WorldWideScience

Sample records for mg ti sc

  1. Topotactic oxidation pathway of ScTiO3 and high-temperature structure evolution of ScTiO3.5 and Sc4Ti3O12-type phases.

    Science.gov (United States)

    Shafi, Shahid P; Hernden, Bradley C; Cranswick, Lachlan M D; Hansen, Thomas C; Bieringer, Mario

    2012-02-06

    The novel oxide defect fluorite phase ScTiO(3.5) is formed during the topotactic oxidation of ScTiO(3) bixbyite. We report the oxidation pathway of ScTiO(3) and structure evolution of ScTiO(3.5), Sc(4)Ti(3)O(12), and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °Cusing in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO(3). ScTiO(3) crystallizes in the cubic bixbyite structure in space group Ia3 (206) with a = 9.7099(4) Å. The topotactic oxidation product ScTiO(3.5) crystallizes in an oxide defect fluorite structure in space group Fm3m (225) with a = 4.89199(5) Å. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion ordering at high temperatures. The optimized bulk synthesis for phase pure ScTiO(3.5) is presented. In contrast to the vanadium-based defect fluorite phases AVO(3.5+x) (A = Sc, In) the novel titanium analogue ScTiO(3.5) is stable over a wide temperature range. Above 950 °C ScTiO(3.5) undergoes decomposition with the final products being Sc(4)Ti(3)O(12) and TiO(2). Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that Sc(4)Ti(3)O(12) also exists in the defect fluorite structure in space group Fm3m (225) with a = 4.90077(4) Å. Sc(4)Ti(3)O(12) undergoes partial reduction in CO/Ar atmosphere to form Sc(4)Ti(3)O(11.69(2)).

  2. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Bivas [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Lawrence, Samantha K.; Bahr, David F. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Schroeder, Jeremy L.; Birch, Jens [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Sands, Timothy D. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  3. Synthesis and Isolation of the Titanium-Scandium Endohedral Fullerenes-Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 and Sc2 TiC2 @Ih -C80 : Metal Size Tuning of the Ti(IV) /Ti(III) Redox Potentials.

    Science.gov (United States)

    Junghans, Katrin; Ghiassi, Kamran B; Samoylova, Nataliya A; Deng, Qingming; Rosenkranz, Marco; Olmstead, Marilyn M; Balch, Alan L; Popov, Alexey A

    2016-09-05

    The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed-metal Sc-Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4 C2 @C80 (the most abundant EMF from this synthesis), Sc3 C2 @C80 , isomers of Sc2 C2 @C82 , and the family Sc2 C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3 CH@C80 . The Sc-Ti/CH4 system produces the mixed-metal Sc2 TiC@C2 n (2 n=68, 78, 80) and Sc2 TiC2 @C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition-metal-containing endohedral fullerenes, Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 , and Sc2 TiC2 @Ih -C80 , were characterized by NMR spectroscopy. The structure of Sc2 TiC@Ih -C80 was also determined by single-crystal X-ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2 TiC- and Sc2 TiC2 -containing clusterfullerenes have Ti-localized LUMOs. Encapsulation of the redox-active Ti ion inside the fullerene cage enables analysis of the cluster-cage strain in the endohedral fullerenes through electrochemical measurements. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Martensitic Transformation in a β-Type Mg-Sc Alloy

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Somekawa, Hidetoshi; Koike, Junichi

    2018-03-01

    Recently, we found that a Mg-Sc alloy with a bcc (β) phase exhibits superelasticity and a shape memory effect at low temperature. In this work, we examined the stress-induced and thermally induced martensitic transformation of the β-type Mg-Sc alloy and investigated the crystal structure of the thermally induced martensite phase based on in situ X-ray diffraction (XRD) measurements. The lattice constants of the martensite phase were calculated to be a = 0.3285 nm, b = 0.5544 nm, and c = 0.5223 nm when we assumed that the martensite phase has an orthorhombic structure (Cmcm). Based on the lattice correspondence between a bcc and an orthorhombic structures such as that in the case of β-Ti shape memory alloys, we estimated the transformation strain of the β Mg-Sc alloy. As a result, the transformation strains along the 001, 011, and 111 directions in the β phase were calculated to be + 5.7, + 8.8, and + 3.3%, respectively.

  5. Martensitic Transformation in a β-Type Mg-Sc Alloy

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Somekawa, Hidetoshi; Koike, Junichi

    2017-12-01

    Recently, we found that a Mg-Sc alloy with a bcc (β) phase exhibits superelasticity and a shape memory effect at low temperature. In this work, we examined the stress-induced and thermally induced martensitic transformation of the β-type Mg-Sc alloy and investigated the crystal structure of the thermally induced martensite phase based on in situ X-ray diffraction (XRD) measurements. The lattice constants of the martensite phase were calculated to be a = 0.3285 nm, b = 0.5544 nm, and c = 0.5223 nm when we assumed that the martensite phase has an orthorhombic structure (Cmcm). Based on the lattice correspondence between a bcc and an orthorhombic structures such as that in the case of β-Ti shape memory alloys, we estimated the transformation strain of the β Mg-Sc alloy. As a result, the transformation strains along the 001, 011, and 111 directions in the β phase were calculated to be + 5.7, + 8.8, and + 3.3%, respectively.

  6. FRACTIONAL RECRYSTALLIZATION KINETICS IN DIRECTLY COLD ROLLED Al-Mg, Al-Mg-Sc AND Al-Mg-Sc-Zr ALLOY

    Directory of Open Access Journals (Sweden)

    M. S. Kaiser

    2014-12-01

    Full Text Available The evaluation of texture as a function of recrystallization has been characterized for directly cold rolled Al-6Mg, Al-6Mg-0.4Sc and Al-6Mg-0.4Sc-0.2Zr alloys. Samples were annealed isothermally at 400 °C for 1 to 240 minutes to allow recrystallization. Recrystallization kinetics of the alloys is analyzed from the micro-hardness variation. Isothermally annealed samples of aluminum alloys were also studied using JMAK type analysis to see if there exists any correlation between the methods. Recrystallization fraction behavior between two methods the scandium added alloys show the higher variation due to precipitation hardening and higher recrystallization behavior. The scandium and zirconium as a combined shows the more variation due to formation of Al3(Sc, Zr precipitate. From the microstructure it is also observed that the base Al-Mg alloy attained almost fully re-crystallized state after annealing at 400 °C for 60 minutes

  7. Level densities and γ strength functions in light Sc and Ti isotopes

    International Nuclear Information System (INIS)

    Burger, A.; Larsen, A.C.; Syed, N.U.H.; Guttormsen, M.; Nyhus, H.; Siem, S.; Harissopulos, S.; Konstantinopoulos, T.; Lagoyannis, A.; Perdidakis, G.; Spyrou, A.; Kmiecik, M.; Mazurek, K.; Krticka, M.; Loennroth, T.; Norby, M.; Voinov, A.

    2010-01-01

    We present preliminary results from a measurement of nuclear level densities and the γ-ray strength of light Sc (Sc 43 , Sc 45 ) and Ti (Ti 44 , Ti 45 and Ti 46 ) isotopes using the Oslo Method. The article begins with a presentation of the experimental setup. (authors)

  8. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    Energy Technology Data Exchange (ETDEWEB)

    Sasani, Alireza [Department of Science, Karaj Islamic Azad University, Karaj, Alborz, P.O. Box 31485-313 (Iran, Islamic Republic of); Baktash, Ardeshir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Mirabbaszadeh, Kavoos, E-mail: mirabbas@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, P. O. Box 15875-4413 (Iran, Islamic Republic of); Khoshnevisan, Bahram [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2016-10-30

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO{sub 2} anatase surface (101) is studied. • Effect of Mg defect to the TiO{sub 2} anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO{sub 2} anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO{sub 2} anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO{sub 2} surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J{sub SC} of the surface while slightly decreasing V{sub OC} compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  9. Investigating the local structure of B-site cations in (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 using X-ray absorption spectroscopy

    Science.gov (United States)

    Blanchard, Peter E. R.; Grosvenor, Andrew P.

    2018-05-01

    The structural properties of (1-x)BaTiO3-xBiScO3 and (1-x)PbTiO3-xBiScO3 were investigated using powder X-ray diffraction and X-ray absorption spectroscopy. Diffraction measurements confirmed that substituting small amounts of BiScO3 into BaTiO3 initially stabilizes a cubic phase at x = 0.2 before impurity phases begin to form at x = 0.5. BiScO3 substitution also resulted in noticeable changes in the local coordination environment of Ti4+. X-ray absorption near-edge spectroscopy (XANES) analysis showed that replacing Ti4+ with Sc3+ results in an increase in the off-centre displacement of Ti4+ cations. Surprisingly, BiScO3 substitution has no effect on the displacement of the Ti4+ cation in the (1-x)PbTiO3-xBiScO3 solid solution.

  10. Magnetic properties of Sc{sub x}Ti{sub 1-x}Fe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, M. [Lab. de Cristallographie, CNRS, 38 - Grenoble (France); Deportes, J. [Lab. Louis Neel, CNRS, 38 - Grenoble (France); Ouladdiaf, B. [Institut Laue-Langevin, 38 - Grenoble (France); Sayetat, F. [Lab. de Cristallographie, CNRS, 38 - Grenoble (France)

    1995-02-09

    The magnetic properties and their thermal dependences of Sc{sub 0.1}Ti{sub 0.9}Fe{sub 1.96}, Sc{sub 0.1}Ti{sub 0.9}Fe{sub 2} and Sc{sub 0.1}Ti{sub 0.9}Fe{sub 2.04} are compared with those of TiFe{sub 2}. The substitution changes the iron-iron distances. Consequently, the Fe atoms on the 6h site show in addition to the antiferromagnetic component a small ferromagnetic one, and a weak magnetic moment appears on the 2a site. ((orig.)).

  11. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    Science.gov (United States)

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  12. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy

    Institute of Scientific and Technical Information of China (English)

    高英俊; 班冬梅; 韩永剑; 钟夏平; 刘慧

    2004-01-01

    The valence electron structures of Al-Mg alloy with minor Sc and Zr were calculated according to the empirical electron theory(EET) in solid. The results show that because of the strong interaction of Al atom with Zr and Sc atom in melting during solidification, the Al3 Sc and Al3 (Sc1-xZrx) particles which act as heterogeneous nuclear are firstly crystallized in alloy to make grains refine. In progress of solidification, the Al-Sc, Al-Zr-Sc segregation regions are formed in solid solution matrix of Al-Mg alloy owing to the strong interaction of Al atom with Zr, Scatoms in bulk of alloy, so in the following homogenization treatment, the finer dispersed Al3 Sc and Al3 (Sc1-x Zrx) second-particles which are coherence with the matrix are precipitated in the segregation region. These finer second particles with the strong Al-Zr, Al-Sc covalent bonds can strengthen the covalent bonds in matrix of the alloy, and also enhance the hardness and strength of Al-Mg alloy. Those finer second-particles precipitated in interface of sub-grains can also strengthen the covalence bonds there, and effectively hinder the interface of sub-grains from migrating and restrain the sub-grains from growing, and cause better thermal stability of Al-Mg alloy.

  13. The cross section measurement for the reactions of 48,46Ti(n,p) 48,46Sc, 50Ti(n, α)47Ca and 58Ni (n, 2n)57Ni, 58Ni(n,p)58m+gCo

    International Nuclear Information System (INIS)

    Yuan Junqian; Wang Yongchang; Kong Xiangzhong; Yang Jingkang

    1992-01-01

    The cross sections for the 50 Ti(n, α) 47 Ca, 46 Ti(n, p) 46 Sc, 48 Ti(n, p) 48 Sc and 58 Ni(n, 2n) 57 Ni, 58 Ni(n, p) 58m+g Co reactions have been measured by using the activation method relative to the cross sections of the 27 Al(n, α) 24 Na reaction in the neutron energy range of 13.50-14.81 MeV. The neutron energies were determined by the cross section ratios of the 90 Zr(n, 2n) 89m+g Zr and 93 Nb(n, 2n) 92m Nb reactions. The results obtained are compared with the published and to be published data of several authors

  14. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    Science.gov (United States)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  15. Enrichment of Sc{sub 2}O{sub 3} and TiO{sub 2} from bauxite ore residues

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Bona; Li, Guanghui, E-mail: liguangh@csu.edu.cn; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    Highlights: • Sc{sub 2}O{sub 3} and TiO{sub 2} from bauxite ore residue were successfully enriched. • H{sub 3}PO{sub 4} and NaOH were efficient for enriching Sc{sub 2}O{sub 3} and TiO{sub 2} by removing SiO{sub 2}, Al{sub 2}O{sub 3}, and partial Fe{sub 2}O{sub 3} and CaO. • Enriching mechanism of Sc{sub 2}O{sub 3} and TiO{sub 2} was explicitly explained. - Abstract: As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc{sub 2}O{sub 3} and TiO{sub 2} from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO{sub 2} and 30–40% of CaO, FeO and Al{sub 2}O{sub 3} were removed from a non-magnetic material with 0.0134 wt.% Sc{sub 2}O{sub 3} and 7.64 wt.% TiO{sub 2} by phosphoric acidic leaching, while about 95% Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc{sub 2}O{sub 3}-, TiO{sub 2}- rich material containing 0.044 wt.% Sc{sub 2}O{sub 3} and 25.5 wt.% TiO{sub 2} was obtained, the recovery and the enrichment factor of Sc{sub 2}O{sub 3} and TiO{sub 2} were about 85% and 5, respectively. The enrichment of Sc{sub 2}O{sub 3} was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH{sup 0}, and the enrichment of TiO{sub 2} was mainly associated with the insoluble perovskite (CaTiO{sub 3}) in the acidic solution at ambient temperature. As Sc{sub 2}O{sub 3} and TiO{sub 2} cannot be dissolved in the alkali solution, they were further enriched in the leach residue.

  16. Quasi-elastic transfer and charge-exchange reactions in collisions of 48Ti on 42Ca and 26Mg

    International Nuclear Information System (INIS)

    Brendel, C.

    1985-01-01

    At the GSI magnetic spectrometer quasi-elastic transfer and charge-exchange reactions of the system 48 Ti + 42 Ca at incident energies E lab = 240, 300, and 385 MeV and additionally at the higher projectile energy the system 48 Ti + 26 Mg were studied each in the excitation energy range up to E x ≅ 80 MeV. The transition strength was for each particle-hole configuration of the final system calculated by means of the DWBA and subsequently folded with a Breit-Wigner distribution. The localization of the strength of the cross section and the specific structure of the energy spectra were at incident energies between 6 and 8 MeV/amu for all angles well reproduced. By an extension of the core-excitation model to many-stage reactions the charge-exchange reaction 48 Ti + 42 Ca → 48 Sc + 42 Sc could be described as sequential two-stage process. In the two-neutron stripping reaction 48 Ti + 42 Ca → 46 Ti + 44 Ca a surprisingly narrow line with a width of the experimental resolution and an excitation energy of E x = 17.8 MeV was measured at angles smaller than the grazing angle. In the 48 Ti + 26 Mg system the corresponding 46 Ti spectra show also under forward angles structures at excitation energies between 8 and 16 MeV. These lines can be explained as two-neutron states with high spin. (orig./HSI) [de

  17. Morphologies and growth mechanisms of the eutectic particles in as-cast Al-Mg-Sc alloy; Morphologien und Wachstumsmechanismen eutektischer Partikel in Al-Mg-Sc-Legierung im Gusszustand

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dejiang; Zhou, Shi' ang; Li, Heng [Hefei Univ. of Technology (China); Zhang, Zhen; Wu, Yucheng [Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei (China); Li, Ming [Anhui Jianghuai Automobile Co., Ltd, Hefei (China)

    2017-04-15

    Primary particles with faceted cubic morphology were produced in as-cast Al-Mg alloy due to the addition of Sc. The cross-section of the particles revealed some eutectic structure composed of multilayer of 'Al{sub 3}Sc + α-Al + Al{sub 3}Sc..'. At the cooling rate of 200 - 300 K/s, Al{sub 3}Sc primary phase nucleated initially on oxides within the melt and developed to a cubic structure with a 'cellular-dendritic' mode of growth. The formation of α-Al structural shells was attributed as a reason for the segregation of Mg-rich lamellar dendrites at later stages. A growth mechanism for multilayer structure was proposed using the results presented.

  18. Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C

    Science.gov (United States)

    McNamara, Cameron T.

    Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.

  19. Valence electron structure analysis of refining mecha-nism of Sc and Ti additions on aluminum

    Institute of Scientific and Technical Information of China (English)

    LI PieJie; YE YiCong; HE LiangJu

    2009-01-01

    The mechanism of the difference of refining effect between Sc and Ti adding to aluminum can not be explained substantially with traditional theory. Valence electron structures of AI-Ti and Al-Sc alloys have been studied by using the empirical electron theory of solids and molecules (EET). The covalent bond electron numbers and interfacial electron density differences are calculated. The conclusion is that, in the two alloys, different covalent bond electron numbers of nucleation particles, and different electron densities on the interface between the second phase particles and the matrix, fundamentally lead to the difference of refining effect between Sc and Ti adding to aluminum.

  20. Isothermal cross-sections of Hf-Sc-Ga(800 deg C) and Hf-Ti-Ga (750 deg C) phase diagrams

    International Nuclear Information System (INIS)

    Markiv, V.Ya.; Belyavina, N.N.

    1981-01-01

    Isothermal cross sections of Hf-Sc-Ga (800 deg C) and Hf-Ti-Ga (750 deg C) state diagrams are plotted. The existence of two ternary Hfsub(0.1-0.8)Scsub(0.9)-sub(0.2)Ga and Hfsub(0.8)Scsub(0.2)Gasub(3) phases is stated in the Hf-Sc-Ga system. The crystal structure of these compounds investigated by the powder method belongs to the structural α-MoB and ZrAl 3 types respectively. Continuous rows of (Hf, Sc 5 Ga 5 , (Hf, Ti)Ga 3 and (Hf, Ti)Ga 2 solid solutions are formed in the investigated systems. Essential quantity of the third component dissolve binary Sc 5 Ga 4 , Sc 2 Ga 3 (15 and 30 at % Hf respectively), Hf 5 Ga 4 , HfGa 2 (20, 10 at. % Sc), Hf 5 Ga 4 , HfGa, Hf 5 Ga 3 , Hf 2 Ga 3 (48, 30, 46, 20 at. % Ti) gallides [ru

  1. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Thermoluminescence response and glow curve structure of Sc2TiO5 ß-irradiated

    International Nuclear Information System (INIS)

    Muñoz, I.C.; Brown, F.; Durán-Muñoz, H.; Cruz-Zaragoza, E.; Durán-Torres, B.; Alvarez-Montaño, V.E.

    2014-01-01

    Discandium titanate (Sc 2 TiO 5 ) powder was synthesized in order to analyze its thermoluminescence (TL) response. The TL glow curve structure shows two peaks: at 453–433 K and at 590–553 K. The TL beta dose–response has a linear behavior over the dose range 50–500 Gy. The T stop preheat method shows five glow peaks that were taken into account to calculate the kinetic parameters using the CGCD procedure. TL results support the possible use of Sc 2 TiO 5 as a new phosphor in high ß-dose dosimetry. - Highlights: • Discandium titanate was synthesized, and its TL properties were analyzed. • The beta dose–response has a linear behavior on the dose range 50–500 Gy. • The kinetic parameters were obtained by the CGCD procedure. • Results support the possible use of Sc 2 TiO 5 as a new phosphor for ß-dose dosimetry

  3. Interface interaction and wetting of Sc2O3 exposed to Cu-Al and Cu-Ti melts

    International Nuclear Information System (INIS)

    Barzilai, S.; Nagar, H.; Froumin, N.; Frage, N.; Aizenshtein, M.

    2009-01-01

    Scandia is a thermodynamically stable oxide and could be used as a structural material for a crucible in order to avoid a melt contamination. In the present study wetting experiments of Cu-Al and Cu-Ti melts on Scandia substrate were preformed at 1423 K by a sessile drop method. It was established that Al and Ti additions lead to the improved wetting and that the final contact angle decreases with increasing the additives concentration. For Al containing melts, the contact angle changes gradually with time, and a relatively thick interaction layer, which consists of Al 2 O 3 , Sc 2 O 3 , and metallic channels, was formed at the Sc 2 O 3 /Cu-Al interface. For Ti containing melts, the final contact angle is achieved already during heating, and an extremely thin layer based on a Ti-Sc-O compound was detected by AES at the Sc 2 O 3 /Cu-Ti interface. The results of a thermodynamic analysis, which takes into account the formation free energy of the oxides, involved in the systems, and the thermodynamic properties of the liquid solutions are in a good agreement with the experimental observations. (orig.)

  4. Effect of Recrystallization and Natural Aging on Mechanical Properties of Al-Zn-Mg-Cu-Sc Alloys

    International Nuclear Information System (INIS)

    Yu, Min Kyu; Hong, Soon Hyung; Kwon, Oh Yeol; Lee, Yong Yeon

    2015-01-01

    In this study, the recrystallization volume fraction of the Al-Zn-Mg-Cu-Sc alloy after solid solution heat treatment varied with different temperatures (445℃ - 465℃). The highest elongation of the Al-Zn-Mg-Cu-Sc alloy was obtained at 465℃. Further, the hardness and strength of the solid solution heat treated Al-Zn-Mg-Cu-Sc alloy increased at room temperature due to G.P zone precipitates. The results confirmed that we can obtain advanced mechanical properties for the Al-Zn-Mg-Cu-Sc alloy from solid solution heat treatment and natural aging.

  5. Effect of Ti/Sc atom ratio on heterogeneous nuclei, microstructure and mechanical properties of A357-0.033Sr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaocen [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); He, Chunnian, E-mail: cnhe08@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China); Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu, Enzuo [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); He, Fang; Ma, Liying; Li, Qunying [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2016-08-01

    A systematic study on heterogeneous nucleation, microstructure and mechanical properties of A357-0.033Sr alloys with different Ti/Sc atom ratio was carried out. According to the obtained results, a Ti/Sc atom ratio up to 1:1 did not show much change in the heterogeneous nuclei but at a higher atom ratio level, heterogeneous nuclei have a great change in chemical composition and morphology (from strip Ti-rich phase to the particle-like Ti-rich phase). In addition, compared to the other four alloys studied, the A357-0.033Sr-0.30Sc-0.35Ti alloy with 1:1 atom ratio has the smallest grain size (88 µm), optimum microstructure (morphology, size and distribution of eutectic Si), densest core-shell Al{sub 3}(Sc, Ti), all of which result in the best mechanical properties. Its tensile strength and elongation reach 287 MPa and 3.62% respectively, showing about 11% and 84% increases compared with A357-0.033Sr alloy.

  6. Naked (C5Me5)(2)M cations (M = Sc, Ti, and V) and their fluoroarene complexes

    NARCIS (Netherlands)

    Bouwkamp, MW; Budzelaar, PHM; Gercama, J; Morales, ID; de Wolf, J; Meetsma, A; Troyanov, SI; Teuben, JH; Hessen, B; Budzelaar, Peter H.M.; Hierro Morales, Isabel Del; Troyanov, Sergei I.

    2005-01-01

    The ionic metallocene complexes [Cp*M-2][BPh4] (CP* = C5Me5) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each

  7. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    International Nuclear Information System (INIS)

    Groebner, J.; Rokhlin, L.L.; Dobatkina, T.V.; Schmid-Fetzer, R.

    2007-01-01

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges

  8. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany); Rokhlin, L.L. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Dobatkina, T.V. [Baikov Institute of Metallurgy and Materials Science, Leninsky prosp. 49, 119991 GSP-1, Moscow (Russian Federation); Schmid-Fetzer, R. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch Strasse 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2007-05-16

    Three series of Al-rich alloys in the system Al-Zn-Mg-Cu-Sc-Zr and the subsystems Al-Zn-Mg-Cu-Sc and Al-Zn-Mg-Sc were studied by thermodynamic calculations. Phase formation was compared with experimental data obtained by DTA and microstructural analysis. Calculated phase diagrams, phase amount charts and enthalpy charts together with non-equilibrium calculations under Scheil conditions reveal significant details of the complex phase formation. This enables consistent and correct interpretation of thermal analysis data. Especially the interpretation of liquidus temperature and primary phase is prone to be wrong without using this tool of computational thermodynamics. All data are predictions from a thermodynamic database developed for Mg-alloys and not a specialized Al-alloy database. That provides support for a reasonable application of this database for advanced Mg-alloys beyond the conventional composition ranges.

  9. Enhanced Energy-Storage Density and High Efficiency of Lead-Free CaTiO3-BiScO3 Linear Dielectric Ceramics.

    Science.gov (United States)

    Luo, Bingcheng; Wang, Xiaohui; Tian, Enke; Song, Hongzhou; Wang, Hongxian; Li, Longtu

    2017-06-14

    A novel lead-free (1 - x)CaTiO 3 -xBiScO 3 linear dielectric ceramic with enhanced energy-storage density was fabricated. With the composition of BiScO 3 increasing, the dielectric constant of (1 - x)CaTiO 3 -xBiScO 3 ceramics first increased and then decreased after the composition x > 0.1, while the dielectric loss decreased first and increased. For the composition x = 0.1, the polarization was increased into 12.36 μC/cm 2 , 4.6 times higher than that of the pure CaTiO 3 . The energy density of 0.9CaTiO 3 -0.1BiScO 3 ceramic was 1.55 J/cm 3 with the energy-storage efficiency of 90.4% at the breakdown strength of 270 kV/cm, and the power density was 1.79 MW/cm 3 . Comparison with other lead-free dielectric ceramics confirmed the superior potential of CaTiO 3 -BiScO 3 ceramics for the design of ceramics capacitors for energy-storage applications. First-principles calculations revealed that Sc subsitution of Ti-site induced the atomic displacement of Ti ions in the whole crystal lattice, and lattice expansion was caused by variation of the bond angles and lenghths. Strong hybridization between O 2p and Ti 3d was observed in both valence band and conduction band; the hybridization between O 2p and Sc 3d at high conduction band was found to enlarge the band gap, and the static dielectric tensors were increased, which was the essential for the enhancement of polarization and dielectric properties.

  10. Precise determination of 40Ti mass by measuring the 40Sc isospin analogue state

    International Nuclear Information System (INIS)

    Liu Weiping; Hellstroem, M.; Collatz, R.; Benlliure, J.; Cortina, G.D.; Farget, F.; Grawe, H.; Hu, Z.; Iwasa, N.; Pfuetzner, M.; Roeckl, E.; Chulkov, L.; Piechaczek, A.; Raabe, R.; Reusen, I.; Vancraeynest, G.; Woehr, A.

    2001-01-01

    The mass of 40 Ti has been determined by using the isobaric multiplet mass equation method. The experimental data of the 40 Ti β-decay were used to determine the level of the isospin analogue state of 40 Sc. The ground-state mass excess and the Q EC value for 40 Ti were determined to be -9060 +- 12 keV and 11466 +- 13 keV, respectively

  11. Correlative characterization of primary Al{sub 3}(Sc,Zr) phase in an Al–Zn–Mg based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.H., E-mail: jie-hua.li@hotmail.com [Institute of Casting Research, Montanuniversität Leoben, A-8700 Leoben (Austria); Wiessner, M. [Materials Center Leoben Forschung GmbH, A-8700 Leoben (Austria); Albu, M. [Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Center for Electron Microscopy (Austria); Wurster, S. [Department of Materials Physics, Montanuniversität Leoben, Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences, A-8700 Leoben (Austria); Sartory, B. [Materials Center Leoben Forschung GmbH, A-8700 Leoben (Austria); Hofer, F. [Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Center for Electron Microscopy (Austria); Schumacher, P. [Institute of Casting Research, Montanuniversität Leoben, A-8700 Leoben (Austria); Austrian Foundry Research Institute, A-8700 Leoben (Austria)

    2015-04-15

    Three-dimensional electron backscatter diffraction, focused ion beam, transmission electron microscopy and energy filtered transmission electron microscopy were employed to investigate the structural information of primary Al{sub 3}(Sc,Zr) phase, i.e. size, shape, element distribution and orientation relationship with the α-Al matrix. It was found that (i) most primary Al{sub 3}(Sc,Zr) phases have a cubic three-dimensional morphology, with a size of about 6–10 μm, (ii) most primary Al{sub 3}(Sc,Zr) phases are located within the α-Al matrix, and exhibit a cube to cube orientation relationship with the α-Al matrix, and (iii) a layer by layer growth was observed within primary Al{sub 3}(Sc,Zr) phases. Al, Cu, Si and Fe are enriched in the α-Al matrix between the layers of cellular eutectic Al{sub 3}(Sc,Zr) phase, while Sc, Ti and Zr are enriched in small Al{sub 3}(Sc,Zr) phases. A peritectic reaction and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed to interpret the observed layer by layer growth. This paper demonstrates that the presence of impurities (Fe, Si, Cu, Ti) in the diffusion field surrounding the growing Al{sub 3}(Sc,Zr) particle enhances the heterogeneous nucleation of Al{sub 3}(Sc,Zr) phases. - Highlights: • Most fine cubic primary Al{sub 3}(Sc,Zr) phases were observed within the α-Al matrix. • A layer by layer growth within primary Al{sub 3}(Sc,Zr) phase was observed. • A peritectic and subsequent eutectic reaction between Al{sub 3}Sc and Al was proposed. • Impurities in diffusion fields enhance heterogeneous nucleation of Al{sub 3}(Sc,Zr)

  12. Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr Alloy

    Directory of Open Access Journals (Sweden)

    Irina Loginova

    2017-12-01

    Full Text Available The effect of pulse laser welding parameters and filler metal on microstructure and mechanical properties of the new heat-treatable, wieldable, cryogenic Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr alloy were investigated. The optimum parameters of pulsed laser welding were found. They were 330–340 V in voltage, 0.2–0.25 mm in pulse overlap with 12 ms duration, and 2 mm/s speed and ramp-down pulse shape. Pulsed laser welding without and with Al-5Mg filler metal led to the formation of duplex (columnar and fine grains as-cast structures with hot cracks and gas porosity as defects in the weld zone. Using Al-5Ti-1B filler metal for welding led to the formation of the fine grain structure with an average grain size of 4 ± 0.2 µm and without any weld defects. The average concentration of Mg is 2.8%; Mn, 0.2%; Zr, 0.1%; Sc, 0.15%; and Ti, 2.1% were formed in the weld. The ultimate tensile strength (UTS of the welded alloy with AlTiB was 260 MPa, which was equal to the base metal in the as-cast condition. The UTS was increased by 60 MPa after annealing at 370 °C for 6 h that was 85% of UTS of the base alloy.

  13. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  14. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    Ti-xMg (x=17, 33, and 55 mass%) alloy films, which cannot be prepared by conventional melting processes owing to the absence of a solid-solution phase in the phase diagram, were prepared by direct current magnetron sputtering in order to investigate their biocompatibility. Ti and Mg films were also prepared by the same process for comparison. The crystal structures were examined by X-ray diffraction (XRD) analysis and the surfaces were analyzed by X-ray photoelectron spectroscopy. The Ti, Ti-xMg alloy, and Mg films were immersed in a 0.9% NaCl solution at 310 K for 7d to evaluate the dissolution amounts of Ti and Mg. In addition, to evaluate the formation ability of calcium phosphate in vitro, the Ti, Ti-xMg alloy, and Mg films were immersed in Hanks' solution at 310 K for 30 d. Ti and Mg form solid-solution alloys because the peaks attributed to pure Ti and Mg do not appear in the XRD patterns of any of the Ti-xMg alloy films. The surfaces of the Ti-17 Mg alloy and Ti-33 Mg alloy films contain Ti oxides and MgO, whereas MgO is the main component of the surface oxide of the Ti-55 Mg alloy and Mg films. The dissolution amounts of Ti from all films are below or near the detection limit of inductively coupled plasma-optical emission spectroscopy. On the other hand, the Ti-17 Mg alloy, Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films exhibit Mg dissolution amounts of approximately 2.5, 1.4, 21, and 41 μg/cm(2), respectively. The diffraction peaks attributed to calcium phosphate are present in the XRD patterns of the Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films after the immersion in Hanks' solution. Spherical calcium phosphate particles precipitate on the surface of the Ti-33 Mg film. However, many cracks are observed in the Ti-55 Mg film, and delamination of the film occurs after the immersion in Hanks' solution. The Mg film is dissolved in Hanks' solution and calcium phosphate particles precipitate on the glass substrate. Consequently, it is revealed that the Ti-33 Mg

  15. Hydrogen kinetics studies of MgH2-FeTi composites

    Science.gov (United States)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  16. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy

    Science.gov (United States)

    Li, Yukun; Du, Xiaodong; Zhang, Ya; Zhang, Zhen; Fu, Junwei; Zhou, Shi'ang; Wu, Yucheng

    2018-02-01

    In the present study, the effects of Mg, Cu, Sc and Zr combined additions on the microstructure and mechanical properties of hypoeutectic Al-Si cast alloy were systematically investigated. Characterization techniques such as optical microscopy (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), electron back-scatter diffraction (EBSD), atomic force microscopy (AFM), transmission electron microscope (TEM), Brinell hardness tester and universal testing machine were employed to analyze the microstructure and mechanical properties. The results showed that Sc served as modifier on the microstructure of Al-3Si-0.45Mg-0.45Cu-0.2Zr alloys, including modification of eutectic Si and grains. Extraordinarily, grain refinement was found to be related to the primary particles, which exhibited a close orientation to matrix. After T6 heat treatment, the grain structures were composed of nano-scaled secondary Al3(Sc, Zr) precipitates and spherical eutectic Si. Combined with T6 heat treatment, the highest hardness, yield strength, ultimate tensile strength and elongation were achieved in 0.56 wt.% Sc-modified alloy. Interestingly, the strength and ductility had a similar tendency. This paper demonstrated that combined additions of Mg, Cu, Sc and Zr could significantly improve the microstructure and performance of the hypoeutectic Al-Si cast alloy.

  17. Synthesis of anatase nanoparticles with extremely wide solid solution range and ScTiNbO6 with α-PbO2 structure

    International Nuclear Information System (INIS)

    Hirano, Masanori; Ito, Takaharu

    2009-01-01

    Anatase-type nanoparticles Sc X Ti 1-2X Nb X O 2 with wide solid solution range (X=0-0.35) were hydrothermally formed at 180 deg. C for 5 h. The lattice parameters a 0 and c 0 , and the optical band gap of anatase gradually and linearly increased with the increase of the content of niobium and scandium from X=0 to 0.35. Their photocatalytic activity and adsorptivity by the measurement of the concentration of methylene blue (MB) that remained in the solution in the dark or under UV-light irradiation were evaluated. The anatase phase existed stably up to 900 deg. C for the samples with X=0.25-0.30 and 750 deg. C for that with X=0.35 during heat treatment in air. The phase with α-PbO 2 structure and the rutile phases coexisted in the samples with X=0.25-0.30 after heated at temperatures above 900-950 deg. C. The α-PbO 2 structure having composition ScTiNbO 6 with possibly some cation order similar to that seen in wolframite existed as almost completely single phase after heat treatment at temperatures 900-1500 deg. C through phase transformation from anatase-type ScTiNbO 6 . - Graphical abstract: Anatase-type Sc X Ti 1-2X Nb X O 2 solid solutions with wide solid solution range (X=0-0.35) were hydrothermally formed as nanoparticles from the precursor solutions of Sc(NO 3 ) 3 , TiOSO 4 , NbCl 5 at 180 deg. C for 5 h using the hydrolysis of urea. Anatase-type ScTiNbO 6 was synthesized under hydrothermal condition. ScTiNbO 6 having α-PbO 2 structure with possibly some cation order similar to that seen in wolframite was formed through phase transformation above 900 deg. C.

  18. Formation of Al3Ti/Mg composite by powder metallurgy of Mg–Al–Ti system

    Directory of Open Access Journals (Sweden)

    Zi R Yang et al

    2008-01-01

    Full Text Available An in situ titanium trialuminide (Al3Ti-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg–Al–Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC, x-ray diffractometry (XRD, scanning electron microscopy (SEM and energy-dispersive x-ray spectroscopy (EDS. Al3Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg–Al–Ti system, Al3Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg–Al–Ti system is almost the same as that of the Al–Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  19. Lightweight hydrogen-storage material Mg0.65Sc0.35D2 studied with 2H and 2H–{45Sc} MAS NMR exchange spectroscopy

    NARCIS (Netherlands)

    Srinivasan, S.; Magusin, P.C.M.M.

    2011-01-01

    Using double-quantum 2H MAS NMR with 45Sc recoupling and Bloch–Siegert compensated 2H–{45Sc} TRAPDOR we have identified the overlapping NMR signals of deuterium with and without scandium neighbors in Mg0.65Sc0.35D2, a candidate lightweight material for hydrogen storage. At room temperature we also

  20. Ab initio study of domain structures in half-metallic CoTi{sub 1−x}Mn{sub x}Sb and thermoelectric CoTi{sub 1−x}Sc{sub x}Sb half-Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Mena, Joaquin, E-mail: joaquin.miranda@uni-bayreuth.de; Schoberth, Heiko G.; Gruhn, Thomas; Emmerich, Heike

    2015-11-25

    We present first-principles calculations of the electronic density of state, the structures in CoTi{sub 1−x}Sc{sub x}Sb and CoTi{sub 1−x}Mn{sub x}Sb. In addition for the latter we calculate magnetic moments. Systems with different stoichiometries are compared and low energy configurations are determined using a cluster expansion procedure. For all studied manganese concentrations, x > 0, CoTi{sub 1−x}Mn{sub x}Sb is half-metallic and magnetic, which make it interesting for spintronic applications. In contrast, with increasing scandium concentration, the band gap of CoTi{sub x}Sc{sub 1-x}Sb closes continuously, while the material changes from a semiconductor to a non-magnetic metal. For low Sc doping this material is well suited for thermoelectric applications. The electronic states close to the Fermi energy are strongly influenced by the distribution of Ti and Mn (or Ti and Sc). This has important consequences for the usage of materials in application fields like spintronics and thermoelectrics. In general, a phase separation of the alloys into a Ti rich and a Ti poor phase is energetically favored. Using mean field theory we create a phase diagram that shows the coexistence and the spinodal region. A spontaneous demixing can be used for the creation of nanodomains within the material. In the case of CoTi{sub 1−x}Sc{sub x}Sb, the resulting reduced lattice thermal conductivity is beneficial for thermoelectric applications, while in CoTi{sub 1−x}Mn{sub x}Sb the nanodomains are detrimental for polarization.

  1. Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface

    International Nuclear Information System (INIS)

    Sasani, Alireza; Baktash, Ardeshir; Mirabbaszadeh, Kavoos; Khoshnevisan, Bahram

    2016-01-01

    Highlights: • Formation energy of Mg and Mg-Nb co-doped TiO_2 anatase surface (101) is studied. • Effect of Mg defect to the TiO_2 anatase (101) surface and bond length distribution of the surface is studied and it is shown that Mg defects tend to stay far from each other. • Effect of Mg and Nb to the bond length distribution of the surface studied and it is shown that these defects tend to stay close to each other. • Effects of Mg and Mg-Nb defects on DSSCs using TiO_2 anatase hosting these defects are studied. - Abstract: In this paper, by using density functional theory, Mg and Nb-Mg co-doping of TiO_2 anatase (101) surfaces are studied. By studying the formation energy of the defects and the bond length distribution of the surface, it is shown that Mg defects tend to stay as far as possible to induce least possible lattice distortion while Nb and Mg defects stay close to each other to cause less stress to the surface. By investigating band structure of the surface and changes stemmed from the defects, potential effects of Mg and Mg-Nb co-doping of TiO_2 surface on dye-sensitized solar cells are investigated. In this study, it is shown that the Nb-Mg co-doping could increase J_S_C of the surface while slightly decreasing V_O_C compared to Mg doped surface, which might result in an increase in efficiency of the DSSCs compared to Nb or Mg doped surfaces.

  2. Structural, morphological and interfacial characterization of Al-Mg/TiC composites

    International Nuclear Information System (INIS)

    Contreras, A.; Angeles-Chavez, C.; Flores, O.; Perez, R.

    2007-01-01

    Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al 4 C 3 ) is formed at the interface and traces of TiAl 3 in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al 4 C 3 at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms with flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-β phase was detected through XRD

  3. Effects of trace Be and Sc addition on the thermal stability of Al–7Si–0.6Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Yu-Chih [Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (China); Wu, Chih-Ting [Department of Vehicle Engineering, Army Academy R.O.C., Jhongli, Taiwan (China); Yang, Cheng-Hsien [Institute of Materials Science and Engineering, National Central University, Jhongli, Taiwan (China); Lee, Sheng-Long, E-mail: shenglon@cc.ncu.edu.tw [Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (China)

    2014-09-22

    In the present study, the effects of trace amounts of beryllium (Be, 0.05 wt%) and scandium (Sc, 0.04 wt%) addition on the microstructures and thermal stability of Al–7Si–0.6Mg alloys were investigated. The results show that traces of Be and Sc significantly reduce the amount of the iron-bearing phase and the interdendritic shrinkage. Be transformed the acicular iron-bearing phases into the nodular Al–Fe–Si iron-bearing phase, which is less harmful to ductility. Moreover, the addition of Be increased the Mg content of the solid solution within the matrix, prompting greater precipitation of the metastable Mg{sub 2}Si phase after T6 heat treatment and effectively enhancing the mechanical properties of the alloy. However, during the following thermal exposure at 250 °C for 100 h, the metastable Mg{sub 2}Si phase grew into the coarse β-Mg{sub 2}Si equilibrium phase, resulting in a decrease in the mechanical strength of the alloy. Meanwhile, the addition of Sc had insignificant effect on the amount of metastable Mg{sub 2}Si phase that precipitated. However, here, the iron-bearing phase was a nodular Al{sub 12}Si{sub 6}Fe{sub 2}(Mg,Sc){sub 5} phase, which significantly enhanced the density of the castings. After the same thermal exposure procedure, it was remarkably found that the precipitation of fine Al{sub 3}Sc particles effectively inhibited grain growth and hindered the movement of dislocations. These factors led to the Sc-containing alloy having better mechanical properties (strength and ductility) than the alloys without Sc or with Be during the following thermal exposure at 250 °C.

  4. Synthesis and characterization of LiF: Mg, Ti for ionizing radiations dosimetry

    International Nuclear Information System (INIS)

    Lozano R, I. B.

    2011-01-01

    Among the different thermoluminescence materials (Tl), the LiF:Mg, Ti is the most used for dosimetric purposes, because its equivalence to the human tissue, it has an effective atomic number of 8.14, the best known commercial dosemeter of this kind is the TLD-100. However, because this dosimeter is an imported product, is quite expensive for many research groups and hospitals. The purpose of this work is the optimization of its synthesis, as the dosimetric characterization, so it can replace the imported dosimeters. The synthesis of LiF:Mg, Ti is a careful process, since one of the reagents, the ion fluorine is highly corrosive. In this work the synthesis of the LiF:Mg, Ti was done by the molten substance method, was used LiF of analytical grade and the magnesium (Mg) and titanium (Ti) activators were incorporated in aqueous solution. For to optimize the handle of the material Tl, we elaborated pellets and teflon (Ptfe) was used as agglutinate material, in a 2:3 proportion. First was prepared the LiF, incorporating just Mg as dopant with a concentration of 400 parts per million (ppm). After the Ti with concentrations from 15 to 120 ppm was incorporated keeping fixed the concentration of Mg (400 ppm). The morphological and structural characterization of the Tl material were made by scanning electron microscopy and X-ray diffraction. The optimal concentration of Ti, was determined as a function of the radiation dose sensibility of the Tl material. The material prepared with 60 ppm of the Ti showed a higher sensibility. However, also the rest of the preparations had the requirements recommended by the international agencies to be used in ionizing radiations dosimetry. For the dosimetric characterization were used samples with 400 ppm of Mg, 400 ppm Mg and 30 ppm Ti, 400 ppm Mg and 60 ppm Ti. The LiF:Mg showed its dosimetric peak at 240 C, while the LiF:Mg, Ti (30 ppm and 60 ppm Ti) showed their dosimetric peak at 220 C and 222 C respectively. The study of the Tl

  5. Vibrational spectra of mixed oxides of Ln2MgTiO6 composition

    International Nuclear Information System (INIS)

    Porotnikov, N.V.; German, M.; Kovba, L.M.

    1984-01-01

    In the range 33-4000 cm -1 IR and Raman spectra of complex oxides of the composition Ln 2 MgTiO 6 (Ln=La-Yb and Y) have been studied. Using the Magnesium isotope-substituted compositions Lasub(2)sup(24,26)MgTiOsub(6), Smsub(2)sup(24,26)MgTiOsub(6) and Ybsub(2)sup(24,26)MgTiOsub(6), it has been shoWn that in Ln 2 MgTiO 6 titanium and magnesium ions are located in sites With octahedral coordination, of rare earth ions highly-coordinated polyhedrons with coordination number 10-12 are characteristic

  6. Surface excess on MgO-doped TiO{sub 2} nanoparticles; Segregacao superficial de MgO em nanoparticulas de TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gouvea, D.; Viana, B.H.; Miagava, J., E-mail: dgouvea@usp.br, E-mail: bhernardov@gmail.com, E-mail: joice.mgv@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Processos Ceramicos

    2016-10-15

    Anatase has been the subject of several recent investigations partly as consequence of its interesting catalytic properties. Additives such as MgO have been introduced to improve the performance of the photocatalytic TiO{sub 2}. However, the physical-chemistry of these oxides systems and their relationship with properties are poorly understood. In this work, nanoparticles of xMgO-(1-x)TiO{sub 2} (0≤ x≤ 0.05) were synthesized by the polymeric precursor method at 500 °C for 15 h. XRD results showed that only anatase phase was obtained and the crystallite size decreases with increased MgO concentration. Magnesia surface excess was calculated by washing powders with HNO{sub 3} and the soluble Mg ions concentration determined by chemical analysis. FTIR analysis confirms that the acid washing modified the particle surface. Therefore, it is proposed that the reduction of the crystallite size occurs due to segregation of MgO on TiO{sub 2} nanoparticles surfaces. (author)

  7. Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO{sub 2}/MgO bionanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Khalajabadi, Shahrouz Zamani [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Izman, Sudin; Mohd Yusop, Mohd Zamri [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-01-01

    Highlights: • Mg/HA/TiO{sub 2}-based nanocomposite was produced using mechanical alloying. • The hydrophobic surface coverage was fabricated on the mechanical alloyed samples by annealing. • The morphological characteristics, phase evolution and wettability of nanocomposites and the hydrophobic surface coverage were investigated. • The activation energies and reaction kinetic of the powder mixture of nanocomposites were calculated. - Abstract: The effect of mechanical alloying and post-annealing on the phase evolution, microstructure, wettability and thermal stability of Mg–HA–TiO{sub 2}–MgO composites was investigated in this study. Phase evolution and microstructure analysis were performed using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, as well as the wettability determined by contact angle measurements with SBF. The 16-h mechanical alloying resulted in the formation of MgTiO{sub 3}, CaTiO{sub 3}, Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} phases and a decrease in wettability of the nanocomposites. A hydrophobic film with hierarchical structures comprising nanoflakes of MgTiO{sub 3}, nano-cuboids of CaTiO{sub 3}, microspheres of Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} was successfully constructed on the surface of the Mg-based nanocomposites substrates as a result of the post-annealing process. After 1-h annealing at 630 °C, the synthesized hydrophobic surface on the nanocomposite substrates decreased the wettability, as the 8-h-mechanically alloyed samples exhibited a contact angle close to 93°. The formation activation energies and reaction kinetics of the powder mixture were investigated using differential thermal analysis and thermal gravimetric analysis. The released heat, weight loss percentage and reaction kinetics increased, while the formation activation energies of the exothermic reactions decreased following an increase in the milling time.

  8. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  9. Theoretical study of isoelectronic SinM clusters (M=Sc-,Ti,V+; n=14-18)

    DEFF Research Database (Denmark)

    Torres, M. B.; Fernandez Sanchez, Eva; Balbás, L. C.

    2007-01-01

    We study, from first-principles quantum mechanical calculations, the structural and electronic properties of several low-lying energy equilibrium structures of isoelectronic SinM clusters (M=Sc-,Ti,V+) for n=14-18. The main result is that those clusters with n=16 are more stable than its neighbors...... of the spherical potential model). The structures of the two lowest energy isomers of Si16M are nearly degenerate, and consist of the Frank-Kasper polyhedron and a distortion of that polyhedron. The first structure is the ground state for M=V+, and the second is the ground state for Ti and Sc-. For the lowest...... energy isomers of clusters SinM with n=14-18, we analyze the changes with size n, and impurity M of several quantities: binding energy, second difference of total energy, HOMO-LUMO gap, adiabatic electron affinity, addition energy of a Si atom, and addition energy of an M impurity to a pure Si-n cluster...

  10. Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Mg-Mn-Sc-Zr Alloy

    Science.gov (United States)

    Xu, Guofu; Qian, Jian; Xiao, Dan; Deng, Ying; Lu, Liying; Yin, Zhimin

    2016-04-01

    A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.

  11. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  12. Evaluated (n,p) cross sections of 46Ti, 47Ti and 48Ti

    International Nuclear Information System (INIS)

    Philis, C.; Bersillon, O.; Smith, D.; Smith, A.

    1977-01-01

    Microscopic evaluated neutron cross sections for the reactions 46 Ti(n;p) 46 Sc, 47 Ti(n;p) 47 Sc and 48 Ti(n;p) 48 Sc are obtained from threshold (or zero energy) to 20 MeV. The results are presented in graphical and numerical (ENDF format) form. The microscopic evaluated cross sections are compared with measured fission-spectrum-averaged values

  13. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  14. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    Science.gov (United States)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  15. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  16. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    International Nuclear Information System (INIS)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-01-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca 10−x Mg x (PO 4 ) 6 (OH) 2 ) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti 1−x ,Mg x )N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF

  17. Landau-Devonshire Parameters for the Tunable Paraelectric Material BaTi.9(Sc,Ta).05O3

    National Research Council Canada - National Science Library

    Miller, Virginia; Crowne, Frank

    2008-01-01

    ...).05O3 are used to deduce the thermodynamic Landau-Devonshire parameters of the material, which are found to differ strongly from those of the parent material BaTiO3, despite the small amount of added Sc and Ta...

  18. Properties of stabilized MgB2 composite wire with Ti barrier

    International Nuclear Information System (INIS)

    Kovac, P; Husek, I; Melisek, T; Holubek, T

    2007-01-01

    Stabilized four-filament in situ MgB 2 /Ti/Cu/Monel composite wire was produced by the rectangular wire-in-tube (RWIT) technique. 10 wt% of nanosize SiC was added into the Mg-B powder mixture, which was packed into the Ti/Cu and Monel tubes, respectively. The assembled composite was two-axially rolled into wire and/or tape form and sintered at temperatures of 650-850 deg. C/0.5 h. Stabilized MgB 2 wire with Ti barrier is studied in terms of field-dependent transport critical current density, effects of filament size reduction and thermal stability

  19. Synergetic effects of Sc and Zr microalloying and heat treatment on mechanical properties and exfoliation corrosion behavior of Al-Mg-Mn alloys

    International Nuclear Information System (INIS)

    Peng, Yongyi; Li, Shu; Deng, Ying; Zhou, Hua; Xu, Guofu; Yin, Zhimin

    2016-01-01

    Mechanical properties, exfoliation corrosion behavior and microstructure of Al-5.98Mg-0.47Mn and Al-6.01Mg-0.45Mn-0.25Sc-0.10Zr (wt%) alloy sheets under various homogenizing and annealing processes were investigated comparatively by tensile tests, electrochemical measurements, X-ray diffraction technique and microscopy methods. The as-cast alloys mainly consist of Fe and Mn enriched impurity phases, Mg and Mn enriched non-equilibrium aluminides and Mg 3 Al 2 phases. During homogenization treatment, solvable intermetallics firstly precipitate and then dissolve into matrix. The optimized homogenization processes for removing micro-segregation and obtaining maximum precipitation strengthening of secondary Al 3 (Sc, Zr) particles are 440 °C×8 h and 300 °C×8 h, respectively. Sc and Zr additions can make the yield strength of Al-Mg-Mn alloy increase by 21 MPa (6.9%), 120 MPa (61.2%) and 127 MPa (68.3%), when annealed at 270 °C, 300 °C and 330 °C, respectively, indicating that Orowan precipitation strengthening caused by secondary Al 3 (Sc, Zr) nano-particles is much greater than grain boundary strengthening from primary Al 3 (Sc, Zr) micro-particles. Increasing homogenization and annealing degrees and adding Sc and Zr all can decrease corrosion current density and improve exfoliation corrosion resistance. The exfoliation corrosion behavior is dominant by anodic dissolution occurring at the interface between intermetallics and α(Al) matrix. After homogenizing at 440 °C for 8 h and annealing at 300 °C for 1 h, yield strength, ultimate strength, elongation to failure and exfoliation corrosion rank are 196 MPa, 360 MPa, 20.2% and PA (slight pitting corrosion) in Al-Mg-Mn alloy, and reach to 316 MPa, 440 MPa, 17.0% and PA in Al-Mg-Mn-Sc-Zr alloy, respectively, revealing that high strength, high ductility and admirable corrosion resistance of Al-Mg-Mn alloys can be achieved by the synergetic effects of Sc and Zr microalloying and heat treatment.

  20. Flux pinning behaviors of Ti and C co-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y.; Feng, Y.; Cheng, C.H.; Zhang, Y.P.; Zhao, Y.

    2008-01-01

    Flux pinning behavior of carbon and titanium concurrently doped MgB 2 alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB 2 have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB 2 samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg 0.95 Ti 0.05 B 1.95 C 0.05 has been determined to be U(B dc )∝B dc -1 compared to that of MgB 2 U(B dc )∝B dc -1.5 . As to the U(J) behavior, a relationship of U(J) ∝ J -0.17 is found fitting well for Mg 0.95 Ti 0.05 B 1.95 C 0.05 with respect to U(J) ∝ J -0.21 for MgB 2 . All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB 2

  1. Electron microscopy of Mg/TiO2 photocatalyst morphology for deep desulfurization of diesel

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2015-01-01

    A series of Mg/TiO 2 photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO 2 did not lead to any surface lattice distortion to TiO 2 . HRTEM data indicated the presence of MgO and Mg(OH) 2 mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH) 2

  2. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities

    NARCIS (Netherlands)

    Krishnan, Gopi; de Graaf, Sytze; ten Brink, Gert H.; Verheijen, Marcel A.; Kooi, Bart J.; Palasantzas, George

    2018-01-01

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiCx/Mg/MgO, TiCx/MgO and TiHx/MgO core/shell NPs via

  3. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P., E-mail: pkalisvaart@gmail.com [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada); Mitlin, David, E-mail: dmitlin@ualberta.ca [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, Edmonton, AB, T6G 2V4 (Canada)

    2011-03-15

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  4. Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Kubis, Alan; Danaie, Mohsen; Amirkhiz, Babak Shalchi; Mitlin, David

    2011-01-01

    This paper describes the microstructural evolution of Mg-FeTi mutlilayered hydrogen storage materials during extended cycling. A 28 nm Mg-5 nm FeTi multilayer has comparable performance to a cosputtered material with an equivalent composition (Mg-10%Fe-10%Ti), which is included as a baseline case. At 200 deg. C, the FeTi layers act as a barrier, preventing agglomeration of Mg particles. At 300 deg. C, the initial structure of the multilayer is preserved up to 35 cycles, followed by fracturing of the Mg layers in the in-plane direction and progressive delamination of the FeTi layers as observed by electron microscopy. Concurrently, an increase in the Mg grain size was observed from 32 to 76 nm between cycles 35 and 300. As a result, the absorption kinetics deteriorate with cycling, although 90% of the total capacity is still absorbed within 2 min after as many as 300 cycles. The desorption kinetics, on the other hand, remain rapid and stable, and complete desorption of 4.6 wt.% H is achieved in 1.5 min at ambient desorption pressure. In addition to showing good hydrogen storage performance, multilayers are an excellent model system for studying the relation between microstructure and hydrogen absorption/desorption kinetics.

  5. Influence of heat treatment on corrosion behaviour of Al-Zn-Mg-Cu-Zr-Sc alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Y.P.; Liu, X.Y.; He, Y.B. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Pan, Q.L. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education, Changsha 410083 (China); Li, W.B. [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); School of Civil Engineering, Hunan City University, Yiyang 413000 (China)

    2012-05-15

    Corrosion behaviour of different tempers (namely NA, UA, PA and OA) of Al-Zn-Mg-Cu-Zr-Sc alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), optical microscopy (OM) and transmission electron microscopy (TEM). Over aged (OA) can decrease the susceptibility to exfoliation due to the discontinuous distribution of the {eta} precipitates at the grain boundaries, cause a negative shift of the corrosion potential (E{sub corr}), and lead to the prolonging of the time of the appearance of two time constants in impedance diagrams. In addition, Al-Zn-Mg-Cu-Zr-Sc alloy with over aged treatment has an enhanced resistance to exfoliation corrosion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Use of equimolar cysteine/ascorbic acids to recover MCP synthesized Ti(Mg) alloy

    CSIR Research Space (South Africa)

    Mushove, T

    2010-10-01

    Full Text Available Dissolution of waste by-products of mechanochemical processing (MCP) synthesis of Ti(Mg) alloy, from TiO2 and 15 wt.% excess Mg, was conducted in equimolar cysteine/ascorbic acids. The synthesized alloy is inherently mixed with MgO and other oxides...

