WorldWideScience

Sample records for mg-incorporated oxidized implants

  1. The effects of Mg incorporation and annealing temperature on the ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 88; Issue 2. The effects of Mg incorporation and annealing temperature on the physicochemical properties and antibacterial activity against {\\it Listeria monocytogenes} of ZnO nanoparticles. NIMA SHADAN ALI ABDOLAHZADEH ZIABARI RAFIEH MERAAT KAMYAR ...

  2. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  3. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2018-02-01

    Full Text Available Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp, and Stearoyl-Coenzyme A desaturase 1 (Scd1 were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1 relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage

  4. The influence of ion implantation on the oxidation of nickel

    International Nuclear Information System (INIS)

    Goode, P.D.

    1975-11-01

    The effects of ion implantation on the oxidation of polycrystalline nickel have been studied for a range of implanted species: viz. He, Li, Ne, Ca, Ti, Ni, Co, Xe, Ce and Bi. The oxides were grown in dry oxygen at 630 0 C and the 16 O(d,p) 17 O nuclear reaction technique used to determine the amount of oxygen taken up. The influence of atomic and ionic size, valency and electronegativity of the implanted impurities was studied as also were the effects of ion bombardment damage and the influence of sputtering during implantation. Atomic size and the annealing of disorder were found to have a marked influence on oxide growth rate. The dependence of oxidation on annealing was further studied by implanting polycrystalline specimens with self ions and observing the oxide growth rate as a function of annealing temperature. A peak in the curve was found at 400 0 C and a similar peak observed at a somewhat higher temperature for oxidised single crystals. It is concluded that the oxidation rate will be influenced by those factors which alter the epitaxial relationship between metal and growing oxide. Such factors include atomic size of the implanted species, surface strain induced by implantation and changes in surface topography as a result of sputtering. In addition a model based on vacancy assisted cation migration is proposed to explain enhanced oxidation observed over a limited temperature range. (author)

  5. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  6. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  7. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    Science.gov (United States)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  8. The oxidation behaviour of lanthanum implanted stainless steels

    International Nuclear Information System (INIS)

    Ager, F.J.; Respaldiza, M.A.; Luna, C.; Botella, J.; Soares, C.G.; da Silva, M.F.

    1997-01-01

    Rare earth oxide deposition onto stainless steel surfaces has been attempted as a way of improving corrosion resistance at elevated temperatures. The improvement in the corrosion behaviour has been related to the modification of the diffusion mechanisms through the chromia protective layer. In a previous work we have postulated the formation of a LaCrO 3 as responsible for such a behaviour. Among the alternatives to deposit reactive elements, ion implantation has been chosen as a way of obtaining surface and/or subsurface alloys with the desired composition. During ion implantation, a modification of the alloy structure may also occur, resulting in a way of testing the influence of the alloy structure on the oxidation behaviour. In the present work we propose two procedures for obtaining the refractory behaviour implantation in the bulk alloy and in controlled preoxidized layers. Ion fluency has been chosen in such a way that final rare earth element concentration falls within the limits experimentally observed as adequate using wet chemistry methods. Excellent parabolic oxidation is observed in every case showing the efficiency of the implantation method both in the implanted bulk alloy as well as in the preoxidized specimens. The differences in the oxidation kinetics are related to the surface composition and to the structure of the implanted materials. (author)

  9. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  10. High-temperature oxidation of ion-implanted tantalum

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Musket, R.G.; Truhan, J.J.; Grabowski, K.S.; Singer, I.L.; Gossett, C.R.

    1982-01-01

    The oxidation of ion-implanted Ta in two different high temperature regimes has been studied. Oxidations were carried out at 500 0 C in Ar/O 2 mixtures, where oxide growth is known to follow a parabolic rate law in initial stages, and at 1000 0 C in pure O 2 , where a linear-rate behavior obtains. Implanted species include Al, Ce, Cr, Li, Si and Zr at fluences of the order of 10 17 /cm 2 . Oxidized samples were studied using Rutherford backscattering, nuclear reaction analysis, Auger spectroscopy, secondary-ion mass spectroscopy, x-ray diffraction and optical microscopy. Significant differences among the specimens were noted after the milder 500 0 C treatment, specifically, in the amount of oxide formed, the degree of oxygen dissolution in the metal beneath the oxide, and in the redistribution behavior of the implanted solutes. Under the severe 1000 0 C treatment, indications of different solute distributions and of different optical features were found, whereas overall oxidation rate appeared to be unaffected by the presence of the solute. 7 figures

  11. Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg

    Science.gov (United States)

    Marini, Jonathan; Mahaboob, Isra; Hogan, Kasey; Novak, Steve; Bell, L. D.; Shahedipour-Sandvik, F.

    2017-10-01

    We report on the effect of growth polarity and pulsed or δ -doped growth mode on impurity incorporation in metalorganic chemical vapor deposition-grown GaN. In Ga-polar orientation, up to 12× enhancement in Mg concentration for given Mg flow rate is observed, resulting in enhanced p-type conductivity for these samples. In contrast, this enhancement effect is greatly diminished for N-polar samples, falling off with increasing Mg flow and showing maximum enhancement of 2.7× at 30 nmol/min Mg flow. At higher Mg flow rates, Mg incorporation at normal levels did not correspond to p-type conductivity, which may be due to Mg incorporation at nonacceptor sites. Concentrations of C, O, and Si were also investigated, revealing dependence on Mg flow in N-polar pulsed samples. Carbon incorporation was found to decrease with increasing Mg flow, and oxygen incorporation was found to remain high across varied Mg flow. These effects combine to result in N-polar samples that are not p-type when using the pulsed growth mode.

  12. Oxidized zirconium: a potentially longer lasting hip implant

    International Nuclear Information System (INIS)

    Good, V.; Widding, K.; Hunter, G.; Heuer, D.

    2005-01-01

    Because younger, more active patients are receiving total hip replacements, it is necessary to develop materials, which would increase the life span of the implants and challenge their wear potential under adverse conditions. Oxidized zirconium (OxZr) is a metal with the surface transformed to ceramic by oxidation that offers low fracture risk and excellent abrasion resistance. This study compared wear of polyethylene (non-irradiated and highly crosslinked) with OxZr and CoCr heads under smooth and rough (clinically relevant) conditions. Wear was up to 15-fold less and up to 4-fold fewer particles were produced when coupled with OxZr than with CoCr, demonstrating that OxZr heads should increase clinical implant longevity

  13. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    OpenAIRE

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are created by ion implantation followed by thermal annealing. The ceramic oxides MgO and Al2O3 are used as embedding materials because of their stability and optical transparency. All clusters were cre...

  14. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  15. New Environmentalconditions Responsible for the amount of mg Incorporated in Biogenic Carbonates

    Science.gov (United States)

    Zuddas, P.; Cherchi, A.; DeGiudici, G. B.; Buosi, C.

    2012-12-01

    The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. Several kinetic laboratory investigations have suggested that the temperature is kinetically responsible for the amount of Mg incorporated in both abiotic and biogenic calcites and that variation of kinetic reaction mechanism resulting from the temperature changes are correlated with the variable amount of Mg incorporated in calcites. These results explain why in present-day marine carbonates low-Mg calcite cements are mainly associated with cool water while high-Mg carbonates are dominantly found in warm-water environments. An apparent inverse relationship between the global average paleo-temperature and the Mg/Ca ratio is however observed in the past formed marine carbonate. This apparent contradiction has been interpreted as resulting from a possible changing in the relative seawater geochemical cycles of these cations. Recent monitoring of costal areas in presence of heavy metals and CO2 released from industrial polluted area reveals the presence of porcelanaceous miliolids infested by microscopic boring microflora (cyanobacteria, algae and fungi). Here, benthonic foraminifera have Mg/Ca molar ratio by one order of magnitude higher when compared to the average value of the same genus living under uncontaminated environments. A similar behaviour has been found for Zn, Cd and Pb. In these contaminated environments, temperature and average major seawater composition remain constant, while PCO2 partial pressure (estimated by pH and alkalinity using the ion pairing model) is 3-5 times higher than the average for the open sea nearby. Geochemical models predicts that CO2 increase is affecting carbonate saturation state of surface water in the twenty-first century indicating that calcareous organisms may have difficulty calcifying leading to production of weaker skeletons and greater vulnerability to erosion. The

  16. Influence of implantation energy on the electrical properties of ultrathin gate oxides grown on nitrogen implanted Si substrates

    International Nuclear Information System (INIS)

    Kapetanakis, E.; Skarlatos, D.; Tsamis, C.; Normand, P.; Tsoukalas, D.

    2003-01-01

    Metal-oxide-semiconductor tunnel diodes with gate oxides, in the range of 2.5-3.5 nm, grown either on 25 or 3 keV nitrogen-implanted Si substrates at (0.3 or 1) x10 15 cm -2 dose, respectively, are investigated. The dependence of N 2 + ion implant energy on the electrical quality of the growing oxide layers is studied through capacitance, equivalent parallel conductance, and gate current measurements. Superior electrical characteristics in terms of interface state trap density, leakage current, and breakdown fields are found for oxides obtained through 3 keV nitrogen implants. These findings together with the full absence of any extended defect in the silicon substrate make the low-energy nitrogen implantation technique an attractive option for reproducible low-cost growth of nanometer-thick gate oxides

  17. Comparison of oxidation resistance of copper treated by beam-line ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    An Quanzhang; Li Liuhe; Hu Tao; Xin Yunchang; Fu, Ricky K.Y.; Kwok, D.T.K.; Cai Xun; Chu, Paul K.

    2009-01-01

    Copper which has many favorable properties such as low cost, high thermal and electrical conductivity, as well as easy fabrication and joining is one of the main materials in lead frames, interconnects, and foils in flexible circuits. Furthermore, copper is one of the best antibacterial materials. However, unlike aluminum oxide or chromium oxide, the surface copper oxide layer does not render sufficient protection against oxidation. In this work, in order to improve the surface oxidation resistance of Cu, Al and N were introduced into copper by plasma immersion ion implantation (PIII) and beam-line ion implantation (BII). The implantation fluences of Al and N were 2 x 10 17 ions cm -2 and 5 x 10 16 ions cm -2 , respectively. The implanted and untreated copper samples were oxidized in air at 260 deg. C for 1 h. The X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as X-ray photoelectron spectroscopy (XPS) results indicate that both implantation methods can enhance the oxidation resistance of copper but to different extent. PIII is superior to BII in enhancing the oxidation resistance of copper. The effects and possible mechanisms are discussed.

  18. Improved oxidation resistance of group VB refractory metals by Al+ ion implantation

    International Nuclear Information System (INIS)

    Hampikian, J.M.

    1996-01-01

    Aluminum ion implantation of vanadium, niobium, and tantalum improved the metals' oxidation resistances at 500 C and 735 C. Implanted vanadium oxidized only to one-third the extent of unimplanted vanadium when exposed at 500 C to air. The oxidative weight gains of implanted niobium and tantalum proved negligible when measured at 500 C and for times sufficient to fully convert the untreated metals to their pentoxides. At 735 C, implantation of vanadium only slightly retarded its oxidation, while oxidative weight gains of niobium and tantalum were reduced by factors of 3 or more. Implanted niobium exhibited weight gain in direct proportion to oxidation time squared at 735 C. Microstructural examination of the metals implanted with selected fluences of the 180 kV aluminum ions showed the following. The solubility limit of aluminum is extended by implantation, the body centered cubic (bcc) phases being retained to ∼60 at. pct Al in all three metals. The highest fluence investigated, 2.4 x 10 22 ions/m 2 , produced an ∼400-nm layer of VAl 3 beneath the surface of vanadium, and ∼300-nm layers of an amorphous phase containing ∼70 at. pct Al beneath the niobium and tantalum surfaces. All three metals, implanted to this fluence and annealed at 600 C, contained tri-aluminides, intermetallic compounds known for their oxidation resistances. Specimens implanted to this fluence were thus selected for the oxidation measurements

  19. Effects of Cl+ and F+ implantation of oxidation-induced stacking faults in silicon

    NARCIS (Netherlands)

    Xu, J.Y.; Bronsveld, P.M.; Boom, G.; Hosson, J.Th.M. De

    1984-01-01

    Three implantation effects were investigated in floating-zone-grown silicon: (a) the effect of Cl+ implantation resulting in the shrinkage of oxidation-induced stacking faults; (b) the effect of F+ implantation giving rise to defaulting of the 1/3 [111] Frank dislocations into 1/2[110] perfect

  20. The alteration of oxidation and related properties of metals by ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1981-01-01

    A review is given of the various ways in which ion implanted additives can affect the thermal oxidation of metals, for example by blocking diffusion paths for ions, by catalytic effects or by altering the plasticity of the oxide. The versatility of the process has already proved useful in the study of oxidation mechanisms. Ways of achieving a long-lasting protection are discussed in relation to the dominant mechanisms of oxidation inhibition. In many practical applications at elevated temperatures oxidation and mechanical stresses co-exist. In steels the process of oxidative wear is important under conditions of poor lubrication and implanted metallic ions have been shown to be effective. In titanium alloys fatigue cracks probably initiate at dislocation sites at which oxidation proceeds most rapidly, and hence the same implanted species can improve both types of behaviour. Successful implantation treatments for fretting fatigue in titanium and a corrosion-erosion problem in steel are described. (orig.)

  1. Early stages of oxidation of ion-implanted nickel at high temperature

    International Nuclear Information System (INIS)

    Peide, Z.; Grant, W.A.; Procter, R.P.M.

    1981-01-01

    The early stages of oxidation of nickel implanted with nickel, chromium, or lithium ions in oxygen at 1100 0 C have been studied using various electron-optical techniques. The unimplanted metal develops initially a fine-grained, convoluted scale having a ridged, cellular structure. Subsequently, the oxide grains increase in size significantly and oxidation becomes predominantly controlled by diffusion of Ni /sup 2+/ ions across a compact, columnar scale. Implantation of the surface with nickel ions has no significant effect on the initial oxidation behavior. However, after implantation with chromium or lithium ions, the development of the NiO scale is, in the early stages of oxidation, suppressed by formation of NiCr 2 O 4 or LiO 2 nodules, respectively. Subsequently, the implanted species are incorporated into the steady-state NiO scale where they dope the oxide and thus influence the diffusion rate of Ni /sup 2+/ ions through it. As would be predicted, the steady-state oxidation rate of chromium-implanted nickel is increased while that of lithium- implanted nickel is decreased compared with that of the unimplanted metal

  2. The characteristics of surface oxidation and corrosion resistance of nitrogen implanted zircaloy-4

    International Nuclear Information System (INIS)

    Tang, G.; Choi, B.H.; Kim, W.; Jung, K.S.; Kwon, H.S.; Lee, S.J.; Lee, J.H.; Song, T.Y.; Shon, D.H.; Han, J.G.

    1997-01-01

    This work is concerned with the development and application of ion implantation techniques for improving the corrosion resistance of zircaloy-4. The corrosion resistance in nitrogen implanted zircaloy-4 under a 120 keV nitrogen ion beam at an ion dose of 3 x 10 17 cm -2 depends on the implantation temperature. The characteristics of surface oxidation and corrosion resistance were analyzed with the change of implantation temperature. It is shown that as implantation temperature rises from 100 to 724 C, the colour of specimen surface changes from its original colour to light yellow at 100 C, golden at 175 C, pink at 300 C, blue at 440 C and dark blue at 550 C. As the implantation temperature goes above 640 C, the colour of surface changes to light black, and the surface becomes a little rough. The corrosion resistance of zircaloy-4 implanted with nitrogen is sensitive to the implantation temperature. The pitting potential of specimens increases from 176 to 900 mV (SCE) as the implantation temperature increases from 100 to 300 C, and decreases from 900 to 90 mV(SCE) as the implantation temperature increases from 300 to 640 C. The microstructure, the distribution of oxygen, nitrogen and carbon elements, the oxide grain size and the feature of the precipitation in the implanted surface were investigated by optical microscope, TEM, EDS, XRD and AES. The experimental results reveal that the ZrO 2 is distributed mainly on the outer surface. The ZrN is distributed under the ZrO 2 layer. The characteristics of the distribution of ZrO 2 and ZrN in the nitrogen-implanted zircaloy-4 is influenced by the implantation temperature of the sample, and in turn the corrosion resistance is influenced. (orig.)

  3. Yttrium implantation and addition element effects on the oxidation behaviour of reference steels at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H.; Cueff, R.; Issartel, C.; El Messki, S.; Perrier, S.; Riffard, F. [Lab. Vellave d' Elaboration et d' Etude des Materiaux, Univ. Blaise Pascal Clermont-Fd 2, Le Puy en Velay (France)

    2004-07-01

    Yttrium implantation effects on reference steels (extra low carbon and low manganese steel) were studied by rutherford backscattering spectrometry (RBS), reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD) and glancing angle X-ray diffraction (GAXRD). Thermogravimetry and in situ X-ray diffraction at 700 C and P{sub O2}=0.04 Pa for 24h were used to determine the yttrium implantation and addition element effects on sample oxidation resistance at high temperatures. This study clearly shows that yttrium implantation and subsequent high temperature oxidation induced the formation of several yttrium mixed oxides which closely depend on the reference steel addition elements. Moreover, these yttrium mixed oxides seem to be responsible for the improved reference steel oxidation resistance at high temperatures. (orig.)

  4. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    International Nuclear Information System (INIS)

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  5. Interaction of implanted deuterium and helium with beryllium: radiation enhanced oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1979-01-01

    The interaction of implanted deuterium and helium with beryllium is of significant interest in the application of first wall coatings and other components of fusion reactors. Electropolished polycrystalline beryllium was first implanted with an Xe backscatter marker at 1.98 MeV followed by either implantation with 5 keV diatomic deuterium or helium. A 2.0 MeV He beam was used to analyze for impurity buildup; namely oxygen. The oxide layer thickness was found to increase linearly with increasing implant fluence. A 2.5 MeV H/sup +/ beam was used to depth profile the D and He by ion backscattering. In addition the retention of the implant was measured as a function of the implant fluence. The mean depth of the implant was found to agree with theoretical range calculations. Scanning electron microscopy was used to observe blister formation. No blisters were observed for implanted D but for implanted He blisters occurred at approx. 1.75 x 10/sup 17/ He cm/sup -2/. The blister diameter increased with increasing implant fluence from about 0.8 ..mu..m at 10/sup 18/ He cm/sup -2/ to 5.5 ..mu..m at 3 x 10/sup 18/ He cm/sup -2/.

  6. Interaction of implanted deuterium and helium with beryllium: radiation enhanced oxidation

    International Nuclear Information System (INIS)

    Langley, R.A.

    1979-01-01

    The interaction of implanted deuterium and helium with beryllium is of significant interest in the application of first wall coatings and other components of fusion reactors. Electropolished polycrystalline beryllium was first implanted with an Xe backscatter marker at 1.98 MeV followed by either implantation with 5 keV diatomic deuterium or helium. A 2.0 MeV He beam was used to analyze for impurity buildup; namely oxygen. The oxide layer thickness was found to increase linearly with increasing implant fluence. A 2.5 MeV H + beam was used to depth profile the D and He by ion backscattering. In addition the retention of the implant was measured as a function of the implant fluence. The mean depth of the implant was found to agree with theoretical range calculations. Scanning electron microscopy was used to observe blister formation. No blisters were observed for implanted D but for implanted He blisters occurred at approx. 1.75 x 10 17 He cm -2 . The blister diameter increased with increasing implant fluence from about 0.8 μm at 10 18 He cm -2 to 5.5 μm at 3 x 10 18 He cm -2

  7. The influence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Riffard, F. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France)]. E-mail: riffard@iut.u-clermont1.fr; Buscail, H. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Caudron, E. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Cueff, R. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Issartel, C. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Perrier, S. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France)

    2006-03-15

    High-temperature alloys are frequently used in power plants, gasification systems, petrochemical industry, combustion processes and in aerospace applications. Depending on the application, materials are subjected to corrosive atmospheres and thermal cycling. In the present work, thermal cycling was carried out in order to study the influence of implanted yttrium on the oxide scale adherence on 304 steel specimens oxidised in air at 1273 K. In situ X-ray diffraction indicates that the oxides formed at 1273 K are different on blank specimens compared to implanted specimens. Glancing angle XRD allows to analyse the oxide scale composition after cooling to room temperature. Experimental results show that yttrium implantation at a nominal dose of 10{sup 17} ions cm{sup -2} does not improve significantly the cyclic oxidation behaviour of the austenitic AISI 304 steel. However, it appears that yttrium implantation remarkably enhance the oxidation resistance during isothermal oxidation. It reduces the transient oxidation stage and the parabolic oxidation rate constant by one order of magnitude.

  8. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    Science.gov (United States)

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  9. Study of ionic movements during anodic oxidation of nitrogen-implanted aluminium

    International Nuclear Information System (INIS)

    Terwagne, G.; Lucas, S.; Bodart, F.; Sorensen, G.; Jensen, H.

    1990-01-01

    In recent years there has been a considerable interest in synthesizing aluminium nitrides by ion implantation in order to modify the tribological properties of aluminium. The growth of an oxide layer by anodic process on these synthesized aluminium nitrides gives an interesting oxide-on-semiconductor material with surprising dynamic and decorative properties. During the anodic oxidation, ionic movements are involved in the near-surface region of the aluminium material; these ionic movements have been studied by Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) on thin aluminium foils (7000 A) preimplanted with nitrogen and post-oxidized in an ammonium pentaborate solution. The growth of the oxide layer is reduced when the aluminium is preimplanted with nitrogen: the speed of oxidation depends on the implantation conditions (energy and fluence). Moreover, the aluminium nitride can be dissolved when all metallic aluminium staying between the surface and the AlN are consumed by the anodic process. (orig.)

  10. Gas sensing of ruthenium implanted tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tesfamichael, T., E-mail: t.tesfamichael@qut.edu.au [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Ahsan, M. [William A. Cook Australia, 95 Brandl Street Eight Mile Plains, Brisbane, QLD 4113 (Australia); Notarianni, M. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Groß, A.; Hagen, G.; Moos, R. [University of Bayreuth, Faculty of Engineering Science, Department of Functional Materials, Universitätsstr. 30, 95440 Bayreuth (Germany); Ionescu, M. [ANSTO, Institute for Environmental Research, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bell, J. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia)

    2014-05-02

    Different amounts of Ru were implanted into thermally evaporated WO{sub 3} thin films by ion implantation. The films were subsequently annealed at 600 °C for 2 h in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at.%. The un-implanted WO{sub 3} films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman Spectroscopy two peaks at 408 and 451 cm{sup −1} (in addition to the typical vibrational peaks of the monoclinic WO{sub 3} phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d{sub 5/2} at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO{sub 2} and NO with higher sensor response to NO{sub 2}. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO{sub 3} films with sufficient film porosity and film thickness can be beneficial for NO{sub 2} sensing at temperatures in the range of 250 °C to 350 °C. - Highlights: • Densification of WO{sub 3} thin films has occurred after Ru ion implantation. • Thickness and porosity of the films decrease with increasing Ru ion dose. • The amount of oxygen vacancies and defects increases with increasing Ru ion dose. • Ru has shown a crucial role in enhancing sensor response

  11. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  12. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    Science.gov (United States)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  13. Polydopamine deposition with anodic oxidation for better connective tissue attachment to transmucosal implants.

    Science.gov (United States)

    Teng, F; Chen, H; Xu, Y; Liu, Y; Ou, G

    2018-04-01

    Nowadays, most designs for the transmucosal surface of implants are machined-smooth. However, connective tissue adhered to the smooth surface of an implant has poor mechanical resistance, which can render separation of tissue from the implant interface and induce epithelial downgrowth. Modification of the transmucosal surface of implants, which can help form a good seal of connective tissue, is therefore desired. We hypothesized that anodic oxidation (AO) and polydopamine (PD) deposition could be used to enhance the attachment between an implant and peri-implant connective tissue. We tested this hypothesis in the mandibles of Beagle dogs. AO and PD were used to modify the transmucosal region of transmucosal implants (implant neck). The surface microstructure, surface roughness and elemental composition were investigated in vitro. L929 mouse fibroblasts were cultured to test the effect of PD on cell adhesion. Six Beagle dogs were used for the in vivo experiment (n = 6 dogs per group). Three months after building the edentulous animal model, four groups of implants (control, AO, PD and AO + PD) were inserted. After 4 months of healing, samples were harvested for histometric analyses. The surfaces of anodized implant necks were overlaid with densely distributed pores, 2-7 μm in size. On the PD-modified surfaces, N1s, the chemical bond of nitrogen in PD, was detected using X-ray photoelectron spectroscopy. L929 developed pseudopods more quickly on the PD-modified surfaces than on the surfaces of the control group. The in vivo experiment showed a longer connective tissue seal and a more coronally located peri-implant soft-tissue attachment in the AO + PD group than in the control group (P connective tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. First-principles study of Mg incorporation at wurtzite InN (0 0 0 1) and (0001-bar) surfaces

    International Nuclear Information System (INIS)

    Ding, S.F.; Qu, X.P.; Fan, G.H.

    2009-01-01

    In this article we investigate the energetics of Mg adsorption and incorporation at the InN(0 0 0 1) and InN(0001-bar) surfaces by the method of total energy plane-wave expansions with ultra-soft pseudo potential technology based on the density functional theory (DFT) in the generalized approximation (GGA). It is found that for a 1/4 monolayer (ML) coverage of the InN(0 0 0 1) surface, Mg atoms preferentially adsorb at the bridge sites and T4 sites, but they are unstable when compared with Mg incorporated in the first three layers. For a 1/4 ML coverage of the InN(0001-bar) surface, Mg atoms preferentially adsorb at the H3 sites with the formation energy of -3.49 (eV/(2x2) supercell), which is lower than that of the T4 sites, and the formation energy increases with increasing magnesium coverage. Further study shows that the formation energy for Mg atom is lower than that of In atom, which indicates that magnesium adsorption is more favorable in these conditions.

  15. The air oxidation behavior of lanthanum ion implanted zirconium at 500 deg. C

    CERN Document Server

    Peng, D Q; Chen, X W; Zhou, Q G

    2003-01-01

    The beneficial effect of lanthanum ion implantation on the oxidation behavior of zirconium at 500 deg. C has been studied. Zirconium specimens were implanted by lanthanum ions using a MEVVA source at energy of 40 keV with a fluence range from 1x10 sup 1 sup 6 to 1x10 sup 1 sup 7 ions/cm sup 2 at maximum temperature of 130 deg. C, The weight gain curves were measured after being oxidized in air at 500 deg. C for 100 min, which showed that a significant improvement was achieved in the oxidation behavior of zirconium ion implanted with lanthanum compared with that of the as-received zirconium. The valence of the oxides in the scale was analyzed by X-ray photoemission spectroscopy; and then the depth distributions of the elements in the surface of the samples were obtained by Auger electron spectroscopy. Glancing angle X-ray diffraction at 0.3 deg. incident angles was employed to examine the modification of its phase transformation because of the lanthanum ion implantation in the oxide films. It was obviously fou...

  16. Effect of recoiled O on damage regrowth and electrical properties of through-oxide implanted Si

    International Nuclear Information System (INIS)

    Sadana, D.K.; Wu, N.R.; Washburn, J.; Current, M.; Morgan, A.; Reed, D.; Maenpaa, M.

    1982-10-01

    High dose (4 to 7.5 x 10 15 cm -2 ) As implantations into p-type (100) Si have been carried out through a screen-oxide of thicknesses less than or equal to 775A and without screen oxide. The effect of recoiled O on damage annealing and electrical properties of the implanted layers has been investigated using a combination of the following techniques: TEM, RBS/MeV He + channeling, SIMS and Hall measurements in conjunction with chemical stripping and sheet resistivity measurements. The TEM results show that there is a dramatically different annealing behavior of the implantation damage for the through oxide implants (Case I) as compared to implants into bare silicon (Case II). Comparison of the structural defect profiles with O distributions obtained by SIMS demonstrated that retardation in the secondary damage growth in Case I can be directly related with the presence of O. Weak-beam TEM showed that a high density of fine defect clusters (less than or equal to 50A) were present both in Case I and Case II. The electrical profiles showed only 30% of the total As to be electrically active. The structural and electrical results have been explained by a model that entails As-O, Si-O and As-As complex formation and their interaction with the dislocations

  17. Deuterium trapping in ion implanted and co-deposited beryllium oxide layers

    International Nuclear Information System (INIS)

    Markin, A.V.; Gorodetsky, A.E.; Zakharov, A.P.; Wu, C.H.

    2000-01-01

    Deuterium trapping in beryllium oxide films irradiated with 400 eV D ions has been studied by thermal desorption spectroscopy (TDS). It has been found that for thermally grown BeO films implanted in the range 300 - 900 K the total deuterium retention doesn't depend whereas TDS spectra do markedly on irradiation temperature. For R.T. implantation the deuterium is released in a wide range from 500 to 1100 K. At implantation above 600 K the main portion of retained deuterium is released in a single peak centered at about 1000 K. The similar TDS peak is measured for D/BeO co-deposited layer. In addition we correlate our implantation data on BeO with the relevant data on beryllium metal and carbon. The interrelations between deuterium retention and microstructure are discussed. (orig.)

  18. Oxidation-enhanced diffusion of boron in very low-energy N2+-implanted silicon

    Science.gov (United States)

    Skarlatos, D.; Tsamis, C.; Perego, M.; Fanciulli, M.

    2005-06-01

    In this article we study the interstitial injection during oxidation of very low-energy nitrogen-implanted silicon. Buried boron δ layers are used to monitor the interstitial supersaturation during the oxidation of nitrogen-implanted silicon. No difference in boron diffusivity enhancement was observed compared to dry oxidation of nonimplanted samples. This result is different from our experience from N2O oxynitridation study, during which a boron diffusivity enhancement of the order of 20% was observed, revealing the influence of interfacial nitrogen on interstitial kinetics. A possible explanation may be that implanted nitrogen acts as an excess interstitial sink in order to diffuse towards the surface via a non-Fickian mechanism. This work completes a wide study of oxidation of very low-energy nitrogen-implanted silicon related phenomena we performed within the last two years [D. Skarlatos, C. Tsamis, and D. Tsoukalas, J. Appl. Phys. 93, 1832 (2003); D. Skarlatos, E. Kapetanakis, P. Normand, C. Tsamis, M. Perego, S. Ferrari, M. Fanciulli, and D. Tsoukalas, J. Appl. Phys. 96, 300 (2004)].

  19. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  20. A comparison of buried oxide characteristics of single and multiple implant SIMOX and bond and etch back wafers

    International Nuclear Information System (INIS)

    Annamalai, N.K.; Bockman, J.F.; McGruer, N.E.; Chapski, J.

    1990-01-01

    The current through the buried oxides of single and multiple implant SIMOX and bond and etch back silicon-on-insulator (BESOI) wafers were measured as a function of radiation dose. From these measurements, conductivity and static capacitances were derived. High frequency capacitances were also measured. Leakage current through the buried oxide of multiple implant SIMOX is considerably less than that of single implant SIMOX (more than an order of magnitude). High frequency and static capacitances, as a function of total dose, were used to study the buried oxide---top silicon interface and the buried oxide---bottom silicon interface. Multiple implant had fewer interface traps than single implant at pre-rad and after irradiation

  1. Microstructure and magnetooptics of silicon oxide with implanted nickel nanoparticles

    International Nuclear Information System (INIS)

    Edel’man, I. S.; Petrov, D. A.; Ivantsov, R. D.; Zharkov, S. M.; Khaibullin, R. I.; Valeev, V. F.; Nuzhdin, V. I.; Stepanov, A. L.

    2011-01-01

    Metallic nickel nanoparticles of various sizes are formed in a thin near-surface layer in an amorphous SiO 2 matrix during 40-keV Ni + ion implantation at a dose of (0.25−1.0) × 10 17 ions/cm 2 . The micro-structure of the irradiated layer and the crystal structure, morphology, and sizes of nickel particles formed at various irradiation doses are studied by transmission electron microscopy and electron diffraction. The magnetooptical Faraday effect and the magnetic circular dichroism in an ensemble of nickel nanoparticles are studied in the optical range. The permittivity ε tensor components are calculated for the implanted samples using an effective medium model with allowance for the results of magnetooptical measurements. The spectral dependences of the tensor ε components are found to be strongly different from those of a continuous metallic nickel film. These differences are related to a disperse structure of the magnetic nickel phase and to a surface plasma resonance in the metal nanoparticles.

  2. Search for internal oxidation of Eu in implanted in Cu matrix using IPAC technique

    International Nuclear Information System (INIS)

    Kurup, M.B.; Prasad, K.G.; Sharma, R.P.

    1976-01-01

    It has been recently reported that rare earth atoms implanted in iron host get oxidised on annealing the sample in hydrogen atmosphere. Integral PAC measurements have been carried out on samples of 153 Eu implanted in Cu foils (energy 400 keV, dose approximately 3 x 10 15 ions/cm 2 ) to investigate this phenomenon in detail. The implanted samples of 153 Eu are neutron irradiated to form 154 Eu → via β - 154 Gd activity. The angular correlation of the 1278→123 keV (2 - → 2 + → 0 + ) gamma-gamma cascade, studied using these irradiated implanted samples, is attenuated and the integral attenuation coefficient G 22 (infinity) is 0.482 +- 0.045. The measurements are repeated after annealing the sample in hydrogen atmosphere at (1) 325degC for 15 mins (2) 500degC for 30 mins. and (3) 500degC for 5 hrs respectively. The attenuation co-efficient G 22 (infinity) does not show any appreciable enhancement on annealing the sample indicating that there is no internal oxidation. The correlation in powdered EU 2 O 3 sample enriched in 153 Eu has been studied. The attenuation factor (G 22 (infinity)=0.77 +- 0.06) observed in this case is much higher than that for the annealed implanted sample; further indicating the absence in internal oxidation to any appreciable degree on annealing. (author)

  3. Nitrogen implantation of steels: A treatment which can initiate sustained oxidative wear

    International Nuclear Information System (INIS)

    Hale, E.B.; Reinbold, R.; Missouri Univ., Rolla; Kohser, R.A.

    1987-01-01

    Falex wear tests on mild (SAE 3135) steel samples treated by either nitrogen implantation (2.5x10 17 N 2 + cm -2 at 180 keV) or low temperature (about 315 0 C) oxidation are reported. The results show that both treatments lead to about an order-of-magnitude reduction in the long-term wear rate of the steel. In addition to the wear rate measurements, the wear member asymmetry behavior, scanning electron microscopy studies, Auger spectra and sputter profiles all indicate that the wear modes induced by both treatments are the same and are oxidative wear. These results confirm the previously proposed initiator-sustainer wear model in which implanted nitrogen simply acts as an initiator of favorable oxidative wear but is not directly involved in maintaining the sustained wear resistance. Possible mechanisms for both the initiation process and the sustained wear process are reviewed and discussed. (orig.)

  4. Segregation of boron implanted into silicon on angular configurations of silicon/silicon dioxide oxidation interface

    CERN Document Server

    Tarnavskij, G A; Obrekht, M S

    2001-01-01

    One studies segregation of boron implanted into silicon when a wave (interface) of oxidation moves within it. There are four types of angular configurations of SiO sub 2 /Si oxidation interface, that is: direct and reverse shoulders, trench type cavities and a square. By means of computer-aided simulation one obtained and analyzed complex patterns of B concentration distribution within Si, SiO sub 2 domains and at SiO sub 2 /Si interface for all types of angular configurations of the oxidation interface

  5. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  6. TDPAC experiments in 111In-implanted niobium oxides

    International Nuclear Information System (INIS)

    Renteria, M.; Wiarda, D.; Bibiloni, A.G.; Lieb, K.P.

    1990-01-01

    TDPAC measurements were carried out on 111 In-implanted α-Nb 2 O 5 samples at room temperature, after isochronal annealings up to 1270 K in 200 mbar oxygen and up to 1070 K in 10 -5 mbar, respectively. The observed hyperfine interactions were compared to point charge model calculations which predict 15 and 2 equivalent cation sites in α-Nb 2 O 5 and NbO 2 . The data in each system could be reproduced with one antishielding factor β=V zz exp /V zz pc for all sites, i.e. β(Nb 2 O 5 )=19.2 and β(NbO 2 )=31.2, respectively. (orig.)

  7. Comparison of the air oxidation behaviors of Zircaloy-4 implanted with yttrium and cerium ions at 500 deg. C

    International Nuclear Information System (INIS)

    Chen, X.W.; Bai, X.D.; Xu, J.; Zhou, Q.G.; Chen, B.S.

    2002-01-01

    As a valuable process for surface modification of materials, ion implantation is eminent to improve mechanical properties, electrochemical corrosion resistance and oxidation behaviors of varieties of materials. To investigate and compare the oxidation behaviors of Zircaloy-4, implantation of yttrium ion and cerium ion were respectively employed by using an MEVVA source at the energy of 40 keV with a dose ranging from 1x10 16 to 1x10 17 ions/cm 2 . Subsequently, weight gain curves of the different specimens including as-received Zircaloy-4 and Zircaloy-4 specimens implanted with the different ions were measured after oxidation in air at 500 deg. C for 100 min. It was obviously found that a significant improvement was achieved in the oxidation behaviors of implanted Zircaloy-4 compared with that of the as-received Zircaloy-4, and the oxidation behavior of cerium-implanted Zircaloy-4 was somewhat better than that of yttrium-implanted specimen. To obtain the valence and the composition of the oxides in the scale, X-ray photoemission spectroscopy was used in the present study. Glancing angle X-ray diffraction, employed to analyze the phase transformation in the oxide films, showed that the addition of yttrium transformed the phase from monoclinic zirconia to tetragonal zirconia, yet the addition of cerium transformed the phase from monoclinic zirconia to hexagonal zirconia. In the end, the mechanism of the improvement of the oxidation behavior was discussed

  8. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    Science.gov (United States)

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The

  9. Damage recovery and optical activity in europium implanted wide gap oxides

    International Nuclear Information System (INIS)

    Alves, E.; Marques, C.; Franco, N.; Alves, L.C.; Peres, M.; Soares, M.J.; Monteiro, T.

    2010-01-01

    In this study we compare and discuss the defects and optical behaviour of sapphire and magnesium oxide single crystals implanted at room temperature with different fluences (1 x 10 15 -1 x 10 16 cm -2 ) of europium ions. Rutherford backscattering channelling shows that for fluences above 5 x 10 15 cm -2 the surface disorder level in the Al-sublattice reaches the random level. Implantation damage recovers fast for annealing in oxidizing atmosphere but even for the highest fluence we recover almost completely all the damage after annealing at 1300 o C, independently of the annealing environment (reducing or oxidizing). Annealing above 1000 o C promotes the formation of Eu 2 O 3 in the samples with higher concentration of Eu. The optical activation of the rare earth ions at room temperature was observed after annealing at 800 o C by photoluminescence and ionoluminescence. In Al 2 O 3 lattice the highest intensity line of the Eu 3+ ions corresponds to the forced electric dipole 5 D 0 → 7 F 2 transition that occurs ∼616 nm. For the MgO samples the Eu 3+ optical activation was also achieved after implantation with different fluences. Here, the lanthanide recombination is dominated by the magnetic dipole 5 D 0 → 7 F 1 transition near by 590 nm commonly observed for samples were Eu 3+ is placed in a high symmetry local site. The results clearly demonstrate the possibility to get Eu incorporated in optical active regular lattice sites in wide gap oxides.

  10. Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu, Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys are useful orthopedic biomaterials on account of its super-elastic and shape memory properties. However, the problem associated with out-diffusion of harmful nickel ions in prolonged use inside the human body raises a critical safety concern. Titanium oxide films are deemed to be chemically inert and biocompatible and hence suitable to be the barrier layers to impede the leaching of Ni from the NiTi substrate to biological tissues and fluids. In the work reported in this paper, we compare the anti-corrosion efficacy of oxide films produced by atmospheric-pressure oxidation and oxygen plasma ion implantation. Our results show that the oxidized samples do not possess improved corrosion resistance and may even fare worse than the untreated samples. On the other hand, the plasma-implanted surfaces exhibit much improved corrosion resistance. Our work also shows that post-implantation annealing can further promote the anti-corrosion capability of the samples

  11. Antibacterial TiO2Coating Incorporating Silver Nanoparticles by Micro arc Oxidation and Ion Implantation

    International Nuclear Information System (INIS)

    Zhang, P.; Zhang, Z.; Li, W.

    2013-01-01

    Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO 2 coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by micro arc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens to Staphylococcus aureus and comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag 20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants

  12. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    International Nuclear Information System (INIS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-01-01

    Passivated contacts (poly-Si/SiO x /c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF 2 ), the ion implantation dose (5 × 10 14  cm −2 to 1 × 10 16  cm −2 ), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV oc ) of 725 and 720 mV, respectively. For p-type passivated contacts, BF 2 implantations into intrinsic a-Si yield well passivated contacts and allow for iV oc of 690 mV, whereas implanted B gives poor passivation with iV oc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V oc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF 2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V oc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts

  13. Salivary Concentration of Oxidative Stress Biomarkers in a Group of Patients with Peri-Implantitis: A Transversal Study.

    Science.gov (United States)

    Sánchez-Siles, Mariano; Lucas-Azorin, Javier; Salazar-Sánchez, Noemi; Carbonell-Meseguer, Luis; Camacho-Alonso, Fabio

    2016-10-01

    The purpose of this study was to know if peri-implantitis causes an increase in the total salivary concentration of oxidative stress markers. Seventy patients, 28 men and 42 women, 60 of them with dental implants, 30 of which had peri-implantitis and 30 were healthy. The remaining 10 were the control group: healthy subjects without implants. The average number of implants per patient was 4.70 ± 2.29 in the peri-implantitis group and 2 70 ± 2.11 in the control group. Periodontal/peri-implant variables were assessed, including bleeding index, gingival index, clinical attachment level, probing depth, presence of pockets larger than 4 and 6 mm, pain to percussion, suppuration, gingival hyperplasia or granuloma, crestal bone loss (both mesially and distally), evaluated through periapical radiography. Saliva samples from the 70 subjects were collected for measurement of malondialdehyde high performance liquid chromatography (HPLC) and myeloperoxidase (enzyme-linked immunosorbent assay analysis) concentrations. Implants affected with peri-implantitis had an average follow-up of 26.40 ± 7.97 months. 4.12% of implants with peri-implantitis had a painful response to percussion. 2.06% showed suppuration; 25.77% had granuloma. The mean crestal bone loss in implants wtih peri-implantitis was 3.78 ± 1.17 mm. Total salivary malondialdehyde concentration in the peri-implantitis group (0.52 ± 0.37 μM/l) was slightly higher than that in the group with healthy implants (0.40 ± 0.16 μM/l) and also slightly higher than that in the group of healthy patients without implants (0.41 ± 0.79 μM/l), although the difference was not statistically significant, p value = .442. Myeloperoxidase concentration was slightly higher in the peri-implantitis group (12.32 ± 2.17 ng/ml) than in the group with healthy implants (11.54 ± 2.80 ng/ml) and the group of healthy patients without implants (11.86 ± 2.67 ng/ml), without

  14. Composition, structure and morphology of oxide layers formed on austenitic stainless steel by oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Anandan, C.; Rajam, K.S.

