-ray diffraction gave the major crystalline phases as Cu, MgCu{sub 2} and MgB{sub 2}. Diffraction evidence for Cu substituting in the Mg position was inconclusive. (author)

  19. Magnesium diboride on inner wall of copper tube: A test case for superconducting radio frequency cavities

    Directory of Open Access Journals (Sweden)

    Wenura K. Withanage

    2017-10-01

    Full Text Available Superconductor magnesium diboride is considered one of the viable materials to substitute bulk niobium for superconducting radio frequency cavities. Utilizing a MgB_{2} coating on the inner wall of a copper cavity will allow operation at higher temperatures (20–25 K than Nb cavities due to the high transition temperature of MgB_{2} (39 K and the high thermal conductivity of Cu. In this paper, we present results of MgB_{2} coating on Cu tubes with similar dimensions to a 3 GHz cavity, as the first step towards coating the actual cavity, using the hybrid physical chemical vapor deposition technique. The results show successful coating of a uniform MgB_{2} layer on the inner wall of the Cu tubes with T_{c} as high as 37 K.

  20. Magnesium diboride on inner wall of copper tube: A test case for superconducting radio frequency cavities

    Science.gov (United States)

    Withanage, Wenura K.; Lee, N. H.; Penmatsa, Sashank V.; Wolak, M. A.; Nassiri, A.; Xi, X. X.

    2017-10-01

    Superconductor magnesium diboride is considered one of the viable materials to substitute bulk niobium for superconducting radio frequency cavities. Utilizing a MgB2 coating on the inner wall of a copper cavity will allow operation at higher temperatures (20-25 K) than Nb cavities due to the high transition temperature of MgB2 (39 K) and the high thermal conductivity of Cu. In this paper, we present results of MgB2 coating on Cu tubes with similar dimensions to a 3 GHz cavity, as the first step towards coating the actual cavity, using the hybrid physical chemical vapor deposition technique. The results show successful coating of a uniform MgB2 layer on the inner wall of the Cu tubes with Tc as high as 37 K.

  1. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  2. Mechanical properties of high-temperature superconducting wires. Ph.D. Thesis - Illinois Inst. of Tech.

    Science.gov (United States)

    Goretta, K. C.; Cluff, J. A.; Joo, J.; Lanagan, M. T.; Singh, J. P.; Vasanthamohan, N.; Xin, Y.; Wong, K. W.

    1995-01-01

    Bending strength, fracture toughness, and elastic modulus data were acquired for YBa2Cu3O(x), Bi2Sr2CaCu2O(x) (Bi,Pb)2Sr2Ca2Cu3O(x), and Tl2Ba2Ca2Cu3O(x) bars. These data and thermal expansion coefficients strongly suggest that the maximum possible tensile strain without fracture of bulk tapes or wires is approximately equals 0.2%. In Ag-clad conductors, residual stresses will be of limited benefit, but fractures produced by larger strains can be accommodated by shunting current through the Ag.

  3. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  4. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    M. A. Wolak

    2014-01-01

    Full Text Available We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD. To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB_{2} films on these substrates showed uniformly good superconducting properties including T_{c} of 37–40 K, residual resistivity ratio of up to 14, and root-mean-square roughness R_{q} of 20–30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB_{2} by the HPCVD technique, an important step towards superconducting rf cavities with MgB_{2} coating.

  5. Effects of graphite doping on critical current density and microstructure of MgB2 bulks by an improved Mg-diffusion method

    International Nuclear Information System (INIS)

    Pan, X.F.; Zhao, Y.; Feng, Y.; Yang, Y.; Cheng, C.H.

    2008-01-01

    abstract: A series of graphite-doped MgB 2 bulks with high density have been successfully prepared by an improved Mg-diffusion method in ambient pressure. The effects of graphite doping on lattice parameters, T c , J c and microstructure of MgB 2 have been investigated. The results show that compared to the nano-C-doped or CNTs-doped MgB 2 , C is not easy to substitute B in graphite-doped MgB 2 . However, at the same C content, the graphite-doped MgB 2 has a higher J c . At 10 K and self-field, the J c for MgB 1.985 C 0.015 reaches 0.58 MA/cm 2 . For the MgB 1.945 C 0.055 , at 5 K, 7 T and 10 K, 6 T the J c achieves 10,000 A/cm 2 which is two orders of magnitude higher than that for the undoped sample. In addition to improving electron scattering and intergranular connectivity, the unreacted graphite in the graphite-doped MgB 2 is proposed to be responsible to the excellent J c properties of MgB 2 in high fields, due to depressed grain growth and enhanced grain boundary flux pinning

  6. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  7. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  8. Analysis of critical current-bend strain relationships in composite Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.

    1979-01-01

    In order to be used successfully in fusion magnets, Nb 3 Sn conductors must meet several mechanical strain criteria, including tolerance to bending strains encountered during magnet construction. Since Nb 3 Sn is extremely brittle much information has been generated regarding the sensitivity of these conductros to tensile strain. A recent comparison of critical current-bend and tensile test data indicates that the strain required to initiate compound cracking during bending is significantly less than the strain required to do so by tensile of critical current on bending strains in monofilamentary Nb 3 Sn wires is calculated and compared with experimental data. The calculation takes into account a shift in the composite's neutral axis which occurs during bending. The analysis correctly predicts the observed depdndence of the critical current on bending strains

  9. Investigation of the resistive transition of MgB2 thin film through current noise

    International Nuclear Information System (INIS)

    Gandini, C; Rajteri, M; Portesi, C; Monticone, E; Masoero, A; Mazzetti, P

    2006-01-01

    In this paper we present measurements concerning the current noise produced during the resistive transition in a MgB 2 polycrystalline thin film. The power spectrum of the current noise, observed when the temperature is slowly changed across its critical value, presents a large electrical noise of the 1/f n type (n ≅ 3) over a quite wide range of frequencies. This noise may be considered as generated by the abrupt creation of resistive strips across the specimen constituted by grains which have undergone the resistive transition. A computer model that takes into account fluctations of the grain critical currents and of the number of grain per strips, has been developed to simulate the resistive transition and to evaluate the noise power spectrum. When the temperature is incresed and reaches its critical value, resistive strips are formed according to a percolative process, giving rise to resistance steps which are at the origin of the noise. The theoretical results obtained by this model are in good agreement, concerning both the shape and intensity of the noise power spectrum, with the experimental data directly measured on the specimen

  10. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  11. Measurement of the penetration depth and coherence length of MgB2 in all directions using transmission electron microscopy

    DEFF Research Database (Denmark)

    Loudon, J. C.; Yazdi, Sadegh; Kasama, Takeshi

    2015-01-01

    We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particularly useful for MgB2, where these quantities...... vary with the applied magnetic field and values are difficult to obtain at low field or in the c direction. We obtained images of flux vortices from a MgB2 single crystal cut in the ac plane by focused ion beam milling and tilted to 45 degrees. with respect to the electron beam about...... the crystallographic a axis. A new method was developed to simulate these images that accounted for vortices with a nonzero core in a thin, anisotropic superconductor and a simplex algorithm was used to make a quantitative comparison between the images and simulations to measure the penetration depths and coherence...

  12. MgB2 and Mg1-xAlxB2 single crystals: high pressure growth and physical properties

    International Nuclear Information System (INIS)

    Karpinski, J.; Kazakov, S.M.; Jun, J.; Zhigadlo, N.D.; Angst, M.; Puzniak, R.; Wisniewski, A.