  7. Enhancing photocatalytic activity by using TiO2-MgO core-shell-structured nanoparticles

    International Nuclear Information System (INIS)

    Jung, Hyun Suk; Lee, Jung-Kun; Nastasi, Michael; Kim, Jeong-Ryeol; Lee, Sang-Wook; Kim, Jin Young; Park, Jong-Sung; Hong, Kug Sun; Shin, Hyunho

    2006-01-01

    Hygroscopic Mg(OH) 2 gel was topotactically decomposed on TiO 2 particle surfaces, resulting in highly nanoporous MgO-coated TiO 2 particles. The highly hygroscopic and nanoporous MgO shell absorbed more water molecules and hydroxyl groups from the environment to yield an improved photocatalytic property of the core-shell particles as compared to the uncoated TiO 2 counterpart

  8. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study

    International Nuclear Information System (INIS)

    Sun, Ting; Wu, Xiaozhi; Wang, Rui; Li, Weiguo

    2015-01-01

    The adhesion and ductility of (100) and (110) Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe, and Ti have been investigated using first-principles methods. Fe and Ti can enhance the adhesion of (100) and (110) interfaces. Mg and Zn have the opposite effect. Interfacial electronic structures have been created to analyze the changes of the work of adhesion. It is found that more charge is accumulated at interfaces alloyed by Fe and Ti compared with pure Al/TiC. There is also an obvious downward shift in the Fermi energy of Fe, Ti at the interface. Furthermore, the unstable stacking fault energies of the interfaces are calculated; the results demonstrate that the preferred slip direction is the 〈110〉 direction for (100) and (110) Al/TiC. Based on the Rice criterion of ductility, the results predict that Mg, Fe, and Ti are promising candidates for improving the ductility of Al/TiC interfaces. (paper)

  9. Effects of TiC doping on the upper critical field of MgB2 superconductors

    International Nuclear Information System (INIS)

    Yan, S.C.; Zhou, L.; Yan, G.; Lu, Y.F.

    2008-01-01

    TiC doped MgB 2 bulks were fabricated by two-step reaction method. The sample with a nominal compositions of Mg(B 0.95 (TiC) 0.05 ) 4 was first sintered at 1000 deg. C for 0.5 h. An appropriate amount of Mg was added to reach the stoichiometry of Mg(B 0.95 (TiC) 0.05 ) 2 , which was sintered at 750 deg. C for 2 h. The H c2 for the micro-TiC doped MgB 2 reached 12 T at 20 K. And J c is 5.3 x 10 4 A/cm 2 at 20 K and 1 T. The results indicate that the two-step reaction method could effectively introduce the carbon in TiC into the MgB 2 crystalline lattice, and therefore improve the upper critical field

  10. Synthesis of (Zn, Mg)TiO{sub 3}-TiO{sub 2} composite ceramics for multilayer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Wu, S.P., E-mail: chwsp@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Tu, W.P.; Jiao, L.; Zeng, Z.O. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-11-01

    (Zn{sub 0.8}Mg{sub 0.2})TiO{sub 3}-xTiO{sub 2} composite ceramics has been prepared via the solid-phase synthesis method. TiO{sub 2} was employed to tone temperature coefficient of resonant frequency ({tau}{sub f}) and stabilize hexagonal (Zn, Mg)TiO{sub 3} phase. 3ZnO-B{sub 2}O{sub 3} was effective to promote sintering. The movement of grain boundary was obvious because of the liquid phase sintering. The scanning electron microscope (SEM) photographs and energy dispersive spectrometer (EDS) patterns showed that segregation and precipitation of dissociative (Zn, Mg)TiO{sub 3} grains occurred at grain boundary during sintering. SnO{sub 2} was used as inhibitor to prevent the grain boundary from moving. The dielectric behaviors of specimen strongly depended on structural transition and microstructure. We found that 1.0 wt.% 3ZnO-B{sub 2}O{sub 3} doped (Zn, Mg)TiO{sub 3}-0.25TiO{sub 2} ceramics with 0.1 wt.% SnO{sub 2} additive displayed excellent dielectric properties (at 1000 deg. C): {epsilon}{sub r} = 27.7, Q x f = 65,490 GHz (at 6.07 GHz) and {tau}{sub f} = -8.88 ppm deg. C{sup -1}. The above-mentioned material was applied successfully to make multilayer ceramic capacitors (MLCCs), which exhibited an excellent electrical property. The self-resonance frequency (SRF) and equivalent series resistance (ESR) of capacitor decreased with capacitance increasing, and the quality factor (Q) of capacitor reduced as frequency or capacity increased.

  11. Electron microscopy of Mg/TiO{sub 2} photocatalyst morphology for deep desulfurization of diesel

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my; Fatimah, Hayyiratul, E-mail: hayyiratulfatimah@yahoo.com; Wilfred, Cecilia, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    A series of Mg/TiO{sub 2} photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO{sub 2} did not lead to any surface lattice distortion to TiO{sub 2}. HRTEM data indicated the presence of MgO and Mg(OH){sub 2} mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH){sub 2}.

  12. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  13. Flux pinning behaviors of Ti and C co-doped MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Zhao, D.; Shen, T.M.; Li, G.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Feng, Y. [Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xian, Shaanxi 710016 (China); Western Superconductivity Technology Company, Xian (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Zhang, Y.P. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    Flux pinning behavior of carbon and titanium concurrently doped MgB{sub 2} alloys has been studied by ac susceptibility and dc magnetization measurements. It is found that critical current density and irreversibility field of MgB{sub 2} have been significantly improved by doping C and Ti concurrently, sharply contrasted to the situation of C-only-doped or Ti-only-doped MgB{sub 2} samples. AC susceptibility measurement reveals that the dependence of the pinning potential on the dc applied field of Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} has been determined to be U(B{sub dc}){proportional_to}B{sub dc}{sup -1} compared to that of MgB{sub 2}U(B{sub dc}){proportional_to}B{sub dc}{sup -1.5}. As to the U(J) behavior, a relationship of U(J) {proportional_to} J{sup -0.17} is found fitting well for Mg{sub 0.95}Ti{sub 0.05}B{sub 1.95}C{sub 0.05} with respect to U(J) {proportional_to} J{sup -0.21} for MgB{sub 2}. All the results reveal a strong enhancement of the high field pinning potential in C and Ti co-doped MgB{sub 2}.

  14. Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates

    International Nuclear Information System (INIS)

    Zhao, Juan; Jiang, Feng; Jian, Haigen; Wen, Kang; Jiang, Long; Chen, Xiaobo

    2010-01-01

    Al-Mg-Sc alloy plates were welded by FSW and TIG welding. The effect of welding processes on mechanical properties of Al-Mg-Sc welded joints was analyzed based on optical microscopy, transmission electron microscopy, tensile testing and Vickers microhardness measurements. The results show that the mechanical properties of FSW welded joint are much better than those of TIG welded joint; the strength coefficient of FSW joint is up to 94%. Moreover, tensile strength and yield strength of FSW joint are 19% and 31% higher than those of TIG joint, respectively, which are attributed to the preservation of cold working microstructures in the process of FSW. Due to the low welding temperature during FSW process and the excellent thermal stability of Al 3 (Sc, Zr) particles, the cold working microstructures can be well preserved. In addition, the FSW joint have asymmetric microstructures and mechanical properties, which are not observed in TIG welded joint.

  15. Separation of DR synthesized Ti-Mg Alloy by dissolution of waste by-products in acid media

    CSIR Research Space (South Africa)

    Mushove, T

    2010-06-01

    Full Text Available Of DR Synthesized Ti-Mg Alloy By Dissolution Of Waste By-Products In Acid Media. The dissolution experiments were done in a Julabo SW23 waterbath shaker, with 300 ml flasks. Acid solution of predetermined molarity was charged into a flask and heated... of the diffraction peaks of Mg and TiO2. The reduction of TiO2 at 32hrs of milling was evaluated from Equation 6.2 to be 90.4% (4). Calculated proportions of products, and the respective masses from a 2g sample, are shown in Table 1. Constituent TiO2 Ti-Mg Mg...

  16. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ramli, A.T.; Saleh, M.A.; Saripan, M.I.; Alzimami, K.; Min Ung, Ngie

    2013-01-01

    New glasses Li 2 CO 3 –K 2 CO 3 –H 3 BO 3 (LKB) co-doped with CuO and MgO, or with TiO 2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5–4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on 60 Co dose is linear in the range of 1–1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. - Highlights: • Enhancement of about three times has been shown with the increment of MgO. • A comparison was carried out between the TL responses of the prepared dosimeters and TLD-100. • The prepared dosimeters show simple glow curve, low Z material and excellent reproducibility. • The TL measurements show a linear dose response in a long span of exposures. • The electron response shows 1.18 times greater than photon response for the prepared dosimeters

  17. Ionic conductivity of the lithium titanium phosphate (Li/sub 1+x/M/sub x/Ti/sub 2-x/(PO/sub 4/)/sub 3/, M=Al, Sc, Y, and La) systems

    International Nuclear Information System (INIS)

    Aono, H.; Sugimoto, E.; Sadaaka, Y.; Imanaka, N.; Adachi, G.Y.

    1989-01-01

    High lithium ionic conductivity was obtained in Li/sub 1+X/M/sub X/Ti/sub 2-X/(PO/sub 4/)/sub 3/ (M=Al, Sc, Y, and La) systems. Lithium titanium phosphate, LiTi/sub 2/(PO/sub 4/)/sub 3/, is composed of both TiO/sub 6/ octahedra and PO/sub 4/ tetrahedra, which are linked by corners to form a three dimensional network, with a space group R3-barC. Some workers have already described that the conductivity increased considerably if Ti/sup 4+/ in LiTi/sub 2/(PO/sub 4/)/sub 3/ was substituted by slightly larger cations such as Ga/sup 3+/(1),Sc/sup 3+/(2), and In/sup 3+/(3,4). These results are similar to each other because of their close ionic radii. In this communication, substitution effects of Ti/sup 4+/ in LiTi/sub 2/(PO/sub 4/)/sub 3/ by various ions (Al/sup 3+/, Sc/sup 3+/, Y/sup 3+/, and La/sup 3+/) on their conductivities are reported

  18. Synergistic effect of Ti and F co-doping on dehydrogenation properties of MgH2 from first-principles calculations

    International Nuclear Information System (INIS)

    Zhang, J.; Huang, Y.N.; Mao, C.; Peng, P.

    2012-01-01

    Highlights: ► The co-incorporation of Ti and F into MgH 2 lattice is energetically favorable. ► The incorporated Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. ► The synergistic effect of Ti and F is superior to that of pure Ti. ► The weakened interactions of Mg–H explain enhanced dehydrogenation properties. - Abstract: The energetic and electronic properties of MgH 2 co-doped with Ti and F are investigated using first-principles calculations based on density functional theory. The calculation results show that incorporation of Ti combined with F atoms into MgH 2 lattice is energetically favorable relative to single incorporation of Ti atom. After dehydrogenation, the co-doped Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. Comparatively, the combined effect of Ti and F in improving the dehydrogenation properties of MgH 2 is superior to that of pure Ti. These results provide a reasonable explanation for experimental observations. Analysis of electronic structures suggests the enhanced dehydrogenation properties of doped MgH 2 can be attributed to the weakened bonding interactions between Mg and H due to foreign species doping.

  19. Influence of elemental diffusion on low temperature formation of MgH2 in TiMn1.3T0.2-Mg (T = 3d-transition elements)

    International Nuclear Information System (INIS)

    Yamamoto, K.; Tanioka, S.; Tsushio, Y.; Shimizu, T.; Morishita, T.; Orimo, S.; Fujii, H.

    1996-01-01

    In order to examine the influence of the elemental diffusion from the host compound into the Mg region on low temperature formation of MgH 2 , we have investigated the hydriding properties and the microstructures of the composite materials TiMn 1.3 T 0.2 -Mg (T = V, Cr, Mn, Fe, Co, Ni and Cu). MgH 2 is formed at 353 K in all composite materials. Of all the substitutions, the amount of MgH 2 is the largest in the case of the Cu substitution, which originates from the existence of the Mg-Mg 2 Cu eutectic formed by Cu diffusion from the host compound TiMn 1.3 Cu 0.2 into the Mg region during the liquid phase sintering. In addition, the hydrogen capacity of TiMn 1.3 Cu 0.2 -Mg (that is TiMn 1.3 Cu 0.1 -(Mg+Mg 2 Cu) after the sintering) easily saturates in comparison with TiMn 1.5 -(Mg+Mg 2 Cu) without Cu diffusion. It is concluded that Cu diffusion promotes the mobility of hydrogen atoms at the complex interface between the host compound and the Mg region. (orig.)

  20. Apparent vanishing of ferroelectricity in nanostructured BiScO3PbTiO3

    OpenAIRE

    Amorín , H; Jiménez , R; Ricote , J; Hungría , T; Castro , A; Algueró , M

    2010-01-01

    Abstract Nanostructured ceramics of high-temperature piezoelectric 0.375BiScO 3 -0.625PbTiO 3 were prepared by spark plasma sintering of nanocrystalline powders obtained by mechanosynthesis. The macroscopic electrical properties were characterized on dense ceramics with decreasing average grain size down to 28 nm. Results indicate that the electric field is screened by the electrically insulating grain boundaries at the nanoscale, which needs to be considered when discussing size effects i...

  1. Influences of Mg Doping on the Electrochemical Performance of TiO2 Nanodots Based Biosensor Electrodes

    Directory of Open Access Journals (Sweden)

    M. S. H. Al-Furjan

    2014-01-01

    Full Text Available Electrochemical biosensors are essential for health monitors to help in diagnosis and detection of diseases. Enzyme adsorptions on biosensor electrodes and direct electron transfer between them have been recognized as key factors to affect biosensor performance. TiO2 has a good protein adsorption ability and facilitates having more enzyme adsorption and better electron transfer. In this work, Mg ions are introduced into TiO2 nanodots in order to further improve electrode performance because Mg ions are considered to have good affinity with proteins or enzymes. Mg doped TiO2 nanodots on Ti substrates were prepared by spin-coating and calcining. The effects of Mg doping on the nanodots morphology and performance of the electrodes were investigated. The density and size of TiO2 nanodots were obviously changed with Mg doping. The sensitivity of 2% Mg doped TiO2 nanodots based biosensor electrode increased to 1377.64 from 897.8 µA mM−1 cm−2 and its KMapp decreases to 0.83 from 1.27 mM, implying that the enzyme achieves higher catalytic efficiency due to better affinity of the enzyme with the Mg doped TiO2. The present work could provide an alternative to improve biosensor performances.

  2. THE EFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Anton, D.; Gray, J.; Price, C.; Lascola, R.

    2011-07-20

    The effects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3} > ScCl{sub 3} > VCl{sub 3} > NiCL{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. X-ray diffraction and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  3. THE AFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Erdy, C.; Gray, J.; Lascola, R.; Anton, D.

    2010-12-16

    In this present work, the affects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3}>ScCl{sub 3}>VCl{sub 3}>NiCl{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. XRD and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  4. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  5. Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion

    International Nuclear Information System (INIS)

    Ma, L.-P.; Kang, X.-D.; Dai, H.-B.; Liang, Y.; Fang, Z.-Z.; Wang, P.-J.; Wang, P.; Cheng, H.-M.

    2009-01-01

    TiF 3 shows a superior catalytic effect over TiCl 3 in improving the hydrogen sorption kinetics of MgH 2 . Combined phase analysis and microstructure characterization suggest that both titanium halide additives react with host MgH 2 in a similar way. However, systematic X-ray photoelectron spectroscopy studies reveal that the incorporated fluorine (F) differs significantly from its analog chlorine (Cl) in terms of bonding state. The asymmetry of F 1s spectra and the sputtering-induced peak shift suggest that, in addition to the Mg-F bond, a new Ti-F-Mg bonding is formed in the TiF 3 -doped MgH 2 . In contrast, only one stable binding state of Cl is identified in the form of MgCl 2 for the TiCl 3 -doped MgH 2 . In combination with the designed experiments, these findings suggest that the generation of active F-containing species may be responsible for the advantage of TiF 3 over TiCl 3 in improving both the absorption and desorption kinetics of MgH 2 . Fundamentally, it emphasizes the functionality of F anion in tuning the activity of compound catalyst

  6. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids

    Science.gov (United States)

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V.; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; żyła, Gaweł

    2016-08-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.

  7. Simple preparation of LiF:Mg,Ti phosphor

    International Nuclear Information System (INIS)

    Moharil, S.V.; Shahare, D.I.; Upaded, S.V.; Deshmukh, B.T.

    1993-01-01

    LiF-TLD 100 is a low-impedance (Z eff = 8.2) tissue equivalent material which is widely used in thermoluminescence (TL) dosimetry of ionizing radiations and personnel monitoring. Mg and Ti have been found to be the major impurities which impart the Tl characteristics. Recipes for the preparation of this phosphor, have not been found to be satisfactory for routine manufacture; there have always been problems associated with reproducibility and even with batch homogeneity. One of the reasons for this is that most procedures start either from readily available LiF or by melting the synthesized LiF, or both. The background impurities in the starting LiF powder can mask the intentional impurities, particularly Ti which has to be doped in rather small concentrations (10 p.p.m.). Melting LiF can again be tricky, as the LiF melt is volatile and highly corrosive. In this letter we report the preparation of LiF: Mg, Ti. The impurities were incorporated during the synthesis of LiF. The phosphor was prepared by heat treatments in ambient air without melting the compound. The characteristics of the prepared phosphors were studied and compared with those of LiF-TLD 100. (author)

  8. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mondol, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Alam, T.; Banerjee, R. [Advanced Materials and Manufacturing Processes Institute and Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203-5017 (United States); Kumar, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chattopadhyay, K., E-mail: kamanio@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2017-02-27

    The paper reports a significant improvement in tensile properties, in particular at 200 °C, of commercial 2219 Al alloy by addition of small amounts of Sc (0.8 wt%) and Mg (0.45 wt%), and employing copper mould suction casting followed by natural ageing and cold rolling. Microstructural examination and measurement of hardness were performed in order to explain the effects of Sc and Mg at each processing step. It is found that the remarkable improvement of room temperature strength occurs due to fine grain size, Al{sub 3}Sc and Al{sub 3}(Sc,Zr) dispersoids, GP zones on {100} and {111} planes, and work hardening. On exposure at 200 °C, the GP zones transform primarily to θ′ precipitates and a few Ω precipitates. Sc and Mg atoms segregate at the θ′/matrix interface, which suppress the coarsening of θ′ precipitates and make them stable at higher temperatures. Thus, the work reports extremely high 0.2% proof stress of 542 MPa at room temperature, 378 MPa at 200 °C and 495 MPa at room temperature after 200 h exposure at 200 °C accompanied by reasonable ductility. Theoretical yield strength is calculated on the basis of the observed microstructure and is found to be in good agreement with the experimentally obtained value.

  9. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy

    International Nuclear Information System (INIS)

    Mondol, S.; Alam, T.; Banerjee, R.; Kumar, S.; Chattopadhyay, K.

    2017-01-01

    The paper reports a significant improvement in tensile properties, in particular at 200 °C, of commercial 2219 Al alloy by addition of small amounts of Sc (0.8 wt%) and Mg (0.45 wt%), and employing copper mould suction casting followed by natural ageing and cold rolling. Microstructural examination and measurement of hardness were performed in order to explain the effects of Sc and Mg at each processing step. It is found that the remarkable improvement of room temperature strength occurs due to fine grain size, Al 3 Sc and Al 3 (Sc,Zr) dispersoids, GP zones on {100} and {111} planes, and work hardening. On exposure at 200 °C, the GP zones transform primarily to θ′ precipitates and a few Ω precipitates. Sc and Mg atoms segregate at the θ′/matrix interface, which suppress the coarsening of θ′ precipitates and make them stable at higher temperatures. Thus, the work reports extremely high 0.2% proof stress of 542 MPa at room temperature, 378 MPa at 200 °C and 495 MPa at room temperature after 200 h exposure at 200 °C accompanied by reasonable ductility. Theoretical yield strength is calculated on the basis of the observed microstructure and is found to be in good agreement with the experimentally obtained value.

  10. Influence of small additions of Sc and Zr on structure and mechanical properties of Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Kajgorodova, L.I.; Sel'nikhina, E.I.; Tkachenko, E.A.; Senatorova, O.G.

    1996-01-01

    A study was made into Sc and Zr addition effects on grain structure formation, supersaturated solid solution decomposition and mechanical properties of Al-7%Zn-2%Mg-1.2%Cu alloy. It is shown that grain structure is determined by volume fraction and distribution character of disperse particles of Al 3 Sc and Al 3 (Sc 1-x Zr x ). The reason for additives influence on decomposition kinetics during natural and artificial ageing are revealed. The structural factors responsible for the enhancement of mechanical properties on alloying are discussed. 17 refs.; 5 figs.; 2 tabs

  11. Development of Ti-sheathed MgB2 wires with high critical current density

    International Nuclear Information System (INIS)

    Liang, G; Fang, H; Hanna, M; Yen, F; Lv, B; Alessandrini, M; Keith, S; Hoyt, C; Tang, Z; Salama, K

    2006-01-01

    Working towards developing lightweight superconducting magnets for future space and other applications, we have successfully fabricated mono-core Ti-sheathed MgB 2 wires by the powder-in-tube method. The wires were characterized by magnetization, electrical resistivity, x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry measurements. The results indicate that the Ti sheath does not react with the magnesium and boron, and the present wire rolling process can produce MgB 2 wires with a superconducting volume fraction of at least 64% in the core. Using the Bean model, it was found that at 5 K, the magnetic critical current densities, J c , measured in magnetic fields of 0, 5, and 8 T are about 4.2 x 10 5 , 3.6 x 10 4 , and 1.4 x 10 4 A cm -2 , respectively. At 20 K and 0 T, the magnetic J c is about 2.4 x 10 5 A cm -2 . These results show that at zero and low fields, the values of the magnetic J c for Ti-sheathed MgB 2 wires are comparable with the best results available for the Fe-sheathed MgB 2 wires. At high fields, however, the J c for Ti-sheathed MgB 2 wires appears higher than that for the Fe-sheathed MgB 2 wires

  12. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling

    International Nuclear Information System (INIS)

    Cao, Zhijie; Ouyang, Liuzhang; Wu, Yuyu; Wang, Hui; Liu, Jiangwen; Fang, Fang; Sun, Dalin; Zhang, Qingan; Zhu, Min

    2015-01-01

    Highlights: • Mg 85 In 5 Al 5 Ti 5 alloy catalyzed with in-situ formed MgF 2 was prepared by P-milling. • Reaction mechanism of Mg 85 In 5 Al 5 Ti 5 alloy was presented. • Further destabilization of Mg was realized (65.2 kJ/mol H 2 ). • Dual tuning of the thermodynamic and kinetic properties of MgH 2 was realized. - Abstract: The dehydrogenation enthalpy change of MgH 2 by reversibly forming an Mg 0.95 In 0.05 solid solution offers a new method for tuning the thermodynamics of Mg-based alloys. In order to further lower the stability of MgH 2 , Al has been introduced into Mg(In) solid solution. At the same time, to solve the problem of sluggish kinetic properties of Mg–In solid–solution systems and to lower the dehydrogenation activation energy, Ti has also been added. It has been demonstrated that the Mg 85 In 5 Al 5 Ti 5 alloy synthesized by plasma milling (P-milling) shows both enhanced dehydriding thermodynamics and kinetics. This technique could be used to synthesize Mg(In, Al) ternary solid solution incorporating the Ti catalyst in only one step, making it much more efficient than the two-step method. Compared with Mg-based solid solutions, the addition of Ti and in-situ synthesized MgF 2 improved the kinetics and the introduction of In as well as Al imparted enhanced thermodynamics to the Mg 85 In 5 Al 5 Ti 5 system. The dehydrogenation enthalpy change and activation energy were lowered to 65.2 kJ/(mol H 2 ) and 125.2 kJ/mol, respectively, for the Mg 85 In 5 Al 5 Ti 5 alloy

  13. Ionic conductivity of Ca and Mg doped NdGdZr1.95Sc0.05O7

    International Nuclear Information System (INIS)

    Anithakumari, P.; Mandal, B.P.; Grover, V.; Tyagi, A.K.; Mishra, A.K.

    2014-01-01

    The ionic conductivity of pyrochlore based materials makes them promising candidates for fuel-cell applications where high ionic conductivity and low activation energy are desired. Earlier it has been reported that 5%Sc doped GdNdZr 2 O 7 shows highest ionic conductivity. In this present work, an attempt has been made to further increase the oxygen vacancy concentration by the incorporation of Ca 2+ and Mg 2+ ions at A site of NdGdZr 1.95 Sc 0.05 O 7 (NGZS)

  14. Radiolabeling of DOTATOC with the long-lived positron emitter {sup 44}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Pruszynski, Marek; Majkowska-Pilip, Agnieszka [Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa (Poland); Loktionova, Natalia S.; Eppard, Elisabeth [Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Roesch, Frank, E-mail: frank.roesch@uni-mainz.de [Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany)

    2012-06-15

    The positron-emitting radionuclide {sup 44}Sc with a half-life of 3.97 h and a {beta}{sup +} branching of 94.3% is of potential interest for clinical PET. As so far it is available from a {sup 44}Ti/{sup 44}Sc generator in Mainz, where long-lived {sup 44}Ti decays to no-carrier-added (nca) {sup 44}Sc. The {sup 44}Sc is a trivalent metal cation and should be suitable for complexation with many well established bifunctional chelators conjugated to peptides or other molecular targeting vectors. Thus, the aim of this work was to investigate the potential of {sup 44}Sc for labeling of DOTA-conjugated peptides. DOTA-D-Phe{sup 1}-Tyr{sup 3}-octreotide (DOTATOC) was used as a model molecule to study and optimize labeling procedure. Reaction parameters such as buffer conditions, concentration of peptide, pH range, reaction temperature and time were optimized. Addition of 21 nmol of DOTATOC to {sup 44}Sc in ammonium acetate buffer pH 4.0 provided labeling yields >98% within 25 min of heating in an oil-bath at 95 Degree-Sign C. This time can be reduced to 3 min only by applying microwave supported heating. {sup 44}Sc-DOTATOC was found to be stable in 0.9% NaCl, PBS pH 7.4, fetal calf and human serums, and also in the presence of competing metal cations (Fe{sup 3+}, Ca{sup 2+}, Cu{sup 2+}, Mg{sup 2+}), as well as other ligand competitors, like EDTA and DTPA, even after almost 25 h incubation at 37 Degree-Sign C. Present study shows that nca {sup 44}Sc forms stable complexes with the macrocyclic ligand DOTA and that {sup 44}Sc-DOTATOC and analog targeting vectors may be synthesized for further preclinical and clinical investigations. - Highlights: Black-Right-Pointing-Pointer Labeling of somatostatin analouges with positron emitter {sup 44}Sc was tested. Black-Right-Pointing-Pointer DOTATOC was labeled with {sup 44}Sc isotope. Black-Right-Pointing-Pointer Optimal conditions for {sup 44}Sc-DOTATOC synthesis were found. Black-Right-Pointing-Pointer Stability of {sup 44}Sc

  15. A simple dissolved metals mixing method to produce high-purity MgTiO3 nanocrystals

    International Nuclear Information System (INIS)

    Pratapa, Suminar; Baqiya, Malik A.; Istianah,; Lestari, Rina; Angela, Riyan

    2014-01-01

    A simple dissolved metals mixing method has been effectively used to produce high-purity MgTiO 3 (MT) nanocrystals. The method involves the mixing of independently dissolved magnesium and titanium metal powders in hydrochloric acid followed by calcination. The phase purity and nanocrystallinity were determined by making use of laboratory x-ray diffraction data, to which Rietveld-based analyses were performed. Results showed that the method yielded only one type magnesium titanate powders, i.e. MgTiO 3 , with no Mg 2 TiO 4 or MgTi 2 O 5 phases. The presence of residual rutile or periclase was controlled by adding excessive Mg up to 5% (mol) in the stoichiometric mixing. The method also resulted in MT nanocrystals with estimated average crystallite size of 76±2 nm after calcination at 600°C and 150±4 nm (at 800°C). A transmission electron micrograph confirmed the formation of the nanocrystallites

  16. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy

    International Nuclear Information System (INIS)

    He, L.Z.; Li, X.H.; Liu, X.T.; Wang, X.J.; Zhang, H.T.; Cui, J.Z.

    2010-01-01

    Research highlights: These new type alloys are very potential for increased use in aerospace and automobile industries. However, most of published reports have focused on the effects of Cu, Sc, Zr, Ag, rare metals and Si additions, Portevin-LeChatelier effect, corrosion properties, friction stir welding and superplasticity in 5000-series aluminum alloy, few investigated on Er and stepped homogenization on the precipitation of dispersoids in Al-Mg-Mn alloy. The purpose of this work was to study the effects of Er and homogenization treatment on mechanical properties and microstructural evolution in new type Al-Mg-Mn-Er alloy. - Abstract: Microstructural evolutions and mechanical properties of Al-Mg-Mn-Zr-Ti-Er alloy after homogenization were investigated in detail by optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), energy dispersive spectrum (EDS) and tensile test. A maximum tensile strength is obtained when the alloy homogenized at 510 deg. C for 16 h. With increasing preheating temperature (200-400 deg. C), the strength of the alloy finial homogenized at 490 deg. C for 16 h increases. When the preheating temperature is ≥300 deg. C, the strengths of the two-step homogenized alloys are higher than those of the single homogenized alloys. The preheating stage plays an important role in the microstructures and properties of the final homogenized alloy. Many fine (Mn,Fe)Al 6 precipitates when the preheating temperature is 400 deg. C. ErAl 3 phase cannot be observed during preheating stage. Plenty of fine (Mn,Fe)Al 6 and ErAl 3 precipitate in finial homogenized alloy when the preheating temperature is ≥300 deg. C. The Al-Mg-Mn-Zr-Ti-Er alloy is effectively strengthened by substructure and dispersoids of (Mn,Fe)Al 6 and ErAl 3 .

  17. The Effect of Toluene Solution on the Hydrogen Absorption of the Mg-Ti Alloy Prepared by Synthetic Alloying

    Directory of Open Access Journals (Sweden)

    H. Suwarno

    2009-07-01

    Full Text Available The synthesis and characterization of the Mg–Ti alloy have been carried out through a mechanical alloying technique under toluene solution. The Mg and Ti powders are milled for 10, 20, and 30 h in a high energy ball mill. The milled alloys are then hydrided at a temperature of 300 oC in order to investigate the possibility used for hydrogen storage materials. The refinement analyses of the x-ray diffraction patterns show that mechanical alloying of the Mg–Ti powders under toluene solution results in the formation of the TiH2 and Mg2Ti phases. Quantitative analyses indicate that the mass fractions of the TiH2 and Mg2Ti phases are 62.90 % and 30.60 %, while the value for Mg and Ti amount to 2.6 wt% and 1.25 wt%. On hydriding at a temperature of 300 oC, the milled powders are transformed into Mg2TiH4, TiH2 and γ-MgH2 phases with the mass fractions of 25.48 wt%, 64.0 wt%, and 10.52 wt%, respectively. Microstructure analyses show that before milling the shape of particle is mostly a ball shape, after 30 h of milling the shape of particles changes into polygonal shape, and upon hydriding the shape of particles changes from a polygonal shape into an irregular one. The final composition of the specimen after hydriding exhibits that Mg-Ti alloy can be promoted as a hydrogen storage material.

  18. Microstructures and Dehydrogenation Properties of Ball-milled MgH2-K2Ti6O13-Ni Composite Systems

    Directory of Open Access Journals (Sweden)

    ZHANG Jian

    2016-11-01

    Full Text Available The K2Ti6O13 whisker separate-doped and K2Ti6O13 whisker and Ni powder multi-doped MgH2 hydrogen storage composite systems were prepared by mechanical milling method. The microstructures and dehydrogenation properties of the prepared samples were characterized by some testing methods such as X-ray diffraction (XRD, scanning electron microscope (SEM and differential scanning calorimeter (DSC. The results show that the K2Ti6O13 whisker not only plays the roles in refining the MgH2 crystalline grain, but also inhibit the agglomeration of MgH2 particles in K2Ti6O13 whisker separate-doped system, which results in the decreased dehydrogenation temperature of MgH2 matrix. When the mass ratio of K2Ti6O13 to MgH2 is 3:7, the improvement effect on dehydrogenation properties of MgH2 is the most remarkable. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker separate-doped system is decreased by nearly 75℃. For K2Ti6O13 whisker and Ni powder multi-dopedsystem, the dehydrogenation temperature of MgH2 matrix is further decreased compared to K2Ti6O13 whisker separate-doped one due to the dual effects of refined MgH2 crystalline grain by K2Ti6O13 whisker and destabilized MgH2 lattice by Ni solution. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker and Ni powder multi-doped system is decreased by nearly 87℃.

  19. Effects of minor Zr and Sr on as-cast microstructure and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc (wt.%) magnesium alloy

    International Nuclear Information System (INIS)

    Pan Fusheng; Yang Mingbo; Shen Jia; Wu Lu

    2011-01-01

    Research highlights: → Minor Zr and/or Sr additions can effectively refine the grains of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the tensile properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. → Minor Zr and/or Sr additions can improve the creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. - Abstract: The effects of minor Zr and Sr on the as-cast microstructure and mechanical properties of the Mg-3Ce-1.2Mn-0.9Sc (wt.%) alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding minor Zr and/or Sr to the Mg-3Ce-1.2Mn-0.9Sc alloy does not cause an obvious change in the morphology and distribution of the Mg 12 Ce phase. However, the grains of the Zr and/or Sr-containing alloys are effectively refined. Among the Zr and/or Sr-containing alloys, the grains of the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr are the finest, followed by the alloys with the additions of 0.5 wt.%Zr and 0.1 wt.%Sr, respectively. In addition, small additions of Zr and/or Sr can improve the tensile and creep properties of the Mg-3Ce-1.2Mn-0.9Sc alloy. Among the Zr and/or Sr-containing alloys, the alloy with the addition of 0.5 wt.%Zr + 0.1 wt.%Sr obtains the optimum tensile and creep properties.

  20. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Khaled; Abdelkarim, Omar; Srasra, Ezzeddine [Centre National des Recherches en Sciences des Matériaux (CNRSM), Soliman (Turkey); Frini-Srasra, Najoua [Faculté des Sciences de Tunis (FST), Tunis (Turkey)

    2015-01-15

    Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al{sup 3+}/Ti{sup 4+} ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N{sub 2} adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti{sup 4+}/(Ti{sup 4+}+ Al{sup 3+})>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 .deg. C.

  1. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique.

    Science.gov (United States)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-10-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca10-xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1-x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. © 2013.

  2. EDX and ion beam treatment studies of filamentary in situ MgB2 wires with Ti barrier

    International Nuclear Information System (INIS)

    Rosova, A.; Kovac, P.; Husek, I.; Kopera, L.

    2011-01-01

    Highlights: → SiC-doped MgB 2 wires with Ti barrier showed good Jc in magnetic field. → Explanation why the Ti barrier fits to SiC-doped MgB 2 filaments. → Ti barrier getters Si from SiC-doped filaments and improve their properties. → Si accumulated in an inner layer of Ti barrier protects filaments from Cu diffusion. → Ion beam treatment helps to discover microstructure of complicated systems. - Abstract: In situ SiC-doped filamentary MgB 2 wires (with the diameter of 0.860 and 0.375 mm) with Cu stabilization separated by Ti barrier layers supported by outer SS sheath and annealed at 800 deg. C/0.5 h have been studied by combination of EDX analysis and ion beam selective etching. It was found that several Ti-Cu inter-metallic compounds were created by Cu-Ti interdiffusion and thus the barrier protection against Cu penetration into the superconducting filaments is limited. We showed an advantage of Ti use as the barrier material in our wires. Ti getters silicon out from the superconducting filament, what purges superconducting MgB 2 from Si and creates an additional Si-rich layer in inner part of Ti barrier which prevents Cu diffusion more effectively.

  3. Influence of SrTiO3 modification on dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics at microwave frequency

    International Nuclear Information System (INIS)

    Tseng, Ching-Fang; Lu, Shu-Cheng

    2013-01-01

    Highlights: ► The microwave dielectric properties of (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 system have been discussed. ► The dielectric constant and τ f increased; nevertheless, the Q × f decreased with an increase in x. ► Second phases were formed and affected the microwave dielectric properties of (1−x)MZT–xST system. ► ε r of 20.8, Q × f of 257,000, and τ f of 0.2 ppm/°C were obtained for the 0.06Mg(Zr 0.05 Ti 0.95 )O 3 –0.04SrTiO 3 ceramics. ► Due to high-quality factor and near-zero τ f , MZT–ST demonstrate a good potential for use in microwave devices. -- Abstract: The microwave dielectric properties and microstructures were investigated in the (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 (hereafter referred to as (1−x)MZT–xST) system. The compounds were prepared via the conventional solid-state reaction. Compositions in the (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 system were designed to compensate the negative temperature coefficient of the resonant frequency of Mg(Zr 0.05 Ti 0.95 )O 3 . The values displayed nonmonotonic mixture-like behavior, because the TiO 2 phase was formed in the MZT composite ceramics with increasing x. A close zero τ f of 0.2 ppm/°C could be achieved at 0.96MZT–0.04ST with ε r = 20.8 and Q × f = 257,000 GHz

  4. Influences of Ti4+ and Mg2+ substitutions on the properties of lithium ferrites

    International Nuclear Information System (INIS)

    Su Hua; Zhang Huaiwu; Tang Xiaoli; Liu Baoyuan

    2009-01-01

    The Ti 4+ and Mg 2+ co-substituted lithium ferrites with different compositions of Zn 0.1 Li 0.45 Mn 0.1 Fe 2.35-2x (TiMg) x O 4 (x=0.0-0.5) were prepared by the ceramic standard processing. The magnetic properties and microstructure of the samples were investigated. A single phase spinel structure was confirmed by XRD in substituting range. Sintering densities continuously decreased with the increase at x value, which was attributed to the fact that the heavier Fe 3+ ions were replaced by the relatively lighter Ti 4+ and Mg 2+ ions. However, relative density of the samples had no obvious relationship with the substituting value. Saturation magnetization continuously decreased with x value, which was attributed to the decrease of resultant magnetic moment between A and B sub-lattice. Remanence decreased monotonously with x value due to the decrease of saturation magnetization and magnetocrystalline anisotropy constant. But the effect of Ti 4+ and Mg 2+ substitutions on the Br/Bs ratio values was not obvious. Coercive force was mainly determined by the microstructure and magnetocrystalline anisotropy constant of the ferrites. In this research, with the increase of Ti 4+ and Mg 2+ substitutions, the advantageous influence by the decrease of magnetocrystalline anisotropy constant was more significant than the disadvantageous influence caused by the increase of closed pores. As a result, coercive force of the ferrites also decreased monotonously with the increase at x value.

  5. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB2

    International Nuclear Information System (INIS)

    Zhao, Y.; Ke, C.; Cheng, C.H.; Feng, Y.; Yang, Y.; Munroe, P.

    2010-01-01

    Nano-diamond and titanium concurrently doped MgB 2 nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J c -H behavior and pinning force scaling features of MgB 2 have been investigated. Although T c was slightly depressed, J c of MgB 2 have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J c value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB 2 , a unique nanocomposite in which TiB 2 forms a thin layer surrounding MgB 2 grains whereas nano-diamond particles were wrapped inside the MgB 2 grains. Besides, nano-diamond doping results in a high density stress field in the MgB 2 samples, which may take responsibility for the Δκ pinning behavior in the carbon-doped MgB 2 system.

  6. Toxicity, tissue distribution and excretion of 46ScCl3 and 46Sc-EDTA in mice

    International Nuclear Information System (INIS)

    Lachine, E.E.; Noujaim, A.A.; Ediss, C.; Wiebe, L.I.

    1976-01-01

    The acute toxicity, differential distribution in tissue, and elimination of ScCl 3 , 46 ScCl 3 , Sc-EDTA and 46 Sc-EDTA, in mice, has been investigated. The LD 50 sup(24hr) doses for ScCl 3 were 440 and 24 mg kg -1 respectively after intraperitioneal and intravenous injection, and 720 and 108 mg kg -1 respectively for Sc-EDTA. 46 ScCl 3 was extensively deposited in the liver and the spleen. 46 Sc-EDTA was rapidly taken up by the kidney with subsequent elimation via the urine. While-body desaturation kinetics for 46 Sc-EDTA were found to fit a three compartmental model. The fast elimination phase (T1/2 = 12.75 min; K = 0.05540 min -1 ) accounted for 74.6% of the dose; the intermediate phase (T1/2 = 40.2 min; K = 0.01722 min -1 ) for 21.8%, and the slow (T1/2 = 5351 min; K = 0.00013 min -1 ) for 3.6% of the dose. (author)

  7. Multiphase nanodomains in a strained BaTiO3 film on a GdScO3 substrate

    Science.gov (United States)

    Kobayashi, Shunsuke; Inoue, Kazutoshi; Kato, Takeharu; Ikuhara, Yuichi; Yamamoto, Takahisa

    2018-02-01

    Controlling the crystal structure of ferroelectric materials via epitaxial strain, which is a well-known technique in strain engineering, can lead to the formation of unique domain structures generating non-intrinsic phenomena such as electronic conductivity, photovoltages, and enhanced piezoelectric characteristics. Strained BaTiO3 films are promising ferroelectric materials as theoretical modeling predicts that different domain morphologies can introduce additional properties not observed in conventional BaTiO3 ceramics. To rationally design materials for practical application, a thorough understanding of the formation mechanisms and stabilities of different domain structures in strained BaTiO3 films is required. However, there have been very few experimental reports on this topic, and details about the domain structures in strained BaTiO3 films are currently lacking. In this paper, we report multiphase nanodomains in a strained BaTiO3 film deposited on an orthorhombic GdScO3 substrate. The phase-transition behavior of the strained BaTiO3 film reveals that it contains multiple phases at room temperature; the film first undergoes a phase-transition upon heating at around 550 K, and then a paraelectric phase forms at temperatures above 690 K. A picometer-scale analysis of the Ti ion displacements, using an advanced scanning transmission electron microscopy technique, is used to characterize the complex multiphase nanodomains, providing useful insights into the control of domain structures in BaTiO3 films by applying epitaxial strain.

  8. Phototransfered thermoluminescence for dose reassessment in LiF:mg,ti , LiF: mg,Cu,p TL detectors

    International Nuclear Information System (INIS)

    Rodriguez Otazo, M.; Baly, L.

    2001-01-01

    Phototransfered Thermoluminescence (PTTL) from LiF:Mg,Ti (TLD-100) and LiF: Mg,Cu,P (GR-200) was studied at different conditions using different sources of UV light for dose reassessment purposes. The TL dosimeters were irradiated with 137Cs in the range 2 mGy to 100 mGy. The convenience of using PTTL for dose reassessment was analyzed

  9. Microwave dielectric properties of low-fired Li_2TiO_3–MgO ceramics for LTCC applications

    International Nuclear Information System (INIS)

    Ma, Jian-Li; Fu, Zhi-Fen; Liu, Peng; Wang, Bing; Li, Yang

    2016-01-01

    Graphical abstract: This figure gives the Q × f and τ_f of Li_2TiO_3–MgO ceramics sintered at various temperatures with different LiF contents. Addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of Li_2TiO_3–MgO ceramics. The excellent microwave dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) of Li_2TiO_3–MgO ceramics sintered at 850 °C illustrated that LiF is a simple effective sintering aids for Li_2TiO_3–MgO ceramics. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications. - Highlights: • Temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. • The low-fired Li_2TiO_3–MgO ceramics are fabricated. • LiF liquid phase reduced sintering temperature of Li_2TiO_3–MgO ceramics to 850 °C. • The low-fired Li_2TiO_3–MgO ceramics possess well microwave dielectric properties. • The sample was compatible with Ag electrodes and suitable for LTCC applications. - Abstract: We fabricated the low-fired Li_2TiO_3–MgO ceramics doped with LiF by a conventional solid-state route, and investigated systematically their sintering characteristics, microstructures and microwave dielectric properties. The results showed that temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. Well microwave dielectric properties for Li_2TiO_3–13 wt%MgO (LTM) ceramics with ε_r = 16.4, Q × f = 87,500 GHz, and τ_f = −1.2 ppm/°C were obtained at 1325 °C. Furthermore, addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of LTM ceramics. A typically sample of LTM-4 wt%LiF ceramics with optimum dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) were achieved at 850 °C for 4 h. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications.

  10. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Oelmez, Rabia; Cakmak, Guelhan; Oeztuerk, Tayfur [Dept. of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-11-15

    A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comprising the equilibrium phases, was then pulverized and screened for hydrogen storage compositions. X-ray diffraction was used as a screening tool, the sample having been examined both in the as processed and the hydrogenated state. The method was successfully applied to Mg-Ni and Mg-Ni-Ti yielding the well known Mg{sub 2}Ni as the storage composition. It is concluded that a partitioning of the alloy system into regions of similar solidus temperature would be required to encompass the full spectrum of equilibrium phases. (author)

  11. Interaction of different poisons with MgCl{sub 2}/TiCl{sub 4} based Ziegler-Natta catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bahri-Laleh, Naeimeh, E-mail: n.bahri@ippi.ac.ir

    2016-08-30

    Highlights: • The interactions between different classes of poison molecules and TiCl{sub 4}/MgCl{sub 2} type Ziegler-Natta catalyst is considered. • Poisons strongly stabilize MgCl{sub 2} crystal surfaces, mostly Ti active center relative to the unpoisoned solid. • Poison molecules decrease catalyst activity by increasing E{sub TS} in olefin polymerization. • Poison molecules do not have significant effect in stereospecifity of ZN catalysts in propylene polymerization. - Abstract: Adsorption of different poison molecules on activated MgCl{sub 2} is investigated within DFT using a cluster model of the MgCl{sub 2} surface with (MgCl{sub 2}){sub 16} formula containing four 4-coordinated and eight 5-coordinated Mg atoms as (110) and (104) surfaces, respectively. Studied poison molecules are chosen as possible impurities in hydrocarbon solvents and monomer feeds and contain water, hydrogensulfide, carbondioxide, molecular oxygen and methanol. First, adsorption of 1–4 molecules of different poisons to the (104) and (110) lateral cuts of MgCl{sub 2}, as well as their adsorption on [MgCl{sub 2}]/TiCl{sub 2}Et active center and AlEt{sub 3} cocatalyst is considered. Results reveal that poisons strongly stabilize both crystal surfaces, mostly Ti active center relative to the unpoisoned solid. Second, energy barrier (E{sub TS}) for ethylene insertion in the presence of different poisons located on the first and second Mg atom relative to the active Ti is calculated. While poison molecule located on the second Mg does not change E{sub TS}, coordination of it into the first Mg atom increases E{sub TS} by 0.9–1.2 kcal mol{sup −1}. In the last part of this manuscript, the stereoselective behavior of active Ti species, with and without poison molecules and external electron donor, is fully explored.

  12. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    Science.gov (United States)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  13. Superior catalytic effect of TiF{sub 3} over TiCl{sub 3} in improving the hydrogen sorption kinetics of MgH{sub 2}: Catalytic role of fluorine anion

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.-P.; Kang, X.-D.; Dai, H.-B.; Liang, Y.; Fang, Z.-Z.; Wang, P.-J. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, P. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)], E-mail: pingwang@imr.ac.cn; Cheng, H.-M. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2009-04-15

    TiF{sub 3} shows a superior catalytic effect over TiCl{sub 3} in improving the hydrogen sorption kinetics of MgH{sub 2}. Combined phase analysis and microstructure characterization suggest that both titanium halide additives react with host MgH{sub 2} in a similar way. However, systematic X-ray photoelectron spectroscopy studies reveal that the incorporated fluorine (F) differs significantly from its analog chlorine (Cl) in terms of bonding state. The asymmetry of F 1s spectra and the sputtering-induced peak shift suggest that, in addition to the Mg-F bond, a new Ti-F-Mg bonding is formed in the TiF{sub 3}-doped MgH{sub 2}. In contrast, only one stable binding state of Cl is identified in the form of MgCl{sub 2} for the TiCl{sub 3}-doped MgH{sub 2}. In combination with the designed experiments, these findings suggest that the generation of active F-containing species may be responsible for the advantage of TiF{sub 3} over TiCl{sub 3} in improving both the absorption and desorption kinetics of MgH{sub 2}. Fundamentally, it emphasizes the functionality of F anion in tuning the activity of compound catalyst.

  14. Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass

    International Nuclear Information System (INIS)

    Shin, Hyunho; Shin, Hee-Kyun; Jung, Hyun Suk; Cho, Seo-Yong; Hong, Kug Sun

    2005-01-01

    Phase evolution, densification, and dielectric properties of MgTi 2 O 5 dielectric ceramic, sintered with lithium borosilicate (LBS) glass, were studied. Reaction between LBS glass and MgTi 2 O 5 was significant in forming secondary phases such as TiO 2 and (Mg,Ti) 2 (BO 3 )O. The glass addition was not necessarily deleterious to the dielectric properties due to the formation of TiO 2 : permittivity increased and temperature coefficient of resonance frequency could be tuned to zero with the addition of LBS glass, although the inevitable glass-induced decrease of quality factor was not retarded by the formation of TiO 2 . The sintered specimen with 10 wt% LBS fired at 950 deg. C for 2 h showed permittivity of 19.3, quality factor of 6800 GHz, and τ f of -16 ppm/ deg. C

  15. Investigation of structural and optical properties of CaTiO3 powders doped with Mg2+ and Eu3+ ions

    International Nuclear Information System (INIS)

    Oliveira, Larissa H.; Savioli, Julia; Moura, Ana P. de; Nogueira, Içamira C.; Li, Maximo S.; Longo, Elson; Varela, José A.; Rosa, Ieda L.V.

    2015-01-01

    In this work, CaTiO 3 powders doped with Mg 2+ ions and CaTiO 3 powders co-doped with Mg 2+ and Eu 3+ ions were prepared by the polymeric precursor method (PPM). These powders were characterized by different characterization techniques to study the influence of Mg 2+ doping as well as Mg 2+ and Eu 3+ co-doping in structural and optical properties of CaTiO 3 perovskite-type structure. The Rietveld refinement and Micro-Raman analyses suggested the substitution Mg 2+ and Eu 3+ ions in the A-site of CaTiO 3 perovskite. The influence of Mg 2+ doping can be detected by the displacement of calcium and oxygen atomic positions when compared to the non-doped CaTiO 3 powder. When Eu 3+ ions are added to the A-site of this perovskite the excess of positive charge can be compensated by the formation of calcium vacancies. Luminescence data showed that Ca 1-x Mg x TiO 3 and Ca 1x Mg x/2 Eu 2y/3 TiO 3 powders are potential materials for fabrication of lighting devices based on near-UV and blue LED using an excitation wavelength of 397 and/or 450 nm. - Highlights: • CaTiO 3 co-doped with Mg 2+ and Eu 3+ were obtained by the Polymeric Precursor Method. • Incorporation of Mg 2+ and Eu 3+ ions in the CaTiO 3 lattice. • Enhancement of the Eu 3+ photoluminescence

  16. MgTiO3 filled PTFE composites for microwave substrate applications

    International Nuclear Information System (INIS)

    Yuan, Y.; Zhang, S.R.; Zhou, X.H.; Li, E.Z.

    2013-01-01

    MgTiO 3 filled PTFE composite substrates were fabricated for microwave circuit applications. The filler content in the PTFE matrix was varied from 30 to 70 wt%. Low loss MgTiO 3 ceramic powder was prepared by the solid state ceramic route. The phase formation of MgTiO 3 was studied by powder X-ray diffraction analysis. Morphology of the composites and dispersion of filler in the PTFE matrix was studied using scanning electron microscopy. Microwave dielectric properties of the composites with respect to filler loading were measured by stripline resonator method using Vector Network Analyzer. Different theoretical modeling approaches were used to predict the dielectric constant of PTFE ceramic composites with respect to filler loading. The linear coefficient of thermal expansion of the composites was investigated. Moisture absorption of the composites was found out conforming to IPC-TM-650 2.6.2. - Highlights: • We prepare MT/PTFE composite by cold pressing and hot treating. • Increasing MT will increase ε r , tan δ and moisture absorption. • Increasing MT will decrease thermal expansion coefficient. • MT/PTFE composite has an ε r of 4.3 and a tan δ of 0.00097 at 50 wt% filler loading. • MT/PTFE composite are promising candidates for microwave circuit applications

  17. Study of Optically Stimulated Luminescence of LiF:Mg,Ti for beta and gamma dosimetry

    International Nuclear Information System (INIS)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Letícia L.

    2013-01-01

    Modern advances in radiation medicine – radiodiagnosis, radiotherapy and interventional radiography – each present dosimetry challenges for the medical physicist that did not exist previously. In all of these areas a constant balance has to be made between the treatment necessary to destroy the tumor and the unnecessary exposure of healthy tissue. Innovative applications of OSL dosimetry are now appearing in each of these areas to help the medical physicist and oncologist design the most effective, and least deleterious, treatment for their patients. High sensitivity, precise delivery of light, fast readout times, simpler readers and easier automation are the main advantages of OSL in comparison with TLD. This work aimed to study the application of OSL technique using lithium fluoride dosimeters doped with magnesium and titanium (LiF:Mg,Ti) for application in beta and gamma dosimetry. -- Highlights: •Study of Optically Stimulated Luminescence of LiF:Mg,Ti and microLiF:Mg,Ti. •OSL response of TLD-100 dosimeters to beta and gamma radiation. •Analysis of repeatability and lowest levels of detection of detectors LiF:Mg,Ti

  18. Enhanced Mechanical Properties of MgZnCa Bulk Metallic Glass Composites with Ti-Particle Dispersion

    Directory of Open Access Journals (Sweden)

    Pei Chun Wong

    2016-05-01

    Full Text Available Rod samples of Mg60Zn35Ca5 bulk metallic glass composites (BMGCs dispersed with Ti particles have been successfully fabricated via injection casting. The glass forming ability (GFA and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf of Ti particles. The results showed that the compressive ductility increased with Vf. The mechanical performance of these BMGCs, with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature, can be obtained for the Mg-based BMGCs with 50 vol % Ti particles, suggesting that these dispersed Ti particles can absorb the energy of the crack propagations and can induce branches of the primary shear band into multiple secondary shear bands. It follows that further propagation of the shear band is blocked, enhancing the overall plasticity.

  19. Comparison of characteristics of LiF:Mg,Ti e LiF:Mg,Cu,P thermoluminescent dosemeters; Comparacao das caracteristicas dos dosimetros termoluminescentes LiF:Mg,Ti e LiF:Mg,Cu,P

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M.S.; Filipov, D., E-mail: dfilipov@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR/DAFIS), Curitiba, PR (Brazil). Departamento Academicao de Fisica; Schelin, H.R. [Instituto de Pesquisa Pele Pequeno Principe (IPPPP), Curitiba, PR (Brazil)

    2014-07-01

    The aim of the current study was to compare the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (MCP) data, which were acquired by the Federal Technological University - Parana. Tests were realized, for this purpose, such as: sensitivity (only one MCP TLD did not present results within the limit range), linearity (whose MCP result was better than the TLD-100 one), energy dependence (TLD-100 presented lower variation than MCP TLD) and reproducibility (whose TLD-100 results were better than the MCP ones). The results from both dosimeters show that these TLDs attend radiodiagnostic dosimetry criteria, however MCP had more satisfactory results. (author)

  20. Effects of MgO impurities and micro-cracks on the critical current density of Ti-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Liang, G.; Alessandrini, M.; Yen, F.; Hanna, M.; Fang, H.; Hoyt, C.; Lv, B.; Zeng, J.; Salama, K.

    2007-01-01

    Ti-sheathed monocore MgB 2 wires with improved magnetic critical current density (J c ) have been fabricated by in situ powder-in-tube (PIT) method and characterized by magnetization, X-ray diffraction, scanning electron microscopy and electrical resistivity measurements. For the best wire, the magnetic J c values at 5 K and fields of 2 T, 5 T, and 8 T are 4.1 x 10 5 A/cm 2 , 7.8 x 10 4 A/cm 2 , and 1.4 x 10 4 A/cm 2 , respectively. At 20 K and fields of 0.5 T and 3 T, the J c values are about 3.6 x 10 5 A/cm 2 and 3.1 x 10 4 A/cm 2 , respectively, which are much higher than those of the Fe-sheathed mono-core MgB 2 wires fabricated with the same in situ PIT process and under the same fabricating conditions. It appears that the overall J c for the average Ti-sheathed wires is comparable to that of the Fe-sheathed wires. Our X-ray diffraction and scanning electron microscopy analysis indicates that J c in the Ti-sheathed MgB 2 wires can be strongly suppressed by MgO impurities and micro-cracks

  1. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Ke, C. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Feng, Y. [Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xian, Shaanxi 710016 (China); Western Superconductivity Technology Company, Xian (China); Yang, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Munroe, P. [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2010-11-01

    Nano-diamond and titanium concurrently doped MgB{sub 2} nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J{sub c}-H behavior and pinning force scaling features of MgB{sub 2} have been investigated. Although T{sub c} was slightly depressed, J{sub c} of MgB{sub 2} have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J{sub c} value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB{sub 2}, a unique nanocomposite in which TiB{sub 2} forms a thin layer surrounding MgB{sub 2} grains whereas nano-diamond particles were wrapped inside the MgB{sub 2} grains. Besides, nano-diamond doping results in a high density stress field in the MgB{sub 2} samples, which may take responsibility for the {Delta}{kappa} pinning behavior in the carbon-doped MgB{sub 2} system.