    2007-01-01

    Oxygen ions were implanted in to austenitic stainless steel by plasma immersion ion implantation at 400 deg. C. The implanted samples were characterized by XPS, GIXRD, micro-Raman, AFM, optical and scanning electron microscopies. XPS studies showed the presence of Fe in elemental, as Fe 2+ in oxide form and as Fe 3+ in the form of oxyhydroxides in the substrate. Iron was present in the oxidation states of Fe 2+ and Fe 3+ in the implanted samples. Cr and Mn were present as Cr 3+ and Mn 2+ , respectively, in both the substrate and implanted samples. Nickel remained unaffected by implantation. GIXRD and micro-Raman studies showed the oxide to be a mixture of spinel and corundum structures. Optical and AFM images showed an island structure on underlying oxide. This island structure was preserved at different thicknesses. Further, near the grain boundaries more oxide growth was found. This is explained on the basis of faster diffusion of oxygen in the grain boundary regions. Measurement of total hemispherical optical aborptance, α and emittance, ε of the implanted sample show that it has good solar selective properties

  15. Retention of implant-supported zirconium oxide ceramic restorations using different luting agents.

    Science.gov (United States)

    Nejatidanesh, Farahnaz; Savabi, Omid; Shahtoosi, Mojtaba

    2013-08-01

    The aim of this study was to evaluate the retention value of implant-supported zirconium oxide ceramic copings using different luting agents. Twenty ITI solid abutments of 5.5 mm height and ITI implant analogs were mounted vertically into autopolymerizing acrylic resin blocks. Ninety zirconium oxide copings (Cercon, Degudent) with a loop on the occlusal portion were made. All samples were airborne particle abraded with 110 μm Al₂O₃ and luted using different types of luting agents: resin cements (Clearfil SA, Panavia F2.0, Fuji Plus), conventional cements (Fleck's, Poly F, Fuji I), and temporary cements (Temp Bond, GC free eugenol, TempSpan) with a load of 5 Kg. (N = 10) All copings were incubated at 37°C for 24 h and conditioned in artificial saliva for 1 week, and thermal cycled for 5000 cycles 5-55°C with a 30-s dwell time. The dislodging force of the copings along the long axis of the implant-abutment complex was recorded using universal testing machine with 5 mm/min crosshead speed. Data were subjected to Kruskal-Wallis (α = 0.05) and Mann-Whitney tests with Bonferroni step down correction (α = 0.001). There was significant difference between the mean rank retention values of different luting agents (P zirconium oxide restorations. © 2011 John Wiley & Sons A/S.

  16. Waveguiding properties of Er-implanted silicon-rich oxides

    International Nuclear Information System (INIS)

    Elliman, R.G.; Forcales, M.; Wilkinson, A.R.; Smith, N.J.

    2007-01-01

    The optical properties of erbium-doped silicon-rich silicon-oxide waveguides containing amorphous silicon nanoclusters and/or silicon nanocrystals are reported. Both amorphous nanoclusters and nanocrystals are shown to act as effective sensitizers for Er, with nanocrystals being more effective at low pump powers and nanoclusters being more effective at higher pump powers. All samples are shown to exhibit photo-induced absorption, as measured for a guided 1.5 μm probe beam while the waveguide was illuminated from above with a 477 nm pump beam. At a given pump power samples containing silicon nanocrystals exhibited greater attenuation than samples containing amorphous nanoclusters. The absorption is shown to be consistent with confined-carrier absorption due to photoexcited carriers in the nanocrystals and/or nanoclusters

  17. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  18. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  19. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    International Nuclear Information System (INIS)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2016-01-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m 2 , for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  20. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil); Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao [Tokyo Medical and Dental University (Japan)

    2016-07-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m{sup 2}, for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  1. Radiation-damage recovery in undoped and oxidized Li doped Mg O crystals implanted with lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E. E-mail: ealves@itn.pt; Silva, R.C. da; Pinto, J.V.; Monteiro, T.; Savoini, B.; Caceres, D.; Gonzalez, R.; Chen, Y

    2003-05-01

    Undoped MgO and oxidized Li-doped MgO single crystals were implanted with 1 x 10{sup 17} Li{sup +}/cm{sup 2} at 175 keV. The Rutherford backscattering spectrometry (RBS)/channeling data obtained after implantation shows that damage was produced throughout the entire range of the implanted ions. Optical absorption measurements indicate that after implantation the most intense band occurs at {approx}5.0 eV, which has been associated with anion vacancies. After annealing at 450 K the intensity of the oxygen-vacancy band decreases monotonically with temperature and completely disappears at 950 K. A broad extinction band centered at {approx}2.14 eV associated with lithium precipitates emerges gradually and anneals out at 1250 K. RBS/channeling shows that recovery of the implantation damage is completed after annealing the oxidized samples at 1250 K.

  2. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jie [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhao Huayu; Zhou Xiaming [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Chuanxian [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We used ion implantation to improve the oxidation resistance of CoNiCrAlY coating. Black-Right-Pointing-Pointer The oxidation process of CoNiCrAlY coating at 1100 Degree-Sign C for 1000 h was studied. Black-Right-Pointing-Pointer The Nb ion implanted coating exhibited better oxidation resistance. Black-Right-Pointing-Pointer The influences of Nb and Al ion implantation into CoNiCrAlY coatings were evaluated. - Abstract: CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 10{sup 17} atoms/cm{sup 2}. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al{sub 2}O{sub 3} scale to improve the oxidation resistance. The Al implanted coating could form Al{sub 2}O{sub 3} scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  3. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  5. Nitric Oxide Release for Improving Performance of Implantable Chemical Sensors - A Review.

    Science.gov (United States)

    Cha, Kyoung Ha; Wang, Xuewei; Meyerhoff, Mark E

    2017-12-01

    Over the last three decades, there has been extensive interest in developing in vivo chemical sensors that can provide real-time measurements of blood gases (oxygen, carbon dioxide, and pH), glucose/lactate, and potentially other critical care analytes in the blood of hospitalized patients. However, clot formation with intravascular sensors and foreign body response toward sensors implanted subcutaneously can cause inaccurate analytical results. Further, the risk of bacterial infection from any sensor implanted in the human body is another major concern. To solve these issues, the release of an endogenous gas molecule, nitric oxide (NO), from the surface of such sensors has been investigated owing to NO's ability to inhibit platelet activation/adhesion, foreign body response and bacterial growth. This paper summarizes the importance of NO's therapeutic potential for this application and reviews the publications to date that report on the analytical performance of NO release sensors in laboratory testing and/or during in vivo testing.

  6. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  7. Fabrication of SGOI material by oxidation of an epitaxial SiGe layer on an SOI wafer with H ions implantation

    International Nuclear Information System (INIS)

    Cheng Xinli; Chen Zhijun; Wang Yongjin; Jin Bo; Zhang Feng; Zou Shichang

    2005-01-01

    SGOI materials were fabricated by thermal dry oxidation of epitaxial H-ion implanted SiGe layers on SOI wafers. The hydrogen implantation was found to delay the oxidation rate of SiGe layer and to decrease the loss of Ge atoms during oxidation. Further, the H implantation did not degrade the crystallinity of SiGe layer during fabrication of the SGOI

  8. The effects of trichloroethane HCl and ion-implantation on the oxidation rate of silicon

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, E.

    1994-01-01

    The thermal oxidation of silicon was studied using a large-scale industrial oxidation system. The characteristics of the oxides resulting from pure hydrogen/oxygen (Hsub(2)/Osub(2)), trichloroethane/oxygen (TCA/Osub(2) and hydrogen chloride/oxygen (HCI/Osub(2)) mixtures are compared. Both HCI and TCA addition to oxygen produced an enhanced oxidation rate. The oxidation rate for TCA/Osub(2) was approximately 30-40% higher than for HCI/Osub(2) mixtures. A molar ratio of TCA/Osub(2) of 1% gives an optimum process for very-large-scale industrial (VLSI) applications. However, 3% HCI/Osub(2) gives comparable results to 1% TCA. In addition, boron and phosphorus implantation are observed to increase the oxidation rate. Phosphorus doping of the silicon yields a higher rate than boron-doped wafers. This behaviour is explained in terms of surface damage and chemistry. It appears that the overall mechanisms governing all these processes are similar. (8 figures, 22 references) (Author)

  9. Effect of annealing and oxide layer thickness on doping profiles shape of ''through-oxide'' implanted P+ ions in textured silicon

    International Nuclear Information System (INIS)

    El-Dessouki, M.S.; Galloni, R.

    1987-10-01

    Phosphorous ions at energies of 60+100 KeV, and doses (4+5)x10 15 atom/cm 2 have been implanted randomly through SiO 2 layers into textured silicon crystals. The penetration profiles of the P + ions have been determined by means of differential sheet resistivity and Hall-effect, together with the anodic oxidation stripping technique. The effect of the oxide layer thickness, annealing temperature on the junction properties has been studied. The damage produced by implantation, has also been investigated using transmission electron microscope (TEM). From the mobility measurements of the free carriers as a function of depth through the junction, two minima have been observed in through oxide implanted samples. The one nearer to the Si-SiO 2 interface (at about 200A from the interface) was related to the damage produced by the recoil oxygen atoms from the oxide layer into silicon. The deeper minimum is lying at ∼ 0.2μm from the interface and was attributed to the damage produced by the implanted P + ions, which caused clusters and defect loops after annealing. This damage was observed through TEM photographs. The optimum conditions for producing shallow junction without losing much of the implanted P + ions through the oxide layer were estimated. (author). 22 refs, 7 figs, 1 tab

  10. Modification of oxide films by ion implantation: TiO2-films modified by Ti+ and O+ as example

    International Nuclear Information System (INIS)

    Schultze, J.W.; Elfenthal, L.; Leitner, K.; Meyer, O.

    1988-01-01

    Oxide films can be modified by ion implantation. Changes in the electrochemical properties of the films are due to the deposition profile of the implanted ion, ie doping and stoichiometric changes, as well as to the radiation damage. The latter is due to the formation of Frenkel defects and at high concentrations to a complete amorphization of the oxide film. TiOsub(x)-films with 1 + - and O + -ions into anodic oxide films on titanium. The electrode capacity shows always the behaviour of an n-type semiconductor with an almost constant flatband potential but a strong maximum donor concentration at about 3% Ti + concentration. Oxygen implantation, on the other hand, causes a small increase of donor concentration only at high concentration of O + . Electron transfer reactions show strong modifications of the electronic behaviour of the oxide film with a maximum again at 3% titanium. Photocurrent spectra prove the increasing amorphization and show interband states 2.6 eV above the VB or below the CB. During repassivation measurements at various potentials different defects formed by Ti + - and O + -implantation become mobile. A tentative model of the band structure is constructed which takes into account the interband states due to localised Ti + - and O + -ions. The modification of ion implanted oxide films is compared with the effects of other preparation techniques. (author)

  11. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation

    Directory of Open Access Journals (Sweden)

    Ingmar A.J. van Hengel

    2017-08-01

    Full Text Available Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017 [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to the research article “Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus” (van Hengel et al., 2017 [1].

  12. Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers

    Science.gov (United States)

    Borisyuk, P. V.; Chubunova, E. V.; Lebedinskii, Yu Yu; Tkalya, E. V.; Vasilyev, O. S.; Yakovlev, V. P.; Strugovshchikov, E.; Mamedov, D.; Pishtshev, A.; Karazhanov, S. Zh

    2018-05-01

    We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma flux expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and a SiO2/Si (0 0 1) sample. The laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with a YAG:Nd3  +  laser having a pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. The depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of x-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy methods. Analysis of the chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on the local concentration of thorium atoms, the experimentally established band gaps were located in the range 6.0–9.0 eV. Theoretical studies of the optical properties of the SiO2 and ThO2 crystalline systems were performed by ab initio calculations within hybrid functional. The optical properties of the SiO2/ThO2 composite were interpreted on the basis of the Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in ‘hot’ laser plasma at the early stages of expansion was performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in a 229Th isotope with energy of 7.8 +/- 0.5 eV.

  13. Oxidation and corrosion studies of Al-implanted stainless steel AISI 321 using nuclear reaction and electrochemical techniques

    International Nuclear Information System (INIS)

    Noli, F.; Misaelides, P.; Spathis, P.; Pilakouta, M.; Baumann, H.

    1992-01-01

    The oxidation of Al-implanted (implantation energy 40 keV, dose 10 16 -10 17 Al ions/cm 2 ) AISI 321 stainless steel samples in air has been studied at temperatures between 450 and 650degC using the 16 O(d,p) 17 O nuclear reaction. The determination of the distribution of the implanted Al atoms has been performed using the resonance at 992 keV of the 27 Al(p,γ) 28 Si nuclear reaction. The determined oxygen profiles indicate that the implantation of 5x10 16 and 10 17 Al ions/cm 2 leads to an improvement of the oxidation resistance of the studied steel samples. The passivation/corrosion behaviour of the Al-implanted steel samples in 0.5M aqueous sulphuric acid solution has also been investigated electrochemically using potentiodynamic and cyclovoltammetric techniques. The passivation potential values and the repassivation moving to more positive values indicate an improvement of the corrosion resistance of the Al-implanted steel samples. (orig.)

  14. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  15. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  16. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants

    International Nuclear Information System (INIS)

    Chen, G J; Wang, Z; Bai, H; Li, J M; Cai, H

    2009-01-01

    Intraosseous transcutaneous amputation prostheses (ITAP) rely on the integrity of the soft tissue-implant interface as a barrier to exogenous agents, and in the prevention of avulsion and marsupilization. This experimental work aimed at the in vivo evaluation of soft tissue attachment to Ti alloy (Ti 6 Al 4 V) transcutaneous custom-made screws treated by a micro-arc oxidation (MAO) method. Prior to implantation, the surface of the MAO treated implants was analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). The experimental model comprised implantation of 16 transcutaneous screws (two groups: MAO and machined (control); total eight implants/group) in the medial aspect of the left tibia of eight female goats. The animals were euthanized at eight weeks and the samples harvested and processed for histological and histomorphometrical analysis of soft tissue attachment to the implant surface. Significant higher soft tissue attachment was observed in the MAO-modified group compared to the control. The in vivo data indicated that MAO-modified Ti alloy could be a useful biomaterial for tissue engineering and benefit applications where bone-anchored transcutaneous implants are used.

  17. Effect of nitrogen ion implantation on the structural and optical properties of indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Riti; Aziz, Anver; Siddiqui, Azher M., E-mail: amsiddiqui@jmi.ac.in [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India); Kumar, Pravin [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi-110067 (India); Khan, Sameen Ahmed [Department of Mathematics and Sciences, College of Arts and Applied Sciences (CAAS) Dhofar University, Salalah, Sultanate of Oman (Oman)

    2016-06-10

    : We report here synthesis and subsequent nitrogen ion implantation of indium oxide (In{sub 2}O{sub 3}) thin films. The films were implanted with 25 keV N{sup +} beam for different ion doses between 3E15 to 1E16 ions/cm{sup 2}. The resulting changes in structural and optical properties were investigated using XRD, SEM-EDAX and UV-Vis Spectrometry. XRD studies reveal decrease in crystallite size from 20.06 to 12.42 nm with increase in ion dose. SEM micrographs show an increase in the grain size from 0.8 to 1.35 µm with increase in ion dose because of the agglomeration of the grains. Also, from EDAX data on pristine and N-implanted thin films the presence of indium and oxygen without any traces of impurity elements could be seen. However, at lower ion doses such as 3E15 and 5E15 ions/cm{sup 2}, no evidence of the presence of nitrogen ion was seen. However, for the ion dose of 1E16 ions/cm{sup 2}, evidence of presence of nitrogen can be seen in the EDAX data. Band gap calculations reveal a decrease in band gap from 3.54 to 3.38 eV with increasing ion dose. However, the band gap was found to again show an increase to 3.58 eV at the highest ion dose owing to quantum confinement effect.

  18. Development and studies of Cd_1_−_xMg_xTe thin films with varying band gaps to understand the Mg incorporation and the related material properties

    International Nuclear Information System (INIS)

    Palomera, Roger C.; Martínez, Omar S.; Pantoja-Enriquez, J.; Mathews, N.R.; Reyes-Banda, Martín G.; Krishnan, B.; Mathew, X.

    2017-01-01

    Highlights: • Cd_1_−_xMg_xTe films with band gap in the range 1.47–2.41 eV is obtained. • Cd substitution by Mg was confirmed with SIMS and XPS analysis. • Cd_1_−_xMg_xTe films maintained CdTe structural features but with higher band gap. • Mg incorporation in CdTe inhibited grain growth. - Abstract: In this paper we report a systematic work involving the development of Cd_1_−_xMg_xTe thin films by co-evaporation of CdTe and Mg. The evaporation rate of both materials were adjusted to obtain ternary films of varying stoichiometry and hence the band gap. We have deposited films with band gap ranging from 1.47 to 2.41 eV. The films were characterized for structural, morphological, optical, opto-electronic, and spectroscopic properties. The film stoichiometry was studied across the thickness using SIMS data. SEM images showed that the grain size has a dependence on Mg content in the film, which inhibits the grain growth. The structural parameters showed a systematic dependence on Mg content in the film, however, there was no noticeable change in the XRD reflections with respect that of pure CdTe for lower concentrations of Mg. XPS analysis shed light on the incorporation of Mg further supporting the band gap variations observed with the UV–Vis spectroscopic studies. The photoresponse of the film was affected by Mg incorporation. Prototype devices of the type Cd_1_−_XMg_xTe/CdS were fabricated and the results are discussed.

  19. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation

    NARCIS (Netherlands)

    van Hengel, I.A.J. (Ingmar A.J.); M. Riool (Martijn); L.E. Fratila-Apachitei (L.); J. Witte-Bouma (Janneke); E. Farrell (Eric); A.A. Zadpoor (Amir Abbas); S.A.J. Zaat (Sebastiaan); I. Apachitei (I.)

    2017-01-01

    textabstractAdditively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the

  20. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation

    NARCIS (Netherlands)

    van Hengel, I.A.J.; Riool, Martijn; Fratila-Apachitei, E.L.; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, A.A.; Zaat, Sebastian A.J.; Apachitei, I.

    2017-01-01

    Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in

  1. Research on total-dose hardening for H-gate PD NMOSFET/SIMOX by ion implanting into buried oxide

    International Nuclear Information System (INIS)

    Qian Cong; Zhang Zhengxuan; Zhang Feng; Lin Chenglu

    2008-01-01

    In this work, we investigate the back-gate I-V characteristics for two kinds of NMOSFET/SIMOX transistors with H gate structure fabricated on two different SOI wafers. A transistors are made on the wafer implanted with Si + and then annealed in N 2 , and B transistors are made on the wafer without implantation and annealing. It is demonstrated experimentally that A transistors have much less back-gate threshold voltage shift ΔV th than B transistors under X-ray total close irradiation. Subthreshold charge separation technique is employed to estimate the build-up of oxide charge and interface traps during irradiation, showing that the reduced ΔV th for A transistors is mainly due to its less build-up of oxide charge than B transistors. Photo-luminescence (PL) research indicates that Si implantation results in the formation of silicon nanocrystalline (nanocluster) whose size increases with the implant dose. This structure can trap electrons to compensate the positive charge build-up in the buried oxide during irradiation, and thus reduce the threshold voltage negative shift. (authors)

  2. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    Science.gov (United States)

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  3. Histological and histomorphometric evaluation of implant with nanometer scale and oxidized surface. in vitro and in vivo study.

    Science.gov (United States)

    Corvino, V; Iezzi, G; Trubiani, O; Traini, T; Piattelli, M

    2012-01-01

    The biological fixation of an implant to bone is influenced by numerous factors, including surface chemistry and surface topography. Various methods have been developed to create rough implant surfaces in order to improve the clinical performance of implants and to guarantee a stable mechanical bone-implant interface. Anodic oxidation is a dental implant surface modification technique that results in oxide layer growth up to a thickness of 1–10 micron. The purpose of this study was to evaluate the performance of the surface through the osteoblasts cells growth and the influence of oxidixed surface on BIC percent, in the human posterior maxilla after 2 months of unloaded healing. In vitro commercially available primary human osteoblasts (NHOst) from both femur and tibia of different donor systems (Lonza Walkersville Inc, Walkersville, MD, USA) were grown in Osteoblast Growth Media (OBM) (Lonza). Osteogenic differentiation was induced for a period of 4 weeks by the OGM medium (OBM basal medium supplemented with 200nM of hydrocortisone-21-hemisuccinate and 7.5 mM of glycerophosphate). The viability of NHOst cells seeded test A and B was measured by the quantitative colorimetric MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2Htetrazoliumbromide test) (Promega, Milan, Italy). One custom-made 2 x 10-mm site evaluation implant (SEI) with nanometer scale and oxidized surface (test) ( Evo Plan 1 Health s.r.l. - Amaro, UD, Italy), and one SEI with hydroxyapatite sandblasted surface (control) (Osseogrip Plan 1 Health s.r.l. – Amaro, UD, Italy), were placed in the posterior maxilla of 15 patients. Patients received one of each type of SEI placed on controlateral side. The proliferation rate studied by the MTT assay showed that during the incubation time, starting at 24 h, an increased proliferation rate was evident in Test B respect to Test A. After 2 months of unloaded healing BIC percent was significantly higher in oxidized implants. BIC percent mean values for the

  4. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants.

    Science.gov (United States)

    Memarzadeh, Kaveh; Sharili, Amir S; Huang, Jie; Rawlinson, Simon C F; Allaker, Robert P

    2015-03-01

    Orthopedic and dental implants are prone to infection. In this study, we describe a novel system using zinc oxide nanoparticles (nZnO) as a coating material to inhibit bacterial adhesion and promote osteoblast growth. Electrohydrodynamic atomisation (EHDA) was employed to deposit mixtures of nZnO and nanohydroxyapatite (nHA) onto the surface of glass substrates. Nano-coated substrates were exposed to Staphylococcus aureus suspended in buffered saline or bovine serum to determine antimicrobial activity. Our results indicate that 100% nZnO and 75% nZnO/25% nHA composite-coated substrates have significant antimicrobial activity. Furthermore, osteoblast function was explored by exposing cells to nZnO. UMR-106 cells exposed to nZnO supernatants showed minimal toxicity. Similarly, MG-63 cells cultured on nZnO substrates did not show release of TNF-α and IL-6 cytokines. These results were reinforced by both proliferation and differentiation studies which revealed that a substrate coated with exclusively nZnO is more efficient than composite surface coatings. Finally, electron and light microscopy, together with immunofluorescence staining, revealed that all cell types tested, including human mesenchymal cell (hMSC), were able to maintain normal cell morphology when adhered onto the surface of the nano-coated substrates. Collectively, these findings indicate that nZnO can, on its own, provide an optimal coating for future bone implants that are both antimicrobial and biocompatible. © 2014 Wiley Periodicals, Inc.

  5. Charge accumulation in the buried oxide of SOI structures with the bonded Si/SiO2 interface under γ-irradiation: effect of preliminary ion implantation

    International Nuclear Information System (INIS)

    Naumova, O V; Fomin, B I; Ilnitsky, M A; Popov, V P

    2012-01-01

    In this study, we examined the effect of preliminary boron or phosphorous implantation on charge accumulation in the buried oxide of SOI-MOSFETs irradiated with γ-rays in the total dose range (D) of 10 5 –5 × 10 7 rad. The buried oxide was obtained by high-temperature thermal oxidation of Si, and it was not subjected to any implantation during the fabrication process of SOI structures. It was found that implantation with boron or phosphorous ions, used in fabrication technologies of SOI-MOSFETs, increases the concentration of precursor traps in the buried oxide of SOI structures. Unlike in the case of boron implantation, phosphorous implantation leads to an increased density of states at the Si/buried SiO 2 interface during subsequent γ-irradiation. In the γ-irradiated SOI-MOSFETs, the accumulated charge density and the density of surface states in the Si/buried oxide layer systems both vary in proportion to k i ln D. The coefficients k i for as-fabricated and ion-implanted Si/buried SiO 2 systems were evaluated. From the data obtained, it was concluded that a low density of precursor hole traps was a factor limiting the positive charge accumulation in the buried oxide of as-fabricated (non-implanted) SOI structures with the bonded Si/buried SiO 2 interface. (paper)

  6. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pmicroscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  7. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue.

    Science.gov (United States)

    Taha, Eslam; Djouider, Fathi; Banoqitah, Essam

    2018-03-26

    The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm 3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125 I, 131 Cs, and 103 Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131 Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

  9. Properties of ion implanted epitaxial CoSi2/Si(1 0 0) after rapid thermal oxidation

    International Nuclear Information System (INIS)

    Zhao, Q.T.; Kluth, P.; Xu, J.; Kappius, L.; Zastrow, U.; Wang, Z.L.; Mantl, S.

    2000-01-01

    Epitaxial CoSi 2 layers were grown on Si(1 0 0) using molecular beam allotaxy. Boron ion implantations and rapid thermal oxidation (RTO) were performed. During oxidation, SiO 2 formed on the surface of the CoSi 2 layers, and the silicides was pushed into the substrate. The diffusion of boron was slightly retarded during oxidation for the specimen with a 20 nm epitaxial CoSi 2 capping layer as compared to the specimen without CoSi 2 capping layer. The electrical measurements showed that the silicide has good Schottky contacts with the boron doped silicon layer after RTO. A nanometer silicide patterning process, based on local oxidation of silicide (LOCOSI) layer, was also investigated. It shows two back-to-back Schottky diodes between the two separated parts of the silicide

  10. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, D.; Wren, A.W.; Misture, S.T.; Mellott, N.P., E-mail: mellott@alfred.edu

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb{sub 2}O{sub 5}) and titanium (TiO{sub 2}) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb{sub 2}O{sub 5} at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO{sub 2} an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb{sub 2}O{sub 5} (450 °C), hexagonal-Nb{sub 2}O{sub 5} (525 °C), orthorhombic-Nb{sub 2}O{sub 5} (650 °C), amorphous-TiO{sub 2} (275 °C) and tetragonal TiO{sub 2} (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb{sub 2}O{sub 5} (525 °C) and TiO{sub 2} (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO{sub 2} (122%) samples when compared to the growing cell population while Nb{sub 2}O{sub 5} samples exhibited a range of viability (64–105%), partially dependent on materials atomic structure. - Highlights: • Niobium and titanium oxides were prepared to determine the effect of structure on bioactivity. • Simulated body fluid testing resulted in positive surface chemical and morphological changes. • Amorphous, rod-like CaP deposits were observed on the surfaces. • Niobium oxide exhibited a range of viability partially dependent on materials atomic structure.

  11. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    Science.gov (United States)

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Surface modification of indium tin oxide films by amino ion implantation for the attachment of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Jiao Jiao; Liu Chenyao; Chen Qunxia; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    Amino ion implantation was carried out at the energy of 80 keV with fluence of 5 x 10 15 ions cm -2 for indium tin oxide film (ITO) coated glass, and the existence of amino group on the ITO surface was verified by X-ray photoelectron spectroscopy analysis and Fourier transform infrared spectra. Scanning electron microscopy images show that multi-wall carbon nanotubes (MWCNTs) directly attached to the amino ion implanted ITO (NH 2 /ITO) surface homogeneously and stably. The resulting MWCNTs-attached NH 2 /ITO (MWCNTs/NH 2 /ITO) substrate can be used as electrode material. Cyclic voltammetry results indicate that the MWCNTs/NH 2 /ITO electrode shows excellent electrochemical properties and obvious electrocatalytic activity towards uric acid, thus this material is expected to have potential in electrochemical analysis and biosensors.

  13. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis.

    Science.gov (United States)

    Zhang, Li; Zhou, Qing; Song, Wen; Wu, Kaimin; Zhang, Yumei; Zhao, Yimin

    2017-10-11

    Surface functionalization by small interfering RNA (siRNA) is a novel strategy for improved implant osseointegration. A gene delivery system with safety and high transfection activity is a crucial factor for an siRNA-functionalized implant to exert its biological function. To this end, polyethylene glycol (PEG) and polyethylenimine (PEI) dual-functionalized graphene oxide (GO; nGO-PEG-PEI) may present a promising siRNA vector. In this study, nanosized nGO-PEG-PEI was prepared and optimized for siRNA delivery. Titania nanotubes (NTs) fabricated by anodic oxidation were biomodified with nGO-PEG-PEI/siRNA by cathodic electrodeposition, designated as NT-GPP/siRNA. NT-GPP/siRNA possessed benign cytocompatibility, as evaluated by cell adhesion and proliferation. Cellular uptake and knockdown efficiency of the NT-GPP/siRNA were assessed by MC3T3-E1 cells, which exhibited high siRNA delivery efficiency and sustained target gene silencing. Casein kinase-2 interacting protein-1 (Ckip-1) is a negative regulator of bone formation. siRNA-targeting Ckip-1 (siCkip-1) was introduced to the implant, and a series of in vitro and in vivo experiments were carried out to evaluate the osteogenic capacity of NT-GPP/siCkip-1. NT-GPP/siCkip-1 dramatically improved the in vitro osteogenic differentiation of MC3T3-E1 cells in terms of improved osteogenesis-related gene expression, and increased alkaline phosphatase (ALP) production, collagen secretion, and extracellular matrix (ECM) mineralization. Moreover, NT-GPP/siCkip-1 led to apparently enhanced in vivo osseointegration, as indicated by histological staining and EDX line scanning. Collectively, these findings suggest that NT-GPP/siRNA represents a practicable and promising approach for implant functionalization, showing clinical potential for dental and orthopedic applications.

  14. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH{sub 2}{sup +} ions implanted-indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenyao; Jiao Jiao; Chen Qunxia [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xia Ji [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Shuoqi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu Jingbo, E-mail: hujingbo@bnu.edu.c [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Li Qilong [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2010-12-01

    A new type of gold nanoparticle attached to a NH{sub 2}{sup +} ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH{sub 2}/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10{sup 15} ions/cm{sup 2}. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH{sub 2}{sup +} ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  15. Standard Enucleation with Aluminium Oxide Implant (Bioceramic Covered with Patient's Sclera

    Directory of Open Access Journals (Sweden)

    Gian Luigi Zigiotti

    2012-01-01

    Full Text Available Purpose. We describe in our study a modified standard enucleation, using sclera harvested from the enucleated eye to cover the prosthesis in order to insert a large porous implant and to reduce postoperative complication rates in a phthisis globe. Methods. We perform initially a standard enucleation. The porous implant (Bioceramic is then covered only partially by the patient's sclera. The implant is inserted in the posterior Tenon's space with the scleral covering looking at front. All patients were followed at least for twelve months (average followup 16 months. Results. We performed nineteen primary procedures (19 patients, 19 eyes, M; F and secondary, to fill the orbital cavity in patients already operated by standard evisceration (7 patients, 7 eyes. There were no cases of implant extrusion. The orbital volume was well reintegrated. Conclusion. Our procedure was safe and effective. All patients had a good cosmetic result after final prosthetic fitting and we also achieved good prothesis mobility.

  16. Variable energy positron beam study of Xe-implanted uranium oxide

    International Nuclear Information System (INIS)

    Djourelov, Nikolay; Marchand, Benoît; Marinov, Hristo; Moncoffre, Nathalie; Pipon, Yves; Nédélec, Patrick; Toulhoat, Nelly; Sillou, Daniel

    2013-01-01

    Doppler broadening of annihilation gamma-line combined with a slow positron beam was used to measure the momentum density distribution of annihilating pair in a set of sintered UO 2 samples. The influence of surface polishing, of implantation with 800-keV 136 Xe 2+ at fluences of 1 × 10 15 and 1 × 10 16 Xe cm −2 , and of annealing were studied by following the changes of the momentum distribution shape by means of S and W parameters. The program used for this purpose was VEPFIT. At the two fluences in the stoichiometric as-implanted UO 2 , formation of Xe bubbles was not detected. The post-implantation annealing and over-stoichiometry in the as-implanted sample caused Xe precipitation and formation of Xe bubbles.

  17. Dynamic behavior of protium and deuterium implanted into an oxide ceramic studied by means of ERD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Emi; Horikawa, Tomoaki; Tsuchiya, Bun; Soda, Kazuo; Morita, Kenji; Iwahara,; Hiroyasu, [Nagoya Univ. (Japan)

    1998-03-01

    We have investigated exchange of deuterium (or protium) implanted into an oxide ceramic, SrCe{sub 0.95}Yb{sub 0.05}O{sub 3-{delta}}, for protium (or deuterium) due to exposure to H{sub 2}O (or D{sub 2}O) vapor at room temperature by means of the elastic recoil detection (ERD) technique. It is found that D is completely exchanged for H by expose to H{sub 2}O vapor, while H is hardly exchanged for D by expose to D{sub 2}O vapor, namely there exists a great isotope difference between the exchange of D for H and that of H for D. This result suggests that the exchanges do not take place on a conventional model of following subsequent reactions; dissociative absorption at the surface, diffusion (H), replacement of D by H, diffusion (D), and release due to surface recombination, but on a new model of following reactions; dissociative absorption at the surface, diffusion and release through bulk recombination due to mixed molecule formation. In order to clarify the reaction leading to the great isotope difference, the experiments on the retention of H and D by simultaneous H{sup +}, D{sup +} implantation and the release of 5 keV D{sub 2}{sup +} implants by 0.5 keV H{sub 2}{sup +} irradiation and 5 keV H{sub 2}{sup +} implants by 0.5 keV D{sub 2}{sup +} irradiation have been done. The retention experiment shows that the D/H ratio of the saturation implantation concentration is 1.3. Competition among H-H, H-D and D-D bulk recombination prefers to enrich D, which is opposite to the isotope difference observed. The release experiment shows that the slow and continuous decay of 5 keV D{sub 2}{sup +} implants is induced by 0.5 keV H{sub 2}{sup +} irradiation for long term, while that of 5 keV H{sub 2}{sup +} implants is hardly induced by 0.5 keV D{sub 2}{sup +} irradiation for long term. The latter result suggests that the diffusion may play a major rule in the great isotope difference. (author)

  18. Ion implantation-induced defects in Oxide Dispersion Strengthened (ODS) steel probed by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anwand, Wolfgang; Butterling, Maik; Brauer, Gerhard; Wagner, Andreas [HZDR, Institut fuer Strahlenphysik (Germany); Richter, Astrid [Technische Hochschule Wildau (Germany); Koegler, Reinhard [HZDR, Institut fuer Ionenstrahlphysik und Materialforschung (Germany); Chen, C.L. [I-Shou University, Kaohsiung (China)

    2012-07-01

    ODS steel is a promising candidate for an application in fission and fusion power plants of a new generation because of its advantageous properties as stability and temperature resistance. A microscopic understanding of the physical reasons of the mechanical and thermal properties as well as the behaviour of the material under irradiation is an important pre-condition for such applications. The investigated ODS FeCrAl alloy *PM2000* has been produced in a powder metallurgical way. Neutron-induced damage at ODS steel was simulated by He{sup +} and Fe{sup 2+} co-implantation with energies of 2.5 MeV and 400 keV, respectively, and different fluences. The implantation has been carried out with a dual ion beam which enables a simultaneous implantation of both ion types. Thereby the Fe{sup 2+} implantation was used for the creation of radiation defects, and He{sup +} was implanted in order to reproduce He bubbles as they are expected to appear by neutron irradiation. The implantation-induced damage was investigated by depth dependent Doppler broadening measurements using a variable energy slow positron beam.

  19. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration.

    Science.gov (United States)

    Bai, Yixin; Zhou, Rui; Cao, Jianyun; Wei, Daqing; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-07-01

    The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as-prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone-implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  1. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  2. Modification of the Properties of Vanadium Oxide Thin Films by Plasma-Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Sergey Burdyukh

    2018-01-01

    Full Text Available The paper describes the effect of doping with hydrogen and tungsten by means of plasma-immersion ion implantation (PIII on the properties of vanadium dioxide and hydrated vanadium pentoxide films. It is shown that the parameters of the metal-insulator phase transition in VO2 thin films depend on the hydrogen implantation dose. Next, we explore the effect of PIII on composition, optical properties, and the internal electrochromic effect (IECE in V2O5·nH2O films. The variations in the composition and structure caused by the hydrogen insertion, as well as those caused by the electrochromic effect, are studied by nuclear magnetic resonance, thermogravimetry, Raman spectroscopy, and X-ray structural analysis. It is shown that the ion implantation-induced hydrogenation can substantially enhance the manifestation and performance of the IECE in V2O5 xerogel films. Finally, the effect of PIII-assisted doping with W on the parameters of electrical switching in Au/V2O5·nH2O/Au sandwich structures is examined. It is shown that implanting small tungsten doses improves the switching parameters after forming. When implanting large doses, switching is observed without electroforming, and if electroforming is applied, the switching effect, on the contrary, disappears.

  3. Transverse mode control in proton-implanted and oxide-confined VCSELs via patterned dielectric anti-phase filters

    Science.gov (United States)

    Kesler, Benjamin; O'Brien, Thomas; Dallesasse, John M.

    2017-02-01

    A novel method for controlling the transverse lasing modes in both proton implanted and oxide-confined vertical- cavity surface-emitting lasers (VCSELs) with a multi-layer, patterned, dielectric anti-phase (DAP) filter is pre- sented. Using a simple photolithographic liftoff process, dielectric layers are deposited and patterned on individual VCSELs to modify (increase or decrease) the mirror reflectivity across the emission aperture via anti-phase reflections, creating spatially-dependent threshold material gain. The shape of the dielectric pattern can be tailored to overlap with specific transverse VCSEL modes or subsets of transverse modes to either facilitate or inhibit lasing by decreasing or increasing, respectively, the threshold modal gain. A silicon dioxide (SiO2) and titanium dioxide (TiO2) anti-phase filter is used to achieve a single-fundamental-mode, continuous-wave output power greater than 4.0 mW in an oxide-confined VCSEL at a lasing wavelength of 850 nm. A filter consisting of SiO2 and TiO2 is used to facilitate injection-current-insensitive fundamental mode and lower order mode lasing in proton implanted VCSELs at a lasing wavelength of 850 nm. Higher refractive index dielectric materials such as amorphous silicon (a-Si) can be used to increase the effectiveness of the anti-phase filter on proton implanted devices by reducing the threshold modal gain of any spatially overlapping modes. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for semiconductor etching or epitaxial regrowth. It also offers the capability of designing a filter based upon available optical coating materials.

  4. Effects of weak magnetic fields on post-implantation damage in superconducting oxides

    International Nuclear Information System (INIS)

    Khait, Y.L.

    1996-01-01

    Experimentally verifiable effects of weak permanent magnetic fields (PMF's) acting during ion implantation in high-T c superconducting (HTSC) materials at T∼300 K on post-implantation damage (PID) and material parameters are considered. The presence of PMF's of H∼10 3 Oe during ion implantation can enlarge substantially the PID in HTSC materials implanted with ions of moderate energies (e.g. 200-400 keV) and dosage (10 11- 10 12 cm -3 ) at room temperature. The PMF-induced increase in the radiation damage causes the corresponding enhancement in the material resistivity R and reduction in the critical current j cir (measured after the cooling of the HTSC material down to T (L) c after the ion implantation). This is an extension of the PMF effects found experimentally (and explained theoretically) in semiconductors in our previous work. The experimentally verifiable PMF effects on the defect (atomic) migration and radiation damage is a generic consequence of the kinetic electron-related theory of atomic rate processes in solids. The theory links the PMF effects with electron transitions occurring in the nanometer vicinity of atoms overcoming energy barriers which affect exponentially rates of atomic (defect) diffusion. The magnetic field can enhance the number of downward electron transitions that accompany atomic (defect) jumps over energy barriers and synchronize with the jumps. This enhances exponentially the rates of defect migration out of thermal spikes that prevents the defects from fast recombination, and thus, the PMF increases the PID and changes correspondingly R and j cir . (orig.)

  5. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques

    Science.gov (United States)

    Baldassarri, Marta; Zhang, Yu; Thompson, Van P.; Rekow, Elizabeth D.; Stappert, Christian F. J.

    2011-01-01

    Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping. PMID:21557985

  6. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  7. Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants.

    Science.gov (United States)

    Turger, Anke; Köhler, Jens; Denkena, Berend; Correa, Tomas A; Becher, Christoph; Hurschler, Christof

    2013-08-29

    Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices.

  8. The Study of the Oxide Coating Effect on Bone-Implant Interface Formation by Means of Electron Microscopy Method with Energy Dispersive X-ray Analysis

    International Nuclear Information System (INIS)

    Gudakova, A.A.; Danilchenko, S.N.; Sukhodub, L.F.; Luk'yanchenko, V.V.; Zykova, A.V.; Safonov, V.I.

    2006-01-01

    The experimental results of the measurement of the tissue constituent elements distribution, as well as impurity elements in the tissues around a Ti-implant with protective TiO 2 oxide coating are presented. Study of morphology, qualitative and quantitative analysis were carried out by means of scanning electron microscopy method with energy dispersive X-ray analysis. The results show weak migration of Ti into the bone tissue near the interface and protective role of the oxide coatings

  9. Improved biological performance of low modulus Ti-24Nb-4Zr-7.9Sn implants due to surface modification by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Gao, B., E-mail: gaobo_fmmu@163.com [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Wang, R. [Fengtai Health Center of Navy Outpatient Department, Beijing 100071 (China); Wu, J.; Zhang, L.J. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Hao, Y.L.; Tao, X.J. [Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016 (China)

    2009-02-15

    Dental implants are usually made from commercially pure titanium or titanium alloys. The purpose of this study was to evaluate the influence of surface treatment to low modulus Ti-24Nb-4Zr-7.9Sn (TNZS) on cell and bone responses. The TNZS alloy samples were modified using anodic oxidation (AD). Surface oxide properties were characterized by using various surface analytic techniques, involving scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), X-ray diffractometry (XRD) and surface profilometer. During the AD treatment, porous titanium oxide layer was formed and Ca ions were incorporated into the oxide layer. The viability and morphology of osteoblasts on Ca-incorporated TNZS were studied. The bone responses of Ca-incorporated TNZS were evaluated by pull-out tests and morphological analysis after implantation in rabbit tibiae. The non-treated Ti and TNZS samples were used as the control. Significant increases in cell viability and pull-out forces (p < 0.05) were observed for Ca-incorporated TNZS implants compared with those for the control groups. Porous structures supplied positive guidance cues for osteoblasts to attach. The enhanced cell and bone responses to Ca-incorporated TNZS implants could be explained by the surface chemistry and microtopography.