    2004-01-01

    Single crystals of MgB 2 have been grown with a high pressure cubic anvil technique. They grow via the peritectic decomposition of the MgNB 9 ternary nitride. The crystals are of a size up to 2 x 1 x 0.1 mm 3 with a weight up to 230 μg. Typically they have transition temperatures between 38 and 38.6 K with a width of 0.3-0.5 K. Investigations of the P-T phase diagram prove that the MgB 2 phase is stable at least up to 2190 deg. C at high hydrostatic pressure in the presence of Mg vapor under high pressure. Substitution of aluminum for magnesium in single crystals leads to stepwise decrease of T c . This indicates a possible appearance of superstructures or phases with different T c 's. The upper critical field decreases with Al doping

  13. First-principles study of the (0001)-MgB2 surface finished in Mg and B

    International Nuclear Information System (INIS)

    Segura, Sully; Martínez, Jairo Arbey Rodríguez; Moreno-Armenta, María Guadalupe

    2014-01-01

    We present a study based on Density Functional Theory (DFT) of the volume and two surfaces (0001) of MgB 2 , one of them terminated in Mg and the other one terminated in B. Each one of the surface was relaxed and their electronic properties were determined. From calculation of the enthalpy of formation we found that the Mg-terminated surface is energetically favored. The bands seem to present a formation similar to the Dirac's cone as that are presented in graphene, but in MgB 2 is above of the Fermi level. In the three cases, volume and the two surfaces, the behaviour is boron-metallic, because there are strong presence of B orbital's in the neighborhood of the Ferm level

  14. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB 2 ) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB 2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp 3 -hybridized carbon radicals were detected. A strong reduction in the critical temperature T c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  15. Comparison of Levelized Cost of Energy of superconducting direct drive generators for a 10 MW offshore wind turbine

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Liu, Dong; Magnusson, Niklas

    2018-01-01

    A method for comparing the Levelized Cost of Energy (LCoE) of different superconducting drive trains is introduced. The properties of a 10 MW MgB$_{2}$ superconducting direct drive generator are presented in terms weight scaled to a turbine with a rotor diameter up of 280 m and the cost break down...

  16. Dynamic vortex-phase diagram of MgB2 single crystals near the peak-effect region

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Lee, Hyun-Sook; Kang, Byeongwon; Chowdhury, P.; Kim, Kyung-Hee; Park, Min-Seok; Lee, Sung-Ik

    2006-01-01

    The dynamic vortex-phase diagram of MgB 2 single crystals has been constructed by using voltage noise characteristics. Between the onset (H on ) and the peak (H p ) magnetic fields, crossovers from a state with large noises to a noise-free state were observed with increasing current while above H p , a reverse behavior was found. We will discuss the dynamic vortex phase diagram and the possible origins of the crossovers

  17. Anisotropy of critical current density in the superconducting Nb/sub 3/Sn tape wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [Technical Univ., Wroclaw (Poland). Inst. of Fundamental Electrotechnics and Electrotechnology

    1985-04-01

    In this letter the results are presented of an investigation of Isub(c parallel) and Isub(c perpendicular) in Nb/sub 3/Sn layers obtained in the process diffusion of tin atoms from liquid bronze solution Cu-80% Sn to the Nb-1.5% Zr substrate. Measurements of critical current density in Nb/sub 3/Sn layers were carried out in a perpendicular magnetic field of the induction value 4.25 T for different sample surface orientations in relation to the magnetic field strength vector defined by the value of angle. The critical current density was measured at a temperature of 4.2 K. Phase identification and investigation of the microstructure of superconducting Nb-Sn layers were performed on the Moessbauer spectrometer and scanning electron microscope, respectively. Classification measurements of grains in Nb-Sn layers were carried out with TV automatic image analyser. The texture and lattice parameter in Nb/sub 3/Sn layers were investigated by means of an X-ray diffractometer. The surface zone of Nb/sub 3/Sn layer was removed with the use of an argon ion gun. Results are presented and discussed.

  18. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  19. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  20. Superconductivity for Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flükiger, R [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The present state of development of a series of industrial superconductors is reviewed in consideration of their future applications in high field accelerator magnets, with particular attention on the material aspect. The discussion is centred on Nb3Sn and MgB2, which are industrially available in a round wire configuration in kilometre lengths and are already envisaged for use in the LHC Upgrade (HL-LHC). The two systems Bi-2212 and R.E.123 may be used in magnets with even higher fields in future accelerators: they are briefly described.

  1. Effect of Sintering Time and Diameter on Bi-Pb-Sr-Ca-Cu-O Superconducting Wire Formation with TiO2 Dopant by Silver (Ag Tube

    Directory of Open Access Journals (Sweden)

    Cindy Al Kindi

    2018-01-01

    Full Text Available Pengaruh waktu sintering dan diameter terhadap pembentukan kawat superkonduktor Bi-Pb-Sr-Ca-Cu-O dengan dopan TiO2 menggunakan tabung perak (Ag menjadi penting untuk dibahas karena hal ini berpengaruh terhadap adanya suhu kritis yang merupakan syarat penting superkonduktor. Pada penelitian ini ada beberapa tahap yang dilakukan yaitu preparasi bahan, proses permesinan, penarikan kawat dan proses perlakuan panas. Serbuk BPSCCO dengan dopan TiO2 dimasukkan ke dalam tabung perak (Ag dan dikalsinasi pada temperatur 820oC selama 20 jam, lalu proses penarikan (Rolling sampai diameter 6 mm dan 2,6 mm serta sintering dilakukan pada temperatur 850oC selama 9 jam dan 30 jam untuk masing-masing ukuran diameter dengan dua kali proses sintering. Hasil penelitian menunjukkan bahwa kawat superkonduktor memiliki suhu kritis yaitu Tc onset = 99 K dan Tc zero = 70 K. Waktu yang sangat berpengaruh pada pembentukan fasa superkonduktor yaitu sintering selama 9 jam sedangkan untuk ukuran diameter kawat yang memiliki suhu kritis yaitu 6 mm, sedangkan waktu sintering selama 30 jam dapat merubah fasa BPSCCO sehingga tidak terbentuk superkonduktor melainkan konduktor dan semikonduktor. Pada diameter 2,6 mm belum menjadi ukuran yang tepat pada pembentukan kawat superkonduktor.   The influence of sintering time and diameter on the formation of Bi-Pb-Sr-Ca-Cu-O superconducting wire with doped TiO2 by silver (Ag tube becomes important to be discussed because of the presence of critical temperature which is an essential condition in superconductors. In this research there are several steps must be done that is: material preparation, machine process, wire drawing and heat process. BPSCCO powder with dopant TiO2 filled into silver (Ag tube with calcination temperature at 820oC for 20 h, then rolling process to diameter 6 mm and 2,6 mm with sintering temperature at 850oC for 9 h and 30 h for each size of diameter by twice sintering process. The results showed that

  2. Influence of the introduction and formation of artificial pinning centers on the transport properties of nanostructured Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L B S; Rodrigues, C A; Bormio-Nunes, C; Oliveira, N F Jr; Rodrigues, D Jr, E-mail: lucas_sarno@ppgem.eel.usp.b, E-mail: durval@demar.eel.usp.b [Superconductivity Group, Department of Materials Engineering (DEMAR) Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP Polo Urbo-Industrial, Gleba AI-6 - PO Box 116 - Lorena, SP (Brazil)

    2009-05-01

    The formation of nanostructures projected to act as pinning centers is presented as a highly promising technique for the transport properties optimization of superconductors. However, due to the necessity of nanometric dimensions of these pinning centers, the heat treatment (HT) profiles must be carefully analyzed. The present work describes a methodology to optimize the HT profiles in respect to diffusion, reaction and formation of the superconducting phases. After the HT, samples were removed for micro structural characterization. Measurements of transport properties were performed to analyze the influence of the introduction of artificial pinning centers (APC) on the superconducting phase and to find the flux pinning mechanism acting in these wires. Fitting the volumetric pinning force vs. applied magnetic field (F{sub p} vs. mu{sub o}H) curves of transport properties, we could determine the type and influence of flux pinning mechanism acting in the global behavior of the samples. It was concluded that the maximum current densities were obtained when normal phases (due to the introduction of the APCs) are the most efficient pinning centers in the global behavior of the samples. The use of HT with profile 220{sup 0}C/100h+575{sup 0}C/50h+650{sup 0}C/100h was found as the best treatment for these nanostructured superconducting wires.