  2. Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, a new very complex Ba-Sc phosphate mineral from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia)

    Science.gov (United States)

    Yakovenchuk, Victor N.; Ivanyuk, Gregory Yu.; Pakhomovsky, Yakov A.; Panikorovskii, Taras L.; Britvin, Sergei N.; Krivovichev, Sergey V.; Shilovskikh, Vladimir V.; Bocharov, Vladimir N.

    2018-02-01

    Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, is a new Ba-Sc phosphate from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia). It is orthorhombic, Pnma, a = 11.256(1), b = 8.512(1), c = 27.707(4) Å, V = 2654.6(3) Å3 and Z = 4 (from powder diffraction data) or a = 11.2261(9), b = 8.5039(6), c = 27.699(2) Å, V = 2644.3(3) Å3 (from single-crystal diffraction data). The mineral was found in a void within the calcite-magnetite phoscorite (enriched in hydroxylapatite and Sc-rich baddeleyite) inside the axial zone of the Kovdor phoscorite-carbonatite pipe. Kampelite forms radiated aggregates (up to 1.5 mm in diameter) of platy crystals grown on the surfaces of crystals of quintinite-2 H in close association with pyrite, bobierrite and quintinite-3 R. Kampelite is colourless, with a pearly lustre and a white streak. The cleavage is perfect on {001}, the fracture is smooth. Mohs hardness is about 1. In transmitted light, the mineral is colourless without pleochroism or dispersion. Kampelite is biaxial + (pseudouniaxial), α ≈ β = 1.607(2), γ = 1.612(2) (589 nm), and 2 V calc = 0°. The calculated and measured densities are 3.28 and 3.07(3) g·cm-3, respectively. The mean chemical composition determined by electron microprobe is: MgO 4.79, Al2O3 0.45, P2O5 31.66, K2O 0.34, Sc2O3 16.17, Mn2O3 1.62, Fe2O3 1.38, SrO 3.44, and BaO 29.81 wt%. The H2O content estimated from the crystal-structure refinement is 7.12 wt%, giving a total of 96.51 wt%. The empirical formula calculated on the basis of P = 6 apfu (atoms per formula unit) is (Ba2.62Sr0.45K0.10Ca0.06)Σ3.23Mg1.60Mn0.28(Sc3.15Fe3+ 0.23Al0.12)Σ3.50(PO4)6(OH)2.61·4.01H2O. The simplified formula is Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O. The mineral easily dissolves in 10% cold HCl. The strongest X-ray powder-diffraction lines [listed as d in Å ( I) ( hkl)] are as follows: 15.80(100)(001), 13.86(45)(002), 3.184(18)(223), 3.129(19)(026), 2.756(16)(402), 2.688(24)(10 10). The crystal structure of kampelite was

  3. Superplastic properties of an Al-2.4Mg-1.8Li-0.5Sc alloy

    International Nuclear Information System (INIS)

    Bradley, E.L. III; Morris, J.W. Jr.

    1991-01-01

    This paper reports that there is a need in the aerospace industry for structural, superplastic aluminum alloys that are formable at strain-rates greater than 10 -3 s -1 in order for the economic benefits of superplastic forming to be realized. The standard, structural, superplastic aluminum alloy in the aerospace industry is 7475, which has an optimum forming strain-rate near 10 -4 s -1 . Thus, research has been focused on modifying the microstructures of wrought Al-Li alloys such as 2090 and 8090 into superplastically formable (SPF) microstructures with improved properties, but the results have not been completely successful. Superplastic alloys with high strengths have been produced from the Al-Mg-Sc system. These alloys are strengthened by thermomechanical processing which precipitates small, coherent Al 3 Sc particles and increases the dislocation density of the material. The Mg is in solid solution and improves the work hardening capability of these alloys. Because superplastic forming is carried out at relatively high temperatures, recovery processes eliminate the dislocation strengthening resulting from the rolling and overage the precipitates. Lithium provides the most promising choice since it forms the ordered coherent precipitate δ (Al 3 Li), lowers the density, and increases the stiffness of aluminum alloys

  4. A comparative study of radiation damage in Al2O3, FeTiO3, and MgTiO3

    International Nuclear Information System (INIS)

    Mitchell, J.N.; Yu, Ning; Sickafus, K.E.; Nastasi, M.; Taylor, T.N.; McClellan, K.J.; Nord, G.L. Jr.

    1995-01-01

    Oriented single crystals of synthetic alpha-alumina (α-Al 2 O 3 ), geikielite (MgTiO 3 ) natural ilmenite (FeTiO 3 ) were irradiated with 200 keV argon ions under cryogenic conditions (100 K) to assess their damage response. Using Rutherford backscattering spectrometry combined with ion channeling techniques, it was found that ilmenite amorphized readily at doses below 5x10 14 , alumina amorphized at a dose of 1-2x 15 , and geikielite was amorphized at ∼2x10 15 Ar cm -2 . The radiation damage response of the ilmenite crystal may be complicated by the presence of hematite exsolution lamellae and the experimentally induced oxidation of iron. The relative radiation-resistance of geikielite holds promise for similar behavior in other Mg-Ti oxides

  5. New separation method of no-carrier-added {sup 47}Sc from titanium targets

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, B.; Majkowska, A.; Kasperek, A.; Krajewski, S.; Bilewicz, A. [Institute of Nuclear Chemistry and Technology, Warszawa (Poland). Nuclear Chemistry and Radiochemistry Center

    2012-07-01

    Radionuclides with medium energy beta emission and a several day half-life are attractive candidates for radioimmunotherapy. Among the most promising in this category is {sup 47}Sc produced by fast neutron irradiation (E{sub n} > 1 MeV) of titanium target with high energy neutrons in {sup 47}Ti(n,p){sup 47}Sc nuclear reaction. In the previously reported production scheme the dissolution of the TiO{sub 2} target in hot concentrated H{sub 2}SO{sub 4} and evaporation of the resulting solution were the most time-consuming steps. The present paper describes new, simple and efficient production method of {sup 47}Sc, where the slow dissolution of the target is avoided. After irradiation in fast neutron flux {sup 47}TiO{sub 2} and Li{sub 2}{sup 47}TiF{sub 6} targets were dissolved in HF solutions. Next {sup 47}Sc was separated from the target using anion exchange resin Dowex 1 with 0.4 M HF + 0.06 M HNO{sub 3} solution as eluent. The eluted {sup 47}Sc was adsorbed on cation exchange resin and eluted with 0.5 M of ammonium acetate. The 47Sc separation yield in the proposed procedure is about 90% with the separation time less than 2 h. The obtained no-carrier-added {sup 47}Sc was used to label DOTATATE conjugate with 96% labeling yield. (orig.)

  6. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  7. Biocompatibility of Mg Ion Doped Hydroxyapatite Films on Ti-6Al-4V Surface by Electrochemical Deposition.

    Science.gov (United States)

    Lee, Kang; Choe, Han-Cheol

    2016-02-01

    In this study, we prepared magnesium (Mg) doped nano-phase hydroxyapatite (HAp) films on the TiO2 nano-network surface using electrochemical deposition method. Ti-6Al-4V ELI surface was anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by these anodization steps which acted as templates and anchorage for growth of the Mg doped HAp during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of HAp deposits were influenced by the Mg ion concentration.

  8. A study into the mechanism of thermoluminescence in a LiF:Mg,Ti dosimetry material

    Energy Technology Data Exchange (ETDEWEB)

    Piters, T M

    1993-10-11

    Thermoluminescence (TL) is the phenomenon of light emission from an insulator or semiconductor when it is heated after a previous absorption of energy from ionising radiation. The purpose of the research described in this thesis is to get more insight into the mechanism of TL in LiF:Mg, Ti. In chapter 2 the idea of defect reactions during the readout is introduced as a possible explanation for the dependence of the read-out heating rate on TL. In chapter 3 a mode for the description of the emission band is described. The construction of a TL facility comprising the TL emission spectrometer is described in chapter 4. Chapter 5 gives an estimation for the possible errors that are made in the data analysis due to imperfect heat transfer from heater to sample. In chapter 6 results of measurements of TL emission spectra of a LiF:Mg, Ti (TLD-100) sample and three LiF:Mg, Ti samples with different impurity concentrations (0-6 ppm Ti and 80-100 ppm Mg) at different read out, annealing procedure and irradiation dose are described. At dose levels less than 22 Gy the emission spectra of the TLD-100 sample and the sample without Ti comprise one emission band at 420 nm and 620 nm, respectively. The TL emission spectra of the other two samples comprise two emission bands at 420 nm and 620 nm. (orig./MM).

  9. A study into the mechanism of thermoluminescence in a LiF:Mg,Ti dosimetry material

    International Nuclear Information System (INIS)

    Piters, T.M.

    1993-01-01

    Thermoluminescence (TL) is the phenomenon of light emission from an insulator or semiconductor when it is heated after a previous absorption of energy from ionising radiation. The purpose of the research described in this thesis is to get more insight into the mechanism of TL in LiF:Mg, Ti. In chapter 2 the idea of defect reactions during the readout is introduced as a possible explanation for the dependence of the read-out heating rate on TL. In chapter 3 a mode for the description of the emission band is described. The construction of a TL facility comprising the TL emission spectrometer is described in chapter 4. Chapter 5 gives an estimation for the possible errors that are made in the data analysis due to imperfect heat transfer from heater to sample. In chapter 6 results of measurements of TL emission spectra of a LiF:Mg, Ti (TLD-100) sample and three LiF:Mg, Ti samples with different impurity concentrations (0-6 ppm Ti and 80-100 ppm Mg) at different read out, annealing procedure and irradiation dose are described. At dose levels less than 22 Gy the emission spectra of the TLD-100 sample and the sample without Ti comprise one emission band at 420 nm and 620 nm, respectively. The TL emission spectra of the other two samples comprise two emission bands at 420 nm and 620 nm. (orig./MM)

  10. Photoionization study of Ne-like K9+, Ca10+, Sc11+, Ti12+, V13+, Cr14+, Mn15+, and Fe16+ ions using the screening constant by unit nuclear charge method

    International Nuclear Information System (INIS)

    Goyal, Arun; Khatri, Indu; Sow, Malick; Sakho, Ibrahima; Aggarwal, Sunny; Singh, A.K.; Mohan, Man

    2016-01-01

    Photoionization of the 2s 2 2p 6 ( 1 S 0 ) ground state of the Ne-like (Z=19–29) ions is presented in this paper. Resonance energies and total natural width of the 2s2p 6 np 1 P series of the Ne-like K 9+ , Ca 10+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , Mn 15+ , and Fe 16+ are reported. All the calculations are made using the Screening constant by unit nuclear charge (SCUNC) formalism. New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions are tabulated. Good agreements are found with available literature data. - Highlights: • Photoionization of ground state of the Ne-like (Z=19–29) presented. • good agreements with scarce literature data. • New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions. • Useful guidelines for application in laboratory, astrophysics, and plasma physics.

  11. Creep behavior and threshold stress of an extruded Al-6Mg-2Sc-1Zr alloy

    International Nuclear Information System (INIS)

    Deshmukh, S.P.; Mishra, R.S.; Kendig, K.L.

    2004-01-01

    Creep experiments were performed on extruded Al-6Mg-2Sc-1Zr (wt.%) alloy in a temperature range of 423-533 K. A threshold type creep behavior was measured and explained by observed dislocation-particle interactions. The experimental threshold stress values at various temperatures were compared with existing theoretical models. None of the available models could account for the decrease in threshold creep strength with increasing temperature

  12. Study of the response reduction of LiF:Mg, Ti dosimeter for high dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Torkzadeh, Falamarz [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Applications Research School; AEOI, Tehran (Iran, Islamic Republic of); Faripour, Heidar [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Laser and Optics Research School; AEOI, Tehran (Iran, Islamic Republic of); Mardashti, Forough; Manouchehri, Farhad [Nuclear Sciences and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Applications Research School

    2017-07-15

    A single crystal and 5 polycrystalline samples of LiF:Mg, Ti and their pellets were prepared and investigated so as to apply thermoluminescence high gamma dose dosimetry. Three zones of single crystal with dopant concentrations of 200 ppm of Mg and 20 ppm of Ti were also used to prepare the single crystal samples. For polycrystalline samples, dopant concentrations of 0.062 mol% Mg and Ti concentrations in the range of 0.016 and 0.046 mol% were used. All the samples were exposed to gamma doses of 1 kGy to 700 kGy and their response changes were determined by a gamma dose test of about 60 mGy. According to the results obtained, the use of response reduction by curve-fitting up to about 300 kGy can be performed reliably for high dose gamma dosimetry.

  13. Study of the structural and electrical behavior of Bi(Mg,TiO3 modified (Ba,CaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Md. Kashif Shamim

    2016-12-01

    Full Text Available The ability of BaTiO3 to form solid solutions with different dopants (both iso- and aliovalent makes it versatile for various applications. In the present study, (Ba,CaTiO3 (BCT is modified with Bi(MgTiO3 (BMT in search for new lead-free ferroelectric material and improve their properties. For this purpose, BCT acts as a main base material and BMT acts as a modifier to fabricate a multifunctional material. In this study, we report the structural and electrical properties of lead free piezo-ceramics (1−x(Ba0.8Ca0.2TiO3–xBi(Mg0.5Ti0.5O3 with x=0.2, 0.4, 0.5 prepared by solid-state sintering technique. Single perovskite phase with tetragonal structure is obtained for all the compositions, which is reconfirmed by the Raman Spectroscopic study. Dielectric study confirm the temperature stable behavior of the dielectric permittivity values above 300∘C. The dielectric constant value decreases with increase in BMT doping content. Impedance Spectroscopic study confirms non-Debye type dielectric relaxation in the specimen. The Nyquist plot and conductivity studies show the negative temperature coefficient of resistance behavior (NTCR of the samples.

  14. Theory of structural phase transition in MgTi{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, V. M., E-mail: valtalanov@mail.ru [South Russian State Polytechnical University (Russian Federation); Shirokov, V. B. [Russian Academy of Sciences, South Science Centre (Russian Federation); Ivanov, V. V. [South Russian State Polytechnical University (Russian Federation); Talanov, M. V. [South Federal University (Russian Federation)

    2015-01-15

    A theory of phase transition in MgTi{sub 2}O{sub 4} is proposed based on a study of the order-parameter symmetry, thermodynamics, and mechanisms of formation of the atomic and orbital structure of the low-symmetry MgTi{sub 2}O{sub 4} phase. The critical order parameter (which induces a phase transition) is determined. It is shown that the calculated MgTi{sub 2}O{sub 4} tetragonal structure is a result of displacements of magnesium, titanium, and oxygen atoms; ordering of oxygen atoms; and the participation of d{sub xy}, d{sub xz}, and d{sub yz} orbitals. The contribution of noncritical representations to ion displacements is proven to be insignificant. The existence of various metal clusters in the tetragonal phase has been established by calculation in correspondence with experimental data. It is shown (within the Landau theory of phase transitions) that phase states can be changed as a result of both first- and second-order phase transitions: the high-symmetry phase borders two low-symmetry phases by second-order transition lines, while the border between low-symmetry phases is a first-order transition line.

  15. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons

    Science.gov (United States)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.

    2017-11-01

    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  16. Long-term changes in the radiation-induced optical absorption bands of LiF:Mg,Ti

    International Nuclear Information System (INIS)

    Kelemen, A.

    1996-01-01

    Optical absorption spectroscopy plays an exceptional role in the identification of charge traps responsible for the different TL peaks of the TL phosphors. Experiments carried out under different conditions, e.g. with different types of ionising radiation and/or different dose rates, applying different annealing procedures and/or different storage times after the irradiation, may lead to contradictory results. Therefore, a systematic investigation was conducted of the build-up and decay characteristics of the optical absorption bands of different LiF:Mg,Ti single crystal samples. Important changes were found in the long (hours and days) time scale. For example, the 350 nm optical absorption increases continuously in the Mg free LiF:Ti sample, while the intensities of the 310 nm and 380 nm absorption bands decrease in the sample containing Mg even several hours after irradiation with ∼ 5 μs, 4 MeV linear accelerator electron pulses. These experimental results may have serious consequences for the interpretation of optical absorption data and for the understanding of defect and energy storage mechanisms of thermoluminescence in LiF:Mg,Ti. (author)

  17. Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates

    Science.gov (United States)

    Burmistrova, Polina V.; Maassen, Jesse; Favaloro, Tela; Saha, Bivas; Salamat, Shuaib; Rui Koh, Yee; Lundstrom, Mark S.; Shakouri, Ali; Sands, Timothy D.

    2013-04-01

    Epitaxial ScN(001) thin films were grown on MgO(001) substrates by dc reactive magnetron sputtering. The deposition was performed in an Ar/N2 atmosphere at 2 × 10-3 Torr at a substrate temperature of 850 °C in a high vacuum chamber with a base pressure of 10-8 Torr. In spite of oxygen contamination of 1.6 ± 1 at. %, the electrical resistivity, electron mobility, and carrier concentration obtained from a typical film grown under these conditions by room temperature Hall measurements are 0.22 mΩ cm, 106 cm2 V-1 s-1, and 2.5 × 1020 cm-3, respectively. These films exhibit remarkable thermoelectric power factors of 3.3-3.5 × 10-3 W/mK2 in the temperature range of 600 K to 840 K. The cross-plane thermal conductivity is 8.3 W/mK at 800 K yielding an estimated ZT of 0.3. Theoretical modeling of the thermoelectric properties of ScN calculated using a mean-free-path of 23 nm at 300 K is in very good agreement with the experiment. These results also demonstrate that further optimization of the power factor of ScN is possible. First-principles density functional theory combined with the site occupancy disorder technique was used to investigate the effect of oxygen contamination on the electronic structure and thermoelectric properties of ScN. The computational results suggest that oxygen atoms in ScN mix uniformly on the N site forming a homogeneous solid solution alloy. Behaving as an n-type donor, oxygen causes a shift of the Fermi level in ScN into the conduction band without altering the band structure and the density of states.

  18. Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer

    International Nuclear Information System (INIS)

    Wang, Jing; Qin, Minchao; Tao, Hong; Ke, Weijun; Chen, Zhao; Wan, Jiawei; Qin, Pingli; Lei, Hongwei; Fang, Guojia; Xiong, Liangbin; Yu, Huaqing

    2015-01-01

    In this letter, we report perovskite solar cells with thin dense Mg-doped TiO 2 as hole-blocking layers (HBLs), which outperform cells using TiO 2 HBLs in several ways: higher open-circuit voltage (V oc ) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO 2 as compared to TiO 2 such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and the formation of magnesium oxide and magnesium hydroxides together resulted in an increment of V oc . In addition, the Mg-modulated TiO 2 with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device

  19. Microstructures and mechanical properties of grain refined Al-Li-Mg casting alloy by containing Zr and Ti

    International Nuclear Information System (INIS)

    Saikawa, Seiji; Nakai, Kiyoshi; Sugiura, Yasuo; Kamio, Akihiko.

    1995-01-01

    Mechanical properties and microstructures of various Al-Li-Mg alloy castings containing small amount of Zr and/or Ti were investigated. The δ(AlLi) phase was observed to crystallize in the dendrite-cell gaps as well as on the grain boundaries. Microsegregation of Mg also occurred in the solidified castings. The β(Al 3 Zr) or Al-Zr-Ti compounds crystallize during solidification and remain even after solid solution treatment at 803 K for 36 ks. The grain sizes of Al-2.5%Li-2%Mg alloy castings become finer by the addition of 0.15%Zr and 0.12%Ti compared with each addition of 0.15%Zr or 0.12%Ti. The age hardening is accelerated by the addition of 0.15%Zr. In an Al-2.5%Li-2%Mg-0.15%Zr-0.12%Ti alloy casting poured into a metallic mold and aged at 453 K for 36 ks, ultimate tensile strength, Young's modulus and density were 417 MPa, 80 GPa and was 2.52 g/cm 3 , respectively. Its specific strength and modulus are higher by 50.3 and 13.9% than those of the conventional AC4C-T6 casting. (author)

  20. Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg ...

    Indian Academy of Sciences (India)

    gered by using: (i) a furnace or (ii) an electrical element touching the surface ... plicity, low energy consumption and good purity of the products. [12,13]. SHS method .... Similar to the TiO2–Mg system, by increasing the ini- tial temperature, the ...

  1. Hydrogenation Properties of Mg-5 wt.% TiCr_10NbX (x=1,3,5) Composites by Mechanical Alloying Process

    International Nuclear Information System (INIS)

    Kim, Kyeong-Il; Hong, Tae-Whan

    2011-01-01

    Hydrogen and hydrogen energy have been recognized as clean energy sources and high energy carrier. Mg and Mg alloys are attractive hydrogen storage materials because of their lightweight and low cost materials with high hydrogen capacity (about 7.6 wt.%). However, the commercial applications of the Mg hydrides are currently hinder by its high absorption/desorption temperature, and very slow reaction kinetics. However, Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. One of the most methods to develop kinetics was addition of transition metal. Therefore, Mg-Ti-Cr-Nb alloy was fabricated to add TiCrNb by hydrogen induced mechanical alloying. TiCrNb systems have included transition metals, low operating temperatures and hydrogen storage materials. As-received specimens were characterized using X-ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Thermo Gravimetric analysis/Differential Scanning Calorimetry (TG/DSC). Mg-TiCr_10Nb systems were evaluated for hydrogen kinetics by Sievert’s type Pressure-Composition-Isotherm (PCI) equipment. The operating temperature range was 473, 523, 573 and 623 K.

  2. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  3. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Patchara Pripanapong

    2016-08-01

    Full Text Available Ti and solution treated Mg alloys such as AZ31B (ST, AZ61 (ST, AZ80 (ST and AZ91 (ST were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST, in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST dissimilar materials is discussed in this work.

  4. XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites

    Science.gov (United States)

    Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd

    2018-01-01

    Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

  5. Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu Sujuan; Han Hongwei; Tai Qidong; Zhang Jing; Xu Sheng; Zhou Conghua; Yang Ying; Hu Hao; Chen Bolei; Sebo, Bobby; Zhao Xingzhong

    2008-01-01

    A surface modification method was carried out by reactive DC magnetron sputtering to fabricate TiO 2 electrodes coated with insulating MgO for dye-sensitized solar cells. The MgO-coated TiO 2 electrode had been characterized by x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), UV-vis spectrophotometer, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The study results revealed that the TiO 2 modification increases dye adsorption, decreases trap states and suppresses interfacial recombination. The effects of sputtering MgO for different times on the performance of DSSCs were investigated. It indicated that sputtering MgO for 3 min on TiO 2 increases all cell parameters, resulting in increasing efficiency from 6.45% to 7.57%

  6. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6AI-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A. M.; Khan, T. I.

    2013-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20 micro m) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg/sub 2/ and Mg/sub 3/AlNi/sub 2/ was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement. (author)

  7. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6Al-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A M; Khan, T I

    2014-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20μm) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg 2 and Mg 3 AlNi 2 was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement

  8. Interface role in the enhanced photocatalytic activity of TiO2-Na0.9Mg0.45Ti3.55O8 nanoheterojunction

    Directory of Open Access Journals (Sweden)

    Ze-Qing Guo

    2017-02-01

    Full Text Available TiO2-Na0.9Mg0.45Ti3.55O8 (TiO2-NMTO nanocomposites were synthesized via a simple hydrothermal method. TiO2 nanoparticles were loaded on NMTO nanosheets with well matched lattices. The TiO2-NMTO nanoheterojunctions enjoyed high photodegradative ability for a RhB pollutant. The photoinduced electron-hole pairs were separated effectively by the TiO2-NMTO nanoheterojunctions, which were directly observed by surface potential measurements with a scanning Kelvin probe microscopy. The photogenerated electrons accumulate at interface due to the high density of interface states, and holes remain TiO2 and NMTO particles, other than they migrate from one part to another in heterojunctions by comparing the surface potentials under illumination with different wavelengths.

  9. Laser Welding-Brazing of Immiscible AZ31B Mg and Ti-6Al-4V Alloys Using an Electrodeposited Cu Interlayer

    Science.gov (United States)

    Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai

    2018-03-01

    Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.

  10. Analysis of dosimetric peaks of MgB4O7:Dy (40% Teflon versus LiF:Mg,Ti TL detectors

    Directory of Open Access Journals (Sweden)

    Paluch-Ferszt Monika

    2016-03-01

    Full Text Available Magnesium tetraborate doped with dysprosium (MgB4O7:Dy is known as a good thermoluminophor for personal dosimetry of gamma ray and X-ray radiation because of its high sensitivity and close tissue equivalence. This material can be produced by different routes. The sintered pastilles of magnesium tetraborate mixed with Teflon (40% used in this work were manufactured at the Federal University of Sergipe, Department of Physics by the solid-state synthesis. Magnesium tetraborate was already used for high-dose dosimetry, exhibiting linearity for a wide range of doses. In this work, the authors examined its main characteristics prior to potential use of detectors in everyday dosimetry, comparing this material to a widely used LiF:Mg,Ti phosphor. The following tests influencing dosimetric peaks of MgB4O7:Dy were presented: (1 the shape of the glow curves, (2 annealing conditions and post-irradiation annealing and its influence for background of the detectors, (3 the choice of the heating rates at the read-out and (4 the threshold dose, that is, the lowest possible dose to be measured. Similar tests were performed with LiF:Mg,Ti detectors, produced and widely used in Poland. The results were compared and discussed.

  11. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy

    Science.gov (United States)

    Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi

    2017-11-01

    Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.

  12. Atomic mobility in liquid and fcc Al-Si-Mg-RE (RE = Ce, Sc) alloys and its application to the simulation of solidification processes in RE-containing A357 alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhao; Zhang, Lijun [Central South Univ., Changsha (China). State Key Lab of Powder Metallurgy; Tang, Ying [Thermo-Calc Software AB, Solna (Sweden)

    2017-06-15

    This paper first provides a critical review of experimental and theoretically-predicted diffusivities in both liquid and fcc Al-Si-Mg-RE (RE = Ce, Sc) alloys as-reported by previous researchers. The modified Sutherland equation is then employed to predict self- and impurity diffusivities in Al-Si-Mg-RE melts. The self-diffusivity of metastable fcc Sc is evaluated via the first-principles computed activation energy and semi-empirical relations. Based on the critically-reviewed and presently evaluated diffusivity information, atomic mobility descriptions for liquid and fcc phases in the Al-Si-Mg-RE systems are established by means of the Diffusion-Controlled TRAnsformation (DICTRA) software package. Comprehensive comparisons show that most of the measured and theoretically-predicted diffusivities can be reasonably reproduced by the present atomic mobility descriptions. The atomic mobility descriptions for liquid and fcc Al-Si-Mg-RE alloys are further validated by comparing the model-predicted differential scanning calorimetry curves for RE-containing A357 alloys during solidification against experimental data. Detailed analysis of the curves and microstructures in RE-free and RE-containing A357 alloys indicates that both Ce and Sc can serve as the grain refiner for A357 alloys, and that the grain refinement efficiency of Sc is much higher.

  13. Atomic mobility in liquid and fcc Al-Si-Mg-RE (RE = Ce, Sc) alloys and its application to the simulation of solidification processes in RE-containing A357 alloys

    International Nuclear Information System (INIS)

    Lu, Zhao; Zhang, Lijun

    2017-01-01

    This paper first provides a critical review of experimental and theoretically-predicted diffusivities in both liquid and fcc Al-Si-Mg-RE (RE = Ce, Sc) alloys as-reported by previous researchers. The modified Sutherland equation is then employed to predict self- and impurity diffusivities in Al-Si-Mg-RE melts. The self-diffusivity of metastable fcc Sc is evaluated via the first-principles computed activation energy and semi-empirical relations. Based on the critically-reviewed and presently evaluated diffusivity information, atomic mobility descriptions for liquid and fcc phases in the Al-Si-Mg-RE systems are established by means of the Diffusion-Controlled TRAnsformation (DICTRA) software package. Comprehensive comparisons show that most of the measured and theoretically-predicted diffusivities can be reasonably reproduced by the present atomic mobility descriptions. The atomic mobility descriptions for liquid and fcc Al-Si-Mg-RE alloys are further validated by comparing the model-predicted differential scanning calorimetry curves for RE-containing A357 alloys during solidification against experimental data. Detailed analysis of the curves and microstructures in RE-free and RE-containing A357 alloys indicates that both Ce and Sc can serve as the grain refiner for A357 alloys, and that the grain refinement efficiency of Sc is much higher.

  14. Microstructure and Mechanical Properties of an Al-Li-Mg-Sc-Zr Alloy Subjected to ECAP

    Directory of Open Access Journals (Sweden)

    Anna Mogucheva

    2016-10-01

    Full Text Available The effect of post-deformation solution treatment followed by water quenching and artificial aging on microstructure and mechanical properties of an Al-Li-Mg-Sc-Zr alloy subjected to equal-channel angular pressing (ECAP was examined. It was shown that the deformed microstructure produced by ECAP remains essentially unchanged under solution treatment. However, extensive grain refinement owing to ECAP processing significantly affects the precipitation sequence during aging. In the aluminum-lithium alloy with ultrafine-grained (UFG microstructure, the coarse particles of the S1-phase (Al2LiMg precipitate on high-angle boundaries; no formation of nanoscale coherent dispersoids of the δ′-phase (Al3Li occurs within grain interiors. Increasing the number of high-angle boundaries leads to an increasing portion of the S1-phase. As a result, no significant increase in strength occurs despite extensive grain refinement by ECAP.

  15. Properties of hot pressed MgB2/Ti tapes

    International Nuclear Information System (INIS)

    Kovac, P.; Husek, I.; Melisek, T.; Fedor, J.; Cambel, V.; Morawski, A.; Kario, A.

    2009-01-01

    Hot axial and hot isostatic pressing was applied for single-core MgB 2 /Ti tapes. Differences in transport current density, n-exponents and critical current anisotropy are discussed and related to the grain connectivity influenced by pressing. The magnetic Hall probe scanning measurements allowed observing the isolated regions for axially hot pressed sample attributed to the longitudinally oriented cracks introduced by pressing. The highest current densities were measured for the tape subjected to hot isostatic pressing due to improved connectivity.

  16. Thermal desensitization of gamma irradiated LiF:Mg,Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.; Rogalev, B.; Afonin, G. (Institute of Geochemistry, Irkutsk (Russian Federation))

    1993-01-01

    The thermoluminescence sensitivity variation of gamma irradiated LiF:Mg,Ti after annealing at temperatures of 300-500[sup o]C has been studied. This variation is shown to be due to concurrent processes of sensitization and damage. Annealing of irradiated crystals leads to the restoration of the initial sensitivity. The damage decay time is approximately an order of magnitude greater than the decay time of the sensitization. The experimental data are interpreted quantitatively within the scope of included gamma track overlapping. (author).

  17. Effect of TiON–MgO intermediate layer on microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J.Y. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Dong, K.F. [School of Automation, China University of Geosciences, Wuhan 430074 (China); Peng, Y.G.; Ju, G.P. [Seagate Technology, Fremont, CA 94538 (United States); Hu, J.F. [Data Storage Institute (DSI), Singapore 117608 (Singapore); Chow, G.M.; Chen, J.S. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2016-11-01

    The microstructure and magnetic properties of L1{sub 0} FePt–C–SiO{sub 2} films grown on TiON–MgO intermediate layer were studied. TiON–MgO layer was deposited by co-sputtering TiN and MgO–TiO{sub 2} targets at 380 °C. With increasing MgO–TiO{sub 2} doping concentration, the contact angle between FePt grains with intermediate layer gradually increased, and it was close to 90° when the volume percentage of MgO–TiO{sub 2} reached 30%. At this condition, a high out-of-plane coercivity of 19.1 kOe was obtained, while the opening-up of in-plane M-H loop was very narrow. Moreover, it was found that the out-of-plane coercivity can be further improved to 21.6 kOe, by slightly increasing the percentage of MgO–TiO{sub 2} to 35 vol%. - Highlights: • The effect of TiON–MgO intermediate layer was studied. • With increasing the MgO composition, the surface energy of intermediate layer increased, and the FePt/TiON–MgO interfacial energy decreased. The contact angle of FePt grains with intermediate layer increased with the MgO composition, and 90° contact angle could be achieved by optimizing the MgO composition. • Good perpendicular magnetic anisotropy was retained with large out-of-plane coercivity and narrow in-plane opening-up.

  18. TEM analysis of the microstructure in TiF3-catalyzed and pure MgH2 during the hydrogen storage cycling

    International Nuclear Information System (INIS)

    Danaie, Mohsen; Mitlin, David

    2012-01-01

    We utilized transmission electron microscopy (TEM) analysis, with a cryogenically cooled sample stage, to detail the microstructure of partially transformed pure and titanium fluoride-catalyzed magnesium hydride powder during hydrogenation cycling. The TiF 3 -catalyzed MgH 2 powder demonstrated excellent hydrogen storage kinetics at various temperatures, whereas the uncatalyzed MgH 2 showed significant degradation in both kinetics and capacity. TEM analysis on the partially hydrogen absorbed and partially desorbed pure Mg(MgH 2 ) revealed a large fraction of particles that were either not transformed at all or were completely transformed. On the other hand, in the MgH 2 +TiF 3 system it was much easier to identify regions with both the hydride and the metal phase coexisting in the same particle. This enabled us to establish the metal hydride orientation relationship (OR) during hydrogen absorption. The OR was determined to be (1 1 0)MgH 2 || (−1 1 0 −1)Mg and [−1 1 1]MgH 2 || [0 1 −1 1]Mg. During absorption the number density of the hydride nuclei does not show a dramatic increase due the presence of TiF 3 . Conversely, during desorption the TiF 3 catalyst substantially increases the number of the newly formed Mg crystallites, which display a strong texture correlation with respect to the parent MgH 2 phase. Titanium fluoride also promotes extensive twinning in the hydride phase.

  19. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3

    International Nuclear Information System (INIS)

    Xie, L.; Liu, Y.; Wang, Y.T.; Zheng, J.; Li, X.G.

    2007-01-01

    MgH 2 nanoparticles were obtained by hydriding ultrafine magnesium particles which were prepared by hydrogen plasma-metal reaction. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the obtained sample is almost pure MgH 2 phase, without residual magnesium and with an average particle size of ∼300 nm. Milled with 5 wt.% TiF 3 as a doping precursor in a hydrogen atmosphere, the sample desorbed 4.5 wt.% hydrogen in 6 min under an initial hydrogen pressure of ∼0.001 bar at 573 K and absorbed 4.2 wt.% hydrogen in 1 min under ∼20 bar hydrogen at room temperature. Compared with MgH 2 micrometer particles doped with 5 wt.% TiF 3 under the same conditions as the MgH 2 nanoparticles, it is suggested that decrease of particle size is beneficial for enhancing absorption capacity at low temperatures, but has no effect on desorption. In addition, the catalyst was mainly responsible for improving the sorption kinetics and its catalytic mechanism is discussed

  20. Effect of annealing on luminescence of Eu{sup 3+}- and Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medić, Mina; Antić, Željka; Đorđević, Vesna [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Ahrenkiel, Phillip S. [South Dakota School of Mines & Technology, Rapid City, SD (United States); Marinović-Cincović, Milena [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Dramićanin, Miroslav D., E-mail: dramican@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2016-02-15

    This work explores the influence of annealing temperature on the structure and luminescence of 2 at% Eu{sup 3+} and 1 at% Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanopowders produced via Pechini-type polymerized complex route. Mg{sub 2}TiO{sub 4} samples were annealed at 7 different temperatures (400 °C, 450 °C, 500 °C, 550 °C, 600 °C, 650 °C and 700 °C) to determine the temperature range in which cubic inverse spinel structure is stable and to follow the changes of material luminescence properties. X-ray diffraction revealed that crystallization of both Eu{sup 3+} and Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanopowders starts at 400 °C, and that Sm{sup 3+} doped Mg{sub 2}TiO{sub 4} starts to decompose at 650 °C, while Eu{sup 3+} doped Mg{sub 2}TiO{sub 4} starts to decompose at 700 °C. Samples annealed at higher temperatures show higher crystallinity and larger crystallite size. Mg{sub 2}TiO{sub 4} powder annealed at 600 °C is composed of ~5 nm size nanoparticles agglomerated in micron-size and dense chunks. The emission spectra of nanoparticles are composed of emissions from defects in Mg{sub 2}TiO{sub 4} host and characteristic emissions of Eu{sup 3+} ({sup 5}D{sub 0}→{sup 7}F{sub J}) and Sm{sup 3+} ({sup 4}G{sub 5/2}→{sup 6}H{sub J}) ions. The stronger emission and longer emission decays are observed with samples annealed at high temperatures. In the case of the Eu{sup 3+} ions emission intensity increased one order of magnitude between samples annealed at 400 °C and 650 °C. - Highlights: • Mg{sub 2}TiO{sub 4} nanoparticles of 5–10 nm in size are prepared by polymerized complex route. • Emission spectra and decays of Eu{sup 3+} and Sm{sup 3+} doped Mg{sub 2}TiO{sub 4} nanoparticles are shown. • Eu{sup 3+}(Sm{sup 3+}) doped Mg{sub 2}TiO{sub 4} can be annealed at temperatures <700 °C (650 °C). • Emission intensity of nanoparticles increases with increase of annealing temperature.

  1. Surface structure of MgO underlayer with Ti diffusion for (002 oriented L10 FePt-based heat assisted magnetic recording media

    Directory of Open Access Journals (Sweden)

    Sintaro Hinata

    2018-05-01

    Full Text Available Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm/Cr80Mn20 (0-30 nm/Cr50Ti50 (0-50 nm/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  2. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    Science.gov (United States)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  3. Effect of Mg{sup 2+} and Ti{sup 4+} dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Shams, Mohammad H. [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Rozatian, Amir S.H., E-mail: a.s.h.rozatian@phys.ui.ac.ir [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Yousefi, Mohammad H. [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Valíček, Jan [Institute of Physics, Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. Listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Šepelák, Vladimir [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia)

    2016-02-01

    The doped barium hexaferrite, BaFe{sub 12−x}(Mg{sub 0.5}Ti{sub 0.5}){sub x}O{sub 19} with 1≤x≤5, is synthesized by a solid state ceramic method. Its crystalline structure, morphology, as well as static and dynamic magnetic properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry, and vector network analysis, respectively. The cation distribution of Mg{sup 2+} and Ti{sup 4+} in the hexagonal structure of BaFe{sub 12−x}(Mg{sub 0.5}Ti{sub 0.5}){sub x}O{sub 19} is investigated by {sup 57}Fe Mössbauer spectroscopy. The effect of Mg{sup 2+} and Ti{sup 4+} dopants on static and high-frequency magnetic properties of the ferrite is studied. - Highlights: • The BaFe{sub 12−x}(MgTi){sub 0.5x}O{sub 19} (x =1– 5) are synthesized by a solid state reaction method. • The Mg{sup 2+} and Ti{sup 4+} dopants take positions 12k for x=1 and 4f{sub 1} and 4f{sub 2} for x=5. • The coercivity and magnetization are decreased with an increase in Mg–Ti content. • The ferromagnetic resonance frequency is decreased with increase of x. • The FMR is shifted to lower frequencies due to the reduction of the anisotropy field.

  4. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  5. The determination of kinetic parameters of LiF : Mg,Ti from thermal decaying curves of optical absorption bands

    CERN Document Server

    Yazici, A N

    2003-01-01

    In this paper, the thermal bleaching curves (TBCs) of specific optical absorption bands of LiF : Mg,Ti were measured as a function of temperature. The TBCs obtained were analysed to extract the kinetic parameters (the thermal activation energy (E) and the frequency factor (s)) of some TL glow peaks of LiF : Mg,Ti on the basis of the developed first-order kinetic model over a specified temperature region.

  6. Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials

    International Nuclear Information System (INIS)

    Zhang Lei; He, Yiming; Wu Ying; Wu Tinghua

    2011-01-01

    Highlights: → Novel composite MgFe 2 O 4 /TiO 2 as catalyst. → Higher activity for the photodegradation of RhB under visible light irradiation. → Calcination temperature of catalyst has effect on photocatalytic activity. → Different photocatalysis mechanism under UV and visible light irradiation. - Abstract: MgFe 2 O 4 /TiO 2 (MFO/TiO 2 ) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe 2 O 4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably.

  7. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    Science.gov (United States)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  8. Energy dependence of thermoluminescent response of CaSO{sub 4}:Dy, LiF:Mg and micro LiF:Mg,Ti in clinical beams of electrons by using different simulator objects; Dependencia energetica da resposta TL de dosimetros de CaSO{sub 4}:Dy, LiF:Mg e microLiF:Mg,Ti em feixes clinicos de eletrons utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda; Campos, Leticia Lucente, E-mail: abravin@ipen.b, E-mail: rsakuraba@einstein.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sakuraba, Roberto K.; Cruz, Jose Carlos da, E-mail: rsakuraba@einstein.b, E-mail: josecarlosc@einstein.b [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil)

    2011-10-26

    Yet not so widely applied in radiotherapy, the calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) is used in radioprotection and studies has been demonstrated its great potential for the dosimetry in radiotherapy. This work evaluates the energy dependence of the thermoluminescent answer of the CaSO{sub 4}:D, LiF:Mg,Ti (TLD-100) and micro LiF:Mg,Ti in clinical beams of electrons by using water simulators, PMMA and solid water

  9. Electromagnetic and microwave absorption properties of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Meng, Pingyuan [Huzhou Innovation Center of Advanced Materials, Shanghai Institute of Ceramics Chinese Academy of Sciences, Huzhou 215100 (China); Wang, Meiling [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Guanchen [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xinqing [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Xu, Guangliang, E-mail: xuguangliang@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-09-15

    To improve the impedance matching and then achieve a better microwave absorption performance in electromagnetic absorber, the Mg{sup 2+} was added to occupy the sites of Co{sup 2+} in hexagonal-type ferrite BaCoTiFe{sub 10}O{sub 19}. BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} were synthesized by a simple sol-gel combustion technique and the phase of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was confirmed by X-ray diffraction analysis (XRD). The grain size of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} was in the range of 100–400 nm and crystal particles were refined with the augment of doped Mg{sup 2+}. Based on the static magnetic measurement, the coercivity (H{sub c}) increased and the saturation magnetization (M{sub s}) decreased as the x increased. Moreover, it was found that BaMg{sub 0.4}Co{sub 0.6}TiFe{sub 10}O{sub 19} possessed a maximum reflection loss of −33.7 dB with a matching thickness of 2.0 mm measured by the vector net-analyzer in the frequency of 0.5–18 GHz, which also had a bandwidth below −20 dB ranging from 11.5 GHz to 17.2 GHz. Meanwhile, the permeability of the prepared ferrites could be adjusted and a proper match was provided between dielectric and magnetic properties by controlling the doped content of Mg{sup 2+}, which would be significant to the application of BaMg{sub x}Co{sub 1−x}TiFe{sub 10}O{sub 19} in the field of the microwave absorbing materials. - Highlights: • The Mg{sup 2+} ions were first employed to occupy the place of Co{sup 2+} ions in BaCoTiFe{sub 10}O{sub 19}. • The grains were refined as Co substitution by Mg in ferrite. • The peaks of complex permeability shift to high frequency with Mg{sup 2+} substituted. • The coercivity increased and saturation magnetization slightly decreased. • Substitution of Mg{sup 2+} enhanced microwave absorption and broadened bandwidth.

  10. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  11. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    Science.gov (United States)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  12. The cross section measurements for the 51V(n, α)48Sc and 51V(n,p)51Ti reactions

    International Nuclear Information System (INIS)

    Hu Shangbin; Kong Xiangzhong; Yang Jingkang

    1999-01-01

    The cross sections for 51 V(n, α) 48 Sc and 51 V(n,p) 51 Ti have been measured by using the activation method relative to the cross sections of 27 Al(n, α) 24 Na in the neutron energy range 13.4 --14.8 MeV. The results are compared with the published data. The neutron energies were determined by the method of cross section ratios for the reactions 90 Zr(n.2n) 89 Zr by 93 Nb(n,2n) 92m Nb

  13. Cooperative doping effects of Ti and nano-SiC on transport critical current density and grain connectivity of in situ MgB{sub 2} tapes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F., E-mail: PAN.Xifeng@nims.go.jp [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)] [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China); Matsumoto, A.; Kumakura, H. [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, C.H.; Zhao, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China)] [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2011-11-15

    We studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} tape. Ti doping significantly weakens the current dependence of T{sub c} of MgB{sub 2} tapes at self-field, and does not change T{sub c} or slightly increases T{sub c}. Further Ti adding can enhance in-field J{sub c} performance of SiC doped MgB{sub 2} tapes by a factor of 50-100% at 4.2 K and 10 T. Ti addition improves the J{sub c} performance of undoped and SiC doped MgB{sub 2} by modifying their grains connection. By now, nano-SiC powder (20-30 nm) is still the most effective additive for improving upper critical field and critical current density of MgB{sub 2}-based superconducting materials. However, some decomposed carbon aggregates at grain boundaries and results in serious weak-links of MgB{sub 2} grains, and these weak-links limit the further improvement of critical current density, J{sub c} of MgB{sub 2}, especially at lower fields. Ti doping is reported to increase the compactness of MgB{sub 2}, and modify its intergranular coupling by forming ultrathin TiB{sub 2} layer at grain boundaries. In this work, we studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} and the possibility to improve transport J{sub c} of SiC doped MgB{sub 2} by introducing Ti additive. The results suggest the Ti addition can obviously improve J{sub c} of MgB{sub 2} at lower fields and also enhance the J{sub c} of SiC doped MgB{sub 2} by improving their grain connectivity which shows serious intergranular weak-links.

  14. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    Science.gov (United States)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-10-01

    A series of Mg/TiO2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  15. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-01-01

    A series of Mg/TiO 2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%

  16. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    Science.gov (United States)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-12-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  17. Synthesis of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres via homogeneous precipitation route

    Directory of Open Access Journals (Sweden)

    Peng-Fei Ai, Ying-Liang Liu, Li-Yuan Xiao, Hou-Jin Wang and Jian-Xin Meng

    2010-01-01

    Full Text Available A phosphorescent material in the form of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres was prepared by homogeneous precipitation using monodispersed carbon spheres as hard templates. Y2O3:Eu3+ hollow microspheres were first synthesized to serve as the precursor. Y2O2S:Eu3+, Mg2+, Ti4+ powders were obtained by calcinating the precursor in a CS2 atmosphere. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction measurements confirmed the purity of the Y2O2S phase. Electron microscopy observations revealed that the Y2O2S:Eu3+, Mg2+, Ti4+ particles inherited the hollow spherical shape from the precursor after being calcined in a CS2 atmosphere and that they had a diameter of 350–450 nm and a wall thickness of about 50–80 nm. After ultraviolet radiation at 265 or 325 nm for 5 min, the particles emitted strong red long-lifetime phosphorescence originating from Eu3+ ions. This phosphorescence is associated with the trapping of charge carriers by Ti4+ and Mg2+ ions.

  18. Stability of the Al/TiB2 interface and doping effects of Mg/Si

    Science.gov (United States)

    Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin

    2017-12-01

    The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.

  19. Effect of metal ion and ball milling on the electrochemical properties of M0.5TiOPO4 (M = Ni, Cu, Mg)

    International Nuclear Information System (INIS)

    Godbole, Vikram A.; Villevieille, Claire; Novák, Petr

    2013-01-01

    Various metal titanium oxyphosphates, M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were synthesized via modified solution route synthesis. The as synthesized M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were electrochemically tested using galvanostatic cycling, cyclic voltammetry, and rate performance measurements in order to investigate the effect of metal ion (M) on the electrochemical performance of this family of materials. All the studied materials reacted with 3 Li + during the 1st lithiation showing reaction plateaus at different potentials versus Lithium. Similar studies were performed on M 0.5 TiOPO 4 (M = Ni, Cu, Mg) samples with smaller particle size, obtained via ball milling, in order to understand the effect of particle size on the electrochemistry of the materials. The ball milled samples delivered higher specific charge during the 1st cycle showing reaction plateaus at different potentials, poorer capacity retention, and poorer rate capability as compared to the as synthesized ones. This was attributed to a change in morphology and particle size of the samples upon ball milling. Amongst all the tested materials, the as synthesized Cu 0.5 TiOPO 4 showed the best electrochemistry. The ball milled Mg 0.5 TiOPO 4 reacted with ∼5.5 Li + during 1st lithiation (as compared to 3 Li + expected from this family of compounds) and 3.3 Li + during the 1st delithiation (rather than the expected 2 Li + ). This suggests a reaction mechanism where Mg 0.5 TiOPO 4 undergoes a phase transformation forming Mg 0 , which reversibly alloys with 2.5 extra Li + . Thus the electrochemical cycling of Mg 0.5 TiOPO 4 gives insights into the reaction mechanism in this family of materials

  20. Superplasticity behaviors of Al-Zn-Mg-Zr cold-rolled alloy sheet with minor Sc addition

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, H. [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China); Pan, Q.L., E-mail: pql2016@126.com [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China); Yu, X.H.; Huang, X.; Sun, X.; Wang, X.D.; Li, M.J.; Yin, Z.M. [School of Materials Science and Engineering, Central South University (Light Alloy Research Institute, Central South University), Changsha 410083 (China); Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Changsha 410083 (China)

    2016-10-31

    A refined microstructure of Al-Zn-Mg-Sc-Zr alloy sheet was produced by simple hot and cold rolling to an average grain size of 3 µm. Experiments were completed in electro-fluid servo-fatigue tester and results were investigated by means of optical microscope (OM), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Superplastic deformation was conducted and superplastic ductility of ≥200% was achieved at a testing temperature range from 425 ºC to 500 ºC and relative high strain rate range of 1×10{sup −3} s{sup −1}~1×10{sup −1} s{sup −1}. The maximum elongation of 539% was obtained at 500 ºC and 1×10{sup −2} s{sup −1}. In addition, the scanning electron microscopy (SEM) and transmission electron microscope (TEM) analyses showed that the presence of Al{sub 3} (Sc, Zr) particles in pinning grain boundaries and dislocations had a great influence on the superplastic deformation. The analyses of superplastic test data calculated out the coherent strain rates sensitivity parameter of 0.43 and the average activation energy of 143.762 kJ/mol. The data interpreted that the dominant deformation mechanism was grain boundary sliding controlled by lattice self-diffusion.

  1. Separation of DR synthesized Ti-Mg Alloy by dissolution of waste by-products in acid media

    CSIR Research Space (South Africa)

    Mushove, T

    2010-06-01

    Full Text Available The objective of this work is to isolate synthesized Ti-Mg alloy powder through leaching out of MgO and any unreduced oxides of Titanium. Leaching media investigated are H2SO4, HCl and organic acids ascorbic acid/oxalic and L-cysteine /ascorbic...

  2. Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition

    DEFF Research Database (Denmark)

    Xu, G.J.; Grivel, Jean-Claude; Abrahamsen, A.B.

    2004-01-01

    MgB2 samples doped with TiO2 nanoparticles were prepared and the effect of TiO2 addition on the superconducting transition temperature (T-c), irreversibility field (H-irr) and critical current density (J(c)) were investigated. It is found that the hexagonal lattice parameters a and c decrease...... with TiO2 doping. Tc decreases gradually from 38.2 to 37.8 K as the TiO2 content increases from 0 to 15 wt%. The H-irr increases at 20 K from 4.3 to 4.9 T as the TiO2 content increases from 0 to 10 wt%, and at the same temperature J(c) increases from 450 to 4250 A/cm(2) at 4.2 T. (C) 2004 Published...

  3. Characterization of the personal thermoluminescent dosemeter of LiF: Mg, Ti + Ptfe

    International Nuclear Information System (INIS)

    Azorin N, J.; Gutierrez C, A.; Gonzalez M, P.

    1991-01-01

    The objective of this work is to characterize the thermoluminescent dosemeters taken place in the laboratory in form of pellets of LiF: Mg, Ti + Ptfe like personal dosemeters, subjecting them to the operation tests proposed by the international standards and comparing them with the TLD-100, the Tl dosemeter more used at the moment for personal dosimetry

  4. Effects of high energy ball milling on synthesis and characteristics of Ti-Mg alloys

    CSIR Research Space (South Africa)

    Chikwanda, HK

    2008-01-01

    Full Text Available The synthesis of Ti-Mg alloys using mechanical alloying method has been investigated. Effects of the mechanical alloying parameters on the resultant microstructural features have been studied. This work presents the effects of milling speed...

  5. Study of Optical Humidity Sensing Properties of Sol-Gel Processed TiO2 and MgO Films

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2007-04-01

    Full Text Available Paper reports a comparative study of humidity sensing properties of TiO2 and MgO films fabricated by Sol-gel technique using optical method. One sensing element of the optical humidity sensor presented here consists of rutile structured two-layered TiO2 thin film deposited on the base of an isosceles glass prism. The other sensing element consists of a film of MgO deposited by same technique on base of the prism. Light from He-Ne laser enters prism from one of refracting faces of the prism and gets reflected from the glass-film interface, before emerging out from its other isosceles face. This emergent beam is allowed to pass through an optical fiber. Light coming out from the optical fiber is measured with an optical power meter. Variations in the intensity of light caused by changes in humidity lying in the range 5%RH to 95%RH have been recorded. MgO film shows better sensitivity than TiO2 film.

  6. Study of the synthesis of TiO2 layers on macroporous ceramic supports in supercritical (SC) CO2 for processing radioactive aqueous effluents in dynamic mode

    International Nuclear Information System (INIS)

    Duchateau, Maxime

    2014-01-01

    Public and military nuclear industry generates a significant amount of radioactive liquid waste which must be treated before being released into the environment. Decontamination methods alternative to the industrial techniques (evaporation, chemical treatment) are being developed, such as column treatments or coupled filtration/sorption processes. Current researches mainly focus on the development and shaping of specific sorbents. In this context, the objectives of this thesis were first to study the synthesis of TiO 2 layers on macroporous ceramic supports in supercritical (SC) CO 2 and then to evaluate their potential for radionuclide extraction in these alternative processes. A robust synthesis method has been developed, based on the thermal decomposition of titanium isopropoxide in SC CO 2 in the temperature range between 150 C and 350 C. Nano-structured TiO 2 films were formed on the macroporous supports (ceramic foams, tubular α-alumina supports) with good adhesion, already at 150 C. The effect of the synthesis temperature on sorbents physico-chemical characteristics and sorption properties has been studied with TiO 2 powders prepared under the same conditions as the supported films. The best sorption performance were observed for the powder prepared at 150 C, owing to its higher density of surface sites in comparison with powders prepared at either 250 C or 350 C. Consequently, this synthesis temperature (150 C) was selected for a detailed study of the composite sorbents (TiO 2 /support), in order to assess their sorption performance in continuous treatment processes. The sorption experiments have shown that a column of alumina macroporous foam (Φpore = 400μm) coated with TiO 2 was suitable for processing effluents in dynamic mode with high throughputs. Both macro-pore sizes and column height were revealed as important parameters to be controlled. For the coupled filtration/sorption treatment, TiO 2 membranes exhibit good mechanical strength and are able

  7. A new ternary magnesium-titanium hydride Mg{sub 7}TiH{sub x} with hydrogen desorption properties better than both binary magnesium and titanium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-06-09

    A magnesium based titanium doped hydride was prepared in a high-pressure anvil cell by reacting a mixture of MgH{sub 2} and TiH{sub 1.9} at 8 GPa and 873 K. The metal structure has a Ca{sub 7}Ge type structure (a=9.532(2) A, space group Fm3-barm (no. 225), Z=4, V=866.06 A{sup 3}). The refined metal atom composition Mg{sub 7}Ti was almost in line with EDS analysis. This means that the new magnesium-titanium hydride has a structure that is more related to TiH{sub 1.9} than to MgH{sub 2}. The thermal properties of the new compound were also studied by TPD analysis. The new hydride, Mg{sub 7}TiH{sub x} exhibits 5.5 mass% (x{approx}12.7) and decomposes into Mg and TiH{sub 1.9} upon releasing 4.7 mass% of hydrogen around 605 K, that is at a 130 and 220 K lower desorption temperature compared to MgH{sub 2} and TiH{sub 1.9}, respectively.

  8. Exfoliation corrosion of Al-Zn-Mg-Cu-Zr alloy containing Sc examined by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Y.P.; Liu, X.Y.; He, Y.B.; Li, C.L. [School of Materials Science and Engineering, Central South University, Changsha (China); Pan, Q.L. [School of Materials Science and Engineering, Central South University, Changsha (China); The Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Changsha (China); Li, W.B. [School of Materials Science and Engineering, Central South University, Changsha (China); School of Civil Engineering, Hunan City University, Yiyang (China)

    2012-02-15

    The exfoliation corrosion behavior of an Al-Zn-Mg-Cu-Zr alloy containing Sc artificially aged at 120 C for 24 h is studied by macroscopic observation techniques and electrochemical impedance spectroscopy (EIS) measurements. After 48 h immersion, the blisters start bursting and delamination initiates, along with the appearance of two time constants in the impedance diagrams. According to the simulation by equivalent circuit, the corrosion rate decreases sharply and then reaches a steady state, which is due to the change of the solution pH and oxide layer thickness, as well as the accumulation of corrosion products. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Thermoluminescence of LiF: Mg, Ti between 77 and 315 K

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da.