  10. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior

    International Nuclear Information System (INIS)

    Zhao, Changhong; Lu, Xiuzhen; Liu, Johan; Zanden, Carl

    2015-01-01

    To investigate the potential application of graphene oxide (GO) in bone repair, this study is focused on the preparation, characterization and cell behavior of graphene oxide coatings on quartz substrata. GO coatings were prepared on the substrata using a modified dip-coating procedure. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results demonstrated that the as-prepared coatings in this study were homogeneous and had an average thickness of ∼67 nm. The rapid formation of a hydroxyapatite (HA) layer in the simulated body fluid (SBF) on GO coated substrata at day 14, as proved by SEM and x-ray diffraction (XRD), strongly indicated the bioactivity of coated substrata. In addition, MC3T3-E1 cells were cultured on the coated substrata to evaluate cellular activities. Compared with the non-coated substrata and tissue culture plates, no significant difference was observed on the coated substrata in terms of cytotoxicity, viability, proliferation and apoptosis. However, interestingly, higher levels of alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion were observed on the coated substrata, indicating that GO coatings enhanced cell differentiation compared with non-coated substrata and tissue culture plates. This study suggests that GO coatings had excellent biocompatibility and more importantly promoted MC3T3-E1 cell differentiation and might be a good candidate as a coating material for orthopedic implants. (paper)

  11. Effects of radiation damage in ion-implanted thin films of metal-oxide superconductors

    International Nuclear Information System (INIS)

    Clark, G.J.; Marwick, A.D.; Koch, R.H.; Laibowitz, R.B.

    1987-01-01

    The effects of ion implantation into thin films of the superconductor YBa 2 Cu 3 O/sub x/ have been studied. Using oxygen and arsenic ions, the superconducting transition temperature T/sub c/, the change in room-temperature electrical properties from conducting to insulating, and the crystalline to amorphous structural transition in the films were studied as a function of ion dose. The deposited energy required to change T/sub c/ was found to be 0.2 eV/atom, while 1--2 eV/atom was required to affect the room-temperature conductivity, and 4 eV/atom to render the film amorphous. This hierarchy of effects is discussed in terms of the damage mechanisms involved

  12. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Chiang [School of Oral Hygiene, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Chang, Fang-Mo [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Yang, Tzu-Sen [Master Program in Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, Taipei 235, Taiwan (China); Lin, Che-Tong [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China)

    2016-11-01

    Titanium dioxide (TiO{sub 2}) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO{sub 2} with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. - Highlights: • The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces. • The nanocrystalline TiO{sub 2} with a rutile structure was formed on titanium surfaces. • A nanoporous TiO{sub 2} layer in the rutile phase prepared using oxygen PIII treatment can be used to prolong blood clot formation.

  13. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  14. Regeneración ósea guiada utilizando membrana de óxido de aluminio en combinación con implantes oseointegrados Guided bone regeneration using aluminum oxide membrane in combination with osseointegrated implants

    Directory of Open Access Journals (Sweden)

    M. Isa Majluf

    2007-08-01

    Full Text Available La reabsorción ósea de los maxilares ha sido una de las mayores complicaciones al momento de rehabilitar a pacientes con implantes oseointegrados. El siguiente estudio evaluó la efectividad de la membrana de óxido de aluminio (alúmina, en la regeneración ósea de rebordes colapsados y alvéolos en los que se colocaron implantes. De un total de cinco pacientes seleccionados, se estudiaron siete sitios de los cuales tres correspondieron a un solo paciente. En cada sitio (alvéolo o reborde colapsado se colocó un implante de titanio del sistema HIS y una membrana no biodegradable de óxido de aluminio (Allumina®, la cual fue retirada a las 14 semanas. Todos los pacientes fueron sometidos al mismo procedimiento quirúrgico. La ganancia promedio en mm obtenidos en orden decreciente fue la siguiente: ANM: 1.7mm, ANME: 1.6mm, AND: 1.1mm, AV: 1.0mm, AP: 0.5mm. Los resultados radiográficos ratificaron los resultados clínicos en cuanto a neoformación ósea, observándose además una favorable densidad ósea periimplantaria. El análisis estadístico (basado en los resultados clínicos t-student fue significativo para todos los parámetros evaluados con excepción de AP.Alveolar bone loss has been a very important cause of complications in osseointegrated implant rehabilitation of edentulous patients. This paper evaluates the effectiveness of aluminum oxide membrane (Allumina in the collapsed alveolar ridge where implants were used. Seven sites were studied in 5 patients. In each of these sites a HIS implant plus a non-biodegradable oxide aluminum membrane (Allumina®, was placed for 14 weeks. All patients were treated with the same surgical protocol. The average gain (in mm obtained in decreasing order was as follows: ANM: 1.7 mm, ANME: 1.6 mm, AND: 1.1mm, AV: 1.0mm, AP: 0.5mm. The clinical results were radiographically verified and these showed bone neoformation, in addition to favorable peri-implant bone density. The t-Student statistical

  15. Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2016-07-01

    Full Text Available Transition metal ions (0.5 wt% of Fe2O3, CoO, NiO or CuO doped heavy metal oxide glasses having chemical composition of 60PbO·20Bi2O3·20 MxOy mol% (where MxOy = B2O3 or SiO2 or P2O5 were prepared by conventional melt annealing method. Combined optical and photoluminescence properties have been measured and employed to evaluate the prepared glassy samples. From the absorption edge data, the values of the optical band gap Eopt, Urbach energy (ΔE and refractive index were calculated to estimate semiconducting behavior. Photoluminescence and values of the optical energy gap were found to be dependent on the glass composition. The variations of the photoluminescence intensity, values of optical band gap, Urbach energy and refractive index gave an indication to use the prepared glasses for design of novel functional optical materials with higher optical performance.

  16. Aluminum oxide mask fabrication by focused ion beam implantation combined with wet etching

    International Nuclear Information System (INIS)

    Liu Zhengjun; Iltanen, Kari; Chekurov, Nikolai; Tittonen, Ilkka; Grigoras, Kestutis

    2013-01-01

    A novel aluminum oxide (Al 2 O 3 ) hard mask fabrication process with nanoscale resolution is introduced. The Al 2 O 3 mask can be used for various purposes, but in this work it was utilized for silicon patterning using cryogenic deep reactive ion etching (DRIE). The patterning of Al 2 O 3 is a two-step process utilizing focused ion beam (FIB) irradiation combined with wet chemical etching. Gallium (Ga + ) FIB maskless patterning confers wet etch selectivity between the irradiated region and the non-irradiated one on the Al 2 O 3 layer, and mask patterns can easily be revealed by wet etching. This method is a modification of Ga + FIB mask patterning for the silicon etch stop, which eliminates the detrimental lattice damage and doping of the silicon substrate in critical devices. The shallow surface gallium FIB irradiated Al 2 O 3 mask protects the underlying silicon from Ga + ions. The performance of the masking capacity was tested by drawing pairs consisting of a line and an empty space with varying width. The best result was seven such pairs for 1 μm. The smallest half pitch was 59 nm. This method is capable of arbitrary pattern generation. The fabrication of a freestanding single-ended tuning fork resonator utilizing the introduced masking method is demonstrated. (paper)

  17. Study of the Mg incorporation in CdTe for developing wide band gap Cd1−xMgxTe thin films for possible use as top-cell absorber in a tandem solar cell

    International Nuclear Information System (INIS)

    Martínez, Omar S.; Millán, Aduljay Remolina; Huerta, L.; Santana, G.; Mathews, N.R.; Ramon-Garcia, M.L.; Morales, Erik R.; Mathew, X.

    2012-01-01

    Highlights: ► Thin films of Cd 1−x Mg x Te with high spatial uniformity and band gap in the range of 1.6–1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg. ► Obtained Cd 1−x Mg x Te films have the structural characteristics of the CdTe, evidence of the change in atomic scattering due to incorporation of Mg was observed. ► XRD and XPS data confirmed the incorporation of Mg in the lattice of CdTe. ► SEM images revealed the impact of Mg incorporation on the morphology of the films, the changes in grain size and grain morphology are noticeable. - Abstract: Thin films of Cd 1−x Mg x Te with band gap in the range of 1.6–1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg on glass substrates heated at 300 °C. Different experimental techniques such as XRD, UV–vis spectroscopy, SEM, and XPS were used to study the effect of Mg incorporation into the lattice of CdTe. The band gap of the films showed a clear tendency to increase as the Mg content in the film is increased. The Cd 1−x Mg x Te films maintain all the structural characteristics of the CdTe, however, diminishing of intensity for the XRD patterns is observed due to both change in preferential orientation and change in atomic scattering due to the incorporation of Mg. SEM images showed significant evidences of morphological changes due to the presence of Mg. XRD, UV–vis spectroscopy, and XPS data confirmed the incorporation of Mg in the lattice of CdTe. The significant increase in band gap of CdTe due to incorporation of Mg suggests that the Cd 1−x Mg x Te thin film is a candidate material to use as absorber layer in the top-cell of a tandem solar cell.

  18. Study of the Mg incorporation in CdTe for developing wide band gap Cd{sub 1-x}Mg{sub x}Te thin films for possible use as top-cell absorber in a tandem solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Omar S. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Universidad Politecnica del Estado de Guerrero, Comunidad de Puente Campuzano, C.P. 40325 Taxco de Alarcon, Guerrero (Mexico); Millan, Aduljay Remolina [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Huerta, L.; Santana, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico. C.P 04510 Mexico D.F. (Mexico); Mathews, N.R.; Ramon-Garcia, M.L.; Morales, Erik R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Mathew, X., E-mail: xm@cie.unam.mx [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Thin films of Cd{sub 1-x}Mg{sub x}Te with high spatial uniformity and band gap in the range of 1.6-1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg. Black-Right-Pointing-Pointer Obtained Cd{sub 1-x}Mg{sub x}Te films have the structural characteristics of the CdTe, evidence of the change in atomic scattering due to incorporation of Mg was observed. Black-Right-Pointing-Pointer XRD and XPS data confirmed the incorporation of Mg in the lattice of CdTe. Black-Right-Pointing-Pointer SEM images revealed the impact of Mg incorporation on the morphology of the films, the changes in grain size and grain morphology are noticeable. - Abstract: Thin films of Cd{sub 1-x}Mg{sub x}Te with band gap in the range of 1.6-1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg on glass substrates heated at 300 Degree-Sign C. Different experimental techniques such as XRD, UV-vis spectroscopy, SEM, and XPS were used to study the effect of Mg incorporation into the lattice of CdTe. The band gap of the films showed a clear tendency to increase as the Mg content in the film is increased. The Cd{sub 1-x}Mg{sub x}Te films maintain all the structural characteristics of the CdTe, however, diminishing of intensity for the XRD patterns is observed due to both change in preferential orientation and change in atomic scattering due to the incorporation of Mg. SEM images showed significant evidences of morphological changes due to the presence of Mg. XRD, UV-vis spectroscopy, and XPS data confirmed the incorporation of Mg in the lattice of CdTe. The significant increase in band gap of CdTe due to incorporation of Mg suggests that the Cd{sub 1-x}Mg{sub x}Te thin film is a candidate material to use as absorber layer in the top-cell of a tandem solar cell.

  19. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study.

    Science.gov (United States)

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2016-11-01

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This in vitro study aims at providing the experimental basis for possible use of diode laser (λ 808 nm) in the treatment of peri-implantitis. Staphylococcus aureus biofilm was grown for 48 h on titanium discs with porous surface corresponding to the bone-implant interface and then irradiated with a diode laser (λ 808 nm) in noncontact mode with airflow cooling for 1 min using a Ø 600-μm fiber. Setting parameters were 2 W (400 J/cm 2 ) for continuous wave mode; 22 μJ, 20 kHz, 7 μs (88 J/cm 2 ) for pulsed wave mode. Bactericidal effect was evaluated using fluorescence microscopy and counting the residual colony-forming units. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, the titanium discs were coated with Escherichia coli lipopolysaccharide (LPS), laser-irradiated and seeded with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Diode laser irradiation in both continuous and pulsed modes induced a statistically significant reduction of viable bacteria and nitrite levels. These results indicate that in addition to its bactericidal effect laser irradiation can also inhibit LPS-induced macrophage activation and thus blunt the inflammatory response. The λ 808-nm diode laser emerges as a valuable tool for decontamination/detoxification of the titanium implant surface and may be used in the treatment of peri-implantitis.

  20. The influence of cerium and yttrium ion implantation upon the oxidation behaviour of a 20% Cr/25% Ni/Nb stabilised stainless steel, in carbon dioxide, at 8250C

    International Nuclear Information System (INIS)

    Bennett, M.J.; Dearnaley, G.; Houlton, M.R.; Hawes, R.W.M.

    1982-01-01

    The influence of cerium and yttrium ion implantation upon the oxidation behaviour of a 20% Cr/25% Ni niobium stabilised stainless steel during up to 7 157h exposure to carbon dioxide, at 825 0 C has been examined. The doses ranged between 5 x 10 14 and 10 17 ions cm -2 . Above thresholds of between 5 x 10 14 and 5 x 10 15 yttrium and between 5 x 10 15 and 10 16 cerium ions cm -2 the implantation of both elements improved the oxidation resistance of the 20/25/Nb steel. Yttrium exerted the greater influence, reducing by a factor of two the attack after 7 157h. Up to 80% of the oxide formed on the 20/25/Nb steel spalled, particularly on thermal cycling. Cerium and yttrium implantation improved oxide adhesion by similar extents, which increased with ion dose such that with the highest doses, no spallation was measurable. The effect of the implanted elements derived from their incorporation within the oxide film. It was initiated by their promotion of the formation of an initial chromium-rich oxide layer, which had a finer grain size than that formed on the 20/25/Nb steel. Reduction in continuing attack was associated in part, with improved oxide adhesion, as this decreased the significant contribution to the attack of the 20/25/Nb steel from the reoxidation of spalled areas. (author)

  1. Saddle-fin cell transistors with oxide etch rate control by using tilted ion implantation (TIS-fin) for sub-50-nm DRAMs

    International Nuclear Information System (INIS)

    Yoo, Min Soo; Choi, Kang Sik; Sun, Woo Kyung

    2010-01-01

    As DRAM cell pitch size decreases, the need for a high performance transistor is increasing. Though saddle-fin (S-fin) transistors have superior characteristics, S-fin transistors are well known to be more sensitive to process variation. To make uniform S-fin transistors, for the first time, we developed a new fin formation method using tilted ion implantation along the wordline direction after a recess gate etch. Due to the increased etch rate of the oxide film by ion implantation damage, fins are made at the bottom channel of the recess gate after wet etching. The resulting tilt implanted saddle-fin (TIS-fin) transistor has remarkably improved characteristics, such as ∼8% subthreshold swing (SS) and a 40% drain induced barrier lowering (DIBL) decrease. Especially, the TIS-fin with a neutral dopant has a reduced threshold voltage (Vth) variation within a wafer (<100 mV), which is comparable with that of a mass-produced sphere-shaped recessed channel array transistor (SRCAT).

  2. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur.

    Science.gov (United States)

    Eto, Shuichi; Miyamoto, Hiroshi; Shobuike, Takeo; Noda, Iwao; Akiyama, Takayuki; Tsukamoto, Masatsugu; Ueno, Masaya; Someya, Shinsuke; Kawano, Shunsuke; Sonohata, Motoki; Mawatari, Masaaki

    2015-09-01

    Antibacterial silver with hydroxyapatite (Ag-HA) is a promising coating material for imparting antibacterial properties to implants. We previously reported that 3% (w/w) silver with HA (3% Ag-HA) has both antibacterial activity and osteoconductivity. In this study, we investigated the effects of Ag-HA on the in vitro osteoblast function and the in vivo anchorage strength and osteoconductivity of implants. Production of the osteoblast marker alkaline phosphatase, but not cytotoxicity, was observed in cells of the osteoblast cell line MC3T3-E1 cultured on the 3% Ag-HA-coated surface. These results were similar to those observed with silver-free HA coating. In contrast, a significant high level of cytotoxicity was observed when the cells were cultured on a 50% Ag-HA-coated surface. The anchorage strength of implants inserted into the femur of Sprague-Dawley (SD) rats was enhanced by coating the implants with 3% Ag-HA. On the 3% Ag-HA-coated surface, both metaphyseal and diaphyseal areas were largely covered with new bone and had adequate osteoconductivity. These results suggest that 3% Ag-HA, like conventional HA, promotes osteogenesis by supporting osteoblast viability and function and thereby contributes to sufficient anchorage strength of implants. Application of 3% Ag-HA, which combines the osteoconductivity of HA and the antibacterial activity of silver, to prosthetic joints will help prevent postoperative infections. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Immobilization of chitosan film containing semaphorin 3A onto a microarc oxidized titanium implant surface via silane reaction to improve MG63 osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Fang K

    2014-10-01

    Full Text Available Kaixiu Fang,1,* Wen Song,2,* Lifeng Wang,1 Sen Jia,3 Hongbo Wei,1 Shuai Ren,1 Xiaoru Xu,1 Yingliang Song1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 2State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 3State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Improving osseointegration of extensively used titanium (Ti implants still remains a main theme in implantology. Recently, grafting biomolecules onto a Ti surface has attracted more attention due to their direct participation in the osseointegration process around the implant. Semaphorin 3A (Sema3A is a new proven osteoprotection molecule and is considered to be a promising therapeutic agent in bone diseases, but how to immobilize the protein onto a Ti surface to acquire a long-term effect is poorly defined. In our study, we tried to use chitosan to wrap Sema3A (CS/Sema and connect to the microarc oxidized Ti surface via silane glutaraldehyde coupling. The microarc oxidization could formulate porous topography on a Ti surface, and the covalently bonded coating was homogeneously covered on the ridges between the pores without significant influence on the original topography. A burst release of Sema3A was observed in the first few days in phosphate-buffered saline and could be maintained for >2 weeks. Coating in phosphate-buffered saline containing lysozyme was similar, but the release rate was much more rapid. The coating did not significantly affect cellular adhesion, viability, or cytoskeleton arrangement, but the osteogenic-related gene

  4. Photo and cathode luminescence emission in oxide silicium films implanted with silicium; Emision de foto y catodoluminiscencia en peliculas de oxido de silicio termico implantadas con silicio

    Energy Technology Data Exchange (ETDEWEB)

    Flores, F; Aceves, M. [Instituto Nacional de Astrofisica Optica y Electronica, Mexico, D.F. (Mexico); Carrillo, J. [Benemrita Universidad Autonoma de Puebla, Puebla (Mexico); Dominguez, C. [Universida Autonoma de Barcelona, Barcelona (Spain); Falcony, C. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2001-10-01

    We studied the photo and cathodoluminescence of Silicon Rich Oxides (SRO) obtained by ion implant of Si in thermal oxides. Doses of 10{sup 1}6 cm{sup -}2 (low dose) and 10{sup 1}7 cm{sup -}2 (high dose) and implant energy of 150 keV were used. The films were annealed for 30, 60 and 180 minutes in nitrogen at 1100 Celsius degrees. The spectra show photo and cathodoluminescence emission in the visible range, the bands in the spectra change with the conditions of ion implant and annealing. The films without thermal treatment in both dose present photoluminescence bands around 1.9 eV (band B) and 2.4 eV (band C). With the thermal treatments, the band B disappears. In the case of the films with low dose, the band C shows a blue shift and a decrease in intensity. The high dose films have a band centered in 1.7 eV (band A) that increases its intensity with annealings. The cathodoluminescence bands in all the cases are in 2.7 eV (band D) and they present changes with the thermal treatments that it seems they depend on the variation in the implant parameters. [Spanish] Se estudian las propiedades de foto y la catodoluminiscencia de peliculas de oxidos de silicio ricos en Si (Silicon Rich Oxide SRO) obtenidas por implantacion ionica de Si en oxidos termicos. Se usaron dosis de 10{sup 1}6 cm{sup -}2 (dosis baja) y 10{sup 1}7 cm{sup -}2 (dosis alta) y energia de implantacion de 150 keV. Las peliculas se sometieron a tratamientos termicos por 30, 60 y 180 minutos en nitrogeno de 1100 grados centigrados. Se encontro emision foto y catodoluminiscente en el rango visible, las bandas en los espectros cambian con las condiciones de implantacion ionica y con los tratamientos termicos. Las peliculas sin tratamiento termico en ambas dosis presentan bandas de fotoluminiscencia alrededor de 1.9 eV (banda B) y 2.4 eV (banda C). Con los tratamientos termicos, la banda B desaparece. En el caso de las peliculas con dosis baja, la banda C muestra un corrimiento hacia el azul junto con una

  5. Silver nanoparticle formation in thin oxide layer on silicon by silver-negative-ion implantation for Coulomb blockade at room temperature

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Arai, Nobutoshi; Matsumoto, Takuya; Ueno, Kazuya; Gotoh, Yasuhito; Adachi, Kouichiro; Kotaki, Hiroshi; Ishikawa, Junzo

    2004-01-01

    Formation of silver nanoparticles formed by silver negative-ion implantation in a thin SiO 2 layer and its I-V characteristics were investigated for development single electron devices. In order to obtain effective Coulomb blockade phenomenon at room temperature, the isolated metal nanoparticles should be in very small size and be formed in a thin insulator layer such as gate oxide on the silicon substrate. Therefore, conditions of a fine particles size, high particle density and narrow distribution should be controlled at their formation without any electrical breakdown of the thin insulator layer. We have used a negative-ion implantation technique with an advantage of 'charge-up free' for insulators, with which no breakdown of thin oxide layer on Si was obtained. In the I-V characteristics with Au electrode, the current steps were observed with a voltage interval of about 0.12 V. From the step voltage the corresponded capacitance was calculated to be 0.7 aF. In one nanoparticle system, this value of capacitance could be given by a nanoparticle of about 3 nm in diameter. This consideration is consistent to the measured particle size in the cross-sectional TEM observation. Therefore, the observed I-V characteristics with steps are considered to be Coulomb staircase by the Ag nanoparticles

  6. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  7. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Science.gov (United States)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh

    2016-08-01

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  8. Photocatalytic activity of ferric oxide/titanium dioxide nanocomposite films on stainless steel fabricated by anodization and ion implantation

    Science.gov (United States)

    Zhan, Wei-ting; Ni, Hong-wei; Chen, Rong-sheng; Yue, Gao; Tai, Jun-kai; Wang, Zi-yang

    2013-08-01

    A simple surface treatment was used to develop photocatalytic activity for stainless steel. AISI 304 stainless steel specimens after anodization were implanted by Ti ions at an extracting voltage of 50 kV with an implantation dose of 3 × 1015 atoms·cm-2 and then annealed in air at 450°C for 2 h. The morphology was observed by scanning electron microscopy. The microstructure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The photocatalytic degradation of methylene blue solution was carried out under ultraviolet light. The corrosion resistance of the stainless steel was evaluated in NaCl solution (3.5 wt%) by electrochemical polarization curves. It is found that the Ti ions depth profile resembles a Gaussian distribution in the implanted layer. The nanostructured Fe2O3/TiO2 composite film exhibits a remarkable enhancement in photocatalytic activity referenced to the mechanically polished specimen and anodized specimen. Meanwhile, the annealed Ti-implanted specimen remains good corrosion resistance.

  9. Synthesis of polycaprolactone-titanium oxide multilayer films by nanosecond laser pulses and electrospinning technique for better implant fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca [Silicon Hall: Laser Micro/Nano Fabrication Laboratory, Department of Mechanical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2016-08-28

    In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.

  10. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  11. Dental-Implantate und ihre Werkstoffe

    Science.gov (United States)

    Newesely, Heinrich

    1983-07-01

    Some new trends in materials for dental implants, which also effect in the operative techniques and implant design, are described. Advantages and shortcomings of the different material types are exemplified and correlated with their bioinert resp. bioactive functions. The practical interest in metallic implants focussed in titanium resp. oxide ceramics in the ceramic field, whereas the special goal of implant research follows from the improvement of the bioactive principle with loaded calcium phosphate implants.

  12. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  13. Polymer Hydrogel/Polybutadiene/Iron Oxide Nanoparticle Hybrid Actuators for the Characterization of NiTi Implants

    Directory of Open Access Journals (Sweden)

    Aleksandra Jeličić

    2009-03-01

    Full Text Available One of the main issues with the use of nickel titanium alloy (NiTi implants in cardiovascular implants (stents is that these devices must be of very high quality in order to avoid subsequent operations due to failing stents. For small stents with diameters below ca. 2 mm, however, stent characterization is not straightforward. One of the main problems is that there are virtually no methods to characterize the interior of the NiTi tubes used for fabrication of these tiny stents. The current paper reports on a robust hybrid actuator for the characterization of NiTi tubes prior to stent fabrication. The method is based on a polymer/hydrogel/magnetic nanoparticle hybrid material and allows for the determination of the inner diameter at virtually all places in the raw NiTi tubes. Knowledge of the inner structure of the raw NiTi tubes is crucial to avoid regions that are not hollow or regions that are likely to fail due to defects inside the raw tube. The actuator enables close contact of a magnetic polymer film with the inner NiTi tube surface. The magnetic signal can be detected from outside and be used for a direct mapping of the tube interior. As a result, it is possible to detect critical regions prior to expensive and slow stent fabrication processes.

  14. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    Science.gov (United States)

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  15. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Kosobrodova, E., E-mail: elenak@physics.usyd.edu.au [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Kondyurin, A. [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia); Chrzanowski, W. [Faculty of Pharmacy, University of Sydney, NSW 2006 (Australia); Department of Nanobiomedical Science and BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); McCulloch, D.G. [School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia); McKenzie, D.R.; Bilek, M.M.M. [Department of Applied Plasma and Physics, School of Physics, University of Sydney, NSW 2006 (Australia)

    2014-06-01

    Highlights: • Structure and properties of polycarbonate films spin-coated on silicon are studied. • The films have two thicknesses: thicker and thinner than a depth of ion penetration. • Effect of radio frequency plasma and plasma immersion ion implantation is compared. - Abstract: At ion fluences higher than 5 · 10{sup 15} ions/cm{sup 2}, plasma immersion ion implantation (PIII) of polycarbonate (PC) results in a formation of a carbonized surface layer. The thickness of this layer is close to the depth of ion penetration. A comparison of PIII treated, spin-coated PC films with pre-treatment thicknesses designed to match and exceed the carbonized layer thickness is employed to study the properties of the carbonised layer independently from the less modified underlying structure. At ion fluencies higher than 10{sup 16} ions/cm{sup 2}, the thinner PC film is completely transformed into an amorphous carbon-like material with no traces of the initial PC structure. The thicker films, however, incorporated two layers: a top carbonised layer and a cross-linked layer below. Compared to the two-layered PC film, the completely carbonized layer was found to have a much higher concentration of C=O bonds and much lower concentration of O–H bonds after exposure to atmospheric oxygen. The refractive index of the thicker PC films PIII treated with high ion fluencies is close to the refractive index of diamond-like carbon. Anomalous dispersion of the refractive index of the thicker PC films is observed after formation of the carbonised layer. The refractive index of the thinner PC film has normal dispersion at all ion fluences. At ion fluences of 2 · 10{sup 16} ions/cm{sup 2}, both PC films were found to have the same etching rate as polystyrene. Washing in dichloromethane had no effect on the carbonised layer but affected the underlying material in the case of the thicker PC films leading to a wrinkled structure up to ion fluences of 2 · 10{sup 16} ions/cm{sup 2}. At

  16. Bactericidal Activity of Copper Oxide Nanocomposite/Bioglass for in Vitro Clindamycin Release in Implant Infections Due to Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Alijanian

    2016-08-01

    Full Text Available Background In recent years, bioactive bioceramics such as bioglass and hydroxyapatite (HA have been introduced as a remarkable development in the field of medicine due to their bio-adaptability, non-toxicity, and persistence, in vivo. They have many potential applications in the repair of bone defects and hence they have attracted significant interest from scholars. Objectives The aim of this study was to synthesize inorganic matrix CuO-based bioglasses and evaluate their antibacterial activity against aerobic bacterial infections in bone implants. Methods Nano-composite samples of silica-based bioactive glass, 60S BG with nano-powder CuO, were synthesized using the sol-gel method and then assessed with regard to their antibacterial properties against Staphylococcus aureus using well diffusion agar. The samples included BG58S (58%SiO2, 36%CaO, 6%P2O5, BG/10CuO (58%SiO2, 26%CaO, 6%P2O5, 10%CuO, and BG/20CuO (48%SiO2, 26%CaO, 6%P2O5, 20%CuO. To evaluate their bioactivity, the prepared samples of BG/20CuO, BG/10CuO, and BG58S were immersed in simulated body fluids (SBF. The surface morphology and structure of the samples before and after immersion in the SBF were characterized using scanning electron microscopy (SEM and Fourier transform infrared (FTIR, respectively. Then, the BG/20CuO and BG/10CuO samples were loaded in clindamycin, an antibiotic widely used in the treatment of osteomyelitis, and their release profiles were studied in phosphate buffer solution. Results It was observed that the growth inhibition zone increased through clindamycin release due to the increasing CuO percentage in the nanocomposite of bioactive glass. The bioactivity of the nanocomposite/bioglass with CuO was superior to that of bioglass alone. In this study, the BG/20CuO sample showed a sustained release of clindamycin, which is sufficient for a drug delivery system. Conclusions Increasing the Cu nanoparticles in bioactive glass samples leads to the release of Cu2

  17. Cochlear Implants

    Science.gov (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  18. A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator

    Science.gov (United States)

    Dong, Wenjun; Hou, Lijuan; Li, Tingting; Gong, Ziqiang; Huang, Huandi; Wang, Ge; Chen, Xiaobo; Li, Xiaoyun

    2015-12-01

    Scaffold biomaterials with open pores and channels are favourable for cell growth and tissue regeneration, however the inherent poor mechanical strength and low surface activity limit their applications as load-bearing bone grafts with satisfactory osseointegration. In this study, macro-porous graphene oxide (GO) modified titanate nanowire scaffolds with desirable surface chemistry and tunable mechanical properties were prepared through a simple hydrothermal process followed by electrochemical deposition of GO nanosheets. The interconnected and porous structure of the GO/titanate nanowire scaffolds provides a large surface area for cellular attachment and migration and displays a high compressive strength of approximately 81.1 MPa and a tunable Young’s modulus over the range of 12.4-41.0 GPa, which satisfies site-specific requirements for implantation. Surface chemistry of the scaffolds was modulated by the introduction of GO, which endows the scaffolds flexibility in attaching and patterning bioactive groups (such as -OH, -COOH and -NH2). In vitro cell culture tests suggest that the GO/titanate nanowire scaffolds act as a promising biomaterial candidate, in particular the one terminated with -OH groups, which demonstrates improved cell viability, and proliferation, differentiation and osteogenic activities.

  19. Medical implants and methods of making medical implants

    Science.gov (United States)

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  20. Effect of annealing on properties of gallium-nitrogen Co-doped zinc oxide thin films prepared by sputtering and ion implantation

    International Nuclear Information System (INIS)

    Flickyngerova, S.; Vojs, M.; Novotny, I.; Tvarozek, V.; Shtereva, K. S.; Sutta, P.; Vincze, A.; Milosavlevic, M.; Jeynes, Ch.; Peng, N.

    2012-01-01

    In this paper we report an influence of post-implantation annealing (in O 2 and N 2 up to 600 grad C) on electrical and structural properties of RF sputtered ZnO:Ga thin films implanted by double energy (40 keV and 80 keV) N + ions. (authors)

  1. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  2. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    International Nuclear Information System (INIS)

    Le Renard, Pol-Edern; Lortz, Rolf; Senatore, Carmine; Rapin, Jean-Philippe; Buchegger, Franz; Petri-Fink, Alke; Hofmann, Heinrich; Doelker, Eric; Jordan, Olivier

    2011-01-01

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 o C, as in vivo. Using two orthogonal methods, a common SLP (20 W g -1 ) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: → Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. → Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. → Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  3. Formation of 2-D arrays of semiconductor nanocrystals or semiconductor-rich nanolayers by very low-energy Si or Ge ion implantation in silicon oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Normand, P. E-mail: p.normand@imel.demokritos.gr; Beltsios, K.; Kapetanakis, E.; Tsoukalas, D.; Travlos, T.; Stoemenos, J.; Berg, J. van den; Zhang, S.; Vieu, C.; Launois, H.; Gautier, J.; Jourdan, F.; Palun, L

    2001-05-01

    The structure evolution of annealed low-energy Si- or Ge-implanted thin and thick SiO{sub 2} layers is studied. The majority of Si (or Ge) species is restricted within a 3-4 nm thick layer. Si is able to separate and crystallize more easily than Ge. The glass transition temperature of the as-implanted structure has a significant effect on the progress of phase transformations accompanying annealing.

  4. Formation of 2-D arrays of semiconductor nanocrystals or semiconductor-rich nanolayers by very low-energy Si or Ge ion implantation in silicon oxide films

    International Nuclear Information System (INIS)

    Normand, P.; Beltsios, K.; Kapetanakis, E.; Tsoukalas, D.; Travlos, T.; Stoemenos, J.; Berg, J. van den; Zhang, S.; Vieu, C.; Launois, H.; Gautier, J.; Jourdan, F.; Palun, L.

    2001-01-01

    The structure evolution of annealed low-energy Si- or Ge-implanted thin and thick SiO 2 layers is studied. The majority of Si (or Ge) species is restricted within a 3-4 nm thick layer. Si is able to separate and crystallize more easily than Ge. The glass transition temperature of the as-implanted structure has a significant effect on the progress of phase transformations accompanying annealing

  5. Carmustine Implant

    Science.gov (United States)

    ... works by slowing or stopping the growth of cancer cells in your body. ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving carmustine implant, call your doctor. Carmustine may harm the fetus.

  6. Cochlear Implants

    Science.gov (United States)

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... Hearing Aids Retinitis Pigmentosa - National Eye Institute Telecommunications Relay Services Usher Syndrome Your Baby's Hearing Screening News ...

  7. The effects of Mg incorporation and annealing temperature on the ...

    Indian Academy of Sciences (India)

    2017-01-09

    Jan 9, 2017 ... care and food industry, and so developing antibacterial agents has caught ... system with CuKα radiation (0.15406 nm). The diam- eter and size ... microbial strains were monitored by UV–visible spec- trophotometer at a ...

  8. Studies of ion implanted thermally oxidised chromium

    International Nuclear Information System (INIS)

    Muhl, S.

    1977-01-01

    The thermal oxidation of 99.99% pure chromium containing precise amounts of foreign elements has been studied and compared to the oxidation of pure chromium. Thirty-three foreign elements including all of the naturally occurring rare earth metals were ion implanted into chromium samples prior to oxidation at 750 0 C in oxygen. The role of radiation induced damage, inherent in this doping technique, has been studied by chromium implantations at various energies and doses. The repair of the damage has been studied by vacuum annealing at temperatures up to 800 0 C prior to oxidation. Many of the implants caused an inhibition of oxidation, the greatest being a 93% reduction for 2 x 10 16 ions/cm 2 of praseodymium. The distribution of the implant was investigated by the use of 2 MeV alpha backscattering and ion microprobe analysis. Differences in the topography and structure of the chromic oxide on and off the implanted area were studied using scanning electron and optical microscopy. X-ray diffraction analysis was used to investigate if a rare earth-chromium compound of a perovskite-type structure had been formed. Lastly, the electrical conductivity of chromic oxide on and off the implanted region was examined at low voltages. (author)

  9. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  10. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  11. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  12. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  13. Surface modifications of dental implants.

    Science.gov (United States)

    Stanford, C M

    2008-06-01

    Dental implant surface technologies have been evolving rapidly to enhance a more rapid bone formation on their surface and hold a potential to increase the predictability of expedited implant therapy. While implant outcomes have become highly predictable, there are sites and conditions that result in elevated implant loss. This paper reviews the impact of macro-retentive features which includes approaches to surface oxide modification, thread design, press-fit and sintered-bead technologies to increase predictability of outcomes. Implant designs that lead to controlled lateral compression of the bone can improve primary stability as long as the stress does not exceed the localized yield strength of the cortical bone. Some implant designs have reduced crestal bone loss by use of multiple cutting threads that are closely spaced, smoothed on the tip but designed to create a hoop-stress stability of the implant as it is completely seated in the osteotomy. Following the placement of the implant, there is a predictable sequence of bone turnover and replacement at the interface that allows the newly formed bone to adapt to microscopic roughness on the implant surface, and on some surfaces, a nanotopography (<10(-9) m scale) that has been shown to preferably influence the formation of bone. Newly emerging studies show that bone cells are exquisitely sensitive to these topographical features and will upregulate the expression of bone related genes for new bone formation when grown on these surfaces. We live in an exciting time of rapid changes in the modalities we can offer patients for tooth replacement therapy. Given this, it is our responsibility to be critical when claims are made, incorporate into our practice what is proven and worthwhile, and to continue to support and provide the best patient care possible.

  14. Qualitative and quantitative observations of bone tissue reactions to anodised implants.

    Science.gov (United States)

    Sul, Young-Taeg; Johansson, Carina B; Röser, Kerstin; Albrektsson, Tomas

    2002-04-01

    Research projects focusing on biomaterials related factors; the bulk implant material, the macro-design of the implant and the microsurface roughness are routinely being conducted at our laboratories. In this study, we have investigated the bone tissue reactions to turned commercially pure (c.p.) titanium implants with various thicknesses of the oxide films after 6 weeks of insertion in rabbit bone. The control c.p. titanium implants had an oxide thickness of 17-200 nm while the test implants revealed an oxide thickness between 600 and 1000 nm. Routine histological investigations of the tissue reactions around the implants and enzyme histochemical detections of alkaline and acid phosphatase activities demonstrated similar findings around both the control and test implants. In general, the histomorphometrical parameters (bone to implant contact and newly formed bone) revealed significant quantitative differences between the control and test implants. The test implants demonstrated a greater bone response histomorphometrically than control implants and the osteoconductivity was more pronounced around the test implant surfaces. The parameters that differed between the implant surfaces, i.e. the oxide thickness, the pore size distribution, the porosity and the crystallinity of the surface oxides may represent factors that have an influence on the histomorphometrical results indicated by a stronger bone tissue response to the test implant surfaces, with an oxide thickness of more than 600 nm.

  15. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  16. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  17. Dopant profile engineering of advanced Si MOSFET's using ion implantation

    International Nuclear Information System (INIS)

    Stolk, P.A.; Ponomarev, Y.V.; Schmitz, J.; Brandenburg, A.C.M.C. van; Roes, R.; Montree, A.H.; Woerlee, P.H.

    1999-01-01

    Ion implantation has been used to realize non-uniform, steep retrograde (SR) dopant profiles in the active channel region of advanced Si MOSFET's. After defining the transistor configuration, SR profiles were formed by dopant implantation through the polycrystalline Si gate and the gate oxide (through-the-gate, TG, implantation). The steep nature of the as-implanted profile was retained by applying rapid thermal annealing for dopant activation and implantation damage removal. For NMOS transistors, TG implantation of B yields improved transistor performance through increased carrier mobility, reduced junction capacitances, and reduced susceptibility to short-channel effects. Electrical measurements show that the gate oxide quality is not deteriorated by the ion-induced damage, demonstrating that transistor reliability is preserved. For PMOS transistors, TG implantation of P or As leads to unacceptable source/drain junction broadening as a result of transient enhanced dopant diffusion during thermal activation

  18. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  19. Investigation of corrosion and ion release from titanium dental implant

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Mouhyi, J.; Louvette, P.; Sennerby, L.

    1997-01-01

    A thin passive titanium dioxide, in its stoichiometric form, has a very high corrosion resistance, but the same conclusion can not be made on corrosion resistance of a surface which is not stoichiometrically titanium dioxide, or even a surface which is a composition of various elements and oxides. In practice, the implants available on the market have an oxide surface contaminated with other elements. The aim of this paper is to correlate clinical observations that show the deterioration of Ti made implants after certain period of insertion in the patients, and in vitro corrosion resistance of Ti implants with surface passive oxide layer. For this purpose, surface analysis of the retrieved failed implants were performed and in vivo animal experiments with relation to ion release from implants were done. Finally, on the basis of the clinical observation, in vivo animal test, and in vitro electrochemical corrosion test, a model is proposed to explain the corrosion and ion release from the Ti implant. (author)

  20. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  1. High Current Oxide Cathodes

    National Research Council Canada - National Science Library

    Luhmann, N

    2000-01-01

    The aim of the AASERT supported research is to develop the plasma deposition/implantation process for coating barium, strontium and calcium oxides on nickel substrates and to perform detailed surface...

  2. Fabrication of a Biologically-Implantable, Multiplexed, Multielectrode Array of JFETS for Cortical Implantation.

    Science.gov (United States)

    1984-12-01

    which could be implanted at the surface of the brain. Electrodes of microfine dimensions I-1 . ..6...to check the operation of the diffusion furnace oxidation tube by comparing measured thicknesses of the oxide against calculated values. Oxide Growth...faster rate than that of Eq ), (11-2). Initial adjustments made prior to using the diffusion furnace included: (1) profiling the oxidation tube to

  3. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  4. Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Mehrnaz Karimi

    1992-04-01

    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  5. Strain driven fast osseointegration of implants

    Directory of Open Access Journals (Sweden)

    Wiesmann Hans-Peter

    2005-09-01

    Full Text Available Abstract Background Although the bone's capability of dental implant osseointegration has clinically been utilised as early as in the Gallo-Roman population, the specific mechanisms for the emergence and maintenance of peri-implant bone under functional load have not been identified. Here we show that under immediate loading of specially designed dental implants with masticatory loads, osseointegration is rapidly achieved. Methods We examined the bone reaction around non- and immediately loaded dental implants inserted in the mandible of mature minipigs during the presently assumed time for osseointegration. We used threaded conical titanium implants containing a titanium2+ oxide surface, allowing direct bone contact after insertion. The external geometry was designed according to finite element analysis: the calculation showed that physiological amplitudes of strain (500–3,000 ustrain generated through mastication were homogenously distributed in peri-implant bone. The strain-energy density (SED rate under assessment of a 1 Hz loading cycle was 150 Jm-3 s-1, peak dislocations were lower then nm. Results Bone was in direct contact to the implant surface (bone/implant contact rate 90% from day one of implant insertion, as quantified by undecalcified histological sections. This effect was substantiated by ultrastructural analysis of intimate osteoblast attachment and mature collagen mineralisation at the titanium surface. We detected no loss in the intimate bone/implant bond during the experimental period of either control or experimental animals, indicating that immediate load had no adverse effect on bone structure in peri-implant bone. Conclusion In terms of clinical relevance, the load related bone reaction at the implant interface may in combination with substrate effects be responsible for an immediate osseointegration state.

  6. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2004-01-01

    Full Text Available This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks and complete healing period (3 months. Thirty endosseous titanium implants (conic screws with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM. The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA, both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant

  7. Optical properties of Cu implanted ZnO

    International Nuclear Information System (INIS)

    Cetin, A.; Kibar, R.; Ayvacikli, M.; Can, N.; Buchal, Ch.; Townsend, P.D.; Stepanov, A.L.; Karali, T.; Selvi, S.