  3. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  4. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  5. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  6. Research on ReBCO and MgB2 Wires and Cables at the University of Twente

    Science.gov (United States)

    2015-09-15

    behaviour and its influence on critical properties. The predictive model is verified by experiments. Four cable types (CORC, stacked tape, Roebel, CICC...Besides  that,  a  detailed  modeling  work  on  the  mechanical   behaviour  and  it’s  influence  on  the...these  loads.  A  set  of  experimental  setups,  as  well  as  a   convenient  and  accurate  method  of  stress

  7. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states.

    Science.gov (United States)

    Liu, Jie; Potter, Andrew C; Law, K T; Lee, Patrick A

    2012-12-28

    One of the simplest proposed experimental probes of a Majorana bound state is a quantized (2e(2)/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak can remain. Such a nonquantized zero-bias peak has been recently reported for semiconducting nanowires with proximity induced superconductivity. In this Letter we analyze the relation of the zero-bias peak to the presence of Majorana end states, by simulating the tunneling conductance for multiband wires with realistic amounts of disorder. We show that this system generically exhibits a (nonquantized) zero-bias peak even when the wire is topologically trivial and does not possess Majorana end states. We make comparisons to recent experiments, and discuss the necessary requirements for confirming the existence of a Majorana state.

  8. Combined addition of nano diamond and nano SiO2, an effective method to improve the in-field critical current density of MgB2 superconductor

    International Nuclear Information System (INIS)

    Rahul, S.; Varghese, Neson; Vinod, K.; Devadas, K.M.; Thomas, Syju; Anees, P.; Chattopadhyay, M.K.; Roy, S.B.; Syamaprasad, U.

    2011-01-01

    Highlights: → Both nano diamond and nano SiO 2 caused significant modifications in the structural properties of pure MgB 2 sample. → Reduction in T C for the best codoped sample was approximately 2 K. → The best codoped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T. → The enhanced flux pinning capability provided by the additives is responsible for the improved in-field J C . -- Abstract: MgB 2 bulk samples added with nano SiO 2 and/or nano diamond were prepared by powder-in-sealed-tube (PIST) method and the effects of addition on structural and superconducting properties were studied. X-ray diffraction (XRD) analysis revealed that the addition caused systematic reduction in 'a' lattice parameter due to the substitution of C atoms at B sites and the strain caused by reacted intragrain nano particles of Mg 2 Si as evinced by transmission electron microscope image. Scanning electron microscopy images showed distinct microstructural variations with SiO 2 /diamond addition. It was evident from DC magnetization measurements that the in-field critical current density [J C (H)] of doped samples did not fall drastically like the undoped sample. Among the doped samples the J C (H) of co-doped samples were significantly higher and the best co-doped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T.

  9. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors......; and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are, however, not without their challenges. The superconductors have to be cooled down to somewhere...

  10. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors...... (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down...

  11. MgB2 magnetometer with directly coupled pick-up loop

    NARCIS (Netherlands)

    Portesi, C.; Mijatovic, D.; Veldhuis, Dick; Brinkman, Alexander; Monticone, E.; Gonnelli, R.S.

    2006-01-01

    magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which

  12. The elastic properties, generalized stacking fault energy and dissociated dislocations in MgB2 under different pressure

    KAUST Repository

    Feng, Huifang

    2013-05-31

    The 〈112̄0〉 perfect dislocation in MgB2 is suggested to dissociate into two partial dislocations in an energy favorable way 〈112̄0〉 → 1/2 〈112̄0〉 + SF + 1/2 〈112̄0〉. This dissociation style is a correction of the previous dissociation 〈1000〉 → 1/3 〈11̄00〉 SF + 1/3 〈 2100〉proposed by Zhu et al. to model the partial dislocations and stacking fault observed by transmission electron microscopy. The latter dissociation results in a maximal stacking fault energy rather than a minimal one according to the generalized stacking fault energy calculated from first-principles methods. Furthermore, the elastic constants and anisotropy of MgB2 under different pressure are investigated. The core structures and mobilities of the 〈112̄0〉 dissociated dislocations are studied within the modified Peierls-Nabarro (P-N) dislocation theory. The variational method is used to solve the modified P-N dislocation equation and the Peierls stress is also determined under different pressure. High pressure effects on elastic anisotropy, core structure and Peierls stress are also presented. © 2013 Springer Science+Business Media New York.

  13. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-03-01

    The purpose of this paper is to demonstrate a statistical method for verifying superconducting wire process stability as represented by I c . The paper does not propose changing the I c testing frequency for wire during Phase 1 of the present Vendor Qualification Program. The actual statistical limits demonstrated for one supplier's data are not expected to be suitable for all suppliers. However, the method used to develop the limits and the potential for improved process through their use, may be applied equally. Implementing the demonstrated method implies that the current practice of testing all pieces of wire from each billet, for the purpose of detecting manufacturing process errors (i.e. missing a heat-treatment cycle for a part of the billet, etc.) can be replaced by other less costly process control measures. As used in this paper process control limits for critical current are quantitative indicators of the source manufacturing process uniformity. The limits serve as alarms indicating the need for manufacturing process investigation

  14. Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping

    Science.gov (United States)

    Dou, S. X.; Soltanian, S.; Horvat, J.; Wang, X. L.; Zhou, S. H.; Ionescu, M.; Liu, H. K.; Munroe, P.; Tomsic, M.

    2002-10-01

    Doping of MgB2 by nano-SiC and its potential for the improvement of flux pinning were studied for MgB2-x)(SiCx/2 with x=0, 0.2, and 0.3 and for 10 wt % nano-SiC-doped MgB2 samples. Cosubstitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5 K, introducing intragrain pinning centers effective at high fields and temperatures, and significantly enhancing Jc and Hirr. Compared to the undoped sample, Jc for the 10 wt % doped sample increased by a factor of 32 at 5 K and 8 T, 42 at 20 K and 5 T, and 14 at 30 K and 2 T. At 20 K and 2 T, the Jc for the doped sample was 2.4 x105 A/cm2, which is comparable to Jc values for the best Ag/Bi-2223 tapes. At 20 K and 4 T, Jc was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. The magnetic Jc is consistent with the transport Jc which remains at 20 000 A/cm2 even at 10 T and 5 K for the doped sample, an order of magnitude higher than the undoped one. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using a formula of MgBxSiyCz instead of pure MgB2.

  15. Advances in second generation high temperature superconducting wire manufacturing and R and D at American Superconductor Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, Martin W; Li Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James, E-mail: mrupich@amsc.co [American Superconductor Corporation, 64 Jackson Road, Devens, MA 01434-4020 (United States)

    2010-01-15

    The RABiTS(TM)/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cm{sub width}{sup -1} at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R and D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R and D improvements.

  16. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  17. Superconductivity and magnetism: Materials properties and developments

    International Nuclear Information System (INIS)

    Andersen, N.H.; Bay, N.; Grivel, J.C.

    2003-01-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T c superconductivity, magnetic superconductors, MgB 2 , CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  18. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  19. Hybrid Physical Chemical Vapor Deposition of Superconducting Magnesium Diboride Coatings for Large Scale Radio Frequency Cavities

    Science.gov (United States)

    Lee, Namhoon; Withanage, Wenura; Tan, Teng; Wolak, Matthaeus; Xi, Xiaoxing

    2016-03-01

    Magnesium diboride (MgB2) is considered to be a great candidate for next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature Tc (40 K) and increased thermodynamic critical field Hc compared to other conventional superconductors. These properties significantly reduce the BCS surface resistance (RsBCS)and residual resistance (Rres) according to theoretical studies and suggest the possibility of an enhanced accelerating field (Eacc) . We have investigated the possibility of coating the inner surface of a 3 GHz SRF cavity with MgB2 by using a hybrid physical-vapor deposition (HPCVD) system which was modified for this purpose. To simulate a real 3 GHz SRF cavity, a stainless steel mock cavity has been employed for the study. The film quality was characterized on small substrates that were placed at selected locations within the cavity. MgB2 films on stainless steel foils, niobium pieces and SiC substrates showed transition temperatures of above 36 K. Dielectric resonance measurements resulted in promising Q values as obtained for the MgB2 films grown on the various substrates. By employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB2 coatings for SRF cavities.