    1989-01-01

    A special thermoluminescent system was developed. It is able to operate right from liquid nitrogen temperature and also permits the determination of the sample thermoluminescent emission spectrum. Using this system, the thermoluminescence displayed by 77 K irradiated LiF:Mg,Ti (TLD-100), from the irradiation temperature to 315 K, was studied. In this temperature range seven glow peaks, at 139, 153, 194, 240, 260, 283 and 300 K, were determined. (author)

  10. Effect of the Size of Al3(Sc,Zr) Precipitates on the Structure of Multi-Directionally Isothermally Forged Al-Mg-Sc-Zr Alloy

    Science.gov (United States)

    Sitdikov, O. Sh.; Avtokratova, E. V.; Mukhametdinova, O. E.; Garipova, R. N.; Markushev, M. V.

    2017-12-01

    The effect of Al3(Sc,Zr) dispersoids on the evolution of the cast Al-Mg-Sc-Zr alloy structure under multi-directional isothermal forging (MIF) has been investigated. The alloy, which has an equiaxed grain structure with a grain size of 25 μm and contains dispersoids 5-10 and 20-50 nm in size after onestage (at 360°C for 6 h) and two-stage (360°C for 6 h + 520°C for 1 h) annealing, respectively, was deformed at 325°C ( 0.65 T m) up to cumulative strains of e = 8.4. In the initial stages of MIF, new fine (sub)grains surrounded by low-angle and high-angle boundaries (HABs) were formed near the initial grain boundaries. With increasing strain, the volume fraction and misorientation of these crystallites increased, which led to the replacement of a coarse-grained structure with a fine-grained one with a grain size of 1.5-2.0 μm. Dynamic recrystallization occurred in accordance to a continuous mechanism and was controlled by the interaction of lattice dislocations and/or (sub)grain boundaries with dispersoids that effectively inhibited the migration of boundaries, as well as the rearrangement of lattice dislocations and their annihilation. The particle size and the density of their distribution significantly affected the parameters of the evolved structure; in an alloy with smaller particles, a structure with a smaller grain size and a larger HAB fraction developed.

  11. Characteristics of Ti:LaMgAl11O19 crystals grown by the Heat Exchanger Method (HEM)

    International Nuclear Information System (INIS)

    Khattak, C.P.; Lai, S.T.

    1989-01-01

    This paper reports single crystals of Ti:LaMgAl 11 O 19 (Ti:LMAO) up to 20 mm length obtained from unseeded ingots grown by the Heat Exchanger Method (HEM). The ingots were grown under reducing atmosphere in order to minimize formation of Ti 4+ . Strong fluorescence centered at 780 nm with a half-width ranging from 700 to 880 nm has been observed. The upper state fluorescence lifetime at room temperature was between 3.7 and 7.6 μs. The main broad-band absorption due to Ti 3+ was centered at 510 nm. In addition, parasitic absorptions at 600 nm and 959 nm have been observed which may be associated with the formation of Ti 2+

  12. Fe-moment instability in Ti{sub 1-x}Sc{sub x}Fe{sub 2} Laves-phase compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ouladdiaf, B. [Institut Laue-Langevin, BP 156, 38042 GRENOBLE Cedex 09 (France); Deportes, J. [Lab. Louis Neel, CNRS, BP 166, 38042 GRENOBLE Cedex 09 (France); Saoudi, M. [Centre Universitaire de Guelma, GUELMA 24 000 (Algeria)

    2002-07-01

    The magnetic properties of the pseudo-binary Laves-phase compounds Ti{sub 1-x}Sc{sub x}Fe{sub 2} were investigated by means of magnetisation and high-resolution powder neutron diffraction techniques. For x<0.2 a transition from an antiferromagnetic state to a canted one with a ferromagnetic component in the basal plane is observed, while for 0.2

  13. Magnetic ground state of Ti{sub 1-x}Sc{sub x}Fe{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Saoudi, M.; Deportes, J.; Ouladdiaf, B. E-mail: ouladdiaf@ill.fr

    2001-06-01

    The magnetic ground states of the Laves phases Ti{sub 1-x}Sc{sub x}Fe{sub 2} system have been investigated by means of powder neutron diffraction and magnetisation techniques. For x=0.23, a transition is observed from a collinear ferromagnet along the c-axis to a canted one at T{sub f}=200 K. For x=0.27, 0.3, 0.33, an additional first-order transition is observed at T{sub t1}{approx}120 K accompanied by a large magnetovolume anomaly associated to a jump of the magnetic moment of the Fe atoms at the 2a site. The magnetic moment instability in a frustrated lattice should be considered to interpret this transition, although most of the other magnetic states can be discussed within Moriya's theory for itinerant electron systems with competing ferromagnetic and antiferromagnetic spin fluctuations.

  14. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying, E-mail: csudengying@163.com [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Peng, Bing [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); Xu, Guofu, E-mail: csuxgf66@csu.edu.cn [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin; Yin, Zhimin; Ye, Rui [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Wang, Yingjun; Lu, Liying [Northeast Light Alloy Co. Ltd., Hei Longjiang, Harbin 150060 (China)

    2015-07-15

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process.

  15. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    International Nuclear Information System (INIS)

    Deng, Ying; Peng, Bing; Xu, Guofu; Pan, Qinglin; Yin, Zhimin; Ye, Rui; Wang, Yingjun; Lu, Liying

    2015-01-01

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al 3 Sc x Zr 1−x particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al 3 Sc x Zr 1−x nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process

  16. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  17. Microstructure and electric characteristics of AETiO3 (AE=Mg, Ca, Sr doped CaCu3Ti4O12 thin films prepared by the sol–gel method

    Directory of Open Access Journals (Sweden)

    Dong Xu

    2015-10-01

    Full Text Available This paper focuses on the effects of alkline-earth metal titante AETiO3 (AE=Mg, Ca, Sr doping on the microstructure and electric characteristics of CaCu3Ti4O12 thin films prepared by the sol–gel method. The results showed that the grain size of CCTO thin films could be increased by MgTiO3 doping. The movement of the grain boundaries was impeded by the second phases of CaTiO3 and SrTiO3 concentrating at grain boundaries in CaTiO3 and SrTiO3 doped CCTO thin films. Rapid ascent of dielectric constant could be observed in 0.1Mg TiO3 doped CCTO thin films, which was almost as three times high as pure CCTO thin film and the descent of the dielectric loss at low frequency could also be observed. In addition, the nonlinear coefficient (α, threshold voltage (VT and leakage current (IL of AETiO3 doped CCTO thin films (AE=Mg, Ca, Sr showed different variation with the increasing content of the MgTiO3, CaTiO3 and SrTiO3.

  18. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Fatimah, Hayyiratul, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my; Wilfred, Cecilia, E-mail: chongfaikait@petronas.com.my, E-mail: hayyiratulfatimah@yahoo.com, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  19. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    Science.gov (United States)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  20. Superior hydrogen storage kinetics of MgH{sub 2} nanoparticles doped with TiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Xie, L. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Liu, Y. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang, Y.T. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zheng, J. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li, X.G. [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China) and College of Engineering, Peking University, Beijing 100871 (China)]. E-mail: xgli@pku.edu.cn

    2007-08-15

    MgH{sub 2} nanoparticles were obtained by hydriding ultrafine magnesium particles which were prepared by hydrogen plasma-metal reaction. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results show that the obtained sample is almost pure MgH{sub 2} phase, without residual magnesium and with an average particle size of {approx}300 nm. Milled with 5 wt.% TiF{sub 3} as a doping precursor in a hydrogen atmosphere, the sample desorbed 4.5 wt.% hydrogen in 6 min under an initial hydrogen pressure of {approx}0.001 bar at 573 K and absorbed 4.2 wt.% hydrogen in 1 min under {approx}20 bar hydrogen at room temperature. Compared with MgH{sub 2} micrometer particles doped with 5 wt.% TiF{sub 3} under the same conditions as the MgH{sub 2} nanoparticles, it is suggested that decrease of particle size is beneficial for enhancing absorption capacity at low temperatures, but has no effect on desorption. In addition, the catalyst was mainly responsible for improving the sorption kinetics and its catalytic mechanism is discussed.

  1. Comparative study of thermoluminescent properties of LiF: Mg, Cu, P, LiF: Mg, Ti and TLD-100 irradiated with X-rays

    International Nuclear Information System (INIS)

    Azorin, J.; Rivera, T.; Gonzalez, P.; Ortega, X.; Ginjaume, M.

    2000-01-01

    The thermoluminescent properties (Tl) of LiF: Mg, Cu, P, and LiF: Mg, Ti, were investigated both developed in Mexico and comparing them with the properties of TLD-100 when they are exposure to X-rays. The Tl curve of LiF: Mg, Cu, P exhibited two peaks at 200 and 300 Centigrade. Its response Tl in function of dose resulted linear in the interval of 0.5 Gy until 5 Gy and its sensitivity to X-ray was around 25 times greater that of the TLD-100. Also it was measured the Tl response of the three materials in function of photon energy. The results showed that LiF: Mg, Cu, P has potential to be used as X-ray dosemeter. (Author)

  2. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Wang, Qingxiao; Zhu, Yihan; Alshareef, Husam N.; Kim, Moon J.; Gnade, Bruce E.

    2016-01-01

    We present a detailed study of post-deposition annealing effects on contact resistance of Au, Ti, Hf and Ni electrodes on Mg2Si thin films. Thin-film Mg2Si and metal contacts were deposited using magnetron sputtering. Various post

  3. In-situ observation of recrystallization in an AlMgScZr alloy using confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Taendl, J.; Nambu, S.; Orthacker, A.; Kothleitner, G.; Inoue, J.; Koseki, T.; Poletti, C.

    2015-01-01

    In this work we present a novel in-situ approach to study the recrystallization behavior of age hardening alloys. We use confocal laser scanning microscopy (CLSM) at 400 °C to investigate the static recrystallization of an AlMg4Sc0.4Zr0.12 alloy in-situ. The results are combined with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses. It was found that CLSM is a powerful tool to visualize both the local initiation and temporal sequence of recrystallization. After fast nucleation and initial growth, the grain growth rate decreases and the grain boundary migration stops after some minutes due to Zener pinning from Al 3 (Sc,Zr) precipitates produced during the heat treatment. EBSD and TEM analyses confirm both the boundary movements and the particle-boundary interactions. - Highlights: • First time that CLSM is used to study recrystallization in-situ. • The start and end of recrystallization can be directly observed. • The procedure is easy to apply and requires only simple data interpretation. • In-situ observations on the surface correlate to modifications inside the bulk. • In-situ observations correlate to EBSD and EFTEM analyses.

  4. In-situ observation of recrystallization in an AlMgScZr alloy using confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taendl, J., E-mail: johannes.taendl@tugraz.atl [Institute of Materials Science and Welding, Graz University of Technology, Graz (Austria); Nambu, S. [Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Orthacker, A.; Kothleitner, G. [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz (Austria); Graz Center for Electron Microscopy, Graz (Austria); Inoue, J.; Koseki, T. [Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Poletti, C. [Institute of Materials Science and Welding, Graz University of Technology, Graz (Austria)

    2015-10-15

    In this work we present a novel in-situ approach to study the recrystallization behavior of age hardening alloys. We use confocal laser scanning microscopy (CLSM) at 400 °C to investigate the static recrystallization of an AlMg4Sc0.4Zr0.12 alloy in-situ. The results are combined with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses. It was found that CLSM is a powerful tool to visualize both the local initiation and temporal sequence of recrystallization. After fast nucleation and initial growth, the grain growth rate decreases and the grain boundary migration stops after some minutes due to Zener pinning from Al{sub 3}(Sc,Zr) precipitates produced during the heat treatment. EBSD and TEM analyses confirm both the boundary movements and the particle-boundary interactions. - Highlights: • First time that CLSM is used to study recrystallization in-situ. • The start and end of recrystallization can be directly observed. • The procedure is easy to apply and requires only simple data interpretation. • In-situ observations on the surface correlate to modifications inside the bulk. • In-situ observations correlate to EBSD and EFTEM analyses.

  5. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3

    International Nuclear Information System (INIS)

    Biegalski, M. D.; Trolier-McKinstry, S.; Schlom, D. G.; Fong, D. D.; Eastman, J. A.; Fuoss, P. H.; Streiffer, S. K.; Heeg, T.; Schubert, J.; Tian, W.; Nelson, C. T.; Pan, X. Q.; Hawley, M. E.; Bernhagen, M.; Reiche, P.; Uecker, R.

    2008-01-01

    Strained epitaxial SrTiO 3 films were grown on orthorhombic (101) DyScO 3 substrates by reactive molecular-beam epitaxy. The epitaxy of this substrate/film combination is cube on cube with a pseudocubic out-of-plane (001) orientation. The strain state and structural perfection of films with thicknesses ranging from 50 to 1000 A were examined using x-ray scattering. The critical thickness at which misfit dislocations was introduced was between 350 and 500 A. These films have the narrowest rocking curves (full width at half maximum) ever reported for any heteroepitaxial oxide film (0.0018 deg.). Only a modest amount of relaxation is seen in films exceeding the critical thicknesses even after postdeposition annealing at 700 deg. C in 1 atm of oxygen. The dependence of strain relaxation on crystallographic direction is attributed to the anisotropy of the substrate. These SrTiO 3 films show structural quality more typical of semiconductors such as GaAs and silicon than perovskite materials; their structural relaxation behavior also shows similarity to that of compound semiconductor films

  6. Investigating the large degeneracy Kondo lattice metamagnet CeTiGe: Crystal growth and doping studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, T.; Caroca-Canales, N.; Deppe, M.; Geibel, C. [MPI fuer Chemische Physik fester Stoffe, 01187, Dresden (Germany); Sereni, J. [Centro Atomico Bariloche, 8400, S. C. de Bariloche (Argentina)

    2011-07-01

    CeTiGe is a paramagnetic Kondo lattice system with a large orbital degeneracy involved in the formation of the heavy Fermion ground state. Recently we discovered that this compound presents a huge metamagnetic transition at B{sub MMT} {approx} 13 T, with much larger anomalies in magnetization, magnetoresistance and magnetostriction than in the archetypical Kondo lattice metamagnet CeRu{sub 2}Si{sub 2}. Since CeTiGe forms in a pronounced peritectic reaction the growth of single crystals is difficult. We therefore studied the Ce-Ti-Ge ternary metallographic phase diagram to get a sound basis for future crystal growth attempts. Preliminary results of growth experiments based on these studies are promising and shall be discussed. Furthermore, Ti-rich CeTiGe was recently reported to present a high temperature phase crystallizing in the closely related CeScSi structure type. In order to study this structural instability and the effect on the physical properties, we studied the effect of substituting Sc for Ti, since pure CeScGe crystallizes in the CeScSi structure type. In well annealed samples we observed a two phase region in the range 10% - 25%-Sc-substitution. Preliminary investigations of the CeSc{sub x}Ti{sub 1-x}Ge alloy suggest it is a promising candidate for the observation of a ferromagnetic quantum critical point in a large degeneracy Kondo lattice system.

  7. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg-Zn-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, S.S.; Zhang, R.R. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China); Guan, S.K., E-mail: skguan@zzu.edu.cn [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China); Ren, C.X.; Gao, J.H.; Lu, Q.B.; Cui, X.Z. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China)

    2012-02-01

    In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of {approx}1.5 {mu}m, including an outer Ti-O film of {approx}250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF{sub 2}), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (E{sub corr}) of -1.60 V and a corrosion current density (I{sub corr}) of 0.17 {mu}A/cm{sup 2}, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 k{Omega} cm{sup 2} for the Ti-O coated sample and 0.42 k{Omega} cm{sup 2} for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.

  8. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg-Zn-Y-Nd alloy

    International Nuclear Information System (INIS)

    Hou, S.S.; Zhang, R.R.; Guan, S.K.; Ren, C.X.; Gao, J.H.; Lu, Q.B.; Cui, X.Z.

    2012-01-01

    In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF 2 ), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (E corr ) of -1.60 V and a corrosion current density (I corr ) of 0.17 μA/cm 2 , which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm 2 for the Ti-O coated sample and 0.42 kΩ cm 2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.

  9. Formation of long-period stacking ordered structures in Mg88M5Y7 (M = Ti, Ni and Pb) casting alloys

    International Nuclear Information System (INIS)

    Jin, Qian-Qian; Fang, Can-Feng; Mi, Shao-Bo

    2013-01-01

    Highlights: •Apart from 18R-LPSO, 14H-LPSO structure was determined in the Mg-Ni-Y alloys. •The appearance of twin-related structure in 18R-LPSO structure results from the stacking faults in the stacking sequence of the closely packed planes. •A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure was determined in the Mg-Pb-Y alloy. •No LPSO structures were found in the Mg-Pb-Y and Mg-Ti-Y casting alloys. -- Abstract: Formation of long-period stacking ordered (LPSO) structures is investigated in Mg 88 M 5 Y 7 (M = Ti, Ni and Pb) casting alloys by means of electron microscopy and X-ray diffraction. In the Mg 88 Ni 5 Y 7 casting alloy, 14H-LPSO structure is observed in a small amount, which coexists with 18R-LPSO structure. The appearance of stacking faults in 18R-LPSO structure results in twin-related structure in the stacking sequence of the closely packed planes. A new (Pb, Mg) 2 Y phase with a body-centered orthorhombic structure is determined in the Mg 88 Pb 5 Y 7 alloy. No LPSO structures are found in the Mg 88 Pb 5 Y 7 and Mg 88 Ti 5 Y 7 casting alloys. In terms of the atomic radius and heat of mixing, the formation ability of LPSO structure in the present alloys is discussed

  10. Theoretical study of phase stability and elastic properties of T0.75Y0.75B14 (T  =  Sc, Ti, V, Y, Zr, Nb, Si)

    International Nuclear Information System (INIS)

    Hunold, Oliver; Music, Denis; Schneider, Jochen M

    2016-01-01

    In this study the phase stability, elastic properties, and plastic behaviour of icosahedral transition metal borides T 0.75 Y 0.75 B 14 (T  =  Sc, Ti, V, Y, Zr, Nb, Si) have been investigated using density functional theory. Phase stability critically depends on the charge transferred by T and Y to the B icosahedra. For the metal sublattice occupancy investigated here, the minimum energy of formation is identified at an effective B icosahedra charge of  −1.8  ±  0.1. This charge corridor encompasses the highest phase stability among all the reported icosahedral transition metal boride systems so far. This data provides guidance for future experimental efforts: from a wear-resistance point of view, Sc 0.75 Y 0.75 B 14 , Ti 0.75 Y 0.75 B 14 , and Zr 0.75 Y 0.75 B 14 exhibit a rather unique and attractive combination of large Young’s modulus values ranging from 488 to 514 GPa with the highest phase stability for icosahedral transition metals borides reported so far. (paper)

  11. Fe, Cr, Ni, Cu, Mg, Al, Ti, and S contents in plants and soil of heaps of nickel smelting works

    Energy Technology Data Exchange (ETDEWEB)

    Banasova, V; Hajduk, J

    1977-01-01

    The writers established the Fe, Ce, Cr, Ni, Ca, Mg, Al, Ti and S contents in the neopedon of heaps piling up from processing of nickel ore as well as in the plants: Cardaria draba, Salsola cali, Agropyrum repens, Bromus erectus, Calamagrostis epigeios, Cynodon dactylon and Matricaria inodora, growing on such heaps. Ca, Mg and S contents were found to be higher in dicotyledons and Fe, Al, Ti, Ni and Cr contents higher in monocotyledons. The analyzed dicotyledons appeared to be concentrators of Ca and S. Highest Fe, Al, Ti, Ni and Cr contents were found in individuals of the species Agropyrum repens. The neopedon as well as the plants had extraordinarily high Cr concentrations. The species Salsola cali has been found to possess an unusually higher affinity to the dump substrate after processing of nickel ore and to be a concentrator of Mg. 16 references, 1 table.

  12. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and microhardness of a cast Al-10wt%Mg (henceforth Al-l0Mg) alloy with 0.2wt% addition of Al-5Ti-0.25C master alloy were compared with those of a refiner-free alloy of similar chemical composition.It was found that this level of the master alloy addition not only caused an effective grain refinement, but also caused a significant increase in the microhardness of the Al-10Mg alloy.Microchemical analysis revealed that TiC particles existed in the grain center.The relationship between the holding time and grain size was also studied.It shows that the grain refining efficiency is faded observably with the holding time.This is explained in terms of the instability of TiC particles.

  13. Non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} on dehydrogenation high-energy ball milled MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hou, Xiaojiang; Hu, Rui; Kou, Hongchao; Li, Jinshan

    2016-11-01

    MgH{sub 2}-M (M = TiF{sub 3} or Nb{sub 2}O{sub 5} or both of them) composites prepared by high-energy ball milling are used in this work to illustrate the dehydrogenation behavior of MgH{sub 2} with the addition of catalysts. The phase compositions, microstructures, particle morphologies and distributions of MgH{sub 2} with catalysts have been evaluated. The non-isothermal synergetic catalytic-dehydrogenation effect of TiF{sub 3} and Nb{sub 2}O{sub 5} evaluated by differential scanning calorimetry gives the evidences that the addition of catalysts is an effective strategy to destabilize MgH{sub 2} and reduce hydrogen desorption temperatures and activation energies. Depending on additives, the desorption peak temperatures of catalyzed MgH{sub 2} reduce from 417 °C to 341 °C for TiF{sub 3} and from 417 °C to 336 °C for Nb{sub 2}O{sub 5}, respectively. The desorption peak temperature reaches as low as 310 °C for MgH{sub 2} catalyzed by TiF{sub 3} coupling with Nb{sub 2}O{sub 5}. The non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} is mainly attributed to electronic exchange reactions with hydrogen molecules, which improve the recombination of hydrogen atoms during dehydrogenation process of MgH{sub 2}. - Highlights: • Catalytic surface for MgH{sub 2} is achieved by high-energy ball milling. • Non-isothermal dehydrogenation behavior of MgH{sub 2} with TiF{sub 3} and/or Nb{sub 2}O{sub 5} is illustrated. • Dehydrogenation activation energies of synergetic catalyzed MgH{sub 2} are obtained. • Synergetic catalytic-dehydrogenation mechanism of TiF{sub 3} and Nb{sub 2}O{sub 5} is proposed.

  14. Some dosimetric properties of the LiF:Mg,Ti evaluated by the automatic 6600 thermoluminescent reader

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shachar, B; Weinstein, M; German, U [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Some dosimetric properties of the new LiF:Mg,Ti TLD cards were checked, when evaluated by the new automatic 6600 TLD reader. The cards were calibrated to a dose of 1.0 mGy by five identical irradiations, and the TL-dose response was measured for a range of 75 - 1100 mGy. A very high accuracy was found for the three kind of chips measured (TLD-100, TLD-700 and TLD-600) and a low minimum measurable dose (MMD) was found, too. There is a good fit between the analytical evaluation and the theoretical calculation of the MMD. The results obtained are much better than those of the LiF:Mg,Ti cards evaluated by the older automatic 2271 reader used in the last two decades (authors).

  15. Properties of the 4.45 eV optical absorption band in LiF:Mg, Ti

    International Nuclear Information System (INIS)

    Nail, I.; Oster, L.; Horowitz, Y. S.; Biderman, S.; Belaish, Y.

    2006-01-01

    The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti. (authors)

  16. Study of LiTiMg-ferrite radome for the application of satellite communication

    International Nuclear Information System (INIS)

    Saxena, Naveen Kumar; Kumar, Nitendar; Pourush, P.K.S.

    2010-01-01

    In this paper the characteristics of LiTiMg-ferrite radome are presented. A thin layer of LiTiMg-ferrite is used as superstrate or radome, which controls the radiation, reception, and scattering from a printed antenna or array by applying a dc magnetic bias field in the plane of the ferrite, orthogonal to the RF magnetic field. In this analysis absorbing and transmission power coefficients are calculated to obtain the power loss and transmitted power through the radome layer respectively. The absorbing power coefficient verifies the switching behavior of radome for certain range of applied external magnetic field (Ho), which depends on the resonance width parameter (ΔH) of ferrite material. By properly choosing the bias field, electromagnetic wave propagation in the ferrite layer can be made zero or negligible over a certain frequency range, resulting in switching behavior of the ferrite layer. In this communication we also show precise preparation of radome layer and present its electric and magnetic properties along with its Curie temperature, which shows the working efficiency of layer under extreme situation. This radome layer can be very useful for the sensitive and smart communication systems.

  17. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure

    Directory of Open Access Journals (Sweden)

    T.S. Yang

    2018-01-01

    Full Text Available Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  18. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure.

    Science.gov (United States)

    Yang, T S; Yao, S H; Chang, Y Y; Deng, J H

    2018-01-08

    Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  19. β decay and isomeric properties of neutron-rich Ca and Sc isotopes

    International Nuclear Information System (INIS)

    Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Stoker, J. B.; Janssens, R. V. F.; Carpenter, M. P.; Kay, B. P.; Lauritsen, T.; Zhu, S.; Broda, R.; Cieplicka, N.; Fornal, B.; Grinyer, G. F.; Minamisono, K.; Hoteling, N.; Stefanescu, I.; Walters, W. B.

    2010-01-01

    The isomeric and β-decay properties of neutron-rich 53-57 Sc and 53,54 Ca nuclei near neutron number N=32 are reported, and the low-energy level schemes of 53,54,56 Sc and 53-57 Ti are presented. The low-energy level structures of the 21 Sc isotopes are discussed in terms of the coupling of the valence 1f 7/2 proton to states in the corresponding 20 Ca cores. Implications with respect to the robustness of the N=32 subshell closure are discussed, as well as the repercussions for a possible N=34 subshell closure.

  20. Development of bonding techniques for cryogenic components (2). HIP bonding between Cu Alloys and Ti, cryogenic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Ouchi, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchiya, Yoshinori; Nakajima, Hideo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    Several joints between dissimilar materials are required in the superconducting (SC) magnet system of SC linear accelerator or fusion reactor, Pure titanium (Ti) is one of candidate materials for a jacket of SC coil of fusion reactor because Ti is non-magnetic material and has a feature that its thermal expansion is similar to SC material in addition to good corrosion resistance and workability. Also, Ti does not require strict control of environment during reaction heat treatment of SC material. Copper (Cu) or Cu-alloy is used in electrical joints and cryogenic stainless steel (SS) is used in cryogenic pipes. Therefore, it is necessary to develop new bonding techniques for joints between Ti, Cu, and SS because jacket, electrical joint and cryogenic pipe have to be bonded each other to cool SC coils. Japan Atomic Energy Research Institute (JAERI) has started to develop dissimilar material joints bonded by hot isostatic pressing (HIP), which can bring a high strength joint with good tolerance and can applied to a large or complex geometry device. HIP conditions for Cu-Ti, Cu alloy-Ti, Cu alloy-SS were investigated in this study and most stable HIP condition were evaluated by microscopic observation, tensile and bending tests at room temperature. (author)

  1. Localized transitions in the thermoluminescence of LiF : Mg,Ti: potential for nanoscale dosimetry

    CERN Document Server

    Horowitz, Y S; Biderman, S; Einav, Y

    2003-01-01

    We describe the effect of nanoscale spatially coupled trapping centre (TC)-luminescent centre (LC) pairs on the thermoluminescence (TL) properties of LiF : Mg,Ti. It is shown that glow peak 5a (a low-temperature satellite of the major glow peak 5) arises from localized electron-hole (e-h) recombination in a TC-LC pair believed to be based on Mg sup 2 sup + -Li sub v sub a sub c trimers (the TCs) coupled to Ti(OH) sub n molecules (the LCs). Due to the localized nature of the e-h pair, two important properties are affected: (i) heavy charged particle (HCP) TL efficiency: the intensity of peak 5a relative to peak 5 following HCP high-ionization density irradiation is greater than that following low ionization density irradiation in a manner somewhat similar to the ionization density dependence of the yield of double-strand breaks (DSBs) induced in DNA. Our experimental measurements in a variety of HCP and fast neutron radiation fields have demonstrated that the ratio of glow peaks 5a/5 is nearly independent of p...

  2. Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Manan Abdul

    2015-03-01

    Full Text Available Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.

  3. Luminescent emission of LiF: Mg, Ti exposed to UV radiation; Emision luminiscente del LiF: Mg, Ti expuesto a la radiacion UV

    Energy Technology Data Exchange (ETDEWEB)

    Estrada G, A. [Estudiante de Facultad de Ciencias, UNAM, Circuito Exterior, 04500 Mexico D.F. (Mexico); Castano M, V.M. [Centro de Fisica Aplicada y Tecnologia Avanzada, UNAM, Campus Juriquilla, Queretaro (Mexico); Cruz Z, E.; Garcia F, F. [Instituto de Ciencias Nucleares UNAM, A.P. 70-543 Mexico D.F. (Mexico)

    2002-07-01

    It was investigated the luminescent emission stimulated by heat (Tl) of LiF: Mg, Ti crystals which were exposed to UV radiation coming from a mercury lamp. Since this crystal depends on the thermal history, it has been used a thermal treatment consisting of a baking at 380 C during one hour for each reading and they were irradiated with UV. The brilliance curves between 5 and 840 minutes of exposure in the face of UV light were obtained. An important loss in the response, starting from 150 minutes of irradiation was observed. Also the relative intensity of the brilliance curve decay when the crystals being stored in darkness and room temperature conditions, which is according to the results in the literature about. (Author)

  4. Interference of intrinsic UV response of LiF:Mg,Ti (Poland) pellets in dose reassessment

    International Nuclear Information System (INIS)

    Bhasin, B.D.; Kalyane, G.N.; Kathuria, S.P.; Sunta, C.M.

    1987-01-01

    The thermoluminescence (TL) behaviour of sintered pellets of LiF:Mg,Ti (Poland) (LiF(P)) is markedly different from that of LiF:Mg,Ti TLD-100 (Harshaw) phosphor as far as their intrinsic responses to ultraviolet (UV) (253.7 nm) radiation are concerned. The intrinsic response of LiF(P) phosphor is very much dependent on the physical form of the phosphor. In addition, it is highly sensitive to any changes in experimental conditions such as the nature of the atmosphere during readout, the pre-heat and the readout history of the phosphor. The high intrinsic UV response (IUVR) of LiF(P) interferes in the dose reassessment by the PTTL (photo-transferred thermoluminescence) technique. Nevertheless, a fortuitous situation exists wherein a PTTL dosimetry peak signal is seen clearly over-riding the IUVR valley at the corresponding point of the glow curve. A procedure to correct for the IUVR interference and to re-estimate the dose by the PTTL technique is described. (author)

  5. Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA.

    Science.gov (United States)

    Tanimura, Y; Saegusa, J; Shikaze, Y; Tsutsumi, M; Shimizu, S; Yoshizawa, M

    2007-01-01

    The 8 and 27 keV monoenergetic neutron calibration fields have been developed by using (45)Sc(p, n)(45)Ti reaction. Protons from a 4-MV Pelletron accelerator are used to bombard a thin scandium target evaporated onto a platinum disc. The proton energies are finely adjusted to the resonance to generate the 8 and 27 keV neutrons by applying a high voltage to the target assemblies. The neutron energies were measured using the time-of-flight method with a lithium glass scintillation detector. The neutron fluences at a calibration point located at 50 cm from the target were evaluated using Bonner spheres. A long counter was placed at 2.2 m from the target and at 60 degrees to the direction of the proton beam in order to monitor the fluence at the calibration point. Fluence and dose equivalent rates at the calibration point are sufficient to calibrate many types of the neutron survey metres.

  6. Production of a {sup 44} Ti target and its cross section of thermal neutron capture; Producao de um alvo de {sup 44} Ti e sua secao de choque para captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Ejnisman, R

    1994-12-31

    A study of the production of a {sup 44} Ti target was carried out aiming the determination of its thermal neutron capture cross-section. With this purpose, the cross-section of the reaction {sup 45} Sc(p,2 n) {sup 44} Ti was determined in the energies 16-, 18-, 20-22- and 45 MeV. The cross-section of the reactions (p,n) {sup 45} Ti, (p,pn) {sup 44m} Sc, (p,pn) {sup 44g} Sc and (p,p2n){sup 43} Sc were also measured. The results in the low energy region are in good agreement with a previous work by McGee et al. On the other hand, the cross-section at 45 MeV is different from McGee`s result and indicates the existence of an abnormal behavior of the excitation function at higher energies. Furthermore, a radiochemical separation method was developed in order to eliminate Sc from the {sup 44} Ti target which was irradiated with neutrons. It was possible to determine an upper limit for the cross-section of the reaction {sup 44} Ti (n, {gamma}) of 4 x 10{sup 3} b. At last, it is presented a discussion of the results obtained and their possible astrophysical implications. (author) 94 refs.

  7. Enhanced photoluminescence and thermal stability of divalent ions (Zn2+, Mg2+) assisted CaTiO3:Eu3+ perovskite phosphors for lighting applications

    Science.gov (United States)

    Singh, Dhananjay Kumar; Manam, J.

    2018-03-01

    Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ΔEa were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd-Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.

  8. Cyclotron production of {sup 44}Sc for clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, S.; Bilewicz, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Cydzik, I. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); European Commission Joint Research Center, Ispra (Italy). Inst. for Health and Consumer Protection; Warsaw Univ. (Poland). Heavy Ion Lab.; Abbas, K. [European Commission Joint Research Center, Ispra (Italy). Institute for Transuranium Elements; Bulgheroni, A.; Simonelli, F.; Holzwarth, U. [European Commission Joint Research Center, Ispra (Italy). Inst. for Health and Consumer Protection

    2013-08-01

    {sup 44} is a promising {beta}{sup +}-emitter for molecular imaging with intermediate half-life of 4 h. Due to the chemical similarity of Sc{sup 3+} to the Lu{sup 3+} and Y{sup 3+} cations, {sup 44}Sc-DOTA bioconjugates are expected to demonstrate similar properties in vivo as the {sup 177}Lu- and {sup 90}Y-bioconjugates, what is important in planning the radionuclide therapy. {sup 44}Sc can be obtained from the {sup 44}Ti/{sup 44}Sc generator. An alternative method for {sup 44}Sc production can be the irradiation of {sup 44}Ca target at small cyclotrons. The aim of our work was to optimize the parameters of {sup 44}CaCO{sub 3} irradiation and to develop a simple procedure for {sup 44}Sc separation from the calcium target. For optimization study, {sup 44}CaCO{sub 3} targets were irradiated by protons in the energy range of 5.6-17.5 MeV with 9 MeV being found to be the best energy for {sup 44}Ca irradiations. A simple and fast separation procedure of {sup 44}Sc from calcium target was developed using chelating resin Chelex 100. DOTATATE conjugate was successfully radiolabelled with high yield at elevated temperature using the produced {sup 44}Sc. While {sup 44}CaCO{sub 3} is relatively expensive, the cost of {sup 44}Sc-DOTATATE production can be reduced by target recovery. Due to low proton energy required to produce GBq activity level of {sup 44}Sc, the availability of {sup 44}Sc radioisotope could be enhanced to open new opportunities for applications in medical imaging. (orig.)

  9. Randomized, double-blind, crossover study comparing DFN-11 injection (3 mg subcutaneous sumatriptan) with 6 mg subcutaneous sumatriptan for the treatment of rapidly-escalating attacks of episodic migraine.

    Science.gov (United States)

    Cady, Roger K; Munjal, Sagar; Cady, Ryan J; Manley, Heather R; Brand-Schieber, Elimor

    2017-12-01

    A 6-mg dose of SC sumatriptan is the most efficacious and fast-acting acute treatment for migraine, but a 3-mg dose of SC sumatriptan may improve tolerability while maintaining efficacy. This randomized, double-blind, crossover study compared the efficacy and tolerability of 3 mg subcutaneous (SC) sumatriptan (DFN-11) with 6 mg SC sumatriptan in 20 adults with rapidly-escalating migraine attacks. Eligible subjects were randomized (1:1) to treat 1 attack with DFN-11 and matching placebo autoinjector consecutively or 2 DFN-11 autoinjectors consecutively and a second attack similarly but with the alternative dose (3 mg or 6 mg). The proportions of subjects who were pain-free at 60 min postdose, the primary endpoint, were similar following treatment with 3 mg SC sumatriptan and 6 mg SC sumatriptan (50% vs 52.6%, P  =  .87). The proportions of subjects experiencing pain relief (P  ≥  .48); reductions in migraine pain intensity (P  ≥  .78); and relief from nausea, photophobia, or phonophobia (P  ≥  .88) with 3 mg SC sumatriptan and 6 mg SC sumatriptan were similar, as were the mean scores for satisfaction with treatment (M  =  2.6 vs M  =  2.4, P  =  .81) and the mean number of rescue medications used (M  =  .11 vs M  =  .26, P  =  .32). The most common adverse events with the 3- and 6-mg doses were triptan sensations - paresthesia, neck pain, flushing, and involuntary muscle contractions of the neck - and the incidence of adverse events with both doses was similar (32 events total: 3 mg, n  =  14 [44%]; 6 mg, n  =  18 [56%], P  =  .60). Triptan sensations affected 4 subjects with the 6-mg dose only, 1 subject with the 3-mg dose only, and 7 subjects with both sumatriptan doses. Chest pain affected 2 subjects (10%) treated with the 6-mg dose and no subjects (0%) treated with the 3-mg dose of DFN-11. There were no serious adverse events. The 3-mg SC dose

  10. Ceramic thick film humidity sensor based on MgTiO3 + LiF

    International Nuclear Information System (INIS)

    Kassas, Ahmad; Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand; Lakiss, Hassan; Hamieh, Tayssir

    2013-01-01

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO 3 + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO 3 /LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time

  11. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu, E-mail: miyasaka@toin.ac.jp [Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8502 (Japan)

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  12. Investigation of LiF, Mg and Ti (TLD-100) Reproducibility.

    Science.gov (United States)

    Sadeghi, M; Sina, S; Faghihi, R

    2015-12-01

    LiF, Mg and Ti cubical TLD chips (known as TLD-100) are widely used for dosimetry purposes. The repeatability of TL dosimetry is investigated by exposing them to doses of (81, 162 and 40.5 mGy) with 662keV photons of Cs-137. A group of 40 cubical TLD chips was randomly selected from a batch and the values of Element Correction Coefficient (ECC) were obtained 4 times by irradiating them to doses of 81 mGy (two times), 162mGy and 40.5mGy. Results of this study indicate that the average reproducibility of ECC calculation for 40 TLDs is 1.5%, while these values for all chips do not exceed 5%.

  13. Critical thickness of high structural quality SrTiO{sub 3} films grown on orthorhombic (101) DyScO{sub 3}.

    Energy Technology Data Exchange (ETDEWEB)

    Biegalski, M. D.; Trolier-McKinstry, S.; Nelson, C. T.; Schlom, D. G.; Fong, D. D.; Eastman, J. A.; Fuoss, P. H.; Streiffer, S. K.; Heeg, T.; Schubert, J.; Tian, W.; Pan, X. Q.; Hawley, M. E.; Bernhagen, M.; Reiche, P.; Uecker, R.; Pennsylvania State Univ.; Forschungszentrum Julich; Univ. Michigan; LANL; Max-Born-Strabe

    2008-12-01

    Strained epitaxial SrTiO{sub 3} films were grown on orthorhombic (101) DyScO{sub 3} substrates by reactive molecular-beam epitaxy. The epitaxy of this substrate/film combination is cube on cube with a pseudocubic out-of-plane (001) orientation. The strain state and structural perfection of films with thicknesses ranging from 50 to 1000 {angstrom} were examined using x-ray scattering. The critical thickness at which misfit dislocations was introduced was between 350 and 500 {angstrom}. These films have the narrowest rocking curves (full width at half maximum) ever reported for any heteroepitaxial oxide film (0.0018{sup o}). Only a modest amount of relaxation is seen in films exceeding the critical thicknesses even after postdeposition annealing at 700 C in 1 atm of oxygen. The dependence of strain relaxation on crystallographic direction is attributed to the anisotropy of the substrate. These SrTiO{sub 3} films show structural quality more typical of semiconductors such as GaAs and silicon than perovskite materials; their structural relaxation behavior also shows similarity to that of compound semiconductor films.

  14. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    Science.gov (United States)

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  15. Study on the water durability of zinc boro-phosphate glasses doped with MgO, Fe2O3, and TiO2

    Science.gov (United States)

    Hwang, Moon Kyung; Ryu, Bong Ki

    2016-07-01

    The water durability of zinc boro-phosphate (PZB) glasses with the composition 60P2O5-20ZnO-20B2O3- xMeO ( x = 0, 2, 4, 6 and MeO = MgO, Fe2O3, or TiO2) (mol%) was measured, and PZB glass was studied in terms of its thermal properties, density, and FTIR characteristics. The surface conditions and corrosion byproducts were analyzed using scanning electron microscopy. When MgO, Fe2O3, and TiO2 were doped into the PZB glass, Q2 was decreased and Q1 was increased in the phosphate structure, while the number of BO4 structures increased with increasing MeO content. The density of the PZB glass was increased by the addition of Fe2O3 and TiO2, while the glass transition temperature ( T g ) and dilatometric softening temperature ( T d ) were increased when additional MgO, Fe2O3, and TiO2 were added. From the weight loss analysis (95 ◦ C, 96 h), TiO2 doped glass showed the lowest weight loss (1.70 × 10 -3 g/cm2) while MgO doped glass showed the highest value (2.44 × 10 -3 g/cm2), compared with PZB glass (3.07 × 10 -3 g/cm2). These results were discussed in terms of the Me n+ ions in the glass structure, and their different coordination numbers and bonding strengths.

  16. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting

    Science.gov (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  17. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Toft Sørensen, O.

    1998-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a PO2 dependence according to R proportional to PO2-1/4 in the considered PO2 range(2.5 x 10(-5) bar

  18. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  19. 45Ti extraction using hydroxamate resin

    DEFF Research Database (Denmark)

    Gagnon, K.; Severin, Gregory; Barnhart, T. E.

    2012-01-01

    As an attractive radionuclide for positron emission tomography, this study explores the extraction and reactivity of 45Ti produced via the 45Sc(p,n)45Ti reaction on a GE PETtrace. Using a small hydroxamate column, we have demonstrated an overall recovery of >50% of 45Ti in ~1 mL of 1M oxalic acid...

  20. Ab initio study on the thermal properties of the fcc Al3Mg and Al3Sc alloys

    International Nuclear Information System (INIS)

    Li Donglin; Chen Ping; Yi Jianxiong; Tang Biyu; Peng Liming; Ding Wenjiang

    2009-01-01

    Ab initio density functional theory (DFT) and density function perturbation theory (DFPT) have been used to investigate the thermal properties of the fcc Al 3 Mg and Al 3 Sc alloys over a wide range of pressure and temperature, in comparison with fcc Al. Phonon dispersions were obtained at equilibrium and strained configurations by density functional perturbation theory. Using the quasiharmonic approximation for the free energy, several thermal quantities of interest, such as the thermal Grueneisen parameter, heat capacity, thermal expansion coefficient and entropy, were calculated as a function of temperature and pressure, and the variation features of these quantities were discussed in detail. This investigation provides useful information for design and applications of technologically relevant Al-based alloys.

  1. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method

    International Nuclear Information System (INIS)

    Wang Wei; Qiao Xueliang; Chen Jianguo; Tan Fatang

    2008-01-01

    Ti-doped MgO nanopowders were prepared via a chemical coprecipitation method using acetic acid as a modifier in the presence of the surfactant polyethylene glycol (PEG 400). The as-obtained products were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results show that titanium atoms have been successfully incorporated into the crystal lattice of MgO with periclase structure. The modifier, acetic acid, can significantly reduce the particle size, and improve size distribution and dispersion of nanoparticles. In addition, the effect of doped titanium on the structure and morphology of magnesium oxide was also investigated

  2. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics

    2016-08-01

    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  3. Growth of thin films of TiN on MgO(100) monitored by high-pressure RHEED

    DEFF Research Database (Denmark)

    Pryds, Nini; Cockburn, D.; Rodrigo, Katarzyna Agnieszka

    2008-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the initial growth of titanium nitride (TiN) thin films on single-crystal (100) MgO substrates by pulsed laser deposition (PLD). This is the first RHEED study where the growth of TiN films...... electron microscopy. These observations are in good agreement with the three-dimensional Volmer-Weber growth type, by which three-dimensional crystallites are formed and later cause a continuous surface roughening. This leads to an exponential decrease in the intensity of the specular spot in the RHEED...

  4. Structural and dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering

    Directory of Open Access Journals (Sweden)

    T. Santhosh Kumar

    2014-06-01

    Full Text Available We report the structural, dielectric and leakage current properties of Co doped MgTiO3 thin films deposited on platinized silicon (Pt/TiO2/SiO2/Si substrates by RF magnetron sputtering. The role of oxygen mixing percentage (OMP on the growth, morphology, electrical and dielectric properties of the thin films has been investigated. A preferred orientation of grains along (110 direction has been observed with increasing the OMP. Such evolution of the textured growth is explained on the basis of the orientation factor analysis followed the Lotgering model. (Mg1-xCoxTiO3 (x = 0.05 thin films exhibits a maximum relative dielectric permittivity of ɛr = 12.20 and low loss (tan δ ∼ 1.2 × 10−3 over a wide range of frequencies for 75% OMP. The role of electric field frequency (f and OMP on the ac-conductivity of (Mg0.95Co0.05TiO3 have been studied. A progressive increase in the activation energy (Ea and relative permittivity ɛr values have been noticed up to 75% of OMP, beyond which the properties starts deteriorate. The I-V characteristics reveals that the leakage current density decreases from 9.93 × 10−9 to 1.14 × 10−9 A/cm2 for OMP 0% to 75%, respectively for an electric field strength of 250 kV/cm. Our experimental results reveal up to that OMP ≥ 50% the leakage current mechanism is driven by the ohmic conduction, below which it is dominated by the schottky emission.

  5. Thermoplastic starch composites with TiO2 particles: Preparation, morphology, rheology and mechanical properties.

    Science.gov (United States)

    Ostafińska, A; Mikešová, J; Krejčíková, S; Nevoralová, M; Šturcová, A; Zhigunov, A; Michálková, D; Šlouf, M

    2017-08-01

    Composites of thermoplastic starch (TPS) with titanium dioxide particles (mTiO 2 ; average size 0.1μm) with very homogeneous matrix and well-dispersed filler were prepared by a two-step method, including solution casting (SC) followed by melt mixing (MM). Light and scanning electron microscopy confirmed that only the two-step procedure (SC+MM) resulted in ideally homogeneous TPS/mTiO 2 systems. The composites prepared by single-step MM contained non-plasticized starch granules and the composites prepared by single-step SC suffered from mTiO 2 agglomeration. Dynamic mechanical measurements showed an increase modulus with increasing filler concentration. In TPS containing 3wt.% of mTiO 2 the stiffness was enhanced by >40%. Further experiments revealed that the recommended addition of chitosan or the exchange of mTiO 2 for anisometric titanate nanotubes with high aspect ratio did not improve the properties of the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  7. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Sørensen, Ole Toft

    2000-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a P-o2 dependence according to R proportional to p(o2)(-1/4) in the considered P-o2 range(2.5 x 10(-5) bar

  8. Investigation of LiF, Mg and Ti (TLD-100 Reproducibility

    Directory of Open Access Journals (Sweden)

    Sadeghi M.

    2015-12-01

    Full Text Available LiF, Mg and Ti cubical TLD chips (known as TLD-100 are widely used for dosimetry purposes. The repeatability of TL dosimetry is investigated by exposing them to doses of (81, 162 and 40.5 mGy with 662keV photons of Cs-137. A group of 40 cubical TLD chips was randomly selected from a batch and the values of Element Correction Coefficient (ECC were obtained 4 times by irradiating them to doses of 81 mGy (two times, 162mGy and 40.5mGy. Results of this study indicate that the average reproducibility of ECC calculation for 40 TLDs is 1.5%, while these values for all chips do not exceed 5%.

  9. W-doped TiO2 photoanode for high performance perovskite solar cell

    International Nuclear Information System (INIS)

    Liu, Jinwang; Zhang, Jing; Yue, Guoqiang; Lu, Xingwei; Hu, Ziyang; Zhu, Yuejin

    2016-01-01

    Titanium dioxide (TiO 2 ) with dispersed W-doping shows its capability for efficient electron collection from perovskite to TiO 2 in perovskite solar cell. The conduction band (CB) of TiO 2 moves downward (positive shift) with increasing the tungsten (W) content, which enlarges the energy gap between the CB of TiO 2 and the perovskite. Thus, the efficiency of electron injection from perovskite to TiO 2 is increased. Due to the increased electron injection, W-doped TiO 2 (≤0.2% W content) enhances the short-circuit photocurrent (J sc ) of perovskite solar cell and improves the performance of perovskite solar cell. Perovskite solar cell with 0.1% W-doped photoanode obtains the highest power conversion efficiency (η = 10.6%), which shows enhancement by 13% in J sc and by 17% in η, as compared with the undoped TiO 2 perovskite solar cell.

  10. Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc

    Science.gov (United States)

    Shen, Junjun; Lage, Sara B. M.; Suhuddin, Uceu F. H.; Bolfarini, Claudemiro; dos Santos, Jorge F.

    2018-01-01

    The microstructural evolution during refill friction stir spot welding of an AlMgSc alloy was studied. The primary texture that developed in all regions, with the exception of the weld center, was determined to be 〈110〉 fibers and interpreted as a simple shear texture with the 〈110〉 direction aligned with the shear direction. The material flow is mainly driven by two components: the simple shear acting on the horizontal plane causing an inward-directed spiral flow and the extrusion acting on the vertical plane causing an upward-directed or downward-directed flow. Under such a complex material flow, the weld center, which is subjected to minimal local strain, is the least recrystallized. In addition to the geometric effects of strain and grain subdivision, thermally activated high-angle grain boundary migration, particularly continuous dynamic recrystallization, drives the formation of refined grains in the stirred zone.

  11. Mg-containing hydroxyapatite coatings on Ti-6Al-4V alloy for dental materials

    Science.gov (United States)

    Yu, Ji-Min; Choe, Han-Cheol

    2018-02-01

    In this study, Mg-containing hydroxyapatite coatings on Ti-6A1-4 V alloy for dental materials were researched using various experimental instruments. Plasma electrolytic oxidation (PEO) was performed in electrolytes containing Mg (symbols of specimens: CaP, 5M%, 10M%, and 20M%) at 280 V for 3 min. The electrolyte used for PEO was produced by mixing Ca(CH3COO)2·H2O, C3H7NaCaO6P, and MgCl2·6H2O. The phases and composition of the oxide films were evaluated by X-ray diffraction and field-emission scanning electron microscopy with energy dispersive X-ray spectrometry. The irregularity of the surface, pore size, and number of pores decreased as the Mg concentration increased. The ratio of the areas occupied and not occupied by pores decreased as the Mg concentration increased, with the numbers of both large and small pores decreasing with increasing Mg concentration. The number of particles on the internal surfaces of pores was increased as the Mg content increased. Mg content of all samples containing Mg ions showed higher in the pore outside than that of pore inside, whereas the Ca content was higher inside the pores. The P content of samples with the addition of Mg ions showed higher values inside the pores than outside. The Ca/P and [Mg + Ca]/P molar ratios in the PEO films decreased with Mg content. The crystallite size of anatase was increased with increasing Mg concentration in the solution.

  12. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    Energy Technology Data Exchange (ETDEWEB)

    Kassas, Ahmad, E-mail: a.kassas.mcema@ul.edu.lb [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand [Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Lakiss, Hassan [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Faculty of Engineering, Section III, Hariri Campus, Hadath, Beirut (Lebanon); Hamieh, Tayssir [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon)

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  13. The results of dosimetric type tests on the sample of LiF:Mg,Ti thermoluminescence dosimeters produced in Iran

    International Nuclear Information System (INIS)

    Jafarizadeh, M.; Hosseini Pooya, S. M.; Firoozi, B.; Kamali Shoroodani, A. R.; Mohammadi, Kh.

    2011-01-01

    In this investigation, the standard type tests performed on the LiF:Mg,Ti chip samples which have been produced in Iran. The dosimetry tests are consisting of sensitivity, homogeneity, linearity, reproducibility, minimum measurable dose, self and residual doses. The obtained results show that some of the tests such as sensitivity, minimum measurable dose, self and residual doses fulfill the criteria given by IEC 61066 and ASTM E668 standards; however, the remaining tests show some discrepancies in comparison with the standards. Also the sensitivity was measured to be 0.92 of that of commercially available TLD-100 (Harshaw) sample. So, the produced LiF:Mg,Ti dosimeter can be used in a routine personal/environmental and medical dosimetry with considering its precision.

  14. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  15. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    Science.gov (United States)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  16. Enhanced luminescence in Mg{sup 2+} codoped CaTiO{sub 3}:Eu{sup 3+} phosphor prepared by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vandana, C. Sai; Rudramadevi, B. Hemalatha [Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

    2016-05-23

    CaTiO{sub 3} phosphors doped with Eu{sup 3+} and codoped with Mg{sup 2+} were prepared by Solid State Reaction method. The powders were characterized by X-ray diffraction, SEM with EDS, Raman scattering, and photoluminescence spectroscopy. The Crystalline phase and vibrational modes of the phosphors were studied using XRD pattern and Raman Spectrum respectively. The morphological studies of the phosphor samples were carried out using SEM analysis. From PL spectra we have observed two prominent red emission peaks around at 595 nm ({sup 5}D{sub 0}→{sup 7}F{sub 1}), 619 nm ({sup 5}D{sub 0}→{sup 7}F{sub 2}) with the excitation of 399 nm for Eu{sup 3+} doped CaTiO{sub 3} powders. The PL intensity of CaTiO{sub 3}:Eu{sup 3+} phosphor is enhanced significantly on codoping with Mg{sup 2+}. The observed enhanced emissions are due to energy transfer from Mg{sup 2+} to Eu{sup 3+}, which is due to radiative recombination. Eu{sup 3+} doped phosphors are well known to be promising materials for electroluminescent devices, optical amplifiers, and lasers.

  17. Effect of process control agent (PCA) on the characteristics of mechanically alloyed Ti-Mg powders [Journal article

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2011-03-01

    Full Text Available This paper reports the results of a study to determine the effect of process control agent (PCA) on the characteristics of Ti-Mg powders during milling. It has been shown that a 2% increase in PCA content leads to up to a 40% increase in yield...

  18. Direct formation of new, phase-stable, and photoactive anatase-type Ti1-2XNbXScXO2 solid solution nanoparticles by hydrothermal method

    International Nuclear Information System (INIS)

    Hirano, Masanori; Ito, Takaharu

    2008-01-01

    A new anatase phase of photoactive Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) solid solutions was directly formed as nanoparticles from precursor solutions of TiOSO 4 , NbCl 5 , and Sc(NO 3 ) 3 under mild hydrothermal conditions at 180 deg. C for 5 h using the hydrolysis of urea. With the increase of the content of niobium and scandium from X = 0 to 0.2, the lattice parameters a 0 and c 0 , the crystallite size, and the optical band gap of anatase gradually increased. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The anatase-type Ti 1-2X Nb X Sc X O 2 (X = 0.05) showed approximately two times and three times as high photocatalytic activity as those of the hydrothermal anatase-type pure TiO 2 and commercially available reference pure TiO 2 (ST-01), respectively. The anatase phase of Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) existed stably up to 900 deg. C during heat treatment in air. New rutile-type Ti 1-2X Nb X Sc X O 2 solid solutions are formed through the phase transformation. The starting temperature of anatase-to-rutile phase transformation for Ti 1-2X Nb X Sc X O 2 (X = 0-0.2) solid solutions was delayed but its completing temperature was accelerated

  19. The influence of Ti on the microstructure and tensile properties of cast Al–4.5Cu–0.3Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, H. [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Emamy, M., E-mail: emamy@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Razaghian, A. [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2014-01-10

    Current study was undertaken to investigate the effect of different amounts of titanium (0.001–0.5 wt%) on the microstructure, tensile properties and quality index of a high strength aluminum alloy (Al–4.5 Cu–0.3Mg). It was found that this alloy is susceptible to hot tearing and at least 0.05 wt% Ti is necessary to remove such a defect. The microstructural studies of the alloy revealed that Ti addition reduces the grain size from 190 μm to 48 μm, but adding higher Ti content (>0.05 wt% Ti) does not change the grain size considerably. Further investigations on tensile tests revealed that the addition of Ti increases ultimate tensile strength (UTS) but reduces elongation values. T6 heat treatment improved UTS, elongation and quality index values of the casting. Fracture surfaces via scanning electron microscopy (SEM) revealed ductile fracture mode in both as-cast and heat-treated conditions. At higher Ti contents, the presence of Al{sub 3}Ti intermetallic on grain boundaries was found to be the favored path for crack growth.

  20. Preparation and characterization of Sc doped MgB2 wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Burdusel, M.

    2016-01-01

    in the nominal composition, the formation of Sc–rich impurity phases was evidenced by SEM/EDS observations. The critical current density and accommodation field of the wires are weakly dependant on the Sc content. It is believed that these effects are related more to modifications of the thermal behaviour...

  1. Dose Measurements in a Phantom Simulating Neonates by Using Different TL Materials: LiF:Mg,Cu,P and LiF:Mg,Ti

    International Nuclear Information System (INIS)

    Saez-Vergara, J.C.; Romero, A.M.; Fernandez, C.; Gomez, S.; Vazquez, J.; Olivares, M.P.