    2006-01-01

    Nanoparticles of Cu have been made in zinc oxide crystals by ion implantation. The Cu ions were implanted at 400 keV into the (0 0 0 1) face of a single crystal. After implantation and after post-irradiation annealing there are numerous changes in the luminescence responses which include a variety of green and yellow emission bands. Following annealing at temperatures up to 1000 o C a green luminescence near 525 nm was observed which has been associated with the isolated Cu ions. The changes between as implanted and annealed luminescence signals suggests that the implants generate clustering or nanoparticle formation of Cu but anneals dissociate them

  8. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  9. Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion

    NARCIS (Netherlands)

    Hua, B.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Yan, N.; Chen, J.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    Solid oxide fuel cells (SOFCs) deliver an energy-efficient and eco-friendly pathway to convert biogas into syngas and electricity. However, many problems still need to be solved before their commercialization. Some of the disadvantages of biogas SOFC technology include coking and sulfur poisoning

  10. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  11. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  12. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  13. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    International Nuclear Information System (INIS)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-01-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products

  14. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Tan, Zongqing [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Badve, Aditya [Business and Biology, The University of North Carolina at Chapel Hill, NC 27514 (United States); Dong, Zhongyun [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Park, Chanhee; Kim, Cheol Sang [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States)

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products.

  15. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    Science.gov (United States)

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  16. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure.

    Science.gov (United States)

    Zhou, Rui; Wei, Daqing; Cheng, Su; Feng, Wei; Du, Qing; Yang, Haoyue; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2014-04-09

    Macroporous Ti with macropores of 50-400 μm size is prepared by sintering Ti microbeads with different diameters of 100, 200, 400, and 600 μm. Bioactive microarc oxidation (MAO) coatings with micropores of 2-5 μm size are prepared on the macroporous Ti. The MAO coatings are composed of a few TiO2 nanocrystals and lots of amorphous phases with Si, Ca, Ti, Na, and O elements. Compared to compact Ti, the MC3T3-E1 cell attachment is prolonged on macroporous Ti without and with MAO coatings; however, the cell proliferation number increases. These results are contributed to the effects of the space structure of macroporous Ti and the surface chemical feature and element dissolution of the MAO coatings during the cell culture. Macroporous Ti both without and with MAO coatings does not cause any adverse effects in vivo. The new bone grows well into the macropores and micropores of macroporous Ti with MAO coatings, showing good mechanical properties in vivo compared to Ti, MAO-treated Ti, and macroporous Ti because of its excellent osseointegration. Moreover, the MAO coatings not only show a high interface bonding strength with new bones but also connect well with macroporous Ti. Furthermore, the pushing out force for macroporous Ti with MAO coatings increases significantly with increasing microbead diameter.

  18. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    International Nuclear Information System (INIS)

    Szakacs, G.; Szilagyi, E.; Paszti, F.; Kotai, E.

    2008-01-01

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO 2 films. To study this process in details, helium was implanted into the central part of a buried SiO 2 island up to a fluence of 4 x 10 17 He/cm 2 . The implanted helium could be detected in the SiO 2 island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 μm thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity

  19. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  20. Intercavitary implants dosage calculation

    International Nuclear Information System (INIS)

    Rehder, B.P.

    The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt

  1. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  2. Optical and structural behaviour of Mn implanted sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Franco, N.; Kozanecki, A.; Silva, R.C. da; Alves, E.

    2006-01-01

    Sapphire single crystals were implanted at room temperature with 180 keV manganese ions to fluences up to 1.8 x 10 17 cm -2 . The samples were annealed at 1000 deg. C in oxidizing or reducing atmosphere. Surface damage was observed after implantation of low fluences, the amorphous phase being observed after implantation of 5 x 10 16 cm -2 , as seen by Rutherford backscattering spectroscopy under channelling conditions. Thermal treatments in air annealed most of the implantation related defects and promoted the redistribution of the manganese ions, in a mixed oxide phase. X-ray diffraction studies revealed the presence of MnAl 2 O 4 . On the contrary, similar heat treatments in vacuum led to enhanced out diffusion of Mn while the matrix remained highly damaged. The analysis of laser induced luminescence performed after implantation showed the presence of an intense red emission

  3. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  4. Insight into PreImplantation Factor (PIF* mechanism for embryo protection and development: target oxidative stress and protein misfolding (PDI and HSP through essential RIKP [corrected] binding site.

    Directory of Open Access Journals (Sweden)

    Eytan R Barnea

    Full Text Available Endogenous PIF, upon which embryo development is dependent, is secreted only by viable mammalian embryos, and absent in non-viable ones. Synthetic PIF (sPIF administration promotes singly cultured embryos development and protects against their demise caused by embryo-toxic serum. To identify and characterize critical sPIF-embryo protein interactions novel biochemical and bio-analytical methods were specifically devised.FITC-PIF uptake/binding by cultured murine and equine embryos was examined and compared with scrambled FITC-PIF (control. Murine embryo (d10 lysates were fractionated by reversed-phase HPLC, fractions printed onto microarray slides and probed with Biotin-PIF, IDE and Kv1.3 antibodies, using fluorescence detection. sPIF-based affinity column was developed to extract and identify PIF-protein interactions from lysates using peptide mass spectrometry (LC/MS/MS. In silico evaluation examined binding of PIF to critical targets, using mutation analysis.PIF directly targets viable cultured embryos as compared with control peptide, which failed to bind. Multistep Biotin-PIF targets were confirmed by single-step PIF-affinity column based isolation. PIF binds protein disulfide isomerases a prolyl-4-hydroxylase β-subunit, (PDI, PDIA4, PDIA6-like containing the antioxidant thioredoxin domain. PIF also binds protective heat shock proteins (70&90, co-chaperone, BAG-3. Remarkably, PIF targets a common RIKP [corrected] site in PDI and HSP proteins. Further, single PIF amino acid mutation significantly reduced peptide-protein target bonding. PIF binds promiscuous tubulins, neuron backbones and ACTA-1,2 visceral proteins. Significant anti-IDE, while limited anti-Kv1.3b antibody-binding to Biotin-PIF positive lysates HPLC fractions were documented.Collectively, data identifies PIF shared targets on PDI and HSP in the embryo. Such are known to play a critical role in protecting against oxidative stress and protein misfolding. PIF-affinity-column is a

  5. Corrosion resistance of uranium with carbon ion implantation

    International Nuclear Information System (INIS)

    Liang Hongwei; Yan Dongxu; Bai Bin; Lang Dingmu; Xiao Hong; Wang Xiaohong

    2008-01-01

    The carbon modified layers prepared on uranium surface by carbon ion implantation, gradient implantation, recoil implantation and ion beam assisted deposition process techniques were studied. Depth profile elements of the samples based on Auger electron spectroscopy, phase composition identified by X-ray diffraction as well as corrosion resistance of the surface modified layers by electrochemistry tester and humid-thermal oxidation test were carried out. The carbon modified layers can be obtained by above techniques. The samples deposited with 45 keV ion bombardment, implanted by 50 keV ions and implanted with gradient energies are of better corrosion resistance properties. The samples deposited carbon before C + implantation and C + assisted deposition exhibit worse corrosion resistance properties. The modified layers are dominantly dot-corraded, which grows from the dots into substructure, however, the assisted deposition samples have comparatively high carbon composition and are corraded weakly. (authors)

  6. Tribological effects of oxygen ion implantation into stainless steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Vilaithong, T.; Yu, L.D.; Monteiro, O.R.; Yu, K.M.; Brown, I.G.

    2000-01-01

    The formation of sub-surface oxide layers by hybrid metal-gas co-implantation into steel and other metals can improve their tribological properties. In this report, we compare the wear and friction performance of previously studied Al + O hybrid implants with that produced by single species oxygen ion (O + ) implantation under similar conditions. The substrates were AISI 304L stainless steel discs polished to a final mirror finish using 1 μm diamond paste, and the ion implantation was done using a conventional swept-beam technique at ion energies of 70 or 140 keV and doses of up to 1x10 17 cm -2 . The wear and friction behaviour of the implanted and unimplanted material was measured with a pin-on-disc tribometer. Here we describe the experimental procedure and results, and discuss the improvement relative to that achieved with surface layers modified by metal-gas co-implantation

  7. Trends in cochlear implants.

    Science.gov (United States)

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  8. Benefits and Risks of Cochlear Implants

    Science.gov (United States)

    ... and Medical Procedures Implants and Prosthetics Cochlear Implants Benefits and Risks of Cochlear Implants Share Tweet Linkedin ... the Use of Cochlear Implants What are the Benefits of Cochlear Implants? For people with implants: Hearing ...

  9. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  10. Radiographic Bone Density around Dental Implants with Surface Modification by Laser Ablation followed by Hydroxyapatite Coating: A Study in Rabbit Tibiae

    DEFF Research Database (Denmark)

    Cazelato, Tiago; Spin-Neto, Rubens; Morais, J

    followed by hydroxyapatite coating with a surface that was oxide-blasted followed by acid etching. On this study twenty-four rabbits received two implants in each tibia, an oxide-blasted + acid-etched (ATS) and a hydroxyapatite-coated (HAP) implant. Radiographs of the implants were recorded after 4, 8...

  11. Implant damage and redistribution of indium in indium-implanted thin silicon-on-insulator

    International Nuclear Information System (INIS)

    Chen Peng; An Zhenghua; Zhu Ming; Fu, Ricky K.Y.; Chu, Paul K.; Montgomery, Neil; Biswas, Sukanta

    2004-01-01

    The indium implant damage and diffusion behavior in thin silicon-on-insulator (SOI) with a 200 nm top silicon layer were studied for different implantation energies and doses. Rutherford backscattering spectrometry in the channeling mode (RBS/C) was used to characterize the implant damage before and after annealing. Secondary ion mass spectrometry (SIMS) was used to study the indium transient enhanced diffusion (TED) behavior in the top Si layer of the SOI structure. An anomalous redistribution of indium after relatively high energy (200 keV) and dose (1 x 10 14 cm -2 ) implantation was observed in both bulk Si and SOI substrates. However, there exist differences in these two substrates that are attributable to the more predominant out-diffusion of indium as well as the influence of the buried oxide layer in the SOI structure

  12. Do "premium" joint implants add value?: analysis of high cost joint implants in a community registry.

    Science.gov (United States)

    Gioe, Terence J; Sharma, Amit; Tatman, Penny; Mehle, Susan

    2011-01-01

    Numerous joint implant options of varying cost are available to the surgeon, but it is unclear whether more costly implants add value in terms of function or longevity. We evaluated registry survival of higher-cost "premium" knee and hip components compared to lower-priced standard components. Premium TKA components were defined as mobile-bearing designs, high-flexion designs, oxidized-zirconium designs, those including moderately crosslinked polyethylene inserts, or some combination. Premium THAs included ceramic-on-ceramic, metal-on-metal, and ceramic-on-highly crosslinked polyethylene designs. We compared 3462 standard TKAs to 2806 premium TKAs and 868 standard THAs to 1311 premium THAs using standard statistical methods. The cost of the premium implants was on average approximately $1000 higher than the standard implants. There was no difference in the cumulative revision rate at 7-8 years between premium and standard TKAs or THAs. In this time frame, premium implants did not demonstrate better survival than standard implants. Revision indications for TKA did not differ, and infection and instability remained contributors. Longer followup is necessary to demonstrate whether premium implants add value in younger patient groups. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  13. Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications

    Directory of Open Access Journals (Sweden)

    Sahadev Somasundaram

    2018-01-01

    Full Text Available In this study, magnesium was implanted with calcium-ion and zinc-ion at fluences of 1015, 1016, and 1017 ion·cm−2, and its in vitro degradation behaviour was evaluated using electrochemical techniques in simulated body fluid (SBF. Rutherford backscattering spectrometry (RBS revealed that the implanted ions formed layers within the passive magnesium-oxide/hydroxide layers. Electrochemical impedance spectroscopy (EIS results demonstrated that calcium-ion implantation at a fluence of 1015 ions·cm−2 increased the polarisation resistance by 24%, but higher fluences showed no appreciable improvement. In the case of zinc-ion implantation, increase in the fluence decreased the polarisation resistance. A fluence of 1017 ion·cm−2 decreased the polarisation resistance by 65%, and fluences of 1015 and 1016 showed only marginal effect. Similarly, potentiodynamic polarisation results also suggested that low fluence of calcium-ion decreased the degradation rate by 38% and high fluence of zinc-ion increased the degradation rate by 61%. All the post-polarized ion-implanted samples and the bare metal revealed phosphate and carbonate formation. However, the improved degradative behaviour in calcium-ion implanted samples can be due to a relatively better passivation, whereas the reduction in degradation resistance in zinc-ion implanted samples can be attributed to the micro-galvanic effect.

  14. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  15. Ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Gusev, V.; Gusevova, M.

    1980-01-01

    The historical development is described of the method of ion implantation, the physical research of the method, its technological solution and practical uses. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material, ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions. (M.S.)

  16. Ion implantation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, V; Gusevova, M

    1980-06-01

    The historical development of the method of ion implantation, the physical research of the method, its technological solution and practical uses is described. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material and ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions.

  17. Trends in Cochlear Implants

    OpenAIRE

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic as...

  18. Characterization of nitrogen-ion-implanted aluminium

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Breuer, K.; Leonhardt, G.

    1990-01-01

    Aluminium has been implanted with nitrogen ions at different temperatures. The implanted samples have been characterized by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). Deconvolution procedures are needed to separate the influence of the ion sputter profiling by AES and XPS from the nitrogen-ion-beam-induced effects. The chemical state of Al, N, O and C was identified by deconvolution of the measured spectra. In general, there were double-peak structures observed for N 1s and O 1s, identified as contributions from nitrides and weakly bound nitrogen, and oxides and weakly bound oxygen, respectively. Auger analysis confirms the influence of the nitrogen ion fluence on the shape of the concentration distribution. The influence of temperature on the chemical state of implanted aluminium and on the concentration distribution is discussed. (orig.)

  19. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  20. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  1. [Silastic implant and synovitis].

    Science.gov (United States)

    Sennwald, G

    1989-07-22

    The silastic implant based on siloxane polymere induces granulomatous synovitis in certain predisposed individuals, a reaction which may continue even after removal of the implant. This is also true of a prosthesis of the trapezium in two of our patients, though to a lesser degree. This is probably the reason why the problem has not yet been widely recognized. The hypothesis is put forward that an enzymatic predisposition may allow chemical degradation of the fragmented silastic implant into a toxic component responsible for the pathologic condition. The slow progression of the lesions is a challenge for the future and puts in question the further use of silastic implants.

  2. Cochlear implant magnet retrofit.

    Science.gov (United States)

    Cohen, N L; Breda, S D; Hoffman, R A

    1988-06-01

    An implantable magnet is now available for patients who have received the standard Nucleus 22-channel cochlear implant and who are not able to wear the headband satisfactorily. This magnet is attached in piggy-back fashion to the previously implanted receiver/stimulator by means of a brief operation under local anesthesia. Two patients have received this magnet retrofit, and are now wearing the headset with greater comfort and satisfaction. It is felt that the availability of this magnet will increase patient compliance in regard to hours of implant usage.

  3. Study of thermal treated a-Si implanted with Er and O ions

    CERN Document Server

    Plugaru, R; Piqueras, J; Tate, T J

    2002-01-01

    Visible luminescence of amorphous silicon layers either implanted with Er or co-implanted with Er and O and subsequently annealed in nitrogen has been investigated by cathodoluminescence (CL) in a scanning electron microscope. Co-implanted samples show a more intense luminescence, which is revealed by annealing at lower temperatures than the samples implanted only with erbium. Thermal treatments cause the formation of erbium oxide as well as Er-Si complexes or precipitates. Violet-blue luminescence has been found from CL images and spectra to be related to Er-Si precipitates. Emission in the green-red range is attributed to oxide species.

  4. Synthesis of titanium sapphire by ion implantation

    International Nuclear Information System (INIS)

    Morpeth, L.D.; McCallum, J.C.; Nugent, K.W.

    1998-01-01

    Since laser action was first demonstrated in titanium sapphire (Ti:Al 2 O 3 ) in 1982, it has become the most widely used tunable solid state laser source. The development of a titanium sapphire laser in a waveguide geometry would yield an elegant, compact, versatile and highly tunable light source useful for applications in many areas including optical telecommunications. We are investigating whether ion implantation techniques can be utilised to produce suitable crystal quality and waveguide geometry for fabrication of a Ti:Al 2 O 3 waveguide laser. The implantation of Ti and O ions into c-axis oriented α-Al 2 O 3 followed by subsequent thermal annealing under various conditions has been investigated as a means of forming the waveguide and optimising the fraction of Ti ions that have the correct oxidation state required for laser operation. A Raman Microprobe is being used to investigate the photo-luminescence associated with Ti 3+ ion. Initial photoluminescence measurements of ion implanted samples are encouraging and reveal a broad luminescence profile over a range of ∼ .6 to .9 μm, similar to that expected from Ti 3+ . Rutherford Backscattering and Ion Channelling analysis have been used to study the crystal structure of the samples following implantation and annealing. This enables optimisation of the implantation parameters and annealing conditions to minimise defect levels which would otherwise limit the ability of light to propagate in the Ti:Al 2O 3 waveguide. (authors)

  5. Percutaneous and skeletal biocarbon implants

    Science.gov (United States)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  6. Degradable Implantate: Entwicklungsbeispiele

    Science.gov (United States)

    Ruffieux, Kurt; Wintermantel, Erich

    Resorbierbare Implantate werden seit mehreren Jahrzehnten in der Implantologie eingesetzt. Bekannt wurden diese Biomaterialien mit dem Aufkommen von sich selbst auflösenden Nahtfäden auf der Basis von synthetisch hergestellten Polylactiden und Polyglycoliden in den 70er Jahren. In einem nächsten Schritt wurden Implantate wie Platten und Schrauben zur Gewebefixation aus den gleichen Biomaterialien hergestellt.

  7. Risks of Breast Implants

    Science.gov (United States)

    ... have a risk of developing a type of cancer called breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) in the breast tissue surrounding the implant. BIA-ALCL is not breast cancer. Women diagnosed with BIA-ALCL may need to ...

  8. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1976-01-01

    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  9. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  10. Number of implants for mandibular implant overdentures: a systematic review

    Science.gov (United States)

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  11. Ion implantation into iron

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1978-01-01

    The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)

  12. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  13. The use of tungsten as a chronically implanted material

    Science.gov (United States)

    Shah Idil, A.; Donaldson, N.

    2018-04-01

    This review paper shows that tungsten should not generally be used as a chronically implanted material. The metal has a long implant history, from neuroscience, vascular medicine, radiography, orthopaedics, prosthodontics, and various other fields, primarily as a result of its high density, radiopacity, tensile strength, and yield point. However, a crucial material criterion for chronically implanted metals is their long-term resistance to corrosion in body fluids, either by inherently noble metallic surfaces, or by protective passivation layers of metal oxide. The latter is often assumed for elemental tungsten, with references to its ‘inertness’ and ‘stability’ common in the literature. This review argues that in the body, metallic tungsten fails this criterion, and will eventually dissolve into the soluble hexavalent form W6+, typically represented by the orthotungstate WO42- (monomeric tungstate) anion. This paper outlines the metal’s unfavourable corrosion thermodynamics in the human physiological environment, the chemical pathways to either metallic or metal oxide dissolution, the rate-limiting steps, and the corrosion-accelerating effects of reactive oxidising species that the immune system produces post-implantation. Multiple examples of implant corrosion have been reported, with failure by dissolution to varying extents up to total loss, with associated emission of tungstate ions and elevated blood serum levels measured. The possible toxicity of these corrosion products has also been explored. As the field of medical implants grows and designers explore novel solutions to medical implant problems, the authors recommend the use of alternative materials.

  14. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-01-01

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO 2 with some Mg(OH) 2 . The middle layer that is 50 nm thick comprises predominantly TiO 2 and MgO with minor contributions from MgAl 2 O 4 and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti 3 Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37±1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased β-Mg 12 Al 17 phase

  15. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  16. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    Science.gov (United States)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  17. Implants for orthodontic anchorage

    Science.gov (United States)

    Zheng, Xiaowen; Sun, Yannan; Zhang, Yimei; Cai, Ting; Sun, Feng; Lin, Jiuxiang

    2018-01-01

    Abstract Implantanchorage continues to receive much attention as an important orthodontic anchorage. Since the development of orthodontic implants, the scope of applications has continued to increase. Although multiple reviews detailing implants have been published, no comprehensive evaluations have been performed. Thus, the purpose of this study was to comprehensively evaluate the effects of implants based on data published in review articles. An electronic search of the Cochrane Library, Medline, Embase, Ebsco and Sicencedirect for reviews with “orthodontic” and “systematic review or meta analysis” in the title, abstract, keywords, or full text was performed. A subsequent manual search was then performed to identify reviews concerning orthodontic implants. A manual search of the orthodontic journals American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), European Journal of Orthodontics (EJO), and Angle Othodontist was also performed. Such systematic reviews that evaluated the efficacy and safety of orthodontic implants were used to indicate success rates and molar movements. A total of 23 reviews were included in the analysis. The quality of each review was assessed using a measurement tool for Assessment of Multiple Systematic Reviews (AMSTAR), and the review chosen to summarize outcomes had a quality score of >6. Most reviews were less than moderate quality. Success rates of implants ranged in a broad scope, and movement of the maxillary first molar was superior with implants compared with traditional anchorage. PMID:29595673

  18. Maintenance in dental implants

    Directory of Open Access Journals (Sweden)

    Giselle Póvoa Gomes

    2008-01-01

    Full Text Available In implants, maintenance is a decisive factor for obtaining success when implant supported overdentures and dentures are used. The present stud presents, a clinical case of a patient, a 70 year-old white man, with a completely edentulous mandibular alveolar ridge, severe bone resorption with presence of basal bone only, and absence of vestibule. Initially, treatment consisted of the placement of a mandibular overdenture, supported on three implants in the anterior inter-foramen region, as the left implant was transfixed in the basal bone of 2 to 3 millimeters. Eleven years later, another two implants were placed in the anterior area and an immediate load was performed up to the first molars, for the placement of an implant supported fixed. Throughout the entire treatment, meticulous maintenance was carried out, with follow-up for fourteen years, interrupted by the patient’s death. From the third month after the opening the three implants initially placed, the presence of keratinized mucosa, definition of the vestibule, maturation of the alveolar ridge and bone formation in the mento region were observed. It was concluded that good planning, allied to mastery of the technique and adequate maintenance were the prerequisites necessary for obtaining favorable results, success of the present case, and for the patient to have a better quality of life.

  19. Nanotechnology for dental implants.

    Science.gov (United States)

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  20. Ion implantation for microelectronics

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1977-01-01

    Ion implantation has proved to be a versatile and efficient means of producing microelectronic devices. This review summarizes the relevant physics and technology and assesses the advantages of the method. Examples are then given of widely different device structures which have been made by ion implantation. While most of the industrial application has been in silicon, good progress continues to be made in the more difficult field of compound semiconductors. Equipment designed for the industrial ion implantation of microelectronic devices is discussed briefly. (Auth.)

  1. Optimization of dental implantation

    Science.gov (United States)

    Dol, Aleksandr V.; Ivanov, Dmitriy V.

    2017-02-01

    Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.

  2. The influence of ion implantation on the surface properties of metals and alloys

    International Nuclear Information System (INIS)

    Grant, W.A.; Carter, G.

    1975-10-01

    The report falls into three sections: (1) annealing behaviour of high dose rare gas (Ne, Ar, Kr, Xe) implantations into silicon; (2) measurement of projected and lateral range parameters for low energy heavy ions (Ar, Cu, Kr, Cd, Xe, Cs, Dy, W, Au, Pb, Bi) in silicon by Rutherford backscattering; (3) surface chemistry of ion implanted solids (e.g. corrosion, catalysis, oxidation, synthesis of compounds in ion implanted layers). (U.K.)

  3. Breast Reconstruction with Implants

    Science.gov (United States)

    ... your surgical options and discuss the advantages and disadvantages of implant-based reconstruction, and may show you ... Policy Notice of Privacy Practices Notice of Nondiscrimination Advertising Mayo Clinic is a not-for-profit organization ...

  4. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  5. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  6. Detection and reduction of tungsten contamination in ion implantation processes

    International Nuclear Information System (INIS)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D.

    2016-01-01

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10 10 cm -2 ). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Detection and reduction of tungsten contamination in ion implantation processes

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Galbiati, A.; Grasso, S.; Mica, I.; Barbarossa, F.; Magni, D. [STMicroelectronics, Agrate Brianza (Italy)

    2016-12-15

    In this paper, we review the results of some studies addressing the problem of tungsten contamination in implantation processes. For some tests, the implanter was contaminated by implantation of wafers with an exposed tungsten layer, resulting in critical contamination conditions. First, DLTS (deep level transient spectroscopy) measurements were calibrated to measure tungsten contamination in ion-implanted samples. DLTS measurements of tungsten-implanted samples showed that the tungsten concentration increases linearly with the dose up to a rather low dose (5 x 10{sup 10} cm{sup -2}). Tungsten deactivation was observed when the dose was further increased. Under these conditions, ToF-SIMS revealed tungsten at the wafer surface, showing that deactivation was due to surface segregation. DLTS calibration could therefore be obtained in the linear dose regime only. This calibration was used to evaluate the tungsten contamination in arsenic implantations. Ordinary operating conditions and critical contamination conditions of the equipment were compared. A moderate tungsten contamination was observed in samples implanted under ordinary operating conditions. This contamination was easily suppressed by a thin screen oxide. On the contrary, implantations in critical conditions of the equipment resulted in a relevant tungsten contamination, which could be reduced but not suppressed even by a relatively thick screen oxide (up to 150 Aa). A decontamination process consisting of high dose implantations of dummy wafers was tested for its efficiency to remove tungsten and titanium contamination. This process was found to be much more effective for titanium than for tungsten. Finally, DLTS proved to be much more sensitive that TXRF (total reflection X-ray fluorescence) in detecting tungsten contamination. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  9. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  10. Ion implantation - an introduction

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1986-01-01

    Ion implantation is a widely used technique with a literature that covers semiconductor production, surface treatments of steels, corrosion resistance, catalysis and integrated optics. This brief introduction outlines advantages of the technique, some aspects of the underlying physics and examples of current applications. Ion implantation is already an essential part of semiconductor technology while in many other areas it is still in an early stage of development. The future scope of the subject is discussed. (author)

  11. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  12. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  13. Contraceptive implants: current perspectives

    Directory of Open Access Journals (Sweden)

    Rowlands S

    2014-09-01

    Full Text Available Sam Rowlands,1,2 Stephen Searle3 1Centre of Postgraduate Medical Research and Education, School of Health and Social Care, Bournemouth University, Bournemouth, United Kingdom; 2Dorset HealthCare, Bournemouth, United Kingdom; 3Sexual Health Services, Chesterfield, United KingdomAbstract: Progestin-only contraceptive implants are a highly cost-effective form of long-acting reversible contraception. They are the most effective reversible contraceptives and are of a similar effectiveness to sterilization. Pregnancies are rare in women using this method of contraception, and those that do occur must be fully investigated, with an ultrasound scan of the arm and serum etonogestrel level if the implant cannot be located. There are very few contraindications to use of implants, and they have an excellent safety profile. Both acceptability and continuation with the method are high. Noncontraceptive benefits include improvements in dysmenorrhea, ovulatory pain, and endometriosis. Problematic bleeding is a relatively common adverse effect that must be covered in preinsertion information-giving and supported adequately if it occurs. Recognized training for both insertion and removal should be undertaken. Care needs to be taken at both insertion and removal to avoid neurovascular injury. Implants should always be palpable; if they are not, noninsertion should be assumed until disproven. Etonogestrel implants are now radiopaque, which aids localization. Anticipated difficult removals should be performed by specially trained experts. Keywords: contraceptive, subdermal implant, etonogestrel, levonorgestrel, progestin-only, long-acting reversible contraception

  14. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  15. Plasma source ion implantation

    International Nuclear Information System (INIS)

    Conrad, J.R.; Forest, C.

    1986-01-01

    The authors' technique allows the ion implantation to be performed directly within the ion source at higher currents without ion beam extraction and transport. The potential benefits include greatly increased production rates (factors of 10-1000) and the ability to implant non-planar targets without rastering or shadowing. The technique eliminates the ion extractor grid set, beam raster equipment, drift space and target manipulator equipment. The target to be implanted is placed directly within the plasma source and is biased to a large negative potential so that plasma ions gain energy as they accelerate through the potential drop across the sheath that forms at the plasma boundary. Because the sheath surrounds the target on all sides, all surfaces of the target are implanted without the necessity to raster the beam or to rotate the target. The authors have succeeded in implanting nitrogen ions in a silicon target to the depths and concentrations required for surface treatment of materials like stainless steel and titanium alloys. They have performed ESCA measurements of the penetration depth profile of a silicon target that was biased to 30 kV in a nitrogen discharge plasma. Nitrogen ions were implanted to a depth of 700A at a peak concentration of 30% atomic. The measured profile is quite similar to a previously obtained profile in titanium targets with conventional techniques

  16. Short dental implants: an emerging concept in implant treatment.

    Science.gov (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  17. Study of high energy ion implantation of boron and oxygen in silicon

    International Nuclear Information System (INIS)

    Thevenin, P.

    1991-06-01

    Three aspects of high energy (0.5-3 MeV) light ions ( 11 B + and 16 O + ) implantation in silicon are examined: (1)Spatial repartition; (2) Target damage and (3) Synthesis by oxygen implantation of a buried silicon oxide layer

  18. The Biolink Implantable Telemetry System

    Science.gov (United States)

    Betancourt-Zamora, Rafael J.

    1999-01-01

    Most biotelemetry applications deal with the moderated data rates of biological signals. Few people have studied the problem of transcutaneous data transmission at the rates required by NASA's Life Sciences-Advanced BioTelemetry System (LS-ABTS). Implanted telemetry eliminate the problems associated with wire breaking the skin, and permits experiments with awake and unrestrained subjects. Our goal is to build a low-power 174-216MHz Radio Frequency (RF) transmitter suitable for short range biosensor and implantable use. The BioLink Implantable Telemetry System (BITS) is composed of three major units: an Analog Data Module (ADM), a Telemetry Transmitter Module (TTM), and a Command Receiver Module (CRM). BioLink incorporates novel low-power techniques to implement a monolithic digital RF transmitter operating at 100kbps, using quadrature phase shift keying (QPSK) modulation in the 174-216MHz ISM band. As the ADM will be specific for each application, we focused on solving the problems associated with a monolithic implementation of the TTM and CRM, and this is the emphasis of this report. A system architecture based on a Frequency-Locked Loop (FLL) Frequency Synthesizer is presented, and a novel differential frequency that eliminates the need for a frequency divider is also shown. A self sizing phase modulation scheme suitable for low power implementation was also developed. A full system-level simulation of the FLL was performed and loop filter parameters were determined. The implantable antenna has been designed, simulated and constructed. An implant package compatible with the ABTS requirements is also being proposed. Extensive work performed at 200MHz in 0.5um complementary metal oxide semiconductors (CMOS) showed the feasibility of integrating the RF transmitter circuits in a single chip. The Hajimiri phase noise model was used to optimize the Voltage Controlled Oscillator (VCO) for minimum power consumption. Two test chips were fabricated in a 0.5pm, 3V CMOS

  19. Ion irradiation studies of oxide ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1988-01-01

    This paper presents the initial results of an investigation of the depth-dependent microstructures of three oxide ceramics following ion implantation to moderate doses. The implantations were performed using ion species that occur as cations in the target material; for example, Mg + ions were used for MgO and MgAl 2 O 4 (spinel) irradiations. This minimized chemical effects associated with the implantation and allowed a more direct evaluation to be made of the effects of implanted ions on the microstructure. 11 refs., 14 figs

  20. Influence of Micro Threads Alteration on Osseointegration and Primary Stability of Implants: An FEA and In Vivo Analysis in Rabbits.

    Science.gov (United States)

    Chowdhary, Ramesh; Halldin, Anders; Jimbo, Ryo; Wennerberg, Ann

    2015-06-01

    To describe the early bone tissue response to implants with and without micro threads designed to the full length of an oxidized titanium implant. A pair of two-dimensional finite element models was designed using a computer aided three-dimensional interactive application files of an implant model with micro threads in between macro threads and one without micro threads. Oxidized titanium implants with (test implants n=20) and without (control implants n=20) micro thread were prepared. A total of 12 rabbits were used and each received four implants. Insertion torque while implant placement and removal torque analysis after 4 weeks was performed in nine rabbits, and histomorphometric analysis in three rabbits, respectively. Finite element analysis showed less stress accumulation in test implant models with 31Mpa when compared with 62.2 Mpa in control implant model. Insertion and removal torque analysis did not show any statistical significance between the two implant designs. At 4 weeks, there was a significant difference between the two groups in the percentage of new bone volume and bone-to-implant contact in the femur (pmicro threads was prominent in the femur suggesting that micro threads promote bone formation. The stress distribution supported by the micro threads was especially effective in the cancellous bone. © 2013 Wiley Periodicals, Inc.

  1. Corrosion behaviour of pure iron implanted with Pd ion beam

    International Nuclear Information System (INIS)

    Sang, J.M.; Lin, W.L.; Wu, Z.D.; Wang, H.S.

    1999-01-01

    The corrosion behavior of pure iron implanted with Pd ions up to doses in the range 1x10 16 -1x10 18 ions/cm 2 at an extracting voltage 45kV by using MEVVA source ion implanter has been investigated. The concentration profiles and valence states of elements at the near surface of Pd implanted iron specimens were analyzed by AES and XPS respectively. The Anodic dissolution process of Pd implanted pure iron was measured by means of potentiokinetic sweep in a 0.5 mol/1 NaAc/Hac buffer solution with pH5.0. The open circuit corrosion potential as a function of immersion time was used to evaluate the corrosion resistance of Pd implanted iron specimens. The experimental results show that Pd ion implantation decreases the critical passive current of iron and maintains a better passivity in acetate buffer solution with pH5.0. It is interesting that the active corrosion rate of Pd implanted iron is even higher than that of unimplanted one, when the oxide layer on the surface of iron has been damaged. (author)

  2. [Bilateral cochlear implants].

    Science.gov (United States)

    Müller, J

    2017-07-01

    Cochlear implants (CI) are standard for the hearing rehabilitation of severe to profound deafness. Nowadays, if bilaterally indicated, bilateral implantation is usually recommended (in accordance with German guidelines). Bilateral implantation enables better speech discrimination in quiet and in noise, and restores directional and spatial hearing. Children with bilateral CI are able to undergo hearing-based hearing and speech development. Within the scope of their individual possibilities, bilaterally implanted children develop faster than children with unilateral CI and attain, e.g., a larger vocabulary within a certain time interval. Only bilateral implantation allows "binaural hearing," with all the benefits that people with normal hearing profit from, namely: better speech discrimination in quiet and in noise, as well as directional and spatial hearing. Naturally, the developments take time. Binaural CI users benefit from the same effects as normal hearing persons: head shadow effect, squelch effect, and summation and redundancy effects. Sequential CI fitting is not necessarily disadvantageous-both simultaneously and sequentially fitted patients benefit in a similar way. For children, earliest possible fitting and shortest possible interval between the two surgeries seems to positively influence the outcome if bilateral CI are indicated.

  3. Psychological intervention following implantation of an implantable defibrillator

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; van den Broek, Krista C; Sears, Samuel F

    2007-01-01

    The medical benefits of the implantable cardioverter defibrillator (ICD) are unequivocal, but a subgroup of patients experiences emotional difficulties following implantation. For this subgroup, some form of psychological intervention may be warranted. This review provides an overview of current ...

  4. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction.

    Science.gov (United States)

    Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan

    2018-01-01

    Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12-24 (Pformation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo , quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.

  5. Feasibility study of self-lubrication by chlorine implantation

    International Nuclear Information System (INIS)

    Akhajdenung, T.; Aizawa, T.; Yoshitake, M.; Mitsuo, A.

    2003-01-01

    Implantation of chlorine into titanium nitride (TiN) coating on the high-speed steel substrate has succeeded in significant reduction of wear rate and friction coefficient for original TiN under dry wear condition. Through precise investigation on the surface reaction in the wear track, in situ formation of oxygen-deficient titanium oxides was found to play a role as a lubricious oxide. In the present paper, this self-lubrication mechanism is further investigated for various wearing conditions. For wide range of sliding speed and normal load in the wear map, the wear volume of a counter material is actually reduced with comparison to the un-implanted TiN. Effect of the ion implantation dose on this self-lubrication mechanism is also studied for practical use. Some comments are made on further application of this self-lubrication to manufacturing

  6. Management of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Jayachandran Prathapachandran

    2012-01-01

    Full Text Available Peri-implantitis is a site-specific infectious disease that causes an inflammatory process in soft tissues, and bone loss around an osseointegrated implant in function. The etiology of the implant infection is conditioned by the status of the tissue surrounding the implant, implant design, degree of roughness, external morphology, and excessive mechanical load. The microorganisms most commonly associated with implant failure are spirochetes and mobile forms of Gram-negative anaerobes, unless the origin is the result of simple mechanical overload. Diagnosis is based on changes of color in the gingiva, bleeding and probing depth of peri-implant pockets, suppuration, X-ray, and gradual loss of bone height around the tooth. Treatment will differ depending upon whether it is a case of peri-implant mucositis or peri-implantitis. The management of implant infection should be focused on the control of infection, the detoxification of the implant surface, and regeneration of the alveolar bone. This review article deals with the various treatment options in the management of peri-implantitis. The article also gives a brief description of the etiopathogenesis, clinical features, and diagnosis of peri-implantitis.

  7. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Science.gov (United States)

    Pozhitkov, Alex E; Daubert, Diane; Brochwicz Donimirski, Ashley; Goodgion, Douglas; Vagin, Mikhail Y; Leroux, Brian G; Hunter, Colby M; Flemmig, Thomas F; Noble, Peter A; Bryers, James D

    2015-01-01

    Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  8. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Directory of Open Access Journals (Sweden)

    Alex E Pozhitkov

    Full Text Available Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  9. Ion implantation control system

    International Nuclear Information System (INIS)

    Gault, R. B.; Keutzer, L. L.

    1985-01-01

    A control system is disclosed for an ion implantation system of the type in which the wafers to be implanted are mounted around the periphery of a disk which rotates and also moves in a radial direction relative to an ion beam to expose successive sections of each wafer to the radiation. The control system senses beam current which passes through one or more apertures in the disk and is collected by a Faraday cup. This current is integrated to obtain a measure of charge which is compared with a calculated value based upon the desired ion dosage and other parameters. The resultant controls the number of incremental steps the rotating disk moves radially to expose the adjacent sections of each wafer. This process is continued usually with two or more traverses until the entire surface of each wafer has been implanted with the proper ion dosage

  10. Implantation for tribological applications

    International Nuclear Information System (INIS)

    Leutenecker, R.; Cao-Minh, U.; Overbeck, R.

    1992-08-01

    Empirical results on the strength enhancement of steels by N- and B-implantation should be explained from a materials science point of view. The methods applied were X-ray diffractometry and element depth profiling. The investigations of N-implanted steels focussed on the nitride formation in selected model materials and, with respect to applications, in: X90 CrMoV and S 6-5-2 tool steels, austenite X10 CrNiTi189 as well as in hard chromium plates. Main topic in B-implanted steels were the transformations: crystalline Fe-phase - amorphous Fe-B-phase - crystalline boride phases. The result is an improvement in process control by first an insight into the strength enhancing mechanisms and second in into their generation depending on the materials microstructure and the process parameter. (orig.). 101 figs., 16 tabs., 15 refs [de

  11. Dental implants: A review.

    Science.gov (United States)

    Guillaume, B

    2016-12-01

    A high number of patients have one or more missing tooth and it is estimated that one in four American subjects over the age of 74 have lost all their natural teeth. Many options exist to replace missing teeth but dental implants have become one of the most used biomaterial to replace one (or more) missing tooth over the last decades. Contemporary dental implants made with titanium have been proven safe and effective in large series of patients. This review considers the main historical facts concerned with dental implants and present the different critical factors that will ensure a good osseo-integration that will ensure a stable prosthesis anchorage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Analysis of the elements sputtered during the lanthanum implantation in stainless steels

    International Nuclear Information System (INIS)

    Ager, F.J.; Respaldiza, M.A.; Silva, M.F. da; Redondo, L.M.; Soares, J.C.

    1998-01-01

    The evidence of the modification of the surface structure of the AISI-304 stainless steel during the implantation of lanthanum makes the analysis of the sputtered elements very interesting. Those sputtered elements are deposited on a carbon sheet placed in front of the steel being implanted, and studied by means of RBS and PIXE, together with the implanted specimens. Besides, the protective effect of the implanted ions during the high temperature oxidation is also studied by those techniques together with XRD and thermogravimetric methods. (orig.)

  13. Science and technology of biocompatible thin films for implantable biomedical devices.

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  14. Tribology of implantation bilayers

    International Nuclear Information System (INIS)

    Pivin, J.C.

    1989-01-01

    The mechanical behaviour of implantation films must be analysed in terms of bilayer rheology (laws of mechanical behaviour). Tribology takes into account thermodynamical, chemical and metallurgical parameters to interpret the friction properties of a system as a whole. One can distinguish between alloying effects of ion implantation and structural modifications. Alloying affects the basic properties of the crystal: elasticity, cohesion, mobility of planar defects, and its surface electronic structure, which determines the reactivity with the atmosphere or the friction counterpart (adhesion). Radiation damage and phase changes act more particularly on the modes of gliding and climbing of dislocations, and fracture mechanisms. 105 refs.; 11 figs.; 1 table

  15. [Tinnitus and implants].

    Science.gov (United States)

    Despreaux, G; Tison, P; Van Den Abbeele, T; Moine, A; Frachet, B

    1990-01-01

    The experience with cochlear implantation at Avicenne hospital prompted us to carry out a retrospective study on tinnitus in a population of operated patients. Improvement or disappearance of the symptoms was noted in all cases. These results, which partly match those found in the literature, are probably produced by rehabilitation inhibiting the "deafferentation" mechanisms in analogy with pain phenomena. In some precise cases, which are described, they led us to proposing implantation even though the main, if not sole, complaint of the patient was tinnitus.

  16. Surface metal standards produced by ion implantation through a removable layer

    International Nuclear Information System (INIS)

    Schueler, B.W.; Granger, C.N.; McCaig, L.; McKinley, J.M.; Metz, J.; Mowat, I.; Reich, D.F.; Smith, S.; Stevie, F.A.; Yang, M.H.