  20. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  1. MgB2 thin-film bolometer for applications in far-infrared instruments on future planetary missions

    International Nuclear Information System (INIS)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Nguyen, L.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB 2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 2.56 × 10 -13 W/√Hz operating at 30 Hz and a responsivity of 702 kV/W. It is predicted that with the inclusion of a gold black absorber that an optical specific detectivity of 8.3 × 10 10 cm/√Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17-250 μm spectral wavelength range.

  2. Effect of sorbic acid doping on flux pinning in bulk MgB2 with the percolation model

    International Nuclear Information System (INIS)

    Yang, Y.; Cheng, C.H.; Wang, L.; Sun, H.H.; Zhao, Y.

    2010-01-01

    In this paper, we study the doping effect of sorbic acid (C 6 H 8 O 2 ), from 0 to 20 wt.% of the total MgB 2 , on critical temperature (T c ), critical current density (J c ), irreversibility field (H irr ) and crystalline structure. The XRD patterns of samples show a slightly decrease in a-axis lattice parameter for doped samples, due to the partial substitution of carbon at boron site. On the other hand, we investigate the influence of doping on the behavior of flux pinning and J c (B) in the framework of percolation theory and it is found that the J c (B) behavior could be well fitted in high field region. The two key parameters, anisotropy and percolation threshold, play very important roles. It is believed that the enhancement of J c is due to the reduction of anisotropy in high field region.

  3. Magnetic anisotropy of thin sputtered MgB2 films on MgO substrates in high magnetic fields

    Directory of Open Access Journals (Sweden)

    Savio Fabretti

    2014-03-01

    Full Text Available We investigated the magnetic anisotropy ratio of thin sputtered polycrystalline MgB2 films on MgO substrates. Using high magnetic field measurements, we estimated an anisotropy ratio of 1.35 for T = 0 K with an upper critical field of 31.74 T in the parallel case and 23.5 T in the perpendicular case. Direct measurements of a magnetic-field sweep at 4.2 K show a linear behavior, confirmed by a linear fit for magnetic fields perpendicular to the film plane. Furthermore, we observed a change of up to 12% of the anisotropy ratio in dependence of the film thickness.

  4. Ball-milling and AlB2 addition effects on the hydrogen sorption properties of the CaH2 + MgB2 system

    International Nuclear Information System (INIS)

    Schiavo, B.; Girella, A.; Agresti, F.; Capurso, G.; Milanese, C.

    2011-01-01

    Research highlights: → Calcium hydride + magnesium-aluminum borides as candidates for hydrogen storage. → Long time ball milling improves hydrogen sorption kinetics of the CaH 2 +MgB 2 system. → Coexistence of MgB 2 and AlB 2 does not improve hydrogen sorption performances. → Total substitution of MgB 2 with AlB 2 improves the system kinetics and reversibility. → Below 400 deg. C almost the full hydrogen capacity of the CaH 2 + AlB 2 system is reached. - Abstract: Among the borohydrides proposed for solid state hydrogen storage, Ca(BH 4 ) 2 is particularly interesting because of its favourable thermodynamics and relatively cheap price. Composite systems, where other species are present in addition to the borohydride, show some advantages in hydrogen sorption properties with respect to the borohydrides alone, despite a reduction of the theoretical storage capacity. We have investigated the milling time influence on the sorption properties of the CaH 2 + MgB 2 system from which Ca(BH 4 ) 2 and MgH 2 can be synthesized by hydrogen absorption process. Manometric and calorimetric measurements showed better kinetics for long time milled samples. We found that the total substitution of MgB 2 with AlB 2 in the starting material can improve the sorption properties significantly, while the co-existence of both magnesium and aluminum borides in the starting mixture did not cause any improvement. Rietveld refinements of the X-ray powder diffraction spectra were used to confirm the hypothesized reactions.

  5. Cu-Nb3Sn superconducting wires prepared by ''Copper Liquid Phase Sintering method'' using the Nb-H

    International Nuclear Information System (INIS)

    Resende, A.T. de.

    1985-01-01

    Cu-30% Nb in weighting were prepared by the method of Copper sintering liquid phase the method was improved by substitution of Nb power by Nb-H powder, obtaining a high density material with good mechanical properties, which was reduced to fine. Wire, Without heat treatment. The Cu-Nb 3 Sn wires were obtained by external diffusion process depositing tin in the Cu-30%Nb wires, and by internal diffusion process using the Sn-8.5% Cu in weighting, which was reduced to rods of 3.5 mm. These Cu-30%Nb rods were enclosed in copper tubes and deformed mechanically by rotary swaging and drawing. During the drawing step some wires were fractured, that were analysed and correlated with the microstructure of the Sn-8.5 Wt% Cu alloy. External and internal diffusion samples; after a fast thermal treatment for Sn diffusion, were submited to the temperature of 700 0 C to provide the reaction between Sn and Nb, leading to the Nb 3 Sn phase. Samples with several reaction times, and its influence on T c and J c critical parameters and normal resistivity were prepared and analysed. (author) [pt

  6. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    Science.gov (United States)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  7. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  8. Current distributions in superconducting wires subject to a random orientation magnetic field, and corresponding to the Tokamak usual conditions

    International Nuclear Information System (INIS)

    Artaud, J.F.

    1994-01-01

    The main themes of this thesis are: review of superconductivity principles; critical current in a random orientation magnetic field; the MHD model applied to superconductors (with comprehensive calculation of the field in a plate type conductor); the magnetization created by a variation of a random orientation magnetic field; the electric field in a superconductor in steady or quasi-steady state (MHD displacement, pinning and thermal effects). 145 figs., 166 refs

  9. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2018-01-02

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  10. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Science.gov (United States)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  11. Aluminum and carbon substitution in MgB2. Electron doping and scattering effects

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Pribulova, Z.; Angst, M.; Bud'ko, S.L.; Canfield, P.C.; Klein, T.; Lyard, L.; Marcus, J.; Marcenat, C.; Kang, B.W.; Kim, H.-J.; Lee, H.-S.; Lee, H.-K.; Lee, S.I.

    2007-01-01

    The point-contact spectroscopy is used to address the evolution of two superconducting energy gaps in the Al- and C-doped magnesium diboride polycrystals and single crystals with T c 's from 39 to 22 K prepared by different techniques. The obtained evolution of two gaps does not show any anomalous behavior but can be consistently described by the combination of the (prevailing) band filling effect and a (minor) increased interband scattering as proposed by Kortus et al. [Kortus et al., Phys. Rev. Lett. 94 (2005) 027002]. The approaching of two gaps is stronger in the Al-doped systems but interband scattering is still not large enough to merge two gaps. The full merging can expected only for higher dopings with T c 's below 10-15 K. In-magnetic-field measurements are used to analyze the intraband scatterings introduced by these two substitutions. It is shown that the carbon doping introduces significant disorder mainly by decreasing the diffusion coefficient in the π band while the Al substitution leaves the samples in the clean limit

  12. The charge transfer induced by Cr doping in MgB2

    International Nuclear Information System (INIS)

    Zhang Huarong; Zhao Jiyin; Shi Lei

    2005-01-01

    Mg 1-x Cr x B 2 polycrystal bulk samples with 0 x 5% have been synthesized by a solid-state reaction and studied by X-ray diffraction, SEM and Raman spectrum. It is found that the c-axis of the lattice decreases as the Cr content increases, while the a-axis remains unchanged. Moreover, crystal grain size increases apparently with Cr doping concentration increase. The normal-state resistivity increases and the superconducting transition temperature (T c ) decreases from 38.2 K (x = 0) to 35.1 K (x 0.03) with the increase of Cr content. It is suggested that the charge transfer between the Mg-layer and the B-layer causes the decrease of the charge carrier concentration and induces the changes of T c and normal-state resistivity. On the other hand, by the Raman scattering study, it is found that the linewidth of Raman spectrum increases with the increase of Cr content, which is resulted by the competition between the electron-phonon interaction and substitution-induced disorder. The Raman peak has no evident shift due to the countervailing between the effects of the electron-phonon coupling and the grain size

  13. Superconducting and hybrid systems for magnetic field shielding

    International Nuclear Information System (INIS)

    Gozzelino, L; Gerbaldo, R; Ghigo, G; Laviano, F; Truccato, M; Agostino, A

    2016-01-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB 2 ) and in a hybrid configuration (MgB 2 /Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one. (paper)

  14. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    Science.gov (United States)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  15. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    International Nuclear Information System (INIS)

    Clem, John R.