    1999-01-01

    A study reproducing usual exposure conditions in a special care baby unit has been performed to measure doses using TL materials in a versatile phantom specially designed for neonates having X ray examinations. The phantom offers the possibilities of reproducing different patient thicknesses and representing either a solid or hollow lung region. The results of the dose measurements using TL materials at the entrance, exit and both laterals of the phantom during different chest radiograph conditions are presented. Test conditions were reproduced in both hollow and solid chest cages simulating patient thicknesses of 5, 6 and 7 cm. The study was completed using two types of TL materials, LiF:Mg,Cu,P and LiF:Mg,Ti, in order to analyse and correct the differences on energy response between the two phosphors. (author)

  2. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Vandrovcova, Marta, E-mail: marta.vandrovcova@fgu.cas.cz [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic); Grinevich, Andrey; Drabik, Martin; Kylian, Ondrej; Hanus, Jan [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 182 00 Prague 8 (Czech Republic); Stankova, Lubica; Lisa, Vera [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic); Choukourov, Andrei; Slavinska, Danka; Biederman, Hynek [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 182 00 Prague 8 (Czech Republic); Bacakova, Lucie [Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4 (Czech Republic)

    2015-12-01

    Graphical abstract: - Highlights: • Hydrocarbon plasma polymer films with Ti in concentration of 0–20 at.% were prepared. • The Ti concentration was positively correlated with the material surface wettability. • The optimum Ti concentrations for the MG-63 cells behavior were identified. • The Ti concentration also influenced the cell immune activation. - Abstract: Hydrocarbon polymer films (ppCH) enriched with various concentrations of titanium were deposited on microscopic glass slides by magnetron sputtering from a Ti target. The maximum concentration of Ti (about 20 at.%) was achieved in a pure argon atmosphere. The concentration of Ti decreased rapidly after n-hexane vapors were introduced into the plasma discharge, and reached zero values at n-hexane flow of 0.66 sccm. The decrease in Ti concentration was associated with decreasing oxygen and titanium carbide concentration in the films, decreasing wettability (the water drop contact angle increased from 20° to 91°) and decreasing root-mean-square roughness (from 3.3 nm to 1.0 nm). The human osteoblast-like MG-63 cells cultured on pure ppCH films and on films with 20 at.% of Ti showed relatively high concentrations of ICAM-1, a marker of cell immune activation. Lower concentrations of Ti (mainly 5 at.%) improved cell adhesion and osteogenic differentiation, as revealed by higher concentrations of talin, vinculin and osteocalcin. Higher Ti concentrations (15 at.%) supported cell growth, as indicated by the highest final cell population densities on day 7 after seeding. Thus, enrichment of ppCH films with appropriate concentrations of Ti makes these films more suitable for potential coatings of bone implants.

  3. Luminescent emission of LiF: Mg, Ti exposed to UV radiation

    International Nuclear Information System (INIS)

    Estrada G, A.; Castano M, V.M.; Cruz Z, E.; Garcia F, F.

    2002-01-01

    It was investigated the luminescent emission stimulated by heat (Tl) of LiF: Mg, Ti crystals which were exposed to UV radiation coming from a mercury lamp. Since this crystal depends on the thermal history, it has been used a thermal treatment consisting of a baking at 380 C during one hour for each reading and they were irradiated with UV. The brilliance curves between 5 and 840 minutes of exposure in the face of UV light were obtained. An important loss in the response, starting from 150 minutes of irradiation was observed. Also the relative intensity of the brilliance curve decay when the crystals being stored in darkness and room temperature conditions, which is according to the results in the literature about. (Author)

  4. DFT investigation of NH_3, PH_3, and AsH_3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Buasaeng, Prayut; Rakrai, Wandee; Wanno, Banchob; Tabtimsai, Chanukorn

    2017-01-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH_3, PH_3 and AsH_3 molecules were investigated using a DFT method. • Adsorptions of NH_3, PH_3 and AsH_3 molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH_3), phosphine (PH_3), and arsine (AsH_3) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH_3, PH_3, and AsH_3 adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH_3 > PH_3 > AsH_3. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  5. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  6. Effect of Rare Earth Element on Microstructure and Properties of in situ Synthesized TiB2/Al Composites

    Directory of Open Access Journals (Sweden)

    QU Min

    2018-03-01

    Full Text Available The effect of rare earth element Ce, Sc and Er on TiB2 particles and matrix alloy micros-tructure of TiB2/Al composites was studied with in situ synthesis method. It shows that the addition of rare earth element improves the microstructure and properties of TiB2/Al composites notably. The particles of TiB2 are relatively homogenously distributed as adding 0.3% (mass fraction rare earth element Sc and Er, moreover, it is Er that refines the microstructure of matrix alloy most significantly, then is Sc. Similarly, it is demonstrated that the addition of Sc and Er results in better tensile strength, which is enhanced by 32% and 31%, respectively; the addition of Er also leads to the best ductility by 85% with optimal tensile property. Meanwhile, fracture morphology analysis reveals that the fracture of the composites is microporous gathered ductile fracture when adding Sc and Er. Finally, it is verified that the mechanism of rare earth element on composites lies in two aspects:one is that the addition of rare earth element improves the wettability of the composites and suppresses the agglomeration of TiB2 particles; the other is that the addition of rare earth element refines the microstructure of matrix alloy and then improves the tensile strength of the composites.

  7. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    Science.gov (United States)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  8. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    International Nuclear Information System (INIS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co 2 Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  9. Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of humidity sensors. PMID:27916913

  10. Humidity Sensitivity of MgCr2O4-TiO2-LiO2 Ceramics Sensor Prepared by Sol-Gel Routes

    Directory of Open Access Journals (Sweden)

    H. Y. He

    2010-05-01

    Full Text Available 79.5MgCr2O4–19.5TiO2–Li2O porous ceramics were investigated as a humidity sensor. The sensors obtain by a cold isostatic pressing and sintering of the fine MgCr2O4 and TiO2 and LiCO3 powders. The MgCr2O4 and TiO2 powders were respectively synthesized by sol-gel methods. The effects of sintering temperature on the humidity sensitivity of sensors were studied by measuring electrical resistance in different conditions of relative humidity (R.H. at 27 °C. The results indicated that the calcining temperature obviously affected the resistance variation of the sensor in range of 11.3-84.7 % RH. The resistance variation was small at the calcining temperature of 600 oC for 2 h. With increasing calcining temperature, the resistance variation increased to 5.4×104% and 7.0×104 % at 800 oC and 1000 oC for 2 h, but decreased to 3.1×104 % at 1200 oC for 2 h respectively. The response times are 25 s and 35 s respectively for humidity adsorption and humidity desorption between 11.3 %RH and 84.7 %RH.

  11. Compared production behavior of borax and unborax premixed SiC reinforcement Al7Si-Mg-TiB alloys composites with semi-solid stir casting method

    Science.gov (United States)

    Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2016-04-01

    The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.

  12. Calibration of thermoluminescent dosimeters (LiF : Mg : Ti) at different x-ray energies

    International Nuclear Information System (INIS)

    Osman, Aziza Mobark

    1998-04-01

    In this work the distance between the x-ray target (source) and the reference point on the housing of the newly installed secondary standard dosimetry laboratory (SSDL) at Sudan Atomic Energy Commission in Soba were determined, using the inverse square law. Six x-ray qualities were used at different positions. The results showed that the distance of the source to reference point is found to be (22± 2 cm). The calibration factors for the (LIF: Mg: Ti) TLD chips with the harshow model 2000C reader was determined for x-ray energies for quality (3) (KV = 80, filtration (1mm Al +5.30 mm Cu, HVL= 0.59 mm Cu), and for quality (4) (KV = 100, filtration ( 1mm Al + 5.30 mm Cu), HVL= 1.15 mm Cu) at 3 meter distance. The calibration factors for these two qualities is found to be ( 0.1030 ± 0.0002 ), (o.1098± 0.0004 ) m Gray per nano coulomb respectively. These values m and those obtained earlier at SAEC (1996) lab, by using Sr-90 irradiator (Beta- energy 2.27 MeV) calibration factor is found to be ( 0.1030 mGray per nano coulomb), confirm that within accuracies needed at radiation protection level, ( LiF: Mg: TI ) TLDs chips can be considered as an energy independent detector in the studied energy range. It is suggested that further measurements should be carried for other energies for determination of calibration factors for the full range of energies in use. ( Author )

  13. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    Science.gov (United States)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  14. Microstructure and kinetics evolution in MgH2–TiO2 pellets after hydrogen cycling

    International Nuclear Information System (INIS)

    Mirabile Gattia, D.; Di Girolamo, G.; Montone, A.

    2014-01-01

    Highlights: • MgH 2 was ball milled with TiO 2 anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH 2 powder with 5 wt.% TiO 2 was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H 2 absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction

  15. Analysis of separation quality of scandium-46 and titanium using silica gel column

    International Nuclear Information System (INIS)

    Muhamad Basit Febrian; Yanuar Setiadi; Duyeh Setiawan; Titin Sri Mulyati; Nana Suherman

    2015-01-01

    In this study, quality test of scandium and titanium mixture separation system using a silica gel column has been conducted. This system will be used in the separation of medical radioisotopes of 47 Sc from TiO 2 enriched targets. 20 mg of TiO 2 and 5 mg of Sc 2 O 3 dissolved using 0.5 mL of 50% HF solvent with gentle heating at 60°C - 80°C for 1 hour then 4.5 mL H 2 O was added. Sc and Ti mixture is separated by passing it through a column of silica gel. In the determination of scandium released from silica gel, Sc-46 radiotracer was used. Only 51.60 ± 4.5% of 5 mg of scandium could be retained in the silica gel column. From 51.60% of absorbed scandium in the column, 98.29 ± 3.4% were eluted with 5 mL of H 2 O eluent. During elution of scandium from silica gel column, 2.81 grams of 20 mg of titanium came apart as breakthrough. In determination of recovery of titanium from silica gel, 51.76 ± 5.5% of the 20 mg Ti can be recovered from silica gel column using 5M HCl eluent, whereas remaining Ti were eluted using 40 ml of HCl 5M. Based on those result, it can be concluded that there are still titanium portion in scandium after the separation using a silica gel column. Further purification step using fresh silica gel column, can separate escaped titanium from scandium. (author)

  16. Evaluation of the thermoluminescent detector answers of CaSO{sub 4}:Dy, LiF:Mg,Ti and micro LiF:Mg,Ti in photon clinical beams dosimetry using water simulator; Avaliacao da resposta de detectores termoluminescentes de CaSO4:Dy, LiF:Mg,Ti e microLiF:Mg,Ti na dosimetria de feixes clinicos de fotons utilizando simulador de agua

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Leticia L., E-mail: lmatsushima@usp.b, E-mail: veneziani@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (GMR/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Sakuraba, Roberto K.; Cruz, Jose C. da, E-mail: rsakuraba@einstein.b, E-mail: jccruz@einstein.b [Sociedade Beneficente Israelita Brasileira, Sao Paulo, SP (Brazil). Hospital Albert Einstein (HAE)

    2011-10-26

    This paper perform the comparative study of thermoluminescent answer of calcium sulfate dosemeter doped with dysprosium (DaSO{sub 4}:Dy) produced by the IPEN, Sao Paulo, with answer of lithium fluoride dosemeters doped with magnesium and titanium (LiF:Mg, Ti) in the dosimetry of clinical beams of photons (6 and 15 MV) by using water simulator object. Dose-answer curves were obtained for gamma radiation of cobalt-60 in the air and in conditions of electronic equilibrium (plate of PMMA), and clinical photons of CLINAC model 2100C accelerators of the two evaluated hospitals: Hospital das Clinicas of the Faculty of Medicine of Sao Paulo university and Hospital Albert Einstein. It was also evaluated the sensitivity and reproduction of the three dosemeters

  17. Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer

    International Nuclear Information System (INIS)

    Ibusuki, Takahiro; Miyajima, Toyoo; Umehara, Shinjiro; Eguchi, Shin; Sato, Masashige

    2009-01-01

    Effects of capping materials on magnetoresistance (MR) properties of MgO magnetic tunnel junctions (MTJs) with a CoFeB free layer were investigated. MR ratios of samples with various capping materials showed a difference in annealing temperature dependence. MTJ with a Ti capping layer annealed at 270 deg. C showed a MR ratio 1.4 times greater than that with a conventional Ta or Ru capping layer. Secondary ion mass spectroscopy and high-resolution transmission electron microscopy images revealed that crystallization of CoFeB was remarkably affected by adjacent materials and the Ti capping layer adjoining CoFeB acted as a boron-absorption layer. These results suggest that the crystallization process can be controlled by choosing proper capping materials. Ti is one of the effective materials that accelerate the crystallization of CoFeB layers at lower annealing temperature

  18. High strength aluminum cast alloy: A Sc modification of a standard Al–Si–Mg cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Arfan, E-mail: engr.arfan@gmail.com [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Xu, Cong; Xuejiao, Wang [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Hanada, Shuji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamagata, Hiroshi [Center for Advanced Die Engineering and Technology, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1193 (Japan); Hao, LiRong [Hebei Sitong New Metal Material Co., Ltd., Baoding 071105 (China); Chaoli, Ma [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China)

    2014-05-01

    A standard Aluminum–Silicon–Magnesium cast alloy (A357 foundry alloy without Beryllium) modified with different weight percentages of Scandium (Sc), has been studied to evaluate the effects of Sc contents on microstructure and strength. Study has been conducted under optimized parameters of melting, casting and heat treatment. Characterization techniques like optical microscopy, SEM, TEM and tensile testing were employed to analyze the microstructure and mechanical properties. Results obtained in this research indicate that with the increase of Sc contents up to 0.4 wt%, grain size is decreased by 80% while ultimate tensile strength and hardness are increased by 28% and 19% respectively. Moreover along with the increase in strength, elongation to failure is also increased up to 165%. This is quite interesting behavior because usually strength and ductility have inverse relationship.

  19. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  20. The effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fakhraei, O. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, M., E-mail: emamy@ut.ac.ir [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Farhangi, H. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-01-10

    In current research, the effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy have been investigated. Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis were utilized to study the microstructure and fracture surfaces of samples. Microstructural analysis of the cast alloy showed the dendrites of a primary {alpha}-phase solid solution within the eutectic matrix which consists of {beta}-Al{sub 3}Mg{sub 2} intermetallic and {alpha}-solid solution. The results indicated that adding Al-5Ti-1B to the alloy caused a significant rise in the ultimate tensile strength (UTS) and elongation values from 168 MPa and 1.2% to maximum 253 MPa and 2.4%, respectively. The main mechanisms for the observed enhancement were found to be due to the refinement of grains during solidification and also segregation of Ti to the tip of Al ({alpha}) dendrites. This phenomenon controls the dendritic growth and changes the morphology of this phase from interconnected coarse dendrites to a star-like morphology.

  1. Hydrogen storage in binary and ternary Mg-based alloys. A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Miltin, D. [Alberta Univ., Edmonton (Canada); Poirier, E.; Fritzsche, H. [Canadian Neutron Beam Centre, Chalk River, ON (Canada)

    2010-07-01

    This study focuses on hydrogen sorption properties of cosputtered 1.5 micrometer thick Mg-based films with Al, Fe and Ti as alloying elements. We show that ternary Mg-Al-Ti and Mg-Fe-Ti alloys in particular display remarkable sorption behavior: at 200 C, the films are capable of absorbing 4-6 wt.% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable for over 100 ab- and desorption cycles for Mg-Al-Ti and Mg-Fe-Ti alloys. No degradation in capacity or kinetics is observed. Based on these observations, some general design principles for Mg-based hydrogen storage alloys are suggested. For Mg-Fe-Ti, encouraging preliminary results on multilayered systems are also presented. (orig.)

  2. Investigation of structural and electrical properties of (1 - x) Bi0.5Mg0.5TiO3-(x) PbTiO3 ceramic system

    International Nuclear Information System (INIS)

    Rai, Radheshyam; Sinha, Abinhav; Sharmac, Seema; Sinha, N.K.P.

    2009-01-01

    [(BiMg 0.5 Ti 0.5 O 3 ) 1-x ][PbTiO 3 ] x (BMT-PT) ceramic powders of different compositions were prepared by solid-state reaction method. X-ray diffraction analysis of the compounds suggest the structural change (rhombohedral to tetragonal) in these ceramics. SEM photographs exhibit the uniform distribution of grains with less porosity. Polarization vs. electric field (P-E) studies show maximum remanent polarization (P r ∼ 7.9 μC/cm 2 ) for composition x = 0.34. The dielectric peaks were found to be broadened that indicates the existence of diffuse phase transition. Diffusivity (γ) study of phase transition in these compounds provided values between 1 and 2 indicating the variation of degree of disorderness in the system.

  3. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics

    Science.gov (United States)

    Yan, Yongke; Wang, Yu. U.; Priya, Shashank

    2012-05-01

    [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) ceramics were synthesized by using templated grain growth method. Significantly high [001] texture degree corresponding to 0.98 Lotgering factor was achieved at 1 vol. % BaTiO3 template. Electromechanical properties for [001]-textured PMN-PT ceramics with 1 vol. % BaTiO3 were found to be d33 = 1000 pC/N, d31 = 371 pC/N, ɛr = 2591, and tanδ = ˜0.6%. Elastoelectric composite based modeling results showed that higher volume fraction of template reduces the overall dielectric constant and thus has adverse effect on the piezoelectric response. Clamping effect was modeled by deriving the changes in free energy as a function of applied electric field and microstructural boundary condition.

  4. 197Au Moessbauer study of nano-sized gold catalysts supported on Mg(OH)2 and TiO2

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Nasu, S.; Tsubota, S.; Haruta, M.

    2000-01-01

    We have studied nano-sized Au catalysts supported on Mg(OH) 2 and TiO 2 using 197 Au Moessbauer spectroscopy. 197 Au Moessbauer spectra observed for Au/Mg(OH) 2 catalysts can be decomposed into one singlet with zero isomer shift and several doublets. One of the doublets shows an isomer shift that is typical for Au I , and other doublets are due to Au III . The relative area of the Au I component shows the maximum value for a specimen calcined at 523 K, which also shows the highest catalytic activity

  5. SSC type NbTi superconductor research program at Teledyne SC

    International Nuclear Information System (INIS)

    Kallsen, J.F.; McDonald, W.K.; Geno, J.D.; O'Larey, P.M.; Siddall, M.B.

    1991-01-01

    In an on-going research effort at Teledyne SC, several multifilament niobium titanium composite billets have been fabricated and processed to make SSC type wire. Critical current densities of 3000 A/mm 2 ± 5% and 2950 A/mm 2 ± 5% (5 T, 4.2 K, 10 -14 ohm-m) have been achieved in wires containing 6.5 and 4.8 micron diameter filaments respectively. This paper addresses piece length and cable-able characteristics

  6. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy

    International Nuclear Information System (INIS)

    Ma Jingling; Wen Jiuba; Zhai Wenxia; Li Quanan

    2012-01-01

    The corrosion behaviour of Al-5Zn-0.02In-1Mg-0.05Ti-0.5Ce (wt.%) alloy has been investigated by immersion test, scanning electron microscopy, energy dispersive X-ray detector, electrochemical impedance spectroscopy and electrochemical noise. The results show that there exist different corrosion types of the alloy in 3.5% NaCl solution with the immersion time. At the initial stage of immersion, pitting due to the precipitates predominates the corrosion with a typical inductive loop at low frequencies in electrochemical impedance spectroscopy. The major precipitates of the alloy are MgZn 2 and Al 2 CeZn 2 particles. The corrosion potentials of the bulk MgZn 2 and Al 2 CeZn 2 alloys are negative with respect to that of α-Al, so the MgZn 2 and Al 2 CeZn 2 precipitates can act as activation centre and cause the pitting. In the late corrosion, a relative uniform corrosion predominates the corrosion process controlled by the dissolution/precipitation of the In ions and characterized by a capacitive loop at medium-high frequencies in electrochemical impedance spectroscopy. The potential noise of the pitting shows larger amplitude fluctuation and lower frequency, but the potential noise of the uniform corrosion occurs with smaller amplitude fluctuation and higher frequency.

  7. In situ beam analysis of radiation damage kinetics in MgTiO3 single crystals at 170-470 K

    International Nuclear Information System (INIS)

    Yu, Ning; Mitchell, J.N.; Sickafus, K.E.; Nastasi, M.

    1995-01-01

    Radiation damage kinetics in synthetic MgTiO 3 (geikielite) single crystals have been studied using the in situ ion beam facility at Los Alamos National Laboratory. The geikielite samples were irradiated at temperatures of 170, 300, and 470 K with 400 keV xenon ions and the radiation damage was sequentially measured with Rutherford backscattering using a 2 MeV He ion beam along a channeling direction. Threshold doses of I and 5x l0 15 Xe/cm 2 were determined for the crystalline-to-amorphous transformation induced by Xe ion irradiation at 170 and 300 K, respectively. However, geikielite retained its crystallinity up to a dose of 2.5xl0 16 Xe/cm 2 at the irradiation temperature of 470 K. This study has shown that MgTiO 3 , which has a corundum derivative structure, is another radiation resistant material that has the potential for use in radiation environments

  8. Pre- and post-irradiation fading effect for LiF:Mg,Ti and LiF:Mg,Cu,P materials used in routine monitoring

    International Nuclear Information System (INIS)

    Carinou, E.; Askounis, P.; Dimitropoulou, F.; Kiranos, G.; Kyrgiakou, H.; Nirgianaki, E.; Papadomarkaki, E.; Kamenopoulou, V.

    2011-01-01

    LiF is a well-known thermoluminescent (TL) material used in individual monitoring, and its fading characteristics have been studied for years. In the present study, the fading characteristics (for a period of 150 d) of various commercial LiF materials with different dopants have been evaluated. The materials used in the study are those used in routine procedures by the Personal Dosimetry Dept. of Greek Atomic Energy Commission and in particular, LiF:Mg,Ti (MTS-N, TL Poland), LiF:Mg,Cu,P (MCP-N, TL Poland), LiF:Mg,Cu,P (MCP-Ns, thin active layer detector, TL Poland) and LiF:Mg,Cu,P (TLD100H, Harshaw). The study showed that there is a sensitivity loss in signal of up to 20 % for the MTS-N material for a 150-d period in the pre-irradiation fading phase. The MCP-N has a stable behaviour in the pre-irradiation fading phase, but this also depends on the readout system. As far as the post-irradiation fading effect is concerned, a decrease of up to 20 % for the MTS-N material is observed for the same time period. On the other hand, the LiF:Mg,Cu,P material presents a stable behaviour within ±5 %. These results show that the fading effect is different for each material and should be taken into account when estimating doses from dosemeters that are in use for >2 months. (authors)

  9. Low Temperature Mechanical Properties of Scandium-Modified Al-Zn-Mg-Cu Alloys

    National Research Council Canada - National Science Library

    Senkov, O

    2002-01-01

    Tensile properties of three wrought alloys, (1) Al-10Zn-3Mg-1.2Cu-0.15Zr, (2) Al-10Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc, and (3) Al-12Zn-3Mg-1.2Cu-0.15Zr-0.39Mn-0.49Sc were studied in T6 and T7 conditions at 298K and 77K...

  10. Study and Fabrication of Super Low-Cost Solar Cell (SLC-SC) Based on Counter Electrode from Animal’s Bone

    Science.gov (United States)

    Fadlilah, D. R.; Fajar, M. N.; Aini, A. N.; Haqqiqi, R. I.; Wirawan, P. R.; Endarko

    2018-04-01

    The synthesized carbon from bones of chicken, cow, and fish with the calcination temperature at 450 and 600°C have been successfully fabricated for counter electrode in the Super Low-Cost Solar Cell (SLC-LC) based the structure of Dye-Sensitized Solar Cells (DSSC). The main proposed study was to fabricate SLC-SC and investigate the influence of the synthesized carbon from animal’s bone for counter electrode towards to photovoltaic performance of SLC-SC. X-Ray Diffraction and UV-Vis was used to characterize the phase and the optical properties of TiO2 as photoanode in SLC-SC. Meanwhile, the morphology and particle size distribution of the synthesized carbon in counter electrodes were investigated by Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The results showed that the TiO2 has anatase phase with the absorption wavelength of 300 to 550 nm. The calcination temperature for synthesizing of carbon could affect morphology and particle size distribution. The increasing temperature gave the effect more dense in morphology and increased the particle size of carbon in the counter electrode. Changes in morphology and particle size of carbon give effect to the performance of the SLC-SC where the increased morphology’s compact and particle size make decreased in the performance of the SLC-SC.

  11. Influence of milling parameters on the sorption properties of the LiH–MgB{sub 2} system doped with TiCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Nina; Jepsen, Julian; Pistidda, Claudio [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Puszkiel, Julián A. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Combatientes de Malvinas 3150, 1427 Buenos Aires (Argentina); Karimi, Fahim [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Milanese, Chiara [Pavia H_2 Lab, Department of Chemistry, Physical Chemistry Division, University of Pavia, Viale Taramelli 16, I-27100 Pavia (Italy); Tolkiehn, Martin [SRXPD Beamline HASYLAB, Deutsches-Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Chaudhary, Anna-Lisa, E-mail: anna-lisa.chaudhary@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany); Klassen, Thomas; Dornheim, Martin [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht (Germany)

    2015-10-05

    Highlights: • The LiH–MgB{sub 2} system was doped with TiCl{sub 3} and milling conditions varied. • A heuristic model was used to estimate energy transfer from milling conditions. • Milling parameters were correlated with the energy transfer calculation. • 20 kJ g{sup −1} of energy transfer correlates to the optimum conditions for the system. - Abstract: Hydrogen sorption properties of the LiH–MgB{sub 2} system doped with TiCl{sub 3} were investigated with respect to milling conditions (milling times, ball to powder (BTP) ratios, rotation velocities and degrees of filling) to form the reactive hydride composite (RHC) LiBH{sub 4}–MgH{sub 2}. A heuristic model was applied to approximate the energy transfer from the mill to the powders. These results were linked to experimentally obtained quantities such as crystallite size, specific surface area (SSA) and homogeneity of the samples, using X-ray diffraction (XRD), the Brunauer–Emmett–Teller (BET) method and scanning electron microscopy (SEM), respectively. The results show that at approximately 20 kJ g{sup −1} there are no further benefits to the system with an increase in energy transfer. This optimum energy transfer value indicates that a plateau was reached for MgB{sub 2} crystallite size therefore the there was also no improvement of reaction kinetics due to no change in crystallite size. Therefore, this study shows that an optimum energy transfer value was reached for the LiH–MgB{sub 2} system doped with TiCl{sub 3}.

  12. Examining the microhardness evolution and thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion at a high temperature

    Directory of Open Access Journals (Sweden)

    Pedro Henrique R. Pereira

    2017-10-01

    Full Text Available An Al–3% Mg–0.2% Sc alloy was solution treated and processed through 10 turns of high-pressure torsion (HPT at 450 K. Afterwards, the HPT-processed alloy was annealed for 1 h at temperatures ranging from 423 to 773 K and its mechanical properties and microstructural evolution were examined using microhardness measurements and electron backscattered diffraction (EBSD analysis. The results demonstrate that HPT processing at an elevated temperature leads to a more uniform microhardness distribution and to an early saturation in the hardness values in the Al alloy compared with high-pressure torsion at room temperature. In addition, detailed EBSD analysis conducted on the HPT-processed samples immediately after annealing revealed that the Al–Mg–Sc alloy subjected to HPT processing at 450 K exhibits superior thermal stability by comparison with the same material subjected to HPT at 300 K. Keywords: Aluminium alloys, Hall–Petch relationship, Hardness, High-pressure torsion, Severe plastic deformation, Thermal stability

  13. Influence of energy input in friction stir welding on structure evolution and mechanical behaviour of precipitation-hardening in aluminium alloys (AA2024-T351, AA6013-T6 and Al-Mg-Sc)

    Energy Technology Data Exchange (ETDEWEB)

    Weis Olea, Cesar Afonso [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2008-12-04

    Aluminium alloys AA2024 T351, AA6013 T6 and the recently developed Al-Mg-Sc for aircraft industry applications, which are usually considered difficult to weld by conventional fusion welding processes, demonstrate outstanding performance when joined by friction stir welding (FSW). The main feature of the process is to produce solid-state welds, where the maximum temperatures attained during the process are about 80 % that of the melting temperature of the base material. The process generates substantial plastic deformation, due to the solid-state stirring, and consequently creates a high dislocation density, which is a precursor to dynamic recrystallization, a metallurgical feature that characterizes the stir zone (weld centre). A relevant aspect considered, regarding precipitation-hardening aluminium alloys, is the deterioration of the mechanical properties in the weld zones, which are fundamentally attributed to changes in the characteristics of strengthening precipitates. Among the strengthening mechanisms acting in these aluminium alloys, the most important is basically dependent on the morphology, size and population of the precipitates. The thermal cycle and deformation generated during the FSW process alter the precipitation characteristics previously present in the base material. FSW input energy regulates the magnitude of the thermal cycle and the intensity of deformation taking place during the process, and it can be controlled by the welding parameters, affecting the precipitates evolution and consequently the mechanical properties of the joint. Nevertheless, there remains a lack of knowledge about the substructural evolution of these alloys during FSW, and its correlation with weld energy input and their respective mechanical properties, particularly for the Al-Mg-Sc alloy. The main objective of this work is to explain the micro and substructural evolution (emphasizing precipitates evolution) of AA2024- T351, AA6013-T6 and Al-Mg-Sc alloys in similar

  14. Evaluation of the thermoluminescent detector answers of CaSO4:Dy, LiF:Mg,Ti and micro LiF:Mg,Ti in photon clinical beams dosimetry using water simulator

    International Nuclear Information System (INIS)

    Matsushima, Luciana C.; Veneziani, Glauco R.; Campos, Leticia L.

    2011-01-01

    This paper perform the comparative study of thermoluminescent answer of calcium sulfate dosemeter doped with dysprosium (DaSO 4 :Dy) produced by the IPEN, Sao Paulo, with answer of lithium fluoride dosemeters doped with magnesium and titanium (LiF:Mg, Ti) in the dosimetry of clinical beams of photons (6 and 15 MV) by using water simulator object. Dose-answer curves were obtained for gamma radiation of cobalt-60 in the air and in conditions of electronic equilibrium (plate of PMMA), and clinical photons of CLINAC model 2100C accelerators of the two evaluated hospitals: Hospital das Clinicas of the Faculty of Medicine of Sao Paulo university and Hospital Albert Einstein. It was also evaluated the sensitivity and reproduction of the three dosemeters

  15. SC*994C>T causes the Sc(null) phenotype in Pacific Islanders and successful transfusion of Sc3+ blood to a patient with anti-Sc3.

    Science.gov (United States)

    Reid, Marion E; Hue-Roye, Kim; Velliquette, Randall W; Larimore, Kathleen; Moscarelli, Sue; Ohswaldt, Nicolas; Lomas-Francis, Christine

    2013-01-01

    Antigens in the SC blood group system are expressed by the human erythrocyte membrane-associated protein (ERMAP).Two molecular bases have been reported for the Sc,un phenotype:SC*307del2 and SC*994C>T. We report our investigation of the molecular background of five Sc,n1 individuals from the Pacific Islands and describe the successful transfusion of Sc3+ blood to a patient with anti-Sc3 in her plasma. SC (ERMAP) exons 2,3, and 12 and their flanking intronic regions were analyzed. TheSC*994C>T change introduces a restriction enzyme cleavage site for Tsp45I, and polymerase chain reaction (PCR) products from exon 12 were subjected to this PCR-restriction fragment length polymorphism (RFLP) assay. The five samples had the variant SC*994T/T. One sample, from a first cousin of one Marshallese proband, was heterozygous for SC*1514C/T (in the 3' untranslated region); the other four samples were SC*1514C/C(consensus sequence). Samples from white donors (n = 100) and African American donors (n = 99) were tested using the Tsp45IPCR-RFLP assay; all gave a banding pattern that was consistent with the SC*994C/C consensus sequence. In all five samples,our analyses showed homozygosity for the nonsense nucleotide change SC*994C>Tin an allele carrying the nucleotide associated with SLd. Further investigation determined that one of the probands reported previously with the SC*994C>T change was from the Marshall Islands (which form part of the Micronesian Pacific Islands) and the other was from an unspecified location within the large collection of Pacific Islands. Taken together, the five known probands with the SC*994C>T silencing nucleotide change were from the Pacific Islands.

  16. Stability, elastic properties and fracture toughness of Al0.75X0.75B14 (X=Sc, Ti, V, Cr, Y, Zr, Nb, Mo) investigated using ab initio calculations

    International Nuclear Information System (INIS)

    Emmerlich, Jens; Thieme, Niklas; To Baben, Moritz; Music, Denis; Schneider, Jochen M

    2013-01-01

    The effect of the transition metal valence electron concentration on the energy of formation, effective charge of B icosahedra, elastic properties, surface energy and fracture toughness was calculated using density functional theory for icosahedral transition metal borides of AlXB 14 (X=Sc, Ti, V, Cr, Y, Zr, Nb, Mo). Consistent with previous work on AlYB 14 (Kölpin et al 2009 J. Phys.: Condens. Matter 21 355006) it is shown that phase stability is generally dependent on the effective charge of the icosahedral transition metal borides. Also, ionization potential and electronegativity are identified as parameters affecting the effective charge of B icosahedra suitable for use in predicting the phase stability. Al 0.75 Y 0.75 B 14 , Al 0.75 Sc 0.75 B 14 and Al 0.75 Zr 0.75 B 14 have been identified as promising phases for application as protective coatings as they exhibit high phase stability and stiffness combined with a comparatively high fracture toughness. (paper)

  17. Studies of diluted antiferromagnets MnxMg1-xTiO3 with x=0.55 and 0.70 by muon spin relaxation method

    International Nuclear Information System (INIS)

    Fukaya, A.; Ito, A.; Torikai, E.; Nishiyama, K.; Nagamine, K.

    1997-01-01

    Longitudinal fields μSR measurements have been performed in order to probe the spin dynamics in the diluted antiferromagnets Mn x Mg 1-x TiO 3 with x=0.70 and 0.55. In the x=0.70 sample which forms the antiferromagnetic long-range order, the static and fluctuating fields coexist at the muon stopping site below T N . On the other hand, in the x=0.55 sample which shows the spin-glass behavior, the local fields fluctuate rather fast even below T SG . We infer that this drastic change occurs when Mn x Mg 1-x TiO 3 transforms from an antiferromagnetic system to a spin-glass system by dilution

  18. Nanostructured MgTiO{sub 3} thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Irina [S.C. IPEE Amiral Trading Impex S.A., 115300 Curtea de Arges (Romania); Mahajan, Amit [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Monty, Claude J.A. [CNRS-PROMES Laboratory, 66120 Font Romeu Odeillo (France); Venkata Saravanan, K., E-mail: venketvs@cutn.ac.in [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Department of Physics, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur 61010 (India)

    2015-12-15

    Highlights: • Obtaining nano-crystalline magnesium titanium oxide powders by solar physical vapor deposition (SPVD) process. And using these nano-powders to obtain thick films on conducting substrates by electrophoretic deposition (EPD). • SPVD is a core innovative, original and environmentally friendly process to prepare nano-materials in a powder form. • Sintered thick films exhibited dielectric constant, ε{sub r} ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz, which is comparable to the values reported earlier. • New contributions to the pool of information on the preparation of nano-structured MgTiO{sub 3} thick films at low temperatures. • A considerable decrease in synthesis temperature of pure MgTiO{sub 3} thick film was observed by the combination of SPVD and EPD. - Abstract: A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO{sub 3} nanostructured thick films is presented. Obtaining nanostructured MgTiO{sub 3} thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro – DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22–25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The

  19. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si

    KAUST Repository

    Zhang, Bo

    2016-12-28

    We present a detailed study of post-deposition annealing effects on contact resistance of Au, Ti, Hf and Ni electrodes on Mg2Si thin films. Thin-film Mg2Si and metal contacts were deposited using magnetron sputtering. Various post-annealing temperatures were studied to determine the thermal stability of each contact metal. The specific contact resistivity (SCR) was determined using the Cross Bridge Kelvin Resistor (CBKR) method. Ni contacts exhibits the best thermal stability, maintaining stability up to 400 °C, with a SCR of approximately 10−2 Ω-cm2 after annealing. The increased SCR after high temperature annealing is correlated with the formation of a Mg-Si-Ni mixture identified by cross-sectional scanning transmission electron microscopy (STEM) characterization, X-ray diffraction characterization (XRD) and other elemental analyses. The formation of this Mg-Si-Ni mixture is attributed to Ni diffusion and its reaction with the Mg2Si film.

  20. Electrolytes comprising metal amide and metal chlorides for multivalent battery

    Science.gov (United States)

    Liao, Chen; Zhang, Zhengcheng; Burrell, Anthony; Vaughey, John T.

    2017-03-21

    An electrolyte includes compounds of formula M.sup.1X.sub.n and M.sup.2Z.sub.m; and a solvent wherein M.sup.1 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; M.sup.2 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; X is a group forming a covalent bond with M.sup.1; Z is a halogen or pseudo-halogen; n is 1, 2, 3, 4, 5, or 6; and m is 1, 2, 3, 4, 5, or 6.

  1. Sc-W-Si and Sc-W-Ge ternary systems

    International Nuclear Information System (INIS)

    Kotur, B.Ya.; Voznyak, O.M.; Bodak, O.I.

    1989-01-01

    Phase equilibria in Sc-W-Si and Sc-W-Ge ternary systems are investigated at 1070 K. Sc 2+x W 3-x Si 4 ternary compound (0≤x≤1) is determined, its crystal structure (Ce 2 Sc 3 Si 4 structural type), as well as, change of elementary cell parameters and microhardness within homogeneity range are determined. Regularities of component interaction within Sc-M-Si(Ge) (M-Cr, Mo, W) ternary system are determined. Ternary systems with Mo and W are more closer to each other according to the phase equilibria character, than to ternary systems with Cr

  2. Titanium-bearing phases in the Earth's mantle (evidence from experiments in the MgO-SiO2-TiO2 ±Al2O3 system at 10-24 GPa)

    Science.gov (United States)

    Sirotkina, Ekaterina; Bobrov, Andrey; Bindi, Luca; Irifune, Tetsuo

    2017-04-01

    Introduction Despite significant interest of experimentalists to the study of geophysically important phase equilibria in the Earth's mantle and a huge experimental database on a number of the model and multicomponent systems, incorporation of minor elements in mantle phases was mostly studied on a qualitative level. The influence of such elements on structural peculiarities of high-pressure phases is poorly investigated, although incorporation of even small portions of them may have a certain impact on the PT-parameters of phase transformations. Titanium is one of such elements with the low bulk concentrations in the Earth's mantle (0.2 wt % TiO2) [1]; however, Ti-rich lithologies may occur in the mantle as a result of oceanic crust subduction. Thus, the titanium content is 0.6 wt% in Global Oceanic Subducted Sediments (GLOSS) [2], and 1.5 wt% TiO2, in MORB [3]. In this regard, accumulation of titanium in the Earth's mantle is related to crust-mantle interaction during the subduction of crustal material at different depths of the mantle. Experimental methods At 10-24 GPa and 1600°C, we studied the full range of the starting materials in the MgSiO3 (En) - MgTiO3 (Gkl) system in increments of 10-20 mol% Gkl and 1-3 GPa, which allowed us to plot the phase PX diagram for the system MgSiO3-MgTiO3 and synthesize titanium-bearing phases with a wide compositional range. The experiments were performed using a 2000-t Kawai-type multi-anvil high-pressure apparatus at the Geodynamics Research Center, Ehime University (Japan). The quenched samples were examined by single-crystal X-ray diffractometer, and the composition of phases was analyzed using SEM-EDS. Results The main phases obtained in experiments were rutile, wadsleyite, MgSiO3-enstatite, MgTiO3-ilmenite, MgTiSi2O7 with the weberite structure type (Web), Mg(Si,Ti)O3 and MgSiO3 with perovskite-type structure. At a pressure of 13 GPa for Ti-poor bulk compositions, an association of En+Wad+Rt is replaced by the

  3. Hydrogen storage of Mg1−xMxH2 (M = Ti, V, Fe) studied using first-principles calculations

    International Nuclear Information System (INIS)

    Bhihi, M.; Lakhal, M.; Benyoussef, A.; El Kenz, A.; Labrim, H.; Mounkachi, O.; Hlil, E.K.

    2012-01-01

    In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg 1−x M x H 2 (M = Ti, V, Fe, 0 ≤ x ≤ 0.1), are studied using the Korringa—Kohn—Rostoker (KKR) calculation with the coherent potential approximation (CPA). In particular, the nature and concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities

  4. Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pramod, S.L. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ravikirana [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Physics and Nanotechnology, SRM University, Chennai 603203 (India); Rao, A.K. Prasada [College of Engineering and Design, Alliance University, Bengaluru 562106 (India); Murty, B.S., E-mail: murty@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Bakshi, Srinivasa R., E-mail: sbakshi@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-09-30

    Effect of Sc addition and T6 aging treatment on the secondary dendritic arm spacing (SDAS), modification of eutectic Si morphology, β-Al{sub 5}FeSiand π-Al{sub 8}Mg{sub 3}Si{sub 6}Fe{sub 1} phases and its effect on mechanical properties in A356 alloy has been investigated. Addition of 0.4 wt%Sc in A356 alloy resulted in a 50%reduction in the secondary dendritic arm spacing (SDAS). Sc addition changed the morphology of eutectic Si from plate like to fibrous and globular. The needle like morphology of β-Al{sub 5}FeSi phase in A356 alloy changed to Al{sub 5}Fe(Si,Sc) phase having smaller size and irregular morphology. Transmission electron microscopy (TEM) diffraction pattern and Energy dispersive spectroscopy (EDS) analysis revealed the presence of β-Al{sub 5}FeSiand π-Al{sub 8}Mg{sub 3}Si{sub 6}Fe{sub 1} phases in A356 alloy which changed to β-Al{sub 5}Fe(Si,Sc), π-Al{sub 8}Mg{sub 3}(Si,Sc){sub 6}Fe{sub 1} and additional V-AlSi{sub 2}Sc{sub 2}phase was observed in Sc containing alloys. Addition of 0.4 wt%Sc to A356 alloy improved its Vickers hardness, Ultimate tensile strength (UTS), Yield strength (YS) and ductility by 20%, 25%, 20% and 30% respectively. Artificial aging treatment resulted in significant improvement in the tensile properties for both A356 and Sc added A356 alloys.

  5. Synthesis of Titanium-doped MgO heteronanostructures with tunable band gap

    International Nuclear Information System (INIS)

    Sharma, Urvashi; Jeevanandam, P.

    2016-01-01

    Ti_xMg_1_−_xO heteronanostructures (x = 0.02 to 0.50) have been synthesized by a novel thermal decomposition route, and the effect of concentration of titanium and calcination temperature on optical properties of the heteronanostructures has been investigated. Phase analysis using powder X-ray diffraction demonstrates the formation of mixture of MgO and MgTiO_3 when x = 0.02 to 0.20 and pure MgTiO_3 when x = 0.33 to 0.50. Scanning electron microscopy studies show that the Ti_xMg_1_−_xO samples with x = 0.02 to 0.20 consist of particles with a mixture of flower- and rod-like morphology, whereas the Ti_xMg_1_-_xO samples with x = 0.33 to 0.50 possess rod-like morphology. Transmission electron microscopy studies show that the flowers are in turn formed by assembly of nanoparticles and the hollow rods are formed by aggregation of dumbbell-shaped nanoparticles. Diffuse reflectance spectroscopic studies show that band gap of the Ti_xMg_1_−_xO heteronanostructures can be tuned from 3.2 to 4.2 eV by varying the concentration of titanium and the calcination temperature. Photoluminescence spectra show emission bands in visible and near-infrared regions due to defects present in the Ti_xMg_1_−_xO heteronanostructures.

  6. Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingjun, E-mail: kongl_jun@163.com [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Zhu, Yuting; Wang, Min; Li, Zhixuan; Tan, Zhicong; Xu, Ruibin; Tang, Hongmei; Chang, Xiangyang [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China); Xiong, Ya [Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Chen, Diyun, E-mail: cdy@gzhu.edu.cn [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China)

    2016-12-15

    Uranium containing radioactive wastewater is seriously hazardous to the natural environment if it is being discharged directly. Herein, nano-flake like Fe loaded sludge carbon (Fe-SC) is synthesized by carbothermal process from Fe-rich sludge waste and applied in the immobilization of uranium in aqueous. Batch isotherm and kinetic adsorption experiments are adopted to investigate the adsorption behavior of Fe-SC to uranium in aqueous. XPS analyses were conducted to evaluate the immobilized mechanism. It was found that the carbonized temperature played significant role in the characteristics and immobilization ability of the resulted Fe-SC. The Fe-SC-800 carbonized at 800 °C takes more advantageous ability in immobilization of uranium from aqueous than the commercial available AC and powder zero valent iron. The adsorption behavior could be fitted well with the Langmuir isotherm adsorption model and pseudo-second order model. The equilibrium adsorption amount and rate for Fe-SC-800 is high to 148.99 mg g{sup -1} and 0.015 g mg{sup -1} min{sup -1}, respectively. Both reductive precipitation and physical adsorption are the main mechanisms of immobilization of uranium from aqueous by Fe-SC-800.

  7. Microstructure and high temperature stability of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions

    Energy Technology Data Exchange (ETDEWEB)

    Naga Raju, P. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)], E-mail: puvvala_nagaraju@yahoo.com; Srinivasa Rao, K. [Metallurgical Engineering Department, Andhra University, Visakapatnam 530003 (India); Reddy, G.M. [Defence Metallurgical Research Laboratory, Hyderabad 500258 (India); Kamaraj, M.; Prasad Rao, K. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)

    2007-08-25

    The present work pertains to the improvement of high temperature stability of age hardenable AA2219 aluminium-copper (6.3%) alloy. Addition of scandium, magnesium and zirconium to the base metal AA2219 was adopted to improve this high temperature stability. These additions were systematically varied by preparing alloys of different composition using gas tungsten arc melting. Long time ageing studies and impression creep technique were used to study the high temperature stability of the alloys. These modified compositions of the alloy resulted in fine equiaxed grains, refined eutectics, large number of high temperature stable and finer precipitates. Among all the compositions, 0.8% Sc + 0.45% Mg + 0.2% Zr addition was found to be significant in improving the high temperature stability of AA2219 alloy. This may be attributed to the possible microstructural changes, solute enrichment of the matrix and pinning of the grain boundaries by the finer precipitates.

  8. Ion-microprobe measurements of Mg, Ca, Ti and Fe isotopic ratios and trace element abundance in hibonite-bearing inclusions in primitive meteorites

    International Nuclear Information System (INIS)

    Fahey, A.J.

    1988-01-01

    This thesis reports the isotopic abundances of Mg, Ca, and Ti and rare earth element (REE) abundances in 19 hibonite-bearing inclusions from primative meteorites. The isotopic ratios of Fe were measured in one of the samples, Lance HH-1. These measurements were made by means of secondary ion mass spectrometry (CAMECA IMS-3f). The novel hardware and software developments that made this work possible are described in detail. The samples were studied in thin section in order to investigate the relationship between the inclusions and their mineralogical environments. Inclusions from a number of different meteorites, specifically, Mighei, Murray, Murchison, Lance, Efremovka, Vigarano, Qingzhen, Dhajala, and Semarkona, were studied. The isotopes of Ca and Ti show large and correlated abundance anomalies in their most neutron-rich isotopes, 48 Ca and 50 Ti. The largest anomalies among the samples studied here are in the Murray inclusion MY-F6, with a 4.6% deficit in 48 Ca and a 5.2% deficit in 50 Ti, and Lance HH-1, with 3.3% and 6.0% deficits in 48 Ca and 50 Ti respectively. Correlated excesses of 48 Ca and 50 Ti, up to 2.4% and 1.4% respectively, are found in some other samples studied here. The fact that there is a correlation of isotopic anomalies in two different elements is clear evidence for a nucleosynthetic origin of these effects. Various possibilities for the origin of these isotopic anomalies are discussed and it is shown that a Cosmic Chemical Memory-like model of the incomplete mixing of dust grains from one or several supernovae is sufficient to explain the data. Magnesium isotopes show excesses of 26 Mg, attributable to the in-situ decay of 26 Al, in 7 of these inclusions

  9. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    International Nuclear Information System (INIS)

    Lamm, Michael; Zlobin, Alexander

    2010-01-01

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory (1)-(2). In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  10. DFT investigation of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Buasaeng, Prayut; Rakrai, Wandee [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand); Wanno, Banchob [Center of Excellence for Innovation in Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150 (Thailand); Tabtimsai, Chanukorn, E-mail: tabtimsai.c@gmail.com [Computational Chemistry Center for Nanotechnology and Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham, 44000 (Thailand)

    2017-04-01

    Highlights: • Transition metal-doped single wall carbon nanotubes and their adsorption with NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules were investigated using a DFT method. • Adsorptions of NH{sub 3}, PH{sub 3} and AsH{sub 3} molecules on pristine single wall carbon nanotubeswere improved by transition metal doping. • Structural and electronic properties of single wall carbon nanotubes were significantly changed by transition metal doping and gas adsorptions. - Abstract: The adsorption properties of ammonia (NH{sub 3}), phosphine (PH{sub 3}), and arsine (AsH{sub 3}) on pristine and transition metal- (TM = Sc, Ti, V, and Cr) doped (5,5) armchair single-walled carbon nanotubes (SWCNTs) were theoretically investigated. The geometric and electronic properties and adsorption abilities for the most stable configuration of NH{sub 3}, PH{sub 3}, and AsH{sub 3} adsorptions on pristine and TM-doped SWCNTs were calculated. It was found that the binding abilities of TMs to the SWCNT were in the order: Cr > V > Sc > Ti. However, the adsorption energy showed that the pristine SWCNT weakly adsorbed gas molecules and its electronic properties were also insensitive to gas molecules. By replacing a C atom with TM atoms, all doping can significantly enhance the adsorption energy of gas/SWCNT complexes and their adsorption ability was in the same order: NH{sub 3} > PH{sub 3} > AsH{sub 3}. A remarkable increase in adsorption energy and charge transfer of these systems was expected to induce significant changes in the electrical conductivity of the TM-doped SWCNTs. This work revealed that the sensitivity of SWCNT-based chemical gas adsorptions and sensors can be greatly improved by introducing an appropriate TM dopant. Accordingly, TM-doped SWCNTs are more suitable for gas molecule adsorptions and detections than the pristine SWCNT.

  11. Doping effects of carbon and titanium on the critical current density of MgB2

    International Nuclear Information System (INIS)

    Shen, T M; Li, G; Cheng, C H; Zhao, Y

    2006-01-01

    MgB 2 bulks doped with Ti or/and C were prepared by an in situ solid state reaction method to determine the combined effect of C and Ti doping and to probe the detailed mechanism. The magnetization measurement shows that Mg 0.95 Ti 0.05 B 1.95 C 0.05 sample has significantly improved flux pinning compared to the MgB 1.95 C 0.05 sample at 20 K, indicating that C and Ti are largely cooperative in improving the J c (H) behaviour. No TiC phase was detected in the x-ray diffraction (XRD) patterns. Moreover, the overlap of the (100) peaks of MgB 1.95 C 0.05 and Mg 0.95 Ti 0.05 B 1.95 C 0.05 showed that Ti doping does not reduce the amount of C in MgB 2 . Microstructural analyses revealed that the addition of Ti eliminated the porosity present in the carbon-doped MgB 2 pellet, resulting in an improved intergrain connectivity and an increase of effective current pass. Further, MgB 2 doped with C and Ti, which mainly consists of spherical grains about 200-300 nm in size, shows an higher grain homogeneity than the C-doped sample, suggesting that the Ti doping in MgB 1-x C x has played an important role in obtaining uniform grains

  12. Simultaneous achievement of high dielectric constant and low temperature dependence of capacitance in (111-oriented BaTiO3-Bi(Mg0.5Ti0.5O3-BiFeO3 solid solution thin films

    Directory of Open Access Journals (Sweden)

    Junichi Kimura

    2016-01-01

    Full Text Available The temperature dependence of the capacitance of (111c-oriented (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films is investigated. These films are prepared on (111cSrRuO3/(111Pt/TiO2/SiO2/(100Si substrates by the chemical solution deposition technique. All the films have perovskite structures and the crystal symmetry at room temperature varies with increasing x ratio, from pseudocubic when x = 0–0.30 to rhombohedral when x = 0.50–0.90. The pseudocubic phase shows a high relative dielectric constant (εr (ranging between 400 and 560 at room temperature and an operating frequency of 100 kHz and a low temperature dependence of capacitance up to 400°C, while maintaining a dielectric loss (tan δ value of less than 0.2 at 100 kHz. In contrast, εr for the rhombohedral phase increases monotonically with increasing temperature up to 250°C, and increasingly high tan δ values are recorded at higher temperatures. These results indicate that pseudocubic (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films with (111 orientation are suitable candidates for high-temperature capacitor applications.

  13. Measurement of neutron activation cross sections in the energy range between 2 and 7 MeV by using a Ti-deuteron target and a deuteron gas target

    Energy Technology Data Exchange (ETDEWEB)

    Senga, T.; Sakane, H.; Shibata, M.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Kasugai, Yoshimi; Ikeda, Yujiro; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    Using a Ti-deuteron target in the neutron energy range between 2 and 4.5 MeV and a deuteron gas target between 4.5 and 7 MeV, mono-energetic neutrons could be generated enough for activation cross section measurements. The KN-3750 Van de Grraff accelerator at Nagoya University and the Fusion Neutronics Source (FNS) at Japan Atomic Energy Research Institute (JAERI) were used. Preliminary results of activation cross sections were obtained for reactions of {sup 27}Al(n,p){sup 27}Mg, {sup 47}Ti(n,p){sup 47}Sc, {sup 58}Ni(n,p){sup 58}Co. The evaluation data of JENDL-3.2 showed reasonable agreement with our results. (author)

  14. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province

    Science.gov (United States)

    Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan

    2018-01-01

    The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.

  15. Synthesis of Titanium-doped MgO heteronanostructures with tunable band gap

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Urvashi; Jeevanandam, P., E-mail: jeevafcy@iitr.ernet.in, E-mail: jeevafcy@iitr.ac.in [Indian Institute of Technology Roorkee, Department of Chemistry (India)

    2016-04-15

    Ti{sub x}Mg{sub 1−x}O heteronanostructures (x = 0.02 to 0.50) have been synthesized by a novel thermal decomposition route, and the effect of concentration of titanium and calcination temperature on optical properties of the heteronanostructures has been investigated. Phase analysis using powder X-ray diffraction demonstrates the formation of mixture of MgO and MgTiO{sub 3} when x = 0.02 to 0.20 and pure MgTiO{sub 3} when x = 0.33 to 0.50. Scanning electron microscopy studies show that the Ti{sub x}Mg{sub 1−x}O samples with x = 0.02 to 0.20 consist of particles with a mixture of flower- and rod-like morphology, whereas the Ti{sub x}Mg{sub 1-x}O samples with x = 0.33 to 0.50 possess rod-like morphology. Transmission electron microscopy studies show that the flowers are in turn formed by assembly of nanoparticles and the hollow rods are formed by aggregation of dumbbell-shaped nanoparticles. Diffuse reflectance spectroscopic studies show that band gap of the Ti{sub x}Mg{sub 1−x}O heteronanostructures can be tuned from 3.2 to 4.2 eV by varying the concentration of titanium and the calcination temperature. Photoluminescence spectra show emission bands in visible and near-infrared regions due to defects present in the Ti{sub x}Mg{sub 1−x}O heteronanostructures.

  16. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  17. Microstructure, electrical and optical characteristics of Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films grown on Si substrate by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ching-Fang, E-mail: cftseng@nuu.edu.tw; Chen, Wen-Shiush; Lee, Chih-Wen

    2011-05-31

    Optical properties and microstructures of Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films prepared by sol-gel method on n-type Si(100) substrates at different annealing temperatures have been investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscope (AFM) were found to be sensitive to the deposition conditions, such as annealing temperature (600-800 deg. C). The optical transmittance spectra of the Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films were measured by using UV-visible recording spectro-photometer. The diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} peaks orientation perpendicular to the substrate surface and the grain size with the increase in the annealing temperature. The dependence of the microstructure and dielectric characteristics on annealing temperature was also investigated.

  18. Influence of titanium volume fraction on the mechanical properties of Mg-Ti composites

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Pablo; Garces, Gerardo; Adeva, Paloma [Centro Nacional de Investigaciones Metalurgicas (CENIM, CSIC), Madrid (Spain). Dept. de Metalurgia Fisica

    2009-03-15

    The influence of titanium volume fraction on the mechanical properties of Mg-Ti composites prepared through a powder metallurgy route has been evaluated. Titanium was added as particles smaller than 25 {mu}m and volume fractions ranging from 5 to 15%. The increase in the volume fraction of titanium particles results in a slight decrease in the maximum strength. In contrast to this, the ductility of all composites was significantly enhanced by titanium additions. The mechanical properties can be explained on the basis of texture changes induced by the presence of titanium particles. The decrease in the basal texture along the extrusion direction as the amount of titanium is progressively increased accounts for the decrease in the maximum strength. (orig.)