    2003-01-01

    Surface metal concentration standards were produced by ion implantation and investigated for their suitability to calibrate surface metal measurements by secondary ion mass spectrometry (SIMS). Single isotope implants were made through a 100 nm oxide layer on silicon. The implant energies were chosen to place the peak of the implanted species at a depth of 100 nm. Subsequent removal of the oxide layer was used to expose the implant peak and to produce controlled surface metal concentrations. Surface metal concentration measurements by time-of-flight SIMS (TOF-SIMS) with an analysis depth of 1 nm agreed with the expected surface concentrations of the implant standards with a relative mean standard deviation of 20%. Since the TOF-SIMS relative sensitivity factors (RSFs) were originally derived from surface metal measurements of surface contaminated silicon wafers, the agreement implies that the implant standards can be used to measure RSF values. The homogeneity of the surface metal concentration was typically <10%. The dopant dose remaining in silicon after oxide removal was measured using the surface-SIMS protocol. The measured implant dose agreed with the expected dose with a mean relative standard deviation of 25%

  17. Niobium based coatings for dental implants

    International Nuclear Information System (INIS)

    Ramirez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J.

    2011-01-01

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb 2 O 5 (a-Nb 2 O 5 ), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  18. Development of vertical compact ion implanter for gemstones applications

    Science.gov (United States)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.; Singkarat, S.

    2014-08-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  19. Development of vertical compact ion implanter for gemstones applications

    International Nuclear Information System (INIS)

    Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S.

    2014-01-01

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented

  20. Development of vertical compact ion implanter for gemstones applications

    Energy Technology Data Exchange (ETDEWEB)

    Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Wijaikhum, A. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Ion implantation technique was applied as an effective non-toxic treatment of the local Thai natural corundum including sapphires and rubies for the enhancement of essential qualities of the gemstones. Energetic oxygen and nitrogen ions in keV range of various fluences were implanted into the precious stones. It has been thoroughly proved that ion implantation can definitely modify the gems to desirable colors together with changing their color distribution, transparency and luster properties. These modifications lead to the improvement in quality of the natural corundum and thus its market value. Possible mechanisms of these modifications have been proposed. The main causes could be the changes in oxidation states of impurities of transition metals, induction of charge transfer from one metal cation to another and the production of color centers. For these purposes, an ion implanter of the kind that is traditionally used in semiconductor wafer fabrication had already been successfully applied for the ion beam bombardment of natural corundum. However, it is not practical for implanting the irregular shape and size of gem samples, and too costly to be economically accepted by the gem and jewelry industry. Accordingly, a specialized ion implanter has been requested by the gem traders. We have succeeded in developing a prototype high-current vertical compact ion implanter only 1.36 m long, from ion source to irradiation chamber, for these purposes. It has been proved to be very effective for corundum, for example, color improvement of blue sapphire, induction of violet sapphire from low value pink sapphire, and amelioration of lead-glass-filled rubies. Details of the implanter and recent implantation results are presented.

  1. Recent advances in dental implants.

    Science.gov (United States)

    Hong, Do Gia Khang; Oh, Ji-Hyeon

    2017-12-01

    Dental implants are a common treatment for the loss of teeth. This paper summarizes current knowledge on implant surfaces, immediate loading versus conventional loading, short implants, sinus lifting, and custom implants using three-dimensional printing. Most of the implant surface modifications showed good osseointegration results. Regarding biomolecular coatings, which have been recently developed and studied, good results were observed in animal experiments. Immediate loading had similar clinical outcomes compared to conventional loading and can be used as a successful treatment because it has the advantage of reducing treatment times and providing early function and aesthetics. Short implants showed similar clinical outcomes compared to standard implants. A variety of sinus augmentation techniques, grafting materials, and alternative techniques, such as tilted implants, zygomatic implants, and short implants, can be used. With the development of new technologies in three-dimension and computer-aided design/computer-aided manufacturing (CAD/CAM) customized implants can be used as an alternative to conventional implant designs. However, there are limitations due to the lack of long-term studies or clinical studies. A long-term clinical trial and a more predictive study are needed.

  2. Untreated silicone breast implant rupture

    DEFF Research Database (Denmark)

    Hölmich, Lisbet R; Vejborg, Ilse M; Conrad, Carsten

    2004-01-01

    Implant rupture is a well-known complication of breast implant surgery that can pass unnoticed by both patient and physician. To date, no prospective study has addressed the possible health implications of silicone breast implant rupture. The aim of the present study was to evaluate whether untre...

  3. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Li, Yan, E-mail: liyan@buaa.edu.cn; Jiang, Chengbao

    2017-05-01

    Highlights: • Fe{sub 2}O{sub 3}/ZnO oxides were formed on the surface of Zn implanted pure Fe samples. • The corrosion rate of the pure Fe in SBF was increased after Zn implantation. • Cytocompatibility of the pure Fe was improved by Zn ion implantation. - Abstract: Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40–60 nm and Fe{sub 2}O{sub 3}/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (E{sub corr}) and a 10-fold increase in the corrosion current density (i{sub corr}) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  4. Two-stage implant systems.

    Science.gov (United States)

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  5. Semiconductor Ion Implanters

    International Nuclear Information System (INIS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-01-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  6. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies...

  8. Middle ear implants

    Directory of Open Access Journals (Sweden)

    K S Gangadhara Somayaji

    2013-01-01

    Full Text Available Hearing loss is becoming more common in the society living in cities with lot of background noise around, and frequent use of gadgets like mobile phones, MP3s, and IPods are adding to the problem. The loss may involve the conductive or perceptive pathway. Majority of the patients with conductive hearing loss will revert back to normal hearing levels with medical and/or surgical treatment. However, in sensorineural hearing loss, many factors are involved in the management. Though traditionally hearing aids in various forms are the most commonly used modality in managing these patients, there are some drawbacks associated with them. Implantable middle ear amplifiers represent the most recent breakthrough in the management of hearing loss. Middle ear implants are surgically implanted electronic devices that aim to correct hearing loss by stimulating the ossicular chain or middle ear. Of late, they are also being used in the management of congenital conductive hearing loss and certain cases of chronic otitis media with residual hearing loss. The article aims to provide general information about the technology, indications and contraindications, selection of candidates, available systems, and advantages of middle ear implants. (MEI

  9. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne

    2011-01-01

    the period 1999 to 2006; 239 one-stage procedures and 353 two-stage procedures. The postoperative course through November 2009 was evaluated by cumulative incidence adjusting for competing risks for the selected outcomes; hematoma, infection, seroma, implant rupture, severe capsular contracture (modified...

  10. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  11. Establishing contact between cell-laden hydrogels and metallic implants with a biomimetic adhesive for cell therapy supported implants.

    Science.gov (United States)

    Barthes, Julien; Mutschler, Angela; Dollinger, Camille; Gaudinat, Guillaume; Lavalle, Philippe; Le Houerou, Vincent; Brian McGuinness, Garrett; Engin Vrana, Nihal

    2017-12-15

    For in-dwelling implants, controlling the biological interface is a crucial parameter to promote tissue integration and prevent implant failure. For this purpose, one possibility is to facilitate the establishment of the interface with cell-laden hydrogels fixed to the implant. However, for proper functioning, the stability of the hydrogel on the implant should be ensured. Modification of implant surfaces with an adhesive represents a promising strategy to promote the adhesion of a cell-laden hydrogel on an implant. Herein, we developed a peptidic adhesive based on mussel foot protein (L-DOPA-L-lysine) 2 -L-DOPA that can be applied directly on the surface of an implant. At physiological pH, unoxidized (L-DOPA-L-lysine) 2 -L-DOPA was supposed to strongly adhere to metallic surfaces but it only formed a very thin coating (less than 1 nm). Once oxidized at physiological pH, (L-DOPA-L-lysine) 2 -L-DOPA forms an adhesive coating about 20 nm thick. In oxidized conditions, L-lysine can adhere to metallic substrates via electrostatic interaction. Oxidized L-DOPA allows the formation of a coating through self-polymerization and can react with amines so that this adhesive can be used to fix extra-cellular matrix based materials on implant surfaces through the reaction of quinones with amino groups. Hence, a stable interface between a soft gelatin hydrogel and metallic surfaces was achieved and the strength of adhesion was investigated. We have shown that the adhesive is non-cytotoxic to encapsulated cells and enabled the adhesion of gelatin soft hydrogels for 21 days on metallic substrates in liquid conditions. The adhesion properties of this anchoring peptide was quantified by a 180° peeling test with a more than 60% increase in peel strength in the presence of the adhesive. We demonstrated that by using a biomimetic adhesive, for the application of cell-laden hydrogels to metallic implant surfaces, the hydrogel/implant interface can be ensured without relying on the

  12. Effects of ion implantation on charges in the silicon--silicon dioxide system

    International Nuclear Information System (INIS)

    Learn, A.J.; Hess, D.W.

    1977-01-01

    Structures consisting of thermally grown oxide on silicon were implanted with boron, arsenic, or argon ions. For argon implantation through oxides, an increased fixed oxide charge (Q/sub ss/) was observed with the increase being greater for than for silicon. This effect is attributed to oxygen recoil which produces additional excess ionized silicon in the oxide of a type similar to that arising in thermal oxidation. Fast surface state (N/sub st/) generation was also noted which in most cases obscured the Q/sub ss/ increase. Of various heat treatments tested, only a 900 degreeC anneal in hydrogen annihilated N/sub st/ and allowed Q/sub ss/ measurement. Such N/sub st/ apparently arises as a consequence of implantation damage at the silicon--silicon dioxide interface. With the exception of boron implantations into thick oxides or through aluminum electrodes, reduction of the mobile ionic charge (Q/sub o/) was achieved by implantation. The reduction again is presumably damage related and is not negated by high-temperature annealing but may be counterbalanced by aluminum incorporation in the oxide

  13. Deuterium migration and trapping in uranium and uranium dioxide during D+ implantation

    International Nuclear Information System (INIS)

    Lewis, M.B.

    1980-01-01

    Uranium and UO 2 have been implanted with deuterium ions in the energy range 30-85 keV. Subsequently, the near surface regions (100-90000 Angstroem) of these samples were quantitatively profiled for deuterium oxygen using the method of ion beam microanalysis. Mean ranges and widths of the implanted ions were measured and compared with theoretical predictions. Fully oxidized samples were compared with those having only thin oxide films on their surfaces. While the deuterium appeared to migrate during its implantation in uranium, little or no migration appeared either during or after implantation in UO 2 . Further measurements suggest that thin surface oxide films strongly trap the deuterium migrating beneath the surface. It is suggested that the electronic energy loss of the ion beam lowers the effective activation energy for the formation of OD bonds near the target surface. (orig.)

  14. Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy

    International Nuclear Information System (INIS)

    Burnham, Shawn D.; Doolittle, W. Alan; Namkoong, Gon; Look, David C.; Clafin, Bruce

    2008-01-01

    The metal modulated epitaxy (MME) growth technique is reported as a reliable approach to obtain reproducible large hole concentrations in Mg-doped GaN grown by plasma-assisted molecular-beam epitaxy on c-plane sapphire substrates. An extremely Ga-rich flux was used, and modulated with the Mg source according to the MME growth technique. The shutter modulation approach of the MME technique allows optimal Mg surface coverage to build between MME cycles and Mg to incorporate at efficient levels in GaN films. The maximum sustained concentration of Mg obtained in GaN films using the MME technique was above 7x10 20 cm -3 , leading to a hole concentration as high as 4.5x10 18 cm -3 at room temperature, with a mobility of 1.1 cm 2 V -1 s -1 and a resistivity of 1.3 Ω cm. At 580 K, the corresponding values were 2.6x10 19 cm -3 , 1.2 cm 2 V -1 s -1 , and 0.21 Ω cm, respectively. Even under strong white light, the sample remained p-type with little change in the electrical parameters

  15. Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy

    Science.gov (United States)

    Burnham, Shawn D.; Namkoong, Gon; Look, David C.; Clafin, Bruce; Doolittle, W. Alan

    2008-07-01

    The metal modulated epitaxy (MME) growth technique is reported as a reliable approach to obtain reproducible large hole concentrations in Mg-doped GaN grown by plasma-assisted molecular-beam epitaxy on c-plane sapphire substrates. An extremely Ga-rich flux was used, and modulated with the Mg source according to the MME growth technique. The shutter modulation approach of the MME technique allows optimal Mg surface coverage to build between MME cycles and Mg to incorporate at efficient levels in GaN films. The maximum sustained concentration of Mg obtained in GaN films using the MME technique was above 7×1020cm-3, leading to a hole concentration as high as 4.5×1018cm-3 at room temperature, with a mobility of 1.1cm2V-1s-1 and a resistivity of 1.3Ωcm. At 580K, the corresponding values were 2.6×1019cm-3, 1.2cm2V-1s-1, and 0.21Ωcm, respectively. Even under strong white light, the sample remained p-type with little change in the electrical parameters.

  16. Improving bioactivity of inert bioceramics by a novel Mg-incorporated solution treatment

    Science.gov (United States)

    Dehestani, Mahdi; Zemlyanov, Dmitry; Adolfsson, Erik; Stanciu, Lia A.

    2017-12-01

    Zirconia/alumina ceramics possess outstanding mechanical properties for dental and orthopedic applications, but due to their poor surface bioactivities they exhibit a weak bone-bonding ability. This work proposes an effective 30-min solution treatment which could successfully induce formation of bone-like apatite on the surface of 3Y-TZP and a ternary composite composed of yttria-stabilized zirconia, ceria-stabilized zirconia, and alumina (35 vol% 3Y-TZP + 35 vol% 12Ce-TZP + 30 vol% Al2O3) after 3 weeks immersion in simulated body fluid (SBF). XRD was used for phase identification in the ceramic materials. The influence of solution treatment on the surface chemistry and its role on apatite formation were investigated via SEM, EDS and XPS. In vitro apatite-forming ability for the solution-treated and untreated samples of the composite and individual substrates of 3Y-TZP, 12Ce-TZP, and Al2O3 was evaluated by immersion in SBF. Apatite crystals were formed only on 3Y-TZP and composite substrates, implying that it is mainly the 3Y-TZP constituent that contributes to the bioactivity of the composite. Further, it was found from the XPS analysis that the zirconia material with higher phase stability (12Ce-TZP) produced less Zrsbnd OH functional groups on its surface after solution treatment which accounts for its weaker bioactivity compared to 3Y-TZP.

  17. Nitrogen implantation of Ti and Ti+Al films deposited on tool steel

    International Nuclear Information System (INIS)

    Huang, C.-T.; Duh, J.-G.

    1995-01-01

    Titanium and aluminum thin films were deposited onto A2 steel by rf magnetron sputtering with various Al contents. The coated assembly was then implanted with nitrogen ions at 92 kV and 1 mA for 4.5 h. The thickness of the implanted Ti and Ti+Al films deposited for 1 h was around 0.4-0.5 μm. With the aid of X-ray diffraction by the grazing-incidence technique, secondary ion mass spectrum (SIMS) and X-ray photoelectron spectroscopy (XPS), the titanium oxide and titanium nitride were identified on the top and inner surface in the implanted Ti film. For Ti+Al films after nitrogen implantation, Ti 3 O 5 was formed on the top surface beneath which is a (Ti, Al) N solid solution. There was Ti 2 N compound formed in the implanted Ti film, while only a minor amount of Ti 2 N phase was observed in the inner region in the implanted Ti+Al film. The nitrogen distribution was flattened and spread in the implanted Ti film, while a concentration gradient was observed in the Ti+Al film after implantation. The measured surface hardness of implanted Ti film was higher than those of Ti+Al films and the hardness of implanted Ti+39%Al film was enhanced as compared to the Ti+50%Al film. (Author)

  18. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  19. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    Science.gov (United States)

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  20. Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter

    Science.gov (United States)

    Raghavan, Shreya; Gilmont, Robert R.; Miyasaka, Eiichi A.; Somara, Sita; Srinivasan, Shanthi; Teitelbaum, Daniel H; Bitar, Khalil N.

    2011-01-01

    Background & Aims To restore fecal continence, the weakened pressure of the internal anal sphincter (IAS) must be increased. We bioengineered intrinsically innervated human IAS, to emulate sphincteric physiology, in vitro. Methods We co-cultured human IAS circular smooth muscle with immortomouse fetal enteric neurons. We investigated the ability of bioengineered innervated human IAS, implanted in RAG1−/− mice, to undergo neovascularization and preserve the physiology of the constituent myogenic and neuronal components. Results The implanted IAS was neovascularized in vivo; numerous blood vessels were observed with no signs of inflammation or infection. Real-time force acquisition from implanted and pre-implant IAS showed distinct characteristics of IAS physiology. Features included the development of spontaneous myogenic basal tone; relaxation of 100% of basal tone in response to inhibitory neurotransmitter vasoactive intestinal peptide (VIP) and direct electrical field stimulation of the intrinsic innervation; inhibition of nitrergic and VIPergic EFS-induced relaxation (by antagonizing nitric oxide synthesis or receptor interaction); contraction in response to cholinergic stimulation with acetylcholine; and intact electromechanical coupling (evidenced by direct response to potassium chloride). Implanted, intrinsically innervated bioengineered human IAS tissue preserved the integrity and physiology of myogenic and neuronal components. Conclusion Intrinsically innervated human IAS bioengineered tissue can be successfully implanted in mice. This approach might be used to treat patients with fecal incontinence. PMID:21463628

  1. Ion implantation in advanced planar and vertical devices

    International Nuclear Information System (INIS)

    Gossmann, Hans-Joachim L.

    2005-01-01

    The extent ('gate overlap') and slope ('abruptness') of the lateral junction are quickly replacing vertical junction depth as the most important physical junction metrics in advanced device architectures. This is in particular true for ultra-thin body devices, where the vertical junction is limited by a geometric constraint. The optimum gate overlap is quite small, or may even be negative, making a process without the need of high-tilt implantation feasible, even for dopant activation with negligible diffusion by flash annealing or laser thermal processing. Dopant activation by solid phase epitaxial regrowth might require high-tilt implants for a positive overlap. The use of such implants, however, is expected to lead to severe gate-poly and gate-oxide degradation. Scaling the 150 nm technology has drastically shrunk the overlap, accomplished by an equally aggressive reduction in thermal budget. For a 65 nm node device, a significant fraction of the overlap originates in the as-implanted dopant profile and the importance of diffusion is diminished. As a consequence small changes in the as-implanted profile are beginning to have a disproportionate impact on device characteristics. Small angular deviations of the incident beam from normal incidence, as seen by the wafer, lead to large changes in on-current. This can be alleviated significantly by a quad implant provided the tilt-angle is sufficiently large, in the order >5 deg.

  2. Development of a CMOS process using high energy ion implantation

    International Nuclear Information System (INIS)

    Stolmeijer, A.

    1986-01-01

    The main interest of this thesis is the use of complementary metal oxide semiconductors (CMOS) in electronic technology. Problems in developing a CMOS process are mostly related to the isolation well of p-n junctions. It is shown that by using high energy ion implantation, it is possible to reduce lateral dimensions to obtain a rather high packing density. High energy ion implantation is also presented as a means of simplifying CMOS processing, since extended processing steps at elevated temperatures are superfluous. Process development is also simplified. (Auth.)

  3. Adherent zirconia films by reactive ion implantation

    International Nuclear Information System (INIS)

    Bunker, S.N.; Armini, A.J.

    1993-01-01

    Conventional methods of forming ceramic coatings on metal substrates, such as CVD or plasma spray, typically retain a sharp interface and may have adhesion problems. In order to produce a completely mixed interface for better adhesion, a method using reactive ion implantation was used which can grow a thick stoichiometric film of an oxide ceramic starting from inside the substrate. Zirconium oxide ceramic films have been produced by this technique using a high-energy zirconium ion beam in an oxygen gas ambient. Compositional data are shown based on Auger electron spectroscopy of the film. Tribological properties of the layer were determined from wear and friction measurements using a pin-on-disk test apparatus. The adhesion was measured both by a scratch technique as well as by thermal shock. Results show an extremely adherent ZrO 2 film with good tribological properties

  4. Efter cochlear implant

    DEFF Research Database (Denmark)

    Højen, Anders

    Dit barn har netop fået et cochlear implant. Hvad nu? Skal barnet fokusere udelukkende på at lære talt sprog, eller skal det også lære/fortsætte med tegnsprog eller støttetegn? Det er et vanskeligt spørgsmål, og før valget foretages, er det vigtigt at vurdere hvilke konsekvenser valget har, dels...... for den sproglige udvikling isoleret set, og dels for barnets udvikling ud fra en helhedsbetragtning. Dette indlæg fokuserer på, hvilke forventninger man kan have til cochlear implant-brugeres sproglige udvikling med talt sprog alene, hhv. med to sprog (tale og tegn). Disse forventninger er baseret på...

  5. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne

    2012-01-01

    We evaluated the association between radiation therapy and severe capsular contracture or reoperation after 717 delayed breast implant reconstruction procedures (288 1- and 429 2-stage procedures) identified in the prospective database of the Danish Registry for Plastic Surgery of the Breast during...... of radiation therapy was associated with a non-significantly increased risk of reoperation after both 1-stage (HR = 1.4; 95% CI: 0.7-2.5) and 2-stage (HR = 1.6; 95% CI: 0.9-3.1) procedures. Reconstruction failure was highest (13.2%) in the 2-stage procedures with a history of radiation therapy. Breast...... reconstruction approaches other than implants should be seriously considered among women who have received radiation therapy....

  6. Piezosurgery in implant dentistry

    Science.gov (United States)

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  7. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.

    Science.gov (United States)

    Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan

    2018-05-10

    The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.

  8. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  9. The breast implant controversy.

    Science.gov (United States)

    Cook, R R; Harrison, M C; LeVier, R R

    1994-02-01

    The breast implant issue is a "bad news/good news" story. For many women with implants, the controversy has caused a fair degree of anxiety which may or may not be resolved as further information becomes available. It has also taken its toll on Dow Corning. Whole lines of medical products have been eliminated or are being phase out. The development of new medical applications has been terminated. As a consequence, employees have lost their jobs. What the effect will be on the biomedical industry as a whole remains to be seen (11). While silicones have been an important component in various medical devices, it is likely that other materials can be used as replacements. However, suppliers of non-silicone materials are also reevaluating their role in this market. For example, Du Pont, the nation's largest chemical company, has determined that the unpredictable and excessive costs of doing business with manufacturers of implantable medical devices no longer justifies the unrestricted sale of standard raw materials into this industry. Other companies are quietly following suit. On the up side, it is possible that the research being driven by this controversy will result in a greater understanding of the immunologic implications of xenobiotics, of the importance of nonbiased observations, of the need for ready access to valid data sets, and of the opportunity for valid scientific information to guide legal decisions. Only time will tell.

  10. Cochlear implants in children implanted in Jordan: A parental overview.

    Science.gov (United States)

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (pparents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  11. Origin for the shape of Au small crystals formed inside sapphire by ion implantation

    International Nuclear Information System (INIS)

    Ohkubo, M.; Hioki, T.

    1989-01-01

    In ion-implanted oxides, precipitation is usually formed except the case of forming solid solution. The precipitation comprises the metallic particles of implanted atoms, the oxide of implanted atoms, the metal of matrix elements, the compound of implanted atoms and matrix and so on. In particular, the metallic particles of implanted atoms are frequently faceted. From the facets, the equilibrium shape of crystals can be imagined. The equilibrium shape is determined so that the surface free energy is to be minimized. However, the shape of the metallic particles precipitated inside oxides should not be such equilibrium shape because they come in contact with foreign crystals. As the result, in the precipitation phenomena induced by ion implantation, the crystal structures of precipitated particles and substrates, the crystallographic relation between two crystals, interfacial energy and so on must be taken in consideration. In this paper, the report is made on the shape of the metallic gold particles formed inside sapphires by ion implantation that it was caused by only the crystal habit of sapphires regardless of the above-mentioned complexity. (K.I.)

  12. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szakacs, G. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: szilagyi@rmki.kfki.hu; Paszti, F.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-04-15

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO{sub 2} films. To study this process in details, helium was implanted into the central part of a buried SiO{sub 2} island up to a fluence of 4 x 10{sup 17} He/cm{sup 2}. The implanted helium could be detected in the SiO{sub 2} island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 {mu}m thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity.

  13. Sub-meninges implantation reduces immune response to neural implants.

    Science.gov (United States)

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.

  14. Comparison of two dental implant surface modifications on implants with same macrodesign: an experimental study in the pelvic sheep model.

    Science.gov (United States)

    Ernst, Sabrina; Stübinger, Stefan; Schüpbach, Peter; Sidler, Michéle; Klein, Karina; Ferguson, Stephen J; von Rechenberg, Brigitte

    2015-08-01

    The aim of this study was to compare two different surfaces of one uniform macro-implant design in order to focus exclusively on the osseointegration properties after 2, 4 and 8 weeks and to discuss the animal model chosen. In six mature sheep, n = 36 implants with a highly crystalline and phosphate-enriched anodized titanium oxide surface (TiU) and n = 36 implants with a hydrophilic, sandblasted, large grit and acid-etched surface (SLA) were placed in the pelvic bone. TiU implants were custom-made to match the SLA implant design. The implant stability and bone-to-implant contact (BIC) were assessed by resonance frequency (ISQ), backscatter scanning electron microscopy (B-SEM), light microscopy (LM), micro-CT and intravital fluorochrome staining. Biomechanical removal torque testing was performed. Overall, no statistically significant differences in BIC total (trabecular + cortical) between TiU and SLA were found via LM and B-SEM. BIC values (B-SEM; LM) in both groups revealed a steady rise in trabecular bone attachment to the implant surface after 2, 4 and 8 weeks. In the 2- to 4-week time interval in the TiU group (P = 0.005) as well as in the SLA group (P = 0.01), a statistically significant increase in BIC trabecular could be observed via LM. B-SEM values confirmed the statistically significant increase for TiU (P = 0.001). In both groups, BIC trabecular values after 8 weeks were significantly higher (P ≤ 0.05) than after 2 weeks (B-SEM; LM). Biomechanical data confirmed the histological data. The two surfaces proved comparable osseointegration in this sheep model. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    Science.gov (United States)

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  16. Improving osseointegration of dental implants.

    Science.gov (United States)

    Elias, Carlos Nelson; Meirelles, Luiz

    2010-03-01

    In the beginning of implantology, the procedures adopted for treating patients were performed in two surgical phases with an interval of 3-6 months. Nowadays, it is possible to insert and load a dental implant in the same surgical procedure. This change is due to several factors, such as improvement of surgical technique, modifications of the implant design, increased quality of implant manufacturing, development of the surgical instruments' quality, careful patient screening and adequate treatment of the implant surface. The clinical results show that adequate treatment of surfaces is crucial for reducing healing time and treating at-risk patients. The surface properties of dental implants can be significantly improved at the manufacturing stage, affecting cells' activity during the healing phase that will ultimately determine the host tissue response, a fundamental requirement for clinical success. This review focuses on different types of dental implant surfaces and the influence of surface characteristics on osseointegration.

  17. Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Cecilia Larsson Wexell

    2016-01-01

    Full Text Available This work characterises the ultrastructural composition of the interfacial tissue adjacent to electropolished, commercially pure titanium implants with and without subsequent anodisation, and it investigates whether a smooth electropolished surface can support bone formation in a manner similar to surfaces with a considerably thicker surface oxide layer. Screw-shaped implants were electropolished to remove all topographical remnants of the machining process, resulting in a thin spontaneously formed surface oxide layer and a smooth surface. Half of the implants were subsequently anodically oxidised to develop a thickened surface oxide layer and increased surface roughness. Despite substantial differences in the surface physicochemical properties, the microarchitecture and the composition of the newly formed bone were similar for both implant surfaces after 12 weeks of healing in rabbit tibia. A close spatial relationship was observed between osteocyte canaliculi and both implant surfaces. On the ultrastructural level, the merely electropolished surface showed the various stages of bone formation, for example, matrix deposition and mineralisation, entrapment of osteoblasts within the mineralised matrix, and their morphological transformation into osteocytes. The results demonstrate that titanium implants with a mirror-like surface and a thin, spontaneously formed oxide layer are able to support bone formation and remodelling.

  18. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures.

    Science.gov (United States)

    Nogales, E; Hidalgo, P; Lorenz, K; Méndez, B; Piqueras, J; Alves, E

    2011-07-15

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  19. Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures

    International Nuclear Information System (INIS)

    Nogales, E; Hidalgo, P; Mendez, B; Piqueras, J; Lorenz, K; Alves, E

    2011-01-01

    Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga 2 O 3 and GeO 2 structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the 5 D 0 - 7 F 2 Eu 3+ intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga 2 O 3 , which is assigned to the lattice recovery. Gd 3+ as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd 3+ is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd 3+ 6 P 7/2 - 8 S 7/2 intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.

  20. Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration.

    Science.gov (United States)

    Yurttutan, Mehmet Emre; Keskin, Ahmet

    2018-03-20

    Successful dental implant treatment is directly related to osseointegration. In achieving osseointegration, the surface property of the implant is of great importance. Sandblasting is the most commonly used basic method for modifying the surface. Many companies use different sand particles for surface roughening and claim their sand is the best. This leads clinicians to mix their minds in product selection. In this study, we tried to find the appropriate sand material by working objectively without praising any brand. We believe that the results of the study will help clinicians choose the right dental implant. In this study, machined-surfaced implants and implants sandblasted with Aluminum oxide (Al 2 O 3 ), Titanium dioxide (TiO 2 ) and Silicon dioxide (SiO 2 ) were compared via biomechanical testing. For the study, four 2 year-old sheep, weighing 45 kilograms (kg), were used. Eight implants (Al 2 O 3 , TiO 2 , and SiO 2 sandblasted implants and machined-surfaced implants), each with different surface characteristics, were inserted into the bilateral tibia of each sheep under general anesthesia. Results of the initial Resonance Frequency Analysis (RFA) were recorded just after implant insertion. The sheep were then randomly divided into two groups, each with 2 sheep, to undergo either a 1-month or a 3-month assessment. At the end of the designated evaluation period, RFA and removal torque tests were performed. Although there were no statistically significant differences between the groups, the implants sandblasted with Al 2 O 3 showed a higher Implant Stability Quotient (ISQ) and removal torque value at the end of the 1st and 3rd month. In short, the results of the study demonstrate that Aluminum oxide is superior to other sand particles.

  1. Immediate Direct-To-Implant Breast Reconstruction Using Anatomical Implants

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2014-09-01

    Full Text Available BackgroundIn 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience.MethodsFrom November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction.ResultsThe mean breast resection volume was 240 mL (range, 83-540 mL. The mean size of the breast implants was 217 mL (range, 125-395 mL. Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen.ConclusionsBy using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  2. Site location and optical properties of Eu implanted sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Wemans, A.; Maneira, M.J.P.; Kozanecki, A.; Silva, R.C. da; Alves, E.

    2005-01-01

    Synthetic colourless transparent (0 0 0 1) sapphire crystals were implanted at room temperature with 100 keV europium ions to fluences up to 1 x 10 16 cm -2 . Surface damage is observed at low fluences, as seen by Rutherford backscattering spectrometry under channelling conditions. Optical absorption measurements revealed a variety of structures, most probably related to F-type defects characteristic of implantation damage. Thermal treatments in air or in vacuum up to 1000 deg. C do not produce noticeable changes both in the matrix or the europium profiles. However, the complete recovery of the implantation damage and some redistribution of the europium ions is achieved after annealing at 1300 deg. C in air. Detailed lattice site location studies performed for various axial directions allowed to assess the damage recovery and the incorporation of the Eu ions into well defined crystallographic sites, possibly in an oxide phase also inferred from optical absorption measurements

  3. Dental implants in growing children

    Directory of Open Access Journals (Sweden)

    S K Mishra

    2013-01-01

    Full Text Available The replacement of teeth by implants is usually restricted to patients with completed craniofacial growth. The aim of this literature review is to discuss the use of dental implants in normal growing patients and in patients with ectodermal dysplasia and the influence of maxillary and mandibular skeletal and dental growth on the stability of those implants. It is recommended that while deciding the optimal individual time point of implant insertion, the status of skeletal growth, the degree of hypodontia, and extension of related psychological stress should be taken into account, in addition to the status of existing dentition and dental compliance of a pediatric patient.

  4. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  5. Cochlear implantation in Mondini dysplasia.

    Science.gov (United States)

    Daneshi, Ahmad; Hassanzadeh, Saeid; Abasalipour, Parvaneh; Emamdjomeh, Hessamaddin; Farhadi, Mohammad

    2003-01-01

    The use of cochlear implantation to treat patients with inner ear malformations such as Mondini dysplasia has been increasingly successful. Until now, conventional hearing aids in these patients have not performed well. Consequently, the hearing problem for patients with this condition has been somewhat improved with the use of cochlear implants. Various results of cochlear implantation have been reported in these patients so far. This is a report of 5 patients with Mondini malformation who have undergone cochlear implant surgery. Copyright 2003 S. Karger AG, Basel

  6. Implant-retained maxillary overdentures.

    Science.gov (United States)

    Eckert, Steven E; Carr, Alan B

    2004-07-01

    Overdentures supported by osseointegrated implants overcome many of the complications observed with overdentures supported by natural teeth. Dental implants are free of biologic consequences associated with natural teeth, such as dental caries and periodontal disease. Bone undercuts adjacent to implants do not mimic those found adjacent to natural tooth roots. Implants are used to provide predictable retention, support, and stability for overdenture prostheses. When lip or facial support is required, the overdenture is the treatment of choice. Likewise the overdenture may improve phonetic deficiencies associated with alveolar bone loss.

  7. Cochlear implants in Waardenburg syndrome.

    Science.gov (United States)

    Cullen, Robert D; Zdanski, Carlton; Roush, Patricia; Brown, Carolyn; Teagle, Holly; Pillsbury, Harold C; Buchman, Craig

    2006-07-01

    Waardenburg syndrome is an autosomal-dominant syndrome characterized by dystopia canthorum, hyperplasia of the eyebrows, heterochromia irides, a white forelock, and sensorineural hearing loss in 20% to 55% of patients. This patient population accounts for approximately 2% of congenitally deaf children. The purpose of this retrospective case review was to describe the outcomes for those children with Waardenburg syndrome who have undergone cochlear implantation. Pediatric cochlear implant recipients with documented evidence of Waardenburg syndrome underwent retrospective case review. All patients received their cochlear implants at the study institution followed by outpatient auditory habilitation. Charts were reviewed for etiology and duration of deafness, age at time of cochlear implantation, perioperative complications, duration of use, and performance outcomes. Results of standard tests batteries for speech perception and production administered as a part of the patients' auditory habilitation were reviewed. Seven patients with Waardenburg syndrome and cochlear implants were identified. The average age at implantation was 37 months (range, 18-64 months) and the average duration of use was 69 months (range, 12-143 months). All of these patients are active users of their devices and perform very well after implantation. There were no major complications in this small group of patients. Children with congenital sensorineural hearing loss without other comorbidities (e.g., developmental delay, inner ear malformations) perform well when they receive cochlear implantation and auditory habilitation. Patients with Waardenburg syndrome can be expected to have above-average performance after cochlear implantation.

  8. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    International Nuclear Information System (INIS)

    Mendonca, Gustavo; Baccelli Silveira Mendonca, Daniela; Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto; Golin, Alexsander Luiz; Aragao, Francisco J.L.; Cooper, Lyndon F.

    2011-01-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p ≤ 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 ± 2.5, 11.3 ± 2.4, 11.1 ± 3.5, 9.7 ± 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p 2 or ZrO 2 applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: → Nanostructured surfaces using a sol-gel technique coated cpTi with TiO 2 or ZrO 2 . → Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. → Nanofeatures improved the differentiation of rat MSCs into osteoblasts. → Nanofeatures improved increased bone-to-implant contact and removal torque values. → TiO 2 or ZrO 2 nanofeatures improved the biological response of machined titanium.

  9. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Gustavo, E-mail: gustavo_mendonca@dentistry.unc.edu [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Universidade Catolica de Brasilia, Curso de Odontologia, Taguatinga/DF (Brazil); Baccelli Silveira Mendonca, Daniela [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil) and Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto [Departmento de Quimica, Universidade Federal de Sao Carlos-UFSCAR, Rod. Washington Luiz, 13565-905 Sao Carlos, SP (Brazil); Golin, Alexsander Luiz [Departmento de Engenharia Mecanica, Faculdade de Engenharia Mecanica, Pontificia Universidade Catolica de Curitiba, Curitiba, PR (Brazil); Aragao, Francisco J.L. [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Embrapa Recursos Geneticos e Biotecnologia, Laboratorio de Introducao e Expressao de Genes, PqEB W5 Norte, 70770-900, Brasilia, DF (Brazil); Cooper, Lyndon F., E-mail: lyndon_cooper@dentistry.unc.edu [Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States)

    2011-12-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p {<=} 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 {+-} 2.5, 11.3 {+-} 2.4, 11.1 {+-} 3.5, 9.7 {+-} 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p < 0.05). Nanostructured topographic features composed of TiO{sub 2} or ZrO{sub 2} applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: {yields} Nanostructured surfaces using a sol-gel technique coated cpTi with TiO{sub 2} or ZrO{sub 2}. {yields} Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. {yields} Nanofeatures improved the differentiation of rat MSCs into osteoblasts. {yields} Nanofeatures improved increased bone-to-implant contact and

  10. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian

    2017-09-01

    Implant-associated infection and limited longevity are two major challenges that orthopedic devices need to simultaneously address. Additively manufactured porous implants have recently shown tremendous promise in improving bone regeneration and osseointegration, but, as any conventional implant, are threatened by infection. In this study, we therefore used rational design and additive manufacturing in the form of selective laser melting (SLM) to fabricate porous titanium implants with interconnected pores, resulting in a 3.75 times larger surface area than corresponding solid implants. The SLM implants were biofunctionalized by embedding silver nanoparticles in an oxide surface layer grown using plasma electrolytic oxidation (PEO) in Ca/P-based electrolytes. The PEO layer of the SLM implants released silver ions for at least 28 days. X-ray diffraction analysis detected hydroxyapatite on the SLM PEO implants but not on the corresponding solid implants. In vitro and ex vivo assays showed strong antimicrobial activity of these novel SLM PEO silver-releasing implants, without any signs of cytotoxicity. The rationally designed SLM porous implants outperformed solid implants with similar dimensions undergoing the same biofunctionalization treatment. This included four times larger amount of released silver ions, two times larger zone of inhibition, and one additional order of magnitude of reduction in numbers of CFU in an ex vivo mouse infection model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  12. Investigation of Steel Surfaces Treated by a Hybrid Ion Implantation Technique

    International Nuclear Information System (INIS)

    Reuther, H.; Richter, E.; Prokert, F.; Ueda, M.; Beloto, A. F.; Gomes, G. F.

    2004-01-01

    Implantation of nitrogen ions into stainless steel in combination with oxidation often results in a decrease or even complete removal of the chromium in the nitrogen containing outermost surface layer. While iron nitrides can be formed easily by this method, due to the absence of chromium, the formation of chromium nitrides is impossible and the beneficial influence of chromium in the steel for corrosion resistance cannot be used. To overcome this problem we use the following hybrid technique. A thin chromium layer is deposited on steel and subsequently implanted with nitrogen ions. Chromium can be implanted by recoil into the steel surface and thus the formation of iron/chromium nitrides should be possible. Both beam line ion implantation and plasma immersion ion implantation are used. Due to the variation of the process parameters, different implantation profiles and different compounds are produced. The produced layers are characterized by Auger electron spectroscopy, conversion electron Moessbauer spectroscopy and X-ray diffraction. The obtained results show that due to the variation of the implantation parameters, the formation of iron/chromium nitrides can be achieved and that plasma immersion ion implantation is the most suitable technique for the enrichment of chromium in the outermost surface layer of the steel when compared to the beam line implantation.

  13. Relationships between chemical compositions, microstructure, and corrosion properties in molybdenum ion implanted aluminum

    International Nuclear Information System (INIS)

    Kim, S.

    1986-01-01

    This thesis compares the corrosion properties of Al annealed after implantation with selected Mo concentrations to those of as-implanted Al with same Mo level and to pure Al. The principal results in this investigation are the improvement in the pitting corrosion resistance for Al implanted with Mo relative to pure Al in both the as-implanted and as-implanted-annealed state. The corrosion properties were related to the microstructures and chemical profiles in the surface-modified-regions. Potentiodynamic measurements indicate that stability of various species on the surface controls corrosion behavior in the Al-Mo system. Dual energy Mo implant procedure was used to produce a relatively thick ion implanted layer. The processing parameters were selected to produce specimen containing a continuous Al 12 Mo film with two different microstructures in the annealed material. The most improved pitting corrosion resistance was achieved in an as-implanted alloy which was implanted at 95 keV and then at 25 keV. This alloy was very resistant to pitting corrosion in a neutral aqueous solution containing 0.1 M chloride ion. Surface chemical analysis by Auger electron spectroscopy indicates that the role of Mo in inhibiting pitting corrosion is related to the formation of stable Mo oxide film

  14. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    Science.gov (United States)

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  15. Application of ion implantation in metals and alloys

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1981-01-01

    Ion implantation first became established as a precise method of introducing dopant elements into semiconductors. It is now appreciated that there may be equally important applications in metallic tools or components with the purpose of improving their resistance to wear, fatigue or corrosion. Nitrogen ions implanted into steels pin dislocations and thereby harden the metal. Some metallic ions such as yttrium reduce the tendency for oxidative wear. There is a fairly good understanding of how both treatments can provide a long-lasting protection that extends to many times the original depth of implantation. Nitrogen implantation also improves the wear resistance of Co-cemented tungsten carbide and of hard chromium electroplated coatings. These treatments have wide application in press tools, molds, dies and other metal-forming tools as well as in a more limited variety of cutting tools. Some striking improvements can be achieved in the corrosion field, but there are economic and technical reasons for concluding that practical applications of ion implantation will be more restricted and specialized in this area. The most promising area is that in which mechanical stress and oxidation coexist. When a metallic species has to be introduced, a promising new development is to bombard a thin coating of the metal at an elevated temperature. Several powerful mechanisms of radiation-enhanced diffusion can bring about a complete intermixing. Examples of how this has been used to produce wear resistant surfaces in titanium are given. Finally, the equipment developed for the large scale application of the ion implantation process in the engineering field is described

  16. Age at implantation and auditory memory in cochlear implanted children.

    Science.gov (United States)

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  17. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  18. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  19. Niobium based coatings for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G., E-mail: enggiova@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Facultad de Quimica, Departamento de Ingenieria Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Arzate, H. [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, Mexico D.F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Olaya, J.J. [Unidad de Materiales, Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Cra. 30 45-03 Bogota (Colombia)

    2011-01-15

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb{sub 2}O{sub 5} (a-Nb{sub 2}O{sub 5}), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  20. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J W; Evans, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  1. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.W.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  2. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits.