    2011-01-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ(parallel)) and flux flow (ρ(perpendicular)), and their ratio r = ρ(parallel)/ρ(perpendicular). When r c (φ) that makes the vortex arc unstable.

  16. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  17. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  18. MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.

  19. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  20. A Novel Method for Measurements of the Penetration Depth of MgB2 Superconductor Films by Using Sapphire Resonators with Short-Circuited Parallel Plates

    International Nuclear Information System (INIS)

    Jung, Ho Sang; Lee, J. H.; Cho, Y. H.; Lee, Sang Young; Seong, W. K.; Lee, N. H.; Kang, W. N.

    2009-01-01

    We introduce a measurement method that enables to measure the penetration depth(λ) of superconductor films by using a short-ended parallel plate sapphire resonator. Variations in the (λof MgB 2 films could be measured down to the lowest temperature using a sapphire resonator with a YBa 2 Cu 3 O 7-x film at the bottom. A model equation of λλ 0 [1-(T/T c ) τ ] -1/2 for MgB 2 films appeared to describe the observed variations of the resonant frequency of the sapphire resonator with temperature, with λ 0 , τ and T c used as the fitting parameters.

  1. Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm [DLR, Institut fuer Planetenforschung, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Karlsruher Institut fuer Technologie (Germany); Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory [Moscow State Pedagogical University (Russian Federation)

    2013-07-01

    The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.

  2. Superconducting magnet

    Science.gov (United States)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  3. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  4. Superconducting materials suitable for magnets

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    The range of materials available for superconducting magnets is steadily expanding, even as the choice of material becomes potentially more complex. When virtually all magnets were cooled by helium at ~2-5 K it was easy to separate the domain of Nb-Ti from those of Nb$_{3}$Sn applications and very little surprise that more than 90% of all magnets are still made from Nb-Ti. But the development of useful conductors of the Bi-Sr-Ca-Cu-O and YBa2Cu3Ox high temperature superconductors, coupled to the recent discovery of the 39 K superconductor MgB2 and the developing availability of cryocoolers suggests that new classes of higher temperature, medium field magnets based on other than Nb-based conductors could become available in the next 5-10 years. My talks will discuss the essential physics and materials science of these 5 classes of material - Nb-Ti, Nb$_{3}$Sn, MgB2, Bi-Sr-Ca-Cu-O and YBa2Cu3Ox - in the context of those aspects of their science, properties and fabrication properties, which circumscribe their ap...

  5. Magnesium diboride(MgB2) wires for applications

    International Nuclear Information System (INIS)

    Patel, Dipak; Kim, Jung Ho

    2016-01-01

    Field and temperature dependence of the critical current density, Jc, were measured for both un-doped and carbon doped MgB 2 /Nb/Monel wires manufactured by Hyper Tech Research, Inc. In particular, carbon incorporation into the MgB 2 structure using malic acid additive and a chemical solution method can be advantageous because of the highly uniform mixing between the carbon and boron powders. At 4.2 K and 10 T, Jc was estimated to be 25,000 - 25,300 Acm -2 for the wire sintered at 600 degrees C for 4 hours. The irreversibility field, Birr, of the malic acid doped wire was approximately 21.0 - 21.8 T, as obtained from a linear extrapolation of the J-B characteristic. Interestingly enough, the Jc of the malic acid doped sample exceeds 10 5 Acm -2 at 6 T and 4.2 K, which is comparable to that of commercial Nb-Ti wires

  6. Changes of Tsub(c), Jsub(c), Bsub(c2) and the lattice parameter of the Nb/sub 3/Sn phase formed at the initial stage of growth in a multifilamentary superconductive wire

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Bukowski, Z

    1987-03-01

    Investigations were made of the superconducting transition temperature, Tsub(c), the upper critical flux density, Bsub(c2), and the critical current density, Jsub(c), of Nb/sub 3/Sn layers in filamentary wire in a bronze matrix. The lattice parameter, a/sub 0/ and Tsub(c) of Nb/sub 3/Sn layers in 259-filament wire were determined after removal of the bronze matrix. The microstructure and layer thickness were studied using scanning electron microscopy. The diffusion formation of Nb/sub 3/Sn phase at 1023 K was studied until the complete reaction of the niobium filaments. It was found that the Nb/sub 3/Sn layer begins to form in the manufacturing process during the intermediate annealing at 793 K, and that there is a considerable degradation of critical parameters due to the nonstiochiometry of the Nb/sub 3/Sn phase in layers thinner than 1 ..mu..m.

  7. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  8. Superconducting Generators for Airborne Applications and YBCO-Coated Conductors (Preprint)

    National Research Council Canada - National Science Library

    Barnes, Paul N; Levin, George A; Durkin, Edward B

    2008-01-01

    .... Superconducting generators can address this need. Recently, several successful rotating machinery projects demonstrated the practicality and feasibility of the technology using the high temperature superconducting BSCCO wire...

  9. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  10. The reduction of optimal heat treatment temperature and critical current density enhancement of ex situ processed MgB2 tapes using ball milled filling powder

    Science.gov (United States)

    Fujii, Hiroki; Iwanade, Akio; Kawada, Satoshi; Kitaguchi, Hitoshi

    2018-01-01

    The optimal heat treatment temperature (Topt) at which best performance in the critical current density (Jc) property at 4.2 K is obtained is influenced by the quality or reactivity of the filling powder in ex situ processed MgB2 tapes. Using a controlled fabrication process, the Topt decreases to 705-735 °C, which is lower than previously reported by more than 50 °C. The Topt decrease is effective to suppress both the decomposition of MgB2 and hence the formation of impurities such as MgB4, and the growth of crystallite size which decreases upper critical filed (Hc2). These bring about the Jc improvement and the Jc value at 4.2 K and 10 T reaches 250 A/mm2. The milling process also decreases the critical temperature (Tc) below 30 K. The milled powder is easily contaminated in air and thus, the Jc property of the contaminated tapes degrades severely. The contamination can raise the Topt by more than 50 °C, which is probably due to the increased sintering temperature required against contaminated surface layer around the grains acting as a barrier.

  11. Deposition of MgB2 Thin Films on Alumina-Buffered Si Substrates by using Hybrid Physical-Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    Lee, T. G.; Park, S. W.; Seong, W. K.; Huh, J. Y.; Jung, S. G.; Kang, W. N.; Lee, B. K.; An, K. S.

    2008-01-01

    [ MgB 2 ] thin films were fabricated using hybrid physical-chemical vapor deposition (HPCVD) method on silicon substrates with buffers of alumina grown by using atomic layer deposition method. The growth war in a range of temperatures 500 - 600 degrees C and under the reactor pressures of 25 - 50 degrees C. There are some interfacial reactions in the as-grown films with impurities of mostly Mg 2 Si, MgAl 2 O 4 , and other phases. The T c 's of MgB 2 films were observed to be as high as 39 K, but the transition widths were increased with growth temperatures. The magnetization was measured as a function of temperature down to the temperature of 5 K, but the complete Meissner effect was not observed, which shows that the granular nature of weak links is prevailing. The formation of mostly Mg 2 Si impurity in HPCVD process is discussed, considering the diffusion and reaction of Mg vapor with silicon substrates.