  19. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  20. Biomedical bandpass filter for fluorescence microscopy imaging based on TiO2/SiO2 and TiO2/MgF2 dielectric multilayers

    International Nuclear Information System (INIS)

    Butt, M A; Fomchenkov, S A; Verma, P; Khonina, S N; Ullah, A

    2016-01-01

    We report a design for creating a multilayer dielectric optical filters based on TiO 2 and SiO 2 /MgF 2 alternating layers. We have selected Titanium dioxide (TiO 2 ) for high refractive index (2.5), Silicon dioxide (SiO 2 ) and Magnesium fluoride (MgF 2 ) as a low refractive index layer (1.45 and 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging. (paper)

  1. Numerical analysis of residual stress of Al-Mg-Mn-Sc-Zr alloy subjected to surface strengthening by shot peening

    Directory of Open Access Journals (Sweden)

    Mariusz Stegliński

    2015-03-01

    Full Text Available In this paper, we presented the results of the analysis of the stresses in the Al-Mg5%-Mn1,5%-Sc0,8%-Zr0,4% alloy after shot peening process using solver ANSYSANSYSANSYS LS-Dyna. The computational model illustrates the phenomena occurring as a result of plastic deformation caused by hitting a steel ball on the surface of the analyzed aluminium alloy. We analyzed two input variables: diameter and speed of a ball. The resulting normal stress distribution centred exposes the minimum compressive stress at a position located at a depth point of Belayev 0.125 mm with a value of σ = –345 MPa. Variable parameter shows the correlation of the boundary conditions of minimum stress increase with increasing ball’s diameter and its speed. Selected points of numerical analysis were verified with experimental results.[b]Keywords[/b]: materials science, numerical analysis, metal forming, shot peening, aluminium

  2. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    Science.gov (United States)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  3. Assessment of CaSO4:Dy and LiF:Mg,Ti thermoluminescent dosimeters performance in the dosimetry of clinical electron beams

    International Nuclear Information System (INIS)

    Nunes, Maira Goes

    2008-01-01

    The assessment of the performance of CaS0 4 :Dy thermoluminescent detectors produced by IPEN in the dosimetry of clinical electron beams aims to propose an alternative to the LiF:Mg,Ti commercial dosimeters (TLD-100) largely applied in radiation therapy. The two types of thermoluminescent dosimeters were characterised with the use of PMMA, RMI-457 type solid water and water phantoms in radiation fields of 4, 6, 9, 12 and 16 MeV electrons of nominal energies in which the dose-response curves were obtained and the surface and depth doses were determined. The thermoluminescent response dependency with the electron nominal energies and the applied phantom were studied. The CaS0 4 :Dy presented the same behaviour than the LiF:Mg,Ti in such a way that its application as an alternative to the TLD-100 pellets in the radiation therapy dosimetry of electron beams is viable and presents the significantly higher sensitivity to the electron radiation as its main advantage. (author)

  4. Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH4)2-MgH2 system

    International Nuclear Information System (INIS)

    Bonatto Minella, Christian; Garroni, Sebastiano; Pistidda, Claudio; Baró, Maria Dolors; Gutfleisch, Oliver; Klassen, Thomas; Dornheim, Martin

    2015-01-01

    Highlights: • Faster desorption reaction for doped materials vs. the pure composite system. • Kinetic improvement concerning re-hydrogenation reaction showed by the addition of NbF 5 . • Full characterization of the de-hydrogenation reaction pathway by means of both SR-PXD and 11 B{ 1 H} MAS-NMR. • Study of the evolution of the chemical state of the additives upon both milling and sorption reactions. - Abstract: In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of the research due to their high gravimetric and volumetric hydrogen densities. Among them, Ca(BH 4 ) 2 and the Ca(BH 4 ) 2 + MgH 2 reactive hydride composites (RHC), were calculated to have the ideal thermodynamic properties which fall within the optimal range for mobile applications. In this study, the addition of NbF 5 or TiF 4 to the Ca(BH 4 ) 2 + MgH 2 reactive hydride composite system was attempted aiming to obtain a full reversible system with the simultaneous suppression of CaB 12 H 12 . Structural characterization of the specimens was performed by means of in-situ Synchrotron Radiation Powder X-ray diffraction (SR-PXD) and 11 B{ 1 H} Solid State Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES). The addition of NbF 5 or TiF 4 to the Ca(BH 4 ) 2 + MgH 2 system have not suppressed completely the formation of CaB 12 H 12 and only a slight improvement concerning the reversible reaction was displayed just in the case of Nb-doped composite material

  5. Hydrogen storage in binary and ternary Mg-based alloys: A comprehensive experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kalisvaart, W.P.; Harrower, C.T.; Haagsma, J.; Zahiri, B.; Luber, E.J.; Ophus, C.; Mitlin, D. [Chemical and Materials Engineering, University of Alberta and National Research Council Canada, National Institute for Nanotechnology, T6G 2V4, Edmonton, Alberta (Canada); Poirier, E.; Fritzsche, H. [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2010-03-15

    This study focused on hydrogen sorption properties of 1.5 {mu}m thick Mg-based films with Al, Fe and Ti as alloying elements. The binary alloys are used to establish as baseline case for the ternary Mg-Al-Ti, Mg-Fe-Ti and Mg-Al-Fe compositions. We show that the ternary alloys in particular display remarkable sorption behavior: at 200 C the films are capable of absorbing 4-6 wt% hydrogen in seconds, and desorbing in minutes. Furthermore, this sorption behavior is stable over cycling for the Mg-Al-Ti and Mg-Fe-Ti alloys. Even after 100 absorption/desorption cycles, no degradation in capacity or kinetics is observed. For Mg-Al-Fe, the properties are clearly worse compared to the other ternary combinations. These differences are explained by considering the properties of all the different phases present during cycling in terms of their hydrogen affinity and catalytic activity. Based on these considerations, some general design principles for Mg-based hydrogen storage alloys are suggested. (author)

  6. Density functional study of the stability and magnetic behaviour of Au{sub n}TM{sup +} clusters (TM=Au,Sc,Ti,V,Cr,Mn,Fe; 1{<=}n{<=}9)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M.B. [Dpto. de Matematicas y Computacion, Univ. de Burgos, Avda. de Cantabria s/n, 09006-Burgos (Spain); Fernandez, E.M.; Balbas, L.C. [Dpto. de Fisica Teorica, Univ. de Valladolid, Prado de la Magdalena s/n, 47011-Valladolid (Spain)

    2005-03-01

    We study the element- and size-dependent electron stability of Au{sub n}TM{sup +} clusters (TM=Sc,Ti,V,Cr,Mn,Fe,Au; 1{<=}n{<=}9) by means of first-principles density functional calculations. The interplay between the cluster atomic arrangements and their electronic and magnetic structure is investigated for the few lower energy isomeric-states in dependence of the TM-atom and its environment in the cluster. We explain the experimental magic-numbers, observed recently, as well as the trend of the impurity local magnetic moment in dependence with the size of the cluster and the position of the impurity in the host. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Multifunctional MgO Layer in Perovskite Solar Cells.

    Science.gov (United States)

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microstructure and kinetics evolution in MgH{sub 2}–TiO{sub 2} pellets after hydrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mirabile Gattia, D., E-mail: daniele.mirabile@enea.it; Di Girolamo, G.; Montone, A.

    2014-12-05

    Highlights: • MgH{sub 2} was ball milled with TiO{sub 2} anatase phase and expanded graphite to prepare pellets. • Different pellets have been prepared at different compression load. • Pellets were repeatedly cycled under hydrogen pressure to simulate tank exercise and verify their stability. • The compression load highly affects the stability of the pellets to cycling. • Microstructural evolution of the particles due to cycling have been observed. - Abstract: The interest in Mg-based hydrides for solid state hydrogen storage is associated to their capability to reversibly absorb and desorb large amounts of hydrogen. In this work MgH{sub 2} powder with 5 wt.% TiO{sub 2} was ball milled for 10 h. The as-milled nanostructured powder was enriched with 5 wt.% of Expanded Natural Graphite (ENG) and then compacted in cylindrical pellets by cold pressing using different loads. Both the powder and the pellets were subjected to kinetic and thermodynamic tests using a Sievert’s type gas reaction controller, in order to study the microstructural and kinetic changes which took place during repeated H{sub 2} absorption and desorption cycles. The pellets exhibited good kinetic performance and durability, even if the pressure of compaction revealed to be an important parameter for their mechanical stability. Scanning Electron Microscopy observations of as-prepared and cycled pellets were carried out to investigate the evolution of their microstructure. In turn the phase composition before and after cycling was analyzed by X-ray diffraction.

  9. High Resolution and Differential PIXE combined with RBS, EBS and AFM analysis of magnesium titanate (MgTiO3) multilayer structures

    International Nuclear Information System (INIS)

    Reis, M.A.; Alves, L.C.; Barradas, N.P.; Chaves, P.C.; Nunes, B.; Taborda, A.; Surendran, K.P.; Wu, A.; Vilarinho, P.M.; Alves, E.

    2010-01-01

    Thorough structural characterization of deep laying thin film, including the inference of interdiffusion profiles is frequently a complex problem. The use of RBS/PIXE holistic approaches, already shown to represent a powerful method, sometimes faces difficulties if standard experimental procedures are used. In this work, following a series of 4 He Rutherford backscattering and 1 H elastic backscattering experiments, carried out to study the influence of SrTiO 3 as a possible cladding layer between Pt/TiO 2 /SiO 2 /(1 0 0)Si substrates and MgTiO 3 films, a simple holistic RBS-PIXE is shown to be not enough for the solution of such a problem. Establishing of the Sr depth profile, was only possible after AFM, High-Resolution EDS PIXE and differential PIXE analysis were carried out. Results, problems faced and conclusions obtained are presented.

  10. Thickness Dependent Optical Properties of Sol-gel based MgF2 – TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Siddarth Krishnaraja Achar

    2018-04-01

    Full Text Available MgF2 – TiO2 thin films were prepared by cost effective solgel technique onto glass substrates and optical parameters were determined by envelope technique. Thin films were characterized by optical transmission spectroscopy in the spectral range 290 – 1000 nm. The refractive index, extinction coefficient, Optical thickness and band gap dependency on thickness were evaluated. Thickness dependency of thin films showed direct allowed transition with band gap of 3.66 to 3.73 eV.

  11. Electric field induced lattice strain in pseudocubic Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-modified BaTiO{sub 3}-BiFeO{sub 3} piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ichiro, E-mail: ifujii@rins.ryukoku.ac.jp [Department of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194 (Japan); Iizuka, Ryo; Ueno, Shintaro; Nakashima, Kouichi; Wada, Satoshi [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan); Nakahira, Yuki; Sunada, Yuya; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2016-04-25

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO{sub 3}-0.1Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-0.6BiFeO{sub 3} ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  12. ZZ-FSXLIB-JD99, MCNP nuclear data library based on JENDL Dosimetry File 99

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2007-01-01

    Description: JENDL Dosimetry File 99 processed into ACE for Monte Carlo calculations. JENDL/D-99 based MCNP library. Format: ACE. Number of groups: Continuous energy cross section library. Nuclides: 47 Nuclides and 67 reactions: Li-6 (n, triton) alpha; Li-6 alpha-production; Li-7 triton- production; B-10 (n, alpha) Li-7; B-10 alpha-production; F-19 (n, 2n) F-18; Na-23 (n, 2n) Na-22; Na-23 (n, gamma) Na-24; Mg-24 (n, p) Na-24; Al-27 (n, p) Mg-27; Al-27 (n, alpha) Na-24; P-31 (n, p) Si-31; S-32 (n, p) P-32; Sc-45 (n, gamma) Sc-46; Ti-nat (n, x) Sc-46; Ti-nat (n, x) Sc-47; Ti-nat (n, x) Sc-48; Ti-46 (n, 2n) Ti-45; Ti-46 (n, p) Sc-46; Ti-47 (n, np) Sc-46; Ti-47 (n, p) Sc-47; Ti-48 (n, np) Sc-47; Ti-48 (n, p) Sc-48; Ti-49 (n, np) Sc-48; Cr-50 (n, gamma) Cr-51; Cr-52 (n, 2n) Cr-51; Mn-55 (n, 2n) Mn-54; Mn-55 (n, gamma) Mn-56; Fe-54 (n, p) Mn-54; Fe-56 (n, p) Mn-56; Fe-57 (n, np) Mn-56; Fe-58 (n, gamma) Fe-59; Co-59 (n, 2n) Co-58; Co-59 (n, gamma) Co-60; Co-59 (n, alpha) Mn-56; Ni-58 (n, 2n) Ni-57; Ni-58 (n, p) Co-58; Ni-60 (n, p) Co-60; Cu-63 (n, 2n) Cu-62; Cu-63 (n, gamma) Cu-64; Cu-63 (n, alpha) Co-60; Cu-65 (n, 2n) Cu-64; Zn-64 (n, p) Cu-64; Y-89 (n, 2n) Y-88; Zr-90 (n, 2n) Zr-89; Nb-93 (n, n') Nb-93m; Nb-93 (n, 2n) Nb-92m; Rh-103 (n, n') Rh-103m; Ag-109 (n, gamma) Ag-110m; In-115 (n, n') In-115m; In-115 (n, gamma) In-116m; I-127 (n,2n) I-126; Eu-151 (n, gamma) Eu-152; Tm-169 (n,2n) Tm-168; Ta-181 (n, gamma) Ta-182; W-186 (n, gamma) W-187; Au-197 (n, 2n) Au-196; Au-197 (n, gamma) Au-198; Hg-199 (n, n') Hg-199m; Th-232 - fission; Th-232 (n, gamma) Th-233; U-235 - fission; U-238 - fission; U-238 (n, gamma) U-239; Np-237 - fission; Pu-239 - fission; Am-241 - fission. The data were produced on the 31 of March, 2006

  13. Study of T L LiF: Mg,Ti (Model JR1152C) material for its use in the environmental monitoring; Estudio del material TL LiF: Mg, Ti (JR1152C) para su empleo en el monitoreo ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Diaz B, E.; Prendes A, M. [Centro de Proteccion e Higiene de las Radiaciones, CPHR, Apdo. postal 6195, Habana 6, CP 10600, Ciudad Habana (Cuba)

    1999-07-01

    In order to evaluate the possibility to use the T L material of LiF: Mg,Ti (Model JR1152C) as environmental dosemeter it was realized its characterization of it according to the established criterion in the standard IEC-1066. The properties studied were: homogeneity of the lot, reproducibility, response linearity, detection threshold, auto irradiation, residual signal, response pride (fading) and angular dependence. The results prove the compliment of the IEC requirements and therefore the applicability of this dosemeter in the environmental monitoring. (Author)

  14. The corrosion and passivity of sputtered Mg–Ti alloys

    International Nuclear Information System (INIS)

    Song, Guang-Ling; Unocic, Kinga A.; Meyer, Harry; Cakmak, Ercan; Brady, Michael P.; Gannon, Paul E.; Himmer, Phil; Andrews, Quinn

    2016-01-01

    Highlights: • A supersaturated single phase Mg–Ti alloy can be obtained by magnetron sputtering. • The anodic dissolution of Mg–Ti alloy is inhibited by Ti addition. • The alloy becomes passive when Ti content is high and the alloy has become Ti based. • The formation of a continuous thin passive film is responsible for the passivation of the alloy. - Abstract: This study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. The surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide film was formed on a sputtered Ti–Mg based alloy.

  15. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Braic, M.; Zoita, N.C.; Danila, M.; Grigorescu, C.E.A.; Logofatu, C.

    2015-01-01

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH 4 . The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC 0.84 thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH 4 . • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed

  16. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Braic, M. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Zoita, N.C., E-mail: cnzoita@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Danila, M. [National Institute for Research and Development in Microtechnology, 126A Erou Iancu Nicolae Blvd., 077190 Bucharest (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Logofatu, C. [National Institute of Materials Physics, 105 bis Atomistilor St., 077125 Magurele (Romania)

    2015-08-31

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH{sub 4}. The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC{sub 0.84} thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH{sub 4}. • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed.

  17. Structure and bonding of ScCN and ScNC: Ground and low-lying states

    International Nuclear Information System (INIS)

    Kalemos, Apostolos; Metropoulos, Aristophanes; Mavridis, Aristides

    2012-01-01

    Graphical abstract: The experimentally unknown systems ScCN and ScNC have been studied through single reference CISD and CCSD(T) methods. A total of 20 = 10 (ScCN) + 10 (ScNC) states were examined. All states are quite ionic whereas ScNC(X ∼3 Δ) is stabler than ScCN(X ∼3 Δ) by ∼5 kcal/mol. Display Omitted Highlights: ► We have studied through ab initio methods the polytopic system Sc[CN]. ► A series of low lying states for both isomeric forms have been examined. ► Around equilibrium the system displays a pronounced Sc + [CN] − ionic character. - Abstract: We have studied the experimentally unknown Sc[CN] molecular system in both its isomeric forms, scandium cyanide (ScCN) and isocyanide (ScNC), through ab initio computations. We report energetics, geometries, harmonic frequencies, and dipole moments for the first 20 Sc[CN] states correlating diabatically to Sc + ( 3 D, 1 D, 3 F) + CN − (X 1 Σ + ). Both isomers have a pronounced ionic character around equilibrium due to the high electron affinity of the CN group and the low ionization energy of the Sc atom. According to our calculations the ScNC isomer (X ∼3 Δ) is stabler than the ScCN(X ∼3 Δ) by ∼5 kcal/mol.

  18. New indides Sc{sub 6}Co{sub 2.18}In{sub 0.82}, Sc{sub 10}Ni{sub 9}In{sub 19.44} and ScCu{sub 4}In-synthesis, structure, and crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, R.I.; Rodewald, U. Ch.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Univ. Muenster (Germany); Kalychak, Y.M.; Zaremba, V.I. [Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv, Lviv (Ukraine)

    2006-08-15

    New indides Sc{sub 6}Co{sub 2.18}In{sub 0.82}, Sc{sub 10}Ni{sub 9}In{sub 19.44} and ScCu{sub 4}In have been synthesized from the elements by arc-melting. Single crystals were grown by special annealing modes. The thee indides were investigated via X-ray powder and single crystal diffraction: Ho{sub 6}Co{sub 2}Ga type, Immm, a = 886.7(3), b = 878.0(2), c = 932.1(3) pm, wR2 = 0.0517, 711 F{sup 2} values, 35 variables for Sc{sub 6}Co{sub 2.18}In{sub 0.82}, Ho{sub 10}Ni{sub 9}In{sub 20} type, P4/nmm, a = 1287.5(2), c = 884.7(1) pm, wR2 = 0.0642, 1221 F{sup 2} values, 63 variables for Sc{sub 10}Ni{sub 9}In{sub 19.44}, and MgCu{sub 4}Sn type, anti F 43m, a = 704.03(7) pm, wR2 = 0.0267, 101 F{sup 2} values, and 7 variables for ScCu{sub 4}In. The scandium rich indide Sc{sub 6}Co{sub 2.18}In{sub 0.82} contains two Co{sub 2} dumb-bells at Co-Co distances of 221 and 230 pm. Each cobalt atom within these dumb-bells has a tricapped trigonal prismatic coordination. The In1 site has a distorted cube-like coordination by scandium and shows a mixed occupancy (36%) with cobalt. The In2 atoms have distorted icosahedral scandium coordination. As a consequence of the small size of the scandium atoms, the In4 site in Sc{sub 10}Ni{sub 9}In{sub 19.44} shows defects and was furthermore refined with a split model leading to a new distorted variant within the family of Ho{sub 10}Ni{sub 9}In{sub 20} compounds. ScCu{sub 4}In is an ordered version of the cubic Laves phase with scandium and indium atoms in the CN16 voids of the copper substructure. The Cu-Cu distances within the three-dimensional network of corner-sharing tetrahedra are 248.6 and 249.2 pm. The crystal chemical peculiarities of these three indide structures are briefly discussed. (orig.)

  19. Elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on separated targets of {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn and {sup 208}Pb using the Saclay fixed-energy cyclotron; Sections efficaces differentielles elastiques et inelastiques obtenues par diffusion de particules {alpha} de 44 MeV sur des cibles de {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn et {sup 208}Pb au cyclotron a energie fixe de saclay

    Energy Technology Data Exchange (ETDEWEB)

    Bruge, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physique nucleaire, service de physique nucleaire a moyenne energie

    1967-01-01

    This report contains elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn and Pb enriched targets. (author) [French] Ce rapport contient les tableaux des sections efficaces differentielles obtenues par diffusion elastique et inelastique des particules {alpha} de 44 MeV, fournies par le cyclotron a energie fixe de Saclay, sur des cibles d'isotopes separes de Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn et Pb. (auteur)

  20. Volatility of V15Cr5Ti fusion reactor alloy

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1986-01-01

    One potential hazard from the presence of activation products in fusion facilities is accidental oxidation-driven volatility of those activation products. Scoping experiments were conducted to investigate the oxidation and elemental volatility of candidate fusion reactor alloy V15Cr5Ti as a function of time, temperature, and test atmosphere. Experiments in air and in argon carrier gases containing 10 4 to 10 1 Pa (10 -1 to 10 -4 atm) oxygen were conducted to investigate the lower oxygen partial pressure limit for the formation of a low melting point (approximately 650 0 C), high volatility, oxide layer and its formation rate. Experiments to determine the elemental volatility of alloy constituents in air at temperatures of 700 0 C to greater than 1600 0 C. Some of these volatility experiments used V15Cr5Ti that was arc-remelted to incorporate small quantities (<0.1 wt. %) of Sc and Ca. Incorporation of Sc and Ca in test specimens permitted volatility measurement of radioactive constituents present only after activation of V15Cr5Ti

  1. Effect of various concentrations of Ti in hydrocarbon plasma polymer films on the adhesion, proliferation and differentiation of human osteoblast-like MG-63 cells

    Science.gov (United States)

    Vandrovcova, Marta; Grinevich, Andrey; Drabik, Martin; Kylian, Ondrej; Hanus, Jan; Stankova, Lubica; Lisa, Vera; Choukourov, Andrei; Slavinska, Danka; Biederman, Hynek; Bacakova, Lucie

    2015-12-01

    Hydrocarbon polymer films (ppCH) enriched with various concentrations of titanium were deposited on microscopic glass slides by magnetron sputtering from a Ti target. The maximum concentration of Ti (about 20 at.%) was achieved in a pure argon atmosphere. The concentration of Ti decreased rapidly after n-hexane vapors were introduced into the plasma discharge, and reached zero values at n-hexane flow of 0.66 sccm. The decrease in Ti concentration was associated with decreasing oxygen and titanium carbide concentration in the films, decreasing wettability (the water drop contact angle increased from 20° to 91°) and decreasing root-mean-square roughness (from 3.3 nm to 1.0 nm). The human osteoblast-like MG-63 cells cultured on pure ppCH films and on films with 20 at.% of Ti showed relatively high concentrations of ICAM-1, a marker of cell immune activation. Lower concentrations of Ti (mainly 5 at.%) improved cell adhesion and osteogenic differentiation, as revealed by higher concentrations of talin, vinculin and osteocalcin. Higher Ti concentrations (15 at.%) supported cell growth, as indicated by the highest final cell population densities on day 7 after seeding. Thus, enrichment of ppCH films with appropriate concentrations of Ti makes these films more suitable for potential coatings of bone implants.

  2. Measurement of cross sections of threshold detectors with spectrum average technique

    International Nuclear Information System (INIS)

    Agus, Y.; Celenk, I.; Oezmen, A.

    2004-01-01

    Cross sections of the reactions 103 Rh(n, n') 103m Rh, 115 In(n, n') 115m In, 232 Th(n, f), 47 Ti(n, p) 47 Sc, 64 Zn(n, p) 64 Cu, 58 Ni(n, p) 58 Co, 54 Fe(n, p) 54 Mn, 46 Ti(n, p) 46 Sc, 27 Al(n, p) 27 Mg, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na, 59 Co(n, α) 56 Mn, 27 Al(n, α) 24 Na and 48 Ti(n, p) 48 Sc were measured with average neutron energies above effective threshold by using the activation method through usage of spectrum average technique in an irradiation system where there are three equivalent Am/Be sources, each of which has 592 GBq activity. The cross sections were determined with reference to the fast neutron fission cross section of 238 U. The measured values and published values are generally in agreement. (orig.)

  3. Materials Processing Research and Development

    Science.gov (United States)

    2010-08-01

    2 2.1.4 The Origins of Microstexture in Duplex Ti Alloys...Controlled Growth and Coarsening ....... 14 2.11 PUBLISHED RESEARCH ON FRICTION STIR WELDING OF SC-MODIFIED AL-ZN-MG-CU EXTRUDED PLATES...14 2.11.1 Friction Stir Welding of Sc

  4. Assessment of CaSO{sub 4}:Dy and LiF:Mg,Ti thermoluminescent dosimeters performance in the dosimetry of clinical electron beams; Avaliacao do desempenho dos detectores termoluminesncetes de CaSO{sub 4}:Dy e LiF:Mg,Ti na dosimetria de feixes clinicos de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Maira Goes

    2008-07-01

    The assessment of the performance of CaS0{sub 4}:Dy thermoluminescent detectors produced by IPEN in the dosimetry of clinical electron beams aims to propose an alternative to the LiF:Mg,Ti commercial dosimeters (TLD-100) largely applied in radiation therapy. The two types of thermoluminescent dosimeters were characterised with the use of PMMA, RMI-457 type solid water and water phantoms in radiation fields of 4, 6, 9, 12 and 16 MeV electrons of nominal energies in which the dose-response curves were obtained and the surface and depth doses were determined. The thermoluminescent response dependency with the electron nominal energies and the applied phantom were studied. The CaS0{sub 4}:Dy presented the same behaviour than the LiF:Mg,Ti in such a way that its application as an alternative to the TLD-100 pellets in the radiation therapy dosimetry of electron beams is viable and presents the significantly higher sensitivity to the electron radiation as its main advantage. (author)

  5. Effect of pressure on the metastable phase formation of equilibrium immiscible Ti-Mg system studied by ab initio technique and mechanical milling

    CSIR Research Space (South Africa)

    Phasha, MJ

    2008-11-01

    Full Text Available of view. Therefore, the only possible route so far to achieve alloying of Ti and Mg, is by employing a non-equilibrium process. As a result, many attempts to extend the solid solubility have been made in the past decade using non-equilibruim processes....

  6. Monte Carlo and Ab-initio calculation of TM (Ti, V, Cr, Mn, Fe, Co, Ni) doped MgH{sub 2} hydride: GGA and SIC approximation

    Energy Technology Data Exchange (ETDEWEB)

    Salmani, E., E-mail: elmehdisalmani@gmail.com [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Laghrissi, A.; Lamouri, R. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benchafia, E. [Department of Materials Science and Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Ez-Zahraouy, H. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benyoussef, A. [Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2017-02-15

    MgH{sub 2}: TM (TM: V, Cr, Mn, Fe, Co, Ni) based dilute magnetic semiconductors (DMS) are investigated using first principle calculations. Our results show that the ferromagnetic state is stable when TM introduces magnetic moments as well as intrinsic carriers in TM: Co, V, Cr, Ti; Mg{sub 0.95}TM{sub 0.05}H{sub 2}. Some of the DMS Ferro magnets under study exhibit a half-metallic behavior, which make them suitable for spintronic applications. The double exchange is shown to be the underlying mechanism responsible for the magnetism of such materials. The exchange interactions obtained from first principle calculations and used in a classical Ising model by a Monte Carlo approach resulted in ferromagnetic states with Curie temperatures within the ambient conditions. - Highlights: • The half-metallic aspect was proven to take place for Ti, Cr, Co and Ni. • The TM impurities are shown to introduce the magnetic moment that makes MgH{sub 2} good candidates for spintronic applications.

  7. Sc-45 nuclear magnetic resonance analysis of precipitation in dilute Al-Sc alloys

    NARCIS (Netherlands)

    Celotto, S; Bastow, TJ

    Nuclear magnetic resonance (NMR) with Sc-45 is used to determine the solid solubility of scandium in aluminium and to follow the precipitation of Al3Sc during the ageing of an Al-0.06 at.% Sc alloy via the two fully resolved peaks, corresponding to Sc in the solid solution Al matrix and to Sc in the

  8. Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Composite

    Directory of Open Access Journals (Sweden)

    Markus Alfreider

    2016-08-01

    Full Text Available The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.4 wt% Ti and 25 vol% (11.4 wt% Mg , was synthesized by powder compression and subsequently deformed by high-pressure torsion. Using focused ion beam machining, miniaturised compression samples were prepared and tested in-situ in a scanning electron microscope to gain insights into local deformation behaviour and mechanical properties of the nanocomposite. Results show outstanding yield strength of around 1250 MPa, which is roughly 200 to 500 MPa higher than literature reports of similar materials. The failure mode of the samples is accounted for by cracking along the phase boundaries.

  9. Microstructure, consolidation and mechanical behaviour of Mg/n-TiC composite

    Directory of Open Access Journals (Sweden)

    N. Vijay Ponraj

    2016-09-01

    Full Text Available In this work, the microstructure, consolidation and mechanical properties of pure magnesium, magnesium based composite containing with different fractions (5, 10, 15 wt% of Titanium carbide nanoparticles (n-TiC were fabricated via powder metallurgy technique. The fabricated composites exhibited homogeneous distribution of TiC with little porosity. Microstructure of the composite and powders was studied using X-ray diffraction, Scanning electron microscope, and Transmission electron microscope. Microstructural characterization of the materials exposed that the accumulation of nanosized titanium carbide reinforcement enhanced the homogenization during mechanical blending. The relative density, compressibility, green compressive strength, sinterability and hardness of the nanocomposites were also examined. The effect of reinforcement on the densification was studied and reported in terms of the relative density and consolidation behaviour of the Magnesium matrix with n-TiC was studied and best compacted fit obtained through the Heckel, Panelli Ambrosio Filho and Ge equations. The compressive strength of the composite significantly increases from 230 MPa to 389 MPa with content of n-TiC and sintering temperature. Experiments have been performed under different conditions of temperature, n-TiC Content, and compacting pressure.

  10. Crystal structure and phase stability of AlSc in the near-equiatomic Al–Sc alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan; Huang, Li; Liang, Yongfeng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083 (China); Ye, Feng, E-mail: yefeng@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083 (China); Lin, Junpin [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083 (China); Shang, Shunli; Liu, Zikui [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-01-05

    Highlights: • Two lattice structures of equiatomic Al–Sc compounds are confirmed. • Al–Sc phase at Sc 50 at.% has a space group of Pbam. • Al–Sc phase at Sc 55 at.% has a space group of B2. • B2 AlSc is a metastable phase with Sc 50 at.%. • Lattice transition between two compounds is proposed under local thermal stress. - Abstract: Intermetallic compound AlSc is found in the equiatomic Al–Sc binary alloy. The present work indicates that the orthorhombic AlSc with the Au{sub 2}CuZn-type structure can be formed at 50 at.% Sc, while the CsCl-type (B2) AlSc will be formed at 55 at.% Sc. After annealing at 1100 °C, some orthorhombic AlSc grains transit to the B2 structure, and the annealing at lower temperatures leads to the disappearance of B2 phase, indicating that the B2 AlSc is also a metastable phase in the alloy at lower Sc content (<50 at.%). First-principle calculations at 0 K reveal that the orthorhombic AlSc is more stable than the B2 AlSc with the energy difference between them being 5.4 meV/atom. The fast transition between these two phases, which cannot be interpreted by the mechanism of atomic diffusion, was tentatively analyzed by the volume change based on the calculated atomic positions of these two phases.

  11. Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    International Nuclear Information System (INIS)

    Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L.

    2014-01-01

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi) x (TiVZr) phases with D0 22 /D0 23 tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi) x (TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals

  12. Shape Memory Characteristics of Ti(sub 49.5)Ni(sub 25)Pd(sub 25)Sc(sub 0.5) High-Temperature Shape Memory Alloy After Severe Plastic Deformation

    Science.gov (United States)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2011-01-01

    A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.

  13. 46 CFR 7.70 - Folly Island, SC to Hilton Head Island, SC.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Folly Island, SC to Hilton Head Island, SC. 7.70 Section... BOUNDARY LINES Atlantic Coast § 7.70 Folly Island, SC to Hilton Head Island, SC. (a) A line drawn from the...′ W. (Port Royal Sound Lighted Whistle Buoy “2PR”); thence to the easternmost extremity of Hilton Head...

  14. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations.

    Science.gov (United States)

    Lan, Jianhui; Cao, Dapeng; Wang, Wenchuan; Smit, Berend

    2010-07-27

    We use the multiscale simulation approach, which combines the first-principles calculations and grand canonical Monte Carlo simulations, to comprehensively study the doping of a series of alkali (Li, Na, and K), alkaline-earth (Be, Mg, and Ca), and transition (Sc and Ti) metals in nanoporous covalent organic frameworks (COFs), and the effects of the doped metals on CO2 capture. The results indicate that, among all the metals studied, Li, Sc, and Ti can bind with COFs stably, while Be, Mg, and Ca cannot, because the binding of Be, Mg, and Ca with COFs is very weak. Furthermore, Li, Sc, and Ti can improve the uptakes of CO2 in COFs significantly. However, the binding energy of a CO2 molecule with Sc and Ti exceeds the lower limit of chemisorptions and, thus, suffers from the difficulty of desorption. By the comparative studies above, it is found that Li is the best surface modifier of COFs for CO2 capture among all the metals studied. Therefore, we further investigate the uptakes of CO2 in the Li-doped COFs. Our simulation results show that at 298 K and 1 bar, the excess CO2 uptakes of the Li-doped COF-102 and COF-105 reach 409 and 344 mg/g, which are about eight and four times those in the nondoped ones, respectively. As the pressure increases to 40 bar, the CO2 uptakes of the Li-doped COF-102 and COF-105 reach 1349 and 2266 mg/g at 298 K, respectively, which are among the reported highest scores to date. In summary, doping of metals in porous COFs provides an efficient approach for enhancing CO2 capture.

  15. A miniaturized Microwave Bandpass Filter Based on Modified (Mg0.95Ca0.05TiO3 Substrate

    Directory of Open Access Journals (Sweden)

    Hu Mingzhe

    2016-01-01

    Full Text Available A microwave miniaturized bandpass filter using (Mg0.95Ca0.05TiO3 (abbreviated as 95MCT hereafter ceramic substrate is investigated in the present paper. The paper studies the sintering and microwave dielectric properties of Al2O3, La2O3 and SiO2 co-doped 95MCT. The XRD pattern shows that a secondary phase MgTi2O5 is easily segregated in 95MCT ceramic, however, through co-doping it can be effectively suppressed, and the microwave dielectric properties, especially, the Qf value can be significantly improved. Through optimizing the co-doping ratio of Al2O3, La2O3 and SiO2, the sintering temperature of 95MCT ceramic can be lowered by 80°C, and the microwave dielectric properties can reach Qf=61856GHz and εr=19.84, which indicates the modified 95MCT ceramic have a great potential application in microwave communication devices. Based on this, we also designed a miniaturized microwave bandpass filter (BPF on modified 95MCT substrate. Through a full wave electromagnetic structure simulation, the results show that the center frequency of the BPF is 2.45GHz and the relative bandwidth is 4.09% with the insertion loss of less than 0.2dB in the whole bandpass.

  16. A filter for reducing the angular dependence of LiF; Ti, Mg for beta radiation

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1990-01-01

    This paper reports on an improvement in the angular dependence of LiF:Ti,Mg (TAD-100) for beta radiation which was achieved by using a special filter design which produced a constant dosimeter response over a range of +70 degrees and -70 degrees. The filter material used was acetate. The filter design was tested with three different beta sources, Sr/Y-90, Tl-204 and Pm-147 with average energies of 0.8, 0.24 and 0.06 MeV, respectively. The average response at 180 degrees of the new filtered dosimeter differed by less than 5% when compared to the response at zero degrees. An average decrease in sensitivity of 53% for Sr-90, 70% for Tl-204 and 67% for Pm-147 was obtained due to filter use. All doses were calculated for a depth dose in tissue of 0.07 mm equivalent to 7 mg/cm 2 as is recommended in ICRP Publication 26. A comparison of the energy dependence for a bare TAD-100 at 0.0 mm and 0.07 mm depth in tissue was obtained

  17. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application

    International Nuclear Information System (INIS)

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-01-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness = 262.4 MPa; elastic modulus = 5800 MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. - Highlights: • PVA/ZrP (undoped/doped with Ca, Mg and Ti) nanocomposite scaffolds were developed. • The nanocomposites were prepared via solvent casting method. • PVA/doped ZrP films exhibited enhanced mechanical properties than PVA/undoped ZrP. • Excellent bioactivity was observed in the PVA/doped ZrP films than PVA/undoped ZrP.

  18. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Himani [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pal, Pallabi; Dhara, Santanu [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2017-02-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness = 262.4 MPa; elastic modulus = 5800 MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. - Highlights: • PVA/ZrP (undoped/doped with Ca, Mg and Ti) nanocomposite scaffolds were developed. • The nanocomposites were prepared via solvent casting method. • PVA/doped ZrP films exhibited enhanced mechanical properties than PVA/undoped ZrP. • Excellent bioactivity was observed in the PVA/doped ZrP films than PVA/undoped ZrP.

  19. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    Science.gov (United States)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  20. Search for ionisation density effects in the radiation absorption stage in LiF:Mg,Ti

    International Nuclear Information System (INIS)

    Nail, I.; Horowitz, Y. S.; Oster, L.; Brandan, M. E.; Rodriguez-Villafuerte, M.; Buenfil, A. E.; Ruiz-Trejo, C.; Gamboa-deBuen, I.; Avila, O.; Tovar, V. M.; Olko, P.; Ipe, N.

    2006-01-01

    Optical absorption (OA) dose-response of LiF:Mg,Ti (TLD-100) is studied as a function of electron energy (ionisation density) and irradiation dose. Contrary to the situation in thermoluminescence dose-response where the supra-linearity is strongly energy-dependent, no dependence of the OA dose filling constants on energy is observed. This result is interpreted as indicating a lack of competitive process in the radiation absorption stage. The lack of an energy dependence of the dose filling constant also suggests that the charge carrier migration distances are sufficiently large to smear out the differences in the non-uniform distribution of ionisation events created by the impinging gamma/ electron radiation of various energies. (authors)

  1. Cross-sections of 45Sc(n,2n)44m,gSc reaction from the reaction threshold to 20 MeV

    International Nuclear Information System (INIS)

    Luo, J.; Peking Univ., Beijing; Liu, R.; Jiang, L.; Liu, Z.; Sun, G.; Ge, S.

    2013-01-01

    Cross sections of 45 Sc(n,2n) 44m,g Sc reactions and their isomeric cross section ratios σ m /σ g have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the 3 H(d, n) 4 He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  2. Ternary scandium-rich indides Sc{sub 50}T{sub 13}In{sub 3} and Sc{sub 50}Rh{sub 13}In{sub 3}O{sub y} (T = Rh, Ir; y {approx} 8) - synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, R.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany)

    2007-12-15

    New intermetallic compounds Sc{sub 50}Rh{sub 13.3}In{sub 2.7} and Sc{sub 50}Ir{sub 13.6}In{sub 2.4} and the suboxides Sc{sub 49.2}Rh{sub 13}In{sub 3.8}O{sub 8.8} and Sc{sub 49.2}Rh{sub 13.7}In{sub 2.8}O{sub 8.0} were synthesized from the elements or with Sc{sub 2}O{sub 3} as an oxygen source, respectively, in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. They crystallize with a new cubic structure type, space group F m anti 3, a = 1772.5(6) pm, wR2 = 0.032, 1111 F{sup 2} values, 34 variables for Sc{sub 50}Rh{sub 13.3}In{sub 2.7}, a = 1766.5(6) pm, wR2 = 0.041, 745 F{sup 2} values, 34 variables for Sc{sub 50}Ir{sub 13.6}In{sub 2.4}, a = 1764.4(2) pm, wR2 = 0.044, 640 F{sup 2} values, 41 variables for Sc{sub 49.2}Rh{sub 13}In{sub 3.8}O{sub 8.8}, and a = 1761.5(6) pm, wR2 = 0.054, 740 F{sup 2} values, 42 variables for Sc{sub 49.2}Rh{sub 13.7}In{sub 2.8}O{sub 8.0}. The main structural motifs are rhodium-centered indium cubes in an fcc like arrangement in which the octahedral and tetrahedral voids are filled by In2Sc{sub 12} and In1Sc{sub 12} icosahedra, respectively, resembling a Li{sub 3}Bi-like structure. The Rh1 (Ir1) and Sc4 atoms lie between these polyhedral units. The oxygen atoms partially fill Sc{sub 6} octahedra in Sc{sub 49.2}Rh{sub 13}In{sub 3.8}O{sub 8.8} and Sc{sub 49.2}Rh{sub 13.7}In{sub 2.8}O{sub 8.0} with Sc-O distances of 214 - 230 pm. These octahedra are condensed via common edges and faces, encapsulating the In2Sc{sub 12} icosahedra. Due to the high scandium content one observes strong Sc-Sc bonding with Sc-Sc distances ranging from 303 to 362 pm in Sc{sub 49.2}Rh{sub 13}In{sub 3.8}O{sub 8.8}. The shortest distances occur for Sc-Rh (267 - 295 pm). The crystal chemical relationship with the Li{sub 3}Bi-related suboxide Ti{sub 12}Sn{sub 3}O{sub 10} is discussed. (orig.)

  3. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  4. Design and construction of hierarchical TiO2 nanorod arrays by combining layer-by-layer and hydrothermal crystallization techniques for electrochromic application

    Science.gov (United States)

    Chen, Yongbo; Li, Xiaomin; Bi, Zhijie; He, Xiaoli; Li, Guanjie; Xu, Xiaoke; Gao, Xiangdong

    2018-05-01

    The hierarchical TiO2 (H-TiO2) nanorod arrays (NRAs) composed of single-crystalline nanorods and nanocrystals were finely designed and successfully constructed for electrochromic (EC) application. By combining layer-by-layer (LBL) method and hydrothermal crystallization technique, the superfine nanocrystals (5-7 nm), which can provide abundant active sites and facilitate ion insertion/extraction during EC reactions, were uniformly and conformally assembled on the surface of single-crystalline TiO2 (SC-TiO2) NRAs. The as-formed H-TiO2 NRAs integrate the advantages of one-dimensional NRAs with fast kinetics and superfine nanocrystals with high ion capacity, showing highly enhanced EC performance. Large optical contrast (40.3%), shorter coloring/bleaching time (22/4 s), high coloration efficiency (11.2 cm2 C-1), and excellent cycling stability can be achieved in H-TiO2 NRAs, superior to the pristine SC-TiO2 NRAs and nanocrystalline TiO2 films. This work provides a feasible and well-designed strategy to explore high-performance materials for EC application.

  5. Determination of trace elements of some Egyptian crops by instrumental neutron activation, inductively coupled plasma-atomic emission spectrometric and flameless atomic absorption spectrophotometric analysis

    International Nuclear Information System (INIS)

    Awadallah, R.M.; Sherif, M.K.; Amrallah, A.H.; Grass, F.

    1986-01-01

    INAA was used for the determination of Al, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc, Se, Ti, Th, V and Zn, ICP-AES for the determination of Al, Ag, Ba, Be, Ca, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, P, Sc, Sr, Ti, V and Zn, and flameless AAS for the determination of Cd, Hg and Pb in egg plant, potatoes, green pepper (Leguminosae), vegetable marrow (Cucurbitaceae), pears, apple (Rosaceae), castor oil plant (Euphorbiaceae), lettuce (compositae), dill, parsley, coriander (Umbelliferae), and in some soil samples collected from Aswan province. (author)

  6. Synthesis of cauliflower-like ZnO-TiO2 composite porous film and photoelectrical properties

    International Nuclear Information System (INIS)

    Jiang Yinhua; Yan Yun; Zhang Wenli; Ni Liang; Sun Yueming; Yin Hengbo

    2011-01-01

    A series of cauliflower-like TiO 2 -ZnO composite porous films with various molar ratios of Zn/Ti were prepared by the screen printing technique on the fluorine-doped SnO 2 (FTO) conducting glasses. The composite films were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectrometry (EDS) and UV-vis transmittance spectrum. The results showed composite film electrode had a novel cauliflower-like morphology, which could effectively increase the dye absorption. The corresponding dye-sensitized solar cells (DSCs) were made by the composite film, and effects of ZnO incorporation on the photovoltaic performances of the DSCs were studied. With the Zn/Ti molar ratio not more than 3% in ZnO-TiO 2 composite film of about 5 μm-thickness, the photocurrent density (J sc ) and the solar-to-electricity conversion efficiency (η) were greatly improved compared with those of the DSC based on bare TiO 2 film of same thickness. This increases in efficiency and J sc were attributed to high electron conductivity of ZnO, the improved dye adsorption and large light transmittance of composite film.

  7. Thermal stability of (AlSi){sub x}(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    Energy Technology Data Exchange (ETDEWEB)

    Shaha, S.K. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Czerwinski, F., E-mail: Frank.Czerwinski@nrcan.gc.ca [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Kasprzak, W. [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-11-10

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi){sub x}(TiVZr) phases with D0{sub 22}/D0{sub 23} tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi){sub x}(TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals.

  8. Ti-dopant-enhanced photocatalytic activity of a CaFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} bulk heterojunction under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Borse, Pramod H. [International Advanced Research Center for Powder Metallurgy and New Materials, Hyderabad (India); Kim, Jae Y.; Lee, Jae S. [Pohang University of Science and Technology, Pohang (Korea, Republic of); Lim, Kwon T. [Pukyong National University, Busan (Korea, Republic of); Jeong, Euh D.; Bae, Jong S.; Yoon, Jang H.; Yu, Seong M.; Kim, Hyun G. [Korea Basic Science Institute, Busan (Korea, Republic of)

    2012-07-15

    The effect substitution of Ti{sup 4+} at the Fe{sup 3+} site in a CaFe{sub 2}O{sub 4{sup -}}MgFe{sub 2}O{sub 4} bulk hetero-junction (BH) lattice photocatalyst was explored and the Ti ion concentration was optimized to fabricate an efficient photocatalyst. A BH consisting of an optimum dopant concentration (Ti{sup +4}) level of x = 0.03 exhibited an increased band gap and generated a 1.5 times higher photocurrent. The newly fabricated Ti ion doped photocatalyst showed an enhanced quantum yield (up to ∼13.3%) for photodecomposition of a H{sub 2}O-CH{sub 3}OH mixture, as compared to its undoped BH counterpart under visible light (λ ≥ 420 nm). In contrast, the material doped with a very high Ti-dopant concentration displayed deteriorated photochemical properties. An efficient charge-separation induced by Ti-ion doping seems to be responsible for the higher photocatalytic activity in a doped bulk BH.

  9. Thermoluminescent properties of Spinel-type oxides present in the Ternary system In2O3-TiO2-Mg O in air at 1350 degrees C

    International Nuclear Information System (INIS)

    Brown, F.; Hernandez P, T. C.; Alvarez M, V. E.; Cruz V, C.; Munoz, I. C.; Bernal, R.

    2015-10-01

    Full text: In the ternary system In 2 O 3 -TiO 2 -Mg O exists a solid solution Mg 2-x In 2x Ti 1-x O 4 (0≤ x ≤1) with spinel-type structure between MgIn 2 O 4 and Mg 2 TiO 4 (F. Brown et. al., 2000). In order to analyze their thermoluminescent (Tl) response, we obtained the spinel-type oxides with x= 0 (s1), 0.25 (s2), 0.5 (s3), 0.75 (s4), and 1 (s5) by a solid state reaction at 1350 degrees C in air. The X-ray patterns showed a spinel type structure for these compounds. The powders were exposed to beta particles from 90 Sr. The glow curve showed by s1 and s3 were hundreds of times more intense than s2, s4 and s5. At 50 Gy, s1 exhibits a main Tl maximum located at 200 degrees C, with two shoulders at 119 and 250 degrees C. The s3 oxide reveals a simple and wide glow curve at ≅195 degrees C with a Tl maximum located at 203 degrees C at 21.33 Gy. The peaks of the s1 and s3 oxide show a shift to lower temperatures and this increases its intensity as the irradiation dose increases. The lineal behavior observed for s1 and s3 were between 1.33-150 Gy and 10.66-341 Gy correspondingly, without evidence of saturation signal. After cycle 4, the s1 oxide has small variations in the relative sensitivity, with percentages below 1%. On the other hand, s3 reveals a relative sensitivity variation of 2.7%. Besides this, the standard deviation after ten consecutive irradiation-Tl readout cycles for s1 was 3.07 % and for s3 was 1%. The minimum detectable dose obtained were 0.5 Gy for s1 and 5.65 Gy for s3. These results suggest a possible application of Mg 1.5 InTi 0.5 O 4 in dosimetry. (Author)

  10. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    Science.gov (United States)

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A percepção dos gestores operacionais sobre os impactos gerados nos processos de trabalho após a implementação das melhores práticas de governança de TI no TRE/SC

    Directory of Open Access Journals (Sweden)

    Rosangela Klumb

    2014-08-01

    Full Text Available Este estudo objetivou compreender a percepção dos gestores operacionais da Secretaria de Tecnologia da Informação (STI do TRE/SC acerca dos impactos gerados nos processos de trabalho internos do órgão após a implementação das melhores práticas de governança de TI. Em termos metodológicos, trata-se de um estudo de caso descritivo-avaliativo, de abordagem qualitativa no que concerne às características e ao modo de investigação. Como resultados, verificou-se que até março de 2013 foram implementados oito dos 24 processos de governança de TI baseados no modelo Cobit, versão 4.1, definidos como meta do Planejamento Estratégico de TI para 2013. Concluiu-se que a percepção dos gestores é positiva em relação à governança de TI, embora existam algumas falhas, como na comunicação intra e interáreas e na centralização de informações por alguns setores.

  12. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    International Nuclear Information System (INIS)

    Shi Yongjing; Long Siyuan; Yang Shicai; Pan Fusheng

    2008-01-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2 . The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS)

  13. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. An orange emitting phosphor Lu2−xCaMg2Si2.9Ti0.1O12:xCe with pure garnet phase for warm white LEDs

    International Nuclear Information System (INIS)

    Chu, Yaoqing; Zhang, Qinghong; Xu, Jiayue; Li, Yaogang; Wang, Hongzhi

    2015-01-01

    A new silicate garnet phosphor, Lu 2−x CaMg 2 Si 2.9 Ti 0.1 O 12 :xCe was synthesized by a high temperature solid-state reaction under reductive atmosphere. X-ray diffraction (XRD) showed that the powder was pure garnet phase. The emission and excitation spectrum indicated that the Lu 2−x CaMg 2 Si 2.9 Ti 0.1 O 12 :xCe phosphors could absorb blue light in the spectral range of 400–550 nm efficiently and exhibit bright yellow–orange emission in the range of 520–750 nm. With the increase of Ce 3+ concentration, the emission band of Ce 3+ showed a red shift. Interestingly, the concentration quenching occurred when the Ce 3+ concentration exceeded 4 mol%. The temperature-dependent luminescent properties of the phosphors were discussed and the Lu 1.96 CaMg 2 Si 2.9 Ti 0.1 O 12 :0.04Ce phosphors showed good performances in color temperature (2430 K) and potential applications for warm white LEDs. - Graphical Abstract: This image shows that the phosphor of Lu 1.96 CaMg 2 Si 2.9 Ti 0.1 O 12 :0.04Ce can generate a uniform yellow tint under natural light illumination and emit orange–red light when excited by blue light. With a fixed 467 nm emission light, warm white light can be produced by this phosphor, which indicates that the phosphor is potentially applicable in warm white light emitting diodes based on GaN chips. - Highlights: • A new silicate garnet phosphor was synthesized by solid-state method. • Secondary phases can be avoided when a small amount of Si 4+ were replaced by Ti 4+ . • A broad emission band of Ce 3+ in the phosphors was described. • The phosphors are potentially applicable in warm white light emitting diodes

  15. Synthesis of cauliflower-like ZnO-TiO{sub 2} composite porous film and photoelectrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yinhua, E-mail: jyinhua@126.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China) and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Yan Yun; Zhang Wenli; Ni Liang [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Sun Yueming [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Yin Hengbo [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2011-05-15

    A series of cauliflower-like TiO{sub 2}-ZnO composite porous films with various molar ratios of Zn/Ti were prepared by the screen printing technique on the fluorine-doped SnO{sub 2} (FTO) conducting glasses. The composite films were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectrometry (EDS) and UV-vis transmittance spectrum. The results showed composite film electrode had a novel cauliflower-like morphology, which could effectively increase the dye absorption. The corresponding dye-sensitized solar cells (DSCs) were made by the composite film, and effects of ZnO incorporation on the photovoltaic performances of the DSCs were studied. With the Zn/Ti molar ratio not more than 3% in ZnO-TiO{sub 2} composite film of about 5 {mu}m-thickness, the photocurrent density (J{sub sc}) and the solar-to-electricity conversion efficiency ({eta}) were greatly improved compared with those of the DSC based on bare TiO{sub 2} film of same thickness. This increases in efficiency and J{sub sc} were attributed to high electron conductivity of ZnO, the improved dye adsorption and large light transmittance of composite film.

  16. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  17. Determination of Sc and Th in ScI3-NaI-ThI4 sample

    International Nuclear Information System (INIS)

    Yuan Hui; Yang Zhihong

    1999-01-01

    Determination of Sc and Th in ScI 3 -NaI-ThI 4 sample is studied by X-ray fluorescence and complexometry. The effect of working condition of Sc on X-ray fluorescence spectrometer and different sample-making method on the determination of Sc and Th are studied experimentally. The X-ray fluorescence analysis of determination of Sc and Th is developed by polyester film sample-making technique, the measuring precision of Sc and Th is better than 4%. The effect of acidity and temperature on the determining end point of titration is obvious. The results of different complexometric methods are compared. The precision of Sc and Th is less than 2% by comlexometry, it is fit for the routine analysis of ScI 3 -NaI-ThI 4 sample

  18. Analysis of isothermal sintering of zinc-titanate doped with MgO

    Directory of Open Access Journals (Sweden)

    Obradović N.

    2007-01-01

    Full Text Available The aim of this work was analysis of isothermal sintering of zinc titanate ceramics doped with MgO obtained by mechanical activation. Mixtures of ZnO, TiO2 and MgO (0, 1.25 and 2.5% were mechanically activated 15 minutes in a planetary ball mill. The powders obtained were pressed under different pressures and the results were fitted with a phenomenological compacting equation. Isothermal sintering was performed in air for 120 minutes at four different temperatures. Structural characterization of ZnO-TiO2-MgO system after milling was performed at room temperature using XRPD measurements. DTA measurements showed different activation energies for pure and doped ZnO-TiO2 systems. Thus addition of MgO stabilizes the crystal structure of zinc titanate.

  19. Proton-oxygen conductivity in substituted perovskites ATi0.95Mo0.05O3-α (A = Ca, Sr, Ba; M = Sc, Mg) in the reducing hydrogen-containing atmospheres

    International Nuclear Information System (INIS)

    Gorelov, V.P.; Balakireva, V.B.; Sharova, N.V.

    1999-01-01

    Electric conductivity depending on temperature, oxygen partial pressure, as well as the number of t i ion transfer and transfer hydrogen numbers in the perovskites ATi 0.95 Mo 0.05 O 3-α (A = Ca, Sr, Ba; M = Sc, Mg) in reducing hydrogen-containing atmospheres in the temperature range of 450-850 deg C have been measured. With the temperature decrease t i increases reaching 1.0 at a temperature of 550 deg C for all compositions. Proton conductivity under conditions of assumed concomitant transfer of either O 2- or OH - has been ascertained [ru

  20. Binding energy, phonon spectra and thermodynamic properties of elements with type structures A1 (Al, Cu), A2 (V, Ti2), A3 (Mg, Tiβ), A4 (Si, Sn)

    International Nuclear Information System (INIS)

    Sirota, N.N.; Soshnina, T.M.; Sirota, I.M.; Sokolovskij, T.D.

    2001-01-01

    One calculated dependences of binding energy on spacing between the nearest atoms of Al and Cu elements with A 1 type structure, of V and Ti α elements with A 2 type structure, of Mg and Ti β elements with A 3 type structure, Si and Sn elements with A 4 type structure. To calculate one applied the methods based on the Thomas-Fermi statistic theory of atom. The derived dependences were approximated using the expression in the form of the Mie-Grueneisen potential. On the basis of the Born-von-Karman model of solid body one calculated the phonon spectra using which one determined temperature dependences of specific heat, free and internal energy of the investigated elements. The calculated values of energy of atomization, equilibrium closest interatomic spacing and temperature dependences of specific heat are in compliance with the experimental data [ru

  1. Dosimetric analysis using glasses TLD-100 Lif; Mg; TI for the optimization of the quality control programs in radio surgery stereo tactic

    International Nuclear Information System (INIS)

    Maldonado, J. C; Plazas, M. C.; Dussan, R.; Conrado, Z.; Pena, G.; Jimenez, E.; Hakim, F.; Bermudez, S.

    2001-01-01

    The conditions of Stereo Tactic Radio Surgery treatments are simulated by means of the use of thermo luminescent glasses TLD-100 LiF; Mg; Ti placed in mannequins, to demonstrate that the doses received by the patients, either in the fractioned or in the mono fractioned techniques, are over the 500cGy, making urgent the use of a reliable dosimetric method [es

  2. Sorption properties and reversibility of Ti(IV) and Nb(V)-fluoride doped-Ca(BH{sub 4}){sub 2}-MgH{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto Minella, Christian, E-mail: christian.minella@kit.edu [Institute for Metallic Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany); Garroni, Sebastiano [Dipartimento di Chimica e Farmacia, Universitá di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy); Pistidda, Claudio [Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Str. 1, D-21502 Geesthacht (Germany); Baró, Maria Dolors [Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Gutfleisch, Oliver [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Klassen, Thomas; Dornheim, Martin [Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Str. 1, D-21502 Geesthacht (Germany)

    2015-02-15

    Highlights: • Faster desorption reaction for doped materials vs. the pure composite system. • Kinetic improvement concerning re-hydrogenation reaction showed by the addition of NbF{sub 5}. • Full characterization of the de-hydrogenation reaction pathway by means of both SR-PXD and {sup 11}B{"1H} MAS-NMR. • Study of the evolution of the chemical state of the additives upon both milling and sorption reactions. - Abstract: In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of the research due to their high gravimetric and volumetric hydrogen densities. Among them, Ca(BH{sub 4}){sub 2} and the Ca(BH{sub 4}){sub 2} + MgH{sub 2} reactive hydride composites (RHC), were calculated to have the ideal thermodynamic properties which fall within the optimal range for mobile applications. In this study, the addition of NbF{sub 5} or TiF{sub 4} to the Ca(BH{sub 4}){sub 2} + MgH{sub 2} reactive hydride composite system was attempted aiming to obtain a full reversible system with the simultaneous suppression of CaB{sub 12}H{sub 12}. Structural characterization of the specimens was performed by means of in-situ Synchrotron Radiation Powder X-ray diffraction (SR-PXD) and {sup 11}B{"1H} Solid State Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES). The addition of NbF{sub 5} or TiF{sub 4} to the Ca(BH{sub 4}){sub 2} + MgH{sub 2} system have not suppressed completely the formation of CaB{sub 12}H{sub 12} and only a slight improvement concerning the reversible reaction was displayed just in the case of Nb-doped composite material.