    Science.gov (United States)

    Lee, Jaebum; Sieweke, Janet H; Rodriguez, Nancy A; Schüpbach, Peter; Lindström, Håkan; Susin, Cristiano; Wikesjö, Ulf M E

    2009-07-01

    The objective of this study was to screen candidate nano-technology-modified, micro-structured zirconia implant surfaces relative to local bone formation and osseointegration. Proprietary nano-technology surface-modified (calcium phosphate: CaP) micro-structured zirconia implants (A and C), control micro-structured zirconia implants (ZiUnite), and titanium porous oxide implants (TiUnite) were implanted into the femoral condyle in 40 adult male New Zealand White rabbits. Each animal received one implant in each hind leg; thus, 20 animals received A and C implants and 20 animals received ZiUnite and TiUnite implants in contralateral hind legs. Ten animals/group were euthanized at weeks 3 and 6 when biopsies of the implant sites were processed for histometric analysis using digital photomicrographs produced using backscatter scanning electron microscopy. The TiUnite surface demonstrated significantly greater bone-implant contact (BIC) (77.6+/-2.6%) compared with the A (64.6+/-3.6%) and C (62.2+/-3.1%) surfaces at 3 weeks (p0.05). Similarly, there were non-significant differences between the TiUnite and the ZiUnite surfaces (p>0.05). At 6 weeks, there were no significant differences in BIC between the TiUnite (67.1+/-4.2%), ZiUnite (69.7+/-5.7%), A (68.6+/-1.9%), and C (64.5+/-4.1%) surfaces (p>0.05). TiUnite and ZiUnite implant surfaces exhibit high levels of osseointegration that, in this model, confirm their advanced osteoconductive properties. Addition of CaP nano-technology to the ZiUnite surface does not enhance the already advanced osteoconductivity displayed by the TiUnite and ZiUnite implant surfaces.

  3. Successful implantation of physiologically functional bioengineered mouse internal anal sphincter.

    Science.gov (United States)

    Raghavan, Shreya; Miyasaka, Eiichi A; Hashish, Mohamed; Somara, Sita; Gilmont, Robert R; Teitelbaum, Daniel H; Bitar, Khalil N

    2010-08-01

    We have previously developed bioengineered three-dimensional internal anal sphincter (IAS) rings from circular smooth muscle cells isolated from rabbit and human IAS. We provide proof of concept that bioengineered mouse IAS rings are neovascularized upon implantation into mice of the same strain and maintain concentric smooth muscle alignment, phenotype, and IAS functionality. Rings were bioengineered by using smooth muscle cells from the IAS of C57BL/6J mice. Bioengineered mouse IAS rings were implanted subcutaneously on the dorsum of C57BL/6J mice along with a microosmotic pump delivering fibroblast growth factor-2. The mice remained healthy during the period of implantation, showing no external signs of rejection. Mice were killed 28 days postsurgery and implanted IAS rings were harvested. IAS rings showed muscle attachment, neovascularization, healthy color, and no external signs of infection or inflammation. Assessment of force generation on harvested IAS rings showed the following: 1) spontaneous basal tone was generated in the absence of external stimulation; 2) basal tone was relaxed by vasoactive intestinal peptide, nitric oxide donor, and nifedipine; 3) acetylcholine and phorbol dibutyrate elicited rapid-rising, dose-dependent, sustained contractions repeatedly over 30 min without signs of muscle fatigue; and 4) magnitudes of potassium chloride-induced contractions were 100% of peak maximal agonist-induced contractions. Our preliminary results confirm the proof of concept that bioengineered rings are neovascularized upon implantation. Harvested rings maintain smooth muscle alignment and phenotype. Our physiological studies confirm that implanted rings maintain 1) overall IAS physiology and develop basal tone, 2) integrity of membrane ionic characteristics, and 3) integrity of membrane associated intracellular signaling transduction pathways for contraction and relaxation by responding to cholinergic, nitrergic, and VIP-ergic stimulation. IAS smooth muscle

  4. Selective CVD tungsten on silicon implanted SiO/sub 2/

    International Nuclear Information System (INIS)

    Hennessy, W.A.; Ghezzo, M.; Wilson, R.H.; Bakhru, H.

    1988-01-01

    The application range of selective CVD tungsten is extended by its coupling to the ion implantation of insulating materials. This article documents the results of selective CVD tungsten using silicon implanted into SiO/sub 2/ to nucleate the tungsten growth. The role of implant does, energy, and surface preparation in achieving nucleation are described. SEM micrographs are presented to demonstrate the selectivity of this process. Measurements of the tungsten film thickness and sheet resistance are provided for each of the experimental variants corresponding to successful deposition. RBS and XPS analysis are discussed in terms of characterizing the tungsten/oxide interface and to evaluate the role of the silicon implant in the CVD tungsten mechanism. Utilizing this method a desired metallization pattern can be readily defined with lithography and ion implantation, and accurately replicated with a layer of CVD tungsten. This approach avoids problems usually associated with blanket deposition and pattern transfer, which are particularly troublesome for submicron VLSI technology

  5. Formation and growth of embedded indium nanoclusters by In2+ implantation in silica

    International Nuclear Information System (INIS)

    Santhana Raman, P.; Nair, K.G.M.; Kesavamoorthy, R.; Panigrahi, B.K.; Dhara, S.; Ravichandran, V.

    2007-01-01

    Indium nanoclusters are synthesized in an amorphous silica matrix using an ion-implantation technique. Indium ions (In 2+ ) with energy of 890 keV are implanted on silica to fluences in the range of 3 x 10 16 -3 x 10 17 cm -2 . The formation of indium nanoclusters is confirmed by optical absorption spectrometry and glancing incidence X-ray diffraction studies. A low frequency Raman scattering technique is used to study the growth of embedded indium nanoclusters in the silica matrix as a function of fluence and post-implantation annealing duration. Rutherford backscattering spectrometry studies show the surface segregation of implanted indium. Photoluminescence studies indicate the formation of a small quantity of indium oxide phase in the ion-implanted samples. (orig.)

  6. Silicon on insulator by ion implantation: A dream or a reality

    Energy Technology Data Exchange (ETDEWEB)

    Pinizzotto, R F [Ultrastructure, Inc., Richardson, TX (USA)

    1985-03-01

    One method of producing a silicon-on-oxide structure is to implant a sufficient dose of oxygen into a conventional silicon substrate to synthesize a layer of SiO/sub 2/ just below the surface. If the proper implant conditions are maintained, the top silicon layer will be a single crystal. The required doses are large, but the use of commercially available medium current implanters can reduce the time to 25 minutes per wafer. This adds about $ 10 per chip in process related costs. A very large implanter (100 mA analyzed beam) may not be the best approach for scaling up the process. The power in the beam and the power required for operation of the machine are both enormous. A more conservative approach of using multiple medium current implanters may prove to be more economical in the long run.

  7. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    Directory of Open Access Journals (Sweden)

    Bill G. X. Zhang

    2014-07-01

    Full Text Available Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

  8. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant.

    Science.gov (United States)

    Hou, Ping-Jen; Ou, Keng-Liang; Wang, Chin-Chieh; Huang, Chiung-Fang; Ruslin, Muhammad; Sugiatno, Erwan; Yang, Tzu-Sen; Chou, Hsin-Hua

    2018-03-01

    The aim of the present study was to investigate the surface characteristic, biomechanical behavior, hemocompatibility, bone tissue response and osseointegration of the optimal micro-arc oxidation surface-treated titanium (MST-Ti) dental implant. The surface characteristic, biomechanical behavior and hemocompatibility of the MST-Ti dental implant were performed using scanning electron microscope, finite element method, blood dripping and immersion tests. The mini-pig model was utilized to evaluate the bone tissue response and osseointegration of the MST-Ti dental implant in vivo. Data were analyzed by analysis of variance using the Student's t-test (P ≤ 0.05). The hybrid volcano-like micro/nanoporous structure was formed on the surface of the MST-Ti dental implant. The hybrid volcano-like micro/nanoporous surface played an important role to improve the stress transfer between fixture, cortical bone and cancellous bone for the MST-Ti dental implant. Moreover, the MST-Ti implant was considered to have the outstanding hemocompatibility. In vivo testing results showed that the bone-to-implant contact (BIC) ratio significantly altered as the implant with micro/nanoporous surface. After 12 weeks of implantation, the MST-Ti dental implant group exhibited significantly higher BIC ratio than the untreated dental implant group. In addition, the MST-Ti dental implant group also presented an enhancing osseointegration, particularly in the early stages of bone healing. It can be concluded that the micro-arc oxidation approach induced the formation of micro/nanoporous surface is a promising and reliable alternative surface modification for Ti dental implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A novel graded bioactive high adhesion implant coating

    International Nuclear Information System (INIS)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Stromme, Maria; Engqvist, Hakan

    2009-01-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 deg. C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 deg. C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  10. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...

  11. Porous metal for orthopedics implants

    OpenAIRE

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery.

  12. [The impact of dental implants

    NARCIS (Netherlands)

    Meijer, G.J.

    2013-01-01

    The importance of the introduction of dental implants can only be understood when the historical context is clarified. In the past, the main treatment carried out by dentists consisted of filling or, in unfortunate cases, removal of painful teeth. Only since the introduction of dental implants did

  13. Sequential provisional implant prosthodontics therapy.

    Science.gov (United States)

    Zinner, Ira D; Markovits, Stanley; Jansen, Curtis E; Reid, Patrick E; Schnader, Yale E; Shapiro, Herbert J

    2012-01-01

    The fabrication and long-term use of first- and second-stage provisional implant prostheses is critical to create a favorable prognosis for function and esthetics of a fixed-implant supported prosthesis. The fixed metal and acrylic resin cemented first-stage prosthesis, as reviewed in Part I, is needed for prevention of adjacent and opposing tooth movement, pressure on the implant site as well as protection to avoid micromovement of the freshly placed implant body. The second-stage prosthesis, reviewed in Part II, should be used following implant uncovering and abutment installation. The patient wears this provisional prosthesis until maturation of the bone and healing of soft tissues. The second-stage provisional prosthesis is also a fail-safe mechanism for possible early implant failures and also can be used with late failures and/or for the necessity to repair the definitive prosthesis. In addition, the screw-retained provisional prosthesis is used if and when an implant requires removal or other implants are to be placed as in a sequential approach. The creation and use of both first- and second-stage provisional prostheses involve a restorative dentist, dental technician, surgeon, and patient to work as a team. If the dentist alone cannot do diagnosis and treatment planning, surgery, and laboratory techniques, he or she needs help by employing the expertise of a surgeon and a laboratory technician. This team approach is essential for optimum results.

  14. Piezosurgery in implant dentistry

    Directory of Open Access Journals (Sweden)

    Stübinger S

    2015-11-01

    Full Text Available Stefan Stübinger,1 Andres Stricker,2 Britt-Isabelle Berg3,4 1Hightech Research Center of Cranio-maxillofacial Surgery, University of Basel, Allschwil, Switzerland; 2Private Practice, Konstanz, Germany; 3Department of Cranio-maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; 4Division of Oral and Maxillofacial Radiology, Columbia University Medical Center, New York, NY, USA Abstract: Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. Keywords: implantology, piezoelectric device, piezosurgery, maxillary sinus elevation, bone grafting, osteotomy, edentulous ridge splitting

  15. Labyrinthectomy with cochlear implantation.

    Science.gov (United States)

    Zwolan, T A; Shepard, N T; Niparko, J K

    1993-05-01

    Numerous reports indicate that the cochlea remains responsive to electrical stimulation following labyrinthectomy. We report a case of a 47-year-old woman with a severe to profound sensorineural hearing loss from birth, who developed episodic vertigo with symptoms suggestive of delayed onset endolymphatic hydrops. Following 8 months of failed medical and vestibular rehabilitation management, a right-sided labyrinthectomy combined with cochlear implantation was performed without complication. Postoperatively the patient was free of vertigo. Attempts to activate the patient's device between 4 to 12 weeks after surgery were unsuccessful as stimulation of the electrodes resulted in discomfort. However, all 20 electrodes elicited comfortable hearing sensations 16 weeks postsurgery. One year after the successful activation, the patient demonstrated improved sound awareness and speech recognition with the implant when compared with preoperative performance with a hearing aid. This case study suggests that electrical detection thresholds with prosthetic stimulation may be unstable in the recently labyrinthectomized ear but supports and extends prior observations of preserved cochlear responsiveness after labyrinthectomy.

  16. Peri-Implantitis Associated with Type of Cement: A Retrospective Analysis of Different Types of Cement and Their Clinical Correlation to the Peri-Implant Tissue.

    Science.gov (United States)

    Korsch, Michael; Walther, Winfried

    2015-10-01

    The cementation of fixed implant-supported dental restorations involves the risk of leaving excess cement in the mouth which can promote biofilm formation in the peri-implant sulcus. As a result, an inflammation may develop. The aim of the present study was to investigate the clinical effect of two different luting cements on the peri-implant tissue. Within the scope of a retrospective clinical follow-up study, the prosthetic structures of 22 patients with 45 implants were revised. In all cases, a methacrylate cement (Premier Implant Cement [PIC], Premier® Dental Products Company, Plymouth Meeting, PA, USA) had been used for cementation. In 16 additional patients with 28 implants, the suprastructures were retained with a zinc oxide-eugenol cement (Temp Bond [TB], Kerr Sybron Dental Specialities, Glendora, CA, USA). These patients were evaluated in the course of routine treatment. In both populations, the retention time of the suprastructures was similar (TB 3.77 years, PIC 4.07 years). In the PIC cases, 62% of all implants had excess cement. In the TB cases, excess cement was not detectable on any of the implants. Bleeding on probing was significantly more frequent on implants cemented with PIC (100% with and 94% without excess cement) than on implants cemented with TB (46%). Pocket suppuration was observed on 89% of the PIC-cemented implants with excess cement (PIC without excess cement 24%), whereas implants with TB were not affected by it at all. The peri-implant bone loss was significantly greater in the PIC patients (with excess cement 1.37 mm, without excess cement 0.41 mm) than it was in the TB patients (0.07 mm). The frequency of undetected excess cement depends essentially on the type of cement used. Cements that tend to leave more undetected excess have a higher prevalence for peri-implant inflammation and cause a more severe peri-implant bone loss. © 2014 Wiley Periodicals, Inc.

  17. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  18. Ion implantation: an annotated bibliography

    International Nuclear Information System (INIS)

    Ting, R.N.; Subramanyam, K.

    1975-10-01

    Ion implantation is a technique for introducing controlled amounts of dopants into target substrates, and has been successfully used for the manufacture of silicon semiconductor devices. Ion implantation is superior to other methods of doping such as thermal diffusion and epitaxy, in view of its advantages such as high degree of control, flexibility, and amenability to automation. This annotated bibliography of 416 references consists of journal articles, books, and conference papers in English and foreign languages published during 1973-74, on all aspects of ion implantation including range distribution and concentration profile, channeling, radiation damage and annealing, compound semiconductors, structural and electrical characterization, applications, equipment and ion sources. Earlier bibliographies on ion implantation, and national and international conferences in which papers on ion implantation were presented have also been listed separately

  19. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  20. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  1. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  2. Positron and nanoindentation study of helium implanted high chromium ODS steels

    Science.gov (United States)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  3. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  4. Tribological properties of nitrogen implanted and boron implanted steels

    International Nuclear Information System (INIS)

    Kern, K.T.

    1996-01-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 x 10 17 /cm 2 . Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe 2 N and Fe 3 N in the nitrogen implanted materials and Fe 3 B in the boron implanted materials. Results from transmission electron microscopy will be presented

  5. Cochlear implantation in late-implanted adults with prelingual deafness.

    Science.gov (United States)

    Most, Tova; Shrem, Hadas; Duvdevani, Ilana

    2010-01-01

    The purpose of this study was to examine the effect of cochlear implantation (CI) on prelingually deafened participants who were implanted as adults. The effect of the CI was examined with regard to the following variables: communication, family, social skills, education, and work satisfaction with one's life, loneliness, and self-esteem. Thirty-eight adults participated. Four self-report questionnaires were used at 2 points in time: before and after CI. The research findings show significant differences in the reports of most variables before and after implantation. The participants felt better with regard to communication, social skills, education, and work and satisfaction with one's life after implantation in comparison to their feelings before implantation. Furthermore, they felt less lonely after implantation. However, there were no significant differences before and after implantation regarding their feelings within the family and regarding their self-esteem. The results demonstrated the need to evaluate the benefits resulting from the CI not only with traditional clinical measures but with additional measures as well. Furthermore, they demonstrated the benefit of the CI on the positive psychosociological implications of prelingually deafened adults. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Characteristics of MOSFETs fabricated in silicon-on-insulator material formed by high-dose oxygen ion implantation

    International Nuclear Information System (INIS)

    Lam, H.W.; Pinizzotto, R.F.; Yuan, H.T.; Bellavance, D.W.

    1981-01-01

    By implanting a dose of 6 x 10 17 cm -2 of 32 O 2 + at 300 keV into a silicon wafer, a buried oxide layer is formed. Crystallinity of the silicon layer above the buried oxide layer is maintained by applying a high (>200 0 C) substrate temperature during the ion implantation process. A two-step anneal cycle is found to be adequate to form the insulating buried oxide layer and to repair the implantation damage in the silicon layer on top of the buried oxide. A surface electron mobility as high as 710 cm 2 /Vs has been measured in n-channel MOSFETs fabricated in a 0.5 μm-thick epitaxial layer grown on the buried oxide wafer. A minimum subthreshold current of about 10 pA per micron of channel width at Vsub(DS)=2 V has been measured. (author)

  7. A Retrospective Analysis of Ruptured Breast Implants

    Directory of Open Access Journals (Sweden)

    Woo Yeol Baek

    2014-11-01

    Full Text Available BackgroundRupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants.MethodsWe performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone, duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management.ResultsForty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case, microfat graft (2 case, removal only (14 case, and follow-up loss (17 case.ConclusionsSaline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs.

  8. [Maintenance care for dental implant].

    Science.gov (United States)

    Kamoi, K

    1989-10-01

    Dental implant has tried at the early stage in 19th century recovering an oral function and esthetics. Technological revolutions in biochemical and new materials have developed on the remarkable change in the dental implants, nowadays we call the three generation therapy for dental implantology. There are many kinds of methods and techniques in dental implants, however a lot of troublesome complication on the process of surgical phase, construction of prothodontics and prognosis of maintenance care. In the proceedings of this symposium, I would like to propose you how to manage the maintenance care for various kind of dental implants through the methodology and case presentations. Tendenay and future for dental implants The current outlook of dental implant has increasing supply and demand not only dentists but also patients. According to Japanese Welfare Ministry's report in 1987, average missing teeth over sixty years old generations are approximately 42% in accordance with NIDR (U.S.A.) research. They are missed on ten over teeth in full 28th teeth dentitions owing to dental caries and periodontal diseases. Generally speaking, latent implant patients are occupied on the same possibility of needs for dental implants both Japan and U.S.A. Management of maintenance care The patients hardly recognized the importance of plaque control for the maintenance care in the intraoral condition after implantation. Dentists and dental staffs must be instruct patients for importance of plaque removal and control, because they already had forgotten the habit of teeth cleaning, especially in the edenturous conditions. 1) Concept of establishment in oral hygiene. Motivation and instruction for patients include very important factors in dental implants as well as in periodontal diseases. Patients who could not achieve on good oral hygiene levels obtained no good results in the long term observations. To establish good oral hygiene are how to control supra plaque surrounding tissues

  9. Ion implantation apparatus

    International Nuclear Information System (INIS)

    Forneris, J.L.; Hicks, W.W.; Keller, J.H.; McKenna, C.M.; Siermarco, J.A.; Mueller, W.F.

    1981-01-01

    The invention relates to ion bombardment or implantation apparatus. It comprises an apparatus for bombarding a target with a beam of ions, including an arrangement for measuring the ion beam current and controlling the surface potential of the target. This comprises a Faraday cage formed, at least in part, by the target and by walls adjacent to, and electrically insulated from, the target and surrounding the beam. There is at least one electron source for supplying electrons to the interior of the Faraday cage and means within the cage for blocking direct rectilinear radiation from the source to the target. The target current is measured and combined with the wall currents to provide a measurement of the ion beam current. The quantity of electrons supplied to the interior of the cage can be varied to control the target current and thereby the target surface potential. (U.K.)

  10. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-01-05

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  11. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  12. Basic research on maxillofacial implants

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yoshiro [Showa Univ., Tokyo (Japan). School of Dentistry

    2001-11-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  13. Basic research on maxillofacial implants

    International Nuclear Information System (INIS)

    Matsui, Yoshiro

    2001-01-01

    Osseointegrated implants have begun to be used not only in general practice in dentistry but also in various clinical situations in the maxillofacial region. The process has yielded three problems: the spread of application, new materials and diagnostic methods, and management for difficult situations. This paper presents basic data and clinical guidelines for new applications, it investigates the characteristics of the materials and the usefulness of a new diagnostic method, and it studies effective techniques for difficult cases. The results obtained are as follows: Investigations into the spreading application. The lateral and superior orbital rim have sufficient bone thickness and width for the implant body to be placed. Osseointegrated implants, especially by the fixed bridge technique, are not recommended in the craniofacial bone and jaws of young children. Implant placement into bone after/before irradiation must be performed in consideration of impaired osteogenesis, the decrease of trabecular bone, and the time interval between implantation and irradiation. Investigations into materials and diagnostic methods. Hydroxyapatite-coated and titanium implants should be selected according to the characteristics of the materials. A dental simulating soft may also be applicable in the craniofacial region. Investigations into the management of difficult cases. Hyperbaric oxygen therapy (HBO), bone morphogenetic protein (BMP), and tissue engineering should be useful for improving the quality and increasing the quantity of bone where implants are placed. Soft tissue around implants placed in the reconstructed area should be replaced with mucosal tissue. The data obtained here should be useful for increasing the efficiency of osseointegrated implants, but further basic research is required in the future. (author)

  14. COCHLEAR IMPLANTATION PREVALENCE IN ELDERLY

    Directory of Open Access Journals (Sweden)

    A. V. Starokha

    2014-01-01

    Full Text Available Current paper describes an experience of cochlear implantation in elderly. Cochlear implantation has become a widely accepted intervention in the treatment of individuals with severe-to-profound sensorineural hearing loss. Cochlear implants are now accepted as a standard of care to optimize hearing and subsequent speech development in children and adults with deafness. But cochlear implantation affects not only hearing abilities, speech perception and speech production; it also has an outstanding impact on the social life, activities and self-esteem of each patient. The aim of this study was to evaluate the cochlear implantation efficacy in elderly with severe to profound sensorineural hearing loss. There were 5 patients under our observation. Surgery was performed according to traditional posterior tympanotomy and cochleostomy for cochlear implant electrode insertion for all observed patients. The study was conducted in two stages: before speech processor’s activation and 3 months later. Pure tone free field audiometry was performed to each patient to assess the efficiency of cochlear implantation in dynamics. The aim of the study was also to evaluate quality of life in elderly with severe to profound sensorineural hearing loss after unilateral cochlear implantation. Each patient underwent questioning with 36 Item Short Form Health Survey (SF-36. SF-36 is a set of generic, coherent, and easily administered quality-of-life measures. The SF-36 consists of eight scaled scores, which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The eight sections are: physical functioning; physical role functioning; emotional role functioning; vitality; emotional well-being; social role functioning; bodily pain; general health perceptions. Our results demonstrate that cochlear implantation in elderly consistently improved quality of life

  15. Permeation behavior of deuterium implanted into beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; O' hira, Shigeru; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    Study on Implantation Driven Permeation (IDP) behavior of deuterium through pure beryllium was investigated as a part of the research to predict the tritium permeation through the first wall components ITER (International Thermonuclear Experimental Reactor). The permeation experiments were carried out with two beryllium specimens, one was an unannealed specimen and the other was that annealed at 1173 K. The permeation flux was measured as a function of specimen temperature and incident ion flux. Surface analysis of specimen was also carried out after the permeation experiment. Permeation was observed only with the annealed specimen and no significant permeation was observed with unannealed specimen under the present experimental condition (maximum temperature: 685 K, detection limit: 1x10{sup 13} D atoms/m{sup 2}s). It could be attributed that the intrinsic lattice defects, which act as diffusion preventing site, decreased with the specimen annealing. Based on the result of steady and transient permeation behavior and surface analysis, it was estimated that the deuterium permeation implanted into annealed beryllium was controlled by surface recombination due to the oxide layer on the surface of the permeated side. (author)

  16. Mechanical stability of immediately loaded implants with various surfaces and designs: a pilot study in dogs.

    Science.gov (United States)

    Neugebauer, Jörg; Weinländer, Michael; Lekovic, Vojislav; von Berg, Karl-Heinz Linne; Zoeller, Joachim E

    2009-01-01

    Immediate loading is among the most innovative techniques in implant therapy today. This pilot study investigates the biomechanical outcome of various designs and surfaces that claim to shorten implant treatment. In each quadrant of two mongrel dogs, four different implants were used for immediate loading. The following implants were placed 3 months after tooth extraction: screw with low thread profile and anodic oxidized surface (LPAOS), solid screw with wide thread profile and titanium plasma spray coating (WPTPS), screw with low profile and hybrid design of double-etched and machined surface (LPHES), and screw with two thread profiles and a sandblasted and acid-etched surface (DTSAE). The insertion torque of each implant was above 35 Ncm. Resonance frequency analysis was performed after implant placement and again after sacrifice. Additionally, the removal torque and the amount of embedded titanium particles in the peri-implant bone were measured. All 16 prostheses were functional after a 5-month loading period. The highest mean removal torque values were recorded with WPTPS implants (24.4 Ncm/mm), followed by DTSAE implants (22.3 Ncm/mm) and LPAOS implants (18.7 Ncm/mm); the lowest score was obtained by LPHES (12.0 Ncm/mm). The ISQ values increased between the time of surgery and recall for all systems on average, but a significant positive correlation was found for DTSAE only. Significantly higher amounts of titanium were found in the surrounding bone with WPTPS (0.76%) and LPAOS (0.41%) in comparison with DTSAE (0.10%) and LPHES (0.03%). Immediate loading is possible with various designs and surfaces if high primary stability can be achieved during implant placement.

  17. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search...... of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  18. Implantable cardioverter defibrillator implantation in children in The Netherlands

    NARCIS (Netherlands)

    Ten Harkel, ADJ; Blom, NA; Reimer, AG; Tukkie, R; Sreeram, N; Bink-Boelkens, MTE

    To evaluate the indications, underlying cardiac disorders, efficacy and complications involved with implantable cardioverter-defibrillators (ICDs) in paediatric patients in The Netherlands, the records of all patients aged 18 years or younger who underwent ICD placement were reviewed

  19. Implantable cardioverter defibrillator implantation in children in The Netherlands

    NARCIS (Netherlands)

    ten Harkel, A. Derk Jan; Blom, Nico A.; Reimer, Annette G.; Tukkie, Raymond; Sreeram, Narayanswami; Bink-Boelkens, Margreet T. E.

    2005-01-01

    To evaluate the indications, underlying cardiac disorders, efficacy and complications involved with implantable cardioverter-defibrillators (ICDs) in paediatric patients in The Netherlands, the records of all patients aged 18 years or younger who underwent ICD placement were reviewed

  20. Nitrogen implantation in steel with an impulsive ion implanter

    International Nuclear Information System (INIS)

    Feugeas, J.N.; Gonzalez, C.O.; Hermida, J.; Nieto, M.; Peyronel, M.F.; Sanchez, G.

    1990-01-01

    This work describes the results of steel implantation with nitrogen, with a pulsed accelerator which provides a continuous ion energy spectrum giving a uniform profile of nitrogen without changing its operative conditions. (Author)

  1. Effects of recoil-implanted oxygen on depth profiles of defects and annealing processes in P{sup +}-implanted Si studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kitano, Tomohisa; Watanabe, Masahito; Kawano, Takao; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa

    1996-04-01

    Effects of oxygen atoms recoiled from SiO{sub 2} films on depth profiles of defects and annealing processes in P{sup +}-implanted Si were studied using monoenergetic positron beams. For an epitaxial Si specimen, the depth profile of defects was found to be shifted toward the surface by recoil implantation of oxygen atoms. This was attributed to the formation of vacancy-oxygen complexes and a resultant decrease in the diffusion length of vacancy-type defects. The recoiled oxygen atoms stabilized amorphous regions introduced by P{sup +}-implantation, and the annealing of these regions was observed after rapid thermal annealing (RTA) at 700degC. For a Czochralski-grown Si specimen fabricated by through-oxide implantation, the recoiled oxygen atoms introduced interstitial-type defects upon RTA below the SiO{sub 2}/Si interface, and such defects were dissociated by annealing at 1000degC. (author)

  2. Ion implantation in semiconductor bodies

    International Nuclear Information System (INIS)

    Badawi, M.H.

    1984-01-01

    Ions are selectively implanted into layers of a semiconductor substrate of, for example, semi-insulating gallium arsenide via a photoresist implantation mask and a metallic layer of, for example, titanium disposed between the substrate surface and the photoresist mask. After implantation the mask and metallic layer are removed and the substrate heat treated for annealing purposes. The metallic layer acts as a buffer layer and prevents possible contamination of the substrate surface, by photoresist residues, at the annealing stage. Such contamination would adversely affect the electrical properties of the substrate surface, particularly gallium arsenide substrates. (author)

  3. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  4. An introduction to single implant abutments.

    LENUS (Irish Health Repository)

    Warreth, Abdulhadi

    2013-01-01

    This article is an introduction to single implant abutments and aims to provide basic information about abutments which are essential for all dental personnel who are involved in dental implantology. Clinical Relevance: This article provides a basic knowledge of implants and implant abutments which are of paramount importance, as replacement of missing teeth with oral implants has become a well-established clinical procedure.

  5. Cochlear implantation in a bilateral Mondini dysplasia.

    Science.gov (United States)

    Turrini, M; Orzan, E; Gabana, M; Genovese, E; Arslan, E; Fisch, U

    1997-01-01

    We report the speech perception progress and programming procedures of a case of congenital profound deafness and bilateral Mondini dysplasia implanted with a Nucleus 20 + 2 cochlear implant at the age of six. Unclear relations between electrodes array and cochlear partition made implant programming difficult and non-standard procedures were set. Cochlear implantation may give excellent rehabilitative results also in cochleae with malformation.

  6. Implant retention systems for implant-retained overdentures.

    Science.gov (United States)

    Laverty, D P; Green, D; Marrison, D; Addy, L; Thomas, M B M

    2017-03-10

    Implant retained overdentures are being increasingly utilised in both general and specialist practice to rehabilitate patients with missing teeth, particularly those that are edentate. This article aims to inform the reader of a variety of retention systems that are available to retain an implant overdenture and to understand how these systems work, their advantages and disadvantages and to outline some of the clinical and treatment planning considerations involved in selecting the most appropriate retention system for patients.

  7. Implant Materials Generate Different Peri-implant Inflammatory Factors

    OpenAIRE

    Olivares-Navarrete, Rene; Hyzy, Sharon L.; Slosar, Paul J.; Schneider, Jennifer M.; Schwartz, Zvi; Boyan, Barbara D.

    2015-01-01

    Study Design. An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. Objective. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Summary of Background Data. Histologically, implants fabricated from PEEK have a fibrous connectiv...

  8. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    International Nuclear Information System (INIS)

    Yeo, In-Sung; Min, Seung-Ki; An, Young-Bai

    2010-01-01

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  9. Structure of ion-implanted ceramics

    International Nuclear Information System (INIS)

    Naramoto, Hiroshi

    1983-01-01

    The variation of structure of LiF, MgO, Al 2 O 3 and TiO 2 accompanying annealing after ion implantation is explained. The analysis of structure is usually made by the perturbed gamma ray angular correlation, the internal electron Moessbauer method, or the ion scattering method. The results of analyses are discussed for alkali ion implantation, Fe-ion implantation, In-ion implantation, Au-ion implantation, Pt-ion implantation, Pb-ion implantation and transition metal ion implantation. The coupling of the implanted elements with lattice defects and matrix elements, and the compatibility between deposited elements and matrix crystal lattice were studied. The variation of physical properties due to ion implantation such as phase transition, volume change, the control of single crystal region, and the variation of hardness near surface were investigated, and the examples are presented. (Kato, T.)

  10. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  11. Surface microhardening by ion implantation

    International Nuclear Information System (INIS)

    Singh, Amarjit

    1986-01-01

    The paper discusses the process and the underlying mechanism of surface microhardening by implanting suitable energetic ions in materials like 4145 steel, 304 stainless steel, aluminium and its 2024-T351 alloy. It has been observed that boron and nitrogen implantation in materials like 4145 steel and 304 stainless steel can produce a significant increase in surface hardness. Moreover the increase can be further enhanced with suitable overlay coatings such as aluminium (Al), Titanium (Ti) and carbon (C). The surface hardening due to implantation is attributed to precipitation hardening or the formation of stable/metastable phase or both. The effect of lithium implantation in aluminium and its alloy on microhardness with increasing ion dose and ion beam energy is also discussed. (author)

  12. Implanted-tritium permeation experiments

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Holland, D.F.; Casper, L.A.; Hsu, P.Y.; Miller, L.G.; Schmunk, R.E.; Watts, K.D.; Wilson, C.J.; Kershner, C.J.; Rogers, M.L.

    1982-04-01

    In fusion reactors, charge exchange neutral atoms of tritium coming from the plasma will be implanted into the first wall and other interior structures. EG and G Idaho is conducting two experiments to determine the magnitude of permeation into the coolant streams and the retention of tritium in those structures. One experiment uses an ion gun to implant deuterium. The ion gun will permit measurements to be made for a variety of implantation energies and fluxes. The second experiment utilizes a fission reactor to generate a tritium implantation flux by the 3 He(n,p) 3 H reaction. This experiment will simulate the fusion reactor radiation environment. We also plan to verify a supporting analytical code development program, in progress, by these experiments

  13. Biodegradable Implants in Orthopaedics and Traumatology

    OpenAIRE

    YETKIN, Haluk

    2014-01-01

    Biodegradable implants are an alternative to metallic implants and have the advantage of not being necessary to remove once the fracture has healed. Twenty-two patients with fractures were treated with biodegradable implants. There were osteolysis in eleven patients; however, no serious complication was encountered. Although biodegradable implants are expensive, a second surgical procedure to remove the implants is not necessary, relieving the patient of the related costs and risks.

  14. Basics of clinical diagnosis in implant dentistry

    Directory of Open Access Journals (Sweden)

    Manu Rathee

    2015-01-01

    Full Text Available Implant-based prosthetic rehabilitation requires an understanding of associated anatomical structures. The ultimate predictability of an implant site is determined by the existing anatomy as related to dentition and the associated hard and soft tissues. Meticulous clinical assessment helps in determining the suitability of the potential site for implant placement. The purpose of this article is to present the clinical assessment for dental implants' placement to modulate peri-implant tissue characteristics in individual clinical need.

  15. Body Implanted Medical Device Communications

    Science.gov (United States)

    Yazdandoost, Kamya Yekeh; Kohno, Ryuji

    The medical care day by day and more and more is associated with and reliant upon concepts and advances of electronics and electromagnetics. Numerous medical devices are implanted in the body for medical use. Tissue implanted devices are of great interest for wireless medical applications due to the promising of different clinical usage to promote a patient independence. It can be used in hospitals, health care facilities and home to transmit patient measurement data, such as pulse and respiration rates to a nearby receiver, permitting greater patient mobility and increased comfort. As this service permits remote monitoring of several patients simultaneously it could also potentially decrease health care costs. Advancement in radio frequency communications and miniaturization of bioelectronics are supporting medical implant applications. A central component of wireless implanted device is an antenna and there are several issues to consider when designing an in-body antenna, including power consumption, size, frequency, biocompatibility and the unique RF transmission challenges posed by the human body. The radiation characteristics of such devices are important in terms of both safety and performance. The implanted antenna and human body as a medium for wireless communication are discussed over Medical Implant Communications Service (MICS) band in the frequency range of 402-405MHz.

  16. Cochlear implants and medical tourism.

    Science.gov (United States)

    McKinnon, Brian J; Bhatt, Nishant

    2010-09-01

    To compare the costs of medical tourism in cochlear implant surgery performed in India as compared to the United States. In addition, the cost savings of obtaining cochlear implant surgery in India were compare d to those of other surgical interventions obtained as a medical tourist. Searches were conducted on Medline and Google using the search terms: 'medical tourism', 'medical offshoring', 'medical outsourcing', 'cochlear implants' and 'cochlear implantation'. The information regarding cost of medical treatment was obtained from personal communication with individuals familiar with India's cochlear implantation medical tourism industry. The range of cost depended on length of stay as well as the device chosen. Generally the cost, inclusive of travel, surgery and device, was in the range of $21,000-30,000, as compared to a cost range of $40,000-$60,000 in the US. With the escalating cost of healthcare in the United States, it is not surprising that some patients would seek to obtain surgical care overseas at a fraction of the cost. Participants in medical tourism often have financial resources, but lack health insurance coverage. While cardiovascular and orthopedic surgery performed outside the United States in India at centers that cater to medical tourists are often performed at one-quarter to one-third of the cost that would have been paid in the United States, the cost differential for cochlear implants is not nearly as favorable.

  17. Implantation damage in silicon devices

    International Nuclear Information System (INIS)

    Nicholas, K.H.

    1977-01-01

    Ion implantation, is an attractive technique for producing doped layers in silicon devices but the implantation process involves disruption of the lattice and defects are formed, which can degrade device properties. Methods of minimizing such damage are discussed and direct comparisons made between implantation and diffusion techniques in terms of defects in the final devices and the electrical performance of the devices. Defects are produced in the silicon lattice during implantation but they are annealed to form secondary defects even at room temperature. The annealing can be at a low temperature ( 0 C) when migration of defects in silicon in generally small, or at high temperature when they can grow well beyond the implanted region. The defect structures can be complicated by impurity atoms knocked into the silicon from surface layers by the implantation. Defects can also be produced within layers on top of the silicon and these can be very important in device fabrication. In addition to affecting the electrical properties of the final device, defects produced during fabrication may influence the chemical properties of the materials. The use of these properties to improve devices are discussed as well as the degradation they can cause. (author)

  18. The vestibular implant: Quo vadis?

    Directory of Open Access Journals (Sweden)

    Raymond eVan De Berg

    2011-08-01

    Full Text Available AbstractObjective: to assess the progress of the development of the vestibular implant and its feasibility short-term. Data sources: a search was performed in Pubmed, Medline and Embase. Key words used were vestibular prosth* and vestibular implant. The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation.Study selection: all studies about the vestibular implant and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the vestibular implant. Data extraction and synthesis: data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: to use a basic vestibular implant in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation, complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt.

  19. Imaging of common breast implants and implant-related complications: A pictorial essay.

    Science.gov (United States)

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  20. Why are mini-implants lost: the value of the implantation technique!

    Science.gov (United States)

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  1. Why are mini-implants lost: The value of the implantation technique!

    Directory of Open Access Journals (Sweden)

    Fabio Lourenço Romano

    2015-02-01

    Full Text Available The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1 Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2 Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3 Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4 The more precise the lancing procedures, the better the implant placement technique; 5 Self-drilling does not mean higher pressures; 6 Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  2. Imaging of common breast implants and implant-related complications: A pictorial essay

    Directory of Open Access Journals (Sweden)

    Amisha T Shah

    2016-01-01

    Full Text Available The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  3. Implantate in der Augenheilkunde

    Science.gov (United States)

    Dresp, Joachim H.

    Im Bereich der Augenheilkunde findet sich die weltweit am häufigsten ausgeführte chirurgische Massnahme, die operative Behandlung des Grauen Stars: die Katarakt. Bei der Katarakt handelt es sich um eine Eintrübung der natürlichen Augenlinse, die sich je nach Stadium der Erkrankung leicht opak, über milchig bis zu bräunlich präsentiert. Mit dieser Zunahme der Undurchlässigkeit für das sichtbare Licht geht eine Abnahme des Sehvermögens einher, die bis zur totalen Erblindung führen kann. Bedingt durch die sehr eingeschränkten chirurgischen Möglichkeiten in den Ländern der Dritten Welt ist die Katarakt die Erblindungsursache Nummer 1 in der Welt. Ganz im Gegensatz hierzu ist in den industrialisierten Ländern Europas, Amerikas und Asiens die Katarakt-OP die sicherste chirurgische Intervention. In der Augenheilkunde werden Implantate aller drei Aggregatszustände verwendet.

  4. Autologous bone-marrow mesenchymal stem cell implantation and endothelial function in a rabbit ischemic limb model.

    Directory of Open Access Journals (Sweden)

    Shinsuke Mikami

    Full Text Available BACKGROUND: The purpose of this study was to determine whether autologous mesenchymal stem cells (MSCs implantation improves endothelial dysfunction in a rabbit ischemic limb model. METHODS: We evaluated the effect of MSC implantation on limb blood flow (LBF responses to acetylcholine (ACh, an endothelium-dependent vasodilator, and sodium nitroprusside (SNP, an endothelium-independent vasodilator, in rabbits with limb ischemia in which cultured MSCs were implanted (n = 20 or saline was injected as a control group (n = 20. LBF was measured using an electromagnetic flowmeter. A total of 10(6 MSCs were implanted into each ischemic limb. RESULTS: Histological sections of ischemic muscle showed that capillary index (capillary/muscle fiber was greater in the MSC implantation group than in the control group. Laser Doppler blood perfusion index was significantly increased in the MSC implantation group compared with that in the control group. LBF response to ACh was greater in the MSC group than in the control group. After administration of N(G-nitro-L-arginine, a nitric oxide synthase inhibitor, LBF response to ACh was similar in the MSC implantation group and control group. Vasodilatory effects of SNP in the two groups were similar. CONCLUSIONS: These findings suggest that MSC implantation induces angiogenesis and augments endothelium-dependent vasodilation in a rabbit ischemic model through an increase in nitric oxide production.

  5. Behavior of ion-implanted cesium in silicon dioxide films

    International Nuclear Information System (INIS)

    Fishbein, B.J.

    1988-01-01

    Charged impurities in silicon dioxide can be used to controllably shift the flatband voltage of metal-oxide-semiconductor devices independently of the substrate doping, the gate oxide thickness and the gate-electrode work function. Cesium is particularly well suited for this purpose because it is immobile in SiO 2 at normal device operating temperatures, and because it can be controllably introduced into oxide films by ion implantation. Cesium is positively charged in silicon dioxide, resulting in a negative flatband voltage shift. Possible applications for cesium technology include solar cells, devices operated at liquid nitrogen temperature, and power devices. The goal of this work has been to characterize as many aspects of cesium behavior in silicon dioxide as are required for practical applications. Accordingly, cesium-ion implantation, cesium diffusion, and cesium electrical activation in SiO 2 were studied over a broad range of processing conditions. The electrical properties of cesium-containing oxides, including current-voltage characteristics, interface trap density, and inversion-layer carrier mobility were examined, and several potential applications for cesium technology have been experimentally demonstrated

  6. Development of Mechanical Improvement of the Cladding by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, J G; Lee, S B [Sungkyunkwan University, Seoul (Korea, Republic of); Kim, S H [Kangwon University, Chunchon (Korea, Republic of); Song, G [Suwon College, Suwon (Korea, Republic of)

    1997-07-01

    In this research we analyzed the state of art related to the surface treatment method of nuclear fuel cladding for the development of the surface treatment technique of nuclear fuel cladding by ion beam while investigating major causes of the leakage of fuel rods. Ion implantation simulation code called TRIM-95 was used to decide basic parameters ion beams and wetup an appropriate process for ion implantation. For the mechanical properties measurements, a high temperature wear resistance tester, a fretting wear tester, and a fretting fatigue resistance tester were constructed. Using these testers, some mechanical properties as micro hardness, wear resistance against AISI52100 and AI{sub 2}O{sub 3} balls, and fretting properties were measured and analyzed for the implanted materials as a function of ion dose and processing temperature. Effect of the oxygen atmosphere was measured in the nitrogen implantation. Auger electron spectroscopy(AES) was applied for the depth profile, and X-ray diffraction was used for the nitrogen and oxide measurements. 48 refs., 7 tabs., 46 figs. (author)

  7. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  8. Repeated implantation failure versus repeated implantation success: discrimination at a metabolomic level.