  12. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  13. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  14. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  15. Design and fabrication of Sn-Nb-Cu-Ta-C composites for multifilamentary superconducting Nb/sub 3/Sn wires by using the modified tube technique

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Kosek, Z M

    1987-10-01

    The factors determining the design and fabrication of Nb/sub 3/Sn multifilamentary wires by the tube technique are discussed. New improved methods of obtaining multifilamentary Nb/sub 3/Sn wires on the basis of both external diffusion and internal diffusion processes, by using the tube technique in a simpler and less expensive way, are presented.

  16. Interplay of superconductivity and magnetism in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and ist potential as wire material

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenmayer, Josef Erwin

    2015-07-07

    The results presented in this thesis provide a deeper insight in the physical properties of Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and their connection among each other. By using a combination of high resolution X-ray diffraction, susceptibility measurements, and μSR, it was possible to unambiguously identify a microscopic coexistence of superconductivity and antiferromagnetism in underdoped Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} (up to x=0.23). This result strongly supports the assumption of an s± symmetry in the area 0f the phase diagram. These studies were extended to the optimally and overdoped Ba{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} up to x=0.66 generating a phase diagram displaying gradual transitions from long-range to short -range order instead of sharp borders. This magnetic order can be detected up to at last x=0.66, a value beyond the expected one (between 0.2 and 0.3). On Ba{sub 0.6}Na{sub 0.2}Fe{sub 2}As{sub 2} under pressure, a new antiferromagnetic order AFM2 was discovered, also displaying coexistence with superconductivity. In the second part of this thesis, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} was examined as material for the production of superconducting wires and tapes. Preliminary critical current density measurements of these prototype filaments are encouraging. To further investigate these wires, a new synthesis route was explored using mechanical alloying of the ternary precursors BaFe{sub 2}As{sub 2} and KFe{sub 2}As{sub 2} in order to obtain larger sample amounts.

  17. Report on results for fiscal 1997 on development of superconducting electric power application technology. Pt. 1. R and D of superconducting wire, R and D of superconducting generator, studies on total system, R and D of refrigeration system, and verification test; 1997 nendo chodendo denryoku oyo gijutsu kaihatsu seika hokokusho. 1. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report explains the outline as Part 1. In fiscal 1997, the 10th year of the project, a multi cylindrical rotary model for which an in-situ verification test was finished was brought back to the plant and dismantled for examination, while the in-situ verification test of a slow-response type model machine rotor was conducted in combination with a refrigeration system. In addition, in the research of AC wire materials and oxide based materials, studies were made with a purpose of high characterization and long wire materialization. In the metallic materials, a 10kANbTi conductor was developed while, in oxide-based materials, research was done on performance improvement and wire materialization based on various synthesizing methods. The manufacturing, factory test and in-situ text were conducted for a 70,000kW model machine with the purpose of R and D of a 200,000kW class pilot machine. Examination was made on the test method of the 70,000kW class model machine, operation technology of a superconducting generation system, and the effect of introducing the superconducting generator into a power system. In the conventional refrigeration system, a single unit test was carried out for the liquefaction, liquid storing capacity, etc., of the system. The 70,000kW class model machine was put through a test for confirming the general operation including the refrigeration system. (NEDO)

  18. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    Science.gov (United States)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  19. Unsynchronized resonance of covalent bonds in the superconducting state

    International Nuclear Information System (INIS)

    Costa, Marconi B.S.; Bastos, Cristiano C.; Pavao, Antonio C.

    2012-01-01

    Daft calculations performed on different cluster models of cuprates (LaBa 2 Cu 3 O 6.7 , La 1.85 Sr 0.15 CuO 4 , YBa 2 Cu 3 O 7 , TlBa 2 Ca 2 Cu 3 O 8.78 , HgBa 2 Ca 2 Cu 3 O 8.27 ), metallic systems (Nb 3 Ge, MgB 2 ) and the pnictide LaO 0.92 F 0.08 FeAs made evident the occurrence of un synchronized resonance of covalent bonds in the superconducting state, as predicted by Paling's resonating valence bond Rb) theory. For cuprates, the un synchronized resonance involves electron transfer between Cu atoms accompanied by a decrease in the charge of the La, Sr, Y and Ca atoms. For MgB 2 , electron transfer occurs in the Mg layer, while the B layer behaves as charge reservoir. For Nb 3 Ge, unsynchronized resonance occurs among the Ge atoms, which should be responsible for charge transfer. For LaO 0.92 F 0.08 FeAs, the results suggest that both La-O and Fe-As layers are involved in the mechanism of superconductivity. The identification of unsynchronized resonances in these systems provides evidence which supports RVB as a suitable theory for high-temperature superconductivity (high-TC). (author)

  20. Comment on "Anisotropic s-wave superconductivity: Comparison with experiments on MgB2" by A. I. Posazhennikova et al.

    Science.gov (United States)

    Mishonov, T. M.; Penev, E. S.; Indekeu, J. O.

    2003-02-01

    An analytical result for the renormalization of the jump of the heat capacity ΔC/CN by the anisotropy of the order parameter is derived within the framework of the very recent model proposed by Posazhennikova, Dahm and Maki (Europhys. Lett., 60 (2002) 134), for both oblate and prolate anisotropy. The graph of ΔC/CN vs. the ratio of the gaps on the equator and the pole of the Fermi surface, Δe/Δp, allows a direct determination of the gap anisotropy parameter Δe/Δp by fitting data from specific-heat measurements ΔC/CN. Using the experimental value ΔC/CN = 0.82 ± 10% by Wang, Plackowski, and Junod (Physica C 355 (2001) 179) we find Δe/Δp approx 4.0.

  1. FY 1998 result report on development of superconductive power application technologies. Pt. 1. Research and development of superconductive wire materials / Research of a total system / Research and development of a freezing system / Demonstration tests; 1998 nendo chodendo denryoku oyo gijutsu kaihatsu. 1. Chodendo senzai no kenkyu kaihatsu, chodendo hatsudenki no kenkyu kaihatsu, total system no kenkyu, reito system no kenkyu kaihatsu, jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Superconductive technologies are introduced into electric power devices for attempts of achieving higher stabilization, density and efficiency, as well as size and weight reduction and improvement in performance of the devices. The project has been worked on since fiscal 1998 as part of the New Sunshine Project. Fiscal 1998 being the eleventh year has taken the following subjects as the research promotion policies: establishment of plans targeted at accomplishment of the goals of the project; adequate and reliable implementation of verification of technological assignments; and steady and efficient demonstration tests. Subsequent to the previous year during which site demonstration tests were completed on a low-speed responsive model machine, the site demonstration test has begun on the ultra high-speed responsive model machine as the final stage of the project. The ultra high-speed responsive model machine was coupled with a freezing system and a load synchronizing machine, and different kinds of test were carried out where good results were obtained. Researches were conducted on characteristics improvement and device element technologies aimed at achieving the practical application level by utilizing the respective features of AC metal-based wires and oxide-based wires, where sound results were obtained. Also in an improved freezing system, valuable data were attained as part of establishing the basic technologies for a superconductive power generation system. (NEDO)

  2. Investigation of inter-grain critical current density in Bi2Sr2CaCu2O8+δ superconducting wires and its relationship with the heat treatment protocol

    Science.gov (United States)

    Pallecchi, I.; Leveratto, A.; Braccini, V.; Zunino, V.; Malagoli, A.