  3. Preparation of Ti species coating hydrotalcite by chemical vapor deposition for photodegradation of azo dye.

    Science.gov (United States)

    Xiao, Gaofei; Zeng, HongYan; Xu, Sheng; Chen, ChaoRong; Zhao, Quan; Liu, XiaoJun

    2017-10-01

    TiO 2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve its photocatalytic activity, the Ti-coating MgAl hydrotalcite (Ti-MgAl-LDH) was prepared by chemical vapor deposition (CVD) method. Response surface method (RSM) was employed to evaluate the effect of Ti species coating parameters on the photocatalytic activity, which was found to be affected by the furnace temperature, N 2 flow rate and influx time of precursor gas. Application of RSM successfully increased the photocatalytic efficiency of the Ti-MgAl-LDH in methylene blue photodegradation under UV irradiation, leading to improved economy of the process. According to the results from X-ray diffraction, scanning electron microscopy, Brunner-Emmet-Teller and Barrett-Joyner-Hallender, thermogravimetric and differential thermal analysis, UV-vis diffuse reflectance spectra analyses, the Ti species (TiO 2 or/and Ti 4+ ) were successfully coated on the MgAl-LDH matrix. The Ti species on the surface of the Ti-MgAl-LDH lead to a higher photocatalytic performance than commercial TiO 2 -P25. The results suggested that CVD method provided a new approach for the industrial preparation of Ti-coating MgAl-LDH material with good photocatalytic performances. Copyright © 2017. Published by Elsevier B.V.

  4. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    Science.gov (United States)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  5. Environmental dosimetry system based on LiF : Mg, Ti (TLD-100)

    International Nuclear Information System (INIS)

    Saez Vergara, J.C.

    1990-01-01

    The report presents the various tests carried out to the characterize a thermoluminescence environmental dosimetry systems, using the phosphor LiF:mg,Ti (TLD-100) in chip form. The holder has been specifically designed in order to obtain simplicity in the operation and to assure correct measurements in terms of the new operational quantities in radiation protection (ICRU-1985). Some topics in TLD Environmental Monitoring are discussed (Dark Current, Reference Light, Zero Reading, Free-in-Air or Phantom Calibration, Fading Correction, Transit Dose, etc.), and the proposed solutions are exposed. The tests performed have been designed to conform with the different existing international Standards and Recommendations (ANSI : N545-1975; IEC: Draft 45B-1987, ISO : DP 8034-19849. The data from an European Interlaboratory Programm (EUR-8932) have been used to evaluate the performance : the TLD System presented is among the best systems using TLD-100. The results obtained in the characterization (linearity, repeatability, detection threshold, residue, angular response, stability of stored information, etc.) show the optimum performance of this dosimetric system in its application to environmental gamma dose monitoring. Based on these results, two operational procedures have been developed for the application of this Dosimetric System, specially in Quality Assurance Monitoring Programs around Nuclear Plants in Spain. (author)

  6. 33 CFR 80.712 - Morris Island, SC to Hilton Head Island, SC.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Morris Island, SC to Hilton Head..., SC to Hilton Head Island, SC. (a) A line drawn from the easternmost tip of Folley Island to the... easternmost extremity of Hilton Head at latitude 32°13.0′ N. longitude 80°40.1′ W. [CGD 77-118a, 42 FR 35784...

  7. Influence wt.% of SiC and borax on the mechanical properties of AlSi-Mg-TiB-SiC composite by the method of semi solid stir casting

    Science.gov (United States)

    Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2017-04-01

    SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.

  8. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Alat, Ece, E-mail: exa179@psu.edu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Motta, Arthur T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Comstock, Robert J.; Partezana, Jonna M. [Westinghouse Electric Co., Beulah Rd, Pittsburgh, PA 1332 (United States); Wolfe, Douglas E. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Applied Research Laboratory, The Pennsylvania State University, 119 Materials Research Building, University Park, PA 16802 (United States)

    2016-09-15

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO{sup ®} coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti{sub 1-x}Al{sub x}N (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm{sup 2} weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO{sup ®} which showed a weight gain of 40.2 mg/dm{sup 2}. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance. - Highlights: • The first study on multilayer TiAlN and TiN ceramic coatings on ZIRLO{sup ®} coupons. • Corrosion tests were performed at 360°C and 18.7 MPa for up to 90 days. • Coatings adhered well to the substrate, and showed no spallation/delamination. • Weight gains were six times lower than those of uncoated ZIRLO{sup ®} samples. • Longer and higher temperature corrosion tests will be discussed in a further paper.

  9. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jirka, Ivan, E-mail: Ivan.Jirka@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Vandrovcová, Marta [Institute of Physiology, Acad. Sci. CR, v.v.i., Vídeňská 1083, Prague 4 (Czech Republic); Frank, Otakar [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Tolde, Zdeněk [Faculty of Mechanical Engineering, Czech Technical University in Prague, Institute of Materials Engineering, Karlovo nám. 13, Prague 2 (Czech Republic); Plšek, Jan [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Luxbacher, Thomas [Anton Paar GmbH, Anton Paar Str. 20, 8054 Graz (Austria); Bačáková, Lucie [Institute of Physiology, Acad. Sci. CR, v.v.i., Vídeňská 1083, Prague 4 (Czech Republic); Starý, Vladimír [Faculty of Mechanical Engineering, Czech Technical University in Prague, Institute of Materials Engineering, Karlovo nám. 13, Prague 2 (Czech Republic)

    2013-04-01

    β-Stabilized titanium (Ti) alloys containing non-toxic elements, particularly niobium (Nb), are promising materials for the construction of bone implants. Their biocompatibility can be further increased by oxidation of their surface. Therefore, in this study, the adhesion, growth and viability of human osteoblast-like MG 63 cells in cultures on oxidized surfaces of a β-TiNb alloy were investigated and compared with the cell behavior on thermally oxidized Ti, i.e. a metal commonly used for constructing bone implants. Four experimental groups of samples were prepared: Ti or TiNb samples annealed to 600 °C for 60 min in a stream of dry air, and Ti and TiNb samples treated in Piranha solution prior to annealing. We found that on all TiNb-based samples, the cell population densities on days 1, 3 and 7 after seeding were higher than on the corresponding Ti-based samples. As revealed by XPS and Raman spectroscopy, and also by isoelectric point measurements, these results can be attributed to the presence of T-Nb{sub 2}O{sub 5} oxide phase in the surface of the alloy sample, which decreased its negative zeta (ζ)-potential in comparison with zeta (ζ)-potential of the Ti sample at physiological pH. This effect was tentatively explained by the presence of positively charged defects acting as Lewis sites of the surface Nb{sub 2}O{sub 5} phase. Piranha treatment slightly decreases the biocompatibility of the samples, which for the alloy samples may be explained by a decrease in the number of defective sites with this treatment. Thus, the presence of Nb and thermal oxidation of β-stabilized Ti alloys play a significant role in the increased biocompatibility of TiNb alloys. - Highlights: ► T-Nb{sub 2}O{sub 5} and rutile are the main components of the oxidized β-TiNb alloy surface. ► Negative value of ζ potential is reduced by presence of Nb in the alloy surface. ► Less negative ζ potential is beneficial for interaction of the alloy with cells. ► The β-TiNb alloy

  10. Structure refinement, far infrared spectroscopy, and dielectric characterization of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 solid solutions

    Science.gov (United States)

    Salak, Andrei N.; Khalyavin, Dmitry D.; Ferreira, Victor M.; Ribeiro, José L.; Vieira, Luís G.

    2006-05-01

    Dielectric properties of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 [(1-x)LMT-xLT] ceramics (0infrared (FIR) frequency ranges. The crystal structure sequence in (1-x)LMT-xLT reported by different authors has been analyzed and revised. FIR spectroscopy was used to characterize the lattice contribution to the dielectric response at microwave frequencies. The complex dielectric function was evaluated from the reflectivity data and extrapolated down to a gigahertz range. Compositional variations of the fundamental microwave dielectric parameters estimated by different methods are compared and discussed. The dependence of the quality factor on the composition in LMT-LT is interpreted in terms of the reduction of spatial phonon correlations originated from the increasing amount of La vacancies. This approach could account for the compositional behavior of the dielectric loss commonly observed in a number of microwave mixed systems.

  11. H-TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors

    Science.gov (United States)

    Di, Jing; Fu, Xincui; Zheng, Huajun; Jia, Yi

    2015-06-01

    Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H-TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H-TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g-1 at the current density of 0.5 A g-1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only 13 % of SC loss after 2000 continuous charge-discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  12. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  13. Magnetic moment of {sup 48}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)

    2007-11-15

    Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.

  14. CERN: SC-33

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-06-15

    On 22 April a forward-looking CERN also looked back for a day, when the 'SC-33' event reviewed the achievements of CERN's first machine, the 600 MeV SynchroCyclotron (SC), which closed down on 17 December after 33 years of valiant service.

  15. Elastic properties of amorphous T0.75Y0.75B14 (T   =  Sc, Ti, V, Y, Zr, Nb) and the effect of O incorporation on bonding, density and elasticity (T ′  =  Ti, Zr)

    International Nuclear Information System (INIS)

    Hunold, Oliver; Keuter, Philipp; Bliem, Pascal; Music, Denis; Wittmers, Friederike; Ravensburg, Anna L; Schneider, Jochen M; Primetzhofer, Daniel

    2017-01-01

    We have systematically studied the effect of transition metal valence electron concentration (VEC) of amorphous T 0.75 Y 0.75 B 14 (a- T 0.75 Y 0.75 B 14 , T   =  Sc, Ti, V, Y, Zr, Nb) on the elastic properties, bonding, density and electronic structure using ab initio molecular dynamics. As the transition metal VEC is increased in both periods, the bulk modulus increases linearly with molar- and mass density. This trend can be understood by a concomitant decrease in cohesive energy. T ′  =  Ti and Zr were selected to validate the predicted data experimentally. A-Ti 0.74 Y 0.80 B 14 and a-Zr 0.75 Y 0.75 B 14 thin films were synthesized by high power pulsed magnetron sputtering. Chemical composition analysis revealed the presence of up to 5 at.% impurities, with O being the largest fraction. The measured Young’s modulus values for a-Ti 0.74 Y 0.80 B 14 (301  ±  8 GPa) and a-Zr 0.75 Y 0.75 B 14 (306  ±  9 GPa) are more than 20% smaller than the predicted ones. The influence of O incorporation on the elastic properties for these selected systems was theoretically studied, exemplarily in a-Ti 0.75 Y 0.75 B 12.75 O 1.25 . Based on ab initio data, we suggest that a-Ti 0.75 Y 0.75 B 14 exhibits a very dense B network, which is partly severed in a-Ti 0.75 Y 0.75 B 12.75 O 1.25 . Upon O incorporation, the average coordination number of B and the molar density decrease by 9% and 8%, respectively. Based on these data the more than 20% reduced Young’s modulus obtained experimentally for films containing impurities compared to the calculated Young’s modulus for a-Ti 0.75 Y 0.75 B 14 (without incorporated oxygen) can be rationalized. The presence of oxygen impurities disrupts the strong B network causing a concomitant decrease in molar density and Young’s modulus. Very good agreement between the measured and calculated Young’s modulus values is obtained if the presence of impurities is considered in the calculations. The

  16. X-ray and electron diffraction studies of the structures of pseudo-perovskite compounds Pb2(Sc,Ta)O6 and Pb2(Mg,W)O6

    International Nuclear Information System (INIS)

    Baba-Kishi, K.Z.; Cernik, R.J.

    1992-01-01

    Electron diffraction patterns, X-ray precession patterns and synchrotron Rietveld powder diffraction profiles were used to study the crystal structure of the pseudo-perovskite compound Pb 2 (Sc, Ta)O 6 (PST). The results of a Rietveld refinement and single-crystal X-ray precession studies showed that PST has a lower symmetry than the cubic Fm3m in the paraelectric state. The remarkable similarities between the crystal structures of the antiferroelectric Pb 2 (Mg, W)O 6 (PMW) and ferroelectric PST are studied in detail by electron diffraction and it is suggested that PST is a weak or frustrated antiferroelectric oxide. The influence of the degree of structural long-range order on the existence of an antiferroelectric phase transition in PST and PMW is discussed. (orig.)

  17. The light sensitivity of thermoluminescent materials: LiF:Mg,Cu,P, LiF:Mg,Ti and Al2O3:C

    International Nuclear Information System (INIS)

    Duggan, L.; Budzanowski, M.; Przegietka, K.; Reitsema, N.; Wong, J.; Kron, T.

    2000-01-01

    Many thermoluminescence dosimetry (TLD) materials exhibit a variation in read-out with light exposure (including both visible and UV radiation energy) which may cause problems in environmental dosimetry. The aim of the present study was to investigate this for three newer preparations of TLD material - LiF:Mg,Ti (GR-100, DML, China), LiF:Mg,Cu,P (MCP-N, TLD Niewiadomski and Co., Poland) and Al 2 O 3 :C (Stillwater Sciences, USA). TLDs irradiated to 1 or 10 Gy were exposed to light from a calibrated spectral lamp with three to four times higher UV component than sunlight. MCP-N proved to be approximately five times less light sensitive than GR-100. For both materials, the decay of the major glow peaks with increasing light exposure could be described by a single or dual exponential equation. Half lives for the major dosimetry peaks of GR-100, fit to a single exponential, were 1132 min (∼19 h) for peak 4 and 275 min (∼4((1)/(2)) h) for peak 5. The half lives for peak 4 of MCP-N, fit to a dual exponential, were 309 min (∼5 h) and 6627 min (∼4((1/2)) days). For MCP-N, this relates to approximately a loss of half the signal in 14 days of sun exposure (Polish summer). The readout of Al 2 O 3 :C increased with increasing light exposure and saturated after only 5 min at a level 26 times higher than the signal without light exposure

  18. Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg-H clusters

    International Nuclear Information System (INIS)

    Siretskiy, M.Yu.; Shelyapina, M.G.; Fruchart, D.; Miraglia, S.; Skryabina, N.E.

    2009-01-01

    We report on the study of (MgH 2 ) n + M complexes (M = Ti or Ni) carried out within the framework of the cluster density functional theory (DFT) method. The influence of such transition metal atoms on the cluster geometry and electronic structure is discussed considering the stability of MgH 2 hydride.

  19. CERN: SC-33

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    On 22 April a forward-looking CERN also looked back for a day, when the 'SC-33' event reviewed the achievements of CERN's first machine, the 600 MeV SynchroCyclotron (SC), which closed down on 17 December after 33 years of valiant service

  20. S-C Mylonites

    NARCIS (Netherlands)

    Lister, G.S.; Snoke, A.W.

    1984-01-01

    Two types of foliations are commonly developed in mylonites and mylonitic rocks: (a) S-surfaces related to the accumulation of finite strain and (b) C-surfaces related to displacement discontinuities or zones of relatively high shear strain. There are two types of S-C mylonites. Type I S-C

  1. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  2. Positive effect of Sc and Zr on globular microstructure formation in AA7075 thixoforming feedstock

    International Nuclear Information System (INIS)

    Rogal, L.; Dutkiewicz, J.; Litynska-Dobrzanska, L.; Olszowska-Sobieraj, B.; Modigell, M.

    2011-01-01

    One of methods of obtaining a fine globular microstructure in a semi-solid range, necessary for thixoforming process, is modifiers additions. For this purpose 0.5 weight percent of modifying elements-scandium and zirconium-was added to 7075 alloy. The microstructure of such alloy consisted of homogeneously distributed globular grains of solid solution with the following chemical composition: Mg - 1.9%, Al - 91.6%, Cu - 1.0%, Zn - 5.5%(all in wt.%). Quantitative metallographic analysis showed that the average grain size was 23.5 μm, much smaller than in the alloy without additions and 3.08% volume fraction of precipitates in the form of a layer between spherical α(Al) grains. X-ray phase analysis of the 7075 alloy with Sc and Zr additions confirmed the dominant presence of aluminum solid solution and the intermetallic hexagonal phase MgZn 2 . Electron diffraction pattern confirmed location of ηMgZn 2 phase at the grain boundaries. EDS chemical analysis of the ηMgZn 2 phase showed following content of elements: Mg - 17.2%, Al - 20.4%, Cu - 27.8%, Zn - 34.6%. The larger amount of Cu and Al indicated non-stoichiometry of the η phase, which can be presented with a formula [Mg(Zn,Al,Cu) 2 ]. Additionally, inside the aluminum solution, small, square-shaped precipitations enriched with Sc and Zr were observed. Electron diffraction pattern allowed identification of the precipitates as cubic Al 3 (Sc,Zr) phase. The average hardness of feedstock was 105 HV5. DSC analysis during heating of the alloy enabled the estimation of a solidus line, at temperature of 548 deg. C and a liquidus line at temperature: 656 deg. C. For cooling, the temperatures for solidus and liquidus were 545 deg. C and 636 deg. C respectively. Additionally, the relation of liquid phase as a function of temperature was determined. Measurements of rheological properties in the semi-solid range, using the Searl system indicated that an increase of a particle size leads to an observable decrease of

  3. Study of T L LiF: Mg,Ti (Model JR1152C) material for its use in the environmental monitoring

    International Nuclear Information System (INIS)

    Molina P, D.; Diaz B, E.; Prendes A, M.

    1999-01-01

    In order to evaluate the possibility to use the T L material of LiF: Mg,Ti (Model JR1152C) as environmental dosemeter it was realized its characterization of it according to the established criterion in the standard IEC-1066. The properties studied were: homogeneity of the lot, reproducibility, response linearity, detection threshold, auto irradiation, residual signal, response pride (fading) and angular dependence. The results prove the compliment of the IEC requirements and therefore the applicability of this dosemeter in the environmental monitoring. (Author)

  4. Tunable hydrogen storage in magnesium-transition metal compounds: first-principles calculations

    NARCIS (Netherlands)

    Er, S.; Tiwari, Dhirendra; Tiwari, D.; de Wijs, Gilles A.; Brocks, G.

    2009-01-01

    Magnesium dihydride (MgH2) stores 7.7 wt % hydrogen but it suffers from a high thermodynamic stability and slow (de)hydrogenation kinetics. Alloying Mg with lightweight transition metals (TM) (=Sc,Ti,V,Cr) aims at improving the thermodynamic and kinetic properties. We study the structure and

  5. Process for growing a film epitaxially upon a MgO surface

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    1997-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  6. Quantitative analysis of UV excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting

    International Nuclear Information System (INIS)

    Fujiwara, Rei; Sano, Hiroyuki; Shimizu, Mikio; Kuwabara, Makoto

    2009-01-01

    A quantitative spectral analysis of the ultraviolet (UV) broad excitation bands, which are located in the range 300-400 nm, for red emissions at around 610 nm in Pr-doped CaTiO 3 , SrTiO 3 :Al and BaTiO 3 :Mg phosphors has been carried out using a peak fitting technique. The obtained results demonstrate that the UV broad band of CaTiO 3 :Pr consists of four primary excitation bands centered around 330, 335, 365 and 380 nm and those of both SrTiO 3 :Al and BaTiO 3 :Mg consist of three primary bands centered around 310, 345 and 370 nm. Based on the behavior patterns and the values of the respective primary excitation bands' parameters, i.e. center gravity (λ top ), maximum height (I max ) and full-width at half-maximum (FWHM), the UV-to-red relaxation processes in these titanate phosphors can be explained to be essentially the same, except for the existence of an additional relaxation pathway via electron-trap states in CaTiO 3 :Pr, which gives a characteristic shape of its UV excitation spectrum in the wavelength range of >360 nm

  7. Thermoluminescent properties of Spinel-type oxides present in the Ternary system In{sub 2}O{sub 3}-TiO{sub 2}-Mg O in air at 1350 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F.; Hernandez P, T. C.; Alvarez M, V. E.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Munoz, I. C. [Universidad de Sonora, Departamento de Ciencias Quimico-Biologicas, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: imunoz@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: In the ternary system In{sub 2}O{sub 3}-TiO{sub 2}-Mg O exists a solid solution Mg{sub 2-x}In{sub 2x}Ti{sub 1-x}O{sub 4} (0≤ x ≤1) with spinel-type structure between MgIn{sub 2}O{sub 4} and Mg{sub 2}TiO{sub 4} (F. Brown et. al., 2000). In order to analyze their thermoluminescent (Tl) response, we obtained the spinel-type oxides with x= 0 (s1), 0.25 (s2), 0.5 (s3), 0.75 (s4), and 1 (s5) by a solid state reaction at 1350 degrees C in air. The X-ray patterns showed a spinel type structure for these compounds. The powders were exposed to beta particles from {sup 90}Sr. The glow curve showed by s1 and s3 were hundreds of times more intense than s2, s4 and s5. At 50 Gy, s1 exhibits a main Tl maximum located at 200 degrees C, with two shoulders at 119 and 250 degrees C. The s3 oxide reveals a simple and wide glow curve at ≅195 degrees C with a Tl maximum located at 203 degrees C at 21.33 Gy. The peaks of the s1 and s3 oxide show a shift to lower temperatures and this increases its intensity as the irradiation dose increases. The lineal behavior observed for s1 and s3 were between 1.33-150 Gy and 10.66-341 Gy correspondingly, without evidence of saturation signal. After cycle 4, the s1 oxide has small variations in the relative sensitivity, with percentages below 1%. On the other hand, s3 reveals a relative sensitivity variation of 2.7%. Besides this, the standard deviation after ten consecutive irradiation-Tl readout cycles for s1 was 3.07 % and for s3 was 1%. The minimum detectable dose obtained were 0.5 Gy for s1 and 5.65 Gy for s3. These results suggest a possible application of Mg{sub 1.5}InTi{sub 0.5}O{sub 4} in dosimetry. (Author)

  8. Determination of 46Sc in water

    International Nuclear Information System (INIS)

    Huo Bijun; Ji Zhaogang; Wang Juying

    1985-01-01

    Analytical procedures for the determination of 46 Sc in water is presented. 46 Sc in water is concentrated with Fe(OH) 3 ; Then 46 Sc is extracted with TBP and purified by precipitating it with Amygdalic Acid. Finally the precipitate is ignited into Sc 2 O 3 under 800 deg C and β-activity is counted. In this method chemical reeovery for Sc was (90.8 +- 2.8)% and radiochemical recovery for 46 Sc was (89.8 +- 3.8)%. Purification factors for some of the relevant Radionuclides ranged from 10 3 to 10 5

  9. Damped soft phonons and diffuse scattering in 40%Pb(Mg1/3Nb2/3)O3-60%PbTiO3

    International Nuclear Information System (INIS)

    Stock, C.; Ellis, D.; Swainson, I. P.; Xu, Guangyong; Hiraka, H.; Shirane, G.; Zhong, Z.; Luo, H.; Zhao, X.; Viehland, D.; Birgeneau, R. J.

    2006-01-01

    Using neutron elastic and inelastic scattering and high-energy x-ray diffraction, we present a comparison of 40% Pb(Mg 1/3 Nb 2/3 )O 3 -60% PbTiO 3 (PMN-60PT) with pure Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) and PbTiO 3 (PT). We measure the structural properties of PMN-60PT to be identical to pure PT, however, the lattice dynamics are exactly that previously found in relaxors PMN and Pb(Zn 1/3 Nb 2/3 )O 3 (PZN). PMN-60PT displays a well-defined macroscopic structural transition from a cubic to tetragonal unit cell at 550 K. The diffuse scattering is shown to be weak indicating that the structural distortion is long-range in PMN-60PT and short-range polar correlations (polar nanoregions) are not present. Even though polar nanoregions are absent, the soft optic mode is short-lived for wave vectors near the zone center. Therefore PMN-60PT displays the same waterfall effect as prototypical relaxors PMN and PZN. We conclude that it is random fields resulting from the intrinsic chemical disorder which is the reason for the broad transverse optic mode observed in PMN and PMN-60PT near the zone center and not due to the formation of short-ranged polar correlations. Through our comparison of PMN, PMN-60PT, and pure PT, we interpret the dynamic and static properties of the PMN-xPT system in terms of a random field model in which the cubic anisotropy term dominates with increasing doping of PbTiO 3

  10. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  11. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys

    International Nuclear Information System (INIS)

    Costa, S.; Puga, H.; Barbosa, J.; Pinto, A.M.P.

    2012-01-01

    Highlights: ► The Sc effect on the microstructure and ageing behaviour of Al–Sc alloys is studied. ► Cast into copper mould allows the elimination of solution heat treatment. ► Directly aged as cast alloys exhibits higher hardness and precipitation kinetics. ► Sc addition and optimised ageing result in an increase in Al–Sc mechanical properties. -- Abstract: The grain refinement effect and the ageing behaviour of Al–0.5 wt.% Sc, Al–0.7 wt.% Sc, and Al–1 wt.% Sc alloys are studied on the basis of optic microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) observations and hardness measurements. In Al–Sc alloys the higher grain refinement is observed for Sc contents greater than 0.5 wt.% accompanied by a notorious morphology modification, from coarse columnar grains to a fine perfect equiaxed structure. The as cast structures are characterised by a rich supersaturated solid solution in Sc, that promotes a great age hardening response at 250 °C and 300 °C. The age hardening curves also demonstrate a low overageing kinetics for all the alloys. Although the higher Sc content in solid solution for the alloys with 0.7 and 1 wt.% Sc, the age hardening response of all the Al–Sc alloys remains similar. The direct age hardening response of the as cast Al–0.5 wt.% Sc is shown to be greater than the solutionised and age hardened alloy.

  12. Synthesis of Zn(BH{sub 4}){sub 2} and Gas Absorption and Release Characteristics of Zn(BH{sub 4}){sub 2}, Ni, or Ti-Added MgH{sub 2}–Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Jun; Lee, Seong Ho; Kwon, Sung Nam; Park Il Woo; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-07-15

    A sample [named Zn(BH{sub 4}){sub 2}(+NaCl)] was synthesized by milling ZnCl{sub 2} and NaBH{sub 4} at 400 rpm under argon gas for 2 h. And Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} sample was prepared by milling MgH{sub 2} in a planetary ball mill and mixing with the Zn(BH{sub 4}){sub 2}(+NaCl) synthesized by milling for 4 h in a mortar with a pestle. Then the gas-release characteristics of the two samples were investrigated. Analyses of XRD patterns and FT-IR spectra, as well as TGA, DTA, and SEM observations, were also performed. After heating the samples to 400 ℃, the weight losses of Zn(BH{sub 4}){sub 2}(+NaCl) and Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} were 11.2 and 8.2 wt%, respectively, with respect to the sample weight. The DTA results for the two samples showed a decomposition peak for Zn(BH{sub 4}){sub 2} at about 61 ℃. The DTA result of Zn(BH{sub 4}){sub 2}(+NaCl) + MgH{sub 2} showed a decomposition peak for MgH{sub 2} at about 374 ℃. A sample of Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} to which Ni, and Ti were added, with a composition of 90 wt% MgH{sub 2}-5 wt% Zn(BH{sub 4}){sub 2}(+NaCl)-2.5 wt% Ni-2.5 wt% Ti, in which a large amount of MgH2 is contained in order to make a large quantity of hydrogen be absorbed and released reversibly, was also prepared. The experimental results showed that addition of Zn(BH{sub 4}){sub 2}(+NaCl), Ni, or Ti increased the dehydriding rate of MgH{sub 2}, while decreased its initial hydriding rate.

  13. Synthesis, microstructural characterization and optical properties of undoped, V and Sc doped ZnO thin films

    International Nuclear Information System (INIS)

    Amezaga-Madrid, P.; Antunez-Flores, W.; Ledezma-Sillas, J.E.; Murillo-Ramirez, J.G.; Solis-Canto, O.; Vega-Becerra, O.E.; Martinez-Sanchez, R.; Miki-Yoshida, M.

    2011-01-01

    Research highlights: → Undoped, V and Sc doped ZnO thin films by Aerosol Assisted Chemical Vapour Deposition. → Optimum substrate temperatures of 673 K and 623 K for Sc and V doped films. → Around one third of the dopants in solution were deposited into the films. → Crystallite and grain size decreased with the increase of dopant concentration. → Optical band gap increased from 3.29 to 3.32 eV for undoped to 7 Sc/Zn at. %. - Abstract: Many semiconductor oxides (ZnO, TiO 2 , SnO 2 ) when doped with a low percentage of non-magnetic (V, Sc) or magnetic 3d (Co, Mn, Ni, Fe) cation behave ferromagnetically. They have attracted a great deal of interest due to the integration of semiconducting and magnetic properties in a material. ZnO is one of the most promising materials to carry out these tasks in view of the fact that it is optically transparent and has n or p type conductivity. Here, we report the synthesis, microstructural characterization and optical properties of undoped, V and Sc doped zinc oxide thin films. ZnO based thin films with additions of V and Sc were deposited by the Aerosol Assisted Chemical Vapour Deposition method. V and Sc were incorporated separately in the precursor solution. The films were uniform, transparent and non-light scattering. The microstructure of the films was characterized by Grazing Incidence X-ray Diffraction, Scanning Electron Microscopy, and Scanning Probe Microscopy. Average grain size and surface rms roughness were estimated by the measurement of Atomic Force Microscopy. The microstructure of doped ZnO thin films depended on the type and amount of dopant material incorporated. The optical properties were determined from specular reflectance and transmittance spectra. Results were analyzed to determine the optical constant and band gap of the films. An increase in the optical band gap with the content of Sc dopant was obtained.

  14. Ecotoxicological assessment of TiO{sub 2} byproducts on the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Bigorgne, Emilie, E-mail: emilie.bigorgne@umail.univ-metz.fr [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, Universite Paul Verlaine - Metz, CNRS UMR 7146, Rue du General Delestraint, 57070 Metz (France); Foucaud, Laurent [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, Universite Paul Verlaine - Metz, CNRS UMR 7146, Rue du General Delestraint, 57070 Metz (France); Lapied, Emmanuel [Bioforsk, Soil and Environment, Fredrik A. Dahls vei 20, N-1432 Aas (Norway); Labille, Jerome; Botta, Celine [CEREGE UMR 6635 CNRS/Aix-Marseille Universite, Europole de l' Arbois, 13545 Aix-en-Provence (France); International Consortium for the Environmental Implications of Nanotechnology iCEINT, Europole de l' Arbois, 13545 Aix en Provence (France); Sirguey, Catherine [Nancy Universite, INPL/INRA, UMR 1120, Laboratoire Sols et Environnement, BP 172-2, Avenue de la foret de Haye, F-54505 Vandoeuvre-les-Nancy Cedex (France); Falla, Jairo [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, Universite Paul Verlaine - Metz, CNRS UMR 7146, Rue du General Delestraint, 57070 Metz (France); Rose, Jerome [CEREGE UMR 6635 CNRS/Aix-Marseille Universite, Europole de l' Arbois, 13545 Aix-en-Provence (France); International Consortium for the Environmental Implications of Nanotechnology iCEINT, Europole de l' Arbois, 13545 Aix en Provence (France); Joner, Erik J. [Nancy Universite, INPL/INRA, UMR 1120, Laboratoire Sols et Environnement, BP 172-2, Avenue de la foret de Haye, F-54505 Vandoeuvre-les-Nancy Cedex (France); Rodius, Francois; Nahmani, Johanne [Laboratoire Interactions Ecotoxicite, Biodiversite, Ecosystemes, Universite Paul Verlaine - Metz, CNRS UMR 7146, Rue du General Delestraint, 57070 Metz (France)

    2011-10-15

    The increasing production of nanomaterials will in turn increase the release of nanosized byproducts to the environment. The aim of this study was to evaluate the behaviour, uptake and ecotoxicity of TiO{sub 2} byproducts in the earthworm Eisenia fetida. Worms were exposed to suspensions containing 0.1, 1 and 10 mg/L of byproducts for 24 h. Size of TiO{sub 2} byproducts showed aggregation of particles up to 700 {mu}m with laser diffraction. Only worms exposed at 10 mg/L showed bioaccumulation of titanium (ICP-AES), increasing expression of metallothionein and superoxide dismutase mRNA (Real-time PCR) and induction of apoptotic activity (Apostain and TUNEL). TiO{sub 2} byproducts did not induce cytotoxicity on coelomocytes, but a significant decrease of phagocytosis was observed starting from 0.1 mg/L. In conclusion, bioaccumulation of byproducts and their production of reactive oxygen species could be responsible for the alteration of the antioxidant system in worms. - Highlights: > Aggregation of TiO{sub 2} byproducts up to 700 {mu}m in the medium of exposure. > Bioaccumulation of titanium in worms exposed at 10 mg/L of TiO{sub 2} byproducts. > Increasing expression of metallothionein and superoxide dismutase mRNA. > Induction of apoptotic activity in worms exposed at 10 mg/L of TiO{sub 2} byproducts. > Decrease of coelomocytes phagocytosis starting from 0.1 mg/L of TiO{sub 2} byproducts. - A short time exposure to TiO{sub 2} byproducts can induce sublethal effects on the earthworm, Eisenia fetida.

  15. Optimization of hole generation in Ti/CFRP stacks

    Science.gov (United States)

    Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.

    2018-03-01

    The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.

  16. Solid-State NMR Spectroscopy Proves the Presence of Penta-coordinated Sc Sites in MIL-100(Sc).

    Science.gov (United States)

    Giovine, Raynald; Volkringer, Christophe; Ashbrook, Sharon E; Trébosc, Julien; McKay, David; Loiseau, Thierry; Amoureux, Jean-Paul; Lafon, Olivier; Pourpoint, Frédérique

    2017-07-18

    Advanced solid-state NMR methods and first-principles calculations demonstrate for the first time the formation of penta-coordinated scandium sites. These coordinatively unsaturated sites were shown during the thermal activation of scandium-based metal-organic frameworks (MOFs). A 45 Sc NMR experiment allows their specific observation in activated Sc 3 BTB 2 (H 3 BTB=1,3,5-tris(4-carboxyphenyl)benzene) and MIL-100(Sc) MOFs. The assignment of the ScO 5 groups is supported by the DFT calculations of NMR parameters. The presence of ScO 5 Lewis acid sites in MIL-100(Sc) explains furthermore its catalytic activity. The first NMR experiment to probe 13 C- 45 Sc distances is also introduced. This advanced solid-state NMR pulse sequence allows the demonstration of the shrinkage of the MIL-100(Sc) network when the activation temperature is raised. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermoelastic properties of ScB2, TiB2, YB4 and HoB4

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, L.; Staun Olsen, J.

    2011-01-01

    (4)GPa). No pressure-induced phase transformations are observed in any of the above borides up to about 20GPa. A continuous temperature-driven orthorhombic distortion is observed for HoB4 below 285K. Values of the thermal expansion coefficient are reported for ScB2 and HoB4 at 293, 200 and 100K...

  18. Dry cryomagnetic system with MgB2 coil

    Science.gov (United States)

    Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskii, S. V.; Rudnev, I. A.

    2017-12-01

    MgB2 may be the future superconducting wire material for industrial magnets due to it’s higher operation temperature and potentially lower cost than low temperature superconductors (LTS) have. We designed a compact cryomagnetic system with the use of MgB2. The possibility of creating a magnet with a central field of 5 T from a commercial MgB2 wire by the “react and wound” method was investigated. The magnetic system is cooled by a cryocooler through a copper bus. The magnet has a warm bore diameter of 4 cm. The design of a magnet consisting of three concentric solenoids is proposed: an internal one of high-temperature superconductor (HTS), an average of MgB2, and an external of NbTi. The operating current of the system is 100 A. Two pairs of current leads are used. A separate pair of current leads for power supplying NbTi coil allows testing of MgB2 and HTS coils in an external field. The load curves for each of the magnets are calculated.

  19. Investigation of elements enabling the characterization of archeological ceramics by neutron activation analysis

    International Nuclear Information System (INIS)

    Diebolt, J.; Ricq, J.

    1976-01-01

    Twelve samples of about 100mg each, taken in an ancient ceramics at different depths were irradiated in the high flux Grenoble reactor (1.6x10 3 n.cm -2 .s -1 ). The results obtained show that activation analysis enables the characterization of archeological ceramics by the determination of elements such as Hf, Sc, Cr and Sc or Ti and V [fr

  20. Mechanical properties of the Mg-14Ti-1Al-0.9Mn (%Wt) synthesized by physical vapour

    International Nuclear Information System (INIS)

    Garces, G.; Cristina, M. C.; Torralba, M.; Adeva, P.

    2001-01-01

    The mechanical properties of the alloy Mg-14% Ti-1% Al-0.9 Mn obtained by PVD techniques have been evaluated up to 300 degree centigree. The alloy presents a columnar grain microstructure, typical of the zone 2 of the structure zone model of MD, where surface diffusion takes place. The alloy tested in compression at room temperature presented a high yield stress, 360 MPa. This resistance to the plastic deformation is principally due to a solid solution hardening and small grain size. The yield stress decrease with the compression temperature. However, the alloy showed low fracture resistance, especially at room temperature. The presence of pores at the grain boundaries, results in the crack formation, running fast along the grain boundary. (Author) 13 refs

  1. Evaluation of a LiF:Mg,Ti thermoluminescent ring dosimeter according to the IEC 62387:2012 standards

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Edyelle L.B.; Barros, Vinícius S.M. de; Asfora, Viviane K.; Khoury, Helen J., E-mail: vsmdbarros@gmail.com [Unversidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2017-07-01

    This work shows results of type testing of a ring dosimeter system under new IEC 62387:2012. The personal dosimeter investigated in this work consists of a commercial one element plastic ring (RADOS) which contains an LiF:Mg,Ti. By applying requirements for statistical fluctuations and linearity, a minimum measurable dose in Hp(0.07) was established. Energy and angular dependence aided in determining energy correction factors and fading requirements were used to select the most appropriate preheat scheme. Type testing of passive radiation monitors performed in the Radiation Metrology Laboratory (LMRI-DEN/UFPE) of the Federal University of Pernambuco is a major step in Brazil for the independent evaluation of these dosimeters, currently not available in the country. (author)

  2. Influence of joint line remnant on crack paths under static and fatigue loadings in friction stir welded Al-Mg-Sc alloy

    Directory of Open Access Journals (Sweden)

    Y. Besel

    2016-01-01

    Full Text Available The influence of the joint line remnant (JLR on tensile and fatigue fracture behaviour has been investigated in a friction stir welded Al-Mg-Sc alloy. JLR is one of the microstructural features formed in friction stir welds depending on welding conditions and alloy systems. It is attributed to initial oxide layer on butting surfaces to be welded. In this study, two different tool travel speeds were used. JLR was formed in both welds but its spatial distribution was different depending on the tool travel speeds. Under the tensile test, the weld with the higher heat input fractured partially along JLR, since strong microstructural inhomogeneity existed in the vicinity of JLR in this weld and JLR had weak bonding. Resultantly, the mechanical properties of this weld were deteriorated compared with the other weld. Fatigue crack initiation was not affected by the existence of JLR in all welds. But the crack propagated preferentially along JLR in the weld of the higher heat input, when it initiated on the retreating side. Consequently, such crack propagation behaviour along JLR could bring about shorter fatigue lives in larger components in which crack growth phase is dominant.

  3. XPS study on Mg0.9-xTi0.1PdxNi (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage electrode alloys after charge-discharge cycles

    International Nuclear Information System (INIS)

    Tian Qifeng; Zhang Yao; Wu Yuanxin

    2009-01-01

    The passive film composition of Mg 0.9-x Ti 0.1 Pd x Ni (x = 0.04, 0.06, 0.08, 0.1) hydrogen storage alloys after 40 charge-discharge cycles has been investigated by means of X-ray photoelectron spectroscopy (XPS) in combination with Ar + sputtering technology. With the XPSPEAK software, high resolution spectra of alloy elements and oxygen were deconvolved into individual peaks. Composites formed by metal elements and their relative contents were also deduced. It was found that the composites originated from Mg and Ni were mainly in the form of their oxides and hydroxides, which existed at the top surface of alloys. With the increase of sputtering depth, the hydroxides of Mg and Ni gradually disappeared while corresponding oxides dominated their passive products. According to the analysis results of oxygen spectra, the elemental segregation of Mg and Ni was influenced by the substitution of Pd because the addition of Pd slightly enhanced the surface energy of the alloys and suppressed the formation of Mg hydroxide and oxide. Ti and Pd presented multiple-oxides from the surface to the inner alloys and metallic Pd appeared in the sub-layers of the alloys' surface. The possible mechanisms of the formation of passive products were suggested on the basis of the discussion in the paper.

  4. Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    T.A. Nirmal Peiris

    2017-02-01

    Full Text Available Herein, we studied the effect of MgO coating thickness on the performance of printable perovskite solar cells (PSCs by varying the electrodeposition time of Mg(OH2 on the fluorine-doped tin oxide (FTO/TiO2 electrode. Electrodeposited Mg(OH2 in the electrode was confirmed by energy dispersive X-ray (EDX analysis and scanning electron microscopic (SEM images. The performance of printable PSC structures on different deposition times of Mg(OH2 was evaluated on the basis of their photocurrent density-voltage characteristics. The overall results confirmed that the insulating MgO coating has an adverse effect on the photovoltaic performance of the solid state printable PSCs. However, a marginal improvement in the device efficiency was obtained for the device made with the 30 s electrodeposited TiO2 electrode. We believe that this undesirable effect on the photovoltaic performance of the printable PSCs is due to the higher coverage of TiO2 by the insulating MgO layer attained by the electrodeposition technique.

  5. Tuning structure in epitaxial Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} thin films by using miscut substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mietschke, M., E-mail: m.mietschke@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Oswald, S.; Fähler, S. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schultz, L. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Faculty of Mechanical Science and Engineering, D-01062 Dresden (Germany); Hühne, R. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2015-08-31

    Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3} (PMN–PT) is one of the most promising ferroelectric material for actuator, dielectric and electrocaloric applications. However, oriented and phase pure thin films are essential to use the outstanding properties of these compounds. In this work it is demonstrated that the use of miscut substrates influences the growth mechanism leading to a significantly broader deposition window to achieve the required film quality. Therefore, epitaxial 0.68Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.32PbTiO{sub 3} films were grown by pulsed laser deposition on (001)-oriented single crystalline SrTiO{sub 3} (STO) substrates with a miscut angle between 0 and 15° towards the [100] direction using a conducting La{sub 0.7}Sr{sub 0.3}CoO{sub 3} buffer layer. The influence of the vicinal angle on the PMN–PT structure was studied by high resolution X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. A nearly pure perovskite phase growth with a cube-on-cube epitaxial relationship was obtained on all miscut STO substrates, whereas a significant volume fraction of the pyrochlore phase was present on the standard substrate. Reciprocal space measurements revealed a peak split of the perovskite reflections indicating structural variants of PMN–PT with different c/a ratios. An additional tilting of the PMN–PT planes with respect to the buffer layer was observed on some samples, which might be explained with the incorporation of dislocations according to the Nagai model. Polarization loops were measured in a temperature range between room temperature and 150 °C showing a sharp drop of the remanent polarization above 65 °C on vicinal substrates. - Highlights: • Epitaxial growth of pure perovskite Pb (Mg{sub 1}/{sub 3}Nb{sub 2}/{sub 3})O{sub 3}–PbTiO{sub 3} on miscut SrTiO{sub 3}. • Significant broadening of the deposition window for pyrochlore-free films. • Dependence of the structural parameters

  6. Infectivity-associated PrP(Sc) and disease duration-associated PrP(Sc) of mouse BSE prions.

    Science.gov (United States)

    Miyazawa, Kohtaro; Okada, Hiroyuki; Masujin, Kentaro; Iwamaru, Yoshifumi; Yokoyama, Takashi

    2015-01-01

    Disease-related prion protein (PrP(Sc)), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrP(Sc) in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrP(Sc) in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrP(Sc) was precipitated into the pellet, and the supernatant contained only a slight amount of PrP(Sc). Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrP(Sc) may be responsible for prion infectivity and that large, aggregated PrP(Sc) may contribute to determining prion disease duration.

  7. SC tuning fork

    CERN Document Server

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  8. Excitation functions of alpha particle induced reactions on {sup nat}Ti up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.S., E-mail: md.shuzauddin@yahoo.com [Tandem Accelerator Facilities, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Savar, Dhaka (Bangladesh); Scholten, B. [Institut für Neurowissenschaften und Medizin, INM-5:Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-08-01

    Excitation functions of the reactions {sup nat}Ti(α,x){sup 48}Cr, {sup nat}Ti(α,x){sup 48}V and {sup nat}Ti(α,x){sup 46,48}Sc were determined by the stacked-foil activation technique up to 40 MeV. The radioactivities produced in the {sup nat}Ti target were measured by γ-ray spectrometry using HPGe detector. The reaction {sup nat}Ti(α,x){sup 51}Cr was used to determine the beam parameters. New experimental values for the above reactions have been obtained. An intercomparison of our data with the available literature values has been done. The cross section results obtained in this work could be useful in defining new monitor reactions, radiation safety and isotope production.

  9. Anion photoelectron spectroscopy of germanium and tin clusters containing a transition- or lanthanide-metal atom; MGe(n)- (n = 8-20) and MSn(n)- (n = 15-17) (M = Sc-V, Y-Nb, and Lu-Ta).

    Science.gov (United States)

    Atobe, Junko; Koyasu, Kiichirou; Furuse, Shunsuke; Nakajima, Atsushi

    2012-07-14

    The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption.

  10. Measurement for commercial exposives with SC-DSC test. Sangyoyo bakuhayaku no SC-DSC sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, H.; Wada, Y.; Hwang, D.; Akutsu, Y.; Tamura, M.; Yoshida, T. (The University of Tokyo, Tokyo (Japan). Faculty of Engineering); Matsuzawa, T. (Nippon Kayaku Co. Ltd., Tokyo (Japan))

    1991-08-30

    The sealed cell differential scanning calorimetry (SC-DSC) was sintroduced of commercial blasting explosives. As a series of testing the commercial blasting explosives in performance, an SC-DSC test was made to compare the critical detonability line with that resulting therefrom. From the result of SC-DSC measurement, the critical dilution rate was estimated of commercial blasting explosives to become without detonating propagation. As a result, all the explosives with exception of ANFO one were assumed to have a possibility of detonating propagation so that the ANFO explosive was known to be material, unable to exactly evaluate the detonability by the SC-DSC test. The explosion heat, then calculated by the REITP2 in order to assume how the reaction proceeded in the DSC cell, was compared with the reaction heat measured by the SC-DSC test. As a result, the calculated value was known to be almost equal to or slightly larger than the measured one. 15 refs., 4 figs., 2 tabs.

  11. Structure and composition of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} films deposited on (001) MgO substrates and the influence of sputtering pressure

    Energy Technology Data Exchange (ETDEWEB)

    Twigg, M.E.; Alldredge, L.M.B.; Chang, W.; Podpirka, A.; Kirchoefer, S.W.; Pond, J.M.

    2013-12-02

    The structure and composition of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films, sputter deposited on (001) MgO substrates, have been characterized by transmission electron microscopy. Deviations in film stoichiometry are seen to strongly correlate with the structural and dielectric properties of these films, with the films deposited at the lower sputtering pressures either Ti-deficient or capped with a titanium oxide layer similar to the rutile TiO{sub 2} phase. Preferential sputtering of cations is found to be an important factor governing film stoichiometry. The Ti-deficient films deposited at a lower sputtering pressure contain Ruddlesden–Popper faults that increase the average lattice constant of the film and result in compressive strain and low dielectric tunability. - Highlights: • Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) film deposited at very low pressure is capped with TiO{sub 2} layer. • TiO{sub 2} capped film is under only slight compressive strain, but has poor tunability. • BST films deposited at low pressure contain Ruddlesden–Popper Faults (RPFs). • RPF-containing films have high compressive strains and poor dielectric tunability. • High-pressure films have no RPFs, little compression strain, and high tunability.

  12. Hydrogen absorption in Mg1.95Ti0.05Ni0.95Cu0.05 alloy prepared with mechanical alloying and thermal treatment; Absorcion de hidrogeno en la aleacion Mg1.95Ti0.05Ni0.95Cu0.05 preparada por aleado mecanico y tratamiento termico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Juan Bonifacio; Urena Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: juan.bonifacio@inin.gob.mx

    2009-09-15

    This work presents hydrogen absorption in quaternary alloy Mg1.95Ti0.05Ni0.95Cu0.05 obtained by the mechanical alloying method, followed by thermal treatment in ultra-high pure argon atmosphere. The composition of the phases, microstructure and morphology of ground powders and with thermal treatment were characterized by DRX, SEM/EDS and TEM. After 20 hours of mechanical grinding and recooked at 300 degrees Celsius/1h in argon atmosphere, the quaternary alloy has a Mg{sub 2}Ni crystalline hexagonal structure with a crystallite size under 10 nm. The absorption measurements were performed under a pressure of 0.2 to 1.2 MPa at a temperature of 200 degrees Celsius in a micro-reactor. The quantification of absorption-desorption of hydrogen in the intermetallic was conducted in a TGA-DSC simultaneous calorimeter. Metallic hydride-dehydride powder was characterized with SEM and XRD. [Spanish] En este trabajo se presenta la absorcion de hidrogeno en la aleacion cuaternaria Mg1.95Ti0.05Ni0.95Cu0.05 obtenida por el metodo de aleado mecanico, seguida de tratamiento termico en atmosfera de argon de ultra alta pureza. La composicion de las fases, microestructura y morfologia de los polvos molidos y con tratamiento termico fue caracterizada por DRX, SEM/EDS y TEM. Despues de 20 h de molienda mecanica con recocido a 300 grados Celsios/1h en atmosfera de argon, la aleacion cuaternaria tiene una estructura cristalina hexagonal Mg{sub 2}Ni con tamano de cristalito menor a 10 nm. Las mediciones de absorcion fueron realizadas bajo una presion de 0.2 a 1.2 MPa a una temperatura de 200 grados Celsios en un micro-reactor. La cuantificacion de absorcion-desorcion de hidrogeno en el intermetalico se realizo en un calorimetro simultaneo TGA-DSC. Se determino que la cantidad maxima absorbida de hidrogeno en la aleacion cuaternaria fue de 3.24% en peso cuando la presion fue de 0.8 MPa a dicha temperatura. Polvos metalicos hidrurados-deshidrurados se caracterizaron por SEM y XRD.

  13. Preparation and characterization of TiO{sub 2} doped and MgO stabilized Na–β″-Al{sub 2}O{sub 3} electrolyte via a citrate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Shi-Jie; Yang, Li-Ping; Liu, Xiao-Min; Wei, Xiao-Ling [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China); Yang, Hui, E-mail: yanghui@njut.edu.cn [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China); Shen, Xiao-Dong [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing, Jiangsu 210009 (China)

    2013-06-25

    Highlights: ► TiO{sub 2} doped Na–β″-Al{sub 2}O{sub 3} electrolyte is synthesized via a sol–gel method with C{sub 16}H{sub 36}O{sub 4}Ti as the precursor for TiO{sub 2}. ► The optimized sample contains 90.28% of β″ phase and presents a very high relative density (99.5%). ► The optimized sample exhibits the bending strength up to 180 MPa and an ionic conductivity up to 0.21 S cm{sup −1} (350 °C). -- Abstract: TiO{sub 2} doped and MgO stabilized Na–β″-Al{sub 2}O{sub 3} is synthesized via a citrate sol–gel method starting with Al(NO{sub 3}){sub 3}, NaNO{sub 3}, Mg(NO{sub 3}){sub 2} and C{sub 16}H{sub 36}O{sub 4}Ti (tetrabutyl titanate, abbreviated as TBT). It is found that the TBT amount in the starting materials is the key factor to affect the properties of the final product, therefore, the samples sintered from precursors containing different amounts of TBT are systematically investigated by means of powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Meanwhile, the relative density, mechanical strength and electrical properties of the prepared samples are also measured. The optimized sample contains 90.28% of β″ phase, exhibits a uniform and compact microstructure with a relative density as high as 99.5% of theoretical density (TD). In addition, this sample exhibits a bending strength up to 180 MPa and an ionic conductivity up to 0.21 S cm{sup −1} at 350 °C.

  14. Fabrication and assembly of two-dimensional TiO{sub 2}/WO{sub 3}·H{sub 2}O heterostructures with type II band alignment for enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tao [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052 (China); Wang, Yun, E-mail: yun.wang@griffith.edu.au [Centre for Clean Environment and Energy and Griffith School of Environment, Griffith University, Gold Coast, QLD, 4222 (Australia); Zhou, Xiaofang; Zheng, Xiaoli [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052 (China); Xu, Qun, E-mail: qunxu@zzu.edu.cn [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052 (China); Chen, Zhimin; Ren, Yumei; Yan, Bo [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052 (China)

    2017-05-01

    Graphical abstract: 2D heterostructures of TiO{sub 2}/WO{sub 3}·H{sub 2}O nanosheets have been successfully fabricated with assistance of supercritical CO{sub 2} (SC CO{sub 2}). The formation of heterostructures is beneficial to effective separation of the electron-hole pairs, thus resulting in enhanced photocatalytic activity toward the high photocurrent under simulated solar light irradiation. - Highlights: • In this study we have successfully exfoliated ultrathin WO{sub 3}·H{sub 2}O nanosheets from tunsten acid(H{sub 2}WO{sub 4}) with supercritical CO{sub 2} (SC CO{sub 2}). • A novel type II 2D ultrathin TiO{sub 2}/WO{sub 3}·H{sub 2}O heterostructures were fabricated with the assistance of SC CO{sub 2}. • The formation of TiO{sub 2}/WO{sub 3}·H{sub 2}O heterostructures is beneficial to effective separation of the electron-hole pairs. • The photocurrent response and MO degradation of TiO{sub 2}/WO{sub 3}·H{sub 2}O heterostructures exhibit significantly improvement. - Abstract: The recombination of photo-induced charges is one of the main issues to limit the large-scale applications in photocatalysis and photoelectrocatalysis. To improve the charge separation, we fabricate a novel type II 2D ultrathin TiO{sub 2}/WO{sub 3}·H{sub 2}O heterostructures with the assistance of supercritical CO{sub 2} (SC CO{sub 2}) in this work. The as-fabricated heterostructures possess high photocatalytic activity for the degradation of methyl orange(MO) and high photocurrent response under simulated solar light (AM 1.5). For the TiO{sub 2}/WO{sub 3}·H{sub 2}O heterostructures, the MO solution could be degraded by 95.5% in 150 min, and the photocurrent density reaches to 6.5 μA cm{sup −2}, exhibiting a significant enhancement compared with pure TiO{sub 2} and WO{sub 3}·H{sub 2}O nanosheets.

  15. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  16. An attempt and significance of using scandium (Sc) indication for quantitative estimation of soil ingested by pastured cattle

    International Nuclear Information System (INIS)

    Koyama, Takeo; Sudo, Madoka; Miyamoto, Susumu; Kikuchi, Takeaki; Takahashi, Masayoshi; Kuma, Tadashi.

    1985-01-01

    Pastured beef cattle constantly ingest soil together with grass. Dried grass and silage used in winter also contain some soil. Sc occurs in soil in much greater amounts than in grass and is not absorbed by digestive canals, and the Sc content can be determined accuretely by the activation analysis method. In view of this, a technique is devised which uses Sc as an indication in estimating the amount of soil ingested by cattle, and this new method is found to be better than the conventional one with Ti indication. Accordingly, dung is collected from the same cattle at the end of the pastured and housed periods. The dung samples are dried, ground, activated and analysed. On the basis of results of this analysis, the amount of soil ingested at the end of the pastured and housed periods is estimated at 106 +- 120 and 129 +- 171 g/day, respectively, which broadly agree with values previously reported. An evaluation of the amounts of Se and Zn taken by cattle from soil is also carried out. (Nogami, K.)

  17. α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8: new quaternary mixed metal oxides composed of only second-order Jahn-Teller distortive cations.

    Science.gov (United States)

    Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min

    2013-10-07

    Three new quaternary scandium vanadium selenium/tellurium oxides, α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8 have been synthesized through hydrothermal and standard solid-state reactions. Although all three reported materials are stoichiometrically similar, they exhibit different crystal structures: α-ScVSe2O8 has a three-dimensional framework structure consisting of ScO6, VO6, and SeO3 groups. β-ScVSe2O8 reveals another three-dimensional framework composed of ScO7, VO5, and SeO3 polyhedra. ScVTe2O8 shows a layered structure with ScO6, VO4, and TeO4 polyhedra. Interestingly, the constituent cations, that is, Sc(3+), V(5+), Se(4+), and Te(4+) are all in a distorted coordination environment attributable to second-order Jahn-Teller (SOJT) effects. Complete characterizations including infrared spectroscopy, elemental analyses, thermal analyses, dipole moment calculation, and the magnitudes of out-of-center distortions for the compounds are reported. Transformation reactions suggest that α-ScVSe2O8 may change to β-ScVSe2O8, and then to Sc2(SeO3)3·H2O under hydrothermal conditions.