    Science.gov (United States)

    RoyChoudhury, Sourav; Singh, Apoorva; Gupta, Nalini J; Srivastava, Sudha; Joshi, Mamata V; Chakravarty, Baidyanath; Chaudhury, Koel

    2016-06-01

    Is there any difference at the serum metabolic level between women with recurrent implantation failure (RIF) and women with recurrent implantation success (RIS) when undergoing in vitro fertilization (IVF)? Eight metabolites, including valine, adipic acid, l-lysine, creatine, ornithine, glycerol, d-glucose and urea, were found to be significantly up-regulated in women with RIF when compared with women with RIS. Despite transfer of three high-grade embryos per cycle, RIF following three or more consecutive IVF attempts occurs in a group of infertile women. Conversely, there is a group of women who undergo successful implantation each cycle, yet have a poor obstetric history. This study was conducted over a period of 10 years (January 2004-October 2014). Groups of 28 women with RIF (age ≤40 years and BMI ≤28) and 24 women with RIS (age and BMI matched) were selected from couples with primary infertility reporting at the Institute of Reproductive Medicine, Kolkata, India. Women recruited in the RIF group had history of implantation failure in at least three consecutive IVF attempts, in which three embryos of high-grade quality were transferred in each cycle. Blood samples were collected from both the groups during the implantation window following overnight fasting for at least 10 h (7-10 days post ovulation). Samples were analyzed using a 700 MHz NMR spectrometer and acquired spectra were subjected to chemometric and statistical analysis. Serum levels of endothelial nitric oxide synthase (eNOS) were measured using an enzyme immunoassay technique. Valine, adipic acid, l-lysine, creatine, ornithine, glycerol, d-glucose and urea were found to be significantly down-regulated in women with RIS when compared with those with RIF, with fold change values of 0.81, 0.82, 0.79, 0.80, 0.78, 0.68, 0.76 and 0.74, respectively. Further, serum eNOS was found to be significantly lower in women with RIF when compared with RIS (P failure. One of the authors, S.R.C. acknowledges the

  9. Oxygen recoil implant from SiO2 layers into single-crystalline silicon

    International Nuclear Information System (INIS)

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-01-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF 2 implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. [copyright] 2001 American Institute of Physics

  10. Surface layers in the 4A group metals with implanted silicon ions

    International Nuclear Information System (INIS)

    Kovneristyj, Yu.K.; Vavilova, V.V.; Krasnopevtsev, V.V.; Galkin, L.N.; Kudyshev, A.N.; Klechkovskaya, V.V.

    1987-01-01

    A study was made on the change of structure and phase composition of fine near the surface layers of 4A group metals (Hf, Zr, Ti) during ion Si implantation and successive thermal annealing at elevated temperatures. Implantation of Si + ions with 30 or 16 keV energy in Ti, Zr and Hf at room temperature results to amorphization of metal surface layer. The surface hafnium and titanium layer with implanted Si atoms due to interaction with residual atmosphere of oxygen turns during annealing at 870 K to amorphous solid solution of HfO 2m or TiO 2 with Si, preventing further metal oxidation; layers of amorphous alloy are characterized by thermal stability up to 1270 K. Oxidation of the surface amorphous layer in residual oxygen atmosphere and its crystallization in ZrO 2 take place in result of Zr annealing with implanted Si ions at temperature not exceeding 870 K. Similar phenomena are observed in the case of hafnium with implanted oxygen ions or small dose of silicon ions. Thermal stability of amorphous layers produced during ion implantation of Si in Ti, Zr and Hf corresponds to scale resistance of monolithic alloys in Ti-Si, Zr-Si and Hf-Si systems

  11. Formation of SIMOX–SOI structure by high-temperature oxygen implantation

    International Nuclear Information System (INIS)

    Hoshino, Yasushi; Kamikawa, Tomohiro; Nakata, Jyoji

    2015-01-01

    We have performed oxygen ion implantation in silicon at very high substrate-temperatures (⩽1000 °C) for the purpose of forming silicon-on-insulator (SOI) structure. We have expected that the high-temperature implantation can effectively avoids ion-beam-induced damages in the SOI layer and simultaneously stabilizes the buried oxide (BOX) and SOI-Si layer. Such a high-temperature implantation makes it possible to reduce the post-implantation annealing temperature. In the present study, oxygen ions with 180 keV are incident on Si(0 0 1) substrates at various temperatures from room temperature (RT) up to 1000 °C. The ion-fluencies are in order of 10"1"7–10"1"8 ions/cm"2. Samples have been analyzed by atomic force microscope, Rutherford backscattering, and micro-Raman spectroscopy. It is found in the AFM analysis that the surface roughness of the samples implanted at 500 °C or below are significantly small with mean roughness of less than 1 nm, and gradually increased for the 800 °C-implanted sample. On the other hand, a lot of dents are observed for the 1000 °C-implanted sample. RBS analysis has revealed that stoichiometric SOI-Si and BOX-SiO_2 layers are formed by oxygen implantation at the substrate temperatures of RT, 500, and 800 °C. However, SiO_2-BOX layer has been desorbed during the implantation. Raman spectra shows that the ion-beam-induced damages are fairly suppressed by such a high-temperatures implantation.

  12. Precision of fit between implant impression coping and implant replica pairs for three implant systems.

    Science.gov (United States)

    Nicoll, Roxanna J; Sun, Albert; Haney, Stephan; Turkyilmaz, Ilser

    2013-01-01

    The fabrication of an accurately fitting implant-supported fixed prosthesis requires multiple steps, the first of which is assembling the impression coping on the implant. An imprecise fit of the impression coping on the implant will cause errors that will be magnified in subsequent steps of prosthesis fabrication. The purpose of this study was to characterize the 3-dimensional (3D) precision of fit between impression coping and implant replica pairs for 3 implant systems. The selected implant systems represent the 3 main joint types used in implant dentistry: external hexagonal, internal trilobe, and internal conical. Ten impression copings and 10 implant replicas from each of the 3 systems, B (Brånemark System), R (NobelReplace Select), and A (NobelActive) were paired. A standardized aluminum test body was luted to each impression coping, and the corresponding implant replica was embedded in a stone base. A coordinate measuring machine was used to quantify the maximum range of displacement in a vertical direction as a function of the tightening force applied to the guide pin. Maximum angular displacement in a horizontal plane was measured as a function of manual clockwise or counterclockwise rotation. Vertical and rotational positioning was analyzed by using 1-way analysis of variance (ANOVA). The Fisher protected least significant difference (PLSD) multiple comparisons test of the means was applied when the F-test in the ANOVA was significant (α=.05). The mean and standard deviation for change in the vertical positioning of impression copings was 4.3 ±2.1 μm for implant system B, 2.8 ±4.2 μm for implant system R, and 20.6 ±8.8 μm for implant system A. The mean and standard deviation for rotational positioning was 3.21 ±0.98 degrees for system B, 2.58 ±1.03 degrees for system R, and 5.30 ±0.79 degrees for system A. The P-value for vertical positioning between groups A and B and between groups A and R was <.001. No significant differences were found for

  13. A novel self-aligned oxygen (SALOX) implanted SOI MOSFET device structure

    Science.gov (United States)

    Tzeng, J. C.; Baerg, W.; Ting, C.; Siu, B.

    The morphology of the novel self-aligned oxygen implanted SOI (SALOX SOI) [1] MOSFET was studied. The channel silicon of SALOX SOI was confirmed to be undamaged single crystal silicon and was connected with the substrate. Buried oxide formed by oxygen implantation in this SALOX SOI structure was shown by a cross section transmission electron micrograph (X-TEM) to be amorphous. The source/drain silicon on top of the buried oxide was single crystal, as shown by the transmission electron diffraction (TED) pattern. The source/drain regions were elevated due to the buried oxide volume expansion. A sharp silicon—silicon dioxide interface between the source/drain silicon and buried oxide was observed by Auger electron spectroscopy (AES). Well behaved n-MOS transistor current voltage characteristics were obtained and showed no I-V kink.

  14. Space charge limitation of the current in implanted SiO2 layers

    International Nuclear Information System (INIS)

    Szydlo, N.; Poirier, R.

    1974-01-01

    Metal-oxide-semiconductor capacitors were studied where the metal is a semitransparent gold layer of 5mm diameter, the oxide is thermal silica whose, thickness depends on the nature of the implant, and the semiconductor is N-type silicon of 5 ohms/cm. The SiO 2 thickness was chosen in such a way that the maximum of the profile of the implanted substance is in the medium of the oxide layer. In the case of virgin silica, the oscillations in the photocurrent versus energy and exponential variations versus the applied voltage show that the photoconduction obeys the model of injection limited current. In the case of the oxide after ion bombardment, the photocurrent similarity, independent of the direction of the electric field in silica, shows that volume transport phenomena become preponderent [fr

  15. The In Vivo Pericapsular Tissue Response to Modern Polyurethane Breast Implants.

    Science.gov (United States)

    Frame, James; Kamel, Dia; Olivan, Marcelo; Cintra, Henrique

    2015-10-01

    Polyurethane breast implants were first introduced by Ashley (Plast Reconstr Surg 45:421-424, 1970), with the intention of trying to reduce the high incidence of capsular contracture associated with smooth shelled, high gel bleed, silicone breast implants. The sterilization of the polyurethane foam in the early days was questionable. More recently, ethylene oxide (ETO)-sterilized polyurethane has been used in the manufacturing process and this has been shown to reduce the incidence of biofilm. The improved method of attachment of polyurethane onto the underlying high cohesive gel, barrier shell layered, silicone breast implants also encourages bio-integration. Polyurethane covered, cohesive gel, silicone implants have also been shown to reduce the incidence of other problems commonly associated with smooth or textured silicone implants, especially with reference to displacement, capsular contracture, seroma, reoperation, biofilm and implant rupture. Since the introduction of the conical polyurethane implant (Silimed, Brazil) into the United Kingdom in 2009 (Eurosurgical, UK), we have had the opportunity to review histology taken from the capsules of polyurethane implants in three women ranging from a few months to over 3 years after implantation. All implants had been inserted into virgin subfascial, extra-pectoral planes. The results add to the important previously described histological findings of Bassetto et al. (Aesthet Plast Surg 34:481-485, 2010). Five distinct layers are identified and reasons for the development of each layer are discussed. Breast capsule around polyurethane implants, in situ for fifteen and 20 years, has recently been obtained and analysed in Brazil, and the histology has been incorporated into this study. After 20 years, the polyurethane is almost undetectable and capsular contracture may appear. These findings contribute to our understanding of polyurethane implant safety, and give reasoning for a significant reduction in clinical

  16. Falha prematura em implantes orais = Early oral implant failures

    Directory of Open Access Journals (Sweden)

    Fadanelli, Alexandro Bianchi

    2005-01-01

    Full Text Available Atualmente, ainda há uma percentagem significativa de fracassos de implantes na prática clínica, causando transtorno para o profissional e para o paciente. O objetivo deste estudo foi avaliar a bibliografia disponível sobre o assunto, apresentar um caso clínico e discutir os aspectos relacionados aos insucessos na terapia com implantes ocorridos durante o período de osteointegração. A avaliação da literatura mostrou haverem múltiplos fatores possivelmente envolvidos nas falhas de implantes, sendo que através do estudo das falhas pode-se minimizar sua ocorrência

  17. An Unusual Bone Loss Around Implants

    Directory of Open Access Journals (Sweden)

    Amirreza Rokn

    2013-01-01

    Full Text Available AbstractPre-implant disease is an inflammatory process, which can affect the surrounding tissues of a functional Osseointegrated implant that is usually as a result of a disequilibrium between the micro-flora and the body defense system.This case reports a 57 years old male with unusual bone loss around dental implants.This was an unusual case of peri-implantitis which occurred only in the implants on one side of the mouth although they all were unloaded implants.

  18. Occlusal considerations for dental implant restorations.

    Science.gov (United States)

    Bergmann, Ranier H

    2014-01-01

    When placed, dental implants are put into an ever-changing oral environment in which teeth can continue to migrate. Yet, the implants themselves are ankylosed. This can lead to occlusal instability. Teeth may continue to erupt, leaving the implants in infraocclusion. Teeth may move mesially away from an implant, requiring modification to close an open contact point. Friction in the connection between teeth and implants can lead to intrusion of teeth and damage to the periodontal attachment apparatus. Implant occlusion with shallow incisal guidance minimizes lateral and tipping forces. Cross-arch stabilization allows the best distribution of occlusal forces. The choice of restorative materials influences long-term occlusal stability.

  19. Cell adhesion of F{sup +} ion implantation of intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.J. E-mail: dejunli@hotmail.com; Cui, F.Z.; Gu, H.Q

    1999-04-01

    The cell adhesion of ion implanted polymethylmethacrylate (PMMA) intraocular lens was studied using cultured cells in vitro. F{sup +} ion implantation was performed at the energies of 40, 60, 80, 100 keV with the fluences ranging from 5x10{sup 13} to 1x10{sup 15} ions/cm{sup 2} at room temperature. The cell adhesion tests gave interesting results that the number of the neutral granulocytes and the macrophages adhering on surface were reduced significantly after ion implantation. The optimal fluence was about 4x10{sup 14} ions/cm{sup 2}. The hydrophobicity imparted to the lens surface was also enhanced. The results of X-ray photoelectron spectroscopy analysis indicated that ion implantation resulted in the cleavage of some pendant groups, the oxidation of the surface, and the formation of some new chemical bonds, which was probably the main reason for the cell adhesion change.

  20. Employment of an ion implantation technique for catalyst coating on various substrates

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Chattha, J.A.; Zlobin, V.N.; Vasilve, I.P.; Cherkasov, J.A.; Gawrilenko, P.N.

    2001-01-01

    Catalysts are widely used in the chemical industry as well as in the production of vehicle catalytic converters. Precious metals are employed increasingly as catalytic materials. Traditional methods of coating, such as impregnation, are thought to reduce the porosity and specific area of catalyst thus reducing the catalytic efficiency. Apart from that, impregnation technology leads to the high expense of precious metals. To reduce the content of noble metals in catalysts the ion implantation method of coating has been investigated. Several samples of catalysts on various substrates were prepared by ion implantation technique and tested. New catalysts have shown high nitric oxides (NO/sub x/) and carbon monoxide (CO) conversion efficiency, with the content of noble metals reduced substantially. Experiment has also shown that specific area of substrates coated by an ion implantation had not decreased. Schematic of an ion implanter and experimental results are provided. (author)

  1. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Dulce M., H.J.; Rueda V., Alejandro [Universidad Francisco de Paula Santander, A.A. 1055, Cucuta (Colombia); Dougar-Jabon, Valeri [Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Dislocation loops in spinel crystals irradiated successively with deep and shallow ion implants

    International Nuclear Information System (INIS)

    Ai, R.X.; Cooper, E.A.; Sickafus, K.E.; Nastasi, M.; Bordes, N.; Ewing, R.C.

    1993-01-01

    This study examines the influence of microstructural defects on irradiation damage accumulation in the oxide spinel. Single crystals of the compound MgAl 2 O 4 with surface normal [111] were irradiated under cryogenic temperature (100K) either with 50 keV Ne ions (fluence 5.0 x 10 12 /cm 2 ), 400 keV Ne ions (fluence 6.7 x 10 13 /cm 2 ) or successively with 400 keV Ne ions followed by 50 keV Ne ions. The projected range of 50 keV Ne ions in spinel is ∼50 mn (''shallow'') while the projected range of 400 keV Ne ions is ∼500 mn (''deep''). Transmission electron microscopy (TEM) was used to examine dislocation loops/defect clusters formed by the implantation process. Measurements of the dislocation loop size were made using weak-beam imaging technique on cross-sectional TEM ion-implanted specimens. Defect clusters were observed in both deep and shallow implanted specimens, while dislocation loops were observed in the shallow implanted sample that was previously irradiated by 400 keV Ne ions. Cluster size was seen to increase for shallow implants in crystals irradiated with a deep implant (size ∼8.5 nm) as compared to crystals treated only to a shallow implant (size ∼3.1 nm)

  3. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    Science.gov (United States)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  4. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    International Nuclear Information System (INIS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-01-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 10 17 ions/cm 2 . The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, Cr x C y phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties

  5. Current trends in ion implantation

    International Nuclear Information System (INIS)

    Gwilliam, R.M.

    2001-01-01

    As semiconductor device dimensions continue to shrink, the drive beyond 250 nm is creating significant problems for the device processor. In particular, trends toward shallower-junctions, lower thermal budgets and simplified processing steps present severe challenges to ion implantation. In parallel with greater control of the implant process goes the need for a better understanding of the physical processes involved during implantation and subsequent activation annealing. For instance, the need for an understanding of dopant-defect interaction is paramount as defects mediate a number of technologically important phenomena such as transient enhanced diffusion and impurity gettering. This paper will outline the current trends in the ion implantation and some of the challenges it faces in the next decade, as described in the semiconductor roadmap. It will highlight some recent positron annihilation work that has made a contribution to addressing one of these challenges, namely the need for tighter control of implant uniformity and dose. Additionally, some vacancy-mediated processes are described with the implication that these may provide areas in which positron annihilation spectroscopy could make a significant contribution. (orig.)

  6. Composite fibrous glaucoma drainage implant

    Science.gov (United States)

    Klapstova, A.; Horakova, J.; Shynkarenko, A.; Lukas, D.

    2017-10-01

    Glaucoma is a frequent reason of loss vision. It is usually caused by increased intraocular pressure leading to damage of optic nerve head. This work deals with the development of fibrous structure suitable for glaucoma drainage implants (GDI). Commercially produced metallic glaucoma implants are very effective in lowering intraocular pressure. However, these implants may cause adverse events such as damage to adjacent tissue, fibrosis, hypotony or many others [1]. The aim of this study is to reduce undesirable properties of currently produced drains and improve their properties by creating of the composite fibrous drain for achieve a normal intraocular pressure. Two types of electrospinning technologies were used for the production of very small tubular implants. First type was focused for production of outer part of tubular drain and the second type of electrospinning method made the inner part of shape follows the connections of both parts. Complete implant had a special properties suitable for drainage of fluid. Morphological parameters, liquid transport tests and in-vitro cell adhesion tests were detected.

  7. Cranioplasty with individual titanium implants

    Science.gov (United States)

    Mishinov, S.; Stupak, V.; Sadovoy, M.; Mamonova, E.; Koporushko, N.; Larkin, V.; Novokshonov, A.; Dolzhenko, D.; Panchenko, A.; Desyatykh, I.; Krasovsky, I.

    2017-09-01

    Cranioplasty is the second procedure in the history of neurosurgery after trepanation, and it is still relevant despite the development of civilization and progress in medicine. Each cranioplasty operation is unique because there are no two patients with identical defects of the skull bones. The development of Direct Metal Laser Sintering (DMLS) technique opened up the possibility of direct implant printing of titanium, a biocompatible metal used in medicine. This eliminates the need for producing any intermediate products to create the desired implant. We have produced 8 patient-specific titanium implants using this technique for patients who underwent different decompressive cranioectomies associated with bone tumors. Follow-up duration ranged from 6 to 12 months. We observed no implant-related reactions or complications. In all cases of reconstructive neurosurgery we achieved good clinical and aesthetic results. The analysis of the literature and our own experience in three-dimensional modeling, prototyping, and printing suggests that direct laser sintering of titanium is the optimal method to produce biocompatible surgical implants.

  8. Aqueous shunt implantation in glaucoma

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-01-01

    Full Text Available Aqueous shunts or glaucoma drainage devices are increasingly utilized in the management of refractory glaucoma. The general design of the most commonly-used shunts is based on the principles of the Molteno implant: ie. a permanent sclerostomy (tube, a predetermined bleb area (plate and diversion of aqueous humour to the equatorial region and away from the limbal subconjunctival space. These three factors make aqueous shunts more resistant to scarring as compared to trabeculectomy. The two most commonly used shunts are the Ahmed Glaucoma Valve, which contains a flow-restrictor, and the non-valved Baervedlt Glaucoma Implant. While the valved implants have a lower tendency to hypotony and related complications, the non-valved implants with larger, more-biocompatible end plate design, achieve lower intraocular pressures with less encapsulation. Non-valved implants require additional suturing techniques to prevent early hypotony and a number of these methods will be described. Although serious shunt-related infection is rare, corneal decompensation and diplopia are small but significant risks.

  9. Capacitive Feedthroughs for Medical Implants.

    Science.gov (United States)

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  10. A new system of implant abutment connection: how to improve a two piece implant system sealing.

    Science.gov (United States)

    Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F

    2017-01-01

    Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.

  11. Reducing the influence of STI on SONOS memory through optimizing added boron implantation technology

    International Nuclear Information System (INIS)

    Xu Yue; Yan Feng; Li Zhiguo; Yang Fan; Wang Yonggang; Chang Jianguang

    2010-01-01

    The influence of shallow trench isolation (STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments. It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably. The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem. In order to mitigate the STI impact, an added boron implantation in the STI region is developed as a new solution. Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells, respectively. The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology. (semiconductor devices)

  12. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    Science.gov (United States)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  13. Cortical Plasticity after Cochlear Implantation

    DEFF Research Database (Denmark)

    Petersen, Bjørn; Gjedde, Albert; Wallentin, Mikkel

    2013-01-01

    recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners...... with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss...... occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only...

  14. Tinting of intraocular lens implants

    Energy Technology Data Exchange (ETDEWEB)

    Zigman, S.

    1982-06-01

    Intraocular lens (IOL) implants of polymethyl methacrylate (PMMA) lack an important yellow pigment useful as a filter in the visual process and in the protection of the retina from short-wavelength radiant energy. The ability to produce a yellow pigment in the PMMA used in IOL implants by exposure to near-ultraviolet (UV) light was tested. It was found that the highly cross-linked material in Copeland lens blanks was tinted slightly because of this exposure. The absorptive properties of lens blanks treated with near-UV light in this way approached that of the absorptive properties of human lenses. This finding shows that it is possible to alter IOL implants simply so as to induce a pale-yellow pigment in them to improve the visual process and to protect the retinas of IOL users.

  15. MRI of orbital hydroxyapatite implants

    International Nuclear Information System (INIS)

    Flanders, A.E.; De Potter P.; Rao, V.M.; Tom, B.M.; Shields, C.L.; Shields, J.A.

    1996-01-01

    Our aim was to use MRI for the postsurgical assessment of a new form of integrated orbital implant composed of a porous calcium phosphate hydroxyapatite substrate. We studied ten patients 24-74 years of age who underwent enucleation and implantation of a hydroxyapatite ball; 5-13 months after surgery, each patient was examined by spin-echo MRI, with fat suppression and gadolinium enhancement. Fibrovascular ingrowth was demonstrated in all ten patients as areas of enhancement at the periphery of the hydroxyapatite sphere that extended to the center to a variable degree. The radiologist should aware of the MRI appearances of the coralline hydroxyapatite orbital implant since it is now widely used following enucleation. MRI is a useful means to determine successful incorporation of the substrate into the orbital tissues. The normal pattern of contrast enhancement should not be mistaken for recurrent tumor or infection. (orig.)

  16. Tinting of intraocular lens implants

    International Nuclear Information System (INIS)

    Zigman, S.

    1982-01-01

    Intraocular lens (IOL) implants of polymethyl methacrylate (PMMA) lack an important yellow pigment useful as a filter in the visual process and in the protection of the retina from short-wavelength radiant energy. The ability to produce a yellow pigment in the PMMA used in IOL implants by exposure to near-ultraviolet (UV) light was tested. It was found that the highly cross-linked material in Copeland lens blanks was tinted slightly because of this exposure. The absorptive properties of lens blanks treated with near-UV light in this way approached that of the absorptive properties of human lenses. This finding shows that it is possible to alter IOL implants simply so as to induce a pale-yellow pigment in them to improve the visual process and to protect the retinas of IOL users

  17. Implant rehabilitation in bruxism patient

    Science.gov (United States)

    Goiato, Marcelo Coelho; Sonego, Mariana Vilela; dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas

    2014-01-01

    A white female patient presented to the university clinic to obtain implant retained prostheses. She had an edentulous maxillary jaw and presented three teeth with poor prognosis (33, 34 and 43). The alveolar bone and the surrounding tissues were healthy. The patient did not report any relevant medical history contraindicating routine dental treatment or implant surgery, but self-reported a dental history of asymptomatic nocturnal bruxism. The treatment plan was set and two Branemark protocols supported by six implants in each arch were installed after a 6-month healing period. A soft occlusal splint was made due to the patient's history of bruxism, and the lack of its use by the patient resulted in an acrylic fracture. The prosthesis was repaired and the importance of using the occlusal splint was restated. In the 4-year follow-up no fractures were reported. PMID:24907215

  18. MR imaging of breast implants.

    Science.gov (United States)

    Gorczyca, D P

    1994-11-01

    MR imaging has proved to be an excellent imaging modality in locating free silicone and evaluating an implant for rupture, with a sensitivity of approximately 94% and specificity of 97%. Silicone has a unique MR resonance frequency and long T1 and T2 relaxation times, which allows several MR sequences to provide excellent diagnostic images. The most commonly used sequences include T2-weighted, STIR, and chemical shift imaging (Figs. 3, 13, and 14). The T2-weighted and STIR sequences are often used in conjunction with chemical water suppression. The most reliable findings on MR images for detection of implant rupture include identification of the collapsed implant shell (linguine sign) and free silicone within the breast parenchyma.

  19. Radioactive implants for medical applications; Radioaktive Implantate fuer medizinische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, M.

    2008-07-01

    The long-term success of surgery is often diminished by excessive wound healing, which makes another intervention necessary. Locally applied radionuclides with short range radiation can prevent such benign hyperproliferation. As pure electron emitter with a half-life of 14.3 days and a mean energy of 694.9 keV (E{sub max}=1710.48 keV) {sup 32}P is a suitable radionuclide which can be produced from the stable {sup 31}P by the capture of thermal neutrons (1 x 10{sup 14} /s/cm{sup 2}) in a nuclear reactor. After a typical irradiation time (14 days) the ratio of {sup 32}P to {sup 31}P is 1.4 x 10{sup -5} to 1. Implants made of polymer and/or bioabsorbable material functioning as a carrier of the radioactive emitter allow - as opposed to metallic implants - for new applications for this type of radiotherapy. In this thesis a manufacturing method for previously not available organic, radioactive implants has been developed and a corresponding dosimetry system has been established. By means of ion implantation, {sup 32}P ions with up to 180 keV can be shot some 100 nm deep into organic implant materials. For a typical dose (15 Gy over 7 days, 1 mm distance from the implant) an activity of 75 kBq is needed corresponding to 1.3 x 10{sup 11} {sup 32}P ions. The sputter ion gun, which has been optimized for this application, creates an ion beam with high beam current (> 14 {mu}A P{sup -}) and low emittance (< 4 {pi} mm mrad {radical}(MeV)). Because of the good beam quality also small implants (<1 mm{sup 2}) can be manufactured with high efficiency. The unintentionally co-implanted portion of molecules and nuclides of the same mass (e.g. {sup 31}PH, {sup 16}O{sub 2} and {sup 32}S) could be reduced from approximately 500 to 50 by an improvement of the isotope selection at {sup 32}P beam creation. Hence, in comparison with the best hitherto existing implantation methods, the radiation dose of the implant could be reduced by an order of magnitude. With regard to the beta

  20. IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts

    NARCIS (Netherlands)

    Yang, G.; Ingenito, A.; Isabella, O.; Zeman, M.

    2016-01-01

    Ion-implanted poly-crystalline silicon (poly-Si), in combination with a tunnel oxide layer, is investigated as a carrier-selective passivating contact in c-Si solar cells based on an interdigitated back contact (IBC) architecture. The optimized poly-Si passivating contacts enable low interface

  1. Surface engineering by ion implantation

    International Nuclear Information System (INIS)

    Nielsen, Bjarne Roger

    1995-01-01

    Awidespread commercial applica tion iof particle accelerators is for ion implantation. Accelerator beams are used for ion implantation into metals, alloying a thin surface layer with foreign atoms to concentrations impossible to achieve by thermal processes, making for dramatic improvements in hardness and in resistance to wear and corrosion. Traditional hardening processes require high temperatures causing deformation; ion implantation on the other hand is a ''cold process'', treating the finished product. The ionimplanted layer is integrated in the substrate, avoiding the risk of cracking and delamination from normal coating processes. Surface properties may be ''engineered'' independently of those of the bulk material; the process does not use environmentally hazardous materials such as chromium in the surface coating. The typical implantation dose required for the optimum surface properties of metals is around 2 x 10 17 ion/cm 2 , a hundred times the typical doses for semiconductor processing. When surface areas of more than a few square centimetres have to be treated, the implanter must therefore be able to produce high beam currents (5 to 10 mA) to obtain an acceptable treatment time. Ion species used include nitrogen, boron, carbon, titanium, chromium and tantalum, and beam energies range from 50 to 200 keV. Since most components are three dimensional, it must be possible to rotate and tilt them in the beam, and control beam position over a large area. Examples of industrial applications are: - surface treatment of prostheses (hip and knee joints) to reduce wear of the moving parts, using biocompatible materials; - ion implantation into high speed ball bearings to protect against the aqueous corrosion in jet engines (important for service helicopters on oil rigs); - hardening of metal forming and cutting tools; - reduction of corrosive wear of plastic moulding tools, which are expensive to produce

  2. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  3. Plasma source ion implantation of metal ions: Synchronization of cathodic-arc plasma production and target bias pulses

    International Nuclear Information System (INIS)

    Wood, B.P.; Reass, W.A.; Henins, I.

    1995-01-01

    An erbium cathodic-arc has been installed on a Plasma Source Ion Implantation (PSII) experiment to allow the implantation of erbium metal and the growth of adherent erbia (erbium oxide) films on a variety of substrates. Operation of the PSII pulser and the cathodic-arc are synchronized to achieve pure implantation, rather than the hybrid implantation/deposition being investigated in other laboratories. The relative phase of the 20 μs PSII and cathodic-arc pulses can to adjusted to tailor the energy distribution of implanted ions and suppress the initial high-current drain on the pulse modulator. The authors present experimental data on this effect and make a comparison to results from particle-in-cell simulations

  4. Immediate occlusal loading of implants in the partially edentate mandible: a prospective 1-year radiographic and 4-year clinical study.

    Science.gov (United States)

    Ostman, Pär-Olov; Hellman, Mats; Sennerby, Lars

    2008-01-01

    The purpose of the present prospective clinical study was to evaluate the radiographic and clinical outcome of immediately loaded implants in the partial edentulous mandible over a 4-year follow-up period using a modified surgical protocol, primary implant stability criteria, and splinting for inclusion. Patients in need of implant treatment in the partial edentate mandible were consecutively included in the study. The implant sites were underprepared to obtain maximal stability. Inclusion criteria for the study were torque of a least 30 Ncm before final seating of the implant and an ISQ greater than 60. A provisional fixed partial denture was delivered within 24 hours and a definitive fixed partial denture within 3 months. The patients were monitored with clinical and radiographic follow-up examinations for up to 4 years. Stability of the implants was measured with resonance frequency analysis at placement and after 6 months. Ninety-six patients were evaluated, and 77 patients who met the inclusion criteria were included. A total of 111 fixed partial dentures supported by 257 Brånemark System implants (77 turned and 180 TiUnite implants) were delivered. Four (1.6%) of the 257 implants did not osseointegrate, giving an overall survival rate of 98.4% after 4 years. Three turned (3.9%) implants and 1 oxidized implant (0.6%) failed after 4 to 13 months. The average marginal bone resorption was 0.7 mm (SD 0.78) during the first year in function. Turned implants showed an average bone loss of 0.5 mm (SD 0.8) and oxidized implants an average of 0.7 mm (SD 0.8). Resonance frequency analysis showed a mean implant stability quotient of 72.2 (SD 7.5) at placement and 72.5 (SD 5.7) after 6 months of loading. It is concluded that immediate loading of implants with firm primary stability in partially edentulous areas of the mandible appears to be a viable procedure with predictable outcome.

  5. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  6. Fractographic analysis of fractured dental implant components

    Directory of Open Access Journals (Sweden)

    Chih-Ling Chang

    2013-03-01

    Conclusion: To avoid implant fracture, certain underlying mechanical risk factors should be noted such as patients with a habit of bruxism, bridgework with a cantilever design, or two implants installed in a line in the posterior mandible.

  7. Production of amorphous alloys by ion implantation

    International Nuclear Information System (INIS)

    Grant, W.A.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Recent data are reported on the use of ion implantation to produce amorphous metallic alloys. In particular data on the dose dependence of the crystalline to amorphous transition induced by P + implantation of nickel is presented. (Auth.)

  8. Dental implant surgery: planning and guidance

    International Nuclear Information System (INIS)

    Lobregt, S.; Schillings, J.J.; Vuurberg, E.

    2001-01-01

    A prototype application has been developed for interactive planning of dental implants on the EasyVision workstation. The user is led step by step via virtual positioning of the implant to the design of a customized drill guide. (orig.)

  9. Preparation of targets by ion implantation

    International Nuclear Information System (INIS)

    Santry, D.C.

    1976-01-01

    Various factors are described which are involved in target preparation by direct ion implantation and the limitations and pitfalls of the method are emphasized. Examples are given of experiments for which ion implanted targets are well suited. (author)

  10. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    prosthodontics; however, designing an implant‑supported prosthesis with function .... template where a provisional fixed restoration bridges the implant site. Pesun and ... in single implant therapy or short‑span implant‑supported prostheses.

  11. Implants in free fibula flap supporting dental rehabilitation - Implant and peri-implant related outcomes of a randomized clinical trial.

    Science.gov (United States)

    Kumar, Vinay V; Ebenezer, Supriya; Kämmerer, Peer W; Jacob, P C; Kuriakose, Moni A; Hedne, Naveen; Wagner, Wilfried; Al-Nawas, Bilal

    2016-11-01

    The objective of this study was to assess the difference in success rates of implants when using two or four implant-supported-overdentures following segmental mandibular reconstruction with fibula free flap. This prospective, parallel designed, randomized clinical study was conducted with 1:1 ratio. At baseline, all participants already had segmental reconstruction of mandible with free fibula flap. The participants were randomized into two groups: Group-I received implant-supported-overdentures on two tissue-level implants and Group-II received implant-supported-overdentures on four tissue-level implants. Success rates of the implants were evaluated at 3 months, 6 months and 12 months following implant loading using marginal bone level changes as well as peri-implant indices (Buser et al., 1990). 52 patients were randomized into two treatment groups (26 each), out of which 18 patients (36 implants) of Group-I and 17 patients (68 implants) of Group-II were evaluated. One implant in Group-I was lost due to infective complications and one patient in the same group had superior barrel necrosis. There was a statistically significant increase at both time points (p = 0.03, p = 0.04 at 6 months, 12 months) in the amount of marginal bone loss in Group-I (0.4 mm, 0.5 mm at 6 months, 12 months) as compared to Group-II (0.1 mm, 0.2 mm at 6 months, 12 months). There were no clinically significant changes peri-implant parameters between both groups. Peri-implant soft tissue hyperplasia was seen in both groups, 32% of implants at 3-months, 26% at 6-months and 3% at 12-months follow-up. The results of this study show that patients with 2-implant-supported-overdentures had higher marginal bone loss as compared to patients with 4-implant-supported-overdentures. There were no clinically significant differences in peri-implant soft tissue factors in patients with 2- or 4-implant-supported-overdentures. Hyperplastic peri-implant tissues are common in the early implant

  12. Implant surface preparation in the surgical treatment of experimental peri-implantitis with autogenous bone graft and ePTFE membrane in cynomolgus monkeys

    DEFF Research Database (Denmark)

    Schou, Søren; Holmstrup, Palle; Jørgensen, Torben

    2003-01-01

    peri-implantitis; treatment; implant surface preparation; nonhuman primates; histology; stereology......peri-implantitis; treatment; implant surface preparation; nonhuman primates; histology; stereology...

  13. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos, E-mail: ludmilapedroso@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia; Garcia, Robson Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Medicina Oral; Leles, Jose Luiz Rodrigues [Universidade Paulista (UNIP), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Cirurgia; Leles, Claudio Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Prevencao e Reabilitacao Oral

    2013-11-15

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p < 0.05). The final sample comprised 95 implants in 27 patients, distributed over the maxilla and mandible. Agreement in implant length was 50.5% between initial and final planning, and correct prediction of the actual implant length was 40.0% and 69.5%, using PAN and CBCT exams, respectively. Agreement in implant width assessment ranged from 69.5% to 73.7%. A paired comparison of the frequency of changes between initial or final planning and implant placement (McNemmar test) showed greater frequency of changes in initial planning for implant length (p < 0.001), but not for implant width (p = 0.850). The frequency of changes was not influenced by implant location at any stage of implant planning (chi-square test, p > 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  14. Implantable Cardiac Pacemakers – 50 Years from the First Implantation

    Directory of Open Access Journals (Sweden)

    Ratko Magjarević

    2010-01-01

    Overview: Development of implantable cardiac pacemaker was enabled by another important invention, the silicon transistor. h ough the invention of suitable lithium cells as appropriate power supply was essential for prolongation of battery life cycle and for increased reliability of pacemakers, main milestones in the development were associated with technological breakthroughs in electronics: from transistors, which introduced such features as small size and low power consumption, to hybrid and integrated circuits, which enabled programmability, microprocessors, which added more options in programming (multiprogrammability, diagnostics and telemetry, and the ICT (information communication technology that enabled physicians remote access to patients and interrogation of their implantable devices. Conclusions: Implantable pacemakers are reliable devices indicated for a wide range of dif erent therapies of cardiac rhythm disorders and heart failure. h ere is still a lot to learn about the physiology of a normal heart and even more about the failing heart. Modern pacemakers provide physicians valuable information from pacemakers’ memory via the built-in telemetry system. h ese information help physicians to better understand pathologic processes within the heart, thus contributing to the development of new ideas for treatment of diseases and for precise tailoring of the therapy to the patient’s needs. Although implantable pacemakers have reached the level of mature technology, they will continue to develop with therapies and diagnostics to facilitate a higher quality of life.

  15. Effect of thermal annealing on the optical and structural properties of silicon implanted with a high hydrogen fluence

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.; Rodriguez, A.; Rodriguez, T.; Avella, M.; Jimenez, J.

    2006-01-01

    Silicon capped by thermal oxide has been implanted with 1 x 10 17 H/cm 2 and the implant profile peaking at the interface. Samples were subjected to thermal annealing and characterized by ERD, FTIR, RBS/channeling, UV/VIS reflectance and cathodoluminescence regarding H-content, crystalline quality and light emission. The results show that the luminescent properties are independent of the hydrogen content but are strongly related with the present damage

  16. Augmentation Mammaplasty Using Implants: A Review

    Directory of Open Access Journals (Sweden)

    Susumu Takayanagi

    2012-09-01

    Full Text Available One of the techniques for augmentation mammaplasty is the procedure using implants. Even though this technique has been used for many years, there are still several controversial issues to be discussed and overcome for patient safety. In this review article, capsular contracture, leak or rupture of the implants, possible systemic disease, relation with breast cancer, and recent problems with Poly Implant Prothese implants are described and discussed.

  17. Augmentation Mammaplasty Using Implants: A Review

    Directory of Open Access Journals (Sweden)

    Susumu Takayanagi

    2012-09-01

    Full Text Available One of the techniques for augmentation mammaplasty is the procedure using implants. Eventhough this technique has been used for many years, there are still several controversial issuesto be discussed and overcome for patient safety. In this review article, capsular contracture,leak or rupture of the implants, possible systemic disease, relation with breast cancer, andrecent problems with Poly Implant Prothese implants are described and discussed.

  18. Plasma immersion ion implantation into insulating materials

    International Nuclear Information System (INIS)

    Tian Xiubo; Yang Shiqin

    2006-01-01

    Plasma immersion ion implantation (PIII) is an effective surface modification tool. During PIII processes, the objects to be treated are immersed in plasmas and then biased to negative potential. Consequently the plasma sheath forms and ion implantation may be performed. The pre-requirement of plasma implantation is that the object is conductive. So it seems difficult to treat the insulating materials. The paper focuses on the possibilities of plasma implantation into insulting materials and presents some examples. (authors)

  19. Influence of different implant materials on the primary stability of orthodontic mini-implants

    OpenAIRE

    Chin-Yun Pan; Szu-Ting Chou; Yu-Chuan Tseng; Yi-Hsin Yang; Chao-Yi Wu; Ting-Hsun Lan; Pao-Hsin Liu; Hong-Po Chang

    2012-01-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants w...

  20. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search......-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  1. Immediate loading of tapered implants placed in postextraction sockets: retrospective analysis of the 5-year clinical outcome.

    Science.gov (United States)

    Mura, Priamo

    2012-08-01

    The use of immediate implant loading protocols delivers obvious benefits to the patient. When applied in healed sites, this has not only been well documented in the totally edentolous mandible but has also been documented and reported to be predictable in the upper jaw, and in cases of partial edentoulism, as well. A further application of immediate loading protocol, although still controversial, especially when replacing single maxillary teeth in the anterior zone, is the immediate implant placement and provisionalization in postextractive sockets. In consideration of the oxidized surface promoting bone healing and the tapered shape of the implant body, the Replace Select Tapered TiUnite implants have been used for many years in our clinic when facing these clinical situations. This article will report about our long-term clinical experience with such implants and the relevant role of a correct surgical and prosthetic treatment planning. The aim of this retrospective study was to report on the 5-year clinical and radiologic outcome of patients treated with Replace Select Tapered TiUnite implants when used according to an immediate loading protocol in postextraction sites. In routine practice, 56 consecutive patients were treated with 79 implants. The patients, 23 males and 33 females, had a mean age of 50.9 years, range 21-76 years, at implant placement. Forty-seven implants were placed in the maxilla and 32 implants were placed in the mandible. All implants were placed in postextraction sites and were immediately loaded. Provisional restorations were delivered within 2 hours from surgery and all were in occlusion. Forty-three patients received a single implant while in the remaining 13 patients the implants were splinted. Definitive prosthetic restoration was delivered within 1 to 4 months following implant placement. Evaluations of soft tissue health and marginal bone remodeling were conducted. An independent radiologist performed the radiographic evaluation

  2. [The elementary discussion on digital implant dentistry].