    2017-09-01

    In this work we investigate the effect of each different heat treatment stage in the fabrication of Bi2Sr2CaCu2O8+δ superconducting wires on intra-grain and inter-grain superconducting properties. We measure magnetic critical temperature T c values and transport critical current density J c at temperatures from 4 K to 40 K and in fields up to 7 T. From an analysis of the temperature dependence of the self-field critical current density J c(T) that takes into account weak link behavior and the proximity effect, we study grain boundary (GB) transparency to supercurrents; we also establish a relationship between GB oxygenation in the different steps of the fabrication process and GB transparency to supercurrents. We find that GB oxygenation starts in the first crystallization stage, but it becomes complete in the plateau at 836 °C and in slow cooling stages and is further enhanced in the prolonged post-annealing step. Such oxygenation makes GBs more conductive, thus improving the inter-grain J c value and temperature dependence. On the other hand, from inspection of the T c values in the framework of the phase diagram dome, we find that grains are already oxygenated in the crystallization step up to the optimal doping, while successive slow cooling and post-annealing treatments further enhance the degree of overdoping, especially if carried out in oxygen atmosphere rather than in air.

  3. An investigation into preparation of silver sheathed superconducting wires with a high critical temperature; Etude des problemes poses par l'elaboration de fils supraconducteurs gaines argent a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Chaffron, Laurent

    1992-04-03

    We have shown that the critical current density of YBaCuO superconducting wires prepared using 'powder in tube' method is limited by the following principal factors: - cracks and porosity arising from the shrinkage of the powder during sintering, - irregularities in the wire section, - presence of secondary phases in the phase diagram of the three oxides, - incomplete re-oxidation at the centre of the wire, - insufficient, or complete lack of, texture in the wire, - presence of amorphous, non superconducting phase across the grains that blocks grain boundary migration. We have reduced the deleterious effects due to the first four factors by modifying prior nature of the powder, by reinforcing the sheath and by modifying the thermal treatments. We also used creep sintering to produce a strong texture; however, our study shows that texture, though necessary, is not a sufficient condition for a high current. This is because the latter is limited by the presence of the amorphous phase at too many grain boundaries. Finally, we have obtained wires in which grain boundaries are clean and which have very high critical currents by melting the wire in a thermal gradient and by passing it through the gradient very slowly. Such a technique, however, is too slow for producing superconductors. (author) [French] Nous avons montre que les principales causes qui limitent l'intensite que peuvent transporter les fils supraconducteurs d'YBaCuO elabores selon la technique dite de la poudre dans le tube sont: - la fissuration et la porosite engendrees par le retrait de la poudre lors du frittage, - l'irregularite de la section de la ceramique, - la presence des phases secondaires du diagramme d'equilibre des oxydes d'yttrium, de baryum et de cuivre, - la difficulte de reoxygener a coeur la ceramique, - la faiblesse voire l'absence de texturation, - la presence de phase amorphe non supraconductrice traversant les grains ou bloquant la migration de leurs joints. En jouant sur le

  4. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-01-01

    This work has demonstrated the statistical concepts behind the XBAR R method for determining sample limits to verify billet I c performance and process uniformity. Using a preliminary population estimate for μ and σ from a stable production lot of only 5 billets, we have shown that reasonable sensitivity to systematic process drift and random within billet variation may be achieved, by using per billet subgroup sizes of moderate proportions. The effects of subgroup size (n) and sampling risk (α and β) on the calculated control limits have been shown to be important factors that need to be carefully considered when selecting an actual number of measurements to be used per billet, for each supplier process. Given the present method of testing in which individual wire samples are ramped to I c only once, with measurement uncertainty due to repeatability and reproducibility (typically > 1.4%), large subgroups (i.e. >30 per billet) appear to be unnecessary, except as an inspection tool to confirm wire process history for each spool. The introduction of the XBAR R method or a similar Statistical Quality Control procedure is recommend for use in the superconducing wire production program, particularly when the program transitions from requiring tests for all pieces of wire to sampling each production unit

  5. Effect of the wire width and magnetic field on the detection efficiency of superconducting nanowire single-photon detectors; Einfluss von Geometrie und magnetischem Feld auf die Effizienz supraleitender Nanodraht-Einzelphotonendetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert

    2015-06-24

    The aim of this thesis is to a gain deeper understanding of the single photon detection process in superconducting nanowire single-photon detectors (SNSPDs). A detailed knowledge of the physical principles and mechanisms which the detection process is based on helps to improve specific detector parameters and hence the suitability of such detectors for various applications. Several theoretical models of the detection process have been compared to the results of measurements of photon and dark count rates in meander-type TaN- and NbN-SNSPDs with different wire-widths in a broad range of wavelengths, transport currents and magnetic fields. In the first part of the thesis, measurements of the photon and dark count rates of TaN- and NbN-SNSPDs with varying wire width are described. For each meander spectra of the intrinsic detection efficiency (IDE) were derived. The IDE represents the probability that the SNSPD generates a measurable voltage pulse upon absorption of a photon. The recorded IDE spectra have shown a characteristic cut-off wavelength up to which photons were detected with a probability of 100 per cent. Furthermore it was found that the cut-off wavelengths increases linearly with the increase in the inverse wire width. This observation is best explained by the refined hot spot model. The second part of the thesis describes the influence of magnetic field on the photon and dark count rates of NbN-SNSPDs. In order to apply magnetic fields to the meanders a continuous-flow inset for mobile 4He storage dewars was constructed. It was shown for the first time, that the photon count rate exhibits a magnetic field dependence. Furthermore it could be shown that the measured dependence of the photon and dark count rate on the magnetic field is in good agreement with the theoretical model of vortex-assisted photon detection in narrow superconducting lines. Hence, within this thesis it could be confirmed that magnetic vortices are involved in the single photon

  6. Why is magnesium diboride's superconducting temperature increased by the hydrogenation process?

    International Nuclear Information System (INIS)

    Flaumbaum, V.V.; Russell, G.J.; Stewart, G.A.

    2002-01-01

    Full text: This work demonstrates that the superconducting transition temperature for MgB 2 can be increased significantly by the hydrogenation process. A preliminary electronic report has already been placed on the archival web site http://au.arXiv.org/with reference number cond-mat/0112301. Given that there appears not to be a large enough interstitial site to accommodate the hydrogen, it is not yet clear what mechanism is involved. The justification for attempting hydrogenation was that metallic Pd becomes a superconductor when it is hydrogenated. We exposed MgB 2 powder to pure hydrogen gas in a stainless steel chamber and heated it. Before removing the specimen, the chamber was cooled in liquid N 2 and opened to air. This was an attempt to 'poison' the specimen's surface. The T c , determined using ac susceptibility, was found to increased for all hydrogenated specimens. The largest increase achieved so far is AT C ∼1.25 K for a specimen hydrogenated under 10 atm H 2 at 600 deg C for 2 hours (H/MgB 2 ∼ 0.03). However, the optimum conditions are yet to be determined. A further complication is that a similar effect (albeit smaller) is obtained by subjecting the MgB 2 to the same process but with helium or argon gas instead of hydrogen

  7. Effect of Sintering Time on Superconducting Wire Bi-Pb-Sr-Ca-Cu-O With Dopant MgO Sheated Ag Using Powder in Tube Method

    Directory of Open Access Journals (Sweden)