  18. Promoting Photocatalytic Overall Water Splitting by Controlled Magnesium Incorporation in SrTiO3 Photocatalysts.

    Science.gov (United States)

    Han, Kai; Lin, Yen-Chun; Yang, Chia-Min; Jong, Ronald; Mul, Guido; Mei, Bastian

    2017-11-23

    SrTiO 3 is a well-known photocatalyst inducing overall water splitting when exposed to UV irradiation of wavelengths water-splitting efficiency of the Mg:SrTiO x composites is up to 20 times higher compared to SrTiO 3 containing similar catalytic nanoparticles, and an apparent quantum yield (AQY) of 10 % can be obtained in the wavelength range of 300-400 nm. Detailed characterization of the Mg:SrTiO x composites revealed that Mg is likely substituting the tetravalent Ti ion, leading to a favorable surface-space-charge layer. This originates from tuning of the donor density in the cubic SrTiO 3 structure by Mg incorporation and enables high oxygen-evolution rates. Nevertheless, interfacing with an appropriate hydrogen evolution catalyst is mandatory and non-trivial to obtain high-performance in water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium

    Science.gov (United States)

    Li, Peng

    2014-12-01

    This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.

  20. Study of LiF:Mg,Ti and CaSO4:Dy dosimeters TL response to electron beams of 6 MeV applied to radiotherapy using PMMA and solid water phantoms

    International Nuclear Information System (INIS)

    Bravim, A.; Sakuraba, R.K.; Cruz, J.C.; Campos, L.L.

    2011-01-01

    The performance of CaSO 4 :Dy and LiF:Mg,Ti dosimeters to electron beams applied to radiotherapy was investigated. The TL response of these dosimeters was studied for 6 MeV electron beams using PMMA and Solid Water (SW) phantoms. The dosimeters were previously separated in groups according to their TL individual sensitivities to 60 Co gamma-radiation in air under electronic equilibrium conditions. After that, they were irradiated with 6 MeV electron doses of 0.1, 0.5, 1, 5 and 10 Gy using a linear accelerator Clinac 2100C Varian of Hospital Israelita Albert Einstein – HIAE. The electron beam irradiations were performed using a 10 × 10 cm 2 field size, 100 cm source-phantom surface distance and the dosimeters were positioned at the depth of maximum dose (1.2 cm). The TL readings were carried out between 24 and 32 h after irradiation using a Harshaw 3500 TL reader. The TL dose–response of both type of dosimeters and phantoms presented linear behavior on the electron dose range from 0.1 to 5 Gy CaSO 4 :Dy dosimeter is 21 times more sensitive than LiF:Mg,Ti, dosimeter commonly used in clinical dosimetry. The obtained results indicate that the performance of CaSO 4 :Dy dosimeters is similar to LiF:Mg,Ti dosimeters and this material can be an alternative dosimetric material to be used to clinical electron beams dosimetry.

  1. Microstructure of Multi-Pass Friction-Stir-Processed Al-Zn-Mg-Cu Alloys Reinforced by Nano-Sized TiB2 Particles and the Effect of T6 Heat Treatment

    Directory of Open Access Journals (Sweden)

    Xiaofei Ju

    2017-11-01

    Full Text Available In this work, a fine-grained structure with a uniform distribution of TiB2 particles and precipitates was achieved in TiB2 particle-reinforced (PR Al-Zn-Mg-Cu alloys by friction stir processing (FSP. The effects of multi-pass FSP on the microstructure, and TiB2 particle distribution, as well as the microstructural evolution in the following T6 treatment, were investigated by X-ray diffraction, scanning electron microscopy and associated electron backscattered diffraction. The results showed that the distribution of TiB2 particles and alloy precipitates was further improved with an increase in the FSP passes. Moreover, compared with alloy segregation in the as-cast PR alloys during T6 treatment, a complete solution of the precipitates was achieved in the FSP-treated PR alloys. The fine-grained structure of the FSP-treated PR alloys was thermally stable without any abnormal growth at the high temperature of T6 treatment due to the pinning effect of dispersed TiB2 particles. The strength and ductility of the PR alloys were simultaneously improved by the combination of FSP and T6 treatment.

  2. Development of bonding techniques for cryogenic components. 1. HIP bonding tests between Ti and cryogenic stainless steels

    International Nuclear Information System (INIS)

    Saito, Shigeru; Ouchi, Nobuo; Ishiyama, Shintaro; Tsuchiya, Yoshinori; Nakajima, Hideo

    2002-05-01

    Around the super conducting (SC) coils of SC linear accelerator or fusion reactor, several kinds of dissimilar material joints will be needed. In case of fusion reactor, pure titanium has been proposed as jacket material of SC coil. Pure titanium has many advantages, for instance, almost same thermal expansion with Nb 3 Sn SC coil, non-magnetivity and good workability. However, it is difficult to bond Ti and cryogenic stainless steels by welding. Therefore, it is necessary to develop new bonding techniques and we started the development of the bonding technology by hot isostatic press (HIP) method to bond titanium with stainless steels. In this experiments, optimization of HIP bonding condition and evaluation of bonding strength were performed by metallurgical observation, mechanical property tests and heat cycle test. (author)

  3. The modification of some properties of Al-2%Mg alloy by Ti &Li alloying elements

    Directory of Open Access Journals (Sweden)

    Talib Abdulameer Jasim

    2017-11-01

    Full Text Available Aluminium-Magnisium alloys are light, high strength with resistance to corrosion and good weldability. When the content of magnesium  exceeds 3% there is a tendency to stress corrosion . This work is an attempt is to prepare low density alloy with up to approximately 2.54 g / cm3 by adding different contents of Ti, and lithium to aluminum-2%Magnisium alloy. The lithium is added in two aspects, lithium chloride and pure metal. The casting performed using conventional casting method. Moreover, solution heat treatment (SHT at 520 ºC for 4 hrs, quenching in cold water, and aging at 50ºC for 4 days were done to get better mechanical properties of all samples. Microstructure was inspected by light optical microscope before and after SHT. Alloy3 which contains 1.5%Ti was tested by SEM and EDS spectrometer to exhibit the shape and micro chemical analysis of Al3Ti phase. Hardness, ultimate tensile strength, and modulus of elasticity were tested for all alloys. The results indicated that Al3Ti phase precipitates in alloys contain 0.5%T, 1%Ti, And 1.5%Ti.  The phases Al3Li as well as Al3Ti were precipitated in alloy4 which contains 2%Ti, and 2.24%Li. Mechanical properties test results also showed that the alloy4 has achieved good results, the modulus of elasticity chanced from 310.65GPa before SHT to 521.672GPa, after SHT and aging, the ultimate tensile strength was changed from 365MPa before SHT to 469MPa, after SHT and aging,  and hardness was increased from 128 to 220HV.

  4. Oxidation behaviors of the TiNi/Ti_2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    International Nuclear Information System (INIS)

    Lv, Y.H.; Li, J.; Tao, Y.F.; Hu, L.F.

    2016-01-01

    The TiNi/Ti_2Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti_2Ni as the matrix and TiC/TiB_2/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB_2 and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm"−"2 h"−"1 in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg"2 cm"−"4 h"−"1 in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm"−"2, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO_2, Al_2O_3, and a small amount of NiO, Cr_2O_3 and SiO_2. Moreover, Ta_2O_5 was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser cladding. • Effect of TaC addition on microstructural evolution of the coatings was

  5. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Yan, F; McKay, B J; Fan, Z; Chen, M F

    2012-01-01

    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2 Si particles evenly distributed throughout an α-Al matrix with a β-Al 3 Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2 Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2 Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3 Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2 Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  6. Studies on the sedimentation and agglomeration behavior of Al-Ti-B and Al-Ti-C grain refiners

    Energy Technology Data Exchange (ETDEWEB)

    Gazanion, F.; Chen, X.G.; Dupuis, C. [Alcan International Ltd., Jonquiere, PQ (Canada). Arvida Research and Development Centre

    2002-07-01

    The sedimentation and agglomeration behavior of Al-Ti-B and Al-Ti-C grain refiners in liquid aluminum has been investigated using the LiMCA and PoDFA analysis techniques in combination with metallographic examination. The widely used Al-5%Ti-1%B and Al-3%Ti-0.15%C master alloys were chosen. Two aluminum alloys, an AAlxxx (commercially pure metal) and an AA5182 (Al-4.5%Mg) alloy, were prepared with different additions of grain refiners. The difference in particle behavior in liquid aluminum for both refiners is described and briefly analyzed in terms of sensitivity to agglomeration and grain refiner performance. Experimental results indicate that, in comparison with the Al-Ti-B refiner, the Al-Ti-C refiner is detrimentally affected by long holding periods due to the decomposition of TiC particles within the melt. (orig.)

  7. Uncertainty determination of analysis of Ti, V, Cl, Ce, Cr, Cs, Sc, Co, Fe and Ca in solid samples by INAA method using standard addition according to ISO - guide 17025

    International Nuclear Information System (INIS)

    Sumining; Agus Taftazani

    2003-01-01

    Uncertainty of analysis of Ti, V, Cl, Ce, Cr, Cs, Sc, Co, Fe and Ca in solid samples by INAA (/instrumental Neutron Activation Analysis) method using comparative technique and standard addition have been carried out at INAA laboratory of P3TM BATAN. The calculation of Ti have been presented as the example. Uncertainty sources of INAA are sampling, sample and standard preparation, irradiation and counting. Sample were come from IAEA (International Atomic Energy Agency) which had ready for analyzed therefore only for sample and standard preparation, irradiation and counting factors were determined. Analysis were done by relative technique, that sample and standard were irradiated together in same capsule therefore irradiation time, neutron flux, irradiation geometry and isotopic properties. will be eliminated. Uncertainty of counting factors were covering radioactivity decay during the counting, pulse losses caused by random counting, counting geometry, and counting rate. Relative technique makes the uncertainty come from counting time for sample and standard that was settled by same counting equipment can be neglected. Uncertainty of counting geometry and thickness of uranium was not detected so there is no contribution come from The fission product. Variation of fuel target nuclides number didn't occurred because the combustion was not occurred during irradiation, and analytical results were not influenced by the chemical status. (author)

  8. Two anionically derivatized scandium oxoselenates(IV): ScF[SeO3] and Sc2O2[SeO3

    Science.gov (United States)

    Greiner, Stefan; Chou, Sheng-Chun; Schleid, Thomas

    2017-02-01

    Scandium fluoride oxoselenate(IV) ScF[SeO3] and scandium oxide oxoselenate(IV) Sc2O2[SeO3] could be synthesized through solid-state reactions. ScF[SeO3] was obtained phase-pure, by reacting mixtures of Sc2O3, ScF3 and SeO2 (molar ratio: 1:1:3) together with CsBr as fluxing agent in corundum crucibles embedded into evacuated glassy silica ampoules after firing at 700 °C for seven days. Sc2O2[SeO3] first emerged as by-product during the attempts to synthesize ScCl[SeO3] following aforementioned synthesis route and could later be reproduced from appropriate Sc2O3/SeO3 mixtures. ScF[SeO3] crystallizes monoclinically in space group P21/m with a=406.43(2), b =661.09(4), c=632.35(4) pm, β=93.298(3)° and Z=2. Sc2O2[SeO3] also crystallizes in the monoclinic system, but in space group P21/n with a=786.02(6), b=527.98(4), c=1086.11(8) pm, β=108.672(3)° for Z=4. The crystal structures of both compounds are strongly influenced by the stereochemically active lone pairs of the ψ1-tetrahedral [SeO3]2- anions. They also show partial structures, where the derivatizing F- or O2- anions play an important role. For ScF[SeO3] chains of the composition 2+∞ 1[FS c 2 / 2 ] form from connected [FSc2]5+ dumbbells, while [OSc3]7+ pyramids and [OSc4]10+ tetrahedra units are condensed to layers according to 2+ ∞ 2[O2Sc2 ] in Sc2O2[SeO3].

  9. Promotional role of Li4Ti5O12 as polysulfide adsorbent and fast Li+ conductor on electrochemical performances of sulfur cathode

    Science.gov (United States)

    Zeng, Tianbiao; Hu, Xuebu; Ji, Penghui; Shang, Biao; Peng, Qimeng; Zhang, Yaoyao; Song, Ruiqiang

    2017-08-01

    Lithium-sulfur (Li-S) batteries attract much attention due to its high specific capacity and energy density compared to lithium-ion batteries (LiBs). Herein, a novel composite named as (void/nano-Li4Ti5O12 pieces)@C [(v/n-L)@C] was designed and prepared as a sulfur host. Spinel Li4Ti5O12 here as a multifunctional additive played as polysulfide adsorbent agent and fast Li+ conductor, and carbon shell was designed as electronic conductor, as well as volume barrier to limit the volume expansion caused by sulfur. As-prepared (S/nano-Li4Ti5O12 pieces)@C [(S/n-L)@C] are core-shell spheres, which are about 200 nm in size. Nano-Li4Ti5O12 and sulfur were coated by the outer carbon shell with a thickness of about 20 nm. The experimental results show that electrochemical performances of (S/n-L)@C cathode were enhanced effectively compared to S@C cathode. At 0.5C and 1C, the discharge capacity of (S/n-L)@C was 33.5% and 40.1% higher than that of S@C at 500th cycle. Even at 2C, its capacity reached 600.9 mAh g-1 at 1000th cycle. Li+ conductivity of (S/n-L)@C was one order of magnitude higher than that of S@C, which was reach to 2.55 × 10-8 S cm-1. The experiment results indicate Li4Ti5O12 plays a promotional role on electrochemical performances of sulfur cathode, especially for stable cycling performance and high rate performance.

  10. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  11. Investigation of Sc(3) state in nonaqueous solutions by the 45Sc NMR method of high permission

    International Nuclear Information System (INIS)

    Buslaev, Yu.A.; Kirakosyan, G.A.; Tarasov, V.P.

    1980-01-01

    The ScCl 3 + CH 3 CN and ScCl 3 + KNCS + CH 3 CN solutions have been studied by a high-resolution NMR 45 Sc method. It has been estimated that in acetonitrile solutions, with competing ligands of Cl - and NCS - being available, hexacoordination Sc(3) complexes of various compositions are formed, and solvent molecules also take part in formation of the coordination sphere of scandium. Chemical shifts in NMR 45 Sc signals depend linearly on the number of chlor- or NCS - ions bound to scandium(3). This made it possible to determine the value of chemical shifts in signals of all 28 potential complexes formed in a system with three competing ligands

  12. Production, biodistribution, and dosimetry of 47Sc-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene phosphonic acid as a bone-seeking radiopharmaceutical

    Directory of Open Access Journals (Sweden)

    Fatemeh Fathi

    2015-01-01

    Full Text Available In this study 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene phosphonic acid (DOTMP was used as the polyaminophosphonic acid carrier ligand and the therapeutic potential of the bone seeking radiopharmaceutical 47Sc-DOTMP was assessed by measuring its dosage–dependent skeletal uptake and then the absorbed radiation dose of human organs was estimated. Because of limited availability of 47Sc we performed some preliminary studies using 46Sc. 46Sc was produced with a specific activity of 116.58 MBq/mg (3.15 mCi/mg and radionuclide purity of 98%. 46Sc-DOTMP was prepared and an activity of 1.258 MBq (34 μCi at a chelant-to-metal ratio of 60:1 was administered to five groups of mice with each group containing 3 mice that were euthanized at 4, 24, 48, 96 and 192 h post administration. The heart, lungs, liver, spleen, kidneys, intestine, skin, muscle, and a femur were excised, weighed, and counted. The data were analyzed to determine skeletal uptake and source organ residence times and cumulated activities for 47Sc-DOTMP. 46Sc-DOTMP complex was prepared in radiochemical purity about 93%. In vitro stability of complex was evaluated at room temperature for 48 h. Biodistribution studies of complex in mice were studied for 7 days. The data were analyzed to estimate skeletal uptake and absorbed radiation dose of human organs using biodistribution data from mice. By considering the results, 47Sc-DOTMP is a possible therapeutic agent for using in palliation of bone pain due to metastatic skeletal lesions from several types of primary cancers in prostate, breast, etc.

  13. Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature

    Science.gov (United States)

    Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang

    2018-01-01

    The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.

  14. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  15. Fatigue properties of piezoelectric-electrostrictive Pb(Mg1/3,Nb2/3)O3-PbTiO3 monolithic bilayer composites

    Science.gov (United States)

    Hall, A.; Akdogan, E. K.; Safari, A.

    2006-11-01

    The fatigue response of monolithic piezoelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3-electrostrictive 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 bilayer composites was investigated experimentally. The monomorph bilayers were cosintered at 1150°C, and the polarization hysteresis, relative permittivity, displacement, and cyclic fatigue (107cycles) were measured as a function of piezoelectric-electrostrictive volume fraction (PEVF) ratio. The highest tip displacement of bilayers was found in the 3:1 PEVF monolith, reaching 40μm at 5kV/cm applied field strength. By minimizing the electrostrictive layer thickness, tip displacement substantially increased, while maintaining a lower hysteresis than the purely piezoelectric counterpart. Fatigue measurements indicated a 31% decrease in displacement after 107cycles in 3:1 monoliths, whereas the 1:3 PEVF only showed a 12% decrease under the same conditions. There is a 30% increase in polarization after 107cycles for 1:1 PEVF bilayers, which is attributed to self-poling due to a diffuse transition layer in the vicinity of the interface. It was found that partial 90° domain switching occurred prior to poling because of the residual stresses in the composite, imposed by the electrostrictive layer and the spontaneous strain associated with the cubic-tetragonal transition in the ferroelectric layer. The results indicate that the electrostrictive layer, which is electrically in series with the piezoelectric one, enhances the fatigue resistance of the monolithic bilayer composites in addition to the increase in tip displacement.

  16. Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C

    Science.gov (United States)

    Yue, Hong-rui; Jiang, Tao; Zhang, Qiao-yi; Duan, Pei-ning; Xue, Xiang-xin

    2017-07-01

    The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.

  17. Application of gradient-corrected density functional theory to the structures and thermochemistries of ScF3, TiF4, VF5, and CrF6

    International Nuclear Information System (INIS)

    Russo, T.V.; Martin, R.L.; Jeffrey Hay, P.

    1995-01-01

    Density functional theory (DFT) and Hartree--Fock (HF) calculations are reported for the family of transition metal fluorides ScF 3 , TiF 4 , VF 5 , and CrF 6 . Both HF and the local-density approximation (LDA) yield excellent agreement with experimental bond lengths, while the B-LYP gradient-corrected density functional gives bond lengths 0.04-0.05 A too long. An investigation of various combinations of exchange and correlation functionals shows that, for this series, the origin of this behavior lies in the Becke exchange functional. Much improved bond distances are found using the hybrid HF/DFT functional advocated by Becke. This approximation also leads to much improved thermochemistries. The LDA overestimates average bond energies in this series by 30-40 kcal/mol, whereas the B-LYP functional overbinds by only ∼8-12 kcal/mol, and the hybrid HF/DFT method overbinds by only ∼2 kcal/mol. The hybrid method predicts the octahedral isomer of CrF 6 to be more stable than the trigonal prismatic form by 14 kcal/mol. Comparison of theoretical vibrational frequencies with experiment supports the assignment of an octahedral geometry

  18. Synthesis and electrochemical properties of binary MgTi and ternary MgTiX (X=Ni, Si) hydrogen storage alloys

    NARCIS (Netherlands)

    Gobichettipalayam Manivasagam, T.; Iliksu, M.; Danilov, D.L.; Notten, P.H.L.

    2017-01-01

    Mg-based hydrogen storage alloys are promising candidate for many hydrogen storage applications because of the high gravimetric hydrogen storage capacity and favourable (de)hydrogenation kinetics. In the present study we have investigated the synthesis and electrochemical hydrogen storage properties

  19. Development of standardized radioactive 46Sc solution

    International Nuclear Information System (INIS)

    Du Hongshan; Jia Zhang; Yu Yiguang; Sun Naiyao

    1988-01-01

    A method of preparation of standardized radioactive 46 Sc solution is developed. The separation of 46 Sc, the composition of 46 Sc solution and its stability, and radioactivity measurement of 46 Sc are systematically studied. The results obtained in the study and in the applications in many laboratories have shown that our method is effective and reliable

  20. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

    International Nuclear Information System (INIS)

    Biesinger, Mark C.; Lau, Leo W.M.; Gerson, Andrea R.; Smart, Roger St.C.

    2010-01-01

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of the 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. A review of current literature shows that all values necessary for reproducible, quantitative chemical state analysis are usually not provided. This paper reports a more consistent, practical and effective approach to curve-fitting the various chemical states in a variety of Sc, Ti, V, Cu and Zn metals, oxides and hydroxides. The curve-fitting procedures proposed are based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of the literature references, and (3) specific literature references where fitting procedures are available. Binding energies, full-width at half maximum (FWHM) values, spin-orbit splitting values, asymmetric peak-shape fitting parameters, and, for Cu and Zn, Auger parameters values are presented. The quantification procedure for Cu species details the use of the shake-up satellites for Cu(II)-containing compounds and the exact binding energies of the Cu(0) and Cu(I) peaks. The use of the modified Auger parameter for Cu and Zn species allows for corroborating evidence when there is uncertainty in the binding energy assignment. These procedures can remove uncertainties in analysis of surface states in nano-particles, corrosion, catalysis and surface-engineered materials.

  1. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, Mark C., E-mail: biesingr@uwo.ca [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia); Lau, Leo W.M. [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, Andrea R.; Smart, Roger St.C. [ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2010-11-15

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of the 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. A review of current literature shows that all values necessary for reproducible, quantitative chemical state analysis are usually not provided. This paper reports a more consistent, practical and effective approach to curve-fitting the various chemical states in a variety of Sc, Ti, V, Cu and Zn metals, oxides and hydroxides. The curve-fitting procedures proposed are based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of the literature references, and (3) specific literature references where fitting procedures are available. Binding energies, full-width at half maximum (FWHM) values, spin-orbit splitting values, asymmetric peak-shape fitting parameters, and, for Cu and Zn, Auger parameters values are presented. The quantification procedure for Cu species details the use of the shake-up satellites for Cu(II)-containing compounds and the exact binding energies of the Cu(0) and Cu(I) peaks. The use of the modified Auger parameter for Cu and Zn species allows for corroborating evidence when there is uncertainty in the binding energy assignment. These procedures can remove uncertainties in analysis of surface states in nano-particles, corrosion, catalysis and surface-engineered materials.

  2. Electrospun TiO{sub 2} nanofibers decorated Ti substrate for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Dumitriu, Cristina [Åbo Akademi University, Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, Åbo-Turku FI-20500 (Finland); Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania); Stoian, Andrei Bogdan [Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania); Titorencu, Irina; Pruna, Vasile; Jinga, Victor V. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B. P. Hasdeu, district 5, Bucharest Ro-050568 (Romania); Latonen, Rose-Marie; Bobacka, Johan [Åbo Akademi University, Process Chemistry Centre, Laboratory of Analytical Chemistry, Biskopsgatan 8, Åbo-Turku FI-20500 (Finland); Demetrescu, Ioana, E-mail: i_demetrescu@chim.upb.ro [Politehnica University Bucharest, Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, Bucharest Ro-011061 (Romania)

    2014-12-01

    Various TiO{sub 2} nanofibers on Ti surface have been fabricated via electrospinning and calcination. Due to different elaboration conditions the electrospun fibers have different surface feature morphologies, characterized by scanning electronic microscopy, surface roughness, and contact angle measurements. The results have indicated that the average sample diameters are between 32 and 44 nm, roughness between 61 and 416 nm, and all samples are hydrophilic. As biological evaluation, cell culture with MG63 cell line originally derived from a human osteosarcoma was performed and correlation between nanofibers elaboration, properties and cell response was established. The cell adherence and growth are more evident on Ti samples with more aligned fibers, higher roughness and strong hydrophilic character and such fibers have been elaborated with a high speed rotating cylinder collector, confirming the idea that nanostructure elaboration conditions guide the cells' growth. - Highlights: • Processing Ti surface via electrospinning and calcination leads to TiO{sub 2} nanofibers. • The TiO{sub 2} electrospun fibers on Ti have diameters between 10 and 100 nm. • Elaboration with high speed rotating cylinder collector leads to aligned fibers. • The samples have roughness between 61 and 416 nm and all of them are hydrophilic. • Cell adherence and viability is more evident on Ti samples with aligned fibers.

  3. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.

    Science.gov (United States)

    Jacob, Donna L; Borchardt, Joshua D; Navaratnam, Leelaruban; Otte, Marinus L; Bezbaruah, Achintya N

    2013-01-01

    Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L(-1) for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.

  4. Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn1

    2012-04-01

    Full Text Available Photocatalytic decolorization of rhodamine B (RB and malachite green (MG basic dyes in aqueous solution wasevaluated using TiO2 powder as a semiconductor photocatalyst under UV black light irradiation. A 0.5 L batch photoreactorcontaining dyeing solution was installed in a stainless steel chamber with air cooling under irradiation. The TiO2 powder wascharacterized by XRD observation and it was shown that the nanoparticles could be identified as 73 nm anatase crystals. Theeffects of operational parameters such as light intensity (0-114 W/m2, initial dye concentration (10-30 mg/L, and TiO2 powderloading (0.5-1.5 g/L on the decolorization of dye samples were examined. The photocatalytic decolorization rate depended onthe pollutant’s structure, such that the MG dye could be removed faster than the RB dye. Decolorization efficiency (% of thephotocatalytic system increased with increasing TiO2 loading and light intensity; however, it decreased with increasing initialdye concentration. A loading of 1.5 g TiO2/L, initial dye concentration of 20 mg/L, and light intensity of 114 W/m2 were foundto yield the highest removal efficiency of dye solution based on time requirement. The kinetics are of first order and dependon the TiO2 powder loading and dye structure. The research had a perfect application foreground.

  5. UV light induced photodegradation of malachite green on TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.C.; Lu, C.S.; Chung, Y.C.; Jan, J.L.

    2007-01-01

    The photodegradation of malachite green (MG), a cationic triphenylmethane dye, is examined both under different pH values and amounts of TiO 2 . After 15 W UV-365 nm irradiation for 4 h, ca. 99.9% of MG was degraded with addition of 0.5 g L -1 TiO 2 to solutions containing 50 mg L -1 of the MG dye. The HPLC-PDA-ESI-MS technique was used to obtain a better understanding on the mechanistic details of this TiO 2 -assisted photodegradation of the MG dye with UV irradiation. Five intermediates of the process were separated, identified, and characterized for the first time. The results indicated that the N-de-methylation degradation of MG dye took place in a stepwise manner to yield mono-, di-, tri-, and tetra-N-de-methylated MG species generated during the processes. Under acidic conditions, the results indicated that the photodegradation mechanism is favorable to cleavage of the whole conjugated chromophore structure of the MG dye. Under basic conditions, the results showed that the photodegradation mechanism is favorable to a formation of a series of N-de-methylated intermediates of the MG dye

  6. Knowledge insufficient: the management of haemoglobin SC disease.

    Science.gov (United States)

    Pecker, Lydia H; Schaefer, Beverly A; Luchtman-Jones, Lori

    2017-02-01

    Although haemoglobin SC (HbSC) accounts for 30% of sickle cell disease (SCD) in the United States and United Kingdom, evidence-based guidelines for genotype specific management are lacking. The unique pathology of HbSC disease is complex, characterized by erythrocyte dehydration, intracellular sickling and increased blood viscosity. The evaluation and treatment of patients with HbSC is largely inferred from studies of SCD consisting mostly of haemoglobin SS (HbSS) patients. These studies are underpowered to allow definitive conclusions about HbSC. We review the pathophysiology of HbSC disease, including known and potential differences between HbSS and HbSC, and highlight knowledge gaps in HbSC disease management. Clinical and translational research is needed to develop targeted treatments and to validate management recommendations for efficacy, safety and impact on quality of life for people with HbSC. © 2016 John Wiley & Sons Ltd.

  7. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    Science.gov (United States)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  8. SC-FDMA for mobile communications

    CERN Document Server

    Abd El-Samie, Fathi E

    2013-01-01

    SC-FDMA for Mobile Communications examines Single-Carrier Frequency Division Multiple Access (SC-FDMA). Explaining this rapidly evolving system for mobile communications, it describes its advantages and limitations and outlines possible solutions for addressing its current limitations. The book explores the emerging trend of cooperative communication with SC-FDMA and how it can improve the physical layer security. It considers the design of distributed coding schemes and protocols for wireless relay networks where users cooperate to send their data to the destination. Supplying you with the re

  9. Concentration of uranium on TiO-PAN and NaTiO-PAN composite absorbers

    International Nuclear Information System (INIS)

    Motl, Alois; Sebesta, Ferdinand; John, Jan; Spendlikova, Irena; Nemec, Mojmir

    2013-01-01

    finely divided inorganic absorbers. The general procedure for the preparation of the resulting inorganic-organic composite absorbers enables preparation of suitably grained composite absorbers. The contents of active component may reach up to 90% (W/W) in dry residue. The aim of this study was to verify possibility of extraction of uranium with TiO-PAN and NaTiO-PAN composite absorbers, to compare properties of these two absorbers and to conclude whether they are prospective for uranium collection from surface and/or waste waters. Hydrated titanium oxide (TiO) and sodium titanate (NaTiO) -the active components of the composite materials-were prepared from industrial intermediate from production of titanium white. Standard procedure was used to prepare the TiO-PAN and NaTiO-PAN composite absorbers. In the experiments, distilled and tap water were used to compare the influence of the water hardness. pH of the effluent was also measured during the process. The results showed that practical sorption capacity (10% break-through) from tap water containing 2.3 μg U.mL -1 measured at flow rate of 100 BV.h -1 was ∼ 4.6 mg and ∼1.5 mg of uranium per ml of swollen TiO-PAN and NaTiO-PAN absorber, respectively. The maximum flow rates are 60 BV.h -1 and 60-100 BV.h -1 for TiO-PAN and NaTiO-PAN absorbers, respectively, depending on the concentration of uranium (2.3-230 mg U.L -1 ). Elution of uranium and regeneration of the absorber may be accomplished by 0.1 mol.L -1 or stronger solutions of hydrochloric acid for both the absorbers. Hence, TiO-PAN and NaTiO-PAN composite absorbers were proved to be applicable for extraction of uranium from aqueous solutions. With respect to the measured practical sorption capacity, TiO-PAN composite absorber is more suitable for the uranium collection from surface and/or waste water. (author)

  10. Characterization of gingerol analogues in supercritical carbon dioxide (SC CO2) extract of ginger (Zingiber officinale, R.,).

    Science.gov (United States)

    Swapna Sonale, R; Kadimi, Udaya Sankar

    2014-11-01

    Organically grown ginger rhizome (Zingiber officinale Roscoe) SC CO2 extract obtained at 280 bar and 40 °C and its column chromatographic fractions are characterised for its composition. The components in the extract and fractions are identified by HPLC and LC based MS and are used as standard for the estimation of gingerol analogues in the extract. HPLC and mass analysis of the extracts confirmed the various forms of gingerol constituents [4]-, [6]-, [10]-gingerols and [6]-, [8]-, [10]-shogaols in ginger extracts. SC CO2 extract of organic ginger was found to show 6-gingerol around 25.97 % of total extract. The estimation of [6]-gingerol, [6]-shogaols, [4]gingerol, [10]-gingerol and 6-gingediol content of the SC CO2 purified ginger extract was found to be 75.92 ± 1.14, 1.25 ± 0.04, 4.54 ± 0.04, 13.15 ± 0.30 and 0.37 ± 0.00 % respectively. Antioxidant activity was measured by 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) and the assay have shown 652 ± 0.37 mg TE/g and 3.68 ± 0.18 mg TE/100 g respectively, are significantly higher results with SC CO2 organic ginger extract. Paradol analogues are not detected in this study. Small quantities of [4]-, [10]gingediol and [6]-gingediacetate are also found in ginger extract.

  11. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin

    2013-12-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  12. Precipitation in cold-rolled Al-Sc-Zr and Al-Mn-Sc-Zr alloys prepared by powder metallurgy

    KAUST Repository

    Vlach, Martin; Stulí ková , Ivana; Smola, Bohumil; Kekule, Tomá š; Kudrnová , Hana; Daniš, Stanislav; Gemma, Ryota; Očená šek, Vladivoj; Má lek, Jaroslav; Tanprayoon, Dhritti; Neubert, Volkmar

    2013-01-01

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al3Sc and/or Al3(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al6Mn- and/or Al 6(Mn,Fe) particles of a size ~ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al3Sc particles formation and/or coarsening and that of the Al6Mn and/or Al 6(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al3Sc-phase and the Al 6Mn-phase precipitation. © 2013 Elsevier Inc.

  13. H–TiO{sub 2}/C/MnO{sub 2} nanocomposite materials for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Di, Jing; Fu, Xincui; Zheng, Huajun, E-mail: zhenghj@zjut.edu.cn [Zhejiang University of Technology, Department of Applied Chemistry (China); Jia, Yi [Griffith University, Nathan Campus, Queensland Micro and Nanotechnology Centre (Australia)

    2015-06-15

    Functionalized TiO{sub 2} nanotube arrays with decoration of MnO{sub 2} nanoparticles (denoted as H–TiO{sub 2}/C/MnO{sub 2}) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO{sub 2} nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO{sub 2} nanoparticles growing round the surface of the TiO{sub 2} nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H–TiO{sub 2}/C/MnO{sub 2} nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g{sup −1} at the current density of 0.5 A g{sup −1} in 1 M Na{sub 2}SO{sub 4} electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only ∼13 % of SC loss after 2000 continuous charge–discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  14. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    Science.gov (United States)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  15. Microstructure and Thermal Properties of Polypropylene/Clay Nanocomposites with TiCl4/MgCl2/Clay Compound Catalyst

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2015-01-01

    Full Text Available Polypropylene (PP/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD and transmission electron microscopy (TEM examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that the α phase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.

  16. Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell.

    Science.gov (United States)

    El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M

    2017-10-16

    Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.

  17. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    Science.gov (United States)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  18. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  19. Orientación de láminas delgadas de (Pb, CaTiO3

    Directory of Open Access Journals (Sweden)

    Mendiola, J.

    1999-06-01

    Full Text Available Calcium modified PbTiO3 thin films have been prepared on platinized Si, MgO and SrTiO3 substrates. The films were deposited from a sol-gel solution with a concentration of 0.3 M and with a 10% excess of PbO. Two deposits of this solution on the substrates were made by spin-coating, crystallizing each of them by a Rapid Thermal Processing. The resulting films present a single (Pb,CaTiO3 perovskite phase. All the films are textured, but the films deposited on MgO and SrTiO3 show a preferred orientation in the polar direction of the perovskite. As a result of this orientation, pyroelectric coefficients were measured, without any poling, for the films on MgO and SrTiO3. Pyroelectric measurements indicate the application of these films in infrarred sensors.Se han preparado láminas delgadas de PbTiO3 modificado con calcio sobre substratos de Si, MgO y SrTiO3 electrodados con Pt. Las películas se depositaron a partir de una solución sintetizada por sol-gel, con concentración 0.3 M y con un 10 % en exceso de PbO. En cada lámina se hicieron dos depósitos de la solución sobre el substrato mediante la técnica de “spin-coating”, cristalizando cada uno de ellos con un tratamiento térmico rápido. Todas las láminas resultantes presentaban como única fase cristalina la perovskita de (Pb,CaTiO3. Las láminas presentaron una cierta textura, observándose una orientación preferente en la dirección polar en el caso de las películas depositas sobre MgO y SrTiO3. Como resultado de esta orientación, se midieron coeficientes piroeléctricos, sin polarización previa, en las láminas sobre MgO y SrTiO3. Las medidas piroeléctricas de estos materiales evidencian su utilidad en dispositivos para sensores de infrarrojo.

  20. Analysis of inorganic fertilizers used in Ghana for heavy metal s and microelements

    International Nuclear Information System (INIS)

    Addo, M.A.; Akaho, E.H.K.; Dampare, S.B.; Gbadago, J.K.; Nyarko, B.J.B.; Opata, N.S.; Aaotey, D.K.; Adomako, D.; Osae, S.

    2006-01-01

    Nine brands of inorganic fertilizers used in Ghana were analysed by Instrumental Neutron Activation Analysis to determine the concentration of heavy metals and other toxic elements. The heavy metals identified were As, Au, Co, Cr and Fe, while the microelements were Br, Ce, Cs, Rb, Sb, Sc, Sm, Sr, Th, Ti, U and Y. Only Co and Sc occurred in all the brands, with concentrations ranging from 0.44 to 5.02 ± 0.02 mg kg -l for Co and 0.10 to 2.60 ± 0.01 mg kg -I for Sc. The relationships between the elemental concentrations and toxicity levels of the fertilizer were characterized in relation to hazards on application and impacts on the environment. (au)

  1. Comparison of a novel TiO₂/diatomite composite and pure TiO₂ for the purification of phosvitin phosphopeptides.

    Science.gov (United States)

    Zhang, Yang; Li, Junhua; Niu, Fuge; Sun, Jun; Dou, Yuan; Liu, Yuntao; Su, Yujie; Zhou, Bei; Xu, Qinqin; Yang, Yanjun

    2014-06-01

    A novel TiO2/diatomite composite (TD) was prepared and then characterized by scanning electron microscope (SEM) and Fourier Transform Infrared (FTIR). The results of SEM showed that after modification, the porous surface of diatomite was covered with TiO2. Both diatomite and TD had clear disc-shaped structures with average grain diameters of around 25 μm. Then TD and pure TiO2 were applied in the purification of phosvitin phosphopeptides (PPPs) from the digest of egg yolk protein, and a comparative study of adsorption properties of PPPs on TD and TiO2 was performed. In the study of adsorption kinetics, the adsorption equilibrium of PPPs on TD and TiO2 fitted well with the Langmuir model, and the time needed to reach adsorption equilibrium were both around 10 min. The maximum dynamic adsorption capacity of TD (8.15 mg/g) was higher than that of TiO2 (4.96 mg/g). The results of repeated use showed that TD and TiO2 were very stable after being subjected to ten repeated adsorption-elution cycles, and TD could easily be separated from aqueous solution by filtration. On the other hand, the present synthetic technology of TD was very simple, cost-effective, organic solvent-free and available for large-scale preparation. Thus, this separation method not only brings great advantages in the purification of PPPs from egg yolk protein but also provides a promising purification material for the enrichment of phosphopeptides in proteomic researches. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Oxidation behaviors of the TiNi/Ti{sub 2}Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y.H.; Li, J., E-mail: jacob_lijun@sina.com; Tao, Y.F.; Hu, L.F.

    2016-09-15

    The TiNi/Ti{sub 2}Ni matrix composite coatings were fabricated on Ti6Al4V by laser cladding the mixtures of NiCrBSi and different contents of TaC (0 wt%, 5 wt%, 15 wt%, 30 wt% and 40 wt%). Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD) were used to examine the microstructures of the coatings. Oxidation behaviors of these coatings were also investigated at 800 °C for 50 h in air. The results showed that the coating without TaC addition was mainly composed of TiNi/Ti{sub 2}Ni as the matrix and TiC/TiB{sub 2}/TiB as the reinforcement. TaC was dissolved completely and precipitated again during laser cladding. Ta and C from the added TaC mainly existed as the solute atoms in the solid solutions of TiC, TiB{sub 2} and TiB in the coatings with TaC addition. The addition of TaC refined the microstructures of the coatings. In the oxidation test, the oxidation process was divided into the violent oxidation stage and the slow oxidation stage. The oxidation rates of the substrate and the coatings with different contents of TaC (0, 5, 15, 30, 40 wt%) were 0.644, 0.287, 0.173, 0.161, 0.223 and 0.072 mg cm{sup −2} h{sup −1} in the first stage, 0.884, 0.215, 0.136, 0.126, 0.108 and 0.040 mg{sup 2} cm{sup −4} h{sup −1} in the second stage, respectively. The weight gain of these samples were 6.70, 3.30, 2.86, 2.64, 2.41 and 1.69 mg cm{sup −2}, respectively after the whole oxidation test. The oxidation film formed on the surface of the coating without TaC addition mainly consisted of TiO{sub 2}, Al{sub 2}O{sub 3}, and a small amount of NiO, Cr{sub 2}O{sub 3} and SiO{sub 2}. Moreover, Ta{sub 2}O{sub 5} was also formed on the surfaces of these coatings with different contents of TaC. The oxides formed during the oxidation test were supposed to be responsible for the improvement in oxidation resistance of these coatings. - Highlights: • The composite coatings with TaC addition were fabricated on Ti6Al4V by laser

  3. Deuterium absorption in Mg70Al30 thin films with bilayer catalysts: A comparative neutron reflectometry study

    International Nuclear Information System (INIS)

    Poirier, Eric; Harrower, Chris T.; Kalisvaart, Peter; Bird, Adam; Teichert, Anke; Wallacher, Dirk; Grimm, Nico; Steitz, Roland; Mitlin, David; Fritzsche, Helmut

    2011-01-01

    Highlights: → Mg 70 Al 30 thin films studied for hydrogen absorption using in situ neutron reflectometry. → Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. → Measurements reveals deuterium spillover from the catalysts to the MgAl phase. → The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. → Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  4. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.

    Science.gov (United States)

    Xie, Wenjing; Yuan, Songhu; Mao, Xuhui; Hu, Wei; Liao, Peng; Tong, Man; Alshawabkeh, Akram N

    2013-07-01

    A novel cathode, Pd loaded Ti/TiO2 nanotubes (Pd-Ti/TiO2NTs), is synthesized for the electrocatalytic reduction of trichloroethylene (TCE) in groundwater. Pd nanoparticles are successfully loaded on TiO2 nanotubes which grow on Ti plate via anodization. Using Pd-Ti/TiO2NTs as the cathode in an undivided electrolytic cell, TCE is efficiently and quantitatively transformed to ethane. Under conditions of 100 mA and pH 7, the removal efficiency of TCE (21 mg/L) is up to 91% within 120 min, following pseudo-first-order kinetics with the rate constant of 0.019 min(-1). Reduction rates increase from 0.007 to 0.019 min(-1) with increasing the current from 20 to 100 mA, slightly decrease in the presence of 10 mM chloride or bicarbonate, and decline with increasing the concentrations of sulfite or sulfide. O2 generated at the anode slightly influences TCE reduction. At low currents, TCE is mainly reduced by direct electron transfer on the Pd-Ti/TiO2NT cathode. However, the contribution of Pd-catalytic hydrodechlorination, an indirect reduction mechanism, becomes significant with increasing the current. Compared with other common cathodes, i.e., Ti-based mixed metal oxides, graphite and Pd/Ti, Pd-Ti/TiO2NTs cathode shows superior performance for TCE reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    Science.gov (United States)

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  6. Electrical transport in low-lead (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics

    Institute of Scientific and Technical Information of China (English)

    J. SUCHANICZ; K. KONIECZNY; K. ŚWIERCZEK; M. LIPIŃSKI; M. KARPIERZ; D. SITKO; H. CZTERNASTEK; K. KLUCZEWSKA

    2017-01-01

    Low-lead (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics (x = 0, 0.025, 0.05, 0.075, 0.1, and 0.15) were prepared by the conventional oxide mixed sintering process, and their optical band gap, Seebeck coefficient, ac ( σac ) and dc ( σdc ) conductivities as a function of temperature were investigated for the first time. It was found that all samples have p-type conductivity. The low-frequency (20 Hz–2 MHz) ac conductivity obeys a power law σac ~ ωs , which is characteristic for disordered materials. The frequency exponent s is a decreasing function of temperature and tends to zero at high temperature. σac is proportional to ω0.07 – ω0.31 in the low-frequency region and to ω0.51 – ω0.98 in the high-temperature region. The temperature dependence of the dc conductivity showed a change in slope around the temperature at which the phase transition appeared. Both ac and dc conductivities showed a thermally activated character and possessed linear parts with different activation energies and some irregular changes. It was found that the hopping charge carriers dominate at low temperature and small polarons and oxygen vacancies dominate at higher temperature. (1-x)BaTiO3–xPbMg1/3Nb2/3O3 ceramics are expected to be promising new candidate for low-lead electronic materials.

  7. Correlation between thermal vibration and conductivity in La0.9Sr0.1B0.9Mg0.1O3-δ, B=Al, Ga and Sc

    DEFF Research Database (Denmark)

    Lybye, Dorthe; Nielsen, K.

    2004-01-01

    In order to obtain abetter understanding of the oxide ion conductivity in perovskites, the structure of La(0.9)Sr(0.1)Bo(9)Mg(0.1)O(3 - delta), B=Al, Ga and Sc, have been investigated by time-of-flight powder neutron diffraction at room temperature, 270, 470, 750, 850 and 950 degreesC. For all...... compounds, at all temperatures, structural and anisotropic thermal parameters were refined by full profile Rietveld methods to weighted profile R values less than 0.063. The changes in difference nuclear densities, Deltarho, due to changes in temperature are illustrated by difference density maps around...... the atoms. The observed difference densities are described mainly by zeroth- and second-order spherical harmonics (quadrupolar functions), the nature of which vary with atomic site. The difference density maps provide a direct picture of the average in space and time of changes in atomic thermal vibrations...

  8. Fabrication of AlN-TiC/Al composites by gas injection processing

    Institute of Scientific and Technical Information of China (English)

    YU Huashun; CHEN Hongmei; MA Rendian; MIN Guanghui

    2006-01-01

    The fabrication of AlN-TiC/Al composites by carbon-and nitrogen-containing gas injection into Al-Mg-Ti melts was studied. It was shown that AlN and TiC particles could be formed by the in situ reaction of mixture gas (N2+C2H2+NH3) with Al-Mg-Ti melts. The condition for the formation of AlN was that the treatment temperature must be higher than 1373 K, and the amounts of AlN and TiC increased with the increase of the treatment temperature and the gas injection time.It was considered that AlN was formed by the direct reaction of Al with nitrogen-containing gas at the interface of the gas bubble and the melt. However, the mechanism of TiC formation is a combination mechanism of solution-precipitation and solid-liquid reaction.

  9. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  10. Optimization of Malachite Green Removal from Water by TiO₂ Nanoparticles under UV Irradiation.

    Science.gov (United States)

    Ma, Yongmei; Ni, Maofei; Li, Siyue

    2018-06-13

    TiO₂ nanoparticles with surface porosity were prepared by a simple and efficient method and presented for the removal of malachite green (MG), a representative organic pollutant, from aqueous solution. Photocatalytic degradation experiments were systematically conducted to investigate the influence of TiO₂ dosage, pH value, and initial concentrations of MG. The kinetics of the reaction were monitored via UV spectroscopy and the kinetic process can be well predicted by the pseudo first-order model. The rate constants of the reaction kinetics were found to decrease as the initial MG concentration increased; increased via elevated pH value at a certain amount of TiO₂ dosage. The maximum efficiency of photocatalytic degradation was obtained when the TiO₂ dosage, pH value and initial concentrations of MG were 0.6 g/L, 8 and 10 −5 mol/L (M), respectively. Results from this study provide a novel optimization and an efficient strategy for water pollutant treatment.

  11. 44Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations.

    Science.gov (United States)

    Domnanich, Katharina A; Müller, Cristina; Farkas, Renata; Schmid, Raffaella M; Ponsard, Bernard; Schibli, Roger; Türler, Andreas; van der Meulen, Nicholas P

    2017-01-01

    Recently, 44 Sc (T 1/2  = 3.97 h, Eβ + av  = 632 keV, I = 94.3 %) has emerged as an attractive radiometal candidate for PET imaging using DOTA-functionalized biomolecules. The aim of this study was to investigate the potential of using NODAGA for the coordination of 44 Sc. Two pairs of DOTA/NODAGA-derivatized peptides were investigated in vitro and in vivo and the results obtained with 44 Sc compared with its 68 Ga-labeled counterparts.DOTA-RGD and NODAGA-RGD, as well as DOTA-NOC and NODAGA-NOC, were labeled with 44 Sc and 68 Ga, respectively. The radiopeptides were investigated with regard to their stability in buffer solution and under metal challenge conditions using Fe 3+ and Cu 2+ . Time-dependent biodistribution studies and PET/CT imaging were performed in U87MG and AR42J tumor-bearing mice. Both RGD- and NOC-based peptides with a DOTA chelator were readily labeled with 44 Sc and 68 Ga, respectively, and remained stable over at least 4 half-lives of the corresponding radionuclide. In contrast, the labeling of NODAGA-functionalized peptides with 44 Sc was more challenging and the resulting radiopeptides were clearly less stable than the DOTA-derivatized matches. 44 Sc-NODAGA peptides were clearly more susceptible to metal challenge than 44 Sc-DOTA peptides under the same conditions. Instability of 68 Ga-labeled peptides was only observed if they were coordinated with a DOTA in the presence of excess Cu 2+ . Biodistribution data of the 44 Sc-labeled peptides were largely comparable with the data obtained with the 68 Ga-labeled counterparts. It was only in the liver tissue that the uptake of 68 Ga-labeled DOTA compounds was markedly higher than for the 44 Sc-labeled version and this was also visible on PET/CT images. The 44 Sc-labeled NODAGA-peptides showed a similar tissue distribution to those of the DOTA peptides without any obvious signs of in vivo instability. Although DOTA revealed to be the preferred chelator for stable coordination of 44

  12. Microstructure and mechanical properties of extruded and ECAPed AZ31 Mg alloy, grain refined with Al-Ti-C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Torbati-Sarraf, S.A. [School of Metallurgical and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mahmudi, R., E-mail: mahmudi@ut.ac.ir [School of Metallurgical and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-06-15

    Different amounts of Al-3Ti-0.15C master alloy (TiCAl), as grain refiner, were added to the AZ31 magnesium alloy (Mg-3Al-1Zn-0.3Mn) and the resulting microstructure, grain size distributions, texture, and mechanical properties were studied after extrusion and equal channel angular pressing (ECAP). Results showed that the addition of 1.0 wt.% TiCAl had the strongest grain refinement effect, reducing the grain sizes by 51.2 and 38.4% in the extruded and ECAPed conditions, respectively. The observed grain refinement was in part due to the presence of the thermally stable micron- and submicron-sized particles in the melt which act as nucleation sites during solidification. During the high-temperature extrusion and ECAP processes, dynamic recrystallization (DRX) and grain growth are likely to occur. However, second phase particles will help in reducing the grain size by the particle stimulated nucleation (PSN) mechanism. Furthermore, the pinning effect of these particles can oppose grain growth by reducing the grain boundary migration. These two phenomena together with the partitioning of the grains imposed by the severe plastic deformation in the ECAP process have all contributed to the achieved fine-grained structure in the AZ31 alloy with enhanced mechanical properties. The enhancement in the shear yield stress (SYS) and ultimate shear strengths (USS) were, respectively, 11.2 and 6.1% in the extruded state, and 7.6 and 3.9% in the ECAPed conditions. The weaker strengthening effect of grain refinement in the ECAPed alloys can be attributed to the textural modifications which partly offset the achieved grain boundary strengthening.

  13. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application.

    Science.gov (United States)

    Kalita, Himani; Pal, Pallabi; Dhara, Santanu; Pathak, Amita

    2017-02-01

    Nanocomposite films of polyvinyl alcohol (PVA) and zirconium phosphate (ZrP)/doped ZrP (doped with Ca, Mg, Ti) nanoparticles have been developed by solvent casting method to assess their potential as matrix material in scaffold-guided tissue engineering application. The prepared ZrP and doped ZrP nanoparticles as well as the nanocomposite films were characterized by various spectroscopic and microscopic techniques. Nanoindentation studies revealed improved nanomechanical properties in the PVA/doped ZrP nanocomposite films (highest for PVA/Ti doped ZrP: hardness=262.4MPa; elastic modulus=5800MPa) as compared to the PVA/ZrP and neat PVA films. In-vitro cell culture experiments carried out to access the cellular viability, attachment, proliferation, and migration on the substrates, using mouse fibroblast (3T3) cell lines, inferred enhanced bioactivity in the PVA/doped ZrP nanocomposite films (highest for PVA/Ca doped ZrP) in contrast to PVA/ZrP and neat PVA films. Controlled biodegradability as well as swelling behavior, superior bioactivity and improved mechanical properties of the PVA/doped ZrP nanocomposite films make them promising matrix materials for scaffold-guided tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Stable Ferroelectric Behavior of Nb-Modified Bi0.5K0.5TiO3-Bi(Mg0.5Ti0.5)O3 Lead-Free Relaxor Ferroelectric Ceramics

    Science.gov (United States)

    Zaman, Arif; Malik, Rizwan Ahmed; Maqbool, Adnan; Hussain, Ali; Ahmed, Tanveer; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho

    2018-03-01

    Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ˜ 68 pC/N with a lower coercive field ( E c) of ˜ 22 kV/cm and an improved remnant polarization ( P r) of ˜ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.

  15. Effect of concurrent Mg/Nb-doping on dielectric properties of Ba0.45Sr0.55TiO3 thin films

    Science.gov (United States)

    Alema, Fikadu; Reich, Michael; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-08-01

    Composition, microstructure, and dielectric properties of undoped and Ba(Mg1/3Nb2/3)O3 (BMN) doped Ba0.45Sr0.55TiO3 (BST) thin films deposited via rf. magnetron sputtering on platinized alumina substrates have been investigated. The analysis of microstructure has shown that despite the sizable effect of doping on the residual stress, the latter is partially compensated by the thermal expansion coefficient mismatch, and its influence on the BST film crystal structure is insignificant. It was revealed that BMN doped film demonstrated an average (over 2000 devices) of 52.5% tunability at 640 kV/cm, which is ˜8% lower than the value for the undoped film. This drop is associated with the presence of Mg ions in BMN; however, the effect of Mg doping is partially compensated by that of Nb ions. The decrease in grain size upon doping may also contribute to the tunability drop. Doping with BMN allows achievement of a compensation concentration yielding no free carriers and resulting in significant leakage current reduction when compared with the undoped film. In addition, the presence of large amounts of empty shallow traps related to NbTi• allows localizing free carriers injected from the contacts thus extending the device control voltage substantially above 10 V.

  16. Effects of metallic Ti particles on the aging behavior and the influenced mechanical properties of squeeze-cast (SiCp+Ti)/7075Al hybrid composites

    International Nuclear Information System (INIS)

    Liu, Yixiong; Chen, Weiping; Yang, Chao; Zhu, Dezhi; Li, Yuanyuan

    2015-01-01

    The effects of metallic Ti particles on the aging behavior of squeeze-cast (SiC p +Ti)/7075Al hybrid composites and the mechanical properties of the aging treated composites were investigated. Results shown that the precipitation hardening of the hybrid composites during aging processes was delayed due to the segregation of solute Mg atoms in the vicinity of the Ti particles even though the activation energy of the η′ precipitates in the hybrid composites was reduced when compared with the Ti particle-free composites. The segregation of the solute Mg atoms was facilitated as a result of the high diffusivity paths formed by the generated dislocations in the matrix induced by the thermal misfit between the SiC particle and the matrix. The smaller activation energy for the hybrid composite may attribute to a significant reduction in the nucleation rate of the dislocation nucleated η′ precipitates compared with the Ti particle-free composite. After aging treated under the optimum aging conditions, the tensile strength of both composites was improved because of the precipitation hardening of the matrix alloy. In contrast with the reduced ductility of the traditional Ti particle-free composites after aging treatment, the ductility of the Ti particle-containing composites was improved as a result of the strengthened interfaces between the Ti particles and the matrix alloy

  17. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    Science.gov (United States)

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  18. Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution.

    Science.gov (United States)

    Ayanda, Olushola S; Nelana, Simphiwe M; Petrik, Leslie F; Naidoo, Eliazer B

    2017-10-01

    The application of nano-TiO 2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO 2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO 2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO 2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO 2 , respectively. The degradation of AAP by ultrasound followed by nano-TiO 2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO 2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.

  19. Pyroelectric Study on Dipolar Alignment in 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; SHEN Ming-Rong; CAO Wen-Wu

    2012-01-01

    Pyroelectric measurements are conducted during zero-Geld heating in [001], [110] and [111] poled 0.69Pb(Mg1/3 Nb2/3)O3-0.31PbTiO3 single crystals. Compared to the room-temperature-poled samples, the crystals poled by using the Rield cooling method show broad but well recognizable pyroelectric current peaks near 190℃, which is much higher than the Curie point (126℃) of the crystal. We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.%Pyroelectric measurements are conducted during zero-field heating in [001],[110] and [111] poled 0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3 single crystals.Compared to the room-temperature-poled samples,the crystals poled by using the field cooling method show broad but well recognizable pyroelectric current peaks near 190℃,which is much higher than the Curie point (126℃) of the crystal.We propose that this peak of the crystals poled by field-cooling above the Curie point is ascribed to the order-disorder transition of the dipoles in polar nano-regions formed at the Burns temperature.

  20. Strain and Ferroelectric-Field Effects Co-mediated Magnetism in (011)-CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3Multiferroic Heterostructures

    KAUST Repository

    Wang, Ping; Jin, Chao; Zheng, Dongxing; Li, Dong; Gong, Junlu; Li, Peng; Bai, Haili

    2016-01-01

    Electric-field mediated magnetism was investigated in CoFe2O4 (CFO, deposited by reactive cosputtering under different Oxygen flow rates) films fabricated on (011)-Pb(Mg1/3Nb2/3)(0.7)Ti0.3O3 (PMN-PT) substrates. Ascribed to the volatile strain