    Science.gov (United States)

    Su, Y C

    2016-04-09

    It is a digital age today. Exposed to all kinds of digital products in many fields. Certainly, implant dentistry is not exception. Digitalization could improve the outcomes and could decrease the complications of implant dentistry. This paper introduces the concepts, definitions, advantages, disadvantages, limitations and errors of digital implant dentistry.

  3. Active implants and scaffolds for tissue regeneration

    CERN Document Server

    Zilberman, Meital

    2011-01-01

    Active implants are actually drug or protein-eluting implants that induce healing effects, in addition to their regular task, such as support. This book gives a broad overview of biomaterial platforms used as basic elements of drug-eluting implants.

  4. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    Since the mid‑20th century, there has been an increase in interest in the implant process for the replacement of missing teeth. Branemark ... Ideal placement of the implant facilitates the establishment of favorable forces on the implants and the prosthetic component as well as ensures an aesthetic outcome. Therefore, it is ...

  5. The endometrial factor in human embryo implantation

    NARCIS (Netherlands)

    Boomsma, C.M.

    2009-01-01

    The studies presented in this thesis aimed to explore the role of the endometrium in the implantation process. At present, embryo implantation is the major rate-limiting step for success in fertility treatment. Clinicians have sought to develop clinical interventions aimed at enhancing implantation

  6. Macro design morphology of endosseous dental implants.

    Science.gov (United States)

    Sahiwal, Indira G; Woody, Ronald D; Benson, Byron W; Guillen, Guillermo E

    2002-05-01

    The identification of dental implant bodies in patients without available records is a considerable problem due to increased patient mobility and to the large number of implant systems with different designs. The purpose of this study was to document the designs of selected implants to help clinicians identify these implants from their radiographic images. More than 50 implant manufacturers were contacted and asked to provide implants with dimensions as close as possible to 3.75 mm (diameter) x 10 mm (length). Forty-four implants were donated, separated into threaded and non-threaded categories, and further sorted into tapered and non-tapered categories. The implants were examined visually, and features on the entire circumference and length of each implant were recorded and categorized as coronal, midbody, or apical. A series of tables describe the 44 implants according to coronal, midbody, and apical features. The results of this project offer dentists basic knowledge of the design of selected dental implants. Such knowledge can aid the radiographic identification of these implants.

  7. Effect of 3.0 MeV helium implantation on electrical characteristics of 4H-SiC BJTs

    International Nuclear Information System (INIS)

    Usman, Muhammad; Hallen, Anders; Ghandi, Reza; Domeij, Martin

    2010-01-01

    Degradation of 4H-SiC power bipolar junction transistors (BJTs) under the influence of a high-energy helium ion beam was studied. Epitaxially grown npn BJTs were implanted with 3.0 MeV helium in the fluence range of 10 10 -10 11 cm -2 . The devices were characterized by their current-voltage (I-V) behaviour before and after the implantation, and the results showed a clear degradation of the output characteristics of the devices. Annealing these implanted devices increased the interface traps between passivation oxide and the semiconductor, resulting in an increase of base current in the low-voltage operation range.

  8. MOS memory structures by very-low-energy-implanted Si in thin SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrakis, P.; Kapetanakis, E.; Normand, P.; Skarlatos, D.; Tsoukalas, D.; Beltsios, K.; Claverie, A.; Benassayag, G.; Bonafos, C.; Chassaing, D.; Carrada, M.; Soncini, V

    2003-08-15

    The electrical characteristics of thin silicon dioxide layers with embedded Si nanocrystals obtained by low-energy ion beam implantation and subsequent annealing have been investigated through capacitance and current-voltage measurements of MOS capacitors. The effects of the implantation energy (range: 0.65-2 keV), annealing temperature (950-1050 deg. C) and injection oxide characteristics on charge injection and storage are reported. It is shown that the implantation energy allows for a fine control of the memory window characteristics, and various device options are possible including memory operation with charge injection at low gate voltages.

  9. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  10. Imaging of common breast implants and implant-related complications: A pictorial essay

    OpenAIRE

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance i...

  11. Primary prevention of peri-implantitis: Managing peri-implant mucositis

    OpenAIRE

    Jepsen, Søren; Berglundh, Tord; Genco, Robert; Aass, Anne Merete; Demirel, Korkud; Derks, Jan; Figuero, Elena; Giovannoli, Jean Louis; Goldstein, Moshe; LAMBERT, France; Ortiz-Vigon, Alberto; Polyzois, Ioannis; Salvi, Giovanni; Schwarz, Frank; Serino, Giovanni

    2015-01-01

    Abstract AIMS: Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considere...

  12. Cochlear implant after bacterial meningitis.

    Science.gov (United States)

    Bille, Jesper; Ovesen, Therese

    2014-06-01

    The aim of this retrospective case study at a tertiary referral center was to investigate the outcome of cochlear implantation (CI) in children with sensorineural hearing loss due to meningitis compared to CI in children with deafness due to other reasons. This post-meningial group (PMG) consisted of 22 children undergoing CI due to deafness induced by meningitis, between December 1996 and January 2012. Five children had bilateral simultaneous implantation. None was excluded and the children were followed for at least 3 years. Operations were carried out by one of two surgeons using similar techniques in all cases. Each patient from the PMG was matched 2:1 with children having implantation for other reasons according to age and follow up (control group). Overall, the median category of auditory performance (CAP) and speech intelligibility rating (SIR) score were not statistically significantly different between the two groups. The presence of additional central nervous system (CNS) disorders (post-meningeal sequelae), however, correlated significantly with poorer outcome CI was a safe procedure without surgical complications in the present study. It is possible to restore auditory capacity and speech performance to a degree comparable to children undergoing implantation for other reasons. A statistically important variable is secondary CNS involvement. The rehabilitation program after CI should be adjusted according to these additional handicaps. It is recommended to screen meningitis patients as fast as possible to identify those with hearing loss and initiate treatment with hearing aids or CI. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  13. Annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    Chivers, D.; Smith, B.J.; Stephen, J.; Fisher, M.

    1980-09-01

    The newer uses of ion implantation require a higher dose rate. This has led to the introduction of high beam current implanters; the wafers move in front of a stationary beam to give a scanning effect. This can lead to non-uniform heating of the wafer. Variations in the sheet resistance of the layers can be very non-uniform following thermal annealing. Non-uniformity in the effective doping both over a single wafer and from one wafer to another, can affect the usefulness of ion implantation in high dose rate applications. Experiments to determine the extent of non-uniformity in sheet resistance, and to see if it is correlated to the annealing scheme have been carried out. Details of the implantation parameters are given. It was found that best results were obtained when layers were annealed at the maximum possible temperature. For arsenic, phosphorus and antimony layers, improvements were observed up to 1200 0 C and boron up to 950 0 C. Usually, it is best to heat the layer directly to the maximum temperature to produce the most uniform layer; with phosphorus layers however it is better to pre-heat to 1050 0 C. (U.K.)

  14. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  15. [Dental implant restoration abutment selection].

    Science.gov (United States)

    Bin, Shi; Hao, Zeng

    2017-04-01

    An increasing number of implant restoration abutment types are produced with the rapid development of dental implantology. Although various abutments can meet different clinical demands, the selection of the appropriate abutment is both difficult and confusing. This article aims to help clinicians select the appropriate abutment by describing abutment design, types, and selection criteria.

  16. Reading skills after cochlear implantation

    NARCIS (Netherlands)

    Vermeulen, A.M.

    2007-01-01

    It has frequently been found that profoundly deaf children with conventional hearing aids have difficulties with the comprehension of written text. Cochlear Implants (CIs) were expected to enhance the reading comprehension of these profoundly deaf children because they provide auditory access to

  17. Advancing Binaural Cochlear Implant Technology

    Directory of Open Access Journals (Sweden)

    Mathias Dietz

    2015-12-01

    Full Text Available This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies.

  18. Cochlear implant: the family's perspective.

    Science.gov (United States)

    Vieira, Sheila de Souza; Dupas, Giselle; Chiari, Brasilia Maria

    2018-07-01

    To understand the family's experience of a child who uses a cochlear implant (CI). Specifically, to identify the difficulties, changes, and feelings entailed by deafness and the use of the CI; the coping strategies; and to understand the role of the family for the child with a CI. Qualitative research, using Symbolic Interactionism and Straussian Grounded Theory as the theoretical and methodological frameworks, respectively. Data collection instrument: semi-structured interview. A total of 9 families (32 individuals) participated in the study. The children's ages ranged from 6 to 11 years old (mean = 8.9 years old). Their experience is described in the following categories: Having to fight for results, Coping with difficult situations, Recognizing that you are not alone, Learning to overcome, and Having one's life restored by the implant. Cochlear implantation changes the direction of the child and the family's life by restoring the child's opportunity to hear and to obtain good results in her personal, social, and academic development. Even after implantation, the child continues to experience difficulties and requires the family's mobilization in order to be successful. The family is the principal actor in the process of the child's rehabilitation.

  19. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    NARCIS (Netherlands)

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are

  20. Usher syndrome and cochlear implantation.

    Science.gov (United States)

    Loundon, Natalie; Marlin, Sandrine; Busquet, Denise; Denoyelle, Françoise; Roger, Gilles; Renaud, Francis; Garabedian, Erea Noel

    2003-03-01

    To evaluate the symptoms leading to diagnosis and the quality of rehabilitation after cochlear implantation in Usher syndrome. Retrospective cohort study. ENT department of a tertiary referral hospital. Among 210 patients given an implantation in the Ear, Nose, and Throat department, 185 were congenitally deaf and 13 had Usher syndrome (7.0%). Five had a family history of Usher, and eight were sporadic cases. Eleven cases were Usher type I, one was Usher type III, and one was not classified. The age at implantation ranged from 18 months to 44 years (mean, 6 years 1 month). The mean follow-up was 52 months (range, 9 months to 9 years). All patients had audiophonological and clinical examination, computed tomography scan of the temporal bones, ophthalmologic examination with fundoscopy, and an electroretinogram. Cerebral magnetic resonance imaging and vestibular examination were performed in 9 of 13 and 10 of 13 cases, respectively. Logopedic outcome measured preimplant and postimplant closed- and open-set word recognition and oral expression at follow-up. The most frequent initial sign of Usher syndrome was delayed walking, with a mean age of 20 months. Among the 172 other congenitally deaf children with implants, when deafness was not associated with other neurologic disorders, the mean age at walking was 14 months (p < 0.001). The fundoscopy was always abnormal after the age of 5 years, and the electroretinogram was abnormal in all cases. Vestibular function was abnormal in all but one case (nonclassified). The computed tomography scan and the magnetic resonance imaging were always normal. Logopedic results with cochlear implants showed good perception skills in all but one case. The best perceptive results were obtained in children implanted before the age of 9 years. Oral language had significantly progressed in 9 of 13 at follow-up. There was no relation between the visual acuity and the logopedic results. The earliest clinical sign associated with deafness

  1. Failure analysis of fractured dental zirconia implants.

    Science.gov (United States)

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  2. Effectiveness of Implant Therapy Analyzed in a Swedish Population: Prevalence of Peri-implantitis.

    Science.gov (United States)

    Derks, J; Schaller, D; Håkansson, J; Wennström, J L; Tomasi, C; Berglundh, T

    2016-01-01

    Peri-implantitis is an inflammatory disease affecting soft and hard tissues surrounding dental implants. As the global number of individuals that undergo restorative therapy through dental implants increases, peri-implantitis is considered as a major and growing problem in dentistry. A randomly selected sample of 588 patients who all had received implant-supported therapy 9 y earlier was clinically and radiographically examined. Prevalence of peri-implantitis was assessed and risk indicators were identified by multilevel regression analysis. Forty-five percent of all patients presented with peri-implantitis (bleeding on probing/suppuration and bone loss >0.5 mm). Moderate/severe peri-implantitis (bleeding on probing/suppuration and bone loss >2 mm) was diagnosed in 14.5%. Patients with periodontitis and with ≥4 implants, as well as implants of certain brands and prosthetic therapy delivered by general practitioners, exhibited higher odds ratios for moderate/severe peri-implantitis. Similarly, higher odds ratios were identified for implants installed in the mandible and with crown restoration margins positioned ≤1.5 mm from the crestal bone at baseline. It is suggested that peri-implantitis is a common condition and that several patient- and implant-related factors influence the risk for moderate/severe peri-implantitis (ClinicalTrials.gov NCT01825772). © International & American Associations for Dental Research 2015.

  3. Characterization of silver colloids formed in LiBbO3 by Ag and O implantation at room and elevated temperatures

    International Nuclear Information System (INIS)

    Williams, E.K.; Ila, D.; Darwish, A.; Poker, D.B.; Sarkisov, S.S.; Curley, M.J.; Wang, J.-C.; Svetchnikov, V.L.; Zandbergen, H.W.

    1999-01-01

    To address the issue of dispersion of Ag colloids in LiNbO 3 at heat treatment temperatures of 400-500 deg. C, Ag and O were implanted at energies of 160 and 35 keV, respectively, at room temperature (Rt) and at 500 deg. C. Fluences were 4x10 16 and 8x10 16 /cm 2 and the order of the Ag and O implants was varied. Electron paramagnetic resonance spectra indicated that only O followed by Ag implantation of 500 deg. C produced silver oxide. Optical absorption spectrometry and RBS showed significant differences in the dispersion of the colloids with implant temperature and implant order. Implantation of Ag at 1.5 MeV to a fluence of 2x10 16 /cm 2 followed by heat treatment at 500 deg. C for 1 h produced nonlinear optical waveguides with a nonlinear index of the order of 10 -10 cm 2 /W at 532 nm

  4. Antimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide

    Science.gov (United States)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Titanium and titanium alloy materials are commonly used in joint replacements, due to the high strength of the materials. Pathogenic microorganisms can easily adhere to the surface of the metal implant, leading to an increased potential for implant failure. The surface of a titanium-aluminum-vanadium (Ti-6Al-4V) metal oxide implant material was functionalized to deliver an small antibacterial molecule, nitric oxide. S-nitroso-penicillamine, a S-nitrosothiol nitric oxide donor, was covalently immobilized on the metal oxide surface using self-assembled monolayers. Infrared spectroscopy was used to confirm the attachment of the S-nitrosothiol donor to the Ti-Al-4V surface. Attachment of S-nitroso-penicillamine resulted in a nitric oxide (NO) release of 89.6 ± 4.8 nmol/cm2 under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli and Staphylococcus epidermidis growth by 41.5 ± 1.2% and 25.3 ± 0.6%, respectively. Combining the S-nitrosothiol releasing Ti-6Al-4V with tetracycline, a commonly-prescribed antibiotic, increased the effectiveness of the antibiotic by 35.4 ± 1.3%, which allows for lower doses of antibiotics to be used. A synergistic effect of ampicillin with S-nitroso-penicillamine-modified Ti-6Al-4V against S. epidermidis was not observed. The functionalized Ti-6Al-4V surface was not cytotoxic to mouse fibroblasts. PMID:28635681

  5. Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver

    NARCIS (Netherlands)

    Song, J.; Remmers, S.J.; Shao, J.; Kolwijck, E.; Walboomers, X.F.; Jansen, J.A.; Leeuwenburgh, S.C.; Yang, F.

    2016-01-01

    To prevent percutaneous device associated infections (PDAIs), we prepared electrospun chitosan/poly(ethylene oxide) (PEO) nanofibrous membrane containing silver nanoparticles as an implantable delivery vehicle for the dual release of chlorhexidine and silver ions. We observed that the silver

  6. He reemission implanted in metals

    International Nuclear Information System (INIS)

    Tanabe, T.

    2014-01-01

    Highlights: • Observation of He reemission of various metals under He + implantation at wide temperature range. • Materials examined are aluminum (Al), Nickel (Ni) and molybdenum (Mo). • He reemission is quite temperature dependent and different with materials. • Three metals show similar dependence on temperature normalized with respective melting point. • He reemission is successfully correlated with He behavior in metals. - Abstract: Helium (He) reemission of Al, Ni and Mo under energetic He implantation (10–30 keV) in wide temperature range is studied to understand behavior of implanted He in correlation with structure changes. The reemission behavior is categorized into 4 different temperature ranges with the normalized temperature (T m ) to the melting point of each metal. At elevated temperatures (well above ∼0.6 T m ), interstitial He atoms and/or He-vacancy (ies) clusters can migrate remaining no structure change and showing smooth reemission without any burst. Between ∼0.25 and 0.6 T m , He reemission always accompanies significant structure modification. For ∼04–0.6 T m , implanted He coalesce to make bubbles and the bubbles can move to the surface. Bubble migration accompanies materials flow to the surface resulting in fuzz surface or columnar structure, depending on implantation flux. Slower bubble motion at ∼0.25–0.4 prohibits the material migration. Instead the bubbles coalesce to grow large and multi-layered blistering appears as periodic reemission behavior. Below ∼0.25 T m , He migration is too slow for bubbles to grow large, but bubble density increases up to a certain fluence, where neighboring bubbles start to coalesce. Accordingly, He release is mostly caused by mechanical failure or blister rapture. With increasing fluence, all defects (bubbles and dislocation loops) tangle or inter connected with neighboring defects and accordingly He migration to the surface along the tangled or connected defects is enhanced

  7. [Cochlear implant treatment in Germany].

    Science.gov (United States)

    Jacob, R; Stelzig, Y

    2013-01-01

    Restoration of impaired auditory function through cochlear implant is possible, with high reliably and great success. Nevertheless, there are regular disputes between patients and insurance companies due to high costs. In Germany, approx. 1.9 Mio. people are severely hearing impaired. It can be estimated that for adequate hearing rehabilitation about 30,000 cochlear implants/year are necessary. Currently, less than 10% of those affected are offered cochlear implant. A handicap is defined if there is deviation from normal hearing for more than 6 months. This sets a time frame for the supply with cochlear implant after sudden deafness. The professional code requires to advice all medical options to a person seeking help for hearing loss. This includes benefit-risk consideration. At this point, the economic aspect plays no role. The indication for medical treatment is only subject to the treating physician and should not be modified by non-physicians or organizations. It should be noted that a supply of hearing aids is qualitatively different to the help from a cochlear implant, which provides a restoration of lost function. In social law (SGB V and IX) doctors are requested to advise and recommend all measures which contribute to normal hearing (both sides). This indicates that doctors may be prosecuted for not offering help when medically possible, just because health insurance employees did not approve the cost balance. The current situation, with insufficient medical care for the hearing impaired, needs clarifying. To do this, patients, health insurance companies, the political institutions, legislation and professional societies need to accept their responsibilities.

  8. Oxidation of scandium thin films on tungsten surface

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Martynyuk, A.V.

    1988-01-01

    Presence of Sc on the surface of W in amounts larger than a monolayer coverage leads to a decrease of the work function at the initial oxidation stage, which is attributed to oxygen implantation into the surface layer of the metal. A subsequent oxidation is followed by the formation on the surface of a thin oxide layer and an increase of the work function. An increase of the amount of Sc deposited on the surface before the oxidation decreases the work function of the obtained oxide from 5.8 (clean W surface) down to 3.3 eV (thick Sc layer on W)

  9. Peri-implant esthetics assessment and management

    Science.gov (United States)

    Balasubramaniam, Aarthi S.; Raja, Sunitha V.; Thomas, Libby John

    2013-01-01

    Providing an esthetic restoration in the anterior region of the mouth has been the basis of peri-implant esthetics. To achieve optimal esthetics, in implant supported restorations, various patient and tooth related factors have to be taken into consideration. Peri-implant plastic surgery has been adopted to improve the soft tissue and hard tissue profiles, during and after implant placement. The various factors and the procedures related to enhancement of peri-implant esthetics have been discussed in this review article. PMID:23878557

  10. Structural-chemical characteristics of implanted metals

    International Nuclear Information System (INIS)

    Kozejkin, B.V.; Pavlov, P.V.; Pitirimova, E.A.; Frolov, A.I.

    1988-01-01

    Corrosion and structural characteristics of metallic layers implanted by ions of chemically active impurities and noble gases are studied. Dependence of experimental results on parameters of initial materials and technological conditions of implantation is established. In studying corrosion characteristics of implanted metals a strong dependence of chemical passivation effect on technological conditions of ion-implantation and structure of initial material is stated. On the basis of developed mathematical model of chemical passivation effect it is shown that increase of corrosion characteristics of implanted metals is defined by superposition of surface and volumetric mechanisms

  11. Current Concepts in Restorative Implant Dentistry

    Institute of Scientific and Technical Information of China (English)

    Prof.Marchack

    2009-01-01

    Patients today are incteasingly aware of dental implants.and their expectations are for esthetically and functionally pleasingimplant restorations that mimic natural teeth.This presentation will give both the experienced and novice practitioner a better understand-ing of how restorative implant dentistry has evolved.Treatment planning and restorative options for single implants.multiple implants andfully edentulons arches will be discussed,and the use of modern materials and CADCAM technology in fabricating the most contemporaryfixed implant supported prostheses will be demonstrated.

  12. Poly Implants Prosthèse Breast Implants: A Case Series and Review of the Literature.

    Science.gov (United States)

    Klein, Doron; Hadad, Eran; Wiser, Itay; Wolf, Omer; Itzhaki Shapira, Ortal; Fucks, Shir; Heller, Lior

    2018-01-01

    Silicone breast implants from the French manufacturer Poly Implants Prosthèse (PIP) were recalled from the European market after the French regulator has revealed the implants contain non-medical-grade silicone filler. In December 2011, following a large increase in reported rupture rate and a possible cancer risk, the French Ministry of Health recommended consideration of the PIP explantation, regardless of their condition. In 2012, the Israel Ministry of Health recommended to replace the implants only upon suspected implant rupture. The aims of this study were to characterize breast-augmented Israeli patients with PIP implants, compare their outcomes with those of breast-augmented patients with different implant types, and review the current PIP literature. Breast-augmented patients who underwent an elective breast implant exchange in Israel between January 2011 and January 2017 were included in the study. Data were collected from electronic and physical medical files. There were 73 breast-augmented female patients with 146 PIP breast implants included in this study. Average implant age was 6.7 ± 2.79 years. Mean implant size was 342.8 ± 52.9 mL. Fourteen women (19 implants [16%]) had a high-grade capsular contracture (Baker grade 3-4). During exchange, 28 implants were found to be ruptured (19.2%). Less than 10 years following breast augmentation, PIP implants demonstrated higher rupture rate compared with other implants. Our data are comparable to overall available rupture rate. Among patients with definitive rupture diagnosis, an elective implant removal should be recommended. In cases of undamaged implants, plastic surgeons should also seriously consider PIP implant explantation. When the patient does not desire to remove the implant, an annual physical examination and breast ultrasound are recommended, beginning a year after augmentation.

  13. [Clinical application of individualized three-dimensional printing implant template in multi-tooth dental implantation].

    Science.gov (United States)

    Wang, Lie; Chen, Zhi-Yuan; Liu, Rong; Zeng, Hao

    2017-08-01

    To study the value and satisfaction of three-dimensional printing implant template and conventional implant template in multi-tooth dental implantation. Thirty cases (83 teeth) with missing teeth needing to be implanted were randomly divided into conventional implant template group (CIT group, 15 cases, 42 teeth) and 3D printing implant template group (TDPIT group, 15 cases, 41 teeth). Patients in CIT group were operated by using conventional implant template, while patients in TDPIT group were operated by using three-dimensional printing implant template. The differences of implant neck and tip deviation, implant angle deviation and angle satisfaction between the two groups were compared. The difference of probing depth and bone resorption of implant were compared 1 year after operation between the two groups. The difference of success rate and satisfaction of dental implantation were compared 1 year after operation between the two groups. SPSS19.0 software package was used for statistical analysis. The deviation direction of the neck and the tip in disto-mesial, bucco-palatal, vertical direction and angle of implants in disto-mesial and bucco-palatal direction in TDPIT group were significantly lower than in CIT group (P0.05). The difference of the cumulative success rate in dental implantation at 3 months and 6 months between the two groups were not significant (P>0.05), but the cumulative success rate of TDPIT group was significantly higher than CIT group at 9 months and 1 year (90.48% vs 100%,P=0.043). The patients' satisfaction rate of dental implantation in TDPIT group was significantly higher than in CIT group (86.67% vs 53.33%, P=0.046). Using three-dimensional printing implant template can obtain better accuracy of implant, higher implant success rate and better patients' satisfaction than using conventional implant template. It is suitable for clinical application.

  14. Ion implantation and bio-compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiaki; Kusakabe, Masahiro [Sony Corp., Tokyo (Japan). Corporate Research Labs.; Iwaki, Masaya

    1992-07-01

    Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 10[sup 15] to 3 x 10[sup 17] ions/cm[sup 2] to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author).

  15. Congenitally Deafblind Children and Cochlear Implants

    DEFF Research Database (Denmark)

    Dammeyer, Jesper Herup

    2008-01-01

    There has been much research conducted demonstrating the positive benefits of cochlear implantation (CI) in children who are deaf. Research on cochlear implantation in children who are both deaf and blind, however, is lacking. The purpose of this article is to present a study of 5 congenitally...... deafblind children who received cochlear implants between 2.2 and 4.2 years of age.  Ratings of video observations were used to measure the children's early communication development with and without the use of their cochlear implants. In addition, parental interviews were used to assess the benefits...... parents perceived regarding their children's cochlear implants. Two examples are included in this article to illustrate the parents' perspectives about cochlear implantation in their deafblind children. Benefits of cochlear implantation in this cohort of children included improved attention and emotional...

  16. Dynamics of bone graft healing around implants

    Directory of Open Access Journals (Sweden)

    Narayan Venkataraman

    2015-01-01

    A few questions arise pertaining to the use of bone grafts along with implants are whether these are successful in approximation with implant. Do they accelerate bone regeneration? Are all defects ultimately regenerated with new viable bone? Is the bone graft completely resorbed or integrated in new bone? Does the implant surface characteristic positively affect osseointegration when used with a bone graft? What type of graft and implant surface can be used that will have a positive effect on the healing type and time? Finally, what are the dynamics of bone graft healing around an implant? This review discusses the cellular and molecular mechanisms of bone graft healing in general and in vicinity of another foreign, avascular body, namely the implant surface, and further, the role of bone grafts in osseointegration and/or clinical success of the implants.

  17. Magnetic resonance imaging of breast implants.

    Science.gov (United States)

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  18. Surface modification of implants in long bone.

    Science.gov (United States)

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  19. Hybrid calcium phosphate coatings for implants

    Science.gov (United States)

    Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.

    2016-08-01

    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.

  20. Negative charge induced degradation of PMOSFETs with BF2-implanted p+-poly gate

    International Nuclear Information System (INIS)

    Lu, C.Y.; Sung, J.M.

    1989-01-01

    A new degradation phenomenon on thin gate oxide PMOS-FETs with BF 2 implanted p + -poly gate has been demonstrated and investigated. The cause of this type of degradation is a combination of the boron penetration through the gate oxide and charge trap generation due to the presence of fluorine in the gate oxide and some other processing-induced effects. The negative charge-induced degradation other than enhanced boron diffusion has been studied in detail here. The impact of this process-sensitive p + -poly gate structure on deep submicron CMOS process integration has been discussed. (author)

  1. XPS and electrochemical studies of the dissolution and passivation of molybdenum-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    De Vito, E.; Marcus, P.

    1993-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to investigate the chemical composition and the chemical states of the passive film formed on austenitic stainless steels (Fe-19Cr-10Ni (at.%)) which have been implanted with molybdenum (Mo + , 100 keV, 2.5 x 10 16 at./cm 2 ). Prior to passivation the implanted alloy was characterized by RBS (Rutherford Backscattering Spectroscopy) and XPS. Alloys with well-defined surface concentrations of molybdenum were prepared by ion sputtering the implanted alloy in the preparation chamber of the spectrometer, to a fixed point in the implantation profile. The samples were then transferred without air exposure to a glove box with inert gas in which the electrochemical measurements were performed. After passivation, return transfer of the passivated samples was done with the same transfer device to avoid exposure to air. In 0.5 M H 2 SO 4 , the anodic dissolution current density decreases with increasing Mo content on the alloy surface. Surface analysis by XPS showed that the surface is enriched with molybdenum in the Mo 4+ chemical state. The current density in the passive state is similar for both the non-implanted and the implanted alloys. Surface analysis by XPS showed that the passive film has a bilayer structure (inner oxide and outer hydroxide) and that the hydroxide layer present on the surface of the passive film is markedly enriched with molybdenum in the Mo 6+ chemical state. The XPS measurements indicate that the presence of molybdenum favors the formation of chromium hydroxide at the expense of chromium oxide. A significant enrichment of the alloyed (Cr, Ni) and implanted (Mo) elements was also observed in the metallic phase under the passive film. The possible mechanisms of the effect of molybdenum on the corrosion resistance of stainless steels are discussed in light of the obtained surface analytical results

  2. Wear behaviour of nitrogen-implanted and nitrided Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Martinella, R.; Giovanardi, S.; Chevallard, G.; Villani, M.; Molinari, A.; Tosello, C.

    1985-01-01

    The comparison between the wear behaviour of nitrogen-implanted Ti-6Al-4V alloy and that of nitrided Ti-6Al-4V alloy is reported. Both treatments were carried out at temperatures from 573 to 973 K on lapped surfaces; in order to compare roughness effects, nitriding was also carried out on rougher samples. An improvement in wear resistance for lapped surfaces was noted after implantation at 573 K or higher temperatures and after nitriding at temperatures over 773 K only; however, at 873 K, nitriding was more effective than implantation. Rough nitrided surfaces showed better wear resistance than lapped nitrided surfaces or lapped implanted surfaces. Most probably the improvement in wear resistance on implanted samples is due to a reduction in friction induced by chemical modification of the surface as a result of oxide and TiN. Scanning electron microscopy observations which show subsurface voids and coalescence are in good agreement with a wear model previously reported. As implantation preserves the surface finish, a possible application is suggested. (Auth.)

  3. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  4. Analysis techniques of charging damage studied on three different high-current ion implanters

    Science.gov (United States)

    Felch, S. B.; Larson, L. A.; Current, M. I.; Lindsey, D. W.

    1989-02-01

    One of the Greater Silicon Valley Implant Users' Group's recent activities has been to sponsor a round-robin on charging damage, where identical wafers were implanted on three different state-of-the-art, high-current ion implanters. The devices studied were thin-dielectric (250 Å SiO2), polysilicon-gate MOS capacitors isolated by thick field oxide. The three implanters involved were the Varian/Extrion 160XP, the Eaton/Nova 10-80, and the Applied Materials PI9000. Each implanter vendor was given 48 wafers to implant with 100 keV As+ ions at a dose of 1 × 1016 cm-2. Parameters that were varied include the beam current, electron flood gun current, and chamber pressure. The charge-to-breakdown, breakdown voltage, and leakage current of several devices before anneal have been measured. The results from these tests were inconclusive as to the physical mechanism of charging and as to the effectiveness of techniques to reduce its impact on devices. However, the methodology of this study is discussed in detail to aid in the planning of future experiments. Authors' industrial affiliations: S.B. Felch, Varian Research Center, 611 Hansen Way, Palo Alto, CA 94303, USA; L.A. Larson, National Semiconductor Corp., P.O. Box 58090, Santa Clara, CA 95052-8090, USA; M.I. Current, Applied Materials, 3050 Bowers Ave., Santa Clara, CA 95054, USA; D.W. Lindsey, Eaton/NOVA, 931 Benicia Ave, Sunnyvale, CA 94086, USA.

  5. An overview of recent advances in designing orthopedic and craniofacial implants.

    Science.gov (United States)

    Mantripragada, Venkata P; Lecka-Czernik, Beata; Ebraheim, Nabil A; Jayasuriya, Ambalangodage C

    2013-11-01

    Great deal of research is still going on in the field of orthopedic and craniofacial implant development to resolve various issues being faced by the industry today. Despite several disadvantages of the metallic implants, they continue to be used, primarily because of their superior mechanical properties. In order to minimize the harmful effects of the metallic implants and its by-products, several modifications are being made to these materials, for instance nickel-free stainless steel, cobalt-chromium and titanium alloys are being introduced to eliminate the toxic effects of nickel being released from the alloys, introduce metallic implants with lower modulus, reduce the cost of these alloys by replacing rare elements with less expensive elements etc. New alloys like tantalum, niobium, zirconium, and magnesium are receiving attention given their satisfying mechanical and biological properties. Non-oxide ceramics like silicon nitride and silicon carbide are being currently developed as a promising implant material possessing a combination of properties such as good wear and corrosion resistance, increased ductility, good fracture and creep resistance, and relatively high hardness in comparison to alumina. Polymer/magnesium composites are being developed to improve mechanical properties as well as retain polymer's property of degradation. Recent advances in orthobiologics are proving interesting as well. This paper thus deals with the latest improvements being made to the existing implant materials and includes new materials being introduced in the field of biomaterials. Copyright © 2013 Wiley Periodicals, Inc.

  6. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  7. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  8. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  9. Histological Evaluation of Nano-Micro Titanium Implant Surface Treatment in Beagle Humerus.

    Science.gov (United States)

    Yun, Kwidug; Kang, Seongsoo; Oh, Gyejeong; Lim, Hyunpil; Lee, Kwangmin; Yang, Hongso; Vang, Mongsook; Park, Sangwon

    2016-02-01

    The objective of this study was to investigate the effects of nano-micro titanium implant surface using histology in beagle dogs. A total of 48 screw-shaped implants (Megagen, Daegu, Korea) which dimensions were 4 mm in diameter and 8.5 mm in length, were used. The implants were classified into 4 groups (n = 12): machined surface (M group), RBM (Resorbable Blasting Media) surface (R group), nano surface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a constant voltage of 20 V for 10 min using a DC power supply (Fine Power F-3005; SG EMD, Anyang, Korea). The bone blocks were investigated using histology. There was no inflammation around implants, and new bone formation was shown along with the nano-micro titanium implant surfaces. The amount of bone formation was increased depending on time comparing 4 weeks and 12 weeks. At 12 weeks, lamellar bone was more formed along with the nano-micro titanium implant surfaces than 4 weeks. It indicated that nano-micro surface showed good result in terms of osseointegration.

  10. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  11. Influence of the ion implantation on the nanoscale intermetallic phases formation in Ni-Ti system

    International Nuclear Information System (INIS)

    Kalashnikov, M.P.; Kurzina, I.A.; Bozhko, I.A.; Kozlov, E.V.; Fortuna, S.V.; Sivin, D.O.; Stepanov, I.B.; Sharkeev, Yu.P.

    2005-01-01

    Ti, Ni 3 Ti) and the solid solution with variable composition in the depth of surface layers. Additionally, the formation of tritium oxides was established. The average size of precipitates of the occurred phases was equal to 40 nm. The macro properties of the ion-alloyed Ni samples consisted the nanoscale intermetallic phases formed under the high intensity ion implantation were higher than that of the unimplanted material. The conclusion about influence of structural-phase of ion alloyed layers of nickel and their mechanical and tribological properties is made

  12. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate.

    Science.gov (United States)

    Drelich, Adam J; Zhao, Shan; Guillory, Roger J; Drelich, Jaroslaw W; Goldman, Jeremy

    2017-08-01

    Metallic zinc implanted into the abdominal aorta of rats out to 6months has been demonstrated to degrade while avoiding responses commonly associated with the restenosis of vascular implants. However, major questions remain regarding whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated fibrous encapsulation process that prevents the diffusion of critical reactants and products at the metal surface. Here, we have conducted clinically relevant long term in vivo studies in order to characterize late stage zinc implant biocorrosion behavior and products to address these critical questions. We found that zinc wires implanted in the murine artery exhibit steady corrosion without local toxicity for up to at least 20months post-implantation, despite a steady buildup of passivating corrosion products and intense fibrous encapsulation of the wire. Although fibrous encapsulation was not able to prevent continued implant corrosion, it may be related to the reduced chronic inflammation observed between 10 and 20months post-implantation. X-ray elemental and infrared spectroscopy analyses confirmed zinc oxide, zinc carbonate, and zinc phosphate as the main components of corrosion products surrounding the Zn implant. These products coincide with stable phases concluded from Pourbaix diagrams of a physiological solution and in vitro electrochemical impedance tests. The results support earlier predictions that zinc stents could become successfully bio-integrated into the arterial environment and safely degrade within a time frame of approximately 1-2years. Previous studies have shown zinc to be a promising candidate material for bioresorbable endovascular stenting applications. An outstanding question, however, is whether a zinc implant would ultimately passivate through the production of stable corrosion products or via a cell mediated tissue encapsulation process that prevented the diffusion of critical

  13. Successful Rehabilitation of Partial Edentulous Maxilla and Mandible with New Type of Implants: Molecular Precision Implants

    Directory of Open Access Journals (Sweden)

    Matteo Danza

    2014-01-01

    Full Text Available The extraction of teeth results in rapid bone resorption both vertically and horizontally in the first month. The loss of alveolar ridge reduces the chance of implant rehabilitation. Atraumatic extraction, implant placement in extraction socket, and an immediate prosthesis have been proposed as alternative therapies to maintain the volume and contours tissue and reduce time and cost of treatment. The immediate load of implants is a universally practiced procedure; nevertheless a successful procedure requires expertise in both the clinical and the reconstructive stages using a solid implant system. Excellent primary stability and high bone-implant contact are only minimal requirements for any type of implant procedure. In this paper we present a case report using a new type of implants. The new type of implants, due to its sophisticated control system of production, provides to the implantologist a safe and reliable implant, with a macromorphology designed to ensure a close contact with the surrounding bone.

  14. Does the number of implants have any relation with peri-implant disease?

    Directory of Open Access Journals (Sweden)

    Bernardo Born PASSONI

    2014-10-01

    Full Text Available Objective: The aim of this study was to evaluate the relationship between the number of pillar implants of implant-supported fixed prostheses and the prevalence of periimplant disease. Material and Methods: Clinical and radiographic data were obtained for the evaluation. The sample consisted of 32 patients with implant-supported fixed prostheses in function for at least one year. A total of 161 implants were evaluated. Two groups were formed according to the number of implants: G1 ≤5 implants and G2 >5 implants. Data collection included modified plaque index (MPi, bleeding on probing (BOP, probing depth (PD, width of keratinized mucosa (KM and radiographic bone loss (BL. Clinical and radiographic data were grouped for each implant in order to conduct the diagnosis of mucositis or peri-implantitis. Results: Clinical parameters were compared between groups using Student’s t test for numeric variables (KM, PD and BL and Mann-Whitney test for categorical variables (MPi and BOP. KM and BL showed statistically significant differences between both groups (p<0.001. Implants from G1 – 19 (20.43% – compared with G2 – 26 (38.24% – showed statistically significant differences regarding the prevalence of peri-implantitis (p=0.0210. Conclusion: It seems that more than 5 implants in total fixed rehabilitations increase bone loss and consequently the prevalence of implants with periimplantitis. Notwithstanding, the number of implants does not have any influence on the prevalence of mucositis.

  15. Comparative silicone breast implant evaluation using mammography, sonography, and magnetic resonance imaging: experience with 59 implants.

    Science.gov (United States)

    Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W

    1994-10-01

    With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.

  16. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  17. Implanted strontium titanate single crystals for energy storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Stoeber, Max; Cherkouk, Charaf; Walter, Juliane; Strohmeyer, Ralph; Leisegang, Tilmann; Meyer, Dirk Carl [TU Bergakademie, Freiberg (Germany); Schelter, Matthias; Zosel, Jens [Kurt Schwabe Institute, Meinsberg (Germany); Prucnal, Slawomir [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    A rapid increase of the demand on efficient energy storage solutions requires new approaches beyond the Li-ion technology. In particular, metal-air batteries as well as solid-state fuel cells offer a great potential for high-energy-density storage devices. Since the efficiency of such devices is significantly limited by the activation of both the oxygen reduction reaction (ORR) and the ionic and electronic conductivities, an adequate porosity as well as a controlled doping are required. The ion implantation is a key technology to achieve this goal. In this work, p- and n-doped strontium titanate (SrTiO{sub 3}) single crystals were used as oxidic materials. The oxygen exchange kinetics as well as the structural changes of the SrTiO{sub 3} crystal surface induced by the ion implantation were investigated. On one hand, the depth profile of dopant concentration and dopant valence state were determined using sputtered X-ray photoelectron spectroscopy (XPS). On the other hand, the overall oxygen exchange kinetic of the implanted SrTiO{sub 3} crystal was quantitatively described by means of coulometric titration using Zirox system (ZIROX GmbH, Germany). Furthermore, the surface morphology of the samples was investigated using atomic force microscopy (AFM).

  18. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  19. Induced hemocompatibility and bone formation as biological scaffold for cell therapy implant

    Directory of Open Access Journals (Sweden)

    Keng-Liang Ou

    2016-06-01

    implant and the surgically created bleeding site. In general, successful implant integration is associated with a series of patient-dependent (i.e., bone volume and quality and procedure-related parameters (i.e., type of implant, type of surgical procedure. The surface characteristics of implants play important roles in the enhancement of osseointegration. Surface modified implants, which were accomplished by roughness or by altering the chemical composition, boosted proper biologic interactions with the implants and eventual accelerate osseointegration. Recently, much attention has been focused on the hybrid topography consisting of micropits and nanoporous TiO2 layers produced via electrochemical oxidation to mimic the natural bony environment. Electrochemical oxidation resulted in increased wettability and altered chemical composition of the standard SLA surfaces. Such hybrid micro-/nanostructures have proven to increase hydroxyapatite formation in vitro, to enhance the proliferation and differentiation of osteoblasts, and to improve local factor production. While the in vitro studies noted above suggest that significant advantages exist for hybrid micro-/nanostructural Ti implants. Clinical trialscomprehensively examining these hybrid micro-/nanostructural Ti implants have not been published. Implant stability is the primary criterion for achieving the clinical success of restoration, which can be identified via invasive and noninvasive techniques. Resonance Frequency Analysis (RFA, a non-invasive and non-destructive quantitative measurement, has long been used to measure fluctuation in dental implant stability over time for clinical assessing implant integration. By this way, implant stability can bequantified by reading an implant stability quotient value (ISQ using the Ossetell®. The present study was to examine the early osseo integration efficacy for SLAffinity-treated implants when combined with SB celltherapy. The morphologies of SLAffinity-treated surfaces

  20. Suppression of threshold voltage variability in MOSFETs by adjustment of ion implantation parameters

    Science.gov (United States)

    Park, Jae Hyun; Chang, Tae-sig; Kim, Minsuk; Woo, Sola; Kim, Sangsig

    2018-01-01

    In this study, we investigate threshold voltage (VTH) variability of metal-oxide-semiconductor field-effect transistors induced by random dopant fluctuation (RDF). Our simulation work demonstrates not only the influence of the implantation parameters such as its dose, tilt angle, energy, and rotation angle on the RDF-induced VTH variability, but also the solution to reduce the effect of this variability. By adjusting the ion implantation parameters, the 3σ (VTH) is reduced from 43.8 mV to 28.9 mV. This 34% reduction is significant, considering that our technique is very cost effective and facilitates easy fabrication, increasing availability.