    Hariyati Lubis

    2018-01-01

      DAFTAR PUSTAKA Abbas M.M., Abass L.K and Salman U., (2012, Influences of Sintering Time on the Tc of Bi2-xCuxPb0.3Sr2Ca2Cu3010+ High Temperature Superconductors, Energy Procedia 18, 215-224  Abbas, M.M., Abbas, L.K., Bahedh, H.S. 2015. Superconducting Properties of Bi2-SbxPb0,3Sr1,9Ba0,1Ca2Cu3O10+δ Compounds. Journal of Applied Science Research. 11. 22: 164-172 Darsono, N., Imaduddin, A., Raju, K., Yoon, D.H., (2015, Synthesis and Characterization of Bi1.6Pb0.4Sr2Ca2Cu3O7 Superconducting Oxide by High-Energy Milling, J Supercond Nov Magn. E. Chew,. (2010, Superconducting Transformer Design And Construction, University of Canterbury, Christchurch, New Zealand. March Hamadneh, I., Halim, S. A., dan Lee, C. K., (2006,  Characterization of Bi1.6Pb0.4Sr2Ca2Cu3Oy Ceramic Superconductor Prepared Via Coprecipitation Method at Different Sintering Time, J. Mater. Sci, 41: 5526-5530. Hermiz G.Y., Aljurani B.A., Beayaty M.A., (2014, Effect of Mn Substitution on the Superconducting Properties of Bi1.7Pb0,3Sr2Ca2-xMnxCu3O10+, International Journal Of Engineering and Advanced Technology (IJEAT. 3. 4: 213-217 John R Hull, (2003, Applications of high-temperature superconductors in power technology, Reports on Progress in Physics, Volume 66, Number 11 Lu, X.Y., Yi, D., Chen, H., Nagata, A. 2016. Effect of Sn, MgO and Ag2O mix-doping on the formation and superconducting properties of Bi-2223 Ag/tapes. Physics Procedia. 81: 129-132 Meretliev Sh., Sadykov K.B., Berkeliev A., (2000, Doping of High Temperature Superconductors, Turk J Phy.24: 39-48 Mohammed, N. H., Ramadhan A., Ali I. A., Ibrahim, I. H., dan Hassan, M. S, (2012, Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO2, Materials Sciences and Applications, 3: 224-233. Roumie, M., Marhaba, S., Awad R., Kork M., Hassan I., Mawassi R., (2014, Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb-2223 Phase, Journal of Supercond Nov Magn, 27: 143-153 Serkan

  8. Void and Phase Evolution during the Processing of Bi-2212 Superconducting Wires monitored by combined fast Synchrotron Micro-tomography and X-Ray Diffraction

    CERN Document Server

    Scheuerlein, C; Scheel, M; Jiang, J; Kametani, F; Malagoli, A; Hellstrom, E E; Larbalestier, D C

    2011-01-01

    Recent study of the current-limiting mechanisms in Bi-2212 round wires has suggested that agglomeration of the residual Bi-2212 powder porosity into bubbles of filament-diameter size occurs on melting the Bi-2212 filaments. These pores introduce a major obstacle to current flow, which greatly reduces the critical current density (Jc). Here we present an in situ non-destructive tomographic and diffraction study of the changes occurring during the heat treatment of wires and starting powder, as well as a room temperature study of ex situ processed wires. The in situ through-process study shows that the agglomeration of residual porosity is more complex than previously seen. Filament changes start with coalescence of the quasi-uniform and finely divided powder porosity into lens-shaped defects at about 850 0C when the Bi-2201 impurity phase decomposes before the Bi-2212 starts to melt. These lens-shaped voids grow to bubbles of a filament diameter on melting of the Bi-2212 and continue to lengthen and then to ag...

  9. Study of the potential of three different MgB2 tapes for application in cylindrical coils operating at 20 K

    International Nuclear Information System (INIS)

    Pitel, J; Kováč, P; Tropeano, M; Grasso, G

    2015-01-01

    The goal of this theoretical study is to illustrate the potential of three different MgB 2 tapes, developed by Columbus Superconductors, for application in cylindrical coils. First, the distribution of critical currents and electric fields of individual turns is compared when the winding of the model coil is made with tapes having different I c (B) and anisotropy values. Second, the influence of the winding geometry on basic parameters of cylindrical coils which consist of a set of pancake coils, such as critical current I cmin , central magnetic field B 0 and stored energy E, is analysed. The winding geometry of the coils, i.e. the outer winding radius and the coil length, with the same inner winding radius, was changed from a disc shape to a long thin solenoid in such a way that the overall tape length was held constant, and considered as a parameter. Finally, the winding cross-section of the coil is optimized with respect to the constant tape length in order to reach the maximum central field. The results of calculations show that for a given overall tape length and inner winding radius there exists only one winding geometry which generates the maximum central field. The overall tape length, as a parameter, is changed in a broad range from 500 m to 10 km. All calculations were performed using the experimental data measured at 20 K while the effect of the anisotropy in the I c (B) characteristic of the short samples is taken into account. (paper)

  10. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  11. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  12. Near-field microwave magnetic nanoscopy of superconducting radio frequency cavity materials

    Science.gov (United States)

    Tai, Tamin; Ghamsari, Behnood G.; Bieler, Thomas R.; Tan, Teng; Xi, X. X.; Anlage, Steven M.

    2014-06-01

    A localized measurement of the RF critical field on superconducting radio frequency (SRF) cavity materials is a key step to identify specific defects that produce quenches of SRF cavities. Two measurements are performed to demonstrate these capabilities with a near-field scanning probe microwave microscope. The first is a third harmonic nonlinear measurement on a high Residual-Resistance-Ratio bulk Nb sample showing strong localized nonlinear response, with surface RF magnetic field Bsurface˜102 mT. The second is a raster scanned harmonic response image on a MgB2 thin film demonstrating a uniform nonlinear response over large areas.

  13. Superconducting properties of Zn and Al double-doped Mg1-x(Zn0.5Al0.5)xB2

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2004-01-01

    (XRD), ac susceptibility, magnetization and resistivity. The double doping leads to decreases in both the lattice parameters a and c, and the T-c decreases with increasing dopant content. A systematical comparison with Al doped- and Li, Al double doped MgB2 of structure, superconducting transition......A series of polycrystalline samples of Mg1-x(Zn0.5Al0.5)(x)B-2 (0less than or equal toxless than or equal to0.8) were prepared by solid state reaction method and their structure, superconducting transition temperature (T-c) and transport properties were investigated by means of X-ray diffraction...

  14. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    Science.gov (United States)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  15. Composite Cu/Fe/MgB{sub 2} superconducting wires and MgB{sub 2}/YSZ/Hastelloy coated conductors for ac and dc applications

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge (United Kingdom); Majoros, M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge (United Kingdom); Vickers, M [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge (United Kingdom); Eisterer, M [Atomic Institute of the Austrian Universities, A-1020 Vienna (Austria); Toenies, S [Atomic Institute of the Austrian Universities, A-1020 Vienna (Austria); Weber, H W [Atomic Institute of the Austrian Universities, A-1020 Vienna (Austria); Fukutomi, M [National Institute for Materials Science, Superconducting Materials Center, 1-2-1, Sengen, Ibaraki (Japan); Komori, K [National Institute for Materials Science, Superconducting Materials Center, 1-2-1, Sengen, Ibaraki (Japan); Togano, K [National Institute for Materials Science, Superconducting Materials Center, 1-2-1, Sengen, Ibaraki (Japan)

    2003-02-01

    We discuss the results of a study of MgB{sub 2} multifilamentary conductors and coated conductors from the point of view of their future dc and ac applications. The correlation between the slope of the irreversibility line induced by neutron irradiation defects and in situ structural imperfections and the critical temperature and critical current density is discussed with respect to the conductor performance and applicability. We debate the possible origin of the observed anomalous decrease of ac susceptibility at 50 K in copper clad in situ powder-in-tube MgB{sub 2} wires. Different conductor preparation methods and conductor architectures, and attainable critical current densities are presented. Some numerical results on critical currents, thermal stability and ac losses of future MgB{sub 2} multifilamentary and coated conductors with magnetic cladding of their filaments are also discussed.

  16. Critical current density and flux pinning in superconducting wires and coils of silver-clad Bi-Pb-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Dou, S.X.; Liu, H.K.; Apperley, M.H.; Song, K.H.; Sorrell, C.C.; Guo, S.J.; Loberg, B.; Easterling, K.E.

    1991-01-01

    The critical current density (J c ) of Ag-clad of Bi-Pb-Sr-Ca-Cu-O has been measured to be about 12,000 A/cm 2 at 77 K in zero field. This wire was rolled into a tape of thickness 0.1 mm and width of 2 to 3 mm, and a coil of 35 mm diameter was formed. The J c of this coil was measured to be about 2,000 A/cm 2 at 77 K over the full length (1.00 meter) of the coil. In this paper compositions, heat treatment parameters, and cold-deformation for enhancement of J c are presented. The microstructure is characterized and pinning interactions as well as possible weak links are emphasised. (orig.)

  17. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  20. